
Virginia Commonwealth University Virginia Commonwealth University 

VCU Scholars Compass VCU Scholars Compass 

Theses and Dissertations Graduate School 

2022 

Machine Learning (ML) - assisted tools for enhancing security Machine Learning (ML) - assisted tools for enhancing security 

and privacy of edge devices and privacy of edge devices 

Santosh Kumar Nukavarapu 
Virginia Commonwealth University 

Follow this and additional works at: https://scholarscompass.vcu.edu/etd 

 Part of the Computer Engineering Commons 

 

© The Author 

Downloaded from Downloaded from 
https://scholarscompass.vcu.edu/etd/6958 

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It 
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars 
Compass. For more information, please contact libcompass@vcu.edu. 

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F6958&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarscompass.vcu.edu%2Fetd%2F6958&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/6958?utm_source=scholarscompass.vcu.edu%2Fetd%2F6958&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


©Santosh, March 2022

All Rights Reserved.



MACHINE LEARNING (ML) - ASSISTED TOOLS FOR ENHANCING SECURITY

AND PRIVACY OF EDGE DEVICES

A Thesis submitted in partial fulfillment of the requirements for the degree of Doctor

of Philosophy at Virginia Commonwealth University.

by

SANTOSH KUMAR NUKAVARAPU

Director: Dr. Tamer Nadeem,

Associate Professor, Department of Computer Science

Virginia Commonwealth University

Richmond, Virginia

March, 2022



Acknowledgements

I express my sincere gratitude to my advisor, Prof. Tameer Nadeem, for his contin-

uous inspiration and guidance in my research work. Prof. Tameer Nadeem has provided

key directional ideas in this research work. His consistent guidance, expertise, and dedi-

cation to providing rigorous review comments helped me improve my subject knowledge

and technical writing skills. I am very grateful to him for providing me the opportunity

to explore and research such an interesting and imperative subject. I would like to

express my sincere thanks to my Ph.D. Committee members, Prof.Ravi Mukkamala,

Prof.Wei Cheng, Prof.Irfan Ahmed, Prof.Preetam Ghosh, and Prof.Tamer Nadeem for

their insightful comments and suggestions to ensure the right path towards my research

progress. I am also thankful to the Professors, Staff, and Students of the Department

of Computer Science, VCU College of Engineering, for their support and help. All of

them contributed to an excellent and inspiring working atmosphere. I am also grateful

and thankful to Mr.Mohammad Ayyat and Dr.Mostafa Abdulla Uddin for their col-

laboration on DDAS/iBranchy and PrivacyGuard projects. Special thanks go to my

colleagues Ms.Hanna B Passandi, Mr.Mohammad Ayyat, and Ms.Norah Alobaidan for

their support and encouragement during this research work. I owe big thanks to my

family members for their love, endless patience, and encouragement. Finally, I would

like to thank God and my family for their blessings, and constant support.

i



TABLE OF CONTENTS

Chapter Page

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 IoT Network based Attacks . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The significance of IoT classification . . . . . . . . . . . . . . . . . . 6
2.3 Generative Adversarial Networks . . . . . . . . . . . . . . . . . . . . 8

3 A security and privacy based Framework for the edge-based IoT devices . . 10

3.1 Network attacks addressed in our work . . . . . . . . . . . . . . . . . 10
3.2 Framework Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 iKnight - A edge based security service for IoT devices . . . . . 12
3.2.2 iPrivacy - A Privacy preserving Service for IoT devices . . . . 14

4 iKnight - Guarding IoT infrastructure using Generative Adversarial Networks 16

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.1 Semi-supervised GAN . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Iknight Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 Iknight Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.6 Iknight Adaptability and Continuous Learning . . . . . . . . . . . . 28
4.7 Iknight at the Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

ii



4.8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.8.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.8.2 Impact of training data and encoding schemes . . . . . . . . . 34
4.8.3 Performance comparison to other classifiers . . . . . . . . . . . 37
4.8.4 Robustness to noise in IoT device Traffic . . . . . . . . . . . . 37
4.8.5 Unknown device type and anomaly detection performance . . . 38
4.8.6 Continual Learning with new classification tasks . . . . . . . . 40
4.8.7 Deployment on Edge Hardware . . . . . . . . . . . . . . . . . 41

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 iBranchy: An Accelerated Edge Inference Platform for IoT Devices . . . . 45

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Static Compression vs Dynamic DNNS (D2NN) . . . . . . . . 46
5.2.2 BranchyNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4 iBranchy Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5.1 Significance of Early Exit on IoT devices Network Traffic . . . 53
5.5.2 Performance of iBranchy’s Edge Deployment . . . . . . . . . . 53
5.5.3 Flexibility and Adaptability of iBranchy to Hardware and

Network Conditions . . . . . . . . . . . . . . . . . . . . . . . . 54
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 DDAS - Dynamic Deep Neural Network Adversarial Attacks for Edge-
based IoT Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3.1 Adversarial Attacks on Conventional DNN Models . . . . . . . 59
6.4 DDAS Attack Threat Model . . . . . . . . . . . . . . . . . . . . . . 60
6.5 DDAS-EarlyExit Attack Design . . . . . . . . . . . . . . . . . . . . 62

6.5.1 DDAS-EarlyExit Loss Function . . . . . . . . . . . . . . . . . 63
6.5.2 DDAS-EarlyExit Model Implementation . . . . . . . . . . . . . 65

6.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.6.1 Attack Performance on D2NN early exit models . . . . . . . . 69
6.6.2 Evaluation of Iterative Robustness Training . . . . . . . . . . . 72

6.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . 73

7 PrivacyGuard: Extreme SDN Framework for IoT and Mobile Applica-
tions Flexible Privacy at the Edge . . . . . . . . . . . . . . . . . . . . . . . 75

iii



7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2 Threat Model and Applications/Flows Identification . . . . . . . . . 76
7.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.4 PrivacyGuard Objectives . . . . . . . . . . . . . . . . . . . . . . . . 78
7.5 Privacy Preserving Schemes . . . . . . . . . . . . . . . . . . . . . . . 79

7.5.1 PrivacyGuard Basic Operation . . . . . . . . . . . . . . . . . . 81
7.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.6.1 Experiments Setup . . . . . . . . . . . . . . . . . . . . . . . . 82
7.6.2 Traffic Shaping Schemes Performance . . . . . . . . . . . . . . 84
7.6.3 PrivacyGuard Programmability and Flexibility . . . . . . . . . 86

7.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . 88

8 MirageNet - Towards a GAN-based Framework for Synthetic Network
Traffic Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.2 MirageNet Applications . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.3 MirageNet Packet Generation Framework . . . . . . . . . . . . . . . 92

8.3.1 Hex stream data collection . . . . . . . . . . . . . . . . . . . . 93
8.3.2 Tokening the data . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.3.3 MiragePkt packet generation model . . . . . . . . . . . . . . . 94
8.3.4 Post processor . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.4.1 Dataset Analysis and Experiment . . . . . . . . . . . . . . . 96
8.4.2 Impact of Training dataset configurations . . . . . . . . . . . 97
8.4.3 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Appendix A List of Publications by the Author . . . . . . . . . . . . . . . . . 104

A.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

iv



List of Algorithms

1 iKnight continuous learning using SGAN . . . . . . . . . . . . . . . . . 32

2 Implementation of EarlyExit-attack-robustness adversarial training . . . 68

v



LIST OF FIGURES

Figure Page

1 Generative Adversarial Network . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 a) Traffic patterns of four different IoT devices: Pulse-Heart rate monitoring
device, Elegato-plug device, and two Flux-lightbulb devices operating at dif-
ferent times. b) Zooming into the traffic of two Flux-lightbulb devices shows
high similarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Framework Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Semi supervised GAN (SGAN) Architecture . . . . . . . . . . . . . . . . . . . 18

5 iKnight Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 iKnight stage 1 and stage 2 model training pipeline . . . . . . . . . . . . . 23

7 iKnight Encoding Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

8 iKnight’s continuous learning across N number of Tasks . . . . . . . . . . . 30

9 iKnight Lightweight transformation using Knowledge distillation . . . . . . 31

10 The accuracy of stage #1 classifier in iKnight’s Device Discovery Engine . . . . 35

11 The accuracy of stage #2 classifier in classifying an unknown device . . . . . . 35

12 The confusion matrix for iKnight stage #1 classifier with packets-with-payload-
only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

13 The change in iKnight’s accuracy of stage 1 classifier with different noise levels . 39

14 The accuracy of iKnight stage #2 classifier of unknown devices using packets-
with-network-independent-header for different type classes (i.e., IoT, Non-
IoT, Malware) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

15 iKnight deployment on Edge Hardware, NVIDIA Jetson Nano . . . . . . . . . . 43

16 iBranchy Accelerated Edge Classifier . . . . . . . . . . . . . . . . . . . . . 50

17 The change in iBranchy exits through training . . . . . . . . . . . . . . . . . . 54

vi



18 The percentage of exits of iBranchy for different device types . . . . . . . . . . 54

19 DDAS-EarlyExit-GAN Attack Model . . . . . . . . . . . . . . . . . . . . . 66

20 The change in iBranchy accuracy under DDAS attacks. . . . . . . . . . . . . . 68

21 The change in iBranchy power consumption under DDAS attacks . . . . . . . . 68

22 The change in iBranchy inference time under DDAS attacks . . . . . . . . . . 68

23 The change in iBranchy branch level exit distribution different DDAS attacks . . 69

24 An illustration of our DDAS-EarlyExit attack . . . . . . . . . . . . . . . . 72

25 Use-case scenario of PrivacyGuard. . . . . . . . . . . . . . . . . . . . . . . . . 81

26 The accuracy of Norm_Pad scheme for different applications and p values. . . . 84

27 The accuracy of Norm_Pad_Delay scheme for different applications and p values. 84

28 The accuracy of Max_Pad_Delay scheme for different applications and p values. 84

29 The precision of Max_Pad_Delay scheme for different applications and p values. 85

30 The power consumption overhead of Max_Pad_Delay scheme. . . . . . . . . . 85

31 The network bandwidth overhead of Max_Pad_Delay scheme. . . . . . . . . . 85

32 Flow policies for traffic shaping schemes. . . . . . . . . . . . . . . . . . . . 86

33 Different research and engineering domains where synthetic network traffic
would have significant impact . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

34 Packet Generation Pipeline using MiragePkt . . . . . . . . . . . . . . . . . . . 92

35 MiragePkT Generation Framework . . . . . . . . . . . . . . . . . . . . . . . . 94

36 Byte Sequence generation through MiragePKT model training . . . . . . . . . . 95

37 Domain length distribution in the dataset . . . . . . . . . . . . . . . . . . . . 98

38 Features of start and end bytes . . . . . . . . . . . . . . . . . . . . . . . . . . 98

39 Performance of MiragePkt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

40 Packet Visualization of MiragePkt using scapy . . . . . . . . . . . . . . . . . . 100

vii



Abstract
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By Santosh Kumar Nukavarapu
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of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2022.

Director: Dr. Tamer Nadeem,
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The rapid growth of edge-based IoT devices, their use cases, and autonomous

communication has created new challenges with privacy and security. Side-channel

attacks are one of the examples of security and privacy vulnerabilities that can cause

inference at Internet-Service Provider (ISP) and local Wi-Fi networks. Such an attack

would leak user’s sensitive information such as home occupancy, medical activity, and

daily routines. Another example is that these devices have weak authentication and low

encryption standards, making them an easy target for malware-based attacks such as

denial of service or launching other network attacks using these infected devices. This

thesis dissertation explored ML-assisted tools to secure the devices from network-based

security and privacy inference attacks. In this thesis, one of our components, securing

edge devices against malware-based attacks or anomalies, focused on building an ML-

assisted security service and evaluating it for different real-world conditions such as

robustness to noise, adaptability to new devices, and less resource-intensive deployment.

Moreover, given the recent trend of adversarial attacks against machine learning models,

we designed a novel edge-based adversarial attack against edge-based machine learning

viii



models and explored techniques to make edge-based network security services robust.

Another component of this thesis focused on building a privacy-preserving service to

obfuscate and minimize the privacy inference on network communication. The main

objective of this component was to evaluate different privacy-preserving techniques such

as traffic shaping and injecting synthetic network traffic for countering the effectiveness

of side-channel attacks.
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CHAPTER 1

INTRODUCTION

1.1 Background

With the phenomenal growth of IoT devices at the edge, many exciting applications

are being enabled, such as remote health care [1], augmented reality [2] and video

analytics [3]. The majority of these devices are connected to the remote servers and

communicate periodically or continuously even without any user intervention [4]. This

cloud-connected architecture has enabled remote monitoring, flexible user control, and

automatic updates of IoT devices. Moreover, these devices can be connected to third

platforms through their remote servers for supporting smart home automation scenarios

using third-party platforms such as IFTTT[5]. The rapid growth of edge-based IoT

devices, their use cases, and autonomous communication has created new challenges

with privacy and security. Side-channel attacks are one of the examples of security and

privacy attacks that can cause inference at Internet-Service Provider (ISP) and local

Wi-Fi networks. Such an attack would leak users’ sensitive information such as home

occupancy, medical activity, and daily routines. Another example is that these devices

have weak authentication and low encryption standards, making them an easy target

for malware-based attacks such as denial of service or launching other network attacks

using these infected devices.

1.2 Motivation

In recent years, machine learning has been adopted in networking and security

domains for classification and regression tasks given its abilities such as high perfor-

mance with accuracy, outlier detections, ability to recognize hidden patterns in data,

1



and less human intervention. To secure IoT devices from different types of network

attacks [6, 7], the IoT/edge applications typically exploit machine learning models

such as Deep Neural Network (DNN) models for different security functionalities such

as traffic classification, device identification, and anomaly detection. However, there

are multiple challenges in building machine learning tools for edge-based devices, such

as the availability of less labeled data due to privacy issues, the ability to incrementally

update existing models for changes in device data such as concept drift, domain exper-

tise for feature engineering. Moreover, the performance of these models when running

on edge-based IoT devices will be significantly impacted by the limitations of the device

resources which will reflect on the performance of these devices. Therefore, it is highly

desirable to develop techniques to optimally accelerate the inference computations of

DNN models in order to enable real-time applications and conserve energy for edge

devices/IoT.

1.3 Research Objectives

In this thesis, we explored the design and implementation of an ML-assisted se-

curity and privacy framework to counter IoT-based network attacks. To realize this,

we build ML-assisted Security and Privacy services with multiple sub-components for

securing the edge devices against security and privacy attacks. In the first part of

the proposal, we explore developing a security service tailored for real-world conditions

edge-based IoT conditions such as robustness to noise, adaptability to new devices,

and less resource-intensive deployment. Moreover, given the recent trend of adversarial

attacks against machine learning models where an adversary can craft malicious inputs

such as malware to be classified as benign, we want to explore how to make security ser-

vices robust. The other significant part of this proposal is to design a privacy-preserving

service to obfuscate and minimize the privacy inference on network communication. The

main objective of this component is to evaluate different privacy-preserving techniques

2



such as traffic shaping and injecting synthetic network traffic for countering the effec-

tiveness of side-channel attacks. Given, many of these devices, such as baby monitoring

cameras, provide sensitive operations and have strict QoS requirements. Therefore,

the edge-based IoT infrastructure should support different security, privacy, and QoS

requirements by enabling network-wide services. Furthermore, given the dynamic net-

work characteristics of these devices, such as mobility, resource-constrained needs (sleep

periods), the network services must be flexible. We explore different techniques to make

our privacy service’s flexible and adaptable for different dynamic environment condi-

tions such as network latency and location using a programmable approach.

