
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2022

Temporal disambiguation of relative temporal expressions in Temporal disambiguation of relative temporal expressions in

clinical texts using temporally fine-tuned contextual word clinical texts using temporally fine-tuned contextual word

embeddings. embeddings.

Amy L. Olex
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Artificial Intelligence and Robotics Commons, and the Data Science Commons

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/6927

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars
Compass. For more information, please contact libcompass@vcu.edu.

Fig. 6. Overview of Attention Basics

1√
dk

is a scaling factor used to improve performance when dk is large [123].

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (2.1)

Finally, BERT uses multi-head attention where each head, h, uses a different

projection method allowing the Query and Key vectors to focus on different aspects

of the sentence. Specifically, the “bert-base-uncased” model used in this work uses

h = 12 attention heads; thus, Equation 2.1 is repeated 12 times, each using different

Q and K projections (Figure 7A). The resulting contextualized embeddings from each

57

attention head are simply concatenated to form the complete contextualized embed-

ding (Figure 7B). In addition to multi-headed attention, BERT has 12 layers where

each layer is composed of 12 attention heads. These layers incorporate additional lin-

ear projections, normalization, feed-forward layers, and positional information [56].

Thus, each word in the example sentence has 12 contextualized embeddings that

are usually summarized, concatenated, or sub-sampled for use in downstream NLP

pipelines (Figure 7C).

Fig. 7. Overview of Multi-Headed Attention with Layers

58

2.8 Evaluation Metrics

To assess performance of model predictions, this work reports the Precision,

Recall, F1 Score, Accuracy, and Specificity (Equations 2.2-2.6) using the TIMEX

type annotations. The Precision, Recall, and F1 are calculated in two ways in this

work: 1) span-based and 2) class-based. Span-based is used when determining if

the TERN system identified the correct span of text. This work uses the lenient

definition where any overlap in span is considered correct. Results from Chapters

3-5 and the End-to-End results for the Phase 3 evaluation in Chapter 6 utilize the

lenient span-based version of Precision, Recall, and F1 Score. Except for the Phase

3 evaluation, all of the metrics in Chapter 6 utilize the class-based calculations that

are based off of identifying the correct temporal type for a given phrase. In most

instances, the individual scores for each temporal type are summarized as a weighted

average. Equation 2.7 shows the weighted average calculated across the DATE and

DURATION temporal types, utilized in Chapter 6, where s is the metric score being

averaged and w is the weight (i.e. number of instances for that temporal type).

Precision =
TP

TP + FP
(2.2)

Recall =
TP

TP + FN
(2.3)

F1 =
2 ∗ Precision ∗Recall

Precision + Recall
(2.4)

Accuracy =
TP + TN

TP + FN + FP + TN
(2.5)

59

Specificity =
TN

TN + FP
(2.6)

WeightedAverage =
(sDATE ∗ wDATE) + (sDURATION ∗ wDURATION)

wDATE + wDURATION

(2.7)

2.9 Focus and Related Work

One of the first and most important steps in timeline extraction is the recognition

of temporal expressions and their normalization to a computationally accessible form

with the ultimate goal of identifying when events of interest happen and to place

them sequentially on a timeline in order to perform temporal reasoning tasks. This

work focuses on developing a TERN system tailored to the clinical domain that

recognizes and normalizes TIMEXs to a form that is amiable to timeline generation.

In the following chapters the construction, adaptation, and evaluation of Chrono, a

hybrid rule-based and machine learning system developed to recognize and normalize

temporal expressions into the Semantically Compositional Annotations for Temporal

Expressions (SCATE) schema ([22]) is detailed. The SCATE scheme aims to improve

upon the current TIMEX3/TimeML [17] standard by representing a wide variety of

temporal expressions, allowing for events to act as anchors, and using mathematical

operations over a timeline to define the semantics of each annotation. At this point,

only one other system is known to parse temporal expressions into the SCATE schema,

which is a character-based recurrent neural network implemented by Laparra et al.

[124].

This work also narrows in on the overlooked task of determining the temporal

type of RelIV-TIMEXs in order to ensure proper normalization. It is important to be

able to accurately identify and normalize relative temporal expressions because they

60

are ubiquitously used in clinical texts and important to the task of event ordering.

There have been two recent works focused on the normalization of relative and incom-

plete temporal expressions [15, 71]. In 2015, Sun et al. [15] built SVM classifiers using

contextual features to classify the type of anchor time (admission, discharge, previous

TIMEX, previous absolute TIMEX) and anchor relation (before, after, equal/during).

They utilized an adapted version of the rule-based general domain tagger Heidle time

for TIMEX recognition and absolute TIMEX normalization, and achieved a statis-

tically significant improvement over previous state-of-the-art methods. Additionally,

in 2020 Dupuis et al. [71] utilized a clinically fine-tuned BERT model to classify the

anchor time relation type on a subset of the Sun et al. relative TIMEX corpus, but

did not surpass their results, and did not proceed to the normalization step. Both

of these works are, to my knowledge, the only works focused on relative temporal

expressions, and they both focused on the identification of anchor times and types.

Additionally, all the given examples are of relative DATE phrases, not DURATIONs.

Identifying the difference between DATE and DURATION temporal types is an im-

portant first step before the normalization. Thus, this work focuses on classifying

RelIV-TIMEXs into either DATE or DURATION types, which is referred to as Tem-

poral Disambiguation and detailed in the first part of Chapter 6. Finally, the rest

of Chapter 6 describes the strategy and methods to create and utilize temporally

fine-tuned contextualized word embeddings to perform the Temporal Disambiguation

task and reports the performance results after integrating this module into Chrono.

61

CHAPTER 3

CHRONO: A TEMPORAL RECOGNITION AND NORMALIZATION

TOOL

One of the first and most important steps in timeline extraction is the identification of

temporal expressions and their normalization to a computationally accessible form.

This chapter describes Chrono, a hybrid rule-based and machine learning system

developed from scratch that identifies temporal expressions in text and normalizes

them into the Semantically Compositional Annotations for Temporal Expressions

(SCATE) schema developed by [22]. This scheme aims to improve upon the current

TIMEX3/TimeML [17] standard by representing a wide variety of temporal expres-

sions, allowing for events to act as anchors, and using mathematical operations over

a timeline to define the semantics of each annotation, which makes it more applicable

to generating timelines than other annotation schema.

Chrono was originally developed to participate in the SemEval 2018 Task 6:

Parsing Time Normalizations challenge [41] on general domain texts (this chapter),

however, it has been updated to also process clinical temporal data (Chapter 4), and

to parse expressions into the main-stream TimeML schema (Chapter 5). Chrono has

emerged as the top performing system for SemEval 2018 Task 6 for both general

and clinical domain texts, and is shown to perform on par with the systems that

participated in the 2012 i2b2 Temporal Challenge with minimal updates.

62

Fig. 8. Overview of Chrono Workflow

3.1 Chrono System Description

Our approach to building this hybrid system includes four processing phases (Fig-

ure 8): 1) text pre-processing, 2) flagging numeric and temporal tokens, 3) temporal

expression identification, and 4) SCATE normalization.

1) Text Pre-processing: Python’s Natural Language Toolkit (NLTK) Whites-

paceTokenizer and part-of-speech (POS) tagger [125] process raw text files to identify

individual tokens, token spans, and POS tags. Punctuation is not handled at this

phase as it is important for identifying correct spans.

2) Flagging Numeric and Temporal Tokens: All numeric tokens are flagged

regardless of context. Subsequent phases utilize contextual information to determine

63

if a numeric token is part of a temporal expression. Depending on the task, a rule may

remove all or some punctuation, and/or convert tokens to lowercase prior to parsing.

In the following, RP and LC denote Removing all Punctuation and converting to

LowerCase, respectively.

Numeric Flagging: Tokens are flagged as numeric if either 1) the token has a

POS tag of “CD” (Cardinal Number), or 2) the text can be converted to a numeric

expression. Textual representations of numeric expressions are converted to numer-

ics with the Word2Number1 Python module. A custom method recognizes ordinals

from “first” to “thirty-first” and converts them into the associated numerics 1 to 31,

respectively. LC normalization is done prior to parsing textual numerics.

Temporal Flagging: Temporal tokens are flagged through rule-based parsing us-

ing lists of key words and regular expressions. This phase is more liberal in its

identification of a temporal token than the SCATE normalization phase, so it iden-

tifies a broader range of potential temporal tokens that are refined in future steps.

Tokens may be numeric and temporal simultaneously. Numeric tokens with the char-

acters ‘$’, ‘#’, or ‘%’ are NOT marked as temporal. The following types of tokens

are flagged as temporal:

• Formatted date patterns using ‘/’ or ‘-’: mm/dd/yyyy, mm/dd/yy, yyyy/mm/dd,

or yy/mm/dd

• Formatted time patterns matching hh:mm:ss

• Sequence of 4 to 8 consecutive digits matching range criteria for 24-hour times

or for a year, month, and/or day (e.g. 1998 or 08241998).

• Spelled out month or abbreviation, e.g. “Mar.” or “March”, are flagged after

1
https://github.com/akshaynagpal/w2n

64

RP except periods as they are required to retrieve correct spans.

• Days of the week, e.g. “Sat.” or “Saturday”, are parsed similar to months.

• Temporal words indicating periods of time, e.g. “yesterday” or “decade”, are

flagged after RP and LC.

• Mentions of AM and PM in any format are flagged after RP except periods.

• The parts of a week, e.g. “weekend” and “weekends”, are flagged after RP and

LC.

• Seasons of the year are flagged after RP and LC.

• Various parts of a day, e.g. “noon” or “morning”, are flagged after RP and LC.

• Time zones are flagged after RP.

• Other temporal words, e.g. “this”, “now”, “nearly”, and others, are flagged

after RP and LC.

3) Temporal Expression Identification: A temporal expression is repre-

sented by a temporal phrase, which we define as two or more consecutive tempo-

ral/numeric tokens on the same line, or an isolated temporal token, with some ex-

ceptions. Figure 9 displays this process as a flow chart. Briefly, if a numeric token

contains a ‘$’, ‘#’, or ‘%’, or the text ‘million’, ‘billion’, or ‘trillion’ it is not included

in a temporal phrase as these generally refer to non-temporal values. Additionally,

isolated numeric tokens are not considered a temporal phrase.

4) SCATE Normalization: Chrono parses each temporal phrase into zero

or more SCATE entities, links sub-intervals, and disambiguates the SCATE entities

“Period” and “Calendar-Interval” via a machine learning module. Chrono implements

65

Fig. 9. Flow chart of Chrono’s temporal phrase recognition algorithm.

32 types of entities with five parent types that have been described by [22]. In Chrono,

entity types are parsed hierarchically, with certain types taking priority over another.

For example a numeric date takes priority over a 24-hour time such that the phrase

“1930” will be interpreted as a 4-digit year instead of the 24-hour time of 19:30

(i.e. 7:30pm). Figure 10 contains the priority of entity types implemented in Chrono.

