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Relation Extraction (RE) is a task of Natural Language Processing (NLP) to

detect and classify the relations between two entities. Relation extraction in the

biomedical and scientific literature domain is challenging as text can contain multiple

pairs of entities in the same instance. During the course of this research, we developed

an RE framework (RelEx), which consists of five main RE paradigms: rule-based, ma-

chine learning-based, Convolutional Neural Network (CNN)-based, Bidirectional En-

coder Representations from Transformers (BERT)-based, and Graph Convolutional

Networks (GCNs)-based approaches. RelEx’s rule-based approach uses co-location

information of the entities to determine whether a relation exists between a selected

entity and the other entities. RelEx’s machine learning-based approach consists

of traditional feature representations into traditional machine learning algorithms.

RelEx’s CNN-based approach consists of three CNN architectures: Segment-CNN,
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single-label Sentence-CNN, and multi-label Sentence-CNN. RelEx’s BERT-based ap-

proach utilizes BERT’s contextualized word embeddings into a feed-forward neural

network. Finally, RelEx’s GCN-based approach consists of two GCN-based architec-

tures: GCN-Vanilla, GCN-BERT. We evaluated variations of these approaches in two

different domains across four distinct relation types.

Overall our findings showed that the rule-based approach is applicable for data

with fewer instances in the training data. In contrast, the CNN-based, BERT-based,

and GCN-based approaches perform better with labeled data with many training

instances. These approaches automatically identify patterns in the data efficiently,

whereas rule-based approaches require expert knowledge to generate rules. The CNN-

based, BERT-based approaches capture the local contextual information within a

sentence or document by embedding both semantic and syntactic information in a

learned representation. However, their ability to capture the long-range dependency

global information in a text is limited. GCN-based approaches capture the global

association information by performing convolution operations on neighbor nodes in a

graph and incorporating information from neighbors. Combining GCN with BERT

integrates the local contextual and global association information of the words and

generates better representations for the words.
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CHAPTER 1

INTRODUCTION

Today we live in the Information age, during which data is growing at an exponential

rate [1]. The rapid growth of data across all domains has caused retrieving relevant in-

formation from data a very expensive task [2]. Moreover, the data available is usually

in an unstructured or highly heterogeneous format [3]. Information Extraction (IE)

is a task of Natural Language Processing (NLP) that extracts structured information

from raw unstructured text, which a machine or a program can easily interpret. NLP

is a field of Artificial Intelligence (AI) that allows machines to interpret human lan-

guage. It is the driving force behind applications such as chatbots, voice assistants,

and search engines. NLP, a combination of linguistics and computer science, studies

the rules and structure of language to create systems that analyze and extract mean-

ing from text and speech. However, extracting information from unstructured data

requires not only a considerable amount of manual effort but is also a time-consuming

task [3]. Therefore, the need for IE systems that can detect and extract information

automatically has grown recently. IE systems have various applications in different

industries such as business, medical institutions, military, and research institutions.

IE consists of several subtasks such as Named Entity Recognition (NER), Re-

lation Extraction (RE), and Event Extraction (EE). RE automatically detects and

classifies relations between entities in a text. Identifying and extracting relations is

important for many downstream applications such as question answering [4], sum-

marization [5], and information retrieval [6]. The task of RE includes extracting

sentences that contain the entity pair which can hold a semantic relation and then
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predicting whether a certain relation exists between the specified entity pair [7]. For

example, Fig. 1 shows an example of a sentence from a clinical dataset with multiple

entities: Problems, Treatments, and Tests.

Fig. 1. Sentence from i2b2-2010 relation corpus depicting multiple pairs of medical

entities in the same sentence.

Many approaches have been explored with RE over the years. Lately, deep learn-

ing approaches have gained popularity as they require less human inputs but yield

better accuracy when trained with a huge amount of data. In earlier days, traditional

non-deep learning methods such as pattern-based, rule-based, and machine-learning

were used to extract relations. Rule-based and pattern-based approaches use pre-

defined rules and patterns to identify relations between words, whereas machine-

learning approaches utilize algorithms to automatically learn patterns. Supervised

techniques for machine learning required a large amount of training data for learn-

ing, and the manually constructed features did not capture all the relevant infor-

mation [8]. In recent years, deep learning techniques such as Convolutional Neural

Networks (CNNs) and Recurrent Neural Networks (RNNs), which achieved outstand-

ing results at many NLP tasks, were used for RE [3]. More recently contextualized

deep neural language models such as ELMo [9], Bidirectional Encoder Represen-

tations from Transformers (BERT) [10], and Generative Pre-trained Transformer-2

(OpenAI GPT-2) [11] were introduced and they yielded significant improvements in

extracting relations. These techniques capture the local contextual information in

a sentence or document well by embedding semantic and syntactic information in a
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learned representation. However, their ability to capture the long-range dependency

global information in a text is limited. Utilizing the global association information be-

tween words outside the sentence boundaries can help generate better representations.

Graph Neural Networks (GNNs) are deep learning models that operate in the graph

domain and capture global information between words/ phrases. Recent research

based on the graph has been receiving more attention due to the great expressive

power of graphs [12]. The variant of GNN that gained popularity recently is Graph

Convolutional Networks (GCNs) [13]. GCN captures the global context information

by performing convolution operations on neighbor nodes in a graph and incorporat-

ing information from neighbors. GCNs can preserve global structure information of

a graph in graph embeddings [14].

In this dissertation, we propose novel methods to identify and extract relations

in text automatically. We discuss rule-based, machine-learning based, CNN-based,

and GCN-based methods. Dissertation consists of 12 chapters: Chapter 2 provides

the background information relevant to understanding the concepts and algorithms

used in our work. Chapter 3 provides an overview of the related work. Chapter 8

summarizes all the data we used in our work. Chapter 5 describes our RE system and

the details of each approach. Chapters 6 to 11 present the details of our experiments,

their contributions to the field, and the overall conclusions of our experiments to date.

Finally, Chapter 12 discusses our ideas for the future.
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CHAPTER 2

BACKGROUND

In this chapter, we discuss concepts and algorithms used in our work.

2.1 Feature Representation

Words in a text provide context but machine learning or deep learning algo-

rithms are not capable of processing information in the string format. The raw text

needs to be converted to numerical form for the algorithms to process the informa-

tion. Feature representation refers to generating a representation of language for this

purpose. These representations can be subdivided into three categories: 1) tradi-

tional features, 2) static word embeddings, and 3) contextualized word embeddings.

Traditional feature representations are categorical representations, whereas both the

static and contextualized embedding representations are learned. In this section, we

discuss each of these representations.

2.1.1 Traditional Features

Traditional feature representations utilize categorical information known about

language to represent words and terms. Here, tokens are represented as an n-

dimensional vector where each element refers to information known about the word.

Fig. 2 illustrates how feature vectors are generated: (A) shows how tokens are repre-

sented in a vector format, and (B) and (C) show examples of how two sentences are

vectorized. This information can be divided into three categories: lexical features,

syntactic features, and semantic features.
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Fig. 2. Illustration of feature vectorization

Lexical features. Words provide context. Lexical features analyze tokens at the

word level with respect to their context. They are derived from the token in context

with other words used in the sentence or text. Lexical features of a token can include

the word itself, its root form (e.g., lemma or stem), its morphological information (e.g.,

prefix or suffix), its shape (e.g., uppercase, lowercase, title-case), and its surrounding

words (i.e., the context).

The underlying idea of contextual information is a word is known by the company

it keeps [15]. This stems from the understanding that similar words are used in similar

contexts. For example, the token bat when seen with the context of baseball has a

different meaning than when seen with the context of vampire. The n-gram modeling

is used to identify the relevant contexts of a word. The n-grams are ordered sequences

of N tokens where N refers to the number of words in a sequence. They can be

unigram, bigram, or trigram, where a sequence of tokens is formed from one, two,

or three adjacent words, respectively. This is often referred to as a Bag of Words

(BOW) model because it represents a token as the bag of other words (n-grams)
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seen within some window size of the token in a corpus [16]. Within the feature

representation vector, the n-grams are represented numerically. Often this can be a

binary representation indicating the presence of the n-gram with respect to the token

or a frequency representation indicating how often the token was seen with n-gram

as seen in Example B of Fig. 2.

However, with multiple documents inside a corpora, the Term Frequency - In-

verse Document Frequency (TF-IDF) [17] takes into account how frequently tokens

they appear across multiple documents [18]. TF-IDF is calculated by multiplying two

different metrics: Term Frequency (TF), Inverse Document Frequency (IDF). Equa-

tions 2.1, 2.2, and 2.3 show the formula to calculate the TF-IDF [19]. TF (Equa-

tion 2.2) measures the raw count of a word in a document denoted by tf(t, d), i.e.,

number of times that word t occurred in the document d. IDF (Equation 2.3) mea-

sures how common the word is across multiple documents [19] denoted by idf(t,D)

where N stands for the total number of documents in the corpus. Higher the score,

higher the relevancy of the word in the specific document.

tfidf(t, d,D) = tf(t, d).idf(t,D) (2.1)

where:

tf(t, d) = log(1 + freq(t, d)) (2.2)

and,

idf(t,D) = log(
N

count(dϵD : tϵd
) (2.3)

Syntactic features. Syntactic features analyze the structural role of words by con-

sidering the order and the position of the word in a sentence or text. Syntactic

features include a word’s part of speech (POS) as well as its parse information. POS
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tags provide the grammatical construct of a token [20]. These tags can be then used

to build a parse tree which captures the syntactic relations between the tokens.

Semantic features. Semantic features analyze the meaning of a word and how it

is arranged in a sentence contributes to the meaning of the sentence. The relation

between two words can differ in three ways: 1) Homonymy - a word that has more

than one sense, 2) Polysemy - two senses that are related semantically, 3) Metonymy

- use one aspect of a sense to refer to another aspect of the sense. Here, the sense is

the semantic representation of a term. For example, the word bat could either refer to

a baseballbat or a vampirebat depending on the context in which it is used. Semantic

features are often extracted from taxonomies and ontologies such as Unified Medical

Language System (UMLS) [21], WordNet [22].

2.1.2 Static Word Embeddings

The disadvantages of traditional feature representations are a lot of feature en-

gineering is required to select the best feature for any task. As a result, the vectors

are large, sparse, and noisy. Word embeddings attempt to alleviate this by learning

a numerical representations for the words. The basic idea behind these embeddings

is that a model learns the probability of words co-occurring together from large cor-

pora. Static word embeddings maps each word in a text to a single vector. Two

most commonly used algorithms to generate word embeddings are word2vec [23] and

Global Vectors (GloVe) [24] embeddings.

The word2vec algorithm provides direct access to vector representations of words.

It has two versions: Skip-Gram and Continuous Bag of Words Model (CBOW) [23]

formally defined in Equations 2.4 and 2.5 respectively where w is the window size, and

T is the number of words in the corpus. Skip-gram uses the distributed representation

of the input word to predict the context, i.e., the model learns the embedding by
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Fig. 3. Architecture of the two word2vec training models

predicting the context. In contrast, CBOW combines the distributed representations

of context to predict the word in the middle, i.e., the model learns the embedding by

predicting the current word based on its context. Fig. 3 illustrates how both word2vec

algorithm models generate embeddings.

1

T

T∑
t=1

∑
0<j≤c;

log(p(wt|wt−j)) (2.4)

1

T

T∑
t=1

∑
−c≤j≤c;j ̸=0

log(p(wt+j|wt)) (2.5)

Unlike word2vec, GloVe [24] takes advantage of the global count statistics and

works based on the co-occurrence ratios between two words. The algorithm takes

local context into account by building a co-occurrence matrix using a fixed window

size. If the corpus contains W number of words, the size of the co-occurrence matrix

X will be W ∗ W where the ith row and jth column of X, xij denotes how many

times word i has co-occurred with word j. Next, they predict the co-occurrence

ratios using the word vectors as shown in the Equation 2.6 where Pij refers to the

probability of the word j appearing in the context of i. The function F takes the
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log of the probability ratios and adds a bias term to capture whether words occur

by chance or not. GloVe calculates the loss using word frequency as the infrequent

co-occurrences tend to be noisy. Although both algorithms have their differences,

surprisingly they both perform very similarly.

F (wi, wj, w̃k) =
Pij

Pjk

(2.6)

dot(wi, w̃k) + bi + b̃k = log(Xik) (2.7)

The disadvantage of the static word embeddings is a word only has a single vector

representation regardless of the context. For example, the word bank can indicate a

financial bank or a river bank but the static word embedding representation of both

these words would be similar. In other words, all senses of a word share the same

representation.

2.1.3 Contextualized Word Embeddings

The disadvantage of static word embeddings is, a word only has a single vector

representation regardless of the context in which it is currently being used. To ad-

dress all this issue, contextualized deep neural language models such as ELMo [9],

BERT [10], and OpenAI GPT-2 [11] have been introduced. They attempt to incor-

porate the context in which a word is currently being used into the representation.

This has yielded significant improvements on many NLP tasks [25].

Contextualized word embeddings capture the word semantics in different con-

texts. The contextualized language models learn sequence-level semantics in a docu-

ment using the sequence of all words in that document. For example, contextualized

word embedding representations of the words financial bank and river bank would be
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different.

2.2 Deep Learning Algorithms

Deep learning models have recently started dominating the NLP field, as they

can effectively learn meaningful hidden features without manual feature engineering.

Deep learning refers to learning models that utilize multi-layer Artificial Neural Net-

works (ANNs). These algorithms work well with data that consists of hidden patterns

or complex relations among entities. ANNs gained popularity in the past decade, and

different variants of simple neural networks achieved success in many research fields.

One such network is the Convolutional Neural Networks (CNNs). Different variants

of ANNs achieved success in many research fields; however, most of these variants

deal with euclidean data while many real-world data are non-euclidean. These data

have led to the recent invention of variants – Graph Convolutional Networks (GCNs).

Moreover, many ANNs cannot deal with long input sequences well, leading the gra-

dients to vanish or explode. Also, since they process the inputs sequentially, they

are slow. In 2017, transformers were introduced to solve these problems [26]. A

transformer is a deep learning model that employs Encoder-Decoder architecture,

and BERT is a transformer-based model developed by Google for NLP. The pro-

posed models in this work are based on the following deep learning algorithms: CNN,

GCN, and BERT. In this section, we discuss each of these these algorithms and their

functionality.

2.2.1 Convolutional Neural Networks (CNN)

A typical NLP model that utilizes CNNs, primarily consists of four main lay-

ers [27]:

1. embedding layer - to encode words in sentences by real-valued vectors
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2. convolution layer - to get local features from each part of the input

3. pooling layer - to extract the most relevant features

4. feed-forward layer - a fully connected layer to perform classification

Here we describe each layer in detail.

Embedding layer. Neural networks learn information through a numerical repre-

sentation of the data. Word embeddings map a set of words or phrases in a vocabulary

to real-valued vectors, which helps to reduce the dimensionality and learn linguistic

patterns in the data [28]. They capture both semantic and syntactic properties of

words so that semantically similar words produce close embedding vectors. CNNs al-

low word embeddings to train on the input text itself or use pre-trained word vectors

obtained from an external resource. When using pre-trained word embeddings, the

weights of the layer is replaced by the pre-trained vector weights.

Convolution layer. The Convolution layer is where CNN learns and calculates the

learnable parameters. In other words, if a layer has weight matrices, that is referred

to as a “learnable” layer. Convolution is applied to the text to extract local features

from the input. The matrix of a size of (dimensions x input length) representing the

input relation mention is fed into this layer, and high-level features are extracted.

The input channels consist of kernels/filters with randomly initialized weights. The

kernels are applied over the text and combined by summing them up and adding a

bias for each channel. Since we deal with the text as input, we use a 1D kernel per

input channel. 1D kernels are controlled by depth, as the width and height do not

change. 1D convolutions compute a weighted sum of the features and select particular

combinations of features that are useful. These weights are re-assigned according to

the error that is back-propagated. This process can be replicated for various filters

with different window sizes to increase or decrease the coverage of the model. For

RE, when applying kernels, we consider the n-grams accompanied by the relative
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positions of its words [27]. To obtain local features from each part of the sentence,

multiple filters of varying lengths are used in all possible continuous combinations of

the n-gram. Using a small kernel instead of a fully connected network benefits from

weight sharing and reduction in computational costs. Since we move the same kernel

over different words, the same weights are shared with a text-oriented description as

we convolve on them. Moreover, since the weights are less than a fully connected

layer, we have lesser weights to back-propagate on.

Pooling layer. Pooling is applied to extract the global feature from the input to

learn the most essential feature. This layer does not include any learnable parameters.

Therefore, it does not include any backpropagation learning. It further abstracts

the output of the features from the convolution layer by applying an aggregating

function. Max-pooling is the most commonly used aggregation function, and as the

name suggests, it just picks the maximum value in a specific size window. Average-

pooling is another aggregation function used where it averages the windows instead

of picking the maximum value. The pooled features are then fed to a fully connected

feed-forward neural network to make an inference.

Feed-forward layer. The feed-forward layer is a regular layer of neurons in a neural

network. It is densely connected so that each neuron receives input from all the

neurons in the previous layer. The pooling layer outputs a sequence, which is then

concatenated into a single feature vector to represent the relation mention before it is

fed into this layer. This layer more has learnable parameters as it is fully-connected.

It is calculated by taking the number of neurons in the current layer and the number

of neurons on the previous layer and adding the bias term. This output layer uses a

softmax classifier with the number of outputs equal to the number of possible relations

between entities. The Dropout technique is applied in between any of the above layers.

Dropout is a regularization technique commonly used in neural networks to reduce
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interdependent learning amongst the neurons.

2.2.2 Bidirectional Encoder Representations from Transformers (BERT)

In 2018, Google introduced BERT [10], a language model that utilizes an atten-

tion mechanism to model semantic relations between words of a text. BERT is the

first bidirectionally trained language model, models before that train left-to-right or

vice versa. In addition, BERT produces contextual embedding representations of a

token. These representations can be fine-tuned for specific domains.

To do this, BERT utilizes a transformer that consists of an encoder to read the

input. The language model generation takes part in the encoder, which reads the

input. The input representation is the sum of the token, segmentation, and position

embeddings. Following are the specific embeddings layer representations, and Fig. 4

shows how the input embeddings are concatenated [10]:

• Token embeddings - Transforms words into vectors of fixed dimensions. A [CLS]

token is added to word tokens at the beginning of the first sentence and a [SEP]

token at the end of each sentence.

• Segment embeddings - Adds a marker to indicate which sentence the word

token is from. If the input is from one sentence only, then outputs a vector

corresponding to index 0

• Positional embeddings - Learns a vector representation for each position. Posi-

tional information shows the position of the word token in the sentence.

BERT is a transformer-based model that uses an attention mechanism to learn

the contextual relations between words in a text. A transformer architecture contains

an encoder and a decoder; since BERT generates a language model, it uses an encoder

only. BERT does not just predict the next word in the sentence but randomly masks
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Fig. 4. BERT input embeddings are the sum of the token embeddings, the segmenta-

tion embeddings and the position embeddings [10]

words in the sentence, and then it tries to predict them. BERT uses two strategies

to train:

1. Masked Language Modeling (MLM) - BERT masks the 15% of the words in the

input sequence by replacing the words with a [MASK] token. Then the model

tries to predict the masked words based on the context of the surrounding

words in both directions of the masked word. Unlike other language models,

it considers both the previous and next tokens simultaneously. To prevent the

model from trying to predict only when the [MASK] token is present in the

input, out of the 15% of the tokens selected for masking [10],

• 80% of the tokens are replaced with the token [MASK].

• 10% of the tokens are replaced with a random token.

• 10% of the tokens are left unchanged.

2. Next Sentence Prediction (NSP) - The model receives pairs of sentences and

learns to predict if the second sentence is the subsequent sentence in the original

text. This helps the model to learn the relationship between two sentences.

The BERT model is trained with these strategies, and they minimize the com-

bined loss function of both these strategies. BERT is based on stacked layers of
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encoders and has two model sizes: BERT-base and BERT-large. BERT base model

has 12 encoder layers, whereas BERT large has 24 layers of encoders stacked on top

of each other. Following are the configurations of the pre-trained BERT models [10]:

• BERT-Base, Uncased: 12-layers, 768-hidden, 12-attention-heads, 110M param-

eters

• BERT-Large, Uncased: 24-layers, 1024-hidden, 16-attention-heads, 340M pa-

rameters

• BERT-Base, Cased: 12-layers, 768-hidden, 12-attention-heads, 110M parame-

ters

• BERT-Large, Cased: 24-layers, 1024-hidden, 16-attention-heads, 340M param-

eters

2.2.3 Graph Convolutional Networks (GCN)

Most of these variants deal with euclidean data, while many real-world data are

non-euclidean. These data have led to the recent invention of variants – GNNs. GNNs

are a deep learning-based method that extends existing neural network methods to

operate on the data represented in graph domains [29]. GNNs deal with non-euclidean

graph data that contains rich relational information between elements. The following

highlight the advantages of GNNs over CNNs [29]:

• Traditional neural networks such as CNNs and RNNs operate on regular eu-

clidean data like images (2D grid) and do not handle non-euclidean types data

well because they stack features by a specific order. The graph data do not

have a natural order of nodes, and nodes can be traversed in different orders.
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• The dependency between two nodes in the graphs is represented by an edge

in GNN, whereas they are considered just another feature in the traditional

networks.

• Traditional networks learn by the distribution of the data, whereas GNNs gen-

erate graphs from non-structural and learn the reasoning, which can be helpful

in high-level AI-related research.

GCNs [13] are a recent variant of the basic GNN architectures that are designed

to perform inference over data described using a graph. Given a graph G = (V,E),

a GCN takes the following as the input [13]: an input feature matrix N ∗ F , where

N is the number of nodes and F is the number of input features for each node, a

feature matrix X, and an N ∗N matrix representation of the graph structure such as

the adjacency matrix A of G. GCNs utilize the message passing mechanism, which is

performed through matrix operations where the information is passed from one node

to another. Each layer of the GCN defines a propagation rule in the form of a matrix,

which determines how inputs will be transformed before being sent to the next layer.

In this layer, the incoming feature matrix is multiplied by the adjacency matrix as

shown in the Equation 2.8

f(H i, A) = σ(AH iW i) (2.8)

where W i is the weight matrix for layer i, σ is a non-linear activation function

such as the ReLU function, H i is a hidden layer, f is a propagation rule, and H0 =

X, the feature matrix. This helps the features to become increasingly more abstract

at each consecutive layer. The basic operations of the GCNs are similar to CNNs.

The convolution is applied in CNNs by multiplying the input neurons with weights

commonly known as filters or kernels. GCNs perform a similar operation to learn

16



the features of the neighboring nodes. However, the difference is that the nodes in a

GCN are unordered, and the connections between nodes are not uniform (irregular

non-euclidean data), whereas CNNs operate on regular euclidean data.

Kipf, et al. [13] presented GCNs in their pioneering work showing it achieved

state-of-the-art classification results on several benchmark graph datasets includ-

ing Stanford Sentiment Treebank (SST-2) [30], Corpus of Linguistic Acceptability

(CoLA) [31], and ArangoHate [32].
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CHAPTER 3

RELATED WORK

In this chapter, we discuss the works related to our works. Many approaches have been

explored and divided into five paradigms: 1) rule-based, 2) machine learning-based

3) deep learning-based, 4) contextualized language model-based, and 5) GCN-based

approaches.

3.1 Rule-based approaches

Rule-based approaches use rules and patterns to identify relations between words.

They are one of the oldest approaches of NLP [33]. Rule-based technologies are easy

to comprehend, maintain, incorporate domain knowledge, and not very challenging to

debug; however, these technologies require tedious manual labor to generate rules [33].

Besides, rule-based approaches are task and domain-specific, making it difficult to

generalize to new relations and domains.

For example, Li, et al. [34] proposed a rule-based method to link drug names

with their attributes using regular expressions to match drug names to a prescription

list then co-location information to link the attributes to the drugs. He, et al. [35]

also proposed a rule-based method to identify relations between chemical reactions

synthesis. They compiled two dictionaries from the training data: 1) a list of pos-

sible entities and their mentions, and 2) a list of possible relations between entities.

The first dictionary was used to identify the entities, and the second to identify the

relations between entities that occur in the same sentence. Lowe, et al. [36] used the

ChemicalTagger [37] an open-source tool that uses syntactic information, including
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the POS and parses the information, to identify relations between entities. They

assigned relations using a predefined set of rules based on the syntactic information

between the entities.