Most importantly, in this thesis, we focus on the ability of machine learning-based

models to assist in building these services to enhance the privacy and security of edge-

based IoT devices. One of the ML models that we explore in this thesis is Generative

adversarial Networks (GANs) that have shown excellent ability to mimic the training

data distribution and automatically reverse engineer the training data structure without

any feature engineering. GANs are trained using an adversarial approach where two

networks compete against each other through a adversarial training; this process has

been shown to build better generative and discriminative models. We believe that this

feature of GANs can help to solve multiple challenges in the IoT domain. For example,

GANs could create new synthetic data that can help with the privacy challenges, and

the discriminative features will help build better anomaly detection-based systems.

Based on our objectives which we explain in later chapters, we also explore other ML

models based on Knowledge distillation, Dynamic Deep Neural Networks and Continual

learning to build lightweight, flexible, and adaptable machine learning assisted services

required for edge-based scenarios.

3



1.4 Outline of Thesis

We organize the rest of the document as follows: Chapter 2 discusses the different

network-based attacks on IoT devices , describes the attack threat model addressed in

our work and machine learning model details. We then discuss the vision of our frame-

work consisting of network-based security and privacy service services with multiple

sub-components in Chapter 3. Chapter 4 focuses on building an ML-assisted security

service and evaluating it for different real-world edge-based- IoT scenarios. Chapter 5

and Chapter 6 discuss our design for lightweight ML-assisted security service for edge-

based scenarios using Dynamic Deep Neural Networks and their related vulnerabilities

and defenses. Chapter 7 discusses our other component that focuses on building a

privacy-preserving service to obfuscate and minimize the privacy inference on network

communication. Chapter 8 evaluates GANs for network packet Generation, our first

step towards creating a GAN-based synthetic Network Traffic Generation framework

that can assist with the privacy-preserving service. Finally, we summarize our contri-

butions and discuss our future work plan.
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CHAPTER 2

BACKGROUND

2.1 IoT Network based Attacks

In recent years, edge-based IoT devices are found vulnerable for different types of

network-based attacks [6]. One of the main reasons for this vulnerability is the design

and implementation of the network model of these devices. IoT devices are generally

known to have two network subsystems, a keep-alive subsystem and activity-driven

subsystem [8, 9]. The keep-alive subsystem keeps the device connected to the cloud

server and enables the device to receive remote communications [8] while the activity-

driven subsystem sends the periodic application data such as sensor or user activity

events. This type of autonomous network architecture significantly differs from the non-

IoT devices such as laptops and smartphones that generally communicate to remote

servers only on specific user-based application activities. A recent study showed that

IoT devices communicate to cloud servers over 22 days without any user interactions [4].

This type of autonomous communication of the network model makes IoT devices

ubiquitous, thus supporting many beneficial use cases such as home monitoring and

home automation with minimal or no user intervention. However, at the same time,

this type of autonomous communication has made these devices vulnerable to different

side-channel and availability-based attacks. Moreover, given that these network models

have weak authentication and cipher suites during the network communication, the IoT

devices have become vulnerable to many other attacks such as replay, malware, etc. In

this chapter, we first discuss the different types of IoT-based network attacks, briefly

explain the attacks that we address in our work, and finally discuss our framework

design.
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There are different types of network attacks found on IoT devices based on a recent

work of authors who categorized the taxonomy of IoT-based network attacks [6]. The

IoT-based network attacks are classified as passive attacks or active attacks. In passive

attacks, the attacker either eavesdrops on the communication between the device and a

user or server to infer device-specific information to engineer device-specific attacks or

analyzes the network traffic for fingerprinting devices and activities. For active attacks,

the attacker performs various network-based activities such as probing, scanning, or

other activities involving network communication with the devices to launch attacks.

For example, the attacker can try to get metadata about the device by probing, scan-

ning, etc., to find device-specific vulnerabilities. Similarly, the attacker can send old

packets to devices to perform replay-based attacks, given these devices have weak au-

thentication in their network stack implementation. Moreover, some of these attacks

focus on denial of service either by dropping, setting early expiry to active certificates

through fake NTP packets, or adding additional processing by increasing sleep periods

by sending more packets. Finally, malware-based attacks infect IoT devices to launch

further attacks such as distributed denial of service, and spoofing-based attacks extract

sensitive information through packets.

2.2 The significance of IoT classification

The online network model of IoT devices makes them vulnerable to many network

attacks. For example, an attacker can use a publicly available tool such as Shodan [10]

to identify the different vulnerable IoT devices such as cameras connected to the internet

and create bots for their distributed denial of service attacks (DDoS). Recently, Mirai,

an IoT malware, had a network of massive 600,000 devices (bots) at its peak stage and

infected more than 64,500 devices such as IP cameras, TV receivers, and printers within

the first 20 hours of its emergence[11]. Moreover, this online network architecture can

cause side-channel attacks for activity inference at ISP and local WiFi network [7]. The
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traffic traces of different activities of a device can have different signatures based on

[7]. Also, the traffic signatures of the same device with different activities are different.

Recently, researchers have shown different attack models for activity inference [7, 12].

Given that IoT devices have low resource constraints, many security solutions such

as anti-malware solutions deployed on non-IoT devices such as traditional personal

computers, laptops, and phones are ineffective for IoT devices. Moreover, unlike non-

IoT devices, IoT devices are integrated with different third-party apps for automation

purposes and have a larger attack surface due to more autonomous network connections.

Given these issues,special network policies for securing IoT devices needs to be enforced

and therefore having a classifier that can identify the device as IoT or Non-IoT is

essential. The network community is looking to build security and privacy solutions

at edge infrastructure to address the above issues. For example, authors in [13] deploy

software-defined networking models for security purposes by isolating the network traffic

through the CSS vulnerability database and IoT-based classifier for detecting anomalies.

However, to implement and automate any such SDN-based solutions, it is essential to

have an effective classification system that is not dependent on labeled data and manual

feature extraction.

Some of the recent works have proposed convolutional neural networks (CNN) [14]

for network traffic classification [15]. CNNs are a deep learning model that has have

been generally used for image classification [16] and object detection [17]. A CNN based

deep learning architecture uses convolution operation to extract features for spatial

data such as images. Recently, researchers have shown the network traffic has spatial

relationships similar to the images, which can be efficiently processed using CNNs [15].

However, like any other supervised deep learning model, CNN is impacted by labeled

data availability. Recently CNNs as a classifier trained through a semi-supervised

method based on Generative Adversarial Networks (GANs) [18] is emerging as a good

model with less labeled data but high accuracy. As discussed in later chapters, we use
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Figure 1: Generative Adversarial Network

Generative Adversarial Networks to build our components for edge devices’ security

and privacy.

2.3 Generative Adversarial Networks

For many complex generative tasks such as image generation, estimating the prob-

ability distribution of the features of the images is difficult. Generative adversarial

networks (GANs) [18] are known to model unknown complex distributions such as im-

age generation tasks. The GAN model consists of two neural networks, discriminator

and Generator, that form a two-player min-max game where the Generator tries to

generate fake samples. The discriminator tries to identify if the samples are from the

training data (real) or generated from the Generator (fake). As shown in Figure 1, the

generator model accepts as an input a random noise and then transforms this noise to a

fake sample as an output. The min-max game forces the Generator to approximate the

true distribution. Moreover, the training process reaches an optimum solution when

the min-max game reaches a Nash Equilibrium when the Generator’s fake samples are

predicted as fake by the discriminator with a 50% probability. The GAN training con-

sists of simultaneously training the Generator and the discriminator models on small

batches of data known as mini-batch with a fixed size. Each iteration will train the

GAN model with this fixed mini-batch of data points. For a training iteration, the
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Generator is given a batch of random points from the latent space to output a batch

of fake samples. This batch of fake samples is given to the discriminator to predict

if they are real or fake. The discriminator’s loss for predicting fake samples is given

to the Generator, which updates its weights accordingly to generate better realistic

samples. The generator training is called unsupervised training as the generator model

is never exposed to the real data during training. After training, the Generator can

be detached from the GAN model and can be independently used for generative tasks.

Similarly, the discriminator model can be used for many image classification tasks [19,

20]. Very recently, image-based anomaly detection using GAN discriminator has been

proposed [21].
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CHAPTER 3

A SECURITY AND PRIVACY BASED FRAMEWORK FOR THE

EDGE-BASED IOT DEVICES

3.1 Network attacks addressed in our work

This work focuses on addressing two types of attacks: passive traffic analysis-

based side-channel attacks that can cause serious privacy inferences and the need for

anomaly and malware detection to assist with malware-based distributed denial of

service attacks. Below we describe the threat model of each of the network attacks

briefly.

Privacy inference based side-channel attacks :

The broadcasting nature of WiFi exposes IoT and smart devices traffic to eaves-

dropping by adversaries and, consequently, various attacks. Several previous studies

already showed that, even with WiFi encryption (e.g., WPA2), statistical analysis of

side-channel information of WiFi traffic such as packet sizes, data rate, ratio of in-

coming to outgoing packets, inter-packet time, etc. could infer several user-related

information such as user identity [22], user’s online activities [23], and identification

of applications used by the user [24]. The traffic analysis of major commercial IoT

devices like Nest Camera, Amazon Echo (Personal Voice Assistant), Belkin Smart Plug

is found vulnerable to activity inference such as user presence, device interaction and

appliance usage[25]. As an example, Figure 2 a) captures the WiFi traffic of four mobile

applications corresponding to four IoT devices, while 2 b) zooms on the traffic of the

same-type devices. As shown, while the traffic patterns of the two Flux bulbs look very

similar, different IoT devices have different traffic patterns that could be uniquely dis-

tinguished and easily correlated to its corresponding IoT device and even to a specific
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Figure 2: a) Traffic patterns of four different IoT devices: Pulse-Heart rate monitoring device,
Elegato-plug device, and two Flux-lightbulb devices operating at different times. b) Zooming
into the traffic of two Flux-lightbulb devices shows high similarity.

activity/status of the IoT device.

Malware and Anomaly detection :

The online network of IoT model devices makes them vulnerable to malware-based

attacks. For example, an attacker can use a publicly available tool such as Shodan [10]

to identify the different vulnerable IoT devices such as cameras connected to the internet

and create bots for their distributed denial of service attacks (DDoS). Recently, Mirai,

an IoT malware, had a network of massive 600,000 devices (bots) at its peak stage and

infected more than 64,500 devices such as IP cameras, TV receivers, and printers within

the first 20 hours of its emergence[11].

Specifically, our focus is on detecting the attack signatures of various IoT-specific

malware and any new zero-day-based attacks whose signature is unknown. Therefore,

the main objective in addressing malware attacks is to differentiate between benign

devices and malicious malware-based network traffic. In the below section, we discuss

our framework for countering both the side channel and malware-based attacks.

3.2 Framework Vision

Our vision is to design and implement ML-assisted security and privacy-based

network services for edge-based IoT devices. We define a network service as a set of

programmable APIs that dynamically define and configure different network operations

(schemes) with configurable parameters. For example, a privacy-based service can
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have an API method to dynamically enable a privacy-preserving scheme to perform

obfuscation operations such as delay, padding, or spoof network packets. In addition

to this, our service API methods are flexible as they can be mapped to specific device

type policies where a policy is a device type identification for a particular context

(e.g., user location, time, battery level, network load, etc.). Similarly, a security-based

service can have policies to isolate an IoT device if its network traffic is found infected

by malware. To realize our vision, we first design network-based security and privacy

services using ML assisted techniques and then implement them by extending and

deploying SDN components (e.g., Open vSwitch [26]) on WiFi Access Points (in-home

or campus environments) or Proxy server (in open and public WiFi Hotspots).

Figure 3 shows the overall design of our security and privacy framework. The

security component is realized by building iKnight to detect different device types,

malware, and anomalies. Next, the privacy part is realized by building multiple sub-

components, that includes PrivacyGuard - a traffic shaping-based privacy-preserving

service; MirageNet - a synthetic IoT network traffic generation tool and context-based

privacy-preserving service that applies the appropriate privacy-preserving scheme based

on context such as network, sensitivity and location. Next, we briefly discuss each of

these components and their interdependence.

3.2.1 iKnight - A edge based security service for IoT devices

The main objective of the edge-based security service is to identify IoT devices,

their device types (IoT vs. Non-IoT), malware, or anomalies. There are many chal-

lenges in building such a service due to the edge-based IoT device characteristics, less

availability of labeled data, manual feature engineering for different types of devices

from various vendors, ability to infer new devices without needing to re-train the model

from scratch, ability to deploy on an edge-based device with fast inference speed and

light resource consumption. Given these requirements, we build iKnight a multistage
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multi-class classifier-based service to guard the IoT infrastructure at the edge. We

choose to develop the service using a Semi-Supervised GAN and other supporting ML

techniques to implement the requirements for edge-based IoT classifiers. As shown in

the framework diagram, the input to iKnight are the flows of the edge devices, and

the output is the identified device/type/malware or an anomaly. We also built and

evaluated a new approach to deploying lightweight model iBranchy at the edge for IoT

devices security using Dynamic Neural Networks that consume fewer edge resources. We

further evaluated the robustness of these edge-based machine learning models against

adversarial attacks by building DDAS, a GAN-based adversarial attack model.

3.2.2 iPrivacy - A Privacy preserving Service for IoT devices

The second component of our framework is a privacy service whose objective is to

counter the side-channel attacks of network traffic-based privacy inference. We build

two sub-components of this service: a Privacy Guard - a programmable and flexible

network traffic shaping tool and MirageNet - a synthetic network traffic generating

tool. While the PrivacyGuard tool can apply traffic shaping schemes such as padding,

delay etc., to the network traffic for obfuscation from privacy attacks, MirageNet can

generate fake network traffic flows mimicking the user-triggered device activities for

countering the entropy of the side-channel attacks. We build PrivacyGuard using a

programmable approach where the traffic shaping schemes can be selected dynamically

based on certain policies, either user-defined or by an ML model, and applied on network

traffic for obfuscation. For MirageNet , we propose to use a GAN-based model that

can automatically understand the semantics and syntax of the network model of IoT

devices through training and then generates similar network flows mimicking the flows

of the original traffic without being detected synthetic. We build two tools here to

have the flexibility of choosing traffic shaping or synthetic traffic based on context. For

example, applying traffic shaping could be suitable for obfuscating real sensitive user
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activities, and synthetic traffic can give the illusion of user activities that do not exist.

In the next chapters we discuss each of the components of the iKnight and iPrivacy.
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CHAPTER 4

IKNIGHT - GUARDING IOT INFRASTRUCTURE USING

GENERATIVE ADVERSARIAL NETWORKS

4.1 Introduction

To secure IoT devices, flexible network services with efficient and lightweight clas-

sifiers must be built. In this chapter, we build IoT classifier framework that using a

semi-supervised GANs (SGAN) [20, 19], a recent extension to the GAN model, that

has shown excellent results in image classification [20], online spam [27] reviews, and

medical data [28] where the availability of labeled data is very limited. The SGAN

model consists of a multi-class classifier that can perform automatic feature extraction

with very limited labeled data. Moreover, in the training of SGAN, the classifier is ex-

posed to the additional synthetic data points with noise that gives the classifier better

generalization ability.

Several features of the SGAN model such as multi-class classification, automatic

feature extraction, ability to be robust to noise, and capturing the hidden distribution of

the of different classes [29] are aligned with the requirements and objectives of building

a real-world IoT classifier. Moreover, the SGAN generator’s ability to create synthetic

data after training without needing access to training data will enable the IoT classifier

to learn incrementally without any data storage requirements.