Parsing strategies also differ depending on the composition of a temporal phrase being

66

parsed. Each temporal phrase is interrogated sequentially by the following parsing

strategies to identify the various elements in the phrase. Chrono assumes there is

only one element of each type in a single phrase, and each token is assigned only one

entity type plus a possible modifier type such as “Next” or “Last”.

Fig. 10. Flow chart of the priority each entity type receives in Chrono.

Formatted Dates and Times: Formatted dates/times are parsed using regular

expressions. To identify which format the date/time is in, Chrono looks for a 2-digit

67

or 4-digit year first, then uses that position for orientation to identify the remaining

elements. If a formatted date/time is identified, then the appropriate sub-intervals

are linked during element parsing. 4-digit years take precedence over 2-digit years.

Numeric Dates and Times: Header and meta-data for Newswire articles fre-

quently have numeric dates listed with no punctuation (e.g. “19980218” codes for

“Feb, 18 1998”), and isolated 4-digit year mentions are frequent. After formatted

dates and times are parsed, any phrase containing a numeric token is interrogated for

a potential date or year mention. If a numeric token is 4-digits it is tested for a year

between 1500 and 2050, 6-digit tokens are parsed for 2-digit year/month/day, and

8-digit strings are parsed for a 4-digit year and 2-digit month/day. All elements must

be in the proper range, otherwise the token is skipped. Appropriate sub-intervals are

linked during element parsing.

24-hour Time: 24-hour times are identified by either the format hhmmzzz, where

zzz is the time zone, or a 4-digit number that has not been classified as a year. Hour

digits must be less than 24 and minutes less than 60. Sub-intervals are linked at this

time if existing. Time zones are handled separately and are linked back to the hour

entity during the final sub-interval linking step.

Temporal Token Search: The majority of textual temporal entities are identified

by looking for specific tokens. Token categories include days of the week, months

of the year, parts of a day/week, time zones, and other temporal operators such as

“early”, “this”, “before”, etc. Prior to looking for these tokens, text is normalized by

RP and LC. Exceptions to RP include searching for day/month abbreviations, such

as “Sat.” or “Aug.”. In these cases periods are not removed because they are part of

the SCATE span. Another exception to RP and LC is identifying mentions of AM or

PM where periods are kept and text is not converted to lowercase in order to capture

variations like “PM” or “p.m.”. Non-temporal mentions of the months or seasons of

68

the year “may”, “march”, “spring”, and “fall” are disambiguated using POS tags,

where tokens that refer to a temporal entity generally have a POS tag of “NN” or

“NP”. Sub-intervals are not linked during token searches.

Text Year: Another special case of parsing temporal tokens are textual represen-

tations of years such as “nineteen ninety-seven”. The Word2Number Python module

was modified to recognize these phrases. Previously, it would add 19 and 97 together

instead of returning 1997.

Periods and Calendar-Intervals: The same temporal token can refer to either a

SCATE “Period” or “Calendar-Interval”. For example, in the phrases “in a week” vs

“next week” the token “week” is classified differently. Due to language intricacies it is

difficult to define a rule-base system to disambiguate these entities as the classification

is contingent on the topic being discussed where phrasing around the entity can

be different for each instance. Thus, Period/Calendar-Interval tokens are initially

identified by a token search using a defined list of terms, then the identified term and

its span are passed to a ML algorithm for classification.

Machine Learning Classification: Four ML algorithms are available in Chrono

to differentiate between “Period” and “Calendar-Interval” entities using contextual

information. Chrono implements Naive Bayes (NB), Neural Network (NN), Decision

Tree (DT), and Support Vector Machine (SVM). Binary feature vectors (Figure 11)

for all implementations have the following features:

• temporal self: If the target is flagged as temporal, this feature is set to “1”.

• temporal context: If there is at least one temporal word within a 5-word window

up- or down-stream of the target this feature is set to “1”.

• numeric: If there is a numeric expression either directly before or after (a 1-word

window) the target, this feature is set to “1”.

69

• context: All words within a 5-word window are identified as features and set

to “1” if that word is present. Prior to identifying these features all words are

normalized with RP and LC. The 5-word window includes crossing sentence

boundaries before and after the target word.

We use NLTK with default parameters to implement NB and DT, NN is a simple

feed-forward network with three hidden layers implemented using Python’s Keras

package 2 with epochs set to 5 and batch set to 10, and SVM is implemented using

SciKitLearn [126] with C set to 0.05 and max iterations set to 3.

Fig. 11. Example of the feature construction for Chrono’s temporal disambiguation

module for Period and Calendar-Interval types.

Ordinals: Ordinals such as “first” or “3rd” are classified as an “NthFromStart”

2
https://github.com/keras-team/keras

70

entity in the SCATE schema. These mentions are identified by normalizing with RP

and LC before searching for the ordinal tokens representing the numbers 1-31.

Next/Last Parsing: Determining whether an entity is referring to a date in the

future, “Next”, or past, “Last”, depends on context and the document time (doc-

time). Next/Last parsing is done after all other parsing (first part of Figure 12), and

checks two cases: 1) if a temporal phrase contains a year, no additional annotation

is made, and 2) if specific modifier words are present (e.g. “next” or “last”) immedi-

ately preceding a temporal expression, the modifier is annotated with a sub-interval

referencing the following temporal entity. If neither of these cases hold, the year is

set as the doc-time year, and the month and day are compared to the full doc-time

to determine if it occurs before or after. Note the year assumption is not always

valid and more complex, content-based parsing may be required to achieve higher

Precision. Finally, if a day of the week (e.g. “Saturday”) is mentioned, Chrono finds

the first preceding verb in the sentence, and if it is past tense the temporal entity is

annotated as “Last”, otherwise it is annotated as “Next”.

Sub-Interval Linking: After all SCATE entities are identified, all temporal phrases

are re-parsed to identify sub-intervals within each phrase. For example, entities in the

phrase “August 1998” are parsed by two different methods leaving the sub-interval

link vacant. During sub-interval linking, the year “1998” has the “August” entity

added as a sub-interval. Sub-interval linking reviews entities from the smallest to the

largest, adding missing sub-intervals as needed. This method assumes each temporal

phrase contains zero or one of each type of SCATE entity and is visualized as a flow

chart in Figure 12.

71

Fig. 12. Chrono’s sub-interval linking algorithm, including Next/Last parsing.

3.2 Evaluation

Evaluation of Chrono’s performance on the Training Corpora utilized python

scripts provided by AnaforaTools ‡ that compare Anafora XML [127] annotation

files. All metrics reported exclude the “Event” entity because event identification is

currently not implemented by Chrono, and was not included in the SemEval Task.

Chrono’s annotation of the Evaluation corpora was uploaded to the Post-Evaluation

submission system for SemEval 2018 Task 6, and overall Precision, Recall, and F1

measures are reported in Tables 6 and 8.

‡
https://github.com/bethard/anaforatools

72

3.3 Newswire Results

The AQUAINT corpus of Newswire texts [128] consisted of 81 documents, pro-

vided by the task organizers. Average Precision, Recall, and F1-measure of 5-fold

cross validation for Track 1 (parsing) are reported in Table 5 (annotations for “Event”

and “Modifier” are ignored). Scores for “100% Correct Entity” consider the entity

location and all properties (like sub-intervals), and scores for “Correct Span” only

consider the entity location.

On average, all ML algorithms perform similarly for the “100% Correct Entity”.

All versions also obtain a higher F1 score when only considering correct spans versus

getting all entity properties correct. This indicates that Chrono correctly identifies

the majority of temporal entities, but has trouble parsing some of the properties.

ChronoNN processed the final evaluation data set, which consisted of 20 previ-

ously unseen Newswire articles, and received a F1 of .44. The evaluation data set

contained five articles from BBC that were not represented in the training data set.

Chrono’s low performance indicates that it may be over-fit to the the training data

set. This is one downfall of rule-based systems, where new rules need to be developed

for each new type of temporal representation. Upon further review we found the sub-

mitted version of Chrono had three minor parsing flaws that resulted in unintentional

false positives.

1) Formatted dates such as “2013-02-22” were being parsed twice. The first parse

specifically looked for a 4-digit year and identified all correct entities, then the second

parse looked for a formatted date with a 2-digit year, but didn’t check to see if a

year had already been found, so returned a 2-digit year with the value “22”. This

was easily fixed by having the 2-digit year parser check for a 4-digit year flag before

proceeding (month and day flags were already implemented).

73

2) 24-hour time priority was incorrectly placed above 4-digit year. This resulted

in any isolated 4-digit year being parsed as a 24-hour time expression rather than a

year as originally intended. A simple flip of parsing order resolved this issue.

3) Numeric temporal expressions, such as an isolated 4-digit year, were being

parsed as a whole phrase rather than breaking out each token within the phrase.

For example, the year in the phrase “Last 1953” was not being identified because it

was not in a phrase all by itself. To fix this the parsing function was edited to loop

through each token in a phrase (a method that was already implemented in most

other parsers and was just overlooked here).

ChronoNN received a Post-Evaluation F1 of .55 for Track 1 after implementing

these fixes, which sets ChronoNN as the top performing system for SemEval 2018

Task 6, Track 1.

3.4 Conclusions and Contributions

In conclusion, there are many TERN tools that normalize temporal expressions

into the popular ISO-TimeML standard, but this annotation scheme has some limita-

tions in the types of expressions it can represent. The SCATE scheme was developed

to represent a wider variety of temporal expressions, allow for events to act as an-

chors, and use mathematical operations over a timeline to define the semantics of

each annotation; however, no tools existed that could normalize temporal expressions

into its extremely fine-grained structure.

This chapter described the first hybrid framework for normalizing fine-grained

temporal information into the SCATE scheme, which is implemented in the tool

Chrono and available on GitHub § A version of this chapter was published as a full

§
https://github.com/AmyOlex/Chrono.

74

100% Correct Entity

P R F1

Chrono NB .686 .630 .657

Chrono NN .684 .629 .656

Chrono DT .687 .632 .658

Chrono SVM .689 .630 .660

Correct Span

Chrono NB .823 .752 .786

Chrono NN .820 .749 .783

Chrono DT .822 .751 .785

Chrono SVM .827 .755 .789

Evaluation Results

Chrono NN .46 .42 .44

Post-Evaluation Results

Chrono NN .61 .50 .55

Table 5. Chrono results on Newswire corpus for Track 1. All standard errors are <=

0.03, and no method performed statistically significantly better than another.

paper in the Proceedings of The 12th International Workshop on Semantic Evaluation

[42].

75

CHAPTER 4

CONVERSION OF CHRONO TO THE CLINICAL DOMAIN

Chrono was originally built for parsing temporal expressions in the general domain

due to a lag in getting access to the clinical corpus. After participation in the Tem-

pEval challenge, access to the clinical THYME corpus was granted. The following

subsections describe the SCATE annotated portion of the THYME corpus made avail-

able to TempEval challenge participants, Chrono’s out-of-the-box performance in the

clinical domain, modifications made to Chrono after a detailed error analysis, and

the improved results.