Bejan, et al. [38] compared three methods to extract treatment relations from

clinical text: use SemRep, simple rule based algorithm using MEDI 1, and com-

binations of our MEDI rules and SemRep. SemRep was originally developed for

processing text from the biomedical research literature at the US National Library

of Medicine 2. MEDI7 is a publicly available resource with information aggregated

from four resources: RxNorm, Side Effect Resource (SIDER) [39], MedlinePlus, and

Wikipedia. They also constructed a dataset with manually annotated treatment rela-

tions which included 6864 randomly selected discharge summaries from the Vanderbilt

Synthetic Derivative, a de-identified version of the electronic medical record. They

concluded that SemRep was effective at extracting treatment relations from clinical

text. However, both the MEDI algorithm and the union ensemble system significantly

outperformed SemRep for this task.

3.2 Machine Learning-based Approaches

Machine learning-based approaches use machine learning algorithms and statisti-

cal analysis to derive the meaning from a text. Machine learning approaches including

Hidden Markov Models (HMM), Conditional Random Field (CRF), Maximum En-

tropy Models (MaxEnt), Support Vector Machines (SVMs), Näıve Bayes (NB), and

Random Forests (RFs) [40] dominated the NLP field until recently. These approaches

are trainable and more easily adaptable compared to rule-based approaches; however,

they require labeled data and the field expertise for usage and maintenance [33].

1http://knowledgemap.mc.vanderbilt.edu/research/
2http://semrep.nlm.nih.gov/
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SVMs dominate most of the machine-learning-based approaches [41, 42, 43, 44].

They mainly focus on identifying traditional features best able to classify relations.

For example, Miller, et al. [45] used token context features, character type features,

and semantic features as input to SVMs. They represented the entity’s context fea-

tures first as BOW within a window and also with relative positional information.

Patrick, et al. [41] utilized: 1) local context features such as words before, after,

and between the two entities; and 2) semantic features such as assertion type and

its lexicon type of the entities. Demner-Fushman, et al. [43] incorporated semantic

information using concepts from the UMLS [21]. They used BOW feature represent-

ing that included the entities, the words surrounding the entities, their UMLS Con-

cept Unique Identifier (CUI), semantic type, an assertion value, and co-occurrence

of the entity pair. Rink, et al. [46] utilized contextual, similarity, nested relations,

Wikipedia, and concept vicinity features to identify relations between entities using

an SVM. Zhu, et al. [47] focused on revising the learning algorithm by reformu-

lating the SVM into a composite-kernel framework to achieve better performance.

They also explored various superficial word/phrase/concept features, syntactic struc-

tures, and additional domain-specific features. De Bruijn, et al. [48] extracted token,

word, sentence, document level features, n-grams, and CUI features from the text

and augmented them with semantic information from external sources; specifically

the UMLS [49], cTAKES [50], and Medline3. Also they found the following features

and design decisions to be beneficial:

1. Using Charniak parser [51] to parse the input texts and then transferring them

into Stanford dependencies [52] added an additional gain in F-score on 5-fold

cross validation (CV).

3http://mbr.nlm.nih.gov/Download/index.shtml
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2. Downsampling the training set to a defined positive class/negative class ratio

between reduced a classifier’s bias towards the majority class, and improved the

overall F-score on 5-fold CV.

3. Using Medline as semi-structured source of knowledge to approximate the re-

latedness of these concepts yielded improvement during development.

4. Applying bootstrapping on the unlabeled data helped to improve the perfor-

mance.

Hybrid approaches that incorporate rules and machine learning have also been ex-

plored specially many works combine linguistic pattern matching with ML techniques.

For example, Grouin, et al. [42], Porumb, et al. [53], Solt, et al. [44], and Minard,

et al. [54] utilized hand-built linguistic patterns as features into SVMs. Grouin, et

al. [42] trained an SVM and constructed linguistic patterns manually. They reported

two advantages of the hybrid approach: (1) linguistic patterns provide a substantial

enhancement of the obtained results for classes that do not have enough instances

to feed the automatic classifiers, (2) linguistic patterns may confirm automatically-

induced relations which helps adding confidence to the obtained results. Minard, et

al. [54] also trained an SVM and constructed linguistic patterns manually. Here, for

each semantic relation they used a manually constructed set of lexical patterns which

are regular expressions describing a set of matching sentences containing medical en-

tities at specified positions with a more or less specific lexical context. Also they

used the following features on the SVM for classification: surface features (number

and order of tokens), lexical features (tokens, stemmed tokens in concepts, left-right

trigrams of concepts, surrounding words of concepts, prepositions between concepts,

headword of concepts), syntactic features (POS, presence of a preposition, presence

of a coordinating conjunction between concepts and punctuation signs), and semantic
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features(UMLS semantic type of tokens in a three-word window on either side of each

argument concept, concept types, Levin’s class of the verbs 4).

Solt, et al. [44] built binary classifiers for each class using statistical and ML

approaches. For the ML approach they also utilized linguistic kernels along with

SVMs and for the statistical approach they utilized the co-occurrence between the

words as the features. Following SVM kernels were experimented: Shallow linguistic

(SL), Parse tree (SpT, PT), and Dependency graph (APG, kBSPS) kernels.

While Yang, et al. [55] applied heuristic rules to generate candidate pairs of

possible related entities that were fed into three ML models (SVM, RF, and Gradient

Boosting [56]) to classify the relations. The possible related entities were identified

according to their distance from each other as defined by the number of sentence

boundaries between the two entities, and multiple classifiers were developed to classify

relations based on this distance.

Table 1. Overview of the works that utilized machine-learning based approaches for

relation extraction in the clinical domain.

Year Paper Dataset ML Algorithm Features

2010 De Bruijn, et al. [48] i2b2-2010 SVM orthographic, syntactic, semantic

2010 Anick, et al. [57] i2b2-2010 SVM semantic

2010 Grouin, et al. [42] i2b2-2010 SVM, pattern matching surface, lexical, syntactic

2010 Solt, et al. [44] i2b2-2010 SVM, pattern matching co-occurrence, syntactic

2011 Minard, et al. [54] i2b2-2010 SVM, pattern matching surface, lexical, syntactic, semantic

4http://verbs.colorado.edu/%E2%88%BCmpalmer/projects/verbnet.html
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3.3 Deep Learning-based Approaches

Deep learning is a field derived from machine learning that use multi-layer ANNs.

In recent years, deep learning-based approaches have gained in popularity due to their

demonstrated success at tackling complex learning [58]. These approaches typically

take word embeddings representations such as word2vec [23] and GloVe [24] embed-

dings, BERT embeddings as input.

Two common techniques used for RE are CNNs and RNNs. CNNs can capture

continuous local features of sequences through the convolution operation, whereas

RNNs obtain long-term dependencies through the recursive process. CNNs with

convolving filters were initially developed for computer vision, but they are effective

for RE. For example, Sahu, et al. [59] and Luo, et al. [60] utilized CNN for relation

classification. They applied CNNs to clinical datasets to automatically learn feature

representations to reduce the need for engineered features. Sahu, et al. [59] applied

CNN to build a Sentence-CNN which learns a single sentence-level representation for

each relation, using six discrete features such as exact word (W), distance from the

first entity in terms of the number of words (P1), distance from the second entity

in terms of the number of words (P2), POS tag of the word, chunk tag of the word,

and type of the word. But their sentence-CNN learns a relation representation for

the entire sentence and does not explicitly distinguish the segments of the sentence

that form the relations. To fix this, Luo, et al. [60] proposed Segment-CNN, which

decomposes a sentence into five segments (preceding, concept1, middle, concept2, and

succeeding) and uses multiple convolution units to process the segments individually.

Also, they utilized only word-embedding features without manual feature engineering.

Chauhan, et al. [61] built a unifying framework across multiple domains using

datasets from the general, biomedical, and clinical domains to allow for the system
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to be extendable to new datasets. They used a CNN with position embeddings and

a ranking loss. They studied each dataset by performing a systematic exploration

of modeling, pre-processing, and training methodologies to determine which of these

three was the more significant contributor to performance. They found that pre-

processing choices are a significant contributor to performance and that omission of

such information can further hinder fair comparison. He, et al. [62] proposed a CNN-

based architecture for medical relation classification on clinical records. Further, they

introduced a multi-pooling operation to capture the position information of local

features relative to the concept pair and a novel loss function with a category-level

constraint matrix. Generally, the max-pooling operation extracts the most significant

feature in a convolutional filter, but they introduced the multi-pooling operation to

achieve more local features in each sentence. They concluded feature extraction based

on concept pair positioning could improve the efficacy of relation classification.

Lv, et al. [63] proposed the adoption of a CRF model and applied a deep learn-

ing model for features optimization by the employment of autoencoder and sparsity

limitation. The features they utilized for the CRF can be categorized into four types:

words of context, POS of words, concept type, and distance between two concepts.

The one-hot vector representation of the features leads to the sparsity problem, and

a deep learning model was used to optimize context features of concepts.

Long Short Term Memory (LSTM) networks are a special kind of RNN that

stores the information of the long past inputs [64]. Bidirectional LSTMs (BiLSTMs)

are derived from LSTMs; LSTMs flows the data in one direction, whereas BiLSTM

flows from both directions [58]. Luo, et al. [65] proposed one of the first models

based on LSTM with only word2vec word embedding features and no manual fea-

ture engineering for clinical RE. They also evaluated both sentence and segment level

LSTMs. For segment-level LSTM, they divided the sentence into five segments: be-

24



fore the first concept (preceding), of the first concept(concept 1), between the two

concepts (middle), of the second concept (concept 2), and after the second concept

(succeeding). Since their models did not outperform the top systems with manually

engineered features that participated in the i2b2-2010 challenge, they suggested that

there is still merit in the curated features and domain-specific knowledge.

Christopoulou, et al. [66] developed separate models for intra and inter-sentence

RE and combined them using an ensemble method. They developed two intra-

sentence models that use BiLSTMs with attention mechanisms to capture dependen-

cies between multiple related pairs in the same sentence. The first model, Weighted

BiLSTM, extracted relation patterns that are in the input sequence. The second

model, Walk-based model, is extended by stacking a walk layer on top of the former,

and it used sentential entity graphs to infer relations between entities. They adopted

a neural architecture that uses the transformer network to improve performance for

longer sequences for the inter-sentence relations. Ningthoujam, et al. [67] proposed

an approach for RE based on the shortest dependency path (SDP) generated from

the dependency parsed tree of the sentence using an LSTM model. They developed a

dependency parser to extract the shortest dependency path between the entities and

fed the SDP-based words, POS, and the types of the entities as the input into the

LSTM layer. They claimed that SDP generated by the dependency parser is a better

feature representation for the clinical domain. Li, et al. [68] utilized a deep neural

network that models SDP between target entities together with the sentence sequence

to capture the syntactic features and further improve the performances of clinical RE.

First, they used a Bi-LSTM to capture the position features in the sentence sequence,

then they used CNN and Bi-LSTM to capture the syntactic context for target entities

using SDP information. Finally, they utilized a fully connected layer with a softmax

function to classify the relations. Through the experiments, they realized integrating
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SDP features improves the accuracy of the prediction because of the following rea-

sons: 1) length of SDP is much shorter than the length of the whole sentence, which

reduce noise caused by many other entities; 2) SDP emphasizes more on syntactic

structures, which are critical to classification; and 3) dependency relation type rep-

resents valuable syntactic relation information between the two neighboring words in

the SDP.

CNN and RNN have their advantage, but some recent work has looked at com-

bining CNNs and RNNs to utilize the advantages of these two networks simulta-

neously. Tang, et al. [69] used a hierarchical attention-based convolutional LSTM

(ConvLSTM) model. First, they constructed a sentence as a multi-dimensional hier-

archical sequence, then they apply a ConvLSTM network and directly learned local

and global context information. Finally, a hierarchical attentive pooling strategy is

built to capture the parts of a sentence relevant to the target semantic relation so that

the softmax classifier could better classify relations. Here, each word in the sentence

is first represented by word itself and word position features. Wei, et al. [70] proposed

a model combining CNN and RNN; they utilized word and position embeddings for

vector representation. Also, they used SVM as a baseline method to compare the

performance of the models; here they utilized Local context and semantic features as

features [71].

Chika, et al. [72] proposed a hybrid approach using rule-based deep-learning

based techniques. They proposed a deep learning approach that utilizes both word-

level and sentence-level representations to extract the relationships between entities.

Since deep learning techniques demand a large amount of data for training, they pro-

posed a rule-based approach for classes with fewer samples. They utilized POS tag

sequence, point-wise mutual information (PMI) [73], and assertion of the sentence for

sentence-level feature extraction. In addition, they utilized pattern of sentence/phrase
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and shortest dependency path features for the rule-based extraction. The represen-

tations were appended to an embedding layer before being fed into a BiLSTM for

classification.

Li, et al. [74] evaluated the effectiveness of advanced deep learning models through

four deep learning models with increased complexity for single-domain and multi-

domain RE. First, they extracted the following features in the sentence level: first

word of the sentence, POS of the word, relative positions from this word to the entities,

and they utilized CNNs to transform the feature sequence into a fixed-length repre-

sentation. Next, they extracted the following features in the instance-level: words

and types of both entities, the distance between the target entities, and the number

of the entities between the target entities. For the single-domain RE, they built a base

model with multilayer perceptron (MLP) and compared it to the model using Cap-

Net [75] and fully shared (FS), shared-private (SP), and adversarial training (ADV)

modes [76, 77] for multi-domain RE. The CapNet is a group of neurons that can learn

the hierarchical relationships between entities. Next, they tried multi-domain RE to

utilize the data from different domains for mutual benefit. In the FS and SP modes,

the shared feature extractors learn more domain-specific knowledge but the shared

feature extractor of the ADV mode learn less domain-specific knowledge but more

shared knowledge. They concluded that CapNet does not achieve better performance

than the MLP model, and performance can be improved by adding the data from a

different domain.

Recently emerged transformer-based models created a tremendous impact in

NLP-based research and many researchers started investigating the novel language

models for the clinical RE [78]. Pre-trained contextualized language models have been

shown to increase the performance of several NLP tasks, especially BERT. BERT has

given state-of-the-art performance for NLP systems in the last few years. Current ap-

27



proaches primarily utilize BERT-based contextualized embeddings into a single dense

feed-forward classification layer with a soft-max output layer for classification. Several

BERT-based contextualized embeddings have been trained and fine-tuned on various

corpora. Alimova, et al. [79] conducted a comparison between three BERT-based

models: BERT-uncased [10], BioBERT [80], and Clinical BERT [81] for extracting

relations from clinical texts.

Alimova, et al. [79] proposed a machine learning model with a set of manual

engineered features, and for comparison purposes, they utilized three BERT-based

models: BERT-uncased, BioBERT, and Clinical BERT. They divided the features

for into four categories: (i) distance-based: word distance, char distance, sentence

distance, punctuation, position; (ii) word-based: BOW, bag of entities (BOE), entity

types; (iii) embedding: entities embeddings, concept embeddings, sentence embed-

ding, similarity; and (iv) knowledge-based: UMLS concept types (UMLS) 5, MeSH

concept types (mesh) 6, Occurrence in Food and Drug Administration (FDA) clinical

trials 7, Occurrence in biomedical literature. They used BioSentVec embedding [82]

for the vector representation. They utilized the entity texts combined with a context

between them as an input for the BERT-based models as some results lead to the

conclusion that the context between entities plays a crucial role in relation detection.

Wei, et al. [83] developed two BERT-based models, Fine-Tuned BERT (FT-BERT)

and Feature Combined BERT (FC-BERT), each had a linear classification layer on

the top of BERT to predict the relation. For FT-BERT, they represent a candidate

relation pair in an input sentence by replacing the entity with its semantic category,

and for FC-BERT, they represented the entities using their corresponding entity la-

5https://www.nlm.nih.gov/research/umls/index.html
6https://www.nlm.nih.gov/mesh/meshhome.html
7https://www.fda.gov/
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bels. They compared the performance of their models with a CNN-RNN model and

a two-step pipeline joint model from their previous work [70] and showed the BERT

models outperformed both the baseline models.

Most works focus on the inter-sentential relations in the clinical text but Li, et

al. [84] focused on both intra- and inter-sentential semantic relations. They proposed

a sequence labeling-based method named Bio-Seq, where multiple specified feature

extractors extend the sequence labeling framework to perform feature extractions at

different levels, especially at the inter-sentential level. The framework consists of two

feature extractors: 1) a document-level feature extractor (DE) where they generate

word representations from an entire document, and 2) a hierarchical feature extractor

(HE) where one Bi-LSTM generates word representations at the sentence level and

the other subsequently concatenates all the word representations into a sequence and

enables cross-sentence connections for the word representations. The concatenated

word representations generated by the two extractors are then fed into a CRF layer

for classification.

Many works explored BERT-based models extensively but not other transformer-

based models such as RoBERTa [85] and XLNet [86]. Therefore, Yang, et al. [78]

systematically explored three transformer-based models such as BERT, RoBERTa,

and XLNet for clinical RE. The transformer language models learn representations,

and they utilized two classification strategies (binary vs. multi-class classification).

They concluded that the transformer-based models achieved better performance in

general, and Specifically, RoBERTa and XLNet achieved the best performance on the

2018 MADE1.0 dataset and n2c2-2018 dataset, respectively.

Recently the success of the pre-trained word embeddings such as Word2Vec and

BERT have decreased the usage of frequently used traditional NLP features. There-

fore, Hasan, et al. [87] investigated whether traditional NLP features can be combined
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with word and sentence embeddings to improve relation extraction. They have ex-

plored diverse feature sets and different neural network architectures and evaluated

the clinical dataset. Following are the features they utilized: word embeddings, POS

embeddings, IOB encoding (format to denote chunks), relative distance, concept em-

beddings, and dependency tree. In addition, they explored the features using CNN,

Bi-LSTM, ResNet [88], and GCN. ResNet provides the benefit of CNN while reduc-

ing vanishing gradient problems in deep networks. From the results, they concluded

that Bi-LSTM model with static Word2Vec embedding plus traditional syntactic and

semantic features is most effective for clinical relation extraction.

Some works combine rule-based or machine-based approaches with deep-learning

approaches and propose hybrid models to increase the performance of the models. Ju,

et al. [89] designed a neural model to tackle both nested (entities embedded in other

entities) and polysemous entities (entities annotated with multiple semantic types).

To represent rare and unknown words in entities, they tokenized the words into finer-

grained subwords and combined all the models to boost the performance. Also, they

implemented a feature-based CRF model and created an ensemble to combine its

predictions with those of the neural model. The feature-based model used three

groups of features: token-based features, dictionary features, and cluster features.

Token-based features consists of orthographic (word shape), lexical (derived using

GENIA tagger [90]), and syntactic (derived using GENIA tagger [90]) information.

The NN-based model extracted both nested and flat (non-nested) entities without

using any linguistic features or external knowledge.

Table 3 provides a summary of the works that utilized deep-learning based ap-

proaches for relation extraction in the clinical domain. The table shows the year,

authors, state-of-the-art datasets used, DL algorithms utilized, and the features used

in the algorithms.
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3.4 BERT-based Approaches

Pre-trained contextualized language models have been shown to increase the

performance of several NLP tasks, especially BERT. As a result, BERT has given

state-of-the-art performance for NLP systems in the last few years. In this disser-

tation, we separate them from deep learning-based approaches to distinguish them.

Current approaches primarily utilize BERT-based contextualized embeddings into a

single dense feed-forward classification layer with a soft-max output layer for classi-

fication.

There are a number of BERT-based contextualized embeddings that have been

trained and fine-tuned on various clinical datasets. Alimova, et al. [79] conducted a

comparison between three BERT-based models: BERT-uncased [10], BioBERT [80],

and Clinical BERT [81] for extracting relations from clinical texts. They utilized

the entity texts combined with a context between them as an input into the mod-

els. Chauhan, et al. [61] built a unifying framework across multiple domains using

datasets from the general, biomedical, and clinical domains to allow for the system

to be extendable to new datasets. They studied each dataset by systematically ex-

ploring modeling, pre-processing, and training methodologies to determine which of

these three was the larger contributor to performance. They found that choices of

pre-processing are a large contributor to performance and that omission of such in-

formation can further hinder fair comparison. Recent work has looked at combining

rule-based and BERT-based approaches. Wei, et al. [83] developed two BERT-based

models, Fine-Tuned BERT (FT-BERT) and Feature Combined BERT (FC-BERT),

each had a linear classification layer on the top of BERT to predict the relation. For

FT-BERT, they represent a candidate relation pair in an input sentence by replacing

the entity with its semantic category, and for FC-BERT, they represent the entities
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using their corresponding entity labels. Roy, et al. [91] examined different techniques

to add medical knowledge from UMLS into a pre-trained BERT model for RE. First,

they identified UMLS concepts in clinical notes, and then they used a subset of the

Metathesauras and the complete semantic network to create a knowledge graph. Us-

ing the knowledge graph, they created UMLS knowledge graph embeddings. Then

they combined the knowledge graph embedding with the text embeddings from Clin-

icalBERT and fed them to the relation classifier.

BERT-based approaches have been explored with chemical datasets recently.

Copara, et al [92] used a BERT-based method assessing five variations of the BERT

language models, including a domain-specific model called ChemBERTa. The models

have a fully connected layer on top of the hidden states of each token and are fine-

tuned on the CLEF-2020 dataset. Zhang, et al. [93] proposed a hybrid combination

of deep learning models and pattern-based rules. In their work, a new language

model, named Patent BioBERT, was generated by pre-training the patent texts over

BioBERT [80]. They built a binary classifier by fine-tuning Patent-BioBERT to

recognize relations between the trigger words and entities. They also designed post-

processing rules based on patterns observed in the training data and applied them to

recover some false-negative relations.

Lai, et al. [94] proposed a novel architecture that combines BERT with Graph

Transformer (BERT-GT) by integrating a neighbor–attention mechanism into the

BERT architecture. The original transformers architectures utilize the whole sen-

tence to calculate the attention of the current token; however, the BERT-GT archi-

tecture calculates its attention utilizing only its neighbor tokens. Thus, each token

can pay attention to its neighbor’s information with little noise. Existing RE models

rely on neural networks to extract the semantic information of sentences and ignore

the critical role of important phrase information [95]. Xu, et al. [95] proposed a
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BERT gated multi-window attention network (BERT-GMAN) for RE. First, it uses

BERT to extract the semantic representation features of the sentence and its con-

straint information. Then, it constructs the key phrases extraction network to obtain

multi-granularity phrase information and uses element-wise max pooling to select

key phrases features. Third, it adopts a classification feature perception network to

filter further and globally perceive key phrase features to form the overall features

of relation classification. Finally, it combines with the softmax classifier to perform

RE [95]. Cross-sentence n-ary RE detects relations among n entities across multiple

sentences. Yi, et al. [96] combined BERT with bidirectional Gated Recurrent Unit

(GRU) [97] (BERT-GRU), which exploits pre-trained deep language representations

to obtain the latent linguistic information for relation extraction and without using

any high-level linguistic resources extracted by NLP tools.

Table 3. Overview of the works that utilized BERT-based approaches for relation ex-

traction in the clinical domain.
Year Paper Dataset BERT models

2019 Chauhan, et al. [61] i2b2-2010, SemEval-2010 Task 8 [98] BERT-uncased [10], BioBERT [80], and Clinical BERT [81]

2019 Wei, et al. [83] i2b2-2010, n2c2-2018 BERT-uncased [10], BioBERT [80], and Clinical BERT [81]

2020 Alimova, et al. [79] n2c2-2018, MADE-2018 BERT-uncased [10], BioBERT [80], and Clinical BERT [81]

2020 Copara, et al [92] CLEF-2020 BERT-uncased, BERT-cased [10], ChemBERTa [92]

2020 Zhang, et al. [93] CLEF-2020 BioBERT [80], Patent-BioBERT [93]

2020 Lai, et al. [94] n-ary dataset [99], CDR [100, 101] BERT [10], BlueBERT [102]

2020 Yi, et al [96] Semeval-2010 Task 8 [98] BERT-cased [10], BlueBERT [102]

2021 Roy, et al. [91] i2b2-2010 Clinical BERT [81]

2021 Xu, et al. [95] Semeval-2010 Task 8 [98] BERT-uncased [10]

3.5 GCN-based Approaches

Neural networks gained popularity in the past decade, and different variants of

simple neural networks achieved success in many research fields. However, most
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of these variants deal with euclidean data, while many real-world data are non-

euclidean. GNNs deal with non-euclidean graph data that contains rich relational

information between elements. GCN-based approaches have been gaining attention

recently among the NLP community. Here, we discuss works related to RE and works

that inspired us to propose our approaches using GNN/GCN.