Motivated by the above observations, we developed IoT classifiers for real-world

scenarios using SGAN. We summarize the contributions of this chapter as follows:

• We design and develop iKnight, a Semi-supervised GAN-based multistage multi-

class classifier for classifying IoT devices for different scenarios such as known

devices, unknown devices, malware, and anomaly with very few labeled data.
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• We implement different real-world IoT classification features of iKnight such as

continual learning and lightweight model deployment using generative replay and

knowledge distillation techniques, respectively.

• We evaluate the features of iKnight using real IoT devices and malware network

traffic datasets.

• We deploy iKnight on a real-world edge Hardware, NVIDIA Jetson Nano.

4.2 Background

4.2.1 Semi-supervised GAN

The amount of labeled data has a significant impact on the accuracy of classifiers

in machine learning models. However, many real-world problems have less labeled

data and would occur significant labeling efforts. Some researchers have proposed to

utilize the unlabeled data using semi-supervised learning [30], which uses few labeled

data points to identify the class of the majority of the unlabeled data points. With

only a few labeled points, this approach approximately predicts the label of unlabeled

data. Recently, some researchers have proposed semi-supervised learning using GANs,

generally known as semi-supervised GAN (SGAN) [19, 20]. The SGAN has shown

promising results for image classification problems that have sparsely labeled data [20].

From Figure 4 similar to GANs, the Semi-supervised GAN model consists of a generator

and discriminator but has an additional classifier model that shares all the layers with

the discriminator but have a different output layer [20]. The objective of the classifier

is to classify the K classes of the training data, unlike the discriminator, which acts as

a binary classifier and only predicts if the data is fake or real.

In SGAN, in addition to training the discriminator on unlabeled data, the classifier

is trained on supervised labeled data. The Generator is given the loss of the discrim-

inator. The rationale behind this is that the feature representations learned from the
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Figure 4: Semi supervised GAN (SGAN) Architecture

discriminator to identify the real data distribution improve classifier efficiency. Fur-

thermore, the min-max game-based adversarial training will force the Generator to

create synthetic samples that create additional data points to the classifier; thus, im-

proving its efficiency [19]. In SGAN training, both the discriminator and classifier are

exposed to real labeled data, real unlabeled data, and fake data from the Generator.

This approach generalizes better than other semi-supervised methods that do not have

access to additional synthetic data points during training. Moreover, Generator based

fake data points include noise that makes the classifier robust to noise in real-world

classification tasks.

4.3 Related Work

In recent years, there has been a significant interest in IoT device fingerprinting

research [13, 31, 32] and activity inference analysis [12, 7]. While some works proposed

supervised classifiers based on features such as device-dependent features for device

identification [13, 33], others used time series based features [12] and flow level meta-

data [7] to detect activities of IoT devices. Recently, authors in [15] used CNN and

RNN based deep learning classifier for network classification, but this technique is also

based on supervised learning that is highly dependent on labeled data availability. Re-

cently, researchers have proposed an unsupervised clustering approach for IoT device

classification [34]. Also, in [35], authors utilize IoT-based raw network packets as their

features for classifying IoT devices using autoencoders and bayesian modeling. We be-
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lieve that multi-class classifiers are much more helpful for real-world scenarios given

their ease of deployment, maintenance, and scalability.

Some researchers used GANs to generate synthetic packets [36, 37]. However, in

this work, we use semi-supervised GANs for classification tasks. Very recent work

has used a semi-supervised based approach towards classifying network applications

belonging to QUIC, VPN, and Non-VPN datasets [38]. However, it is well-known that

IoT-based network traffic is very different from traditional network traffic. In addition,

although this recent work aimed at building classifiers for a limited set of applications

with very unique characteristics (e.g., browsing, streaming), building a classifier for

IoT network classification with many devices with similar network characteristics is

far more challenging. Furthermore, IoT environments have several unique challenges

such as concept drift, dynamic addition of devices, malware infections, and anomaly

detection, which our work addresses.

In this chapter unlike the traditional approach of using flow-based metadata fea-

tures we use a 2D flow-based encoding scheme that is more relevant for IoT based

classifiers since metadata features such as inter-arrival times can have adverse effects

with the change in network conditions (e.g., limited bandwidth). In addition, we im-

plement real world IoT classification features such as continuous learning feature using

SGAN, which can continuously learn new device classes and deploy the lightweight

model at the edge using knowledge distillation. Further, we design a software-defined

network (SDN) enabled privacy-preserving service at the edge supported by our IoT

classifier. Finally, we deploy and evaluate the performance of our SGAN based IoT

classifier on NVIDIA Jetson Hardware.

4.4 Iknight Features

Our goal of designing and developing iKnight with a multistage and multiclass

SGAN based implementation is to allow different interesting features that are essential
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to a real-world edge-based IoT classifier. In this section, we list and discuss the various

features of iKnight.

Automatic feature extraction and limited labeled training data: Many

IoT classifiers are based on supervised learning and require manual feature engineer-

ing [13, 39]. However, these techniques rely on the availability of labeled data, which is

challenging given the privacy concerns associated with the IoT data collection process

and the needed labeling efforts. Moreover, the network flows of different devices can

have different network characteristics [7]. For example, the network flow of complex

IoT devices such as Withings baby video monitor differs from the flow characteristics

of simple IoT devices such as Lifx light bulb. Thus, the manual extraction of universal

features that is efficient across all IoT devices is complex. In iKnight, the SGAN CNN

classifier will automatically extract the hidden features during training. Moreover, the

training of the SGAN model for each stage requires only 3%of labeled data. Therefore,

iKnight supports both automated extraction of features and limited labeled training

data.

Identifying unknown devices and zero-day attacks: In real edge networks,

devices may dynamically join a network and create challenges for the network admin-

istrator in identifying the type of unknown devices (i.e., IoT, non-IoT, malware, or

anomaly). In existing multiclass IoT classifier systems, unknown devices are typically

classified as known classes that cause serious vulnerabilities. For example, a zero-day

attack network traffic classified as a known device may allow the device to carry out

attacks. Detecting the class of an unknown device is called novelty detection and is

supported by the recent implementation of semi-supervised GAN[40]. Given the signif-

icance of this feature, iKnight utilizes the multistage architecture to realize this feature.

More specifically, as described later, iKnight uses the multiclass classifier in stage 1 to

detect any unknown device in which the multiclass classifier in stage 2 is, then, identify

the type (i.e., IoT, non-IoT, malware) of the device. If stage 2 still identifies the device
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type as unknown, iKnight will mark the device flow as an anomaly.

Generalized model with robustness to noise: IoT network traffic suffers from

concept drift where the network traffic signatures of the device may change over time

due to firmware updates [34]. Moreover, bad network conditions such as high packet

drops can create noise in the network flows and have an adverse effect on classification

tasks. Furthermore, an over-fit model to training data can miss-classify a device-specific

flow that has a slight deviation from training data. Therefore, a robust classifier should

be well generalized to training data and effectively robust to noises, such as changes

in payload and packet sizes or missing packets. In iKnight, the semi-supervised GAN

model classifier is exposed to adversarial noise in the fake samples from the generator

allowing the SGAN classifier to adjust its weights for any small deviation from the

training data. Therefore, iKnight will be resistant to noises in both stages.

Flexible and continuous learning model: With the addition of new devices

to the network, the model should update its knowledge by incremental training on new

network data. However, this is challenging given the limited data storage space of edge

systems. In addition, the preservation of IoT data for a long period of time would

pose challenges to privacy. In iKnight, the semi-supervised GAN Generator learns the

distribution of the training data during training enabling iKnight to use the generator

to produce synthetic data similar to the training data without requiring any access to

previous data. Moreover, GAN-based models can also learn incrementally without fully

retraining by using the synthetic samples generated by the generator while learning new

class data. Therefore, iKnight is flexible for continuing to learn new data.

In view of these features, iKnight can be used effectively and efficiently for device

and device type identification. This device type discovery capability of iKnight can enable

different network services on the edge that we discuss next.
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4.5 Iknight Framework

In this chapter, we design and implement iKnight, an IoT network classifier for

Edge-based systems. We discuss below the architecture and implementation of iKnight.

4.5.1 Architecture

Figure 5 shows an overview of the iKnight framework that consists of an Encoding

Engine and Device Discovery Engine. In iKnight, the encoding engine encodes the

new device’s flow and passes the encoded flow to the device discovery engine. The

device discovery engine uses multi-stage multi-class SGAN-classifiers trained using two

different SGAN-GAN models to identify a new device class (device name) and its type

(IoT vs. Non-IoT). In this chapter, we use SGAN-GAN model to refer to the combined

models of SGAN-generator, SGAN-discriminator, and SGAN-classifier. We discuss

below the design of the encoding engine and device discovery engine.

Encoding Engine: The iKnight encoding engine encodes the raw network flow

packets of new devices using an encoding scheme. An encoding scheme is a process of

mapping the raw network packets to a feature matrix that we define as a flow encoded

matrix, which is sent to the device discovery engine for the device (name) and device

type identification. The multi-stage multi-class SGAN model in the device discovery

engine uses these raw encoded features to extract the hidden features and identify

the device type automatically. An efficient encoding scheme is a significant factor in

the efficiency of device type identification [41, 42]. In iKnight, we use two encoding

schemes; packet-only and packet-with-inter-arrival-time schemes that we discuss later

in the implementation subsection.

Device Discovery Engine: The iKnight Device Discovery Engine is a multi-

stage classifier that can identify the device under different scenarios, such as identifying

the device ID for a known device and the device type for an unknown device. We

define a device as known if it is available to the SGAN-classifier during training and
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Figure 5: iKnight Architecture

Figure 6: iKnight stage 1 and stage 2 model training pipeline

unknown otherwise. In iKnight, we take a two-stage approach for device discovery. In

the first stage, iKnight uniquely identifies all known devices by classifying them into

the corresponding classes. However, for any unknown device, iKnight classifies it as

an unknown class, unlike other multi-class classifiers that will incorrectly identify an

unknown class as one of the known classes. In the second stage, iKnight infers the device

type of the unknown class as either an IoT, non-IoT, malware or unknown. However,

we refer to the unknown class in stage #2 as an anomaly, given it does not fall into any

known network traffic classes. This type of inference at stage #2 will help the network

administrators to identify the types of unknown devices and, consequently, to adapt

network policies. Some of these policies can give higher network priority to specific

device types (IoT vs. Non-IoT), enforce any known anti-malware patches for malware,

and issue alerts in case of an anomaly for immediate actions.

4.5.2 Implementation

We discuss below the datasets, training procedure, and the SGAN-GAN model

architecture for both stages in detail.

Data sets and training We use the publicly available UNSW [33] and IoT-23
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Table 1.: The list of IoT and non-IoT devices used in experiments

Device Name Device
Type

Smart Things Hub
Amazon Echo Speaker
iHome Speaker
Triby Speaker Speaker
Netatmo Welcome Camera
TP-Link Day Night Cloud
Camera Camera
Samsung SmartCam Camera
Dropcam Camera
Insteon Camera Camera
Withings Smart Baby Mon-
itor Camera
Nest Dropcam Camera
Belkin Wemo Switch Acutator
TP-Link Smart Plug Acutator
Light Bulbs LiFX Smart
Bulb Acutator
NEST Protect Smoke
Alarm Sensor
Netatmo Weather Station Sensor
Withings Smart Scale Sensor
Blipcare Blood Pressure
Meter Sensor
Withings Aura smart Sleep Sensor
PIX-Star Photo-frame Digital

Frame
Laptop Non-IoT
Android Phone Non-IoT
iPhone Non-IoT
Samsumg Galaxy Tab Non-IoT

Figure 7: iKnight Encoding Scheme
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datasets [43] to validate and evaluate our proposed device and device type identification

approach. We use the network traffic traces from different classes of IoT devices and

non-IoT devices from the UNSW dataset as shown in Table 1. The IoT-23 consists

of labeled IoT malware network traffic flows from twenty different malware binary files

(each different class) executed on a raspberry PI device in a controlled environment

with flows labeled as either benign or malicious. We select 60,000 flows from the UNSW

dataset and 10000 malicious flows from four different malware classes, Mirai, Trojan,

Hakai, and Torii, for our experiments. For the stage #1 model, we train the model

with twenty IoT devices, while for the stage #2 model, we use the combined network

flows of twenty IoT devices, four Non-IoT devices, and four malware classes.

For both stages, stage #1 and stage #2, we train two different SGAN-GAN models

and output two different SGAN-classifiers to identify device ID and device type identifi-

cation. Figure 6 shows the SGAN-GAN model training pipeline that we repeat for each

stage. We first extract flows from the raw pcap files using the pkt2flow tool[44], which

splits the pcap files into individual flows. We then convert all the packets of a flow into

raw byte stream using scapy tool[45]. For both models, we use raw TCP, and UDP flows

for our training data. We remove the MAC layer header and device-dependent fields

(source address, destination address, destination port, source port, and checksum) from

IP and transport layer headers to make our training data network independent. We

then train the SGAN-GAN model at each stage with two training data types: network-

independent-headers-payload and only payload. We discuss the effect of the selection

of each training data in the evaluation section. The training data at each stage consists

of randomly sampled flows for all classes with balanced representation.

Figure 7 encoding engine showing the different encoding schemes packet-only and

packet-with-inter-arrival-time encoding scheme to create the flow encoded matrix for

each flow as the input to the SGAN-GAN model training. In the packet-only encoding

scheme, we use the raw network byte-stream representation of the packets as features.
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We first convert each byte-stream representation of the packet of the flow into their

equivalent hexadecimal integer value. This hexadecimal flow array is then encoded as a

three-dimensional image matrix, a flow encoded NumPy matrix with height, width, and

depth. Each row of the flow encoded matrix consists of a packet hex stream arranged

as a 2-dimensional array with a size of 56*56 (accommodates the maximum 1500 bytes

of a MAC packet). The packet rows are ordered in the flow matrix as per their arrival

sequence. This encoding scheme is similar to pixel intensity arrangement in a non-gray

image matrix where each row is a 2D matrix representing the different channels of

the image. The flow encoded matrix’s depth is the number of packets in the flow, a

configurable parameter, which we find as the first 5 packets based on experiments. If

the flow has less than 5 packets, then the rest of the packets rows of the flow encoded

matrix are appended with zeros, an approach similar to [35]. Similar to the packet-

only encoding scheme, in packet-with-inter-arrival-time scheme, we use both the raw

network byte stream and the packets’ inter-arrival time. We arrange the 2D packets

in the flow encoded matrix as rows similar to the packet-only scheme. However, we

append an additional row at the end containing the inter-arrival times of the packets in

their arrival sequence. Moreover, we convert the inter-arrival values to a hex decimal

value similar to the packet data. We discuss the impact of these encoding schemes on

device type inference in the evaluation section.

For both stage #1 and stage #2, we implement the SGAN-GAN model architecture

described in [20] that consists of a SGAN-generator, SGAN-discriminator, and SGAN-

classifier [20] for iKnight. The classifier shares the weights with the discriminator [20]

and has a Softmax layer [46] used to classify the flows’ device or device type classes label.

For our SGAN-generator and SGAN-discriminator models, we adopt an architecture

very similar to that of DCGAN guidelines [47]. Note that the approach of using DCGAN

for SGAN is also very recently used by [38]. However, we design our model with

layers and hyper-parameters optimized specifically for byte stream-based flow encoding
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scheme training data, which consists of inputs of a 56*56*n Numpy array, where n

is the number of packets the flow. For SGAN-discriminator, SGAN-classifier, and

SGAN-GAN model, we use Adam optimizer [48]. Below we discuss architectures for

the SGAN-generator, SGAN-discriminator and SGAN-classifier, and hyper-parameters.