4.1 THYME Corpus with SCATE Annotations

The THYME corpus consists of de-identified clinical notes and pathology reports

for colon and brain cancer patients [129]. For this work, we utilized the subset of

the THYME colon cancer documents that have associated SCATE annotations in

the Anafora XML format from SemEval 2018 Task 6 [130]. The Training Corpus

includes 22 clinical notes and 13 pathology reports along with their gold standard

Anafora XML annotations. The Evaluation Corpus includes 92 clinical notes and 49

pathology reports with the annotations withheld.

4.2 Out-of-the-Box Performance

Chrono’s performance decreased significantly on the THYME Evaluation Corpus

out-of-the-box with an F1 of 0.35, Precision of 0.49, and Recall of 0.27 (Table 6). This

is due to Chrono having only been trained on Newswire text, thus, it saw a limited

76

data set System Precision Recall F1

THYME Eval Chrono 0.49 0.27 0.35

THYME Eval Laparra et al. 0.52 0.63 0.57

Newswire Eval Chrono 0.61 0.50 0.55

Newswire Eval Laparra et al. 0.58 0.46 0.51

THYME Train Chrono 100% 0.439 0.244 0.314

THYME Train Chrono Span Only 0.696 0.352 0.468

Table 6. Baseline performance, excluding “Event”, on THYME Training and Evalua-

tion corpora using SVM.

number of temporal expression examples.

Chrono’s performance on the THYME Training Corpus resulted in an F1 of

0.314 when considering all entity properties (100% Correct Entity), and an F1 of

0.468 when only considering correct token span (Span Only). The higher Span Only

result indicates that Chrono is identifying more correct entities than the 100% Correct

Entity score indicates, but it is not assigning all the properties correctly. With the

AnaforaTools evaluation script we are able to look at the performance on each SCATE

entity individually to identify specific entities that significantly impact performance.

4.3 System Modifications

Addressing cross-domain parsing issues felt synonymous to playing the arcade

game of Whack-A-Mole, where as one issue was fixed another popped up. Several

code improvements resulted in a cascading series of other code bugs and/or logical

issues that needed resolution prior to realizing a performance improvement. This

section describes these adventures in code improvement, which identify six primary

challenges encountered in cross-domain application of temporal expression extraction.

The following examples relay how complex and interconnected temporal expression

77

extraction can be, and demonstrate the need to go beyond basic pattern identification

and dictionary look-up strategies to including contextual and semantic information

in order to capture all types of temporal expressions.

4.3.1 Lexical Diversity

Different domains are expected to differ in their lexicon. For example, the clin-

ical domain contains many specialized medical terms and clinical jargon that is not

encountered in general domain texts [131]. This is also true for a temporal lexicon.

Originally trained on the Newswire corpus, Chrono’s lexicon was limited to exam-

ples found in this domain; however, by expanding Chrono’s temporal lexicon the

performance on several SCATE entities increased.

Performance on the SCATE entity “Modifier” improved after refining the lexicon

to include missed terms such as “nearly”, “almost”, “mid”, “over”, “early”, and

“beginning”, and removing terms that should be annotated with other entities such

as “this”, “next”, and “last”. These descriptive temporal tokens are commonly used

in clinical texts to describe various events in the patient narrative such as when

symptoms occur or patient histories. The PartOfDay entity was also augmented

with the terms “bedtime”, “eve”, and “midnight” as these, and similar terms, are

frequently utilized in clinical notes for medication instructions, such as “take one

pill at bedtime”. Significant improvement in performance was observed after these

additions, with an F1 increase of 0.117 for PartOfDay, and an F1 increase of 0.241

for Modifier.

Patient records revolve around temporal information, such as conveying medica-

tion instructions, describing symptom time lines, and outlining patients’ histories. We

found that temporal phrases associated with these events, like “at that time”, “take

one-time daily”, “in four weeks time”, “since that time”, etc., were ubiquitous. All of

78

these expressions include the token “time”, which is annotated as a Period entity in

the SCATE Schema. This token, along with others found frequently in clinical text

such as “/min” and “/week” that are most commonly used as short-hand for con-

veying medication frequency, were not included in Chrono’s temporal lexicon. This

resulted in poor performance for the Calendar-Interval and Period SCATE entities.

The addition of 15 terms that were not present in the Newswire corpus significantly

improved performance for these phrases. This result indicates that commonly used

tokens have domain-specific frequencies. For example, the token “time” was used on

average 0.32 times per document in the Newswire corpus and just over 4 times per

document in the THYME corpus (Table 7).

4.3.2 Frequent Frequency

The frequency for some lexical terms, like “time”, in clinical texts is understand-

able as certain concepts that convey a patient’s narrative may be utilized over and

over again. However, it is interesting that this observation also applies at the tempo-

ral entity level. For example, the initial build of Chrono excluded the SCATE entity

Frequency because it is highly complex to parse and did not appear regularly in the

Newswire corpus (0.12 times per document on average, Table 7). However, in the

THYME corpus, the Frequency entity appeared on average 8.9 times per document–

a 72-fold increase–which had a major impact on Chrono’s performance. In clinical

texts, phrases specifying frequency such as “2 time per day” or “once a day” are

abundant as they are routinely used for specifying medication or symptom frequency.

This increase in clinical usage extends to all but two temporal entities, with Frequency

having the second highest fold change next to Event (Table 7).

79

Chrono Newswire Clinical

Entity Implements Avg Freq Avg Freq

AMPM-Of-Day Y 0.06 1.26

After Y 0.25 2.29

Before Y 0.44 0.91

Between N 0.28 1.11

Calendar-Interval Y 1.83 6.80

Day-Of-Month Y 2.84 8.66

Day-Of-Week Y 1.33 1.29

Event N 0.91 151.97

Every-Nth N 0 0.09

Frequency N 0.12 8.91

Hour-Of-Day Y 1.15 1.46

Intersection Y 0.11 1.60

Last Y 2.80 3.86

Minute-Of-Hour Y 1.12 1.31

Modifier Y 0.42 1.31

Month-Of-Year Y 3.31 9.77

Next Y 0.72 0.80

NotNormalizable N 0.06 0.06

NthFromStart Y 0.30 0

Number Y 1.17 13.66

Part-Of-Day Y 0.19 0.91

Part-Of-Week Y 0.04 0

Period Y 1.64 4.97

Season-Of-Year Y 0.07 0.03

Second-Of-Minute Y 0.67 0.17

Sum N 0.01 0.03

This Y 1.43 2.60

Time-Zone Y 0.44 0

Two-Digit-Year Y 0.98 0.23

Union N 0.02 0.03

Year Y 1.67 9.91

Table 7. The average frequency per document of each SCATE Entity for the Newswire

(81 documents) and THYME (35 documents) training corpora. The “Chrono

Implements” column indicates whether or not Chrono identifies a given entity

(Y=yes, N=no).

4.3.3 Disambiguating Dosage

Clinical text commonly contains non-temporal numerical information represent-

ing lab test results or medication dosage along with their frequency. The majority of

80

these instances in the THYME corpus were not identified as temporal because their

values and formats were distinct. However, Chrono confused a few occurrences of

medication dosage with a 24-hour time instance. For example, in the phrase “Vita-

min D-3 1000 unit tablet” the “1000” was incorrectly assigned the 24-hour time value

of 10am. In the current implementation of Chrono, if a 4-digit dose falls within the

correct year range (1500 to 2050) or 24-hour time it will be annotated as such. A fix

for this issue has yet to be implemented in Chrono, as it has a low rate of occurrence,

but may include rules to identify dosage amounts such as “mg” and machine learning

methods to disambiguate 4-digit numbers.

Another example of the need to disambiguate numerical values is found in the

clinical phrase “Carotid pulses are 4/4”. Without context, the “4/4” could be inter-

preted as the date “April 4th”. This instance did not cause an issue with Chrono

because a 2- or 4-digit year is required for a phrase to be identified as a format-

ted date. While this strategy worked for this example, it could become a problem

when parsing files that contain year-less formatted dates. Thus, future improvements

will include a numerical disambiguation module to aid in determining if a numerical

phrase is temporal.

4.3.4 Cross-Domain Supervised Learning Training Data

Supervised machine learning (ML) methods require the use of annotated training

data in order to generate a predictive model. Naturally, training data is chosen from

the domain of the task as it is the most relevant. Chrono utilizes ML to disambiguate

the SCATE entities Period and Calendar-Interval. First, rule-based logic identifies if

an entity is a possible Period or Calendar-Interval, but it is hard to tell which one

without considering context. Then the ML module decides which class the entity

should be labeled. The training data for this task was initially from the Newswire

81

corpus, but this performed poorly on clinical texts with an overall F1 of 0.544. To

incorporate domain-specific contextual elements, Chrono was re-trained using just the

THYME corpus, which improved performance to an F1 of 0.577. We then generated

a model that utilized both the Newswire and THYME data, which performed slightly

better, giving an F1 of 0.578. As temporal expressions can be domain-agnostic, it

makes sense that training on cross-domain data would generate a more robust and

generalizable model; therefore, we chose to use the cross-domain model.

4.3.5 Lexical Variation

An advantage of processing clinical texts is that you are introduced to a variety

of writing styles and preferences from different departments and medical personnel,

where each may represent the same temporal concept differently. This results in lex-

ical variations of concepts, for example, the concept of “Monday” can be represented

as “M”, “Mon.”, or, “monday”, and a temporal reasoning system must be able to

identify that these all refer to the same day. The following sub-sections discuss issues

associated with variation in formatted dates, times, and long temporal phrases.

Variation in Formatted Dates/Times: There are a number of standard for-

mats to convey dates and times, of which only a few were identified in the Newswire

corpus and implemented in Chrono. Clinical texts introduced additional variability

in date and time formats that Chrono was unable to handle correctly. For example,

the date format “21-SEP-2009” contains a mixture of letters and numbers needing

to be interpreted. Chrono uses regular expressions to identify formatted dates and

times; however, the expression restricted all components to be digits, so dates with

alphanumeric characters were not captured. Editing the regular expression to allow

for alphanumeric characters fixed the capturing issue, but resulted in an error down-

stream where other methods expected a numeric month to be returned. Ultimately,

82

a custom function was written to convert months represented as text to integers as

existing conversion packages were not versatile enough to accommodate all lexical

variations of these entities.

Similarly, hour and minute formats such as “5:45 PM” were not being recog-

nized correctly because Chrono’s regular expression looked specifically for the format

found in the Newswire corpus that contained seconds (hh:mm:ss). Debugging format-

ted time expressions proved to be a challenge because Chrono utilizes three different

modules to parse out this data. First, a module to identify the hours, minutes, and

seconds, followed by a module to identify AMPM entities, and finally, a module to

link sub-intervals where both MinuteOfHour and AMPM entities are sub-intervals of

HourOfDay. Interestingly, the performance of HourOfDay for the Span Only evalu-

ation had an F1 score of 0.941 both before and after improvements, indicating that

Chrono was actually identifying most of the hours correctly, but was missing specific

SCATE properties.