Relational reasoning tries to reason about entities and their relations, which are

of great importance in many NLP tasks, including RE [103]. Zhu, et al. [103] pro-

posed to generate the parameters of GNNs (GP-GNNs) according to natural language

sentences, which enabled GNNs to process relational reasoning on unstructured text

inputs. GP-GNN is constructed with entities in the sequence of the text followed

by three modules that encode rich information from natural languages, propagate

relational information among various nodes, and classify. GCN update the current

node features according to the features of its first-order adjacent nodes and edges but

not all important nodes are first-order reachable, which leads to multi-layer GCNs

for indirect relevance capturing [104]. Zhou, et al. [104] proposed a novel weighted

GCN (WGCN) by constructing a Logical Adjacency Matrix (LAM) which effectively

solves the feature fusion of multi-hop relation without additional layers and param-

eters. They added virtual edges to the dependency tree to construct a LAM which

can directly figure out k-order neighborhood dependence with only 1-layer WGCN.

They also applied an Entity-Attention mechanism to enrich the entity pairs with more

focused semantic information for RE.

Chemical-disease relation (CDR) extraction plays an important role in biomedi-

cal text mining [105]. Wang, et al. [105] proposed a novel end-to-end neural network

based on the GCN and multi-head attention. They constructed a document-level

dependency graph for the inter-sentence RE to capture the syntactic dependency

information across sentences. The multi-head attention mechanism learns the rel-
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atively important context features from different semantic subspaces. Most of the

state-of-the-art GCN models are shallow due to the over-smoothing problem [106].

After multi-layer graph convolution, Laplacian smoothing causes node representation

toward a space that contains limited distinguished information, which is called an

over-smoothing problem. This makes it difficult for the GCN to model the relation

between long-distance nodes [106]. Zeng, et al [106] proposed CID-GCN, an effective

GCN architecture with a gating mechanism. They constructed a heterogeneous graph

that contains mention, sentence, and entity nodes and combined the gating mecha-

nism with the graph convolution operation to address the over-smoothing problem.

Finally, the classifier module gives the relation prediction from two graph represen-

tations of entity nodes.

Sahu, et al. [107] presented a novel inter-sentence RE model that builds a la-

beled edge GCN model on a document-level graph. The graph was constructed using

various inter and intra-sentence dependencies, and they utilized multi-instance learn-

ing with bi-affine pairwise scoring to predict the relation of an entity pair. Zeng, et

al. [108] proposed Graph Aggregation-and-Inference Network (GAIN) featuring dou-

ble graphs. First, they built a heterogeneous mention-level graph (hMG) to model

complex interactions among different mentions across the document. After apply-

ing GCN, the graph is transformed into an entity-level graph (EG), based on which

they proposed a novel path reasoning mechanism to infer relations between entities.

Joint entity and relation extraction is an essential task in information extraction,

which aims to extract all relational triples from unstructured text [109]. Zhao, et

al. [109] proposed a representation, iterative fusion based on heterogeneous GNN for

RE (RIFRE). They modeled relations and words as nodes on the graph and updated

them through a message-passing mechanism to perform RE. This fuses the semantic

information of the relations nodes to the word nodes associated with them, which
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helps extract the entities that form valid relations. Document-level RE requires rea-

soning over multiple sentences across a document, unlike the sentence-level RE [108].

Inter-sentence RE deals with complex semantic relations in documents [107].

Dependency trees capture long-range relations between words, but they may ne-

glect crucial information by pruning the dependency trees too aggressively or are

computationally inefficient because it is difficult to parallelize over different tree

structures [110]. Therefore, Zhang, et al. [110] proposed a novel extension of GCN

that pools information over arbitrary dependency structures efficiently in parallel.

They further applied a novel pruning strategy to the input trees to incorporate rel-

evant information while removing irrelevant content. Huang, et al. [111] proposed a

knowledge-aware framework to enhance word representations for distantly supervised

relation extraction; a piece-wise attention method is used to distinguish the local

and global information. They designed a heterogeneous graph structure for each sen-

tence and introduced a heterogeneous GCN with knowledge attention to aggregate

the implicit interaction among sentences from a local-to-global perspective. Tian, et

al. [112] proposed a dependency-driven approach for RE where an attention mecha-

nism upon GCNs (A-GCN) is applied to different contextual words in the dependency

tree obtained from an off-the-shelf dependency parser to distinguish the importance of

different word dependencies. They assume that the dependency types among words

contain necessary contextual guidance, potentially helpful for RE. Yu, et al. [113]

presented a novel architecture named Dynamically Pruned GCN (DP-GCN), which

prunes the dependency tree with rethinking in an end-to-end scheme. In each layer

of DP-GCN, they employed a selection module to concentrate on nodes expressing

the target relation by a set of binary gates and then augmented the pruned tree with

a pruned semantic graph to ensure connectivity. Next, they introduced a rethinking

mechanism to guide and refine the pruning operation by repeatedly feeding back the
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high-level learned features.

One of the major applications of the GNN is node classification, where we train

the graph nodes with labels and try and predict the label for a node without ground

truth. This has been adapted to perform text classification using graph structures.

Yao, et al. [14] utilized a GCN for text classification. First, they built a single text

graph based on word co-occurrence and document word relations, then learned a Text

GCN for the corpus. Text GCN jointly learns the embeddings for both words and

documents, as supervised by the known classes for documents. Huang, et al. [114]

proposed a different GNN based method. Instead of building a single corpus level

graph, they built a graph for each input text. They connected the word nodes within

a relatively small text window rather than all. The representations of the same nodes

and weights of edges are shared globally and updated at the text level through a

message passing mechanism, where a node takes in the information from neighbor-

ing nodes to update its representation. They claimed this removed the dependency

burden between a single input text and the entire corpus. Zhang, et al. [115] pro-

posed a novel method for INductive word representations via GNN, termed TextING.

They built individual graphs for each document first, then used GNN to learn the

fine-grained word representations based on their local structures, effectively produc-

ing embeddings for unseen words in the new document. Finally, the word nodes are

incorporated as the document embedding. Lu, et al. [116] proposed a model which

combines the strengths of BERT with a Vocabulary VGCN in the same model. While

learning the classifier, the word embedding and graph embedding interacted through

the self-attention mechanism.
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3.6 Discussion

Table 5 provides an overview of the different feature representations and algo-

rithms that have been used for RE across the years. For feature representations,

Static refers to the static word representations, Embeddings refers to the word em-

beddings representations, and Contextualized refers to the contextualized embedding

representations. For the approach, Rule, ML, DL, BERT and GCN refer to rule-

based, machine learning-based, deep learning-based, BERT-based approaches, and

GCN-based approaches respectively.

Also we have mentioned our works related to this dissertation at the end of the

table.
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Table 5. Overview of related work
Feature Representation Approaches

Year Paper Dictionary Traditional Static Contextual Rule ML DL BERT GCN

2015 Li, et al. [34] X X

2020 He, et al. [35] X X

2020 Lowe, et al. [36] X X

2019 Miller, et al. [45] X X

2010 Patrick, et al. [41] X X

2010 Fushman, et al. [43] X X

2011 Rink, et al. [46] X X

2013 Zhu, et al. [47] X X

2010 De Bruijn, et al. [48] X X

2010 Grouin, et al. [42] X X X

2015 Porumb, et al. [53] X X X

2020 Yang, et al. [55] X X X

2017 Luo, et al. [60] X X

2019 Sahu, et al. [107] X X

2020 Christopoulou, et al. [66] X X

2019 Ningthoujam, et al. [67] X X

2018 Chika, et al. [72] X X X X

2019 Li, et al. [121] X X X

2019 Tang, et al. [69] X X

2020 Alimova, et al. [79] X X

2019 Chauhan, et al. [61] X X

2019 Wei, et al. [83] X X

2018 Zhang, et al. [110] X

2018 Huang, et al. [111] X X

2019 Sahu, et al. [107] X X

2019 Zhu, et al. [103] X X

2020 Zhou, et al. [104] X X

2020 Yu, et al. [113] X X

2020 Wang, et al. [105] X X

2020 Zeng, et al. [108] X X

2021 Zhao, et al. [109] X X

2021 Zeng, et al [106] X X

2021 Tian, et al. [112] X X

2018 Mahendran, et al. [122] X X

2020 Mahendran, et al. [123] X X

2020 Mahendran, et al. [124] X X

2021 Mahendran, et al. [125] X X X X X

2021 Mahendran, et al. [126] X X X X X

2021 Mahendran, et al. [127] X X

2022 Mahendran, et al. [128] X X X41



CHAPTER 4

DATA

In this chapter, we discuss all the datasets used in our work. Each dataset was intro-

duced as a part of a RE challenge, therefore, we discuss the challenge and statistics

of each data below.

4.1 Informatics for Integrating Biology & the Bedside (i2b2-2010)

4.1.1 Challenge

In 2010, Informatics for Integrating Biology & the Bedside (i2b2) [129] workshop

on NLP partnered with VA Salt Lake City Health Care System to manually anno-

tating patient reports from three institutions. They presented three tasks: a concept

extraction task, an assertion classification task, and a relation classification task. The

relation classification task focused on assigning relations that hold between the med-

ical entities: Problems, Tests, and Treatments. A total of 394 training reports, 477

test reports, and 877 unannotated reports were de-identified and released to challenge

participants with data use agreements [129]. Sixteen teams participated in this task

and their developed systems showed that machine learning approaches combined with

rule-based approaches performed well with the relation classification.

4.1.2 Data

The i2b2-2010 corpus includes problem-related attributes and relations from 426

patient discharge summaries. It was manually annotated by medical practitioners

to identify three types of entities and eight relations among them. Relations build
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on the entities: Problem, Treatment, and Test. The relations can be mainly divided

into three categories: Problem-Treatment (Tr-P) relations, Problem-Test (Te-P) re-

lations, and Problem-Problem (P-P) relations. Each category is further divided into

relations, as shown in Table 7. The relations are treatment caused medical problems

(TrCP), treatment administered medical problem (TrAP), treatment worsens medical

problem (TrWP), treatment improve or cure medical problem (TrIP), treatment was

not administered because of medical problem (TrNAP), test reveal medical problem

(TeRP), test conducted to investigate medical problem (TeCP), medical problem in-

dicates medical problems (PIP). Fig. 5 shows an example of sentence from the dataset

containing three entities and three possible relations between them.

Fig. 5. An example of a sentence from the i2b2-2010 dataset.

The relation between entities are bounded by sentences; the text within the same

sentence determines the type of relationship that exists between two concepts. How-

ever, two entities can exist in the same sentence and may not have a relation between

them. These relations are considered as no-relation pairs, and each relation category

includes a no-relation class as follows: no relation between treatment and problem

(NTrP), no relation between test and problem (NTeP), and no relation between the

two problems (NPP). Table 7 shows the relation statistics of the dataset. i2b2-2010

relation corpus has multiple pairs for a relation.
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Table 6. Relation type statistics of i2b2-2010 dataset
Category Relation # Train # Test

Treatment-Problem (Tr-P)

Treatment improves problem (TrIP) 51 152

Treatment worsens problem (TrWP) 24 109

Treatment causes problem (TrCP) 184 342

Treatment is administered for problem (TrAP) 885 1732

Treatment is not administered because of problem (TrNAP) 62 112

No relation between treatment and problem (NTrP) 1702 2759

Test-Problem (Te-P)

Test reveals problem (TeRP) 993 2060

Test conducted to investigate problem (TeCP) 166 338

No relation between test and problem (NTeP) 993 1974

Problem-Problem (P-P)
Medical problem indicates problem (PIP) 775 1448

No relation between the two problems (NPP) 4418 8089

4.2 National NLP Clinical Challenges (n2c2-2018)

4.2.1 Challenge

In 2018, National NLP Clinical Challenges (n2c2) [130] was organized to continue

the legacy of i2b2. They presented two shared tasks: Cohort selection for clinical tri-

als (Track 1) and Adverse Drug Events (ADE) and Medication Extraction (Track 2).

Track 2 required the extraction of medications and associate them with their pre-

scription information and any ADEs from clinical narratives and was evaluated over

three tasks: concept extraction, relation classification, and end-to-end systems. Rela-

tion classification task focuses on linking the previously mentioned concepts to their

medication by identifying relations on gold standard concepts. Ten teams partici-

pated in the relation classification task with systems built using deep learning-based,

traditional machine learning-based, and rule-based methods.

4.2.2 Data

The n2c2-2018 Adverse Drug Event (ADE) Dataset [130] contains ADE men-

tions, drug-related attributes, and drug-related relations from 505 patient discharge
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Table 7. Relation type statistics of n2c2-2018 dataset.

Relation # Train # Test

Strength-Drug 6702 4244

Duration-Drug 643 426

Route-Drug 5538 3546

Form-Drug 6654 4374

ADE-Drug 1107 733

Dosage-Drug 4225 2695

Reason-Drug 5169 3410

Frequency-Drug 6310 4034

summaries drawn from the MIMIC-III database [131]. It consists of nine entity classes

(Drug, Strength, Route, Form, ADE, Dosage, Reason, Frequency) and eight relations

between the drug entity and other non-drug entity classes. Fig. 6 shows an exam-

ple of sentence from the dataset containing a drug entity and two non-drug entities

and possible relations between them. The data were split into training and test sets;

training set includes 303 annotated files and test set includes 202 annotated files.

The class distributions for both concepts and relations are very similar for the test,

training, and full datasets. The class distributions for both concepts and relations

are very similar for the test and training sets. Table 7 shows the number of relations

in the training and test data.

4.3 Cheminformatics Elsevier Melbourne University - Conference and

Labs of the Evaluation Forum (ChEMU-CLEF 2020)

4.3.1 Challenge

In 2020, the Cheminformatics Elsevier Melbourne University (ChEMU) evalua-

tion lab which is part of the Conference and Labs of the Evaluation Forum (CLEF-
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Fig. 6. An example of a sentence from the N2C2-2018 dataset

2020), provided a platform to develop automated information extraction methods

over chemical patents [35]. The CLEF-2020 ChEMU [132] challenge was to identify

chemical entities and events that explain the sequence of steps that lead from a chem-

ical reaction to an end product. They presented three tasks: chemical named entity

recognition (NER), event extraction (EE). The challenge attracted 37 registrants from

13 countries.

4.3.2 Data

The CLEF-2020 data corpus [132] contains 1500 chemical snippets sampled from

170 English document patents from the European Patent Office and the United States

Patent and Trademark Office [132]. Each snippet holds a detailed description of

chemical reactions.

Entities of this dataset are divided into four categories [35]: (1) chemical com-

pounds that are involved in a chemical reaction; (2) conditions under which a chemical

reaction is carried out; (3) yields obtained for the final chemical product; and (4) ex-

ample labels that are associated with reaction specifications. The four categories are

further divided into a total of ten entity types. The compound category defines five

roles a chemical compound can play within a chemical reaction. Conditions category

and yield category each include two entity types. Fig. 7 summarizes the labels in
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each category.

A chemical reaction step involves action and one or more chemical compounds

on which the action takes effect [35]. The action is also linked to the conditions under

which the action is carried out and the resultant yields from the action. Relations form

between actions (trigger words) and all arguments involved in the reaction steps, such

as chemical compounds, conditions, and yields. The ARG1 event label corresponds to

relations between a trigger word and chemical compound entities. The ARGM event

label corresponds to the relations between a trigger word and temperature, time, or

yield entities. Table 8 shows the definitions of the entity types, trigger words, and

relation types.

Fig. 7. An illustration of the hierarchical structure of the entity labels of the

CLEF-2020 dataset [35]

The corpus includes ten entity types under four categories, two classes of trigger

words (REACTION STEP, WORKUP) and two relation classes (ARG1, ARGM) and

Table 9 shows the statistics of the dataset. Fig. 8 shows an example of a Brat Rapid

Annotation Tool (BRAT) annotated sentence from the dataset containing chemical
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Table 8. Definitions of entity types, trigger words, and relation types of CLEF-2020

dataset [35]
Entity Type Definition

REACTION PRODUCT (R.P.) A product is a substance that is formed during a chemical reaction.

STARTING MATERIAL (S.M.) A substance that is consumed in the course of a chemical reaction providing atoms to products is

considered as starting material.

REAGENT CATALYST (R.C.) A reagent is a compound added to a system to cause or help with a chemical reaction. Compounds

like catalysts, bases to remove protons or acids to add protons must be also annotated with this tag.

SOLVENT (S) A solvent is a chemical entity that dissolves a solute resulting in a solution.

OTHER COMPOUND (O.C.) Other chemical compounds that are not the products, starting materials, reagents, catalysts and solvents.

TIME The reaction time of the reaction.

TEMPERATURE (Temp) The temperature of the reaction.

YIELD PERCENT (Y.P.) Yields given in percent values.

YIELD OTHER (Y.O.) Yields provided in other units than %.

WORKUP A manipulation required to isolate and purify the product of a chemical reaction

REACTION STEP An event that converts starting materials into a product

Arg1 The elation between an event trigger word and a chemical compound

ARGM The relation between an event trigger word and a temperature, time, or yield entity

Table 9. Entity and relation type statistics of the training set of CLEF-2020 dataset

Events Entities Instances REACTION STEP WORKUP

ARG1

EXAMPLE LABEL 886 - -

REACTION PRODUCT 2052 1101 11

STARTING MATERIAL 1754 1747 4

REAGENT CATALYST 1281 1272 -

SOLVENT 1140 1134 4

OTHER COMPOUND 4640 161 4097

ARGM

YIELD PERCENT 955 937 1

YIELD OTHER 1061 1043 2

TIME 1059 839 81

TEMPERATURE 1515 813 242

Triggers
REACTION STEP 3815

WORKUP 3053
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Fig. 8. An example of a BRAT annotated sentence from the CLEF-2020 dataset

entities and relations among the entities.

4.4 DrugProt

4.4.1 Challenge

BioCreative challenges and workshops are a community-wide effort for evaluating

text mining and information extraction systems applied to the biological domain. In

2021, they introduced the BioCreative VII challenge which focused on the detection of

chemicals, drugs and related substances with five tracks. Track 1 explores recognition

of chemical-protein entity relations from abstracts. Aim of this track is to promote the

development and evaluation of systems that are able to automatically detect relations

between chemical compounds/drug and genes/proteins.

4.4.2 Data

BioCreative VII Track 1 released a manually annotated corpus, the DrugProt

corpus which contains chemical and gene mentions, and all binary relationships be-

tween them. A range of different types chemical-protein/gene interactions are of key

relevance for biology, including metabolic relations (e.g. substrates, products) inhi-

bition, binding or induction associations [133]. The training set contains chemical

mentions (46274), gene/protein mentions (43255), and drug/chemical-protein/gene

interactions (17288) from 3500 PubMed abstracts. The development and test set

includes 750 and 10750 abstracts, respectively. Fig. 9 shows the BRAT annotation of
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the entities and relations of a sentence from the dataset. Table 10 shows the number

of instances for each relation type in the training and development datasets.

Fig. 9. An example of a BRAT annotated sentence from the DrugProt dataset

Table 10. Relation type statistics of DrugProt dataset

# Train # Development

INDIRECT-DOWNREGULATOR 1330 332

INDIRECT-UPREGULATOR 1379 302

DIRECT-REGULATOR 2250 458

ACTIVATOR 1429 246

INHIBITOR 5392 1152

AGONIST 659 131

AGONIST-ACTIVATOR 29 10

AGONIST-INHIBITOR 13 2

ANTAGONIST 972 218

PRODUCT-OF 921 158

SUBSTRATE 2003 495

SUBSTRATE PRODUCT-OF 25 3

PART-OF 886 258

TOTAL 17288 3765

50



CHAPTER 5

EXPERIMENTAL FRAMEWORK –RelEx

RelEx is an RE framework we developed to identify relations between two entities.

The framework is divided into five main approaches: rule-based (co-location), ma-

chine learning-based, CNN-based, BERT-based, and GCN-based approaches. The

framework is designed to consider two entities in an instance and determine whether

a relation exists between the entities. In our case, an instance consists of a sentence,

and we use the terms interchangeably. Here, we describe in detail the five approaches

we developed for RE: 1) rule-based, 2) machine learning-based, 3) CNN-based, 4)

BERT-based, and 5) GCN-based approaches.

RelEx can be found here1 for reproducibility.

5.1 Rule-based Approach

Our rule-based approach [123, 134] determines whether a relation exists between

two entities utilizing the co-location information between them. We use a Breadth-

First Search algorithm (BFS) to find the selected entity’s closest occurrence on either

side of other entities. For each entity, we traverse both sides until the selected entity’s

closest occurrence is found based on the provided span values of the entities. We

explore four traversal mechanisms and report the best traversal mechanism in our

results:

1. traverse left-only

2. traverse right-only

1https://github.com/NLPatVCU/RelEx
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3. traverse left-first-then-right

4. traverse right-first-then-left

This was conducted in two modes:

1. bounded - limiting the traversal to only a single relation per relation type.

2. unbounded - allowing for a drug to be linked to multiple entity classes with the

same relation.

Fig. 10. Example that depicts how left-only traversal works

For example, Fig. 10 shows a sample sentence from CLEF-2020 dataset from

the chemical domain. Sentence The obtained residue was added dichloromethane and

stirred. contains a SOLVENT, dichloromethane and two EVENT TRIGGERS added

and stirred. The SOLVENT has a relation with the closest EVENT TRIGGER oc-

currence added but not with stirred when applying the left-only traversal mechanism.

5.2 Machine Learning-based Approach

Our machine learning-based approach [122] presents a feature-vector based, su-

pervised machine learning approach to extract explicit semantic relations and classify

them. Our approach takes sentences as the input, defines a set of features, and com-

bines them into a feature vector to train a machine learning model which is the most

crucial part of our approach. The idea is to decrease the size of the effective vocabu-

lary, which would increase the classification accuracy by eliminating the noise in the
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feature representation [18]. Relations between entities are extracted and classified

through this learned system. Fig. 11 shows the pipeline of our approach, and each

step of the approach is discussed in detail in the following sections.

Fig. 11. Pipeline that highlights the main steps of our machine learning-based ap-

proach

5.2.1 Preprocessing

All sentences in the abstracts are preprocessed to normalize the text so that

the input text is guaranteed to be consistent and feature extraction/classification

is simplified. Preprocessing is performed using Natural Language Toolkit’s (NLTK)2

Tokenizers, POS tagger, and Porter Stemmer are used in text preprocessing to extract

the following features for each entity:

1. token of the entity

2https://www.nltk.org/
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2. convert text to lower case

3. removal of special characters

4. stemming

A separate set of steps are followed, where each feature is computed. Some

features are extracted in two different scenarios: before removing the stop words

and after removing the stop words. Stop words are the most common words of the

language that do not contribute to the semantics of the documents or contain any

significance but has a high frequency. Filtering out such words reduces the size of the

feature space with the idea that the noise occurs with will also be reduced.

5.2.2 Feature selection

After preprocessing the input text, a subset of words that contain the respective

entity pair are selected from each sentence, a set of features are computed and a

feature vector is created by combining the computed features. Here, we explored

variations of the following feature types described in detail in Section 2: 1) bigrams,

2) collocations, 3) BOW, 4) POS, 5) TF-IDF.

The specific features explored in our approach are listed below where E1 refers

to the first entity, and E2 refers to the second entity:

1. Number of words before E1 with/without stop words

2. Number of words after E2 with/without stop words

3. Word before E1

4. Word after E2

5. POS of the words before E1 with/without stop words

6. POS of the words after E1 with/without stop words

7. POS of the words before E2 with/without stop words

8. POS of the words after E2 with/without stop words
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9. Bigram of the first word before E1 with/without stop words

10. Bigram of the first word after E2 with/without stop words

11. Bigram of E1

12. Bigram of E2

13. Highest bigram value of words in between entities with/without stop words

14. Number of unique POS types in between the entities with/without stop words

15. Number of unique POS types before E1 with/without stop words

16. Number of unique POS types after E2 with/without stop words

17. POS type of the word with the highest TF-IDF score in between the entities

18. POS type of the word with highest TF-IDF score in before E1

19. POS type of the word with highest TF-IDF score in after E2

5.2.3 Classification

In the final step of our approach, a feature vector is generated for each sentence

by incorporating the extracted features in the previous step. The generated feature

vector is then used to train a classifier that classifies the relation between the entities.