The SGAN-generator model consists of 5 layers. The first two layers are fully connected

layers that accept an input noise vector of size 100 and gives an output of shape 256*7*7.

The output is reshaped to a vector of size 12544. The next hidden layers perform

convolution transpose operations with shape 256*256. A convolution layer follows this

with the tanh activation function. Each of the convolution transpose layers is followed

by the Leaky ReLu activation function and batch normalization layers. The output of

the generator is a matrix with dimensions 56*56*n.

The SGAN-classifier model consists of 6 layers. The first layer is a fully connected

layer that accepts an input of 56*56*n from the generator. The next four hidden layers

are convolution layers that perform the convolution operations having 2*2 filters of

stride 3*3. The first and last hidden convolution layers have a shape of 128*128, while

the rest of the layers have a shape of 256*256. Each of the three hidden layers is followed

by the Leaky ReLu activation function and batch normalization layers. The output of

the last hidden is reshaped and given to the fully connected dense layer. Finally,

the SGAN-classifier output is a Softmax layer that provides the probability with each

training class’s predictions. For the SGAN-discriminator, we share all the layers with

the SGAN-classifier except the output layer. The input to the SGAN-discriminator is

the outputs from the SGAN-classifier last layer activation before Softmax. This SGAN-

discriminator implementation is known to increase the accuracy of the classifier[20]. The

SGAN-discriminator’s output layer is a Sigmoid activation function classifying whether

the input flow is real or fake.

In stage #1 SGAN-GAN model training, we split the dataset with 80% for training

and 20% for testing. The SGAN-GAN model training consists of training the SGAN-
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generator, SGAN-discriminator, and SGAN-classifier with mini-batches of data in each

epoch. Therefore, we select labeled flow samples for training the SGAN-classifier and

unlabeled flows for training the SGAN-discriminator. Then, we train the SGAN-GAN

model for multiple epochs, where each epoch consists of multiple batches of training

data. We then validate the stage #1 SGAN-classifier model with the testing data. The

SGAN-GAN model training process for stage #2 is similar to stage #1, except that

we filter the flows of a specific device and use the filtered flows to infer the device type

class during validation. For example, we filter out all the flows of Dropcam during

training and then evaluate the trained SGAN-classifier model with these filtered flows

to validate whether the trained model can infer the correct type of device as IoT. We

repeat this process for all the device classes (IoT, Non-IoT, Malware) and report the

average accuracy. This process effectively evaluates the ability of the SGAN-classifier

to infer unknown devices, which is discussed in the evaluation.

Both stages of iKnight framework utilize the SGAN-classifier to achieve their ob-

jectives, known-device identification, and unknown device type -identification. The

SGAN-generator model can also be utilized by iKnight for learning to classify new de-

vice classes or identify new device types that were not seen during the initial training

process, which we discuss next.

4.6 Iknight Adaptability and Continuous Learning

IoT devices’ network traffic can change over time due to firmware updates by the

vendor or server API changes. This change of network traffic over time is called concept

drift and can effect the IoT classifiers accuracy as they are dependent on network fea-

tures such as flow level features (number of bytes sent or number of bytes received, etc.)

or packet-level features (payload signature, etc.) derived from original network traffic.

Moreover, to keep supporting the device or device type identification, the classifier must

retrain with the updated traffic features. Furthermore, the IoT classifier would have to
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learn to classify any new device classes and their device types that are not possibly seen

during training but added to the smart environment during the inference stage in an

ad-hoc fashion. Therefore, the classifier should support class-incremental learning [49],

a machine learning technique where the classifier can be trained on batches of classes in-

crementally. However, existing IoT classifiers [13, 15] do not support class-incremental

training due to catastrophic forgetting [50], a phenomenon where the classifier accu-

racy will significantly drop after incrementally trained on new class data. The accuracy

decreases because the model forgets the parameters (neural network weights) learned

during prior training when retrained on the new class data.

To demonstrate the effect of catastrophic forgetting in an IoT classification sce-

nario, we pick a subset of training data consisting of the 8 devices and split this subset

into two datasets: Task #1 and Task #2, composed of 4 devices each. We then train

a fully supervised CNN classifier with Task #1 data and then further retrain it on

Task #2 data. We refer to this approach of training and then retraining on different

tasks successively as class-incremental learning. Table 3 shows the accuracy of the CNN

classifier and SGAN classifier for class-incremental learning. The accuracy of the CNN

classifier reaches 100% after training it with Task #1 data, but the accuracy drops to

0% after retraining the classifier on Task #2 data. The rationale behind this significant

drop is that during Task #2 training, the model updates its parameters learned during

Task #1 training to classify the new classes of Task #2 thus forgetting the knowledge

to classify Task #1 classes. A naive solution to address this challenge is to retrain

the classifiers with Task #1 and Task #2 classes’ combined data from scratch. How-

ever, this approach would require storing prior Task data, which is highly inefficient

for storage reasons. Moreover, the IoT network data has very sensitive information [7]

and keeping it on edge or remote servers for a long time could have severe security

and privacy risks. Therefore addressing catastrophic forgetting, which is still an open

and challenging area in the machine learning community, needs to be explored by the
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Figure 8: iKnight’s continuous learning across N number of Tasks

network community to support IoT-based class-incremental learning.

To address the catastrophic forgetting problem, we utilize the SGAN-generator’s

abilities to mimic training data to implement continuous learning in iKnight. We use

the prior task generator to generate prior task synthetic samples and then augment

it with the new task data to train the classifier incrementally as shown in Figure 8.

Note that this approach is similar to [51] where the old generator(from prior training

task) of ACGAN [52] is used to address catastrophic forgetting in continuous image

generation tasks. However, here we implement the generative replay approach using

the SGAN-generator for IoT-based network classification tasks. With this approach,

edge systems do not have to store any old training data, thus not requiring additional

storage. Moreover, this approach would require less computation time as it is not

needed to train the model again from scratch.

In Algorithm 1, we show the continuous learning implementation for iKnight using

SGAN. In Step #2, we first train the generator and classifier on the Task #1 device

classes data, using traditional SGAN-GAN training discussed. In step #3, when the

new device classes arrive, Task #2, we first generate Task #1 training data synthetically

using the Task #1 SGAN-generator from Step #2 and augment them with the Task

#2 training data (Step #3- #13). However, one of the challenges we face in an SGAN-

generator is that it randomly generates the synthetic data without the class label,

and for training the SGAN-GAN model on the current task, we need the generated
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Figure 9: iKnight Lightweight transformation using Knowledge distillation

samples to be labeled. To address this, we use the prior task SGAN-classifier from

Step #2 for labeling the generated samples. Moreover, we generate the samples until

we collect a balanced dataset representing all the old training classes’ classes equally.

After collecting all the combined datasets of old (synthetic) and new training classes, in

step 14, we perform the SGAN-GAN training. This process of incrementally training

the SGAN-classifier can be repeated for the following N tasks, as shown in Figure 8 using

the N-1 SGAN-classifier and N-1 SGAN-generator. We achieve good accuracy with this

approach even without access to old training data (ground truth), as shown later in our

evaluation section. Overall, iKnight can support many features required for edge-based

IoT classifiers, as discussed in the above sections. Given these abilities, we discuss

in the next section our strategy for optimizing iKnight for edge-based deployment on

resource-constrained devices such as routers, switches, and edge servers which have

strict application requirements such as high inference speed, less memory footprint,

and low power utilization.

4.7 Iknight at the Edge

In recent years, there is an emergence in the deployment of deep learning-based

applications on edge-based devices [53, 54, 55]. The main characteristics of these edge-
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Algorithm 1 iKnight continuous learning using SGAN
1: procedure iknght_continous_learning

2: Perform SGAN training and get the GAN model

3: while receive new tasks do

4: Get the training samples and labels of current dataset

5: while new tasks keep coming do

6: calculate the number of samples to generate

7: calculate the total number of old tasks till now

8: while Generate samples using current generator till number of samples

per class for all the old tasks are generated do

9: generate samples for each class in the task

10: predict labels of the generated samples using prior SGAN classifier

11: prepare the training data and corresponding class labels for this task

and append to the new training data

12: end while

13: end while

14: Perform SGAN training

15: end while

16: end procedure
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based applications are low latency, low memory, and less energy consumption. Given

iKnight will be deployed on the edge networks we optimize the iKnight classifiers into

very lightweight models that can achieve similar accuracy but with significantly less

memory footprint and increased inference speed. This section discusses our approach

for implementing the lightweight version of the iKnight.

Many well-known deep learning models such as RESNET [56] and VGG[57] have

an intricate model design with many layers and parameters to learn. For example,

RESNET, which is trained on CIFAR-10 image dataset [58] has a complicated model

design with more than 100 layers and a total of 1.7M parameters. However, deploy-

ing such models on edge devices is challenging due to resource constraints. Some re-

searchers have recently proposed a knowledge distillation technique to [59, 60] to train

a lightweight model by distilling it with the knowledge of an already trained complex

model. In this approach, a teacher model is first trained on the training data, which

learns the parameters (network weights) required for classification tasks. During the

training, the Softmax layer learns each class’s probability distribution which can be

smoothed to form Softargets or training labels for the student model. Smoothing the

probabilities can help discover other information about the training data, such as the

proximity of different class features to the predicted class, and helps the student model

to converge quicker. Therefore, unlike the traditional method of training the model with

training samples and corresponding labels, the student model is trained with training

samples and the teacher model’s predicted soft probabilities as shown in Figure 9. Note

that softening the probabilities is done through a hyper-parameter called Temperature;

the higher this value is, the smoother are the probabilities.

We implement the knowledge distillation approach using the iKnight Stage #1

SGAN-classifier as a teacher and a new lightweight CNN model as a student. We take

the trained stage 1 SGAN-classifier as a teacher model with 4 convolutional layers,

using SGAN to create soft probabilities or soft targets for the student model. We then
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train a very small CNN model with only one convolutional layer, which has fewer layers

than the teacher model and uses Soft probabilities-based training data. The student

model achieved an accuracy of 91% very close to our Stage #1 teacher model but with

fewer layers as shown in our evaluation section later. In Our experiments, we evaluated

different student model architectures and found, the CNN model with one convolutional

layer gave the best accuracy. With this approach, we optimized the iKnight Stage #1

classifier for edge-based scenarios with less inference time, less memory footprint, and

less power consumption, which we discuss in our evaluation section. One of the other

advantages of this approach is that we can train our Stage #1 and Stage #2 SGAN-

classifiers anywhere on cloud or edge servers and then deploy lightweight models much

easily with the help of knowledge distillation on the edge devices.

From sections 4.5 and 4.6, we can see that iKnight is equipped with different

features that can discover device types, both known and unknown, and can continuously

learn new device types. Moreover, the knowledge distillation approach iKnight can

be transformed into a much lightweight model and can effectively support many new

network services at the edge. In the next section, we discuss the potential of iKnight

to provide such services.

4.8 Evaluation

4.8.1 Experiment setup

We implement iKnight Device Discovery Engine using Keras [61] and python, and

train it on a GPU enabled machine with installed and 32 GB of memory. In the below

sections, we evaluate iKnight for the different features of a real-world classifier.

4.8.2 Impact of training data and encoding schemes

Figure 10 shows how the accuracy of the stage #1 classifier improves with the

number of labeled samples. Therefore, the device type classification depends on the
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Figure 10: The accuracy of stage #1 classifier
in iKnight’s Device Discovery Engine

Figure 11: The accuracy of stage #2 classifier
in classifying an unknown device

Figure 12: The confusion matrix for iKnight stage #1 classifier with packets-with-payload-
only

number of labeled samples, as discussed earlier. In our experiments, for both stage #1

and stage #2 classifiers, we achieve the highest accuracy with only 3% labeled flows

of each device. Therefore, the best configuration of iKnight can achieve high accuracy

with very few labeled data. We show the confusion matrix for stage 1 classifier using

packets-with-payload-only encoding scheme in Figure 12.

In addition, Figure 10 also shows the increase in the accuracy of stage #1 classi-

fier from 92% to 96% when the training data selection is changed from packets-with-

payload-only to packets-with-network-independent-header. Therefore, the network-

independent-header fields for IoT devices significantly improve the IoT device clas-

sification due to its features that help the classifier to uniquely identify each of the

device classes more than packets-with-payload-only. Similarly, Figure 11 shows that

the stage #2 classifier’s accuracy significantly improves by 9% with the change of the
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Table 2.: The accuracy of iKnight stage #1 classifier using packets-with-payload-only

encoding scheme across twenty IoT devices shown in Table 1

Classification
Method Accuracy
Kmeans 0.01
Kmeans + PCA 0.03
KNN 0.85
Decision Tree 0.86
Random Forest 0.88
CNN 0.90
SGAN 0.92

encoding scheme from packets-with-payload-only to packets-with-network-independent-

header while identifying the device type of an unknown device (i.e., Dropcam). There-

fore, the network-independent-header improves the unknown device type classifica-

tion.Moreover, recently some researchers observe that IoT device types use specific

device based network configurations such as using PUSH FLAG for faster network data

processing on IoT client devices [8].

Moreover, we observe from Figure 10 that the system’s accuracy increases by 3%

with an increase in the number of flow packets from three to five. However, a further

increase in the number of packets does not affect the classifier’s accuracy. Addition-

ally, the encoding scheme flow-with-inter-arrival-time with five packets also does not

increase the accuracy. The rationale behind this could be that the weights of the SGAN

classifier have learned the best possible parameters from the raw encoded packet data.

The additional meta-data information (inter-arrival time) does not improve their abil-

ity to increase the classifier’s overall feature space representation. However, we note

that a better choice of encoding design, such as the location and the representation of

inter-arrival times inside the flow encoding matrix, can improve the system’s accuracy.

However, finding the optimal system encoding scheme for iKnight is outside the scope

of this chapter. Therefore, the best configuration of iKnight is the first five packets of

the flow with network-independent-header and the encoding scheme flow-only.
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4.8.3 Performance comparison to other classifiers

One of the advantages of SGAN is its ability to achieve high accuracy compared to

supervised machine learning algorithms with less labeled data. Therefore, we compare

iKnight with the most popular classification algorithms used for IoT network classifica-

tion tasks. We compare the SGAN stage #1 classifier using packets-with-payload-only

encoding scheme with both supervised and unsupervised classifiers as shown in Table

2. Each of the supervised classifiers was trained with 3% labeled data, and each of the

unsupervised classifiers was trained with all the unlabeled data. Finally, the SGAN

classifier was trained with both the 3% labeled and the unlabeled data. We use the

same packets-with-payload-only encoding scheme for all the classifiers. Table 2 shows

that SGAN, which was trained with the same number of labeled flows, outperforms all

other supervised classification algorithms. Moreover, SGAN also exceeds the unsuper-

vised K means algorithm, where both SGAN and K means were trained using the same

number of unlabelled training samples. While SGAN extensively performs well over

all other algorithms, we have around 2% increase in accuracy over CNN. We believe

this can be further enhanced by a better choice of encoding schemes, which can help

SGAN extract the training data’s distribution very well. For example, a combination of

flow-level metadata and flow-byte stream encoding can help GANs model with a lot of

information during training and, consequently, build a better latent space representing

the training data. Furthermore, accuracy is not the only metric to evaluate SGAN’s

potential for IoT classification, as SGAN outperforms CNN in many other scenarios

such as noise and continual learning tasks, which we discuss next.