Punctuation - To Include or Not to Include? Part of the HourOfDay parsing

issue stemmed from temporal phrases at the end of a sentence, such as “2:04 AM.”,

where the period ended up being part of the “AM” string. Initially, Chrono looked

for AMPM entities without considering punctuation unlike the MonthOfYear parsing,

which specifically accounts for punctuation such as “Dec.”. Thus, the “AM.” in the

example was never identified, so the HourOfDay entity “2” would be lacking the

subinterval link to the AMPM entity. To resolve this, Chrono was modified to utilize

regular expressions in parsing out AMPM entities with and without surrounding

punctuation.

One dilemma arose when considering the variants of an AMPM entity. For exam-

ple, valid AMPM entity strings include “AM”, “am”, “A.M.”, and “a.m.”; however,

“AM.” may not be considered a valid representation of an AMPM entity. Thus,

83

Chrono specifically includes the period in the span only if there is a period after each

letter in strings (e.g. “A.M.”), otherwise, the period is not included in the span. Im-

plementing this fix resulted in a significant performance improvement for the AMPM

entity and, oddly, a decrease in HourOfDay performance.

Where have the Minutes Gone? While the HourOfDay entity was performing

well in the Span Only evaluation, the MinuteOfHour entity performed poorly in

both Span Only and 100% Correct Entity evaluations. This was a result of Chrono

looking for an HourOfDay in two different methods–one that identified formatted

times and another that first looked for an AMPM entity and, if found, searched

for an upstream HourOfDay. The majority of time expressions in THYME were

formatted as “hh:mm” followed by an “AM” or “PM” which resulted in HourOfDay

being identified by AMPM parsing and not the formatted time method. The AMPM

method was designed to identify the pattern found frequently in Newswire texts

(e.g. “5 PM”), which doesn’t include second or minute parsing. To fix this issue

the formatted time method was adjusted to allow for the “hh:mm” format, so now

the HourOfDay and MinuteOfHour entities are being identified and appropriate sub-

intervals are annotated. However, this code improvement resulted in another decrease

in performance of the HourOfDay entity.

Too Many Hours of the Day! The expected result of fixing the AMPM entity

and formatted time parsing was increased performance on AMPM, MinuteOfHour,

and HourOfDay entity parsing because the AMPM and MinuteOfHour sub-interval

links were now identified correctly. However, HourOfDay performance actually be-

came worse due to predicting too many HourOfDay entities. Further investigation

revealed that every temporal phrase that included an AMPM entity had duplicate

HourOfDay entities annotated (the same hour was annotated twice), one with the cor-

rect AMPM and MinuteOfHour sub-interval links and the other with no sub-interval

84

links. This issue stemmed from a combination of the hierarchical parsing of format-

ted dates/times and inadvertently excluding a check to see if an HourOfDay entity

already existed when parsing AMPM entities.

In Chrono, all temporal phrases are interrogated by all modules. To ensure only

one entity of each type is identified in each temporal phrase Chrono implements a

flag system. For example, in the phrase “Monday at 3:05 PM.” there is one Day-

OfWeek, one HourOfDay, one MinuteOfHour, and one AMPM entity. This phrase is

first parsed by the formatted date/time module to identify the HourOfDay “3” and

the MinuteOfHour “05” entity. Following is the identification of the “PM” AMPM

entity; however, if this module finds an AMPM entity it then proceeds to look for

an HourOfDay entity preceeding the AMPM substring. However, an HourOfDay had

already been identified, and the AMPM module neglected checking this. Fixing this

double parsing issue was straightforward as the AMPM module just needed to check

if the HourOfDay flag had been set for the given temporal phrase. This error resulted

in some initially puzzling results where the HourOfDay performance kept decreas-

ing with every “improvement”, and ended up identifying twice as many HourOfDay

entities as it should have. Different modules may be required for parsing different

date/time formats, so it is important to ensure that all modules are consistently

coded. It is also important to keep in mind that some formats are more frequent in

one domain than another. This issue had not appeared when using the Newswire

corpus because the majority of the AMPM entities were accompanied by the shorter

format of “5 PM”, or contained the full “hh:mm:ss” format, whereas in the clinical

domain the specification of hour and minutes, such as “3:05 PM”, was ubiquitous

throughout the corpus.

Stop words splitting temporal phrases: Chrono was initially unable to

handle stop words that connected temporal entities into a single phrase, which limited

85

its performance on the THYME corpus due to the use of long temporal expressions in

clinical texts. Chrono identified temporal phrases by looking for consecutive temporal

and/or numeric tokens. If a stop word was identified (e.g. “is”, “of”, “at”, etc), the

temporal phrase would be terminated–in some cases prematurely. For example, the

phrase “beginning of this month on September 1” was originally separated into 3

temporal phrases: “beginning”, “this month”, and “September 1”. Other examples

of temporal phrases that were incorrectly split include “2005 in April” and “October

14, 2010 at 02:07 PM”, which were both separated into two phrases. While individual

temporal entities were identified correctly, the correct sub-intervals for each entity

were unable to be assigned because Chrono only links sub-intervals within a single

phrase. To fix this, code was added to tag “linking” words in the temporal phrase

extraction module. Now, if a linking token is identified while constructing a temporal

phrase it is ignored and the phrase is extended. This allows Chrono to correctly

identify longer temporal phrases and results in correct assignment of sub-intervals,

which brought the 100% Entity performance closer to Span Only.

Unexpected Effects of Longer Temporal Phrases: The inclusion of stop

words in temporal phrases was a major upgrade to Chrono resulting in sub-intervals

of longer phrases being correctly assigned. However, this had an unintended result

that initially lowered the overall F1 scores for Calendar-Interval and Period entities.

Investigating changes in performance revealed Calendar-Interval and Period entities

that were correct were now incorrectly annotated with a link to a Number entity.

This happened for phrases like “four times a day” or “one time a day”, which are

highly frequent expressions in clinical notes as they are part of instructions for taking

medications. This behavior resulted from Chrono’s parsing strategy for identifying

associated numbers with SCATE entities where Chrono naively looked for a number

token in the sub-string of characters preceding an annotated entity. This parsing

86

strategy worked well for Newswire text as the majority of associated numbers ap-

peared in formats similar to “2 weeks ago”, or “5 days”. Previously, Chrono assigned

expressions like “four times a day” to two temporal phrases: “four times” and “day”.

Thus, the Calendar-Interval “day” was correctly identified with no Number link. Af-

ter including the stop words in the temporal phrases the first number in the phrase

(e.g. “four”) was incorrectly associated with the Period or Calendar-Interval entity.

Chrono’s number parsing strategy also became an issue with other frequent clinical

phrases such as “one-time daily” where the number “one” was incorrectly associated

with the Calendar-Interval “daily”. To fix this issue, Chrono’s definition of where a

number had to be located in order to be linked to a SCATE entity was restricted to

the immediately preceding token instead of the full preceding sub-string. This restric-

tion works well for the THYME and Newswire corpora; however, may not work well

with expressions such as “2 full weeks from now” where the Period “weeks” should

be annotated with the Number “2”.

4.3.6 Document Design

Sentence Boundaries: An interesting temporal parsing issue appears in clin-

ical texts regarding sentence tokenization due to item lists in the clinical record.

Initially, Chrono did not tokenize on sentences as temporal phrases spanning sen-

tence boundaries were not an issue in the Newswire corpus. However, clinical records

in the THYME corpus contained entries like the following:

“...my notes from December.

2. Ulcerative colitis...”

Where the top sentence ends with the temporal entity “December” followed by a

numbered list item. Since Chrono did not consider sentence boundaries, this line break

87

was removed in the preprocessing phase and the “2” that numbers the list item was

parsed as a DayOfMonth associated with “December”. To resolve this issue, Chrono

was updated to identify sentence boundaries. In Temporal Phrase Extraction, Chrono

no longer allows a single temporal phrase to span sentence boundaries; however, the

Temporal Disambiguation module still ignores these boundaries.

Metadata: Domain agnostic rules and procedures can be developed to iden-

tify many temporal expressions in written text, but metadata presents additional

challenges in that it is inherently domain-specific, and can even be document type

specific within the same domain. For example, pathology reports and clinical encoun-

ters with a physician can have their metadata formatted in different ways. In dealing

with metadata the first question is if one wants to parse the metadata at all. A good

reason to do so would be to gather contextual information that is not explicitly writ-

ten in the text, like identifying the document creation date to disambiguate references

to days of the week, etc. The gold standard SCATE annotations do contain dates

from the metadata sections, so it is necessary for Chrono to identify these entities.

Two issues arose when working on this problem: 1) How to identify a temporal token

using whitespace tokenization when the metadata line contains little whitespace, and

2) whether or not to include the word “date” as a temporal token.

In the THYME corpus, metadata is formatted as:

[start date=12/02/2010, rev date=12/02/2010]

Using whitespace tokenization this line is split into two tokens–both marked as tem-

poral as they contain formatted date strings. However, in the Temporal Phrase Ex-

traction module this line is considered a single phrase because it is composed of two

consecutive temporal tokens. This causes an issue as Chrono assumes there is only

one of each SCATE entity type in a phrase; thus, initially Chrono only annotated one

88

data set System Precision Recall F1

THYME Eval Chrono 0.76 0.51 0.61

THYME Eval Laparra et al. 0.52 0.63 0.57

Newswire Eval Chrono 0.57 0.54 0.55

Newswire Eval Laparra et al. 0.58 0.46 0.51

THYME Train Chrono 100% 0.729 0.478 0.578

THYME Train Chrono Span Only 0.881 0.575 0.696

Table 8. Improved performance on THYME Corpora using SVM, excluding “Event”.

of the two dates in the metadata line. To resolve this, Chrono now converts all equal

signs to spaces prior to whitespace tokenization, thereby separating the metadata text

to four tokens. While this fix resolved the issue of parsing metadata dates, an equal

sign could be useful information, so a more sophisticated approach will be required

in the future.

The second issue with parsing metadata information arose when updating the

lexicon of known temporal tokens. The word “date” is temporal, but had not been in-

cluded in the initial lexicon of Chrono. Including “date” as a temporal token resulted

in identifying the metadata line as a single temporal phrase again as it was now a con-

secutive sequence of four temporal tokens: “start date”, “12/02/2010”, “rev date”,

and “12/02/2010”. As “start date” and “rev date” are just labels they should not be

considered temporal entities. Some mentions of “date” were valid temporal expres-

sions, but there were few of them. Thus, we decided to continue to exclude this token.

To be applicable to different domains, more sophisticated methods to parse metadata

will need to be implemented to resolve issues with temporal labels and other special

characters seen in metadata text.