The following classifiers, which represent three main classification algorithms, are

available to train and evaluate the data set in our approach:3 Decision Trees, Naive

Bayes (NB), and SVMs. The resulting model is then used to classify the relations.

5.3 CNN-based Approach

Our CNN-based approach includes three CNN architectures. Two baselines pre-

viously proposed by Luo et al. [60] and our novel extension [123, 134, 135] that utilizes

a multi-label architecture. In this section, we describe each of the architectures in

detail.

3NLTK sci-kit learn library classifiers are used.
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5.3.1 Single-label Sentence-CNN

In this architecture, each relation consists of a pair of entities. The Sentence-

CNN learns the relation representation for the entire sentence as a whole. First,

we identify the sentence where each relation is located and extract the sentence and

we feed it into a CNN for learning. Second, we apply the convolution layer on the

sentence and learn the local features from the embedding vectors obtained from each

word of the sentence. 1D convolutions compute the weighted sum of the features and

select a certain combination of features. Next, we apply the max-pooling layer [136]

to extract the most important feature from the entire sentence which is called the

global feature as it is considered over the entire sentence. The max-pooling layer

also helps in reducing the dimensionality of the input and discarding the features

that do not contribute to the classification. Then we unstack the volume into a flat

vector before feeding it into the fully connected feed-forward layer. Finally, the fixed-

length vector is fed into a softmax (fully-connected) layer to perform the classification.

Classification error is then back-propagated ,and the model is re-trained until the error

is minimized. The weights of the matrix and bias are the parameters that get tuned

until the optimized model is obtained. One of the beneficial properties of CNN is

that it preserves the spatial orientation; in this case, the sequence of the words in the

sentence.

To step through Fig. 12, let us consider a convolutional filter of size 3 (considers

three words at a time) with a set of random weights assigned on the sentence vector

matrix. First, the filter overlays across the first two word vectors and performs an

element-wise product for all its elements, then it sums them up to obtain one value

which gives the first element of the output sequence. Then the filter moves down to the

second and third vector and performs the same operation. Filter continues to move
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Fig. 12. An illustration of the Sentence-CNN architecture which explains the process

of single-label Sentence-CNN

down and perform the operation repeatedly and outputs a vector on which the 1-max

pooling function is applied. The max-pooling function extracts the largest element

from each vector. This produces a vector of fixed-length that is fed into the softmax

layer that performs the classification and backpropagates the error. Convolution units

learn the entire sentence at once and predict the classes. A sentence can contain more

than one distinct mention of relation (pair of entities) with its context and at that

point, this architecture cannot differentiate the sentences that are fed into CNN. To

account for this, we propose a new architecture by modifying the existing one to be

able to train the model to learn multiple labels for the same sentence.

5.3.2 Multi-label Sentence-CNN

Often in machine learning tasks, there can multiple possible labels for one in-

stance that are not mutually exclusive. This is called a multi-label classification

problem. In RE, this happens when an instance can contain more than a single set of
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relations between multiple entities. To address this, we modified the Sentence-CNN

which predicted a single-label for an instance to predict multiple labels for an in-

stance. As shown in Fig. 13, when the multi-label flag is enabled the system outputs

multi-hot encoded labels. The multi-label Sentence-CNN is constructed differently in

the following aspects: loss function, choice of the output layer, multi-hot-encoding of

labels. Here, we describe each of those aspects in more detail.

Fig. 13. An illustration of the Sentence-CNN architecture that explains the process of

both single-label and multi-label Sentence-CNN

• Loss function: Binary cross-entropy is just a special case of categorical cross-

entropy. Categorical cross-entropy loss is for multi-class classification where

each example belongs to a single class, whereas binary cross-entropy loss is

for binary classifications. Since we treat this as the binary classification, we

pick binary-cross-entropy and model the output of the network as independent

Bernoulli distributions per label.

• Choice of output layer: Usually, the softmax layer is chosen for multi-class

classification problems and the sigmoid layer for binary classification problems.
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The sigmoid activation function at the output layer neural network models the

probability of a class as bernoulli distribution. It calculates the conditional

probabilities of each target class independent from the other class probabilities

and returns the output value, which falls in the range of 0 to 1. The sigmoid

function produces the curve, which will be in the Shape S, and a threshold

is set to convert the vector into a binary vector. Here, we treat this multi-

label classification problem as a binary classification problem for each class in

the label. Therefore, we use sigmoid activation instead of softmax with the

binary-cross-entropy loss.

• Multi-hot-encoding of labels: The system functions as a binary classifier

for each class and results in a multi-hot encoded binary vector. The sigmoid

activation function in the output layer returns a real-valued output vector with

the probabilities of each class. We use the threshold of 0.5 to determine whether

that class label is present or not for a particular instance of the inputs.

5.3.3 Segment-CNN

In the Sentence-CNN architecture, each relation is represented by an entire sen-

tence and does not capture the positional information of the entity pairs. Therefore,

Luo et al. [60] proposed the Segment-CNN where the sentence is divided into seg-

ments and trained by separate convolutional units. Based on where the entities are

located in the sentence, we divide the sentence into segments. Different segments play

different roles in determining the relation. We re-implemented the base architecture

of the Seg-CNN [60] and fine-tuned the parameters based on its performance on the

datasets. A sentence is explicitly segmented into five segments:

• preceding - tokenized words before the first concept
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• concept 1 - tokenized words in the first concept

• middle - tokenized words between the two concepts

• concept 2 - tokenized words in the second concept

• succeeding - tokenized words after the second concept

Fig. 14. An illustration of the Segment-CNN architecture when performing multi-class

classification.

Fig. 14 shows an abstract view of the construction of the Segment-CNN when

performing multi-class classification. If k is the dimension of the word embeddings

and N is the number of words in a segment, the segment is represented by a k ∗ N

matrix where word embeddings are the columns. We construct separate convolution

units for each segment and concatenate before the fixed-length vector is fed to the

dense layer that performs the classification. Each convolution unit applies a sliding

window that processes the segment and feeds the output to the max-pooling layer to
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extract important features independent of their location. The output features of the

max-pooling layer of each segment are then flattened and concatenated into a vector

before feeding it into the fully connected feed-forward layer. In Segment-CNN, the

vector is finally fed into a softmax layer to perform multi-class classification.

5.4 BERT-based Approach

Our BERT-based approach [134] explores using BERT contextualized embed-

dings into a simple feed-forward neural network. We first extract the sentence con-

taining the relation and pass it through a pre-trained BERT model. The output is

then fed into a dropout layer and then into a fully-connected dense layer for classifica-

tion. As with our CNN-based approaches, we treat the RE as a binary classification

task building a separate model for each drug-entity type. Fig. 15 shows the architec-

ture of our BERT-based approach. Our approach contains the following BERT-based

language models:

• BERT [10] (cased and uncased). The original BERT models are trained on a

large corpus of English data: BookCorpus (800M words) andWikipedia (2,500M

words) in a self-supervised manner (without human annotation). BERT-based

models are smaller BERT models intended for environments with limited com-

putational resources. BERT-uncased and BERT-cased have 2-heads, 12-layers,

768-hidden units/layer, and a total of 110 M parameters.

• BioBERT [80]. This model is initialized with the general BERT and further

trained over a corpus of biomedical research articles from PubMed4 abstracts

and PubMed Central5 article full texts.

4https://www.ncbi.nlm.nih.gov/pubmed/
5https://www.ncbi.nlm.nih.gov/pmc/
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• Clinical BERT [81]. This model is initialized with BioBERT and further fine-

tuned over the Medical Information Mart for Intensive Care-III [131] (MIMIC-

III) clinical note corpus.

Fig. 15. An illustration of our architecture for the BERT-based approach

5.5 GCN-based Approach

Our GCN-based approach includes two GCN architectures. We explore how to

effectively capture the global dependencies between terms within a corpus and how to

combine the capability of BERT with a GCN and benefit from the combination. We

propose two novel approaches to extract relations between chemical entities: GCN-

Vanilla and GCN-BERT.
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5.5.1 GCN-Vanilla Approach

In this approach, we first build one single graph with word and sentence nodes

over the entire corpus. The number of nodes (V ) in the graph equals the number of

sentences and the number of unique words in the corpus.

Second, we measure the weight of the edge between two word nodes (word-

word nodes) using PMI. The occurrence of two words together can be just by chance

or because there is an above-chance frequency of occurrence of two words in that

particular order. For example, the term disturbed sleep has different independent

meanings, but together, they express a precise, unique concept. PMI is a measure

that quantifies the likelihood of the co-occurrence of two words. Equation 5.1 shows

how PMI is computed between two word nodes. If x and y are independent, their

joint probability equals the product of their marginal probabilities that result in a log

equal to 0, which means the words occurred by chance. A positive PMI value indicates

that the semantic correlation of words in a sentence is high, whereas a negative value

indicates no correlation. Only the edges between word pairs with positive PMI values

are considered when the graph is generated.

PMI(x, y) = log

(
P (x, y)

P (x)P (y)

)
(5.1)

Third, we measure the weight of the edge between the node and sentence (word-

sentence nodes) using TF-IDF [17]. With multiple documents inside a corpus, TF-

IDF takes into account how frequently tokens appear across multiple documents [18].

Fourth, we utilize pre-trained word embeddings to generate the initial word embed-

dings for the word nodes. We average the word vectors of the word nodes connected

to a sentence node to create an embedding representation for the sentence. Fig. 16

shows the structure of the graph we build for this approach. Nodes that begin with
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S are sentence nodes, and the rest are unique word nodes. Black bold edges be-

tween sentence nodes and word nodes are sentence-word edges, and the thin black

edges between word nodes are word-word edges. Different color sentence nodes depict

different classes. We consider this approach as our baseline.

Fig. 16. Structure of the graph for the corpus-level approach.

Fifth, we model the graph with a multi-layer GCN to capture the high-order

neighborhoods information. A multi-layer GCN allows message passing between

nodes that are not connected directly but a few levels away. A two-layer GCN passes

messages from the nodes that are at a maximum of two steps away [14]. Our graph has

no direct sentence-sentence nodes, but they are connected through the word nodes;

therefore, a two-layer GCN allows information passing from one sentence node to an-

other. Initially, the weight vectors of the nodes are randomly initialized, and then the

embeddings are jointly learned for both the words and sentences through the GCN.

Fig. 17 demonstrates how the message passing mechanism works on a two-layer GCN
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and from which nodes the current node obtains information in the first and second

layer of GCN. We consider the sentence node S1 as our target node for this example.

In the first layer, the sentence node S1 gets information from the 1-hop neighbor

nodes W3 and W11, and in the second layer, it gets from the 2-hop neighbor node

S5. The first segment in the figure shows the sample graph of two sentence nodes and

five word nodes with randomly initialized vectors for each node. The middle segment

shows sentence node S1 and the nodes connected to it get information in the first

layer of GCN: S1 from W11 and W3; W3 from S1 and W11; W11 from S1 and W3;

S5 from W2 and W18. The last segment shows how the sentence node S1 gets the

information from the 2-hop neighbor node S5 through the 1-hop neighbor node W3

in the second layer of GCN.

Finally, the output of the second-layer nodes is fed into a softmax layer for

classification. This turns the relation classification problem into a node classification

problem. Softmax is calculated as shown in Equation 5.2.

Z = softmax(ÃReLU(ÃX W0)W1), (5.2)

where Ã = D−1/2AD−1/2 [14]. The cross entropy error is calculated over all sentences.

5.5.2 GCN-BERT Approach

From our previous works [134] we found our BERT-based approach outperformed

other supervised learning approaches. BERT captures the contextual information

within a sentence or document locally however it fails to capture the global informa-

tion. Many real-world data obtained are in the form of graphs and do not have a

natural order of nodes. The graph data can be traversed in varying orders to cap-

ture the global information. GCN captures the global information between the nodes
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Fig. 17. Illustration of how message passing mechanism works in a two-layer GCN

architecture

well but may fail to capture local information. Therefore, we proposed a novel ar-

chitecture that combines BERT with GCN to benefit from capturing both local and
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global information and allowing them to influence mutually and build together a final

representation for classification.

First, we extract the sentence where the entity pair is located. We use the BERT

tokenizer to tokenize the sentence into words. Since BERT is a pre-trained model,

input data needs to be in a specific format, and the BERT tokenizer carries out

specific operations to generate the format. First, the words are split into subwords

and characters. BERT handles the Out-of-vocabulary (OOV) words by tokenizing

them to the character level. They utilize the ## sign to indicate they are part of

a larger word, distinguishing a subword token from a word token when generating

word embeddings. For example, the word embeddings is tokenized with BERT as

[em, ##bed, ##ding, ##s], here the ##bed token is differentiated from the token

bed token. Subword vectors are averaged to generate an approximate vector for the

original word. After splitting the sentence into the tokens, we build a vocabulary

map mapping the unique tokens to integers.

Second, we generate a vocabulary graph G =(V, E) similar to the graph we

built in our GCN-Vanilla approach, but we consider only the word nodes and not

the sentence nodes. We denote the word nodes in the graph by the mapped integers,

and we measure the weight of the edge between two word nodes (word-word nodes)

using PMI, which is calculated as shown in the Equation5.1. The PMI values are

normalized (NPMI) between the range of [-1, 1]. A positive NPMI value indicates a

high semantic correlation between words, whereas a negative NPMI value indicates

little or no semantic correlation. Edges exist between word nodes from the training

set when PMI > 0. Next, we pass the graph through a two-layer GCN to generate

the graph embeddings. GCN performs multiple levels of convolution to capture the

global information between the nodes that are not connected directly. We use ReLU

activation function in the GCN [116] described in Equation 5.3.
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V GCN = ReLU(XmvÃvvWvh)Whc (5.3)

where m is the batch size, v is the vocabulary size, h is the size of the hidden

layer, c is the size of the sentence embedding.

Third, we combine the mapped word indices with the generated graph embed-

dings before passing them into BERT, which helps capture the order of the words

in the sentence and the global information captured by the graph. BERT uses a

transformer, an attention mechanism that learns contextual relations between words.

BERT applies multi-layer multi-head self-attention on the concatenated input. The

input text sequence travels through a stack of 12 encoders at each level and a feed-

forward neural network and outputs a sentence embedding for classification. Usually,

BERT architecture takes a token, segment, and position embeddings of the input text

and a [CLS] token. However, here we combine word token embeddings and placehold-

ers for the graph embeddings before passing them into the BERT. When the token

embeddings layer converts each word piece token into a vector representation, we com-

bine the graph embeddings vector. Next, BERT applies the bidirectional training,

which simultaneously takes the previous and next tokens into account and produces

a representation for the input sequence. Finally, the final embedding representation

is fed into a fully connected layer for classification.

Fig. 18 shows the overall structure of this combined GCN-BERT approach and

illustrates how an input sentence is passed through this architecture. The input

sentence S1 is tokenized and the word nodes are denoted in blue. In the vocabulary

graph, words nodes from the input sentence S1 are shown in blue whereas the word

nodes from other sentences are shown in yellow. This approach captures and combines

the input text’s local and global information.
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Fig. 18. Structure for the GCN-BERT combined approach.

5.6 Evaluation Criteria

Several evaluation metrics are used to evaluate and compare the performance

of RE: Precision (P), Recall (R), and F1 score (F). Precision calculates how many

instances are predicted correctly, and Recall calculates out of all the correct instances

that should have been predicted how many instances are correctly predicted. The F1

score is the harmonic mean of the Precision and Recall, where an F1 score reaches its
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best value at 1 and worst at 0. Accuracy metrics alone can be misleading when there

is a great difference in the number of instances in each relation. Therefore calculating

a confusion matrix can give a better picture of what the classifier is getting right and

what types of errors it is making.

The micro, macro, and weighted averages of the system report the performance

of the system. Micro average calculates metrics globally by counting the total true

positives, false negatives, and false positives. In contrast, macro average calculates

metrics for each label and the unweighted mean as it does not take class imbalance

into account. But weighted average calculates metrics for each label, and the average

weighted by support (the number of true instances for each label).

Confusion matrices help visualize the classifier’s performance over a dataset,

compared the predicted and actual instances, and analyze the correctly classified and

misclassified instances. It is mainly used for predictive analysis in machine learn-

ing. Rows represent the predicted relation instances, whereas the columns represent

the instances of the actual relation. Confusion matrices report the number of false

positives (FP), false negatives (FN), true positives (TP), and true negatives (TN).

K-fold CV is a statistical method commonly used to evaluate machine learning

models, and it is performed on the training dataset. Data is divided into k size

partitions; out of k partitions, a single partition is retained as testing data. The

remaining k-1 partitions are considered as training data to train the model.
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CHAPTER 6

EXPERIMENT: MULTI-LABEL HIERARCHICAL RELATION

EXTRACTION

Relation extraction can be challenging as instances may contain multiple medical

entities with more than one type of relation in the same sentence. For example,

Fig. 5 in Section 4.1 shows a sentence from the i2b2-2010 clinical dataset with three

entity types (Treatment, Test, and Problem) and the relations between them. We

can see there is more than one relation in the same sentence between the multiple

entity pairs: TrCP (Treatment causes problem), TrIP (Treatment improves problem),

and TeRP (Test reveals problem). We can see two types of relations (TrCP, TrIP)

exist between the same entity types, Problem and Treatment. This is an example

of a multi-label classification problem. In this work, we drift from the traditional

approaches with feature engineering and utilize deep learning approaches for relation

extraction that automatically learn features from sentences [27]. Here, we propose a

novel multi-label hierarchical architecture that utilizes CNNs.

A sentence can contain two entities, and there may or may not be a relation

between them. When a relation exists, it is considered a positive instance and is

further divided into many relation classes that we consider as positive relations. At

the same time, when a relation does not exist between the entities it is considered as

a negative instance and included in the negative relations. The unbalanced distribu-

tion of relation instances between positive and negative relations may decrease the

performance of a classifier. Therefore, we propose a hierarchical schema to minimize

the impact of the heavy imbalanced classes.

71



6.1 Methods

In this work, we use the three CNN architectures for clinical RE and propose a

hierarchical classification schema that alleviates the difficulty of the class imbalance

of negative relations.

6.1.1 Convolutional Neural Network Architectures

Here, we use Single-label Sentence-CNN, Multi-label Sentence-CNN, and Segment-

CNN discussed in Section 5.3 of Chapter 5.

Single-label Sentence-CNN. Single-label Sentence-CNN represents each entity

pair by a sentence. Each relation consists of two entities for example, in i2b2 the

relation Tr-P consists of Treatment and Problem. In this architecture, the Sentence-

CNN learns the relation representation for the entire sentence as a whole. Fig. 12 in

Section 5.3 steps through the architecture in detail. However, a sentence can contain

more than one distinct mention of relation, and at that point, this architecture cannot

differentiate the sentences fed into CNN.

Multi-label Sentence-CNN. Multi-label Sentence-CNN is a modification to single-

label Sentence-CNN. This architecture considers all possible labels for a sentence.

Fig. 13 in Section 5.3 steps through the architecture in detail.

Segment-CNN. Segment-CNN divides a sentence into five segments and train using

separate convolutional units. This architecture is used as our base model to compare

the performance of our multi-label Sentence-CNN. Fig. 14 in Section 5.3 steps through

the architecture in detail.
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6.1.2 Hierarchical Classification

Relations are bounded by sentences in our dataset. The unbalanced distribu-

tion of relation instances between positive and negative relations may decrease the

performance of a classifier. In hierarchical classification, first, we perform binary clas-

sification to classify the positive and negative relations, then we perform multi-class

classification on the positive predictions:

1. Re-label the positive and negative instances as ’yes’ and ’no’ respectively.

2. Train the models on the training set and predict on the test set.

3. Remove all ’no’ instances from the test set according to the predicted labels

and from the train set according to the original labels.

4. Re-train the model with the original labels and predict on the test set again

and evaluate the predictions.

Fig. 19 demonstrates hierarchical classification using an example from i2b2-2010

relation corpus. Tr-P category consists of six relations: one negative and five positive.

As described above, first we perform a binary classification to classify the negative

instances (NTrP), and then based on the predictions (TrP), we further classify the

positive instances into five relations.

6.2 Experimental Design

Word representation. For our CNN-based approaches we use the word2vec, a

non-contextualized word embeddings [23].

Text tokenization and vectorization. We use multiple methods to vectorize

the text. Text in each segment is converted into vector sequences using the Keras

tokenizer by assigning a unique index to each unique word. The Keras tokenizer

takes the input data and creates a customized tokenizer that considers only the top,
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Fig. 19. A diagram depicts how the hierarchical classification for a relation category

works on the i2b2-2010 dataset

given the most common words in the input data and creates a word index. Using

the tokenizer, data is tokenized, and it returns a vector sequence that is padded

according to the maximum length of a sequence. The arguments control the position

of the padding. Also, we use one-hot-encoding to convert the text into vectors of 0s

and 1s. Given a batch of vector sequences as input, an embedding layer converts the

sequence into real-valued embedding vectors. Word embeddings encode similarities

between words into close embedding vectors. Initial weights are assigned randomly

and adjusted gradually through backpropagation.

Label Binarization. Labels are expressed in terms of a boolean vector that repre-

sents each relation. Scikit-learn binarizer converts a label into a boolean vector in a

one-vs-all fashion and outputs the label’s one-hot encoding. The multi-class label is

converted to a boolean vector by assigning a unique value or number to each label in a
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categorical feature. For example, if a sentence has three labels ( TrCP, TrIP, TeRP),

the binarized labels for a single-label Sentence-CNN and Segment-CNN would be the

following: 1 0 0 0 0 (TrCP), 0 1 0 0 0 (TrIP) and 0 0 1 0 0 (TeRP). If the exam-

ple is considered for multi-label Sentence-CNN, labels are binarized in the following

manner: 1 1 1 0 0

Hyperparameters and Fine-tuning. We experiment with different sliding window

sizes, filter sizes, loss functions to fine-tune our approach. Single-label Sentence-CNN

and Segment-CNN perform well with small filter sizes, while multi-label Sentence-

CNN performs well with large filter sizes. To regularize the model, we apply the

dropout technique on the output of the convolution layer. The dropout technique

randomly drops a few nodes to prevent co-adaptation of hidden units, and we set this

value to 0.5 while training. We use Adam and rmsprop techniques to optimize our

loss function.

6.3 Results and Discussion

In this section, we discuss the results of our three CNN models on the i2b2-2010

Problem-Treatment-Test dataset described in Section 4.1 of Chapter 4, followed by

comprehensive error analysis.

6.3.1 Results of Individual CNN Architectures

Table 11 shows the Precision, Recall and F1 score obtained over 5-fold CV on the

training set of i2b2-2010 dataset. The number of relations in each relation category

is indicated in the left-most column along with the name of each category.

The results show that the Segment-CNN obtains a higher overall F1 score than

both the single and multi-label Sentence-CNN except for the Problem-Problem (PP).

To understand these results we conducted an extensive error analysis.
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Table 11. Precision (P), Recall (R), and F1 (F) scores of the individual CNN models

over 5-fold CV on the training set of i2b2-2010 dataset.
Single-label Sentence-CNN Multi-label Sentence-CNN Segment-CNN

Relation Category P R F P R F P R F

Tr-P (6) 0.69 0.69 0.69 0.71 0.62 0.66 0.70 0.71 0.71

Te-P (3) 0.73 0.73 0.73 0.75 0.7 0.72 0.78 0.78 0.78

P-P (2) 0.87 0.87 0.87 0.93 0.89 0.92 0.85 0.85 0.85

6.3.1.1 Analysis of the multi-labels

Table 12. Precision (P), Recall (R), and F1 (F) scores of the multi-label Sentence-CNN

model on partitioned i2b2-2010 dataset
Single labels only Multi-labels only All labels

Relation # instances P R F # instances P R F P R F

Tr-P 644 0.65 0.64 0.65 240 0.96 0.59 0.73 0.71 0.62 0.66

Te-P 738 0.61 0.82 0.70 209 0.88 1.00 0.93 0.75 0.7 0.72

P-P 1039 0.93 0.68 0.78 469 1.00 0.78 0.88 0.93 0.89 0.92

To analyze the multi-label CNN model, we separated the instances with only one

label per instance and multiple labels per instance and re-evaluated the multi-label

Sentence-CNN. Table 12 shows the Precision, Recall, and F1 score when running

the model over just the single-label instances, just the multi-label instances, and

then overall the instances for comparability. The table also contains the number of

instances that contain either single or multiple labels. The results show that the multi-

label Sentence-CNN obtains a higher F1 score when classifying instances with multiple

labels than those that only have a single relation. This indicates that the multi-label

classification is performing well when there are multiple labels per sentence.