4.8.4 Robustness to noise in IoT device Traffic

This section evaluates the performance of iKnight under two noise-based scenarios:

changes in payload and change in packet sizes. For the change in packet payload

scenario, we pick the random locations of each packet’s payload in a flow and change
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it with random hex values. Similarly, we append random hex values at the end of the

packets to change the packet sizes scenario. For both scenarios, we introduce the noise

only in the testing data.

Figure 13, stage 1 classifier, we can see that SGAN-with-payload-only is more ro-

bust to change in payload-based noise than CNN-with-payload-only. Therefore SGAN

is a better choice for building robust classification models for IoT classification tasks

with less labeled data. Moreover, Figure 13 SGAN- packets-with-network-independent-

headers has only a small change in accuracy 10% for a noise of change of the per-

centage of the payload of 40%. During training stage 1, the classifier has additional

noise training data from the SGAN generator, and therefore iKnight is robust to rea-

sonable changes in payloads of the network traffic. However, for noise up to 40% with

SGAN-payload-only, there is a decrease of 16% in accuracy. Therefore, a choice of

independent network headers is a more reliable approach to build robust IoT classi-

fiers. In our experiments, we observe an increase in the payload’s size by 40 % for the

SGAN-packets-with-network-independent-headers, the accuracy decreases by 20%, and

for SGAN-packets-with-payload the accuracy decreases by 24%. Given in real-world

scenarios, such large changes to payload are rare since the already deployed IoT de-

vices’ operational requirements generally can have small changes in the API methods

that introduce small changes to the payload.

4.8.5 Unknown device type and anomaly detection performance

In this section, we evaluate iKnight for the different unknown device type and

anomaly detection scenarios.

For evaluating iKnight stage #2, unknown device type identification scenario, we

randomly choose five IoT devices, three Non-IoT devices, and all the four Malware

classes. For each of the unknown devices, we first filter out the corresponding flows

from the training data and validate the trained model with the filtered out flows of the
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Figure 13: The change in iKnight’s accuracy
of stage 1 classifier with different noise levels

Figure 14: The accuracy of iKnight stage #2
classifier of unknown devices using packets-
with-network-independent-header for differ-
ent type classes (i.e., IoT, Non-IoT, Malware)

unknown device. We repeat this process for all the selected devices. Figure 14 shows the

stage #2 device type classification accuracy using packets-with-network-independent-

header encoding scheme for different classes of unknown devices. The accuracy of

the unknown IoT and malware device types is higher than that of unknown Non-IoT

device types. We believe this could be due to the few number of Non-IoT devices in the

training data in which a better representation of each device type class in the training

data can further improve the classification accuracy of the stage #2 classifier. The

average accuracy for each of the device type classes for the unknown scenario is IoT

device type with 94%, Non-IoT with 80%, and the Malware with 97%. The overall

unknown accuracy for different classes of device types is 90%.

Figure 11 shows the Stage #2 classifier’s ability in identifying the type of an un-

known device (i.e., Dropcam) as an IoT device with 97% accuracy. The classifier’s

accuracy is higher when the model is trained with packets-with-network-independent-

header than when trained with packets-with-payload-only. This shows that iKnight can

effectively capture the hidden feature space distribution for each of the IoT, Non-IoT,

and Malware known device types. Moreover, this enables iKnight to have a better-

generalized feature space representation of each device type class, which improves its

ability to identify the type of unknown devices.Therefore, iKnight is capable of identi-
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fying the class types of unknown devices and known devices.

Semi-supervised GANs have recently shown good performance in identifying un-

known classes as unknown (anomaly)[40], also known as novelty detection. This SGAN

capability helps the Stage #1 classifier to identify any device that is not part of the

training data as unknown, and also benefits the Stage #2 classifier to identify the type

of unknown device as IoT, Non-IoT, Malware, or any anomaly (i.e., novelty detection).

As future work, we are planning to run more experiments to evaluate SGAN capability

in anomaly detection.

4.8.6 Continual Learning with new classification tasks

In this section, we evaluate the continuous learning abilities of iKnight. We create

three training scenarios wherein each scenario; we train the classifier on Task #1 and

Task #2 data incrementally. Task #1 data represents 4 IoT devices classes, and Task

#2 represents another set of 4 IoT devices. We then perform continual learning on

the SGAN model for three scenarios. In the first scenario, without-old-tasks-data, the

classifier is first trained on Task #1 and is then incrementally trained on Task #2 but

without Task #1 data. In scenario 2, with-old-task-data, the classifier is trained on

Task #2 incrementally with both Task #1 and Task #2 data. Finally, in scenario

3, with-generator-replay, the classifier is trained incrementally on Task #2 with Task

#2 data and synthetically generated Task #1 data from Task #1 SGAN generator, as

discussed in Algorithm 1.

From Table 3, we can see that for scenario without-old-tasks-data, both CNN

and SGAN models have a tremendous accuracy drop from 100 to 0 respectively when

incrementally trained on Task #2 data. However, on a change of scenario to with-

old-task-data, the SGAN performs very well since the model learns to generalize the

features for all device classes across Task #1 and Task #2 given it is trained on the

ground truth data of both tasks together. However, with-generator-replay, the accuracy
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drops to 91, given generated samples will not precisely be the same as the ground truth

Task #1 data. However, the Task #1 generator synthetic samples are still a good

representation of the Task #1 ground truth data data, making the classifier achieve very

high accuracy compared to the scenario without-old-tasks-data. Therefore, a continuous

learning approach using the semi-supervised GAN generator can be an effective solution

for IoT-based continual learning network tasks.

Model Method Training
Task

# Classes
in Train-
ing data

Task
1

Task
2

CNN without-old-
tasks-data T1 4 (T1) 100 -

SGAN without-old-
tasks-data T1 4 (T1) 100 -

CNN without-old-
tasks-data T2 4 (T2) 0 94

SGAN without-old-
tasks-data T2 4 (T2) 0 97

SGAN with-old-task-
data T2 4 (T2) + 4

(T1) 100 97

SGAN with generator T2
4 (T1)
+ 4 (T2 -
Generated)

90 97

Table 3.: Accuracy across continual learning tasks for IoT based classifier using SGAN

and CNN models

4.8.7 Deployment on Edge Hardware

As discussed earlier, for optimizing iKnight for edge-based deployments, we use a

knowledge distillation approach. In our experiments, we achieved an accuracy of 90%

for the student model with only one convolution layer and a very small drop in accuracy

compared to the teacher model (Stage #1 model with payload-only encoding scheme)

with 92% accuracy. The ability to achieve higher accuracy with very small models can

have significant edge hardware performance, which we discuss next.

Recently, different hardware platforms such as Raspberry PI [62], Google TPU

board [63], Intel neural compute stick [64] and NVIDIA jetson nano [65] are being
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manufactured to support edge-based deep learning-based applications. To evaluate the

deployment of iKnight on edge hardware, NVIDIA Jetson Nano [65] was selected. The

NVIDIA Jetson Nano is a hardware device that has shown better performance for deep-

learning-based applications [66]. The hardware configuration of Nano consists of a 32

GB SD card and 4 GB memory. We then installed the Tensor Flow [67] and other

python dependencies [68] to run the deep learning based models on Nano and then

convert the student and teacher models into a Tensor graph using Tensor RT library

[69] as shown in Figure 15. The Tensor RT graph version of the student and teacher

models are the optimized model versions tuned for the Nano hardware architecture.

We then performed inference on both Stage #1 and Stage #2 models individually for

predicting a sample 2000 times and measured the average performance metric using the

Jetson stats tool[70]. Table 4 shows that the Nano student model outperforms the Nano

Teacher version in different performance metrics. The student model has an increase

of 41% in memory footprint compared to when the hardware was in an idle state;

this is significantly lower than the increase in the teacher model’s memory footprint

with 81%. Similarly, while the student model had only an increase of 28% in power

consumption, the teacher model had a significant increase of 147% when compared to

the idle state. Finally, the student model’s average inference time is 46% less than

that of the teacher model. Therefore, a student model can achieve high-performance

objectives for edge-based devices with less drop of in accuracy.

Given these results, we can conclude that training the models using a semi-supervised

GAN to achieve different IoT classifiers’ objectives and then utilizing the SGAN models

to transfer the knowledge to the lightweight version for edge deployments complement

each other well.
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Model Accuracy Change in %
Memory(MB)

Change in
% Power
consump-
tion(mw)

Inference
Time (ms)

Teacher Tensor
RT 0.92 79.93 146.97 0.0116
Student Tensor
RT 0.90 41.4 28.46 0.0062

Table 4.: Average Performance of iKnight stage 1 Student and Teacher Models deployed

on NVIDIA Jetson Nano Hardware

Figure 15: iKnight deployment on Edge Hardware, NVIDIA Jetson Nano

4.9 Conclusion

In this chapter, we evaluated and implemented the features of SGAN based IoT

classification system. From the results, we can conclude that a semi-supervised based

GAN approach has several features that benefit the design of an IoT classifier. More-

over, with our multi-class multi-stage classification approach, iKnight has more poten-

tial to identify both known devices and unknown device type.

We were also able to demonstrate the ability of iKnight to continuously learn IoT

classification tasks when new devices are added or their firmware is updated. However,

one of the challenges we faced in continual learning tasks is the quality of the gener-

ated samples over the number of tasks. With the increase in the number of tasks, the

SGAN has to perform better in generating samples representing the old ground truth

classes data. However, this is a going research problem by itself. We plan to further im-

prove the continual learning abilities of iKnight by increasing the generator quality[71].

Moreover, we plan to combine different combinations of continual learning like elastic

weight consolidation [50] and generative methods [51] together on GAN-based classi-
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fiers to better assist iKnight in classification and novelty detection tasks. Moreover,

as discussed in our evaluation sections, training iKnight with datasets representing a

more extensive set of device types classes that can further improve the reliability and

accuracy of the iKnight to support different types of network services.

Next, in chapter 5, we would like to evaluate a new approach for deploying machine

learning models for edge devices using dynamic neural networks. Moreover, given some

recent work has shown that adversarial attacks can be used to modify malicious network

traffic to be classified as benign by perturbing certain features of the malicious traffic

[72, 73, 74] we explore the adversarial attacks and defenses for edge based models to

make it more robust in chapter 6.
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CHAPTER 5

IBRANCHY: AN ACCELERATED EDGE INFERENCE PLATFORM

FOR IOT DEVICES

5.1 Introduction

The performance of DNN models when running on edge-based IoT devices is sig-

nificantly impacted by the limitations of the device resources, which will reflect on the

performance of these devices. Therefore, it is highly desirable to develop techniques

to optimally accelerate the inference computations of DNN models in order to enable

real-time applications and conserve energy for edge devices/IoT.

Very recently, different types of DNNs referred to as Dynamic DNNs (D2NN)

have been proposed [75] to provide low-latency and power-saving on IoT/edge devices.

In contrast to traditional DNNs, dynamic DNNs are capable of performing conditional

computations and selectively activate just sections of the network model, whereas tradi-

tional DNNs use the entire network model in the computation even when only a certain

portion of the network is sufficient to make the inference. For example, BranchyNet [76],

one of the popular D2NN models, terminates its computation and infers early if the

earlier layers of the network have sufficient confidence without requiring all of the subse-

quent layers to participate in computation, thus reducing inference latency and power

consumption. The typical architecture of BranchyNet model consists of a network

with multiple layers and different branches. Every branch of the network is followed a

classification output component known as exit point. During inference, the early ter-

mination at a branch happens only if the exit point has adequate confidence to make

the inference. Recent research has demonstrated that for the vast majority of inputs,

the model will exit at the early exit point of the network during inference without re-
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quiring computation from the rest of the network [76]. These D2NN models, which

offer characteristics like on-demand computing, hardware adaptability, and fewer re-

source constraints, are therefore gaining popularity for constructing and developing

high-performance IoT/edge applications [77, 78].

Motivated by the above observations, in this chapter, we design and develop a dy-

namic DNN (D2NN) IoT classifier based on BranchyNet as a model classifier to classify

actual IoT and non-IoT devices and evaluate the model with edge-based constraints

such as inference time and power consumption. We summarize the contributions of

this chapter as follows:

• We design and develop iBranchy, a dynamic early exit multi-class classifier for

classifying IoT devices based on their network traffic.

• We evaluate the features of iBranchy using both real IoT and non-IoT devices.

5.2 Background

5.2.1 Static Compression vs Dynamic DNNS (D2NN)

In recent years there has been significant research over accelerating machine learn-

ing models for edge deployments using different approaches [79] such as compression

[80, 81] and knowledge distillation [59]. In compression-based techniques, the original

DNN network may be pruned in different ways to remove any insignificant parts of

the network. For example, in [80] authors compress the network using quantization

method while authors in [81] compress the convolutional layers through a redundancy

approach. However, in knowledge distillation technique [59], instead of compressing the

neurons or weights of an existing complex DNN network model, a new lightweight net-

work called student model is designed with very few layers and is trained to learn from

the knowledge representations outputs of the pre-trained complex teacher model. This

method has shown to be very effective with high performance for resource constraints

and an insignificant drop in accuracy.
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One of the major disadvantages of the above accelerated methods based on com-

pression or distillation is that they are static with respect to computation and inference

time as all the components of the DNN network will participate in inference phase com-

putation irrespective of the type of input or environmental conditions. In contrast to

static networks, dynamic networks D2NN can change their internal structure or param-

eters during the inference phase, giving them greater flexibility and better adaptability

to the underlying use case [75]. The D2NN models accomplish this dynamic flexibility

and adaptability through a conditional computation architecture that allows them to

only selectively activate particular sections of their network based on context, such as

input data or environmental conditions. Early-Exit-based models [76, 75] are one of

the most popular categories of the D2NN networks that have a multi-exit design where

an exit is an early inference point attached to selected components of the network and

can be conditionally activated based on the complexity of the input data. Therefore,

in this chapter we use BranchyNet [76] a very well adapted Early-Exit-based D2NN

model that is gaining popularity for edge scenarios to implement our D2NN based IoT

network classifier.

5.2.2 BranchyNet

BranchyNet is an Early-Exit-based D2NN model that supports an early inference

of certain input samples using multi-branch and multi-exit design. Like a traditional

DNN classifier, the BranchyNet network architecture consists of a multi-layer network

followed by a softmax layer for output predictions. However, in addition to the main

network, a small network called branches are added to the outputs of different layers

of the main network. These branches, similar to the main network are also followed by

softmax layer. The outputs from the different softmax of the different branches and the

main network are called as exits. The multi-exit approach implemented in BranchyNet

is based on the observation that the earlier layers of the network can perform inference

47



for most of the input samples, thus allowing most of the inputs to exit early and thus

reducing the overall network computation and reducing the average runtime and power

computation.

In BranchyNet training a softmax cross entropy loss function is used for minimizing

the network misclassification rate similar to traditional DNNs. However, the overall

loss of the network is calculated using a weighted loss function consisting of losses at

different exits of the network. The choice of the weights for each exit-specific loss is a

hyper-parameter and impacts the model performance. During the inference phase, an

input sample exits the network only if it is predicted with a confidence that is within

the confidence threshold assigned to that particular exit. More specifically, BranchyNet

uses an entropy-based confidence threshold where a sample exits from a particular exit

only if it was predicted with entropy less than the threshold assigned for that particular

exit. If the entropy of the input sample is larger than the given threshold, the sample

is sent to the next exit for inference and the process continues till the sample reaches

the final exit at the end of the main network.

The choice of thresholds at different exits is a run-time hyper-parameter that im-

pacts model inference phase performance. The lesser threshold value at an exit will

ensure the samples predicted with high entropy to be pushed to later exits, thus im-

proving the model’s accuracy at the cost of early inference. Two approaches are pro-

posed in BranchyNet for threshold selection, in the first approach, different threshold

values could be tested in an iterative method and finally choosing the best configuration

based on user requirements such as higher accuracy with an increase in inference time

or lower accuracy with a decrease in inference time. The second approach is to use a

neural network-based approach that can automatically fine-tune the threshold values.