89

4.4 Improved Performance

Improvements made to Chrono using the THYME Training Corpus lead to a

0.27 and 0.24 increase in Precision and Recall, respectively, with a 0.26 increase in F1

measure for the Evaluation Corpus (Table 8). This resulted in Chrono being the top

performing system for SCATE Normalization. Chrono’s performance on the Training

Corpus improved similarly with a Precision of 0.881 in the Span Only evaluation

and 0.729 for the 100% Correct Entity. This indicates that Chrono is identifying the

correct location of many entities, but it is having trouble setting all the properties

correctly.

When designing a rule-base system it is possible to develop rules that overfit or

are tailored to the training corpus (i.e. Newswire texts). Overfitting rules results

in good performance on the training domain and poor performance on the testing

domain, similar to Chrono’s performance on the THYME corpus. However, when

rules are adjusted to incorporate another domain it is expected that the performance

in the training domain go down, indicating that it was overfitting the training domain.

To see if this happened with Chrono, we re-evaluated our final model on the Newswire

corpus. The results showed an insignificant 0.01 drop in F1 due to a 0.05 drop in

Precision and a 0.04 increase in Recall, which indicates that Chrono is now more

compatible with cross-domain application. Since we do not see a major drop in

performance on the Newswire corpus we can conclude the original rules did not overfit

the Newswire domain, but rather they were incomplete and required expansion to

improve performance in the clinical domain.

90

4.5 Conclusions and Contributions

In conclusion, while the concept of time is the same regardless of the domain, its

representation can vary. This chapter demonstrated that clinical domain texts pose

additional challenges to TERN systems, and identified 6 aspects of temporal parsing

one should consider when migrating a system from the general to clinical domain.

These include:

1. Vocabulary differences (i.e. clinical terms and abbreviations).

2. The frequency of temporal entity usage (i.e. more mentions of frequency types).

3. Disambiguate numerical phrases as temporal or dosage/lab result.

4. Utilize appropriate machine learning data.

5. Lexical variation

6. Differences in document structure.

As Chrono was initially trained on Newswire texts, it’s out-of-the-box perfor-

mance on the THYME corpus was poor; however, through a detailed error analy-

sis and algorithm improvements Chrono emerged as the top performing system for

SCATE Normalization of clinical texts without compromising its ability to parse

Newswire texts.

91

CHAPTER 5

THE I2B2 BENCHMARK

The 2012 i2b2 Temporal Challenge [132] provided the clinical NLP community with

the first temporally annotated and de-identified clinical corpus for temporal reason-

ing. This corpus has become a benchmark in the field of clinical temporal reasoning

for defining state-of-the-art performance for tasks such as TERN. The top systems

participating in the 2012 i2b2 Temporal Challenge achieved span-based F-measure

scores around 0.90, indicating good performance in identifying temporal expression

spans, but saw reduced performance in normalizing the expressions to their correct

temporal value.

There are only two known systems that parse temporal expressions into the

SCATE schema, and they have access to a very limited set of gold standard data that

is annotated with SCATE. Thus, it is not possible to assess Chrono’s performance

to the rest of the state-of-the-art TERN systems, which parse into the TimeML

schema, because these annotation schema are not directly comparable. Additionally,

through an investigation of the THYME Gold Standard annotations it was discovered

that around 46% of errors were from incorrect Gold Standard annotations [67]. It is

difficult to evaluate the performance of a method when close to half the errors are due

to gold standard issues. Therefore, in order to compare the performance of Chrono to

other state-of-the-art clinical temporal information extraction algorithms, it needed

to also import and export annotations in the commonly used TimeML format. In

addition to utilizing a common schema, it is important to evaluate Chrono on a gold

standard with fewer errors. Thus, we upgraded Chrono to export in the TimeML

92

format to get a more accurate performance evaluation using the 2012 i2b2 Temporal

Challenge benchmark data set and to compare its performance to state-of-the-art

methods from this challenge.

In the following sections the compatibility of the SCATE and TimeML annota-

tions are discussed, modifications made to Chrono are described, results from running

Chrono on the i2b2 data set are provided, and a detailed error analysis of Chrono

and the top rule-base and hybrid systems from the 2012 i2b2 Temporal Challenge is

provided.

5.1 Compatibility of SCATE and TimeML Annotation Schemes

To evaluate Chrono on the i2b2 data using the i2b2 scripts, the SCATE an-

notations needed to be converted to TimeML. While SCATE contains enough in-

formation to be converted to TimeML, the TimeML annotations do not contain

enough information to be effectively converted to SCATE entities. This is due to

the saved annotations in TimeML being normalized into the ISO standard. For ex-

ample, the phrase “Thursday, June 3, 2000 at 12pm” would be saved in ISO as

“06-03-2000T12:00:00”. This representation does not annotate the day-of-week men-

tion “Thursday”, but SCATE does (even though it is redundant), and it is not clear

from the ISO format if the text contains an AMPM entity, and second-of-minute, or

a minute-of-hour entity, all of which must be annotated by SCATE if present to be

counted as correct. Additionally, SCATE differentiates ”Periods” and ”Calendar In-

tervals” whereas TimeML treats them both as a DURATION or DATE, and it would

not be straightforward to differentiate between them when converting to SCATE. For

example, TimeML would annotate the token “week” as a DURATION in the follow-

ing two phrases: “I have had pain for the past week.”, “I had pain all last week”.

However, SCATE would annotated the first as a Period and the second as a Calendar

93

Interval. The main different between these scheme’s is that SCATE is focused on the

intervals of time while TimeML is focused on if the event associated with the interval

happened continuously throughout said interval or only occurred at a specific point

in time at the beginning or end of the interval mentioned in the text. This makes

it difficult to convert based solely on either the TimeML or SCATE annotations, so

additional measures need to be taken to include phrase context when converting these

entities from SCATE to TimeML.

Converting SCATE to TimeML is possible as the SCATE data can be distilled

down into the ISO format for DATE types and many DURATIONS as well. However,

there are still challenges in retrieving a good conversion, and any conversion script

would still need access to the full text document. Thus, it was decided to integrate

the needed TimeML information into the existing SCATE objects within Chrono and

provide an additional input/output mode for TimeML annotations instead of building

a stand-alone conversion script.

5.2 System Modifications and Performance

Two phases of system modifications were implemented: 1) modifications to con-

vert the existing SCATE annotations to TimeML, and 2) algorithm improvements to

capture temporal elements not seen in the Newswire or THYME data sets.

5.2.1 Conversion Changes

ISO Formatting: The first change to Chrono was to convert explicit date/time

strings to ISO format and store the normalized value for each temporal expression.

This was done using an existing 3rd-party ISO conversion module in python named

“dateutil”. Initially, the raw temporal phrase identified by Chrono was input into

this tool; however, some raw phrases were not able to be parsed by “dateutil”, such

94

as phrases that are part of the document metadata or header lines. Thus, for ISO

conversion, a string was re-generated from the SCATE entities associated with a

temporal phrase to be passed into the ISO conversion module. An example of a raw

phrase that “dateutil” can not parse, but Chrono can is show in Quotation 4.

911203 Tuesday December 4A 1991 WEST (4)

Other phrases the “dateutil” method cannot handle are fuzzy and referential

phrases such as “yesterday” or “3 days ago”. In addition, phrases such as “last

Saturday at 3pm” were also parsed incorrectly as the “last” was ignored and the

normalized ISO string would reference the next Saturday. For this later issue, proper

setting of the reference time is required prior to conversion (see Future Work). For

the former issue, a more complex solution is needed for proper normalization.

Finally, for proper ISO conversion of 2-digit years, such as ’97’, that are not part

of date strings, a proper reference time had to be set in the “dateutil” method. This

is simply set as the document creation time.

Periods and Intervals: Periods and Calendar Intervals are converted to DU-

RATION ISO notation as this is the most frequent classification of these entities.

This format must include the designation for a period (P), the number associated

with the durations, and the units of the duration (e.g. D=days, M=months, Y=years,

W=weeks). If the units are in seconds, minutes, or hours, the period designation must

be accompanied by a “T”. For example, “3 months” would be coded as “P3M”, and

the phrase “3 minutes” would be “PT3M”. Durations representing the same length

of time, such as P1D and PT24H, are considered equivalent.

SCATE entities are clearly labeled as being a period or interval, which both

are primarily coded as a DURATION in TimeML. If a number is associated with

95

a SCATE entity, this is easily retrievable. Thus, implementing this conversion was

straightforward for the majority of SCATE Period and Interval entities; however,

some SCATE Periods and Calendar Intervals are actually annotated as a DATE in

TimeML. Developing rules for this differentiation is difficult, so we decided to set all

to DURATION at this point in time. The impact of this decision on performance is

discussed in the following error analysis section.

Approximate Phrases: Another conversion from SCATE to TimeML was

the conversion of entities with approximate modifiers. These entities required the

TimeML APPROX attribute to be set along with a DURATION that had a number

associated with it. While SCATE annotates these modifiers, it does not associate a

number with them. Approximate phrases included “several days”, “several minutes”,

“many days”, etc. These have an annotation in ISO such as “P3D”. However,

choosing a number for the terms “several”, “many”, “few”, etc. is challenging as

the exact duration may be interpreted differently depending on the reader, context,

and the magnitude of the units involved. For example, “a few minutes” could mean

around 5 to 10 minutes, while “a few months” is more likely to be around 2 to 3.

An analysis of these types of phrases was performed to determine what the consensus

was in the i2b2 Gold Standard data set to inform the development of rules to convert

these expressions from SCATE to TimeML.

An analysis of temporal expressions having the “APPROX” attribute set in the

i2b2 Gold Standard revealed inconsistencies as to the exact numerical value with

which these phrases were annotated. This was especially true for the modifier words

“several” and “few”. Numbers associated with “several” include 2, 3, 4, and 5.

Numbers associated with “few” include 2, 3, and 4. Numbers associated with “many”

include 5, 10 and 30. Even the same temporal expression was annotated with different

values. For example, “several days” is coded as “P3D” in one document, and “P4D”

96

in another. Similarly, “many days” is coded as P10D in one document, and P30D

in another. This inconsistency makes it very difficult to correctly annotated these

phrases and may impact performance.

In Chrono, these approximate modifiers were set to be a consistent value based

on the average gold standard annotations and the descriptions for these terms on the

LSAT exam∗. In Chrono, the terms “few” and “several” are set to “3”, and “many”

is set to “10”. Plural time expression, like “weeks”, without a number or approximate

modifier are set to “2” with a modifiers of “NA”, and any singular period or interval

is defaulted to a value of “1” with a modifier of “NA”.

5.2.2 Conversion Performance

After updating Chrono to output SCATE annotations into TimeML format we

assessed it’s “out-of-the-box” performance. The i2b2 evaluation script was run to

generate the aggregate performance of Chrono annotations for only TIMEXs and

using overlapping span. Overlapping spans was chosen as Chrono spans are not

directly coded to i2b2 preferences (such as including punctuation); thus, it is enough

to know our spans overlap, which means we annotated approximately the correct

phrase. Table 9 shows the overall Precision to be 0.56, Recall 0.81, and F1 0.66, which

(except for Precision) are better than even the improved performance of Chrono on

the THYME corpus.