6.3.1.2 Analysis over each category of the i2b2-2010 training dataset

Here, we analyze the individual categories of each of the relations. Tables 15, 13,

and 14 show a class-wise performance comparison with all three CNN models for each
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relation category of the i2b2-2010 relation corpus. The tables contain the number of

instances of each relation type indicated in the left-most column along with the name

of each relation of the category.

Table 13. Precision (P), Recall (R), and F1 (F) scores of the CNN models for the

Treatment-Problem (Tr-P) category of the i2b2-2010 dataset training set

Single-label Sentence-CNN Multi-label Sentence-CNN Segment-CNN

Relation P R F P R F P R F

NTrP (1702) 0.76 0.82 0.79 0.64 0.57 0.6 0.77 0.87 0.82

TrAP (885) 0.56 0.65 0.60 0.76 0.82 0.79 0.62 0.66 0.64

TrCP (184) 0.51 0.11 0.18 0.73 0.21 0.33 0.76 0.21 0.33

TrNAP (62) 0.86 0.1 0.17 1.00 0.09 0.17 0.93 0.21 0.34

TrIP (51) 1.00 0.04 0.08 0.5 0.03 0.05 0.00 0.00 0.00

TrWP (24) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Micro avg 0.69 0.69 0.69 0.71 0.62 0.66 0.73 0.73 0.73

Table 14. Precision (P), Recall (R), and F1 (F) scores of the CNN models for

Test-Problem (Te-P) category of the i2b2-2010 dataset training set

Sentence-CNN (single-label) Multi-label Sentence-CNN Segment-CNN

Relation P R F P R F P R F

NTeP (993) 0.73 0.83 0.78 0.68 0.62 0.65 0.78 0.86 0.82

TeCP (166) 0.60 0.34 0.43 0.81 0.32 0.46 0.68 0.39 0.50

TeRP (993) 0.75 0.66 0.70 0.78 0.84 0.81 0.79 0.75 0.77

Micro avg 0.73 0.73 0.73 0.75 0.7 0.72 0.78 0.78 0.78

Table 14 shows the performance of the models on the relations of the category

Problem-Test (Te-P). Again, we can see an imbalance between the relation TeCP and

other relations. Since this relation does not have enough instances to distinguish from

other relations we can see the performance is comparatively lower.

Table 15 shows the performance of the models on the relations of the category

Problem-Problem (P-P). This category has two relations only, and hence it is a binary

classification. Here, the multi-label Sentence-CNN model obtains a higher F1 score
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Table 15. Precision (P), Recall (R), and F1 (F) scores of the CNN models for Prob-

lem-Problem (P-P) category of the i2b2-2010 dataset training set

Single-label Sentence-CNN Multi-label Sentence-CNN Segment-CNN

Relation P R F P R F P R F

NPP (4418) 0.88 0.98 0.93 1.00 1.00 1.00 0.88 0.96 0.92

PIP (755) 0.17 0.03 0.05 0.65 0.56 0.6 0.12 0.04 0.05

Micro avg 0.87 0.87 0.87 0.93 0.89 0.91 0.85 0.85 0.85

than the other two models. We believe that this is due to the possibility of multiple

Problems described in an instance where not all of the Problems are related, which

won’t be able to be captured by the single-label Sentence-CNN.

Fig. 20. A sentence from i2b2-2010 relation corpus depicting multiple pairs of medical

entities in the same sentence.

For example, Fig. 20 shows a sentence from the P-P relation category of i2b2-2010

where multiple Problems are located in the same sentence, but not all the Problems

are related to each other (NPP). Table 13 shows the performance of the models on

the relations of the category Problem-Treatment (Tr-P). From the results, we can see

a decrease in performance when the number of instances of the relation decreases.

The last two relations (TrIP, TrWP) do not have enough instances to differentiate

themselves from other instances, which results in poor performance compared to other

relations.

The confusion matrices for the single-label Sentence-CNN and Segment-CNN are

shown in Tables 16 and 17 respectively. The rows indicate the gold standard, and the
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Table 16. Confusion matrix of the system outputs of the single-label Sentence-CNN

model on i2b2-2010 training set
Treatment-Problem (Tr-P) Test-Problem (Te-P) Problem-Problem (P-P)

NTrP TrAP TrCP TrIP TrNAP TrWP NTeP TeCP TeRP NPP PP

NTrP 1405 297 12

TrAP 299 565 2

TrCP 81 76 19 1

TrIP 24 23 2

TrNAP 20 33 3 6

TrWP 13 10 1

NTeP 1027 22 181

TeCP 69 55 40

TeRP 314 14 647

NPP 5085 105

PP 718 22

Table 17. Confusion matrix of the system output of the Segment-CNN model on

i2b2-2010 training set
Treatment-Problem (Tr-P) Test-Problem (Te-P) Problem-Problem (P-P)

NTrP TrAP TrCP TrIP TrNAP TrWP NTeP TeCP TeRP NPP PP

NTrP 1485 225 4

TrAP 295 568 2 1

TrCP 82 57 38

TrIP 22 24 3

TrNAP 18 28 3 13

TrWP 17 7

NTeP 1052 17 161

TeCP 68 64 32

TeRP 230 13 732

NPP 5004 186

PP 714 26

columns indicate the predicted labels. The bold terms indicate the correctly classified

instances of each relation. Zero instances are removed for better visualization. The

results are consistent with our previous observation. For all cases, the majority label

is where most of the errors are occurring, indicating that the class imbalance plays a

significant role in the miss-annotation.
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6.3.1.3 Performance analysis removing the negative instances

Since the number of instances of no-relation pair relations in this dataset is higher

than the number of instances of positive relations, they impact the performance of

each relation category. Therefore, we investigated removing the instances of negative

relations and re-evaluate the models.

Tables 18 and 19 show the results for the Problem-Treatment (Tr-P), and Problem-

Test (Te-P) relations. The number of instances of each relation type is indicated in

the left-most column along with the name of each relation of the category. Bold terms

indicate the best performing method for a dataset. The results show an improvement

in the number of instances per relation and the overall F1 score for both Problem-

Treatment (Tr-P) and Problem-Test (Te-P) relations. The multi-label Sentence-CNN

results show the noticable increase in results obtaining a higher F1 score than the other

models.

Table 18. Precision (P), Recall (R), and F1 (F) scores of the CNN models for Treat-

ment-Problem (Tr-P) in the i2b2-2010 dataset after removal of the negative

relations
Single-label Sentence-CNN Multi-label Sentence-CNN Segment-CNN

Relation P R F P R F P R F

TrAP (885) 0.82 0.98 0.89 0.92 0.88 0.90 0.77 0.99 0.87

TrCP (184) 0.74 0.46 0.57 0.70 0.58 0.64 0.72 0.20 0.32

TrNAP (62) 0.80 0.26 0.39 0.67 0.40 0.50 0.80 0.13 0.22

TrIP (51) 0.92 0.22 0.36 0.00 0.00 0.00 1.00 0.14 0.25

TrWP (24) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Micro avg 0.81 0.81 0.81 0.88 0.76 0.82 0.77 0.77 0.77

We can see several important observations from the above results.: First, the

overall performance of each relation category has increased for all three CNN models.

Second, multi-label Sentence-CNN outperforms Segment-CNN, and there is an in-
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Table 19. Precision (P), Recall (R), and F1 (F) scores of the CNN models for

Test-Problem (P-Te) in the i2b2-2010 dataset after removal of the negative

relations
Single-label Sentence-CNN Multi-label Sentence-CNN Segment-CNN

Relation P R F P R F P R F

TeCP (166) 0.72 0.35 0.47 0.79 0.48 0.59 0.83 0.41 0.55

TeRP (993) 0.90 0.98 0.94 0.90 0.98 0.94 0.91 0.99 0.95

Micro avg 0.89 0.89 0.89 0.89 0.90 0.90 0.90 0.90 0.90

crease in Sentence-CNN results than before. Third, the performance of each relation

increased than before when running with a negative relation. The classification accu-

racy of each relation improved when the negative relation is removed as the relation

distribution is more balanced. Since the Problem-Problem (P-P) category had two

relations, including the negative relation it is not considered for evaluation.

6.3.1.4 Performance Analysis for binary classification

Here, we evaluate the binary classification of each of the entity classes. We sep-

arated the negative and positive instances and relabeled them as yes and no and ran

the models on the i2b2-2010 training set ( 5-fold CV), considering the classification as

a binary classification. Table 20 shows the results for each of the Problem-Treatment

(Tr-P), Problem-Test (Te-P), and Problem-Problem (P-P) instances. The results are

interesting with the multi-label Sentence-CNN due to the binary classification task.

The model could label an instance as having a positive relation and having a neg-

ative relation simultaneously. There could be multiple entity pairs where there is a

relationship between some but not others.
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Table 20. Precision (P), Recall (R), and F1 (F) scores of the binary classification on

the i2b2-2010 dataset
Single-label Sentence-CNN Multi-label Sentence-CNN Segment-CNN

Relation P R F P R F P R F

Tr-P

Neg (1714) 0.81 0.82 0.81 0.58 0.56 0.57 0.83 0.85 0.84

Pos (1178) 0.73 0.71 0.72 0.76 0.96 0.85 0.78 0.74 0.76

Micro avg 0.77 0.77 0.77 0.71 0.81 0.76 0.81 0.81 0.81

Te-P

Neg (1230) 0.81 0.80 0.81 0.69 0.66 0.67 0.81 0.80 0.80

Pos (1139) 0.79 0.80 0.80 0.85 0.94 0.89 0.79 0.80 0.79

Micro avg 0.80 0.80 0.80 0.77 0.81 0.79 0.80 0.80 0.80

P-P

Neg (1714) 0.88 1.00 0.93 1.00 1.00 1.00 0.88 0.99 0.93

Pos (1178) 0.18 0.00 0.01 0.69 0.49 0.57 0.24 0.01 0.03

Micro avg 0.87 0.87 0.87 0.94 0.87 0.90 0.87 0.87 0.87

6.3.1.5 Analysis of each category of i2b2-2010 test dataset

To see if the results were not just a fluke in the training data, we experimented

with the performance of our approach on the i2b2-2010 test dataset. Tables 21, 22

and 23 show the Precision, Recall and F1 score when the CNN models are trained

on the i2b2-2010 training set and tested on i2b2-2010 test dataset. The number of

instances of each relation type is indicated in the left-most column along with the

name of each relation of the category. The difference between the test and the training

is the test set contains roughly twice as many instances as the train set, and overall

these results are slightly lower than the 5-fold CV results.

Table 23 shows the results when the models are run on the test set of the P-P

category. There is a heavy imbalance between the relations, and its negative affect

the performance. From the results, we can see the instances of the minority class are

mostly predicted as the majority class as the models are trained more on instances

from the majority class. Multi-label Sentence-CNN obtained a higher Recall than the

other two models but slightly lower Precision than the Segment-CNN.
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Table 21. Precision (P), Recall (R), and F1 (F) scores of the CNN models for the

Treatment-Problem (Tr-P) category of the i2b2-2010 test dataset

Single-label Sentence-CNN Multi-label Sentence-CNN Segment-CNN

Relation P R F P R F P R F

NTrP (2376) 0.67 0.67 0.67 0.55 0.56 0.55 0.60 0.79 0.68

TrAP (1726) 0.50 0.65 0.57 0.74 0.79 0.76 0.47 0.45 0.46

TrCP (342) 0.46 0.27 0.34 0.85 0.12 0.22 0.06 0.00 0.01

TrNAP (112) 1.00 0.03 0.05 0.50 0.01 0.02 0.00 0.00 0.00

TrIP (152) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TrWP (108) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Micro avg 0.58 0.58 0.58 0.67 0.56 0.61 0.55 0.55 0.55

Table 22. Precision (P), Recall (R), and F1 (F) scores of the CNN models for the

Test-Problem (Te-P) category of the i2b2-2010 test dataset.

Single-label Sentence-CNN Multi-label Sentence-CNN Segment-CNN

Relation P R F P R F P R F

NTeP (1881) 0.62 0.66 0.64 0.61 0.48 0.54 0.50 0.92 0.65

TeCP (355) 0.00 0.00 0.00 0.74 0.11 0.19 0.18 0.01 0.01

TeRP (2054) 0.65 0.72 0.68 0.79 0.90 0.84 0.77 0.29 0.42

Micro avg 0.64 0.64 0.64 0.74 0.68 0.71 0.55 0.55 0.55

Table 23. Precision (P), Recall (R), and F1 (F) scores of the CNN models for the

Problem-Problem (P-P) category of the i2b2-2010 test dataset.

Single-label Sentence-CNN Multi-label Sentence-CNN Segment-CNN

Relation P R F P R F P R F

NPP (22087) 0.94 1.00 0.97 1.00 1.00 1.00 0.94 1.00 0.97

PIP (1447) 0.00 0.00 0.00 0.34 0.42 0.37 0.39 0.01 0.02

Micro avg 0.94 0.94 0.94 0.90 0.93 0.92 0.94 0.94 0.94

Table 21 shows the Problem-Treatment (Tr-P) results. The results show that no

one model is performing better than the other across the categories. However, for the

Problem-Test (Te-P) results shown in Table 22 the multi-label Sentence-CNN obtains

a higher F1 score overall.
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6.3.2 Results of Hierarchical Classification

Here, we evaluate our hierarchical classification methodology by building the

models on the i2b2-2010 training set and evaluating on the test set. First, we re-

labeled the instances as yes and no for positive and negative instances. Then we

trained the models on the training set and predicted on the test set. Next, we removed

instances with no labels from the test set according to the predicted relations and

from the train set according to the original relations. Then we re-trained the model

with the original relations and predicted on the test set again. Finally, we evaluated

the prediction with the given original relations.

Table 24. Precision (P), Recall (R), and F1 (F) scores for the hierarchical classification

of Treatment-Problem (Tr-P) category on i2b2-2010 data set

Single-label Sentence-CNN Multi-label Sentence-CNN Segment-CNN

P R F P R F P R F

Binary
NTrP 0.69 0.58 0.63 0.71 0.44 0.54 0.55 0.92 0.69

Tr-P 0.65 0.74 0.69 0.60 0.82 0.70 0.78 0.27 0.40

Micro avg 0.58 0.58 0.58 0.67 0.56 0.61 0.55 0.55 0.55

Tr-P

TrAP 0.68 1.00 0.81 0.77 0.96 0.85 0.69 1.00 0.82

TrCP 0.74 0.06 0.11 0.95 0.11 0.20 0.00 0.00 0.00

TrNAP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TrIP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TrWP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Micro avg 0.69 0.69 0.69 0.77 0.68 0.72 0.69 0.69 0.69

Previous Micro avg 0.58 0.58 0.58 0.67 0.56 0.61 0.55 0.55 0.55

Tables 24 and 25 show the results of hierarchical classification for categories

Problem-Treatment (Tr-P) and Problem-Test (Te-P) respectively. First, we report

the performance of binary classification; second, we report the performance of the

multi-class classification of the positive relations for each relation individually; and

third, we report the previous results from Tables 14 and 13 (Previous) for ease of

comparison. The results show an overall a improvement in the performance across
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Table 25. Precision (P), Recall (R), and F1 (F) scores for the hierarchical classification

of Test-Problem (Te-P) category on i2b2-2010 data set

Single-label Sentence-CNN Multi-label Sentence-CNN Segment-CNN

P R F P R F P R F

Binary
NTeP 0.67 0.59 0.63 0.66 0.46 0.54 0.54 0.85 0.67

Te-P 0.70 0.77 0.73 0.66 0.82 0.73 0.79 0.44 0.56

Te-P

TeCP 0.66 0.18 0.28 0.45 0.47 0.46 0.00 0.00 0.00

TeRP 0.88 0.99 0.93 0.90 0.98 0.94 0.92 1.00 0.96

Micro avg 0.88 0.88 0.88 0.84 0.91 0.88 0.92 0.92 0.92

Previous Micro avg 0.64 0.64 0.64 0.74 0.68 0.71 0.55 0.55 0.55

Table 26. Indirect comparison with current related works
Tr-P Te-P P-P System

P R F P R F P R F P R F

Multi-label hierarchical CNN 0.77 0.68 0.72 0.84 0.91 0.88 0.9 0.93 0.92 0.84 0.84 0.84

Luo, et al. [60] 0.69 0.69 0.69 0.84 0.80 0.82 0.70 0.70 0.70 0.74 0.73 0.74

Sahu, et al. [107] - - - - - - - - - 0.76 0.67 0.71

Li, et al. [121] - - - - - - - - - 0.76 0.73 0.74

Tang, et al. [69] - - - - - - - - - 0.72 0.70 0.71

Chika, et al. [72] 0.50 0.52 0.51 - - - - - - - - -

all three models indicates the effectiveness of hierarchical classification.

6.3.3 Comparison with Previous Work

Table 26 shows an indirect comparison with five state-of-the-art deep learning-

based RE approaches evaluated over the i2b2-2010 dataset. Li, et al. [121], Chika,

et al. [72] and Tang, et al. [69] report overall system results over the test data; while

Sahu, et al. [107] report the 5-fold CV results over the training data. Chika, et al. [72]

only evaluate over the Problem-Treatment (Tr-P) category. The results show that

our multi-label Sentence-CNN obtained on par or higher results.
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6.4 Conclusions and Contributions

Here, we evaluate a novel multi-label hierarchical architecture that utilizes CNNs.

We compare our model with two additional CNN approaches based on Luo. et,

al [60]. Our results show that multi-label Sentence-CNN obtains a higher F1 score

overall and outperforms the other approaches. We perform hierarchical classification

to remove the influence of the negative instances during the multi-class classification.

The results show an overall significant improvement in the performance across all

three approaches, which indicates the effectiveness of hierarchical classification. The

contributions of this work are:

1. A sentence often has more than one distinguish entities, resulting in multiple

possible relations within the sentence. Here, we proposed a multi-label Sentence-

CNN to predict multiple relations labels for a single sentence.

2. The number of relations for an entity pair is often highly imbalanced since

most of the possible entity pairs do not result in a relation (Negative relation).

The unbalanced distribution of relation instances between positive and negative

relations may decrease the performance of a classifier. Therefore, we proposed a

hierarchical classification approach that utilizes CNNs for datasets that include

no-relation pairs to alleviate the class imbalance.
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CHAPTER 7

EXPERIMENT: EVALUATION OF RELATION EXTRACTION

APPROACHES FOR SINGLE LABEL RELATIONS

Clinical datasets which explore the relationship between a drug entity and its asso-

ciated attribute entities can have a single relation per entity pair. One such dataset

is the n2c2-2018 dataset. For example, Fig. 21 shows a sentence containing the drug

Naoloxone in which the patient was given 0.4 mg causing the ADE quite agitated.

These relations differ from the previous relations 4.1: 1) as there is only a single

relation type between an entity pair; 2) all entities relate to a single anchor entity (in

this case, the medication), and 3) there may be more than one anchor entity in a sen-

tence. In this work, we evaluate the following three state-of-the-art RE approaches: a

rule-based approach utilizing co-location information, a deep learning-based approach

utilizing CNNs, and a BERT-based approach.

Fig. 21. Sentence depicting a drug and its associated attributes.
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7.1 Methods

In this work, we use our rule-based approaches discussed in Section 5.1 in Chap-

ter 5, two CNN-based approaches discussed in Section 5.3 in Chapter 5, and a BERT-

based approach discussed in Section 5.4 in Chapter 5.

7.1.1 Rule-based Approach

Here, we use three traversal mechanisms: left-only traversal, first-left-then-right

traversal, and sentence-bound traversal. In left-only traversal, we traverse to the left

side of the entity finding the closest occurrence of the drug. In first-left-then-right

traversal, we traverse to the left side of the entity first to find the closest occurrence of

the drug, if not we traverse the right side. In sentence-bound traversal where we find

all the closest occurrences of drugs for the entity within the sentence. All traversal

techniques are within the sentence boundary.

7.1.2 CNN-based Approach

Here, we use two CNN architectures. We treat the RE task as a binary classifica-

tion task, building a separate model for each drug-entity type to determine whether

a relation exists between two entities. Also, we explore two non-contextualized word

embeddings types, word2vec [23] and GloVe [24], described in Section 2.1.2.

Sentence-CNN. For each drug-entity pair, we extract the sentence containing the

relation and feed it into a CNN where each word in the sentence is represented as a

vector embedding.

Segment-CNN. For each drug-entity pair, we extract the sentence containing the

relation, divide it into five segments, and train each segment using separate convolu-

tional units.
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7.1.3 BERT-based Approach

Here, we explore the following BERT-based language models: BERT-cased [10],

BERT-uncased [10], BioBERT [80], and Clinical BERT [81].

7.2 Experimental Design

Word representation. We use word2vec and GloVe representations for our CNN-

based approaches and BERT word embeddings for our BERT-based approaches.

Text tokenization and vectorization. For the rule-based and the CNN-based

approaches, we use SpaCy tokenizer 1 and Keras tokenizer [137]. For the BERT-

based approaches, we use BertTokenizer and AutoTokenizer [81].

Hyperparameters and Fine-tuning. We define our model training hyper-parameters

by adjusting the batch size, learning rate, and the number of epochs. We use the batch

size of 512, rmsprop optimizer with the learning rate of 0.001, and train for 10-20

epochs for our CNN-based approach. For our BERT-based approach, we used the

HuggingFaceTransformers 2 to build the BERT model on RE task with Tensorflow

2.0. We use TFRecord to read data into a Dataset object efficiently. We use Sparse-

CategoricalCrossentropy as the loss function and Adam as the optimizer to minimize

the loss function.

7.3 Results and Discussion

In this section, we discuss the results of our three approaches on the n2c2-2018

dataset described in Section 4.2 of Chapter 4 and compare our results across with

previous works.

1https://spacy.io/api/tokenizer
2https://huggingface.co/transformers/
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7.3.1 Results of Individual Approaches

7.3.1.1 Rule-based Results

Table 27. Precision (P), Recall (R), and F1 (F) scores on the test set of n2c2-2018

dataset for our rule-based approaches

Left-only Left-Right (unbounded) Left-Right (bounded)

P R F P R F P R F

Strength-Drug 0.96 0.95 0.95 0.46 0.90 0.61 0.94 0.94 0.94

Duration-Drug 0.78 0.69 0.73 0.58 0.74 0.65 0.46 0.41 0.43

Route-Drug 0.90 0.89 0.89 0.45 0.64 0.53 0.37 0.36 0.37

Form-Drug 0.98 0.98 0.98 0.62 0.63 0.63 0.67 0.66 0.67

ADE-Drug 0.46 0.39 0.43 0.55 0.75 0.64 0.60 0.51 0.55

Dosage-Drug 0.89 0.89 0.89 0.61 0.57 0.59 0.89 0.88 0.89

Reason-Drug 0.48 0.35 0.41 0.61 0.57 0.59 0.39 0.28 0.33

Frequency-Drug 0.98 0.98 0.98 0.39 0.62 0.48 0.10 0.10 0.10

System (Micro) 0.88 0.83 0.86 0.50 0.67 0.57 0.56 0.53 0.55

System (Macro) 0.85 0.80 0.83 0.61 0.70 0.63 0.58 0.53 0.55

Table 27 shows the Precision, Recall, and F1 scores for our rule-based approach

on the test set of the n2c2-2018 dataset for the top three traversal mechanisms.

Analysis of the various traversal mechanisms over all non-drug entities showed that

the Left-only traversal mechanism obtained the best results except for the entity-drug

pair Duration-Drug, ADE-Drug, and Reason-Drug. For these three entities, using the

Left-Right (unbounded) traversal mechanism obtained the highest F1 score. This is

mainly because all other drug attributes are usually mentioned before the mention

of the drug entity. However, the Duration, Reason, and ADE usually are mentioned

after the mention of the drug. Overall, This approach achieved an overall Precision

of 0.88, Recall of 0.83, and F1 score of 0.86.