In this chapter, we implement the first approach to pick the threshold values based on

performance requirements.
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5.3 Related Work

Given the significance of IoT device classification, some of the recent IoT network

classifiers [33, 34] utilize either probabilistic model [33] or traditional machine learning

based unsupervised model [34] for classifying network based IoT devices, but no deep

learning-based solutions. However, in this work, given the growing popularity of deep

learning-based classifiers that provide the features such as automatic feature extraction

and better accuracy from raw network data [35, 41, 15], we build D2NN based model

for IoT classification that augments traditional DNN based features with additional

features that can support edge-based resource constraints. For example, existing IoT

classifiers that use different deep learning based approaches such as CNN-RNN [15],

autoencoders-bayesian modeling [35] and semi-supervised GAN [41] require all of their

DNN network entitiess to participate in computation for realizing their system. In

contrast, our approach can conditionally activate only selected sections of the DNN

network to save energy and inference time.

Other D2NN related advances include developing a partition method [78] with

BranchyNet and distributed DNN techniques [82] across the cloud and the edge devices

for better performance and faster response times. Similarly, FlexDNN [77] - a Early-Exit

based model accelerates video analytics on resource-constrained devices. However, our

work significantly differs from other edge-based D2NN models as we design, implement,

and evaluate iBranchy for IoT-based network devices which is more challenging due to

the fact that network data is not simple as traditional image or set of frames based video

data. Furthermore, we perform a data transformation for the training data based on the

encoding scheme [41] to implement BranchyNet [42] for IoT devices effectively. Very

recently, in [83] authors use a context-based approach that selects the most appropriate

anomaly detection model from the hierarchy of models deployed at the edge, cloud, and

device to meet edge-based resource constraints, and it is implemented using sensor and

power consumption datasets. However, unlike their work which use distributed models,
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Figure 16: iBranchy Accelerated Edge Classifier

we implement a single model classifier based on BranchyNet that can uniquely identify

IoT/Non-IoT devices using IoT network traffic.

5.4 iBranchy Framework

In this chapter, we design and implement iBranchy, an IoT network classifier for

edge-based systems. Figure 16 shows an overview of the iBranchy framework that

consists of two components a network flow encoding component and an accelerated

device discovery component. The new devices’ network flows are encoded through the

network encoding component and sent to the accelerated device discovery component,

a BranchyNet based Early-Exit multi-class classifier, to identify the new device class

(device name). We discuss below implementation of each of these components in detail.

Network Flow Encoding: The network flow encoding component encodes the

network flows of the devices by mapping the raw network packets of a flow into a

three-dimensional array and is same that we used foriknight classifiers discussed in

chapter 4 . This encoded flow array is given as an input to the accelerated device
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discovery component to extract the hidden features and uniquely identify the device.

This flow-based encoding scheme using raw packet streams is a more efficient solution

for BranchyNet based model, which uses CNN layers and can extract spatial features

of the network byte data much efficiently.

Accelerated Device Discovery: The iBranchy accelerated device discovery

component uniquely identifies a device into its corresponding class. However, unlike

other popular DNN based IoT classifiers where all the layers participate in computa-

tion [15, 35, 41], iBranchy may exit at different stages of the model with probable very

early exits that can significantly decrease the inference time and consume less energy.

To design the iBranchy model we first design a baseline DNN IoT classifier and then,

using the baseline DNN, we build an IoT based BranchyNet version with newly added

branches where a branch is a set of layers or a very small DNN with early exit point as

discussed in section 5.2.

Figure 16 shows the overall architecture of the iBranchy model, which consists of

multiple convolutional layers followed by a linear layer with final exit and two branch

exits. In iBranchy, we try different design configurations and choose the early exits at

Branch #1 and Branch #2 at the CONV layer #1 and CONV layer #3, respectively.

At the inference stage, if the entropy for a branch of a testing sample is less than

the runtime threshold, the inference can be made early without further computation

from subsequent layers. We chose a lightweight design for the branches with linear

layers to add less overhead at run time for edge deployments but that could be further

optimized. In iBranchy, the probability of a network layer to participate in the inference

computation is dependent on the threshold values set for different exits. Therefore, at

run time, based on the environment requirements such as battery power (low or high)

or Wi-Fi signal strength iBranchy can be configured dynamically to exit more samples

at early layers to save edge resources. However, choosing very low threshold values can

significantly impact the inference accuracy and therefore needs to be optimized based
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Table 5.: The list of IoT and non-IoT devices used in iBranchy experiments and
also were used in iknight experiments

Device Name Device Type
Smart Things Hub
Amazon Echo Speaker

iHome Speaker
Triby Speaker Speaker

Netatmo Welcome Camera
TP-Link Day Night Cloud Camera Camera

Samsung SmartCam Camera
Dropcam Camera

Insteon Camera Camera
Withings Smart Baby Monitor Camera

Nest Dropcam Camera
Belkin Wemo Switch Acutator
TP-Link Smart Plug Acutator

Light Bulbs LiFX Smart Bulb Acutator
NEST Protect Smoke Alarm Sensor

Netatmo Weather Station Sensor
Withings Smart Scale Sensor

Blipcare Blood Pressure Meter Sensor
Withings Aura Smart Sleep Sensor
Belkin Wemo Motion Sensor Sensor

PIX-Star Photo-frame Digital Frame
Laptop Non-IoT

Macbook Non-IoT
iPhone Non-IoT

Samsumg Galaxy Tab Non-IoT

on the operating constraints and is out of the scope of this work. In the next section,

we evaluate iBranchy for edge based deployment requirements.

5.5 Evaluation

In our experiments, we extract 56,000 flows from the combined network flows

of twenty-one IoT devices and four non-IoT devices as shown in Table 5 from the

publicly available UNSW [33] dataset to evaluate and validate iBranchy for different

edge-based requirements. The raw pcap files are processed to create flows for encoding

with network-independent header fields and payload data similar to iknight. We imple-

ment our model using PyTorch [84] and also using code repositories [85, 76]. We use

an NVIDIA-based GPU Server with 32 GB RAM to perform our experiments, we also

use 80% of data for training and 20% for testing our model. For evaluating iBranchy,
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we consider multiple performance metrics and flexibility-based scenarios. First, we as-

sess the ability of iBranchy to exit in earlier exits for the majority of the testing data.

Next, we measure iBranchy in terms of resource utilization and power consumption and

finally assess its flexibility to provide a trade-off between accuracy and edge resources

based on the context. We discuss each of these evaluations below.

5.5.1 Significance of Early Exit on IoT devices Network Traffic

Figure 17 shows the percentage of exits from the different exits of iBranchy during

the training. The number of exits from Exit #1 increases as the training progress,

while the number of exits from Exit #3 or the final exit of the network decreases.

Therefore, iBranchy, over time, learns to extract the significant features for device type

inference in the early layers of the DNN. Figure 18 shows the percentage of exits for each

device type. The number of exits for device types from Exit #2 is not that significant

compared to the number of exists from Exit #1. The less significant exists from Exit

#2 could be either because of the choice of the network design or the second branch has

not captured enough features for the remaining of the device type samples. Therefore,

the distribution of device exits across different branches is determined by the network

design and features of the IoT network dataset.

5.5.2 Performance of iBranchy’s Edge Deployment

Table 6 shows the runtime performance of iBranchy. The results showcases that

it performs significantly better with edge-based requirements compared to our baseline

DNN. The power consumption of the iBranchy model layers decreases by 35.84% than

the baseline model layers. Therefore, iBranchy uses fewer network components for

computing the inference when compared to the baseline IoT DNN model. Moreover,

the run time for iBranchy model layers is faster than the baseline model layers by about

34.79%. Furthermore, the accuracy drop for the iBranchy model is not that significant,

as it only drops by about 2%. Therefore, iBranchy achieves efficient accuracy with
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Figure 17: The change in iBranchy ex-
its through training

Figure 18: The percentage of exits of
iBranchy for different device types

fewer resources and is more efficient for edge-based IoT network classification.

Model Accuracy Power (%) Inference Time (s)
Baseline DNN 0.9303 100 0.0569

iBranchy 0.9146 64.16 0.0371

Table 6.: Performance of edge deployment with 11000 samples

5.5.3 Flexibility and Adaptability of iBranchy to Hardware and Network

Conditions

Given that BranchyNet can be configured dynamically to increase or decrease the

entropy threshold values during runtime [76], a similar threshold runtime setting can

be used to dynamically configure iBranchy for various efficiency schemes. For example,

iBranchy can change to a low-efficiency scheme with low power consumption during

low battery status and switch back to a high-efficiency scheme when the battery is high

later. Similarly, during low bandwidth due to bad Wi-Fi, the iBranchy can change to

a low-efficiency scheme with low inference time at the cost of accuracy and switch back

to high efficiency with good Wi-Fi. Therefore, iBranchy is flexible to adapt to different

edge resource contexts and choose the appropriate efficiency scheme. . However, testing

different configurations of the thresholds of iBranchy for efficiency and performance

trade-offs is out of the scope of this work.
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5.6 Discussion

In this chapter, we design and implement an D2NN based Early-Exit classifier

iBranchy that can do accelerated inference for edge-based IoT and non-IoT device

types with fewer resources. Our framework is flexible enough to support a context-

driven network traffic classification system based on the edge environment state such

as battery status or network conditions given the conditional computation capabilities

of the D2NN models. Moreover, since we implement iBranchy using network encoding

component that uses raw network bytes of the device network traffic as input, iBranchy

can support various device categories from multiple vendors without requiring manual

feature engineering. Furthermore, given our encoding process considers network header

independent fields, iBranchy can seamlessly integrate with different network environ-

ments. We believe that our results give some early insights on applying D2NN such

as iBranchy for edge-based IoT classifiers. For example, the significant number of IoT

devices flowing from Exit #1 shows that the later layers can be cumbersome, requiring

a better network design. In our future work, we plan to extend our work to more signif-

icant device types with more complex features such as devices from the same vendors

and analyze the distribution of these device types over the different exits.

Given iBranchy performs conditional computation, it can save power and latency.

However, given the complete model still needs to be loaded into the memory, a further

technique to optimize memory footprint needs to be designed. One of the approaches we

plan is to perform knowledge distillation similar to our earlier discussion in iknight can

be used build a lighter version of the base model of the iBranchy. For example, we can

first apply knowledge distillation to the base model of the iKnight to get lightweight

models for memory, power, and latency, and then the student model can be further

optimized by converting into an iBranchy model.
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CHAPTER 6

DDAS - DYNAMIC DEEP NEURAL NETWORK ADVERSARIAL

ATTACKS FOR EDGE-BASED IOT DEVICES

6.1 Introduction

Recently, adversarial attacks on machine learning DNN models have increased sig-

nificantly [86], and have become a significant challenge given their realistic and danger-

ous attack scenarios such as the ability to alter medical diagnosis [87], deceive surveil-

lance cameras [88], and evade intrusion detection systems [72, 73, 74]. In an adversarial

attack, the attacker performs perturbations to the input or environmental conditions

in order to target the model’s accuracy. Given that D2NN models are expected to be

heavily exploited and utilized in many edge-based scenarios such as minimizing com-

munication between the edge and the cloud [89], real-time video-based classification for

faster object detection [90], preserving user privacy [54], and so on, understanding the

vulnerabilities of these dynamic models to adversarial attacks is very critical. Further-

more, techniques for improving the robustness of the D2NN models in order to counter

these adversarial attacks must also be explored. One of the mitigation approaches could

be to use the generated adversarial attack samples to train the D2NN models to de-

tect them as attack data, an approach similar to that employed for conventional DNN

models [91].

Motivated by the various targets of system attacks and in contract to existing state-

of-the-art adversarial attacks that are solely focused on model accuracy, we present a

new type of adversarial attack, the Dynamic DNN Adversarial Attacks (DDAS), for

edge-based D2NN models that aim to drain the battery, exhaust power consumption,

and increase the latency of the IoT/edge devices. We are interested in adversarial
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attacks that are designed to defeat D2NN models’ objectives of early inference or

conditional computation. In BranchyNet, for example, an adversarial attack might be

designed to force the model to use most (if not all) of its layers in inference rather

than the few early layers and to terminate early. Similarly, for D2NN models that

adopt skipping parts of input space, adversarial attacks could be designed to cause the

network to scan large portions or the whole input space.

In this work we develop DDAS attacks and mitigation techniques for D2NN mod-

els. More specifically, we design and develop DDAS-EarlyExit attack for D2NN

early-exit based models such as BranchyNet using a GAN-based approach. We eval-

uate DDAS-EarlyExit using various attack metrics such as host device performance

(inference time, power consumption), attack quality, and model classification accuracy

using our implementation of BranchyNet model; iBranchy, under different attack sce-

narios. Moreover, utilizing adversarial samples generated by our attack model trained

on various configurations, we implement and evaluate a robust incremental training

strategy for creating resilient D2NN . We summarize the contributions as follows:

• We present a novel adversarial attack; the Dynamic DNN Adversarial Attacks

(DDAS), for edge-based D2NN models that significantly increase the power con-

sumption of the hosting device and the inference time of the running application.

• We design and develop DDAS-EarlyExit attack for D2NN early-exit based models

using a GAN-based approach as the first step toward realizing the various types

of DDAS attacks.

• We evaluate DDAS-EarlyExit using our implementation of the early exit BranchyNet

model; iBranchy, under different attack scenarios using multiple attack metrics

such as efficiency, performance, and quality.

• We implement an effective incremental adversarial robustness training scheme to

develop resilient iBranchy models against DDAS-EarlyExit attacks.
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6.2 Related work

Adversarial attacks on edge-based deep neural networks are currently emerging

and are in the infancy stage. In recent work [92], authors classify the different types

of possible edge-based adversarial attacks based on the attacker objectives, model ac-

cess, attack targets, and defenses. The attacker’s goals include disrupting functional-

ity, inferring user, and model privacy. Moreover, a summary of multiple recent edge-

based adversarial attack-based works has been described including API attacks[93],

side-channel attacks[94], and probing-based attacks [95]. Unlike the existing adversar-

ial attack works, we design, develop, and evaluate adversarial attacks that impact the

computation, inference time, and power consumption of the D2NN deployed hosting

device/application in this work. Recently, authors in [96] show adversarial attacks can

impact the computation of Reinforcement Learning (RL)-based and Markov decision

models. However, our work differs substantially from RL-based adversarial attacks in

that we focus on attacking the different activations/components of the D2NN and not

on perturbing the environment/policies used by an RL trained agent.

In some recent works, the design of popular conventional DNN models can be

inferred using side-channel attacks by measuring the time [97] and power consumption

[98, 99]. We believe that these works give some early insights into the possible valuable

information for fingerprinting conventional DNN models, which can help in reverse-

engineering the DNN network parameters. However, unlike our work, the authors

do not perform any adversarial attacks on the accelerated/edge D2NN models for

impacting resource consumption or network latency. However, we note that their work

can further expand the possibilities of building different types of Black-Box attacks

for D2NN models where the confidence measures of the inference are unavailable.

Very very recently, some researchers have proposed adversarial attacks on Multi-Exit

models [100]. However, unlike their work, we use a GAN-based technique for generating

adversarial samples in our approach, given GANs have shown good performance with
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the generation of adversarial samples for traditional adversarial attacks.