Performing an error analysis of Chrono’s performance on the training data set

revealed that the low Precision is due to Chrono annotating a lot of relative temporal

and age-related expressions that i2b2 does not. For example, the term “recent” in

the phrase “...go but not on home 02 with recent FEV1 27% of predicted value”,

∗
https://www.powerscore.com/lsat/help/lsat-quantity-terminology.cfm

97

and the term “now” in the phrase “...kidney transplantation and now has good graft

function” provide ordering information in the clinical note for events, but are not

annotated by i2b2 because they cannot be directly linked to a frequency, duration,

date, or time. Age-related phrases include “28-year-old” and “72 years”, which are

both specifically annotated in SCATE but not in i2b2. Additionally, Chrono was

missing many temporal clinical abbreviations, such as “bid”, and was unable to parse

2-place dates formatted as “MM/YY” or “DD/MM”. Additionally, Chrono missed

phrases like “postoperative day 2”. As Chrono is primarily rule-based, these stylistic

writing differences between the THYME data set and the i2b2 clinical notes were

not coded. Thus, further improvements to Chrono were made to account for these

additional elements.

Additional sources of error include differentiating DURATION and DATE types.

Chrono is coded to convert all SCATE Periods and Calendar Intervals to DURATION

types in TimeML. However, some of these mentions are actually annotated as DATE

types in the gold standard. For example, in the phrase “One week prior to presen-

tation , he had chest pain..” the temporal expression “One week prior” is coded by

Chrono as a DURATION, but in the gold annotations it is a DATE that is set to

the day one week prior to the admission date. Similarly, phrases such as “On post-

operative day 4” are annotated as a DURATION of 1 day by Chrono, but are given

a specific date in the gold annotations. Both of these phrases require an anchor time

and interval delta from the anchor time in order to calculate the date accurately. At

the time, these errors were few compared to the lexical issues mentioned previously.

Thus, these errors were not addressed in the next round of Chrono modifications,

which was focused on improving Recall performance.

98

5.3 Improvements

The next round of improvements made to Chrono were focused on improving

the Recall. The Precision numbers will naturally be lower because Chrono was built

to identify a wider range of temporal expressions than what was annotated in i2b2.

Thus, we focused on improving Recall first, followed by the Value Accuracy.

5.3.1 Clinical Abbreviations

The i2b2 data set contained a number of clinical abbreviations that actually

represented a frequency. For example, “bid” represents “twice a day”. To account for

this, a new dictionary was created that contained a large list of temporal abbreviations

used in clinical settings†. All of these abbreviations represented frequencies, thus,

a new Frequency method was created to parse these phrases. Currently, only the

abbreviations are parsed as frequencies, and none of the properties are being set.

Future work will require setting the properties correctly and identifying frequencies

that don’t include abbreviations.

5.3.2 2-Place Dates

Two-place dates are tricky. They can either be of the format MM/YY, M/YY,

MM/YYYY, MM/DD, or M/DD. If a 4-digit year is found, then it is unambiguous

as to which place is a day, month, and year. However, if a 2-digit year is present, or

the format is NN/NN or N/NN, it is unclear as to which place refers to day, month,

and year.

Initially, Chrono was not recognizing 2-place dates at all as it looked for the

standard 3-place format. Upon editing the code to identify 2-place dates as well,

†
https://en.wikipedia.org/wiki/List of medical abbreviations: B

99

the issue became differentiating dates from test results and the formats MM/YY,

M/YY, MM/DD, and M/DD. Chrono deals with this issue by constraining 2-place

dates to have specific ranges of values. In a string with the format XX/NN or X/NN,

the X or XX must be a numerical value between 01 and 12. If it is not the string

is considered to not be a date. If the first place is determined to fit in the range

for a month, the then second place must be between 1 and 31 to be classified as

a day. If the second place is greater than 31 then it is classified as a 2-digit year.

Now, this will of course run into situations where these rules will prohibit the date

value from being interpreted correctly. For example, the string “01/10” could mean

January 2010 or January 10th. Chrono would assign the later value to this string.

While this may seem like a large issue, usually, when dates between 1/1/2000 and

beyond are now relayed, the full 4-digit year is written for clarity, so we expect to not

have too many issues with these rules. However, future work could include a machine

learning algorithm to use the context of the passage to determine if the last 2 digits

are representing a year or a day.

5.3.3 Improved Performance

Upon implementation of identifying clinical abbreviations and 2-place dates,

Chrono’s performance on the i2b2 training data set increased to a Precision of 0.64,

Recall of 0.91, and F1 value of 0.75 9. Property attributes for Type, Value, and Mod-

ifier also increased, but are still below those of the state-of-the-art systems submitted

to the i2b2 Temporal Challenge in 2012. Running Chrono for the first time on the

unseen Evaluation data set from the i2b2 challenge resulted in similar performance

to the improved training run with just a 0.01 drop in Precision, Recall, and F1.

Even in the Evaluation corpus we see that Precision is low and pull the F1 value

down due to Chrono annotating additional types of temporal tokens not annotated

100

Run Type Precision Recall F1 Type Accuracy Value Accuracy Modifier Accuracy

i2b2 Training

Out-of-Box 0.56 0.81 0.66 0.49 0.45 0.66

Improved 0.66 0.92 0.77 0.60 0.54 0.79

Improved w/o relative 0.78 0.92 0.84 0.60 0.55 0.79

i2b2 Evaluation

Improved 0.65 0.90 0.75 0.60 0.54 0.80

Improved w/o relative 0.78 0.90 0.84 0.60 0.54 0.80

Table 9. Chrono’s performance on the i2b2 Training and Evaluation data sets.

by i2b2. In order to assess how much these tokens are affecting the Precision, we

implemented a toggle in Chrono to turn off the annotation of relative and vague

temporal tokens such as “briefly” and “recently”. Table 9 shows the changed results

with this toggle turned on. As can be seen, removing these relative terms increased

the Precision and F1 measure without affecting the Recall or other properties, which

affirms these extra terms were the issue.

5.4 Error Analysis on Evaluation Corpus and Comparison to Top Systems

An advantage of using the i2b2 data set is that they provide the output of the

top 10 systems from the 2012 i2b2 Temporal Challenge, which can be analyzed and

compared with new systems. Prior to performing an error analysis of Chrono’s per-

formance on the evaluation data set, a detailed error analysis of a few top performers

from the i2b2 challenge was done to gain insight into the types of problems these

systems had with this data and then compare that to the types of problems Chrono

is having with this data.

5.4.1 Chosen Top i2b2 Systems

Using the performance results from the TIMEX section of Table 2 in Sun, et al.

[21], we chose to analyze the TIMEX output of the following 3 systems:

101

System System Type Precision Recall F1 Type Accuracy Value Accuracy Modifier Accuracy

Mayo Rule-based 0.88 0.92 0.90 0.86 0.73 0.86

MSRA Hybrid 0.88 0.95 0.91 0.89 0.72 0.89

Vanderbilt Rule-based 0.83 0.91 0.87 0.85 0.70 0.85

Chrono Hybrid 0.78 0.90 0.84 0.60 0.54 0.80

Table 10. Performance of top systems from the 2012 i2b2 Temporal Challenge on the

full evaluation data set along with Chrono’s performance.

1. Mayo Clinic: The top performing rule-based system primarily using regular

expressions.

2. Vanderbilt: A mid-range performing, rule-based system that was built on top

of HeidleTime, a top performing general domain temporal tagger.

3. Microsoft Research Asia (MSRA): The top performing hybrid system utilizing

rules, conditional random fields, and support vector machines.

Overall performance on the evaluation data set was re-calculated for these sys-

tems utilizing the provided system outputs and the evaluation scripts from the i2b2

data. These results are provided in Table 10 and match the results reported in Table

2 of Sun, et al. [21].

5.4.2 Error Analysis Strategy

Providing a detailed error analysis of all files in the evaluation data set would be

time consuming, thus, a subset of files were chosen for analysis. To obtain the most

informative files the i2b2 file-level evaluation results from the Mayo system were used

to identify files with any one of Precision, Recall, or Value Accuracy that was close to

or less than 0.75. These specific metrics were chosen as they are directly responsible

for the ranking of systems in the i2b2 challenge, and they assess distinctly different

aspects of each system’s performance. The Mayo system what chosen to obtain

these files initially because it was the top performing rule-based system and this

102

System System Type Precision Recall F1 Type Accuracy Value Accuracy Modifier Accuracy

Mayo Rule-based 0.79 0.87 0.83 0.73 0.48 0.79

MSRA Hybrid 0.81 0.95 0.87 0.88 0.59 0.86

Vanderbilt Rule-based 0.74 0.89 0.81 0.80 0.52 0.82

Chrono Hybrid 0.71 0.87 0.78 0.50 0.44 0.76

Table 11. Performance of top systems from the 2012 i2b2 Temporal Challenge and

Chrono on the poor performing files from the evaluation data set.

analysis was meant to identify what types of phrases rule-based systems have trouble

annotating and normalizing. Running this same analysis for the top hybrid system,

MSRA, revealed no additional file that added to the list of difficult types of temporal

phrases. Thus, the resulting list contained 18 files from the i2b2 evaluation data set

that seem to be the most difficult files for rule-based and hybrid systems to parse.

Table 11 shows the performance of the selected metrics of each top i2b2 system and

Chrono for each of the 17 difficult files.

5.4.3 Top System Error Analysis Results

Analysis of the top i2b2 rule-based (Mayo and Vanderbilt) and hybrid (MSRA)

results on the selected 18 low-performing files revealed several types of errors that

each of the systems consistently made on the same types of temporal expressions:

• Gold Standard: Two of the poorest performing files were due to errors in the

gold standard annotation.

• Lexical: Certain types of tokens were not recognized as temporal, or longer

phrases were broken up so much the correct value could not be determined.

• Frequency: Some frequencies were either missed completely or phrases were

incorrectly annotated as a frequency.

• DURATION vs DATE: Systems had a hard time determining if certain

103

vague or relative temporal phrases should be annotated as a DATE type or

DURATION type.

• Anchor Time: Systems had trouble choosing the correct anchor time to cal-

culate dates that were referred to by relative temporal expressions.

• Delta Values: Errors in identifying how much time to add or subtract from

an anchor time to resolve a relative temporal expression.

In the following paragraphs, each of these error types is discussed with specific

examples provided from each of the three top performing i2b2 systems. Following

this detailed assessment of the top systems is a comparison to how Chrono performed

on these same files.