The results indicate that for most entity-drug pairs, co-location information is

sufficient to identify most relations. However, the performance of the entity-drug
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pair ADE-Drug and Reason-Drug are lower compared to the other relations. Our

supposition for this is that the co-location information was insufficient to identify the

correct ADE or Reason when multiple drugs were in the same sentence. For example,

in the sentence Since no new infection was found this was presumed steroids and the

leukocytosis improved with prednisone taper. the non-drug entity leukocytosis (ADE)

is associated with both steroids (Drug) and prednisone (Drug).

7.3.1.2 CNN-based Results

Table 28. Precision (P), Recall (R), and F1 (F) scores on the test set of n2c2-2018

dataset for our CNN-based architectures

Segment-CNN Sentence-CNN

P R F P R F

Strength-Drug 0.91 0.88 0.90 0.90 0.91 0.90

Duration-Drug 0.39 0.90 0.55 0.41 0.90 0.57

Route-Drug 0.77 0.89 0.83 0.76 0.91 0.83

Form-Drug 0.85 0.95 0.90 0.85 0.96 0.90

ADE-Drug 0.32 0.85 0.46 0.32 0.85 0.46

Dosage-Drug 0.83 0.92 0.87 0.82 0.93 0.87

Reason-Drug 0.27 0.88 0.42 0.27 0.88 0.41

Frequency-Drug 0.56 0.88 0.69 0.56 0.88 0.69

System (Micro) 0.69 0.90 0.78 0.68 0.92 0.78

System (Macro) 0.68 0.90 0.77 0.67 0.91 0.77

Table 28 shows the Precision (P), Recall (R) and F1 scores for our Segment-

CNN and Sentence-CNN models over the n2c2-2018 test set. The results show that

both models performed comparatively similar. In theory, we believed that Segment-

CNN should have performed better because the Sentence-CNN cannot differentiate

the inputs when multiple drug-entity pairs are located in a sentence, but the results
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contradict the assumption. We believe this is because we treat this as a binary

classification problem and build a separate model for each relation type.

7.3.1.3 BERT-based results

Table 29 shows the Precision (P), Recall (R) and F1 scores of the four fine-

tuned BERT models over the n2c2-2018 test dataset. Results show that the models

obtain a similar performance overall and for each entity-drug pairs. Comparatively,

BERT-cased model performs better in some categories than the other models.

Table 29. Precision (P), Recall (R), and F1 (F) scores on the test set of n2c2-2018

dataset for our BERT-based approaches
BERT (uncased) BERT (cased) BioBERT Clinical BERT

P R F P R F P R F P R F

Strength-Drug 0.86 0.88 0.87 0.86 0.99 0.92 0.86 0.90 0.88 0.87 0.82 0.84

Duration-Drug 0.95 0.93 0.94 0.96 0.93 0.94 0.96 0.93 0.95 0.96 0.92 0.94

Route-Drug 0.92 0.99 0.95 0.92 0.97 0.97 0.92 0.97 0.94 0.92 0.95 0.93

Form-Drug 0.96 0.97 0.97 0.96 0.95 0.96 0.96 0.97 0.96 0.96 0.97 0.97

ADE-Drug 0.95 0.99 0.97 0.95 0.99 0.97 0.95 0.99 0.97 0.95 0.99 0.97

Dosage-Drug 0.93 0.96 0.94 0.93 0.96 0.95 0.93 0.96 0.94 0.93 0.89 0.91

Reason-Drug 0.96 0.98 0.97 0.96 0.98 0.97 0.96 0.99 0.97 0.96 0.99 0.97

Frequency-Drug 0.93 0.96 0.94 0.93 0.92 0.93 0.93 0.95 0.94 0.93 0.95 0.94

System (Micro) 0.93 0.96 0.94 0.93 0.96 0.94 0.93 0.95 0.94 0.93 0.96 0.94

System (Macro) 0.92 0.95 0.93 0.92 0.96 0.93 0.92 0.95 0.93 0.92 0.95 0.93

Fig. 22 shows the breakdown of the performance of each relation when the bi-

nary classification is performed using the BERT-uncased model. We report Support,

Precision, Recall, and F1 score and Blue and Brown bars represent the positive and

no-relation (negative) relations respectively. The support shows the number of actual

occurrences of the relations. When there is no relation between the drug and the

entity, we labeled them as no-relation. The Precision, Recall, and F1 score of the

positive relations are higher except Strength-Drug than the negative relations. We

believe this explains the higher performance of the BERT-uncased model compared
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Fig. 22. Error analysis of each relation type during the binary classification using

BERT (uncased) model. The Blue and Brown bars represent the positive

and negative relations respectively.

to the other three models. The performance of the no-relation classes is poor, and we

believe this is due to the data imbalance of the relations, as shown in the support.

Positive relations are significantly larger than the negative relations, and due to this,

the poor performance of the negative relations did not affect the performance of the

positive relation.

7.3.2 Comparison across Our Approaches

Table 30 shows the Precision (P), Recall (R), and F1 score for the best results of

each of our three approaches: 1) rule-based approach using left-only traversal mecha-

nism; 2) deep learning approach using Segment-CNN, and 3) BERT-based approach

using BioBERT. Comparing the rule-based approach with our CNN-based approach

shows that the rule-based approach obtained an overall higher Precision, Recall, and

F1 score except for the relations ADE-Drug and Reason-Drug. BERT-based models

outperform the other two approaches except for the Strength-Drug, Frequency-Drug,

and Form-Drug pairs. The overall Precision and Recall are higher, especially for

the entity-drug pairs that performed poorly with the other approaches (ADE-Drug,

Reason-Drug, and Duration-Drug). Using pre-trained language representations to
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fine-tune models is advantageous as they use minimal task-specific parameters and

are trained on the downstream tasks by simply fine-tuning all the pre-trained param-

eters.

Table 30. Comparison across our approaches over the n2c2-2018 test set
Train Test Rule-based Segment-CNN BioBERT

# # P R F P R F P R F

Strength-Drug 6702 4244 0.96 0.95 0.95 0.91 0.88 0.90 0.86 0.90 0.88

Duration-Drug 643 426 0.78 0.69 0.73 0.39 0.90 0.55 0.96 0.93 0.95

Route-Drug 5538 3546 0.90 0.89 0.89 0.77 0.89 0.83 0.92 0.97 0.94

Form-Drug 6654 4373 0.98 0.98 0.98 0.85 0.95 0.90 0.96 0.97 0.96

ADE-Drug 1107 733 0.46 0.39 0.43 0.32 0.85 0.46 0.95 0.99 0.97

Dosage-Drug 4255 2695 0.89 0.89 0.89 0.83 0.92 0.87 0.93 0.96 0.94

Reason-Drug 5169 3410 0.48 0.35 0.41 0.27 0.88 0.42 0.96 0.99 0.97

Frequency-Drug 6310 4034 0.98 0.98 0.98 0.56 0.88 0.69 0.93 0.95 0.94

System (Micro) 0.88 0.83 0.86 0.69 0.90 0.78 0.93 0.95 0.94

System (Macro) 0.85 0.80 0.83 0.68 0.90 0.77 0.92 0.95 0.93

7.3.3 Comparison with Previous Work

Here, we compare our results with two previous works utilizing BERT: Wei, et

al. [83] and Alimova, et al. [79] To the best of our knowledge, these are the only

two works that have applied pre-trained language models of BERT on the n2c2-2018

dataset. Table 31 shows the overall Precision, Recall, and F1 score of our fine-tuned

BERT models with the reported results from the other state-of-the-art BERT-based

models on the n2c2-2018 dataset. The F1 score of all models of Wei et al’s and our

three models is the same, but the Precision of Wei, et al’s models are higher, whereas

the Recall of our models is higher. There is a notable difference between Alimova, et

al. models and ours. The F1 scores of all three models of Alimova, et al. are lower

than ours, and we believe this is due to the difference in the representation of the

inputs of the models.
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Table 31. Overall results in comparison with previous work on the n2c2-2018 test data
Our models Wei, et al. [83] Alimova, et al. [79]

Cased Uncased Bio Clinical Cased Uncased Bio Clinical Uncased Bio Clinical

Precision 0.93 0.93 0.93 0.93 0.98 0.98 0.98 0.98 - - -

Recall 0.96 0.96 0.95 0.93 0.90 0.90 0.90 0.90 - - -

F1 score 0.94 0.94 0.94 0.93 0.94 0.94 0.94 0.94 0.56 0.75 0.75

Table 32. Comparison of F1 score with previous work over each relation of the

n2c2-2018 dataset.
Our models Wei, et al. [83] Alimova, et al. [79]

Cased Uncased Bio Clinical Cased Uncased Bio Clinical Uncased Bio Clinical

Strength-Drug 0.87 0.87 0.88 0.84 0.98 0.99 0.98 0.99 0.58 0.68 0.68

Duration-Drug 0.94 0.94 0.94 0.94 0.88 0.89 0.88 0.89 0.41 0.66 0.65

Route-Drug 0.95 0.95 0.94 0.93 0.97 0.97 0.97 0.97 0.63 0.74 0.74

Form-Drug 0.97 0.97 0.96 0.97 0.97 0.98 0.98 0.98 0.62 0.81 0.81

ADE-Drug 0.97 0.97 0.97 0.97 0.80 0.80 0.81 0.81 0.10 0.62 0.62

Dosage-Drug 0.94 0.94 0.94 0.91 0.97 0.97 0.97 0.97 0.67 0.82 0.82

Reason-Drug 0.97 0.97 0.97 0.97 0.76 0.76 0.76 0.77 0.22 0.73 0.73

Frequency-Drug 0.94 0.94 0.94 0.94 0.96 0.96 0.96 0.96 0.53 0.79 0.78

0.94 0.94 0.94 0.94 0.911 0.92 0.91 0.92 0.47 0.73 0.73

Table 32 shows a comparison of the F1 score of our models the results reported by

Wei, et al. [83]’s and Alimova, et al. [79] for each relation of the dataset. The results

show that Alimova, et al.’s models perform lower. However, when comparing the re-

sults with Wei, et al., we found the results are complementary; relations that did not

perform well with Wei, et al.’s models performed well with our models. Specifically,

the relations Reason-Drug, ADE-Drug, and Duration-Drug obtained a higher Preci-

sion, Recall, and F1 score than Wei, et al.’s. Meanwhile, the Precision, Recall, and

F1 score of the relation Strength-Drug are higher in Wei, et al. We believe this is due

to three differences between our approaches: 1) Wei, et al. represent an entity-drug

pair in an input sentence using the semantic type of an entity to replace the entity

itself, whereas we do no such replacement; 2) they perform a multi-class classification,

whereas we perform binary classification creating a separate model for each entity;

and 3) Wei, et al. Clinical BERT representations were fine-tuned with MIMIC-III
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over BERT (cased), whereas our representations were fine-tuned over BioBERT.

7.4 Conclusions and Contributions

Here, we evaluate the following three state-of-the-art RE approaches: a rule-

based approach utilizing co-location information, a deep learning-based approach

utilizing CNNs, and a BERT-based approach. Our experimental results demonstrate

that the BERT-based approach outperformed other models overall and obtain state-

of-the-art performance in ADE extraction with a Precision of 0.93, Recall of 0.96, and

an F1 score of 0.94; however, the rule-based approach obtained a higher Precision and

Recall for certain relations. However from the rule-based results it is safe to say, co-

location information is sufficient to identify most relations as the Rule-based approach

obtained a higher Precision and Recall for certain relations, for e.g. Strength-Drug,

Form-Drug, and Frequency-Drug.

The contributions of this work are:

1. There is a variety of RE approaches: Rule-based, Deep learning-based, and

BERT-based approaches. Here we applied these approaches to an ADE dataset

and analyzed the performance of each for clinical RE.

2. There are a variety of BERT-based models fine-tuned over different corpora.

Here, we conducted an in-depth analysis of BERT-based models for clinical

RE.

3. We achieved the state-of-the-art performance with the n2c2-2018 dataset.

4. We demonstrated that rule-based approach is sufficient for extracting relations

with consistent positions.
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CHAPTER 8

EXPERIMENT: UTILIZING RELATION EXTRACTION TO

IDENTIFY EVENTS

A chemical reaction is an ordered sequence of reaction and workup steps that trans-

forms a starting material into an end product [138]. Extracting these steps consists of

two key tasks: Chemical NER and EE. To perform EE, we need to identify the trigger

word that indicates a chemical reaction step and the relation between a trigger word

and chemical compound(s) that is(are) linked to the trigger word. These relations are

fundamentally different from the relations in the dataset we discussed in Chapters 6

and 7. For example, Fig. 23 in Section 4.3 shows a sentence from CLEF-2020 dataset

containing three gold standard entities and two chemical events [35]. A single type

of event forms between a trigger word and a chemical entity similar to the n2c2-2018

dataset; therefore, we evaluate the approaches we developed for RE to perform EE.

8.1 Methods

In this work, we use a rule-based approach discussed in Section 5.1 in Chapter 5,

a CNN-based approaches discussed in Section 5.3 in Chapter 5, and a BERT-based

approach discussed in Section 5.4 in Chapter 5 for EE. We focus on identifying the

relation between a trigger word and a chemical compound. To identify the trigger

words, we use our NER system [126] which is outside the scope of this dissertation.
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Fig. 23. Illustration of Event Extraction (EE) [35]. Shaded text spans represents an-

notated entities or trigger words. Arrows represent relations between entities

8.1.1 Rule-based Approach

Here, we use the left-only traversal mechanism where we traverse to the left side

of the entity mention finding the closest occurrence of the trigger words.

8.1.2 CNN-based Approach

Here, we use RelEx’s Segment-CNN approach, as described in Chapter 5, Sec-

tion 5.3, to extract and classify the events automatically. Here, for each Trigger

word-Entity pair we perform a binary classification to identify whether there is a

relation between the trigger word and the entity or not as shown in Fig. 14 in the

Section 5.3.3 which shows an abstract view of the construction of the CNN-based

model for this work.
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8.1.3 BERT-based Approach

Here, we explore the following BERT-based language models: BERT-cased [10],

and BioBERT [80].

8.2 Experimental Design

Word representation. We explore two pre-trained word embeddings: 1) ChemPatent

embeddings [132] trained over a collection of 84,076 full patent documents (1B to-

kens); and 2) WikiPubmed embeddings [139] in our methods.

Hyperparameters and Fine-tuning. We used Keras [140] for the implementation

of the CNN architecture. We experimented with different sliding window sizes, filter

sizes, loss functions for fine-tuning, and in this work, small filter sizes generated the

best results for small filter sizes. We applied the dropout technique on the output of

the convolution layer to regularize the model. We used Adam and rmsprop optimizers

to minimize our loss function. We trained the models for 5-10 epochs to avoid over-

fitting.

8.3 Results and Discussion

In this section, we discuss the results of our approaches on the CLEF-2020 dataset

described in Section 4.3 of Chapter 4 and compare our results across with previous

works.

8.3.1 Results of Our Approaches

In this section, we discuss the results reporting the Precision, Recall, and F1

scores of our approaches. Tables 33, 34, 35, and 36 show the results obtained from

the rule-based, CNN-based, BERT-based, and BioBERT-based approaches respec-
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tively. The triggers were identified using our BiLSTM+CRF method trained over the

ChemPatent embeddings.

Table 33. Precision (P), Recall (R), and F1 (F) score of the rule-based approach

with trigger words identified using our BiLSTM+CRF trained with ChEMU

patent embeddings

Argument Trigger Entity # Train P R F

ARG1

REACTION STEP

OTHER COMPOUND 161 0.02 0.06 0.04

REACTION PRODUCT 1101 0.82 0.78 0.80

REAGENT CATALYST 1272 0.52 0.35 0.42

SOLVENT 1134 0.81 0.55 0.65

STARTING MATERIAL 1747 0.63 0.31 0.41

Average 0.56 0.52 0.46

WORKUP

OTHER COMPOUND 4097 0.90 0.86 0.88

REACTION PRODUCT 11 0.01 1.00 0.02

REAGENT CATALYST - 0.00 0.00 0.00

SOLVENT 4 0.07 1.00 0.14

STARTING MATERIAL 4 0.04 1.00 0.08

Average 0.20 0.77 0.22

ARGM

REACTION STEP

TEMPERATURE 813 0.77 0.89 0.83

TIME 839 0.85 0.93 0.89

YIELD OTHER 1043 0.83 0.80 0.81

YIELD PERCENT 937 0.86 0.85 0.85

Average 0.83 0.87 0.85

WORKUP

TEMPERATURE 242 0.66 0.81 0.73

TIME 81 0.36 0.53 0.43

Average 0.51 0.67 0.58

System 0.51 0.72 0.60

Each trigger word category shows the arithmetic mean for both trigger word

classes for each entity argument class. We can see the CNN-based method performs

well with the REACTION STEP classes and poor with WORKUP classes. This is
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Table 34. Precision (P), Recall (R), and F1 (F) score of the CNN-based approach

with trigger words identified using our BiLSTM+CRF trained with ChEMU

patent embeddings

Argument Trigger Entity # Train P R F

ARG1

REACTION STEP

OTHER COMPOUND 161 0.00 0.00 0.00

REACTION PRODUCT 1101 0.92 0.96 0.94

REAGENT CATALYST 1272 0.78 0.69 0.74

SOLVENT 1134 0.64 0.74 0.69

STARTING MATERIAL 1747 0.82 0.43 0.56

Average 0.63 0.56 0.59

WORKUP

OTHER COMPOUND 4097 0.73 0.29 0.42

REACTION PRODUCT 11 0.00 0.00 0.00

SOLVENT 4 0.00 0.00 0.00

STARTING MATERIAL 4 0.00 0.00 0.00

Average 0.18 0.07 0.11

ARGM

REACTION STEP

TEMPERATURE 813 0.83 0.30 0.44

TIME 839 0.78 0.73 0.75

YIELD OTHER 1043 0.93 0.96 0.95

YIELD PERCENT 937 0.91 0.94 0.92

Average 0.86 0.73 0.77

WORKUP

TEMPERATURE 242 0.56 0.08 0.14

TIME 81 0 .00 0.00 0.00

Average 0.28 0.04 0.07

System 0.81 0.54 0.65
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Table 35. Precision (P), Recall (R), and F1 (F) score of the BERT-based approach

with trigger words identified using our BiLSTM+CRF trained with ChEMU

patent embeddings

Argument Trigger Entity # Train P R F

ARG1

REACTION STEP

OTHER COMPOUND 161 0.03 0.06 0.04

REACTION PRODUCT 1101 0.84 0.82 0.83

REAGENT CATALYST 1272 0.51 0.2 0.29

SOLVENT 1134 0.49 0.62 0.55

STARTING MATERIAL 1747 0.55 0.92 0.69

Average 0.48 0.52 0.59

WORKUP

OTHER COMPOUND 4097 0.54 0.48 0.51

REACTION PRODUCT 11 0.00 0.00 0.00

SOLVENT 4 0.00 0.00 0.00

STARTING MATERIAL 4 0.00 0.00 0.00

Average 0.14 0.12 0.13

ARGM

REACTION STEP

TEMPERATURE 813 0.44 0.20 0.27

TIME 839 0.51 0.82 0.63

YIELD OTHER 1043 0.83 0.83 0.83

YIELD PERCENT 937 0.84 0.92 0.88

Average 0.66 0.69 0.65

WORKUP

TEMPERATURE 242 0.26 0.17 0.21

TIME 81 0.23 0.26 0.24

Average 0.25 0.22 0.23

System 0.58 0.59 0.58
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Table 36. Precision (P), Recall (R), and F1 (F) score of the BioBERT-based approach

with trigger words identified using our BiLSTM+CRF trained with ChEMU

patent embeddings

Argument Trigger Entity # Train P R F

ARG1

REACTION STEP

OTHER COMPOUND 161 0.04 0.02 0.02

REACTION PRODUCT 1101 0.84 0.82 0.83

REAGENT CATALYST 1272 0.53 0.45 0.49

SOLVENT 1134 0.51 0.39 0.44

STARTING MATERIAL 1747 0.59 0.27 0.37

Average 0.50 0.39 0.43

WORKUP

OTHER COMPOUND 4097 0.52 0.53 0.54

REACTION PRODUCT 11 0.00 0.00 0.00

SOLVENT 4 0.00 0.00 0.00

STARTING MATERIAL 4 0.00 0.00 0.00

Average 0.13 0.13 0.14

ARGM

REACTION STEP

TEMPERATURE 813 0.43 0.08 0.13

TIME 839 0.57 0.30 0.40

YIELD OTHER 1043 0.84 0.81 0.82

YIELD PERCENT 937 0.84 0.88 0.86

Average 0.67 0.52 0.56

WORKUP

TEMPERATURE 242 0.27 0.20 0.23

TIME 81 0.17 0.02 0.04

Average 0.22 0.11 0.14

System 0.62 0.50 0.55
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mainly because of the number of instances in each event class. Comparatively, most

of the REACTION STEP classes have more instances for the CNN to train than most

WORKUP classes. This is the same reason the rule-based method performs better

with the WORKUP classes. BERT-based methods results are similar to the CNN-

based method; they perform well with the REACTION STEP classes compared to the

WORKUP classes. Since both BERT-based and CNN-based methods are supervised

learning methods, they need more instances for each class to improve the results.

8.3.1.1 Error Analysis

Tables 37, 38, 39, and 40 show a detailed error analysis of our EE approaches.

We report the number of true positives (tp), false positives (fp), and false negatives

(fn), and also fpm and fnm, two metrics that represent the number of false positives

and false negatives of the trigger words predicted.

The results are consistent with the previous observations from Tables 33, 34,

35, and 36. We can see that REACTION STEP classes performed better than the

WORKUP classes. It is safe to say that class imbalance plays a significant role in the

miss-annotation of the instances. The results also show that the rule-based method

significantly over annotates given the number of false positives. For example, the rule-

based method identified 379 instances of the WORKUP-REACTION PRODUCT

event class, with only four being true positives. Despite having significant training

instances in the REACTION STEP classes, we can see an equally high number of

false positives as true positives. This is mainly because extracting events is often

trickier regardless of the sentence pattern. For example, the following sentences show

a trigger word-REACTION PRODUCT pair in each.

1. After cooling, the solid was collected by filtration and washed with cold dichloromethane

to give N-(4-(2-oxo-1,2,3,4-tetrahydroquinolin-6-yl)thiazol-2-yl)oxazole-5-carboxamide
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Table 37. Error analysis for the Event extraction rule-based approach where trigger

words are trained with ChemPatent embeddings

Argument Trigger Entity tp fp fn fpm fnm

ARG1

REACTION STEP

OTHER COMPOUND 40 1798 23 18 11

REACTION PRODUCT 351 75 101 10 3

REAGENT CATALYST 177 162 328 8 8

SOLVENT 234 54 193 4 7

STARTING MATERIAL 217 128 494 15 9

WORKUP

OTHER COMPOUND 1501 171 249 54 73

REACTION PRODUCT 4 375 0 9 0

REAGENT CATALYST 0 40 0 9 0

SOLVENT 2 25 0 5 0

STARTING MATERIAL 1 24 0 2 0

ARGM

REACTION STEP

TEMPERATURE 450 131 53 29 15

TIME 386 66 27 21 10

YIELD OTHER 350 74 85 11 3

YIELD PERCENT 326 55 58 11 3

WORKUP
TEMPERATURE 89 45 21 13 20

TIME 23 41 20 16 13

System 2984 1782 2909 204 169
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Table 38. Error analysis for the Event extraction CNN-based approach where trigger

words are trained with ChemPatent embeddings

Argument Trigger Entity tp fp fn fpm fnm

ARG1

REACTION STEP

OTHER COMPOUND 0 0 63 0 11

REACTION PRODUCT 436 36 16 11 3

REAGENT CATALYST 350 97 155 17 8

SOLVENT 316 179 111 16 7

STARTING MATERIAL 305 68 406 12 9

WORKUP

OTHER COMPOUND 516 192 1234 23 73

REACTION PRODUCT 0 0 4 0 0

REAGENT CATALYST - - - - -

SOLVENT 0 0 2 0 0

STARTING MATERIAL 0 0 1 0 0

ARGM

REACTION STEP

TEMPERATURE 151 30 352 15 15

TIME 300 87 113 16 10

YIELD OTHER 418 31 17 11 3

YIELD PERCENT 361 36 23 13 3

WORKUP
TEMPERATURE 9 7 101 0 20

TIME 0 0 43 0 13

System 3162 763 2641 134 175
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Table 39. Error analysis for the Event extraction BERT-based approach where trigger

words are trained with ChemPatent embeddings

Argument Trigger Entity tp fp fn fpm fnm

ARG1

REACTION STEP

OTHER COMPOUND 4 120 59 15 11

REACTION PRODUCT 369 72 83 17 3

REAGENT CATALYST 101 97 404 9 8

SOLVENT 266 273 161 22 7

STARTING MATERIAL 654 531 57 54 9

WORKUP

OTHER COMPOUND 845 708 905 77 73

REACTION PRODUCT 0 0 4 0 0

REAGENT CATALYST - - - - -

SOLVENT 0 0 2 0 0

STARTING MATERIAL 0 0 1 0 0

ARGM

REACTION STEP

TEMPERATURE 101 131 402 15 15

TIME 338 319 75 18 3

YIELD OTHER 360 73 75 18 3

YIELD PERCENT 353 65 31 17 3

WORKUP
TEMPERATURE 19 54 91 6 20

TIME 11 37 32 0 13

System 2984 1782 2909 204 169
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Table 40. Error analysis for the Event extraction BioBERT-based approach where

trigger words are trained with ChemPatent embeddings

Argument Trigger Entity tp fp fn fpm fnm

ARG1

REACTION STEP

OTHER COMPOUND 0 10 63 2 11

REACTION PRODUCT 440 88 12 20 3

REAGENT CATALYST 156 146 349 13 8

SOLVENT 256 235 171 20 7

STARTING MATERIAL 236 169 475 23 9

WORKUP

OTHER COMPOUND 928 790 822 73 68

REACTION PRODUCT 0 0 4 0 0

REAGENT CATALYST - - - - -

SOLVENT 0 0 2 0 0

STARTING MATERIAL 0 0 1 0 0

ARGM

REACTION STEP

TEMPERATURE 40 53 463 8 15

TIME 95 95 288 7 10

YIELD OTHER 352 67 83 17 3

YIELD PERCENT 338 65 46 17 3

WORKUP
TEMPERATURE 22 59 88 4 19

TIME 1 5 42 0 13

System 2984 1782 2909 204 169
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(0.121 g, 87%) as a beige solid.