6.3 Background

6.3.1 Adversarial Attacks on Conventional DNN Models

In recent years, significant progress has been made on adversarial attacks [101]

aiming at disrupting conventional DNN tasks such as regression, classification, etc. [102]

by perturbing the input space, resulting in incorrect inference or output by the DNN

network. Adversarial attacks are classified into three main categories [102]: poisoning

attacks that target the model during the training process [103], exploratory attacks

that exposes knowledge about the underlying model [104, 105], and evasion attacks that

targets mis-classification during the testing phase [106]. The proposed DDAS-Early-

Exit attack comes under the category of evasion attacks since it aims at perturbing the

input samples in order to increase resource consumption and/or latency, as discussed

later in section 6.5. In general, perturbations or noise applied to the input space in

adversarial attacks should be in a minimal magnitude in order to retain the structure

or quality of the input. The effectiveness of evasion attacks varies depending on the

available access to the target DNN model and is classified into two types: White-box and

Black-box attacks. In White-box attacks, attackers are fully aware of the underlying

model architecture, parameters, training data, and the loss function. In contrast, in a

Black-box attack, the attacker only has access to the model parameters or confidence

scores. We utilize Generative Adversarial Networks (GANs) in developing the proposed

attack because of its effective success rates [107, 108].

The adversarial learning approach of GANs has shown to be effective for imple-

menting adversarial attacks against popular conventional DNN models[107]. Inspired

by the efficiency of the GAN-based adversarial attacks on popular DNN models, we

adopt a similar technique used in AdVGAN [107], a recent GAN model for adversarial

attacks, and extend it with our design and implementation of new loss functions that
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are explicitly designed for the GAN-based DDAS attacks. In the next section, we dis-

cuss the threat model of DDAS attacks. We also build a iBranchy, a BranchyNet based

implementation of a popular image classification DNN architecture RESNET [56] as our

target model for GAN-based DDAS-EarlyExit attacks. We discuss the implementation

of iBranchy in much detail later in section 6.5. It is to be noted that this iBranchy is

designed and build on a different architecture and dataset than the one we discussed

earlier chapter 5.

6.4 DDAS Attack Threat Model

Unlike the traditional adversarial attacks, the attacker objective in DDAS attacks

is to compromise the flexibility and dynamic aspects of the D2NN models by causing

the models to activate and exhaust the largest possible portion of the model during

the inference process. Consequently, in addition to impacting the model accuracy,

DDAS attacks result in increasing the average inference time and computing power

consumption of the target D2NN model. With the significant growth of various edge-

based IoT applications and their increasing adoption of D2NN models [89, 90], DDAS

attacks could jeopardize the time-sensitive functionality of IoT Applications/devices

causing catastrophic threats. In this study, we focus on BranchyNET as one of the

popular D2NN models. DDAS attacks on iBranchy; our realization of BranchyNET,

would translate into targeting the model capability to perform early inference at earlier

layers and forcing the model to take the longest possible execution path of inference

computation by bypassing most or all of the exit points till the inference reaches the

natural end point of the model. Henceforth, we refer to attacks that target this early

exit capability in particular as DDAS-EarlyExit attacks.

In DDAS-EarlyExit attacks, the core objective of an attacker is to impact the

early exit inference capability of the targeted model. We assume that the attacker

has access to the one of the data feeds (e.g. a camera) used for inference by the
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target model and is capable of modifying the input samples by adding adversarial

noise. This can be used to impact the Quality of Service (QoS) in multiple ways. A

DDAS-EarlyExit malware for a time-sensitive application can cause a severe disruption

at critical juncture. Fully autonomous vehicles are an example of this, as they rely

on fast input processing to execute critical operations such as obstacle avoidance and

traffic mapping. A decreased responsiveness on these functionalities can cause traffic

accidents. A recent incident related to Tesla full self-driving computer installations

shown that a delay in traffic mapping and pedestrian recognition can potentially lead

to disastrous consequences [109]. Another DDAS-EarlyExit attack can target long

term power draining attacks on IoT devices deployed with limited energy capacity

by continuously exposing them to adversarial samples that increases average power

consumption, causing service outages to occur sooner than planned. This can be applied

to agricultural, industrial or field-research applications. Because IoT devices used in

these applications are more power restricted, exceedingly high power consumption might

decrease the life duration of IoT devices, resulting in service disruptions.To be able to

perform attacks impacting QoS in such divergent ways, DDAS-EarlyExit design must

be flexible in its capability to attack the target model and be able to adapt to different

attack scenarios.

Similar to traditional adversarial attacks, DDAS-EarlyExit attacks emphasize the

importance of maintaining the visual structure and similarity as well as attempting

to maintain classification performance similar to the original clean dataset in order

to decrease the chance of detection. Therefore, the perturbations added to the input

samples need to be imperceptible while also attempting to nudge the model towards

delaying the inference of the samples without impacting the classification output of the

model.

In our design of DDAS-EarlyExit, we assume that the attacker has access to the

logits output of the different iBranchy exit points and would also need the iBranchy
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target model during attack model traiining and therefore we consider our DDAS attack

to be a semi-whitebox attack. The number of branches used by iBranchy and certain

information about the configuration used by the target model (e.g. the relative positions

of different exit points) can be identified through side-channel inferences or by clustering

the inference times[97]. For this work, we also consider that the attacker has access

to the target model training data given that such information can be leaked through

side-channel attacks. However, even without access to the training data, the attacker

can still build an effective DDAS attack by capturing the testing samples and their

corresponding outputs over time in a production environment.

6.5 DDAS-EarlyExit Attack Design

The attacker’s main objective in the DDAS-EarlyExit attack is to increase the en-

tropy of the perturbed input sample leading to a delayed inference of the sample in an

early-exit model. However, depending on the attack scenario discussed in section 6.4 the

attacker may choose to trade-off between attack performance and accuracy and there-

fore might need more control on the impact of entropy at different exits. Moreover, the

adversarial sample should have minimal noise/perturbation to preserve the structure

or quality of the input. Furthermore, the DDAS-EarlyExit attack should generate the

perturbation based on the type of the input sample and should understand the mapping

between the structure of the data and corresponding perturbations and apply the same

during inference phase without any access to the target early-exit models. Therefore,

we design the DDAS-EarlyExit attack model with the following objectives 1) Fine grain

control of the impact on entropy based on attacker objectives, 2) minimize the pertur-

bation, and 3) preserve the functionality/structure of the original input. Given these

objectives, we choose to implement our attack model training as an adversarial learning

process using GANs [18], given their ability to generate high-quality synthetic data and

preserve the original data’s properties. In this section, we first design DDAS-EarlyExit
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loss function that will optimize attack model training based on attacker objectives and

then we discuss the implementation of the DDAS-EarlyExit attack model.

6.5.1 DDAS-EarlyExit Loss Function

The standard GAN Network based adversarial training consists of a min-max prob-

lem to minimize the generator loss and maximize the discriminator loss during train-

ing. A small loss value for the generator indicates high-quality synthetic samples and

whereas a high loss value for the discriminator indicates a high misclassification rate of

synthetic samples with the GAN network training converging when both the losses con-

verge. In a recent extension of the GAN for adversarial attacks on conventional DNNs,

the authors extend the GAN architecture with the additional component target DNN

and an adversarial loss to measure the ability of the generator to produce high-quality

perturbations [107]. The choice of the adversarial loss can be different based on the

optimization problem. For example, the popular loss function C&W [110] can be chosen

for a non-targeted adversarial attack that maximizes the probability of any other class

label prediction. Similarly, the target model loss function may be efficient to perform

targeted adversarial attacks that minimize the distance between the predicted class and

targeted attack class[107]. However, both C&W loss and targeted loss functions will

increase the confidence of the false label and lead to an early exit. Therefore, unlike

traditional miss-classification losses that decrease the entropy, in our implementation

of the DDAS-EarlyExit loss, we need to use an entropy-based loss that can maximize

the entropy at exists for the perturbed inputs produced by the generator.

We choose to implement a DDAS-EarlyExit attack using a recent GAN-based

adversarial attack model approach [107] where the model is able to achieve a high

attack rate against traditional DNN models but with minimal perturbation. Their

attack model is trained to minimize the GAN network loss, which is a combined loss for

the discriminator loss, generator loss, perturbation loss used to limit perturbation range
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and misclassification loss. Since early-exit model such as BranchyNet uses entropy-

based metric to make a decision whether to perform an early exit inference, the DDAS-

EarlyExit attack should generate perturbations that aims to to have high entropy at the

early exit points and ultimately causes the inference to happen at later exits, therefore

in our attack model loss we need to use entropy based loss instead of misclassification

loss. Moreover, since our objective is to train the attack model based on attacker

objectives and therefore we design our DDAS-EarlyExit attack loss with a configurable

approach that can tune the attack model to have different entropy impacts at different

exits and hence divide the our attack model loss into two parts. The first part of

the loss is summation of the perturbation loss, discriminator loss, and generator loss

similar to [107] and for the other significant part instead of the misclassification loss

we use configurable entropy loss (CEL) defined in Equation 6.1 which is a combination

of weights of the entropies of different exits across the early-exit model where weights

represent the magnitude to either maximize or minimize the entropy at an exit.

Loss(x) =
n∑

i=0
Wi ∗ Entropyi (6.1)

This fine-grained exit-specific CEL entropy loss has multiple benefits in controlling

the accuracy and attack success. For example, if the attacker chooses to have a very

high attack rate, the CEL loss can be configured to maximize the entropy over all

the exits. However, in stealth mode, the attacker may choose to have high accuracy

with a low attack rate and therefore may only need CEL entropy loss with respect

to the first exit of the network. Similarly, the attacker can also choose a maximum

possible accuracy and maximum attack success by taking a configuration of CEL loss

with maximizing the entropy across all exits but minimizing the entropy at the last

exit as all the samples will be pushed to the last exit with less drop in overall accuracy.

Moreover, the attacker can have some weights for the entropy of each exit and an in-

depth study of such weight combinations would have to be performed. We do note that
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our attack could use power or inference-based loss instead of entropy loss, CEL, in an

attack scenario where access to the entropy values are unavailable. However, such an

attack design is challenging with GANs and is out of the scope of this work. Given our

DDAS-EarlyExit loss function can handle different attacker objectives we discuss the

training and implementation of our GAN attack model using this loss function.

6.5.2 DDAS-EarlyExit Model Implementation

Figure 19 shows our attack model implementation where we use a generator and dis-

criminator architecture similar to [107] but a different type of target model - iBranchy.

We implement a BranchyNet based target model iBranchy using the ResNet32 classifier

[56] trained on the CIFAR-10 dataset with 50000 training samples[58] and configure it

with three exits: Exit #1, Exit #2, and Exit #3, at different layers of the network.

Exit #1 is configured at the end of the first residual block, Exit #2 at the end of the

second residual block, and Exit #3 at the end of the network. We chose a lightweight

design for both the branches configured at Exit #1 and Exit #2 with a pooling layer fol-

lowed by a flattening fully connected layer to add less overhead at run time to simulate

edge deployments. In our attack model training approach, we make some significant

changes compared to [107]: first, as we use an early-exit model as we depend on the

inferences phase outputs of the different exits and also unlike their attack objective

which is to maximize the confidence for the non-target class using a misclassification

loss, in our training we utilize a configurable entropy loss as shown in Equation 6.1 to

control/maximize/minimize the entropy based loss for the generator across different ex-

its and the DDAS-EarlyExit loss for overall GAN network training. We use CIFAR-10

training dataset with 50000 training samples, same as the iBranchy model training, to

train the generator for generating noise to perturb the the clean images which are are

then discriminated by the discriminator to differentiate between perturbed and clean

images and also the entropy across different exits of iBranchy are calculated. It is to be
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Figure 19: DDAS-EarlyExit-GAN Attack Model

noted access to entropy across all exits for a sample are only needed at attack model

training and during the inference phase the attack model is completely independent

and can generate perturbations without any access to the exits or the iBranchy target

model.

The approach we have taken for mitigating the DDAS-EarlyExit attack for D2NN

is adversarial retraining similar to [91]. Adversarial retraining generally works by gen-

erating adversarial examples and then mix them with clean examples and use both

adversarial and clean data to retrain the target model and has shown to build effective

robust models. However, the goal of our DDAS-EarlyExit is different than misclassifi-

cation and its efficacy is measured through different metrics. Therefore, we aimed to

implement iterative robustness retraining scheme and evaluate its effectiveness on our

DDAS-EarlyExit.

The iterative robustness process we implemented in Algorithm 2 works as follows.

Step 3: we train DDAS-EarlyExit to target the classification model Mi by providing

it with training dataset samples and train the generator GAN to generate the correct

attack noise for DDAS-EarlyExit attack. The attack noise is then added to the clean

image, becoming the adversarial image, and then the adversarial image passes by the
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GAN discriminator to check whether it can differentiated from clean samples. This

operation continues over epochs until we obtain an adequate attack model Ai, we then

proceed to the next step. In Step 4: we test the robustness of the classification model

Mi against the samples generated from GAN attack model Ai by calculating both

accuracy and samples distribution over all exit points. If the metrics shows adequate

robustness that exceed a predefined threshold T we stop the iterative robustness process,

otherwise we proceed to the next step. Step 5: we perform adversarial training on the

classification model Mi to boost its robustness by doing the following: We take the clean

images from the training set and then create their adversarial version by adding GAN-

generated noise for each of these training set images. More specifically, while training

the model with a batch of samples (128 images/batch), we take the 128 clean images

and create 128 adversarial versions using GAN noise specific to these images. Now we

finally pick 128 images randomly out of the 256 mixed images(clean and adversarial)

and train the model. This training continues for all batches of an epoch (total images

of the training set split across batches) and is again repeated for different epochs till we

obtain a satisfactory model Mi+1. The output model Mi+1 from this training process

is then validated for robustness against the attack model Ai to ensure that robustness

goals have been achieved. The results of this approach and its efficacy will be discussed

in the evaluation section 6.6.

6.6 Evaluation

In this section, we discuss the experiments to evaluate our DDAS-EarlyExit attack

and iterative robustness defence approach for iBranchy models. We implement the

DDAS-EarlyExit attack using PyTorch [84] and building on top of code repositories for

BranchyNET implementations [76] [85] and AdvGan [107]. We design our experiments

with different DDAS-EarlyExit loss configurations and evaluate the impact of attack

performance for different metrics such as accuracy, samples exit distribution, power

67



Algorithm 2 Implementation of EarlyExit-attack-robustness adversarial training
1: procedure adverserialrobsutenss

2: while i ̸=N do

3: Use DDAS-EarlyExit to generate an attack model Ai targeting Mi

4: Test the robustness of the model Mi against Ai

5: if Mi passes robustness threshold T then break

6: end if

7: Use Ai to generate adversarial samples S ′
i and retrain to obtain a more robust

Mi+1

8: Validate the new model Mi+1 using attack model Ai

9: end while

10: end procedure

Figure 20: The change in
iBranchy accuracy under
DDAS attacks.

Figure 21: The change in
iBranchy power consump-
tion under DDAS attacks

Figure 22: The change
in iBranchy inference time
under DDAS attacks

consumption, and inference time. We then perform iterative robustness training on

iBranchy with the help of DDAS-EarlyExit to evaluate the effectiveness of adversarial

robust training. We run our experiments on both GPU-enabled local machines and

Amazon-EC2 instances.

68



Figure 23: The change in iBranchy branch level exit distribution different DDAS attacks

6.6.1 Attack Performance on D2NN early exit models

We evaluate the performance of DDAS-EarlyExit using four different metrics: over-

all accuracy of the model after the attack shown in Figure 20, average power consump-

tion of the model shown in Figure 21, average inference time of the model shown in

Figure 22, and output exit distribution over the different branches shown in Figure 23.