Gold Standard errors include issues either with missing annotations in the gold

standard file, or other problems related to the text or gold standard annotations that

could be corrected to improve performance. Two gold standard annotation files were

found to contain two different types of errors that lead to poor performance by all

systems. One file had very poor Precision (around 0.3) with high Recall and value,

which was an odd pattern compared to the rest of the chosen 17 files. This was cause

by each of the systems annotating several 2-place dates that were not included in

the gold standard. Looking into this it was found that these actually were dates and

should have been annotated by the gold standard, however, it looked like the gold

file was only half completed. In a second file, both Precision and Recall were high

in all three systems, but the value accuracy was very poor across the board (around

0.25). Further investigation revealed the admission and discharge dates being from

the year 2014, but in the actual text dates are given the year 2015. Additionally,

many “POD#X” and “HD#X” phrases are included referring to postoperative days

and hospital days. The annotators marked some of these as in the year 2014 and

104

some in the year 2015. Thus “HD#3” was annotated to be 2/23/2014, but “HD#5”

has the value 2/25/2015. Thus, the poor performance on these two files is due to

incomplete or inconsistent annotations. If these issue had been corrected in the gold

standard files, then the systems would have performed well on both.

Lexical errors include missing tokens that are annotated as temporal in the gold

standard, annotating tokens as temporal that are not in the gold standard, or splitting

up temporal phrases to a degree that causes incorrect value normalization. Overall,

all 3 systems had few lexical errors in the chosen set of files; however, the ones they did

have were usually consistent across the systems. The errors that did occur included

all three systems missing the phrases “three cycles” and the token “one” in “one

dose”, both of which were annotated as a FREQUENCY in gold. The two rule-base

systems only annotated the “day” token in the phrase “day +11” where the hybrid

system captured the full phrase. Similarly, the rule-based systems missed annotating

the phrases “3 / week”, “14d”, and “2 wk”, but the hybrid MSRA system did capture

all these phrase; however, it did not assign the correct type to any of them. With

respect to breaking up phrases, all three systems broke up the phrase “daily for four

days” into “daily” and “four days”. Mayo and Vanderbilt only annotated “weeks” in

the phrase “one and a half weeks”, and MSRA missed annotating the token “later”

in the phrase “A few days later” where the two rule-based systems captured the full

phrase. Finally, the hybrid method from MRSA was the only one of the three to

consistently annotate the token “sat” in phrases like “and o2 sat stable” as a DATE

when it was actually referring to oxygen saturation.

Frequency errors included lexical issues where frequency phrases were not an-

notated at all, or where phrases were incorrectly flagged as a frequency. The rule-

based systems from Mayo and Vanderbilt seemed to bear the brunt of these errors

as their coded rules were unable to take context into account for phrases like “5 mg

105

x 10 d” where it marked “x 10” as a FREQUENCY, however, the gold annotations

marked “10 d” instead as a DURATION. The hybrid system from MSRA was able

to annotate these correctly. Additionally, it seems the rule-based systems prioritize

a FREQUENCY annotation over DURATION both in the example above and with

the phrase “times one month”. Both Mayo and Vanderbilt only annotated the to-

kens “times one” and missed the “month” leading to this phrase being incorrectly

annotated as a FREQUENCY when it should have been a DURATION. The MSRA

system correctly captured the entire phrase “times one month” and gave it the correct

DURATION temporal type. Finally, all three systems had trouble with the phrases

“with a Vision stent , 3 x 18”, “negative CK X4”, and “negative troponin X4” that

were all from the same file. All systems annotated the tokens “x 18” and “X4” as

FREQUENCY types when they were not included in the gold standard as a temporal

phrase.

DURATION vs DATE errors are those where a temporal phrase is marked as a

DURATION type but should have been a DATE, or vice versa. Many DATE types are

easy and straightforward to identify, such as the phrase “January 3, 2021”; however,

temporal phrases that are referential or relative to an event or another time are more

difficult. For example, in the phrase “a followup appointment is recommended in two

weeks” the temporal phrase “two weeks” is referring to a specific date at which the

next appointment should occur with the referential or anchor date being the time of

the current visit (generally accepted as the document creation time unless otherwise

stated in the text), so this would be annotated as a DATE type and given a specific

date as the value in the TimeML schema. Table 12 lists the 17 phrases that tripped

up at least one of the top systems with the correct type classification of DATE or

DURATION. Mayo correctly classified only 3 while Vanderbilt did a little better to

get 7 correct, and the hybrid system from MSRA performed the best with 9 out of

106

17 correct. In the following discussion of these errors we are only interested in the

correct Temporal Type classification and not the actual value. Value accuracy will be

discussed for many of these same phrases in the Anchor Time/Interval Delta section

below.

Three phrases (1, 2, and 3 in Table 12) were incorrectly classified by all systems.

In the SCATE schema, each of these three phrases would be listed as a Period type,

however, in the TimeML schema two are DATE types (phrases 1 and 2) and one

is DURATION (phrase 3). The key difference is that the two DATE type phrases

are referring to a discrete event that will happen in one year (a CT scan) or one

month (an ultrasound), whereas the DURATION phrase is referring to an event that

has continuously happened over the course of three days (black stools). Phrase 3 is

probably among the most difficult for any system to parse because it requires prior

knowledge that the event of “black stools” is not discrete and can occur over multiple

days.

Several phrases were consistently classified incorrectly by the Mayo and Vander-

bilt systems. These include phrases 4, 5, and 6 in Table 12, which all reference dates

in the past as indicated by the word “prior”. Each of the rule-based systems seemed

to miss this key word and assign these phrases to the DURATION type when they

should have been a DATE. The hybrid MSRA system classified these instances cor-

rectly as a DATE; however, another instance of the word “prior” appears in phrase 7

and was classified correctly by Mayo as a DURATION, but incorrectly by Vanderbilt

and MSRA as a DATE. Interestingly, phrase 8 also contains the token “prior” and

is consistently classified incorrectly by Mayo as a DURATION, however, unlike the

other phrases that include the word “prior”, Vanderbilt identified this one correctly as

a DATE along with MSRA. This indicates that each system may have a rule dictat-

ing priority over how these types of phrases are classified that potentially include key

107

context words. Vanderbilt may have included the key word “until” in its rule-base,

which may have led to the correct classification for this phrase.

The system from Mayo had particular trouble annotating the phrase “the day”

that appeared twice in 2 files (phrases 9 and 10 were from one note and phrases 11

and 12 were from another). In each instance the phrase “the day” was annotated as

a DATE by the gold standard, however, Mayo marked these as DURATION types

while Vanderbilt and MSRA correctly classified them as DATE. Note the context for

each instance of the same phrase “the day” is different for each occurrence. This

actually leads to the values being different for each, however that is related to anchor

time issues and will be discussed subsequently. A third file also contained the phrase

“the day” (phrase 13), but gold annotated “the day PTA”, which means “the day

prior to admission”. Again, Mayo defaulted to classifying this as a DURATION while

Vanderbilt and MSRA correctly identified it as a DATE type.

Out of all 17 phrases, Mayo only got 3 correct (phrase 7, 14, and 15). As discussed

above, Mayo most likely has a rule that classifies any phrase such as “two weeks” as a

DURATION as it did this consistently regardless of the context. Interestingly, phrases

14 and 15 were both classified correctly by Mayo and incorrectly by MSRA. Both of

these phrases include the key context word “later”, which was probably the signal

word for a DATE classification in Mayo’s system and was not annotated as part of

the phrase by MSRA. Vanderbilt also classified phrase 14 correctly and annotated the

word “later” as part of the phrase, but got phrase 15 wrong as it missed annotating

the key context word “later” indicating this was a DATE and not a DURATION. This

may have been the result of Vanderbilt’s system using different rule sets to annotate

these two phrases that handled the token “later” differently.

For the last 2 phrases listed in Table 12, phrases 16 and 17, neither Mayo nor

Vanderbilt recognized these as temporal phrases. They were identified by MSRA

108

as temporal, but the temporal type classification was wrong on both accounts. To

normalize both of these phrases correctly, knowledge of clinical shorthand is required

(e.g. “d/c” means discharge) and an understanding of the context and type of event

(continuous or discrete) is needed. Even if MSRA used a machine learning module to

classify temporal phrases as DATE or DURATION (note, it is unknown if they did),

these two phrases would probably still present a challenge.

Finally, lets briefly revisit phrases 7 and 8, which are both from the same file,

and both contain the same temporal phrase “two weeks prior”, but one is annotated

as a DATE and the other as a DURATION. All three systems were consistent in

annotating these phrases and thus, each got one right and one wrong. This indicates

static rules may have been implemented that do not take all the context into account

in order to classify these phrases correctly. The complex and sometimes subtle con-

textual clues that humans can pick up on easily are clearly demonstrated throughout

all of the examples in Table 12 where even the same temporal phrase can have a dif-

ferent meaning depending on the context (and as we will see in the next section can

have different values as well). Thus, developing an exhaustive set of rules to identify

any DURATION or DATE in any context is infeasible due to the variety of potential

lexical and semantic forms; however, a machine learning model may be able to pull

this off with the right features. While it is unknown if the MSRA system actually

used a machine learning model for this task, it is clear that this system did perform

better than either of the two rule-based systems on these difficult phrases.

Anchor Time and Delta Value errors go hand in hand, so will be discussed

jointly. Anchor times are calendar dates used as the starting point for calculating the

actual dates of a relative temporal phrases. For example, in the phrase “two weeks

prior to admission” the anchor time would be the date of admission. To calculate

the calendar date being referred to in this phrase you would also need to identify the

109

ID Phrase Gold Mayo Vanderbilt MSRA
1 “...and a repeat CT scan in 1 year.” DATE DUR DUR DUR
2 “A repeat head ultrasound is recom-

mended in one month...”
DATE FREQ DUR DUR

3 “Three days ago began to develop black
stools...”

DUR DATE DATE DATE

4 “...laprascopic cholecystectomy 7 weeks
prior to admission...”

DATE DUR DUR DATE

5 “...during his most recent admission 1 year
prior .”

DATE DUR DUR DATE

6 “...HSV outbreak occurred on 2017-09-13
approximately one week prior to delivery
.”

DATE DUR DUR DATE

7 “Over the two weeks prior to admission...” DUR DUR DATE DATE
8 “...chronic mild dyspnea on exertion until

two weeks prior to admission .”
DATE DUR DATE DATE

9 “...pain was intermittent through the
day...”

DATE DUR DATE DATE

10 “...it had essentially started earlier in the
day...”

DATE DUR DATE DATE

11 “...required a dilt gtt on the day prior to
call-out...”

DATE DUR DATE DATE

12 “...she was transitioned to PO diltiazem
on the day of call-out .”

DATE DUR DATE DATE

13 “...daughter says that on the day PTA...” DATE DUR DATE DATE
14 “A few days later she complained of dizzi-

ness .”
DATE DATE DATE DUR

15 “...watched after his initial diagnosis , but
six months later he developed...”

DATE DATE DUR DUR

16 “...treated with levaquin on the floor and
will complete a 14d course at rehab .”