2. {Methyl 4-[(6-bromo-2-phenyl-3-propylquinolin-4-yl)carbonyl]aminobicyclo[2.2.2]

octane-1-carboxylate 150 mg (0.40 mmol) of the compound from Example 38A

were dissolved in 1.4 ml (19.8 mmol) of thionyl chloride.

In the first sentence, the entity REACTION PRODUCT N-(4-(2-oxo-1,2,3,4-

tetrahydroquinolin-6-yl)thiazol-2-yl)oxazole-5-carboxamide is related to the trigger word

give but in the second sentence the entity REACTION PRODUCT {Methyl 4-[(6-

bromo-2-phenyl-3-propylquinolin-4-yl)carbonyl]aminobicyclo[2.2.2]octane-1-carboxylate

is not related to the trigger word dissolved. Despite the similar sentence structure the

results are not similar. These kind of instances makes the EE in this dataset quite

hard.

In our EE methods, we utilized the trigger words predicted from our NER meth-

ods and the ground truth entities as the trigger words and respectively. From the

metrics fpm and fnm for a trigger word-entity pair, we can see that when the num-

ber of fpm and fnm of a trigger word increases, the performance of the trigger

word-entity pair decreases. We believe this is because the prediction of the trig-

ger word-entity pair depends on the trigger word predicted by the biLSTM+CRF

model [126]

8.3.2 Comparison with Previous Work

Table 41 shows a comparison between the top results reported by the CLEF

ChEMU-2020 challenge using the CLEF-2020 dataset, the co-occurrence baseline pro-

vided by the organizers of the challenge, and the overall results of our EE methods.

The overall results show that all three of our systems obtain a higher precision and

F1 score than the baseline but not recall. Since the baseline method is a rule-based

109



Table 41. Our best results in comparison with the top results of the ChEMU-2020

competition for Event extraction (EE). Baseline is provided by the organiz-

ers of the ChEMU-2020 challenge

P R F

Our methods

Rule-based 0.51 0.72 0.60

CNN-based 0.81 0.54 0.65

BERT-based 0.58 0.59 0.58

BioBERT-based 0.62 0.50 0.55

ChEMU 2020 teams

Melaxtech [93] 0.96 0.95 0.95

NextMove/Minesoft [36] 0.94 0.86 0.90

BOUN REX [141] 0.76 0.69 0.72

Baseline ChEMU organizers [138] 0.24 0.89 0.38

method based on the co-occurrence information, it obtains a high recall but low

precision. Here, all systems outperform the baseline in terms of F1 score, and Melax-

tech [93] obtained the overall best performance using a hybrid combination of deep

learning models and pattern-based rules for EE. NextMove/Minesoft [36] proposed

a method utilizing parsing information with grammar rules, and BOUN REX [141]

utilized a set of rules to identify the events. All teams performed better than our

methods except for the recall of [141].

8.4 Conclusions and Contributions

We evaluate a CNN-based approach and a rule-based approach to extract chem-

ical reaction events from patents. The results show that the CNN-based method

outperforms the rule-based methods, especially with the REACTION STEP classes,

as those classes have more instances to train on. Meanwhile, as the rule-based meth-

ods do not require training instances to train, they perform better with WORKUP
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classes.

The contributions of this work are:

1. RE approaches are often domain-dependent. Here, we evaluated our CNN-

based and rule-based based approaches, initially developed on clinical text, to

extract relations in the scientific literature to evaluate the generalizability of

our approach.

2. EE requires the extraction of multiple events across various entity classes. Here,

we conducted an in-depth evaluation of utilizing RE for EE.

3. We demonstrated that rule-based approach performs well when extracting rela-

tions with consistent positions than the deep learning approaches (Eg: ARGM-

yield, temperature, time)

111



CHAPTER 9

EXPERIMENT: EXPLORING INPUT REPRESENTATIONS FOR

RELATION EXTRACTION IN BIOMEDICAL TEXT

A sentence may contain multiple entity pairs, and relations between an entity pair can

belong to multiple relation classes. For example, Fig. 9 in Section 4.4 shows multiple

relations between an entity pair in a sentence. The relations of this dataset are

similar to the i2b2-2010 dataset (multiple relations per entity pair). It is challenging

to distinguish multiple entity pairs in one sentence. Here, we explore various input

entity representations to distinguish the targeted entity pair from the rest of the entity

pairs in a sentence.

9.1 Methods

In this work, we explore three variations of the input entity representations using

the BERT-based approach described in Section 5.4 of Chapter 5.

9.1.1 Entity representations

To determine the relation between two chemical entities, we first locate the sen-

tence where the entity pair is located. Since one sentence can have multiple entity

pairs, we explored three variations of input sentence entity representations:

1. Representation A - we input the entire sentence where the entity pair is located.

Both the targeted and non-targeted entity pairs are represented as it is.

2. Representation B - we remove the non-targeted entity pairs from the input

sentence. Targeted entity pairs are represented as it is.
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3. Representation C - we replace the targeted entity pair with its semantic type

in the input sentence. Non-targeted entity pairs are represented as it is.

For our Model-1 and Model-2 (general BERT-based models), we explore using

general BERT-cased embeddings into a simple feed-forward neural network. The key

difference between the Model-1 and Model-2 is the input sentence representation.

For Model-1, we remove the other entity pairs in the input sentence except for the

targeted entity pair. For Model-2, to represent the entity pair in an input sentence,

we use the semantic type of an entity to replace the entity itself. The modified input

representation is passed through the pre-trained general BERT-cased model. The

output is fed into a dropout layer and then a softmax layer for multi-class classification

(6). When there is no relation between a chemical and gene/protein in a sentence, we

treat it as an instance of a ‘No-Relation’ class during the training. For our BioBERT-

based model (Model-3), we explore using BioBERT embeddings into a feed-forward

network for multi-class classification. Like Model-2, we represent an entity pair in a

sentence by replacing the entities with the semantic types (Fig. 24[C]). The maximum

input sequence length for the Model-3 is 128. We trim the sentence from both ends if a

sentence is longer than the maximum sequence length. We perform this by taking the

midpoint between the two entities and extending it by 64 tokens in both directions.

We pass the input into the BioBERT-Large model, and embeddings of the [CLS]

token are fed into a top model, consisting of a dropout and softmax layers.

9.2 Experimental Details

Tokenization: We used SpaCy and Scipy to extract input sentences and the BERT

and BioBERT tokenizers to convert the sentence into tokens.

Training parameters: We used a learning rate of 2e-5 (Model-1 & 2) and 3e-5

(Model-3) and a linear learning rate schedule with 1/10th of the total training steps
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Fig. 24. Different representations of the input sentence used in our models. Model-1

utilizes the input Representation B and the Models 2 & 3 utilize the input

Representation C

as a warm-up. We used a batch size of 12 for the training in all models. We applied

early stopping to the training for both BioBERT-based models (six epochs) and the

BERT-based models (15 epochs).

Downsampling: We downsampled the class that denotes no relation between the

entity pairs by 75% to overcome the heavy class imbalance during the training in the

BERT-based models.

9.3 Results and Discussion

In this section, we discuss the results of our approaches on the DrugProt dataset

described in Section 4.4 of Chapter 4 and compare our results across with previous

works. Table 44 and Table 45 shows the Precision, Recall, and F1 scores for our three

models on the development and test data. The bold terms indicate the best F score
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of each class for development and test data.

9.3.1 Results of Development Data

Table 9.3.1 shows the Precision, Recall, and F1 scores for our models on the

development set of the DrugProt dataset. We utilized the development set to obtain

the best set of weights for our model. The results show that Model-3 (BioBERT-based

model) outperformed the other two models (general BERT-based models) except for

two classes. Also, we can see a decrease in performance when the number of class

instances decreases, especially the three classes AGONIST-ACTIVATOR, AGONIST-

INHIBITOR, and SUBSTRATE PRODUCT-OF, which have the lowest number of

instances. This is mainly because these classes do not have enough instances to be

differentiated from other classes during training.

Compared to Models 1 & 3, Model-2 could predict instances for the classes

AGONIST-ACTIVATOR, AGONIST-INHIBITOR despite fewer training instances.

We believe this is because we downsampled the ‘No-Relation’ (entity pairs with no

relation between the entities) due to the heavy class imbalance during training. Down-

sampling and the input representation of the Model-2 improved the performance of

the classes with few instances.

Overall performance of Model-2 is higher than Model-1, but the Recall of Model-1

is higher than Model-2 for most classes. We assume this is due to the difference in the

input representation of the models. Since Model-1 eliminates the entities except for

the targeted entities, the Recall is high. We experimented with both general BERT-

cased and BERT-uncased, and we found that comparatively, BERT-cased performed

better.

Therefore, we assume the difference in the casing of the words in the dataset

played a role in determining the context of the words. Also, we experimented with
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BioBERT-Base and BioBERT-Large and found that BioBERT-Large provided a per-

formance improvement of 1.6%. Again, we assume this is because BioBERT-Large is

based on BERT-Large, which has twice as many layers as BERT-base and is trained

over a more extensive biomedical-based vocabulary.

Table 42. Precision (P), Recall (R), and F1 score (F) results for all models over the

development set of the DrugProt dataset

Development set
Model 1 Model 2 Model 3

P R F P R F P R F

INDIRECT-DOWNREGULATOR 0.48 0.69 0.57 0.62 0.67 0.64 0.75 0.73 0.74

INDIRECT-UPREGULATOR 0.33 0.64 0.44 0.58 0.66 0.62 0.76 0.78 0.77

DIRECT-REGULATOR 0.35 0.67 0.46 0.48 0.63 0.54 0.72 0.52 0.61

ACTIVATOR 0.32 0.61 0.42 0.53 0.63 0.58 0.78 0.75 0.77

INHIBITOR 0.50 0.82 0.62 0.65 0.83 0.73 0.86 0.83 0.85

AGONIST 0.43 0.63 0.51 0.67 0.68 0.67 0.74 0.75 0.74

AGONIST-ACTIVATOR 0.0 0.0 0.0 0.75 0.3 0.43 0.0 0.0 0.0

AGONIST-INHIBITOR 0.0 0.0 0.0 0.25 0.5 0.33 0.0 0.0 0.0

ANTAGONIST 0.43 0.76 0.55 0.68 0.76 0.72 0.91 0.90 0.90

PRODUCT-OF 0.25 0.47 0.33 0.38 0.53 0.44 0.61 0.58 0.60

SUBSTRATE 0.31 0.69 0.43 0.44 0.69 0.54 0.72 0.76 0.74

SUBSTRATE PRODUCT-OF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

PART-OF 0.31 0.45 0.37 0.46 0.41 0.44 0.76 0.68 0.72

0.39 0.69 0.50 0.56 0.69 0.62 0.78 0.74 0.76

9.3.2 Results of Test Data

Table 43 shows the Precision, Recall, and F1 scores for our models on the test set

of the DrugProt dataset. The observations from the results of the test set are similar

to the development set. Overall, Model-3 (BioBERT-based model) outperformed the

other two models except for one class. However, the overall results of the test set

are lower compared to the development set. Here, also we can see a decrease in
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performance when the number of class instances decreases. However, Model-2 could

predict all the positive instances correctly (Precision-1.0) for the class AGONIST-

INHIBITOR.

From the results of both the development and test sets, Model-2 performed better

than Model-1. Therefore, it is safe to assume that replacing the entities with their

semantic types is an efficient way of representation than training with the actual

entity tokens. Furthermore, since the BioBERT is pre-trained on biomedical articles,

it gives more efficient contextualized embeddings than the BERT trained on general

English. We believe this is why Model-3 (BioBERT-based model) outperforms the

other two models (general BERT-based models).

Table 43. Precision (P), Recall (R), and F1 score (F) results for all models over the

test data of the DrugProt dataset

Test set
Model 1 Model 2 Model 3

P R F P R F P R F

INDIRECT-DOWNREGULATOR 0.44 0.57 0.50 0.50 0.72 0.59 0.67 0.72 0.70

INDIRECT-UPREGULATOR 0.34 0.63 0.44 0.49 0.68 0.57 0.68 0.75 0.71

DIRECT-REGULATOR 0.34 0.55 0.42 0.41 0.6 0.48 0.70 0.57 0.63

ACTIVATOR 0.47 0.61 0.53 0.56 0.74 0.63 0.79 0.70 0.74

INHIBITOR 0.53 0.75 0.62 0.61 0.78 0.69 0.81 0.79 0.80

AGONIST 0.49 0.67 0.57 0.58 0.63 0.61 0.73 0.65 0.69

AGONIST-ACTIVATOR 0.0 0..0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

AGONIST-INHIBITOR 0.0 0.0 0.0 1.0 0.33 0.50 0.0 0.0 0.0

ANTAGONIST 0.54 0.80 0.64 0.65 0.88 0.74 0.86 0.85 0.86

PRODUCT-OF 0.33 0.43 0.38 0.42 0.63 0.50 0.61 0.59 0.60

SUBSTRATE 0.42 0.44 0.43 0.38 0.53 0.44 0.61 0.55 0.58

SUBSTRATE PRODUCT-OF 0.0 0..0 0.0 0.0 0..0 0.0 0.0 0.0 0.0

PART-OF 0.40 0.38 0.39 0.39 0.49 0.43 0.71 0.61 0.66

System 0.33 0.45 0.38 0.46 0.54 0.48 0.55 0.52 0.54
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9.4 Conclusions and Contributions

Here, we evaluate three contextualized language-based models, a BioBERT-based

and two general BERT-based models, to automatically detect relations between chem-

ical compounds/drugs and genes/proteins. Our experimental results demonstrate

that the BioBERT-based model outperformed other general BERT-based models.

Therefore, we can conclude that BioBERT embeddings represent the tokens effec-

tively when used on biomedical data. Also, replacing the entities with their semantic

types is an effective unique representation of the input sentence. The contributions

of this work are:

1. We built general BERT-based and BioBERT-based approaches to perform RE

in biomedical domain and evaluated the effectiveness of the approaches.

2. We explored two input entity representations to generate an effective unique

entity representation of the input sentence: remove the non-targeted entity

pairs from the input sentence, replace the targeted entity pair with its semantic

type in the input sentence.
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CHAPTER 10

EXPERIMENT: UTILIZING GRAPH CONVOLUTIONAL

NETWORKS FOR RELATION EXTRACTION

RE approaches extensively use techniques based on neural networks such as CNNs,

RNNs, and self-attention based models such as BERT. These techniques capture the

local contextual information within a sentence or document well by embedding both

semantic and syntactic information in a learned representation, especially BERT [116].

The position and order of the words play a vital role in determining the context of

the words in a sentence. However, their ability to capture the long-range dependency

on global information in a text is limited. Utilizing the global association information

between words outside the sentence boundaries can help generate better representa-

tions. Also, combining the local information with the global association information

can be beneficial. Here, we propose a GCN-based approaches to effectively capture

the global dependencies between terms within a corpus and combine the capability

of BERT with a GCN and benefit both local and global information.

10.1 Methods

In this work, we use two GCN-based approaches described in Section 5.5 of

Chapter 5: GCN-Vanilla and GCN-BERT. We treat RE task as a binary classification

task building a separate model for each trigger word-entity type to determine whether

a relation exists between them: 1) Positive class - there is a relation between the

trigger word and the entity, 2) Negative class - there is no relation between the

trigger word and the entity (no-relation).
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10.1.1 GCN-Vanilla Approach

Here, we build one single graph with word and sentence nodes over the entire

corpus representing a relation with a sentence node. We use a two-layer GCN allows

information passing from one sentence node to another and perform a sentence node

classification.

10.1.2 GCN-BERT Approach

Here, we combine GCN and BERT to capture both global and local information,

and build together a final representation for relation extraction.

10.1.3 Entity representations

To determine the relation between two chemical entities, we first locate the sen-

tence where the entity pair is located. A sentence can have multiple such entity

pairs therefore we need to represent the targeted entity pair in a distinguishable way

from other entity pairs. Here, we explored three variations of input sentence entity

representations discussed in the section 9.1.1. Fig. 25 shows an example of an input

sentence from the CLEF-2020 dataset and how a targeted entity pair is represented

differently in each representation.

10.2 Results and Discussion

In this section, we discuss the results of our approaches on the the following

benchmark datasets: CLEF-2020 dataset(Chapter 4, Section 4.3), n2c2-2018 dataset

(Chapter 4, Section 4.2). Also we compare our results across with previous works.
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Fig. 25. Different representations of the entity pair in the input sentence from

CLEF-2020 dataset used in our models.

10.2.1 Results over CLEF-2020 dataset

In this section, we discuss the results on the development and test set of CLEF-

2020 dataset and compare the performance of the approaches with our previous

work [126].

10.2.1.1 Development set results

Table 44 shows precision (P), recall (R), and F1 (F) scores on the development set

of the CLEF-2020 dataset for each of our architectures across the three input repre-

sentations described in Section 10.1.3. The overall results show that the GCN-BERT

approach outperformed the GCN-Vanilla approach for all three input representations.

Furthermore, the GCN-BERT approach obtained the highest precision, recall, and F1

scores for all the relations of both REACTION STEP and WORKUP classes.

Both approaches obtained higher F1 scores with the REACTION STEP classes

than WORKUP classes. This is mainly because the REACTION STEP classes have

more training instances than most WORKUP classes. Still, the GCN-BERT approach

improved the performance of the classes with fewer training instances than the GCN-
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Table 44. Precision (P), Recall (R), and F1 (F) scores on the development set

of CLEF-2020 dataset with trigger words identified using our NER sys-

tem [123])
Method Argument Trigger Entity # Train Representation A Representation B Representation C

P R F P R F P R F

GCN-Vanilla

ARG1

REACTION STEP

OTHER COMPOUND 161 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

REACTION PRODUCT 1101 0.86 0.97 0.91 0.87 0.96 0.91 0.87 0.95 0.91

REAGENT CATALYST 1272 0.61 0.73 0.67 0.62 0.70 0.66 0.61 0.72 0.66

SOLVENT 1134 0.63 0.73 0.68 0.63 0.77 0.69 0.59 0.75 0.66

STARTING MATERIAL 1747 0.65 0.75 0.70 0.66 0.75 0.70 0.66 0.73 0.70

Average 0.55 0.64 0.59 0.56 0.64 0.59 0.55 0.63 0.59

WORKUP

OTHER COMPOUND 4097 0.64 0.66 0.65 0.65 0.75 0.69 0.65 0.72 0.68

REACTION PRODUCT 11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

REAGENT CATALYST - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SOLVENT 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

STARTING MATERIAL 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average 0.13 0.13 0.13 0.13 0.15 0.14 0.13 0.14 0.14

ARGM

REACTION STEP

TEMPERATURE 813 0.56 0.36 0.44 0.56 0.36 0.44 0.64 0.32 0.43

TIME 839 0.56 0.62 0.59 0.58 0.67 0.62 0.59 0.58 0.59

YIELD OTHER 1043 0.88 0.95 0.91 0.88 0.95 0.91 0.88 0.95 0.91

YIELD PERCENT 937 0.87 0.96 0.91 0.87 0.96 0.91 0.87 0.96 0.91

Average 0.72 0.73 0.71 0.73 0.74 0.72 0.75 0.70 0.71

WORKUP

TEMPERATURE 242 0.67 0.07 0.13 0.73 0.44 0.55 0.75 0.33 0.46

TIME 81 0.50 0.14 0.22 0.00 0.00 0.00 0.00 0.00 0.00

Average 0.59 0.11 0.18 0.37 0.22 0.28 0.38 0.17 0.23

System 0.68 0.70 0.68 0.69 0.73 0.71 0.69 0.71 0.71

GCN-BERT

ARG1

REACTION STEP

OTHER COMPOUND 161 0.54 0.62 0.58 0.00 0.00 0.00 0.82 0.67 0.74

REACTION PRODUCT 1101 0.96 0.87 0.91 0.99 0.95 0.97 0.99 0.96 0.97

REAGENT CATALYST 1272 0.77 0.50 0.61 0.97 0.91 0.94 0.96 0.92 0.95

SOLVENT 1134 0.82 0.51 0.63 0.95 0.88 0.91 0.95 0.91 0.93

STARTING MATERIAL 1747 0.90 0.49 0.63 0.95 0.84 0.89 0.95 0.85 0.90

Average 0.80 0.60 0.67 0.77 0.72 0.74 0.93 0.86 0.90

WORKUP

OTHER COMPOUND 4097 0.82 0.52 0.64 0.96 0.92 0.94 0.97 0.92 0.95

REACTION PRODUCT 11 0.50 0.33 0.40 0.00 0.00 0.00 0.00 0.00 0.00

SOLVENT 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

STARTING MATERIAL 4 0.66 0.37 0.48 0.00 0.00 0.00 0.00 0.00 0.00

Average 0.50 0.31 0.71 0.24 0.23 0.24 0.24 0.23 0.24

ARGM

REACTION STEP

TEMPERATURE 813 0.66 0.37 0.48 0.90 0.50 0.65 0.95 0.54 0.69

TIME 839 0.74 0.43 0.55 0.95 0.76 0.85 0.92 0.79 0.85

YIELD OTHER 1043 0.92 0.91 0.91 0.98 0.94 0.96 0.98 0.93 0.96

YIELD PERCENT 937 0.96 0.87 0.91 0.99 0.95 0.97 0.98 0.96 0.97

Average 0.82 0.65 0.71 0.96 0.79 0.86 0.96 0.81 0.87

WORKUP

TEMPERATURE 242 0.52 0.71 0.60 1.00 0.85 0.92 0.96 0.89 0.92

TIME 81 0.33 0.29 0.31 1.00 0.71 0.83 1.00 0.71 0.83

Average 0.43 0.50 0.46 1.00 0.78 0.88 0.98 0.80 0.88

System 0.83 0.59 0.69 0.96 0.85 0.91 0.96 0.87 0.91
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Vanilla approach. This indicates that combining the local information of the text

with global information provides additional information for the classification layer

than just considering the global information only, especially for the classes with fewer

training instances in a class.