Using these metrics, we declare that an ideal attack should be able to maximize power

consumption and inference time at a minimal or no cost to accuracy. The evaluation is

performed by measuring these metrics over 10000 test samples.

We evaluate the DDAS-EarlyExit attacks with the following adversarial entropy

maximizing loss functions entropy_E1, entropy_E2, entropy_E3, entropy_(E1 + E2),

entropy_(E1 + E2 + E3), entropy_(E1 + E2 − E3), entropy_(E1 + E2 − 2 ∗ E3). The

notation used identifies which exit we are targeting for entropy maximization. For

example, the configuration entropy_(E1 +E2 −E3) will aim to maximize the entropy at

Exits #1 and #2 and minimize it at Exit #3. For the sake of completion and to provide

a base model for comparison we also include a classic misclassification adversarial attack

using C&W loss[110] to highlight the difference between standard adversarial attacks

and our DDAS-EarlyExit attack.

First, starting with the standard adversarial attack using C&W , this attack aims to

maximize the misclassification loss at Exit #1. The results show a high negative impact
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on the accuracy of the model dropping it from 89% to about 28% as seen in Figure 20,

while at the same time causing more samples to leave from the earlier branch to increase;

increasing the percentage of samples leaving from the first branch from 59% to 74%,

and decreasing the percentage of samples leaving from the last branch from 14% to 8%.

This in turn causes a decrease in both average inference time and power consumption by

about 21% and 20% as seen in Figures 22 & 21 respectively. This shows that standard

adversarial attacks are not capable of achieving the goals of our attack of negatively

impacting power consumption and inference time while maintaining high accuracy, on

the contrary it does the opposite, it decreases accuracy and power consumption and

inference time. We attribute this ineffectiveness to the maximizing misclassification

confidence does not contribute to entropy maximization and can sometimes even lead

to minimizing it.

Now we move on to analyze the different entropy based adversarial loss function

outlined before. Starting with entropy_E1, we immediately notice the difference be-

tween this and the previous C&W based attack. As this one causes a massive decrease

in the percentage of samples leaving from the first branch from 59% to 21%, second

branch increase from 27% to 37% and last branch increase from 13% to 40%. This in

turn causes an increase in the inference time and power consumption by 26% and 30%

respectively. The overall accuracy drops but by a much lesser degree to 54% up from

29% in the C&W based attack. Changing the function to entropy_E2, we notice a

decrease in exit percentage of the second branch from 27% to 15% , first branch from

59% to 47% and last branch increase from 13% to 34%. The drops in inference time

and power consumption are less severe than the previous attack due to the fact that not

many samples exiting for the first branch are impacted by this one, both were valued

at 16% and 20% respectively. Moving to entropy_E3, we notice that this attack is less

significant than the previous ones as maximizing the entropy of the samples at the last

exit has smaller value than earlier branches due to the simple fact that the samples
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have no choice but leave at this point anyway making the impact of this particular

attack weak comparatively. Therefore, we conclude that maximizing the individual exit

entropy at later exits will reduce impact of DDAS-EarlyExit attack.

Moving on to the next adversarial attack entropy_(E1 + E2), this proves to be

more successful than our previous attempts, the distribution of the exit samples across

branches changes from 59%, 27%, 14% to 19%, 34%, 47%. Demonstrating a more sig-

nificant increase in the load at the later exits. Due to the summation of the entropies,

the attack is also more potent in impacting our performance metrics. The trend contin-

ues with our most aggressive attack entropy_(E1 + E2 + E3), which adds the entropy

of the last exit as well. This attack have an even stepper effect on the sample distri-

bution with more samples leaving from the last branch. We conclude from this that

combining the entropies proves to be an effective way to increase the potency of the

attack. However, this comes at the cost of higher drops in the accuracy. Our next two

attacks aim at finding a balance between attack aggressiveness and accuracy drop. The

first attack entropy_(E1 + E2 − E3) aims at maximizing the entropies of the first and

second branches while decreasing the entropy of the third one. The reasoning behind

this approach is that while we aim to increase the entropies of the first two exits to

nudge the model towards moving samples into later exits for evaluation, we also want

to keep inference accuracy high and we theorize that decreasing the entropy output of

the last layer may lead to the model to be more accurate. The results of this approach

are a less stepper drop in accuracy to just 72% at the cost of much less aggressive attack

as just 32% exit from the last branch. This shows the flexibility of this attack, as this

can be considered as a hyper parameter that can be used to tune the aggressiveness of

the attack. Finally to take this further, we test entropy_(E1 +E2 −2∗E3), which aims

to further minimize the classification accuracy drop. The results here are the closest to

the base model with minor changes across the board. We believe that our results shows

the both the potency and flexibility of our attack and more importantly highlights the
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Figure 24: An illustration of our DDAS-EarlyExit attack

role of an efficient loss configuration and how it can support a controlled attack rate

scenario. Moreover the impact of this attack visually is negligible compared to cleans

samples as shown in Figure 24

6.6.2 Evaluation of Iterative Robustness Training

For building defences to the early attacks we implement an iterative robust adver-

sarial training . Table.7 shows the effect of the adversarial robustness retraining on the

model. As we can see the first iteration of the iterative robustness performs surprisingly

well against adversarial attacks from the same GAN model used during its robustness

retraining. It shows the model restored to the base model basically when it comes to per-

formance metrics as it shows very similar branch exit distribution, accuracy, inference

time and power consumption but with the added robustness against DDAS-EarlyExit

attacks. Therefore adversarial samples generated using DDAS-EarlyExit-GAN is ef-

fective to enhance the robustness of the early-exit models.

However, the effects of robustness degrade when the attackers can further train

DDAS-EarlyExit attack aiming to target the robust model. But we also note that, in

the second iteration, the drops in performance metrics are significantly smaller than in

the first iteration as accuracy drops to only 62% instead of 39% and smaller impacts on

branch exit distribution, inference time and power consumption. This shows that the
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robust model still retains some of the capabilities against further attacks. Therefore

adversarial robustness of the early-exit models trained using DDAS-EarlyExit-GAN will

be effective for unknown DDAS-EarlyExit attacks.

Model Acc Exit
#1

Exit
#2

Exit
#3

Base
Model 88% 59% 27% 13%
Attack iter
0 39% 26% 24% 50%
Robustness
0 85% 56% 26% 18%
Attack iter
1 62% 30% 26% 43%
Robustness
1 84% 56% 28% 15%
Attack iter
2 68% 35% 28% 37%
Robstness
2 83% 54% 25% 21%
Attack iter
3 72% 40% 27% 33%
Robustness
3 83% 55% 26% 19%
Attack iter
3 73% 41% 30% 29%

Table 7.: Performance for edge deployment across 20000 samples

6.7 Conclusion and Future Work

We design and develop DDAS-EarlyExit attack, a GAN based attack against

dynamic edge deployed deep learning networks utilizing early exit models such as

iBranchy. We show that our attack is capable of significantly impact the performance

of these D2NN models in terms of power consumption and inference time latency

for edge-based IoT application/devices. We discuss different attack scenarios utilizing

DDAS-EarlyExit and show how these scenarios can play out causing catastrophic dis-

ruption in the QoS. We also evaluate different entropy based adversarial loss functions

and highlight how they differ from misclassification loss, and we showcase how they

can be used to allow for a flexible attack and how we can fine tune its aggressiveness

to either hit its performance metrics or choose to relax its goals for a more stealthy
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approach in the hopes of evading detection. These flexibility is gained by our design

of the adversarial loss function. Finally, we implement and evaluate an incremental

adversarial robustness retraining scheme for building resilient early-exit type D2NN

models. We showcase the effectiveness of our defense and we also highlight its limita-

tions. Furthermore, we also plan to design and develop DDAS attacks for other D2NN

models and evaluate their defenses. Finally, we believe this work will trigger discussion

for adversarial attacks and defenses on D2NN models and help with the new research

directions. Next, in chapter 7 and 8, we build the components of the iPrivacy service

PrivacyGuard and MirageNet to counter privacy based attacks.
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CHAPTER 7

PRIVACYGUARD: EXTREME SDN FRAMEWORK FOR IOT AND

MOBILE APPLICATIONS FLEXIBLE PRIVACY AT THE EDGE

7.1 Introduction

In addressing the security concern with side-channel analysis, several techniques

like perfect secrecy theory [111], mix based systems and anonymous systems [112] are

proposed to hide traffic signatures and characteristics in order to make them less identifi-

able. The most popular techniques are based on traffic shaping like traffic padding [113,

114, 115, 116, 117], faking superfluous packet and chopping packets into fixed size seg-

ments [115], and traffic morphing [115, 118]. The performance of these traffic shaping

techniques in terms of efficiency and overhead varies based on their configuration pa-

rameters. For example, the efficiency of the traffic padding approach in obfuscating the

traffic signature, as shown later in experiments, increases with the percentage of the

padded traffic packets. However, this higher efficiency comes with higher overhead in

terms of network bandwidth and power consumption since more bits are transmitted.

For example, while a padding configuration providing high obfuscation efficiency with

high overhead is suitable for networks with low traffic loads, it significantly degrades

the performance of a highly saturated networks and, consequently, switching to a lower

overhead configuration would be more desirable.

Motivated by the above observations, in this chapter, we design, develop and eval-

uate a flexible and programmable privacy preserving framework, PrivacyGuard that

is inspired by our another vision of pushing the Software Defined Network (SDN)-like

paradigm all the way to the wireless network edge [119, 120]. This vision is realized by

extending and deploying SDN components (e.g., Open vSwitch [121]) on mobile devices
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and WiFi Access Points (in home or campus environments) or Proxy server (in open

and public WiFi Hotspots). We refer to these SDN components on mobile end devices

and access points as extreme SDN to differentiate them from the traditional SDN used

in the network core. In our approach, the proposed extreme SDN works independently

and without any collaboration or support from the network core SDN. The basic idea

of PrivacyGuard framework is to create one or more vertical network slicing between

mobile devices and WiFi APs/Proxy server corresponding to one or more rules (poli-

cies), which applies the optimum per-flow/per-application privacy preserving scheme

based on application requirements, user objectives, device characteristics, and network

conditions in real-time fashion.

We summarize the contributions of this chapter as follows:

• We design and develop PrivacyGuard, a privacy preserving framework to ob-

fuscate the activities of sensitive IoT and mobile applications from adversarial

attack over encrypted (or unencrypted) WiFi network. The framework supports

important features such as flexibility, transparency, real-time adaptability, and

context-awareness.

• We realize and implement a prototype of PrivacyGuard on Android mobile de-

vices that enable us to apply per-application traffic shaping and IPsec tunneling

schemes.

• Finally, we evaluate and analyze the performance of PrivacyGuard using differ-

ent applications on mobile devices to evaluate its efficiency, energy consumption,

network overhead.

7.2 Threat Model and Applications/Flows Identification

We consider the privacy threat model where the adversary passively eavesdrops

the encrypted/unencrypted wireless traffic between the mobile devices and the WiFi

Access Points (APs). In IoT context, the mobile devices act as gateways for the IoT
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devices that utilizes non- WiFi technologies, such as Bluetooth Low Energy (BLE) or

Z-wave, to communicate with their corresponding applications on the mobile devices.

By eavesdropping, the adversary can extract and analyze the WiFi side-channel infor-

mation such as packet sizes and inter-arrival packet times to identify the running mobile

applications and the corresponding usage activities [24].

In this work, we refer to these applications as the sensitive applications in which

the goal of the adversary is to identify the usage of these sensitive applications (e.g.,

mHealth apps, IoT apps, etc.) to infer user’s information. In this work we offline build

a C5.0 decision tree and a k-NN (k=3) classifiers based on the statistical features of the

side-channel information for identifying the active applications and their corresponding

flows in real-time [120]. In this work, we assume the adversary uses these classifiers

to identify the active applications/flows. In addition, we use these classifiers in our

experiments to evaluate the efficiency of the used obfuscation schemes.

7.3 Related Work

In order to protect the application’s network data, there have been many proposed

solutions for managing network-wide mobile devices from network infrastructure [122].

However, such remote network management solutions are not well-suited for dynamic

network devices like mobile devices. Therefore, researchers are focusing recently on

client-side network security solutions [123, 124]. Among these works, very few ones have

fine-grained and programmable network security policies targeting the applications.

For instance, one of these solutions provides application specific and device-context-

aware network access policies [123] . In another work, the authors have used network

virtualization technique, similar to PrivacyGuard, to isolate the network traffic between

sensitive (i.e., medical applications) and non-sensitive applications [124]. However,

unlike PrivacyGuard, none of the client-side security solutions have focused on the

network security concern of the side-channel attack for sensitive mobile applications.
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Previously, numerous works have addressed the eavesdropping attack [23, 24] based

on side-channel information. However, very few works have actually proposed and val-

idated the use of traffic shaping techniques to address eavesdropping attack [115, 114].

However, none of these works has considered IoT devices and mobile device applica-

tions. Recently, researchers were able to show how a side channel attack could identify

IoT devices, and then proposed a traffic shaping technique based on rate-reshaping

[25]. This technique uses Independent Link Padding based approach that transmits

fixed size packets at a constant rate. Given the programmability of PrivacyGuard, it is

straightforward to adopt this technique as well as any other traffic shaping technique

into PrivacyGuard.

In another work, authors in [125] apply traffic demultiplexing at the MAC layer

to protect the Wi-Fi traffic, which requires expensive MAC layer management between

mobile devices and access points (APs). In addition, this technique requires modifying

the wireless device driver for supporting the multiple virtual interfaces and distributing

the traffic over these interfaces. PrivacyGuard doesn’t require any driver level modifi-

cation and it is not limited to any specific Wi-Fi AP configuration.

7.4 PrivacyGuard Objectives

In considering the above threat model, we design PrivacyGuard with the following

objectives.

Flexible per-application per-flow privacy preserving schemes: Given dif-

ferent applications have different sensitivities and requirements, PrivacyGuard should

have the flexibility of applying different privacy preserving schemes to different applica-

tions. Moreover, different applications and even different flows of the same application

would have different traffic characteristics and, consequently, would require different

schemes to obfuscate the application. For example, Dropbox generates two flows for

uploading/downloading a file, wherein one direction data packets are at its maximum
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possible size, while the other direction contains just identical TCP ACK packets. There-

fore, the TCP ACK flow should use a scheme that pads these TCP frames to look like

the data packets flow, which might not need any padding scheme. Therefore, Pri-

vacyGuard should be designed, through introducing new action commands in Open

vSwitch (OVS), as we will describe later, to support applying per-application per-flow

configurable schemes.

Programmable privacy preserving policies: Given the performance of privacy

preserving schemes (e.g., traffic shaping schemes) depends on their configuration, Priva-

cyGuard should support programmable APIs to define and configure different schemes

dynamically. In addition, it also should support to define set of rules (policies) that map

individual applications/flows to their optimum schemes based on on the application,

user, device, and network conditions and characteristics in real-time fashion.

Context aware privacy preserving policies: Different application require-

ments, user objectives, device characteristics, and network conditions, which we refer

to them as contexts, require different performance levels of the applied privacy preserv-

ing schemes. Therefore, PrivacyGuard should support to integrate the context into

the defined policies in order to select in real-time the optimum scheme for individual

applications/flows that adapt to the given context.

Policies are transparent to applications: Unlike previous systems that often

require redesigning both the client side and the server side of the application Privacy-

Guard should seamlessly support any application without requiring any modification

on either client or server-side of the application.

7.5 Privacy Preserving Schemes

PrivacyGuard adopts and utilizes a number of the popular traffic shaping schemes