DUR - - DATE

17 “...will see them again 2 wk after d/c...” DATE - - DUR

Table 12. Temporal phrases that were hard to correctly classify as a DURATION or

DATE temporal type. Gold standard temporal phrases are italicized and

type classifications are in bold green if they match gold and colored red

otherwise.

value (i.e. how many days) to add or subtract from the anchor time, which we refer

to as the Delta Value. Anchor Times and Delta Values are only valid for relative

temporal phrases classified as a DATE type, and these errors were the most pervasive

throughout all poor performing files and across all systems making Anchor Time and

Delta Value errors the top cause of poor performance. Table 13 lists several example

110

ID Phrase Gold Mayo Vanderbilt MSRA

1 Yesterday morning , he developed... 5/12/2006 11/16/2006 5/13/2006 2003

2 On physical exam today... 5/16/2006 11/16/2006 5/13/2006 5/13/2006

3 Prior to discharge today... 5/16/2006 6/18/2006 6/18/2006 5/16/2006

4 Cholangiogram on postoperative day

number two showed...

8/26/2009 8/19/2009 8/26/2009 8/24/2009

5 Cholangiogram on postoperative day

number two...At the time...

8/26/2009 - 8/26/2009 8/24/2009

6 On postoperative day number 17... 9/10/2009 9/3/2009 9/10/2009 9/10/2009

7 On postoperative day number 17...At

the time...

9/10/2009 - 9/10/2009 9/10/2009

8 Mother presented on day of delivery

with preterm labor...

2016-05-05 - - 2016-05-05

9 ...day of life two... 2016-05-07 2016-05-06 2016-05-06 2016-05-05

10 ...day of life 18... 2016-05-23 2016-05-22 2016-05-22 2016-05-05

11 Antibiotics were discontinued on day of

life three...

9/24/2017 9/24/2017 9/24/2017 9/22/2017

12 ...required a dilt gtt on the day prior to

call-out...

2/17/2013 - 2/21/2013 2/18/2013

13 ...transitioned to PO diltiazem on the

day of call-out .

2/18/2013 - 2/21/2013 2/21/2013

14 ...was followed by urology during her

stay and will see them again 2 wk after

d/c...At this time , urology will coordi-

nate removal of...

3/13/2013 2/21/2013 2/21/2013 2/21/2013

15 ...underwent cardiac catheterization to-

day...

6/10/2015 5/4/2015 5/4/2015 9/2/2015

16 “...until one and a half weeks prior to

admission ... was prescribed cortisone

drops . A few days later she com-

plained of dizziness .”

12/21/2009 1/3/2010 12/30/2009 -

17 ...with chronic mild dyspnea on exer-

tion until two weeks prior to admission

.

4/6/2012 - 4/6/2012 4/19/2012

Table 13. Temporal phrases for which it was hard to correctly identify the Anchor

Time and/or Delta Value. Gold standard temporal phrases are italicized

and assigned values are in bold green if they match gold and colored red

otherwise.

111

phrases that had an Anchor Time or Delta Value error by at least one system (the

full table can be found in Supplementary Table S1. In total there were 50 phrases

that the systems had trouble on from the poor performing files. Mayo got 2 dates

correct, MSRA got 8 correct, and Vanderbilt performed the best by identifying 11

dates correctly, primarily due to a single file.

Through the error analysis it became clear that these systems attempted to

employee complex logic to ascertain the anchor time for some relative phrases. Most

of the time, phrases like “at this time” were annotated correctly using either the date

of admission or discharge as the date these phrases references. However, other phrases

were more difficult, and one even required a multi-step calculation based on context.

Some of the difficult phrases caused errors from:

• Context switching with notes written on multiple days.

• Referencing multiple days of care as “postoperative day” or “day of life”.

• Knowing when the admission or discharge date is the anchor time.

• Using the last annotated date as the anchor time.

• Upstream annotation errors leading to a cascade of downstream errors.

Deciphering when the context switches from being written upon admission to

being written on discharge was difficult for all systems. Phrases 1, 2, and 3 in Table

13 relay some phrases that include the temporal words “yesterday” and “today” in

the same file, however, one has the admission time as an anchor while to other refers

to the date of discharge. According to the gold annotations, the phrase “Yesterday

morning” was referring to the day prior to admission, which was 5/12/2006, and the

phrase “today” referred to the day of discharge. The phrase “Yesterday morning”

112

was included in the “HISTORY AND REASON FOR HOSPITALIZATION” section

of the note, while the phrase “today” was in the “HOSPITAL COURSE” section. All

three systems calculated a different, and incorrect, date for the “yesterday” phrase.

Vanderbilt seems to assume it was the day of admission so was off by 1 day. Mayo

assigned a date of 11/16/2006, which seems to have come from a DATE annotation in

the previous sentence with the phrase “...history of CAD status post non ST elevation

MI in 11/17 who presents with chest pain...”. Mayo annotated the token “11/17”

as a date when it was not annotated by gold. From this file, and many others, it

seems the Mayo system uses the most recently annotated DATE as the anchor for

many of these relative phrases. Similarly, the MSRA system may have similar logic

as it annotated the phrase “Yesterday morning” as the year “2003”. Looking at the

context, it seems to have gotten this from the prior phrase “In 2003 , he had..”.

While Mayo and Vanderbilt annotated “2003” as a year, they did not consider it as

an anchor date. For the “today” term, there are two phrases in this file (phrases 2 and

3 in Table 13), and gold gives the same value (the discharge date) to both of them.

For phrase 2, Mayo is still using the 11/16/2006 date from the previous section as the

anchor time, while Vanderbilt and MSRA assume “today” is refering to the admission

date. Interestingly, for the second “today” phrase the context points directly to the

day of discharge and MSRA was able to get the correct date; however, both Mayo

and Vanderbilt have the date 6/18/2006. This seemingly came from a new DATE

having been annotated in the context prior to this last phrase, “June 18 , 2006 , at

8:30 p.m.”, showing that both Mayo and Vanderbilt have rules for anchor times that

depend on the last annotated DATE regardless of the rest of the context.

Another interesting file included several “postoperative day number X” phrases

followed by “at this time” phrases. For this file, it was important to keep track of the

most recently annotated date as the narrative was describing the events after a surgery

113

event. The systems seemed to be able to do this, however, choosing the correct anchor

time was difficult for Mayo and identifying the delta value was a challenge for MSRA.

The Vanderbilt system was able to calculate the correct dates for all instances in this

particular file. Phrases 4 through 7 in Table 13 show a few example phrases from

this file that will now be discussed. For this particular file, the admission date was

8/17/2009. One may assume that a surgery would have been performed on the day of

admission in most cases, and this is exactly what the Mayo system does. Mayo was

able to correctly identify the delta values to calculate the remaining “postoperative

day” phrases; however, because this system assumed the anchor time was the day of

admission the values were consistently off by a few days. In actuality, the key phrase

“the patient was taken to the Operating Room on 2009-08-24” should have set the

anchor time for all the postop phrases. Vanderbilt was able to identify this correctly,

and thus obtained all correct dates that matched the gold annotations. MSRA was

also able to ascertain this anchor date; however, this system was unable to process

the delta value correctly when they were spelled out, which resulted in most of the

postop phrases being set to the day of the surgery. This conclusion was reached

because MSRA was able to obtain the correct calculated “postoperative day number

17” (phrase 6) when a number was used instead of a word. In addition, all systems

were able to assign the “correct” values to the various “at this time” phrases, as these

phrase values match the postop day date assigned in the previous sentence (phrases

5 and 7). The performance of each system on this file indicates the importance of not

just assuming an operation or other medical event happened on the day of admission

and instead looking for contextual clues as to what the anchor time should be for

each phrase.

Similar to the “postoperative day number X” phrases in the previous paragraph,

another file described the care of a newborn throughout the first month of its life

114

referring to days of birth as “day of life X”. Similar to the issues MSRA had above

with not recognizing any delta values that were spelled out, it assigned all values to be

the day of admission. Both Mayo and Vanderbilt did perform calculations, however,

they were off from the gold standard consistently by 1 day. Further investigation

revealed that these two systems were using the day of admission as the first day of

life; however, gold says the first day of life was the day after admission. This is a

bit difficult for even a person to decipher because of phrase 8 “Mother presented

on day of delivery with preterm labor...”, which would indicate that the first day

of life may be the admission date. However, further reading reveals the context of

phrase 10 includes a specified date: “...was discontinued on 05-23 (day of life 18).”

Using this information to back-calculate when day of life 1 was we end up with the

anchor date of 5/6/2016 instead of the admission date 5/5/2016. Notably, identifying

this particular anchor date is a very complex task and requires high-level reasoning.

Thus, identifying a single algorithm or machine learning model to calculate this will

be challenging if possible at all. The Mayo and Vanderbilt systems were only a day

off and had all the delta values correct, so this doesn’t seem too bad; however, in the

previous file discussing postoperative event the operation event was more than a day

away from the admission date, so it is not always good to assume the admission date

is the anchor date. Assuming the day of delivery is the admission date probably does

catch many of these types of files, for example, phrase 11 in Table 13 is from another

file and references “day of life three”. Both Mayo and Vanderbilt get it correct by

assume the admission date was the day of delivery, and MSRA has the now familiar

problem of assigning this phrase the anchor time (admission date) because it can’t

parse out “three” as a delta value.

A fourth file provides even more challenges for these systems in identifying anchor

times. This file references the day of admission, the day prior to admission and a day

115

2 weeks after discharge (phrases 12 through 14). Mayo actually fails to annotated

2 of these 3 phrases as a DATE to start with and has them listed as DURATION

types. For phrase 12, MSRA is the closest, but misses the key word “prior” and ends

up assigning this phrase as the day of admission when it should have been the day

prior to admission. Vanderbilt seems to be using the last annotated date from several

sentences prior in the phrase “...was weaned off her pressors on 02-21...” as the anchor

date as it doesn’t recognize the term “call-out” to indicate the day of admission. Both

Vanderbilt and MSRA also use this same date for the next 2 phrases (13 and 14) “the

day” and “at this time”, both of which require knowledge of the context to calculate

correctly. Phrase 13 should be more straightforward with the immediate context.

Instead of “the day prior to call-out” from phrase 12, we have a shift in context for

phrase 13 with “the day of call-out”. Phrase 14 requires context from further away

and over multiple sentences. The full phrase is “...was followed by urology during her

stay and will see them again 2 wk after d/c...At this time , urology will coordinate

removal of...”. Note the phrase “will see them again 2 wk after d/c” that refers to a

date 2 weeks after discharge. This requires the parsing of the token “d/c”, which none

of the systems seem able to do, and the knowledge of they will be seeing “urology”

again and “urology” will be the one to coordinate a procedure, so this time it would

be correct to use the previous date obtained from “2 wk after d/c” for the phrase

“At this time”. Since none of the systems classified “2 wk” as a DATE, they didn’t

have that information to go off of. If they did then the rules shown previously about

using the last annotated date would probably have led to obtaining the correct anchor

time in this instance; however, that doesn’t always work. For example, in phrase 15

“...underwent cardiac catheterization today...”, the term “today” was annotated by

all 3 systems, but the date was calculated incorrectly, because all 3 systems used

some other previously annotated date as the anchor instead of setting “today” as the

116