The overall analysis of the various input representations showed that Represen-

tations B and C obtained similar precision, recall, and F1 score for both approaches

and comparatively higher F1 score than representation A. This is precisely the case

with the GCN-BERT approach. When multiple entity pairs are present in an input

sentence, Representation B removes the non-targeted entity pairs, and Representation

C replaces the entity pair is with its semantic type, whereas Representation A passes

sentence as it is. This indicates that the performance increases when the targeted en-

tities are distinguished from the non-targeted entities. In the GCN-Vanilla approach,

there is not a notable difference between the performance of the Representation B and

C with A. However, in the GCN-BERT approach, we can see a significant increase in

the performance of both Representations B and C compared to A. If we compare the

performance of the WORKUP classes, we can see that Representation A managed to

predict instances correctly to an extent when both Representations B and C failed

to predict any. This shows that Representation A performs better when the training

instances are low in a class.

10.2.1.2 Test set results

Table 45 shows precision (P), recall (R), and F1 (F) scores on the test set of the

CLEF-2020 dataset for three input representations mentioned in 10.1.3.

The observations from the test set results are similar to the development set for

both approaches. The main observation is that the GCN-BERT approach obtained

higher F1 scores over GCN-Vanilla for all representations except Representation A.
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Table 45. Precision (P), Recall (R), and F1 (F) scores on the development set of

CLEF-2020 dataset with trigger words identified using our previous NER

model [123]
Method Argument Trigger Entity # Train Representation A Representation B Representation C

P R F P R F P R F

GCN-Vanilla

ARG1

REACTION STEP

OTHER COMPOUND 161 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

REACTION PRODUCT 1101 0.85 0.96 0.90 0.85 0.96 0.90 0.85 0.95 0.91

REAGENT CATALYST 1272 0.58 0.73 0.65 0.61 0.71 0.65 0.59 0.68 0.63

SOLVENT 1134 0.58 0.70 0.64 0.58 0.75 0.65 0.58 0.69 0.63

STARTING MATERIAL 1747 0.61 0.76 0.68 0.61 0.77 0.68 0.61 0.76 0.68

Average 0.52 0.47 0.51 0.87 0.79 0.82 0.64 0.65 0.63

WORKUP

OTHER COMPOUND 4097 0.59 0.68 0.63 0.62 0.75 0.68 0.63 0.67 0.65

REACTION PRODUCT 11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

REAGENT CATALYST - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SOLVENT 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

STARTING MATERIAL 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average 0.18 0.09 0.12 0.19 0.17 0.18 0.19 0.18 0.18

ARGM

REACTION STEP

TEMPERATURE 813 0.55 0.38 0.45 0.56 0.38 0.45 0.61 0.34 0.44

TIME 839 0.56 0.63 0.59 0.61 0.64 0.62 0.60 0.58 0.59

YIELD OTHER 1043 0.85 0.97 0.91 0.85 0.97 0.91 0.85 0.97 0.91

YIELD PERCENT 937 0.85 0.96 0.90 0.85 0.96 0.91 0.86 0.95 0.90

Average 0.70 0.74 0.71 0.72 0.74 0.72 0.73 0.71 0.71

WORKUP

TEMPERATURE 242 0.00 0.00 0.00 0.62 0.21 0.31 0.56 0.13 0.21

TIME 81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average 0.00 0.00 0.00 0.31 0.11 0.16 0.28 0.07 0.11

System 0.65 0.70 0.67 0.66 0.73 0.69 0.67 0.69 0.68

GCN-BERT

ARG1

REACTION STEP

OTHER COMPOUND 161 0.43 0.59 0.50 0.60 0.48 0.53 0.00 0.00 0.00

REACTION PRODUCT 1101 0.97 0.85 0.90 0.93 0.90 0.91 0.89 0.90 0.89

REAGENT CATALYST 1272 0.00 0.00 0.00 0.94 0.87 0.90 0.55 0.78 0.64

SOLVENT 1134 0.87 0.40 0.54 0.93 0.85 0.89 0.82 0.70 0.73

STARTING MATERIAL 1747 0.78 0.50 0.61 0.95 0.84 0.89 0.96 0.88 0.91

Average 0.61 0.47 0.51 0.87 0.79 0.82 0.64 0.65 0.63

WORKUP

OTHER COMPOUND 4097 0.88 0.43 0.58 0.95 0.85 0.89 0.94 0.88 0.91

REACTION PRODUCT 11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

REAGENT CATALYST - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SOLVENT 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

STARTING MATERIAL 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average 0.44 0.22 0.29 0.48 0.43 0.45 0.47 0.44 0.45

ARGM

REACTION STEP

TEMPERATURE 813 0.55 0.30 0.39 0.90 0.50 0.64 0.89 0.55 0.68

TIME 839 0.72 0.41 0.52 0.88 0.72 0.79 0.90 0.77 0.83

YIELD OTHER 1043 0.88 0.94 0.91 0.99 0.97 0.98 0.94 0.89 0.91

YIELD PERCENT 937 0.85 0.96 0.90 0.99 0.92 0.96 0.87 0.93 0.90

Average 0.75 0.65 0.68 0.94 0.78 0.84 0.90 0.79 0.83

WORKUP

TEMPERATURE 242 0.00 0.00 0.00 0.87 0.61 0.72 0.00 0.00 0.00

TIME 81 0.00 0.00 0.00 0.00 0.00 0.00 0.72 0.49 0.58

Average 0.00 0.00 0.00 0.44 0.31 0.36 0.36 0.25 0.29

System 0.82 0.48 0.61 0.94 0.81 0.87 0.87 0.75 0.81

124



Also, GCN-BERT approach obtained the highest precision, recall, and F1 scores for all

the relations of both REACTION STEP and WORKUP classes. The notable increase

in the performance of the GCN-BERT shows the advantage of combining BERT with

GCN allowing interactions between the local contextual and global association in-

formation. Comparing the results of the REACTION STEP classes than WORKUP

classes, we see that both approaches obtained higher F1 scores with the REAC-

TION STEP classes than WORKUP classes. This is because the REACTION STEP

classes have more training instances than most of the WORKUP classes, therefore

they can differentiate themselves when training than the WORKUP classes. Despite

the lower number of training instances in the WORKUP classes, GCN-BERT com-

paratively obtained higher F1 scores than the GCN-Vanilla. This indicates combining

the local information of the text with global information provides additional infor-

mation for the classification layer than just considering the global information only,

especially for the classes with fewer training instances in a class.

We use various input entity representations to distinguish the targeted entity

pairs. When multiple entity pairs are present in an input sentence, Representation

B removes the non-targeted entity pairs, and Representation C replaces the entity

pair is with its semantic type, whereas Representation A passes sentence as it is. The

overall analysis of the various input entity representations showed that Representation

B outperformed the other two input representations by obtaining a higher F1 score,

which shows that masking non-targeted entities helped extract essential information

to identify the classes better. All representations obtained similar precision, recall,

and F1 score with the GCN-Vanilla but Representations B and C obtained compar-

atively higher precision, recall, and F1 score with the GCN-BERT. This indicates

that the performance increases when the targeted entities are distinguished from the

non-targeted entities. Since most of the input sentences in the test set are quite long,
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we can find multiple entity pairs in one sentence. Therefore, we believe masking non-

targeted entities (Representations B) or replacing targeted entities by their semantic

types (Representations C) provides a better classification representation.

10.2.1.3 Comparison with previous work

In this section, we compare our approaches with our previous approaches and

with state-of-the-art approaches. Table 46 shows a comparison between the top results

reported by the CLEF ChEMU-2020 challenge using the CLEF-2020 dataset, the co-

occurrence baseline provided by the organizers of the challenge, best overall results of

our previous approaches [126] and best results of our current approaches. Bold terms

show the best results in each category.

Table 46. Our best results in comparison with our previous results and the top results

of the ChEMU-2020 competition for Event Extraction (EE). Baseline is

provided by the organizers of the ChEMU-2020 challenge

P R F

Our current methods
GCN-Vanilla 0.66 0.73 0.69

GCN-BERT 0.94 0.81 0.87

Our previous methods

Rule-based 0.51 0.72 0.60

CNN-based 0.81 0.54 0.65

BERT-based 0.58 0.59 0.58

BioBERT-based 0.62 0.50 0.55

ChEMU 2020 teams

Melaxtech [93] 0.96 0.95 0.95

NextMove/Minesoft [36] 0.94 0.86 0.90

BOUN REX [141] 0.76 0.69 0.72

Baseline ChEMU organizers [132] 0.24 0.89 0.38

Comparison of the results between our current and previous approaches shows
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that the GCN-BERT outperformed all other approaches and obtained the highest

overall precision, recall, and F1 score. In particular, it outperformed both GCN and

BERT alone, which confirmed the advantage of combining them.

Among the models that only use local information, CNN performed better than

BERT. If we compare the CNN-based approach and the GCN-Vanilla based approach,

we can see the GCN-Vanilla based approach obtained higher recall and F1 scores but

not precision. CNN and BERT capture the local information between words better,

whereas GCN captures the global information better. This shows that capturing the

global information is beneficial for classifying the relations in the CLEF-2020 dataset.

The superior performance of GCN-BERT shows that combining both BERT and GCN

and allowing interactions between the two types of information is beneficial.

The baseline provided by the organizers of the ChEMU-2020 challenge obtained a

higher recall than our current approaches. Since the baseline is a rule-based approach

based on the co-occurrence information, it obtains a high recall but low precision. Our

approaches outperformed the baseline in terms of precision and F1 score. For the

top three performing systems in the CLEF ChEMU-2020 challenge, Melaxtech [93]

obtained the overall highest F1 score. They used a hybrid approach combining a

deep learning model with pattern matching rules. NextMove/Minesoft [36] utilized

parsing information with grammar rules, and BOUN REX [141] utilized a set of rules

to identify the relations. Both Melaxtech [93] and NextMove/Minesoft [36] obtained

higher F1 scores than our approaches. In the future, we plan to explore integrating

rule-based information into our GCN-BERT based approach.

10.2.2 Results over n2c2-2018 dataset

In this section, we discuss the results on the test set of n2c2-2018 dataset and

compare the performance of the approaches with our previous work [125].
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10.2.2.1 Test set results

Table 47. Precision (P), Recall (R), and F1 (F) scores on the test set of n2c2-2018

dataset for our GCN-based approaches.

Representation A Representation B Representation C

P R F P R F P R F

GCN-Vanilla

Strength-Drug 0.86 0.93 0.89 0.86 0.93 0.89 0.86 0.93 0.89

Duration-Drug 0.90 0.45 0.60 0.90 0.45 0.60 0.90 0.45 0.60

Route-Drug 0.90 0.78 0.83 0.90 0.77 0.83 0.90 0.78 0.83

Form-Drug 0.96 0.86 0.91 0.96 0.86 0.91 0.96 0.86 0.91

ADE-Drug 0.85 0.34 0.49 0.85 0.34 0.49 0.85 0.34 0.49

Dosage-Drug 0.92 0.86 0.89 0.92 0.86 0.89 0.92 0.86 0.89

Reason-Drug 0.88 0.30 0.44 0.88 0.30 0.44 0.88 0.30 0.44

Frequency-Drug 0.90 0.73 0.81 0.90 0.73 0.81 0.90 0.73 0.81

System (Micro) 0.90 0.73 0.81 0.90 0.73 0.81 0.90 0.73 0.81

System (Macro) 0.89 0.72 0.79 0.90 0.73 0.81 0.90 0.73 0.81

GCN-BERT

Strength-Drug 0.91 0.90 0.91 0.97 0.89 0.93 0.95 0.92 0.94

Duration-Drug 0.90 0.45 0.60 0.90 0.45 0.60 0.90 0.45 0.60

Route-Drug 0.91 0.77 0.83 0.97 0.72 0.83 0.94 0.76 0.84

Form-Drug 0.96 0.86 0.91 0.96 0.86 0.91 0.97 0.85 0.91

ADE-Drug 0.86 0.34 0.49 0.85 0.34 0.49 0.86 0.33 0.48

Dosage-Drug 0.94 0.85 0.89 0.99 0.83 0.90 0.96 0.86 0.91

Reason-Drug 0.88 0.29 0.44 0.88 0.30 0.44 0.88 0.30 0.44

Frequency-Drug 0.92 0.73 0.81 0.97 0.68 0.80 0.94 0.73 0.82

System (Micro) 0.92 0.72 0.81 0.96 0.70 0.81 0.95 0.73 0.82

System (Macro) 0.91 0.71 0.79 0.95 0.69 0.80 0.94 0.71 0.80

Table 47 shows precision (P), recall (R), and F1 (F) scores on the test set of the

n2c2-2018 dataset for each of our architectures across the three input representations

described in Section 10.1.3. The overall results show that both approaches achieved

a similar F1 score on this dataset for all three input representations and achieved an

overall precision of 0.95, recall of 0.71, and F1 score of 0.82. However, GCN-BERT

approach achieved comparatively higher precision and lower recall than GCN-Vanilla.
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When comparing the results of each relation class, we can see that all classes

achieved higher precision, recall, and F1 score except for the classes Duration-Drug,

ADE-Drug, and Reason-Drug. We think this is mainly because by incorporating

global association information of the words in the sentence, the model is given irrel-

evant information, which confused the classifier more than it helped. Analysis of the

various input representation showed that differences in the input sentence representa-

tion did not help in improving the classification results either. Our supposition for this

observation is that multiple non-drug entities in a sentence can distinguish themselves

except ADE-Drug, and Reason-Drug. ADE and Reason both include symptoms and

incorporating global association information was insufficient to identify the correct

ADE or Reason when multiple drugs were in the same sentence.

The GCN-BERT approach achieved slightly higher precision and lower recall

than the GCN-Vanilla approach. GCN-BERT takes in both the local contextual

and global association information, whereas GCN-Vanilla considers only the global

association information. This observation again proves that considering the local

information alone is sufficient to extract the information required to determine the

relation class.

10.2.2.2 Comparison with Our Previous Work

In this section, we compare our current approaches with our previous approaches [125].

Table 48 reports precision (P), recall (R), and F1 (F) scores on the test set of the

n2c2-2018 dataset and shows a comparison between our approaches:1) rule-based ap-

proach using left-only traversal mechanism; 2) CNN-based approach using Segment-

CNN, and 3) contextualized language model-based approach using BioBERT, 4)

GCN-Vanilla approach using Representation C, and 5) GCN-BERT approach using

Representation C. Bold terms show the best results for each relation class.
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Both rule-based and BERT-based approaches obtained overall higher F1 scores

than our GCN-based approaches. BERT-based approach outperformed all other ap-

proaches except for the Strength-Drug, Frequency-Drug, and Form-Drug pairs which

performed well with the rule-based approach. However, ADE-Drug, Reason-Drug

performed poorly with both rule and GCN-based approaches. From this, we can

say the co-location and global association information are insufficient to identify the

correct ADE or Reason when multiple drugs were in the same sentence.

Comparing our GCN-based approaches with our CNN-based approach shows that

both GCN-based approaches achieved a higher F1 score, but the precision of both

GCN-based approaches is higher, whereas the recall of the CNN-based approach is

higher. We believe this is because of the difference between how CNN and GCN works.

CNN is a traditional neural network that learns features by a specific order of words,

whereas GCN generates graphs from non-structural data and learns the association

between words that is not within the given window. From this observation, it is safe

to assume that capturing the information regarding the order of the words helps the

classifier improve the recall, whereas capturing the global information of the words

helps improve the classifier’s recall. When comparing the results of the GCN-BERT

approach to the BERT-based approach, we can see the GCN-BERT obtained higher

precision, but since the recall is relatively low, GCN-BERT obtained a lower F1 score.

From the comparison of the results, it is clear that the BERT-based approach

achieves the best performance. Therefore, we can conclude that extracting the local

contextual information is sufficient to extract relations in this dataset.

10.3 Conclusions and Contributions

Here, we evaluated two approaches based on GCN for RE: GCN-Vanilla and

GCN-BERT approaches. GCN-Vanilla utilizes GCN to capture the global struc-
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ture information in graph embeddings. In contrast, GCN-BERT combines GCN and

BERT to integrate the local contextual and global information between the words.

We also explored three input entity representations with both approaches. From the

results, we can conclude that combining GCN and BERT and allowing both types of

information to interact through the layers of attention mechanism can be beneficial

compared to using BERT and GCN alone. We also found that replacing the targeted

entities with their semantic types or masking the non-targeted entities in a sentence

effectively provides unique entity representations of an input sentence. We found com-

bining GCN with BERT performs well with datasets which have more information

on the targeted entities outside the selected scope of the sentence.

The contributions of this work are:

1. We built two GCN-based approaches to perform RE to capture the global struc-

ture information in graph embeddings and evaluated the effectiveness of the

approaches.

2. We explored whether combining GCN and BERT capturing both local and

global information provides a better representation of the words in the text.

3. Determined combination of global and local information is beneficial to identify

the chemical relations but not for the clinical relations.
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CHAPTER 11

OVERALL CONCLUSIONS AND CONTRIBUTIONS

In this dissertation, we explored different approaches for RE (a rule-based approach

utilizing co-location information, a machine learning-based approach with extracted

features, a deep learning-based approach utilizing CNNs, a BERT-based approach,

and two GCN-based approaches) across different types of relations. We explored

each approach, conducted an in-depth analysis, and evaluated the performance of

that approach over various datasets.

11.1 Conclusions

We came to the following conclusions from the work we have done thus far:

1. All approaches apply to data from any domain to determine whether a relation

exists between one or a few selected entities.

2. Rule-based approach is applicable for data with fewer instances and for relations

with consistent positional information. The number of instances in the training

set does not affect the rule-based methods.

3. Rule-based approaches perform well with data which is more structured as it is

convenient to generate rules.

4. Machine learning and deep learning-based approaches are applicable for labeled

data with many training instances.

5. Deep learning-based approaches automatically identify patterns in the data ef-

ficiently, whereas rule-based approaches require expert knowledge to generate
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rules.

6. BERT-based approaches utilize contextualized word embeddings to convert

text into vectors, and they perform better than approaches that use non-

contextualized word embeddings.

7. Using pre-trained language representations to fine-tune models is advantageous.

They use minimal task-specific parameters and are trained on the downstream

tasks by simply fine-tuning all the pre-trained parameters.

8. Deep learning and BERT-based approaches capture the local contextual infor-

mation within a sentence or document well by embedding both semantic and

syntactic information in a learned representation. However, their ability to

capture the long-range dependency global information in a text is limited.

9. BioBERT embeddings represent the tokens effectively when used on biomedical

data.

10. GCN-based approaches capture the global association information between words

that are not next to each other(long range).

11. Combining GCN and BERT and allowing both types of information to interact

through the layers of attention mechanism is beneficial compared to using BERT

and GCN alone on certain relations.

12. Replacing the targeted entities with their semantic types or masking the non-

targeted entities in a sentence provides effective unique entity representations

of an input sentence.

13. Hierarchical classification approach alleviates the class imbalance caused by

negative relations.
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11.2 Contributions

The overall contributions of our dissertation are:

• We developed a rule-based approach using the co-location information of the

words.

• We developed a feature-vector based machine learning approach to extract and

classify explicit semantic relations in scientific papers.

• We developed three CNN-based architectures for binary, multi-class, and multi-

label classification.

• We developed BERT-based approaches that utilized contextualized word em-

beddings for a better representation of word-vector.

• We developed a GCN-based approach to utilize the global association informa-

tion to capture the global dependencies between words effectively.

• We developed an approach that combined the capability of GCN and BERT to

benefit from capturing both local and global information and allowing them to

influence mutually and build together a final representation.

• We explored various input entity representations and generated an effective

unique entity representation for an input sentence.

• We built a hierarchical classification schema for the highly imbalanced data to

alleviate the class imbalance caused by negative relations.
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CHAPTER 12

FUTURE WORK

In this chapter, we discuss the directions we are interested in taking in the future

for RE. We have discussed five different RE approaches so far that focus mainly on

extracting information to determine the relations between the targeted entities. In

the traditional pipeline models, NER is performed initially to identify and label the

entities, and RE is performed next to extract and classify relations [142]. Joint entity

relation extraction performs NER and RE simultaneously and utilizes the depen-

dency between the two tasks to decrease the error propagation issue in the pipeline

model [143]. Named entities are essential to extract relations. Accurate relation clas-

sification helps recognize named entities [144]. This hybrid framework can increase

the performance of the RE. For example, we can build a Bi-LSTM module for entity

extraction and a CNN module for RE [142]. The contextual information obtained

on the entities through the BiLSTM would be sent through CNN, which would help

improve the RE.

Latest approaches in RE focus on capturing only the semantic relationships be-

tween the entities to determine the relations, whereas they require local and global

syntactic and semantic dependencies [107, 113]. In the future, we would like to

combine semantic information with syntactic information together, especially the de-

pendency trees. Syntactic features analyze the structural role of words in a text with

formal grammar rules such as POS tags and n-grams. They target the roles played

by each word in a sentence and try to interpret the relation between words and the

grammatical structure of sentences. An example of syntactic processing is Depen-
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dency Parsing (DP). DP is the process of studying the dependencies between the

words or phrases of a sentence to identify its grammatical structure. GCN applied

on a graph captures the global structure information in graph embeddings. Applying

GCN on the dependency tree would further improve the performance of GCN as it

incorporates additional structural information into it, and they have shown to be

effective in capturing long-range relations between target entities [113]. Furthermore,

we pass the outputs of the GCN through an attention mechanism.

In our approaches, we have used the following transformer-based models: general

BERT [10], BioBERT [80], and Clinical BERT [81]. Yang, et al. [78] compared BERT,

RoBERTa, and XLNet and reported XLNet-based clinical model achieved the best F1

score on the n2c2-2018 dataset. In our approaches, BERT based models performed

well with the n2c2-2018 dataset [125] but not with the CLEF-2020 dataset [126]. In

the future, we plan to explore other transformer-based models too.

In deep neural network architectures introducing more layers can help to reduce

the error rate. However, when we increase the number of layers a lot, we would

encounter a common problem most of the deep learning models face, the vanish-

ing/exploding gradient problem. This would lead to an increase in the training and

test error rate [145]. Due to this problem, we limit the layers to two or three in

our CNN or GCN-based approaches. In 2015, Microsoft Research introduced a new

architecture called Residual Network (ResNet) to solve the problem of the vanish-

ing/exploding gradient [88]. ResNet helps to stack additional layers, which results in

improved performance. In the future, we can explore building models with more lay-

ers which could improve the performance of RE, especially when the input sentences

are long.

In the future, we will explore more ways to improve the performance of our

existing approaches. Hybrid approaches that include a deep neural network and a
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rule-based model have proved to increase the performance with some datasets [93].

Therefore, we plan to explore building a hybrid model with either BERT or GCN

and rule-based methods to increase performance. Also, we plan to build a model

that trains GCN and BERT separately and then concatenates the graph and BERT

embeddings before feeding them through the final classification layer. We utilized

a custom-built word-integer mapping to represent a word node in the vocabulary

graph in the GCN-BERT approach. Also, we used random weight vectors initially to

generate the graph embeddings. In the future, we would like to use an external pre-

built vocabulary and explore the performance of the graph embeddings with various

external pre-trained word embeddings.
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ABBREVIATIONS

NLP Natural Language Processing

IE Information Extraction

NER Named Entity Recognition

RE Relation Extraction

EE Event Extraction

ADE Adverse Drug Events

BFS Breadth-First Search

MIMIC Medical Information Mart for Intensive Care

SVM Support Vector Machines

RF Random Forests

NB Naive Bayes

TF-IDF Term Frequency-Inverse Document Frequency

CRF Conditional Random Fields

CNN Convolutional Neural Network

RNN Recurrent Neural Network

LSTM Long Short Term Memory

BERT Bidirectional Encoder Representations from Transformers

GPT Genera-tive Pre-trained Transformer

GNN Graph Neural Network

GCN Graph Convolutional Network

HMM Hidden Markov Models

POS Part-Of-Speech

BOW Bag of Words
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UMLS Unified Medical Language System

GloVe Global Vectors

CBOW Continuous Bag of Words Model

CUI Concept Unique Identifier

CV Cross Validation

SDP Shortest Dependency Path

MLP Multi-Layer Perceptron

BRAT Brat Rapid Annotation Tool

PMI Point-wise Mutual Information

OOV Out-of-vocabulary

LAM Logical Adjacency Matrix

CDR Chemical-disease relation

MLM Masked Language Modeling

NSP Next Sentence Prediction

ResNet Residual Network

GRU Gated Recurrent Unit

SST Stanford Sentiment Treebank

CoLA Corpus of Linguistic Acceptability

MLP Multilayer Perceptron

ADV Adversarial Training
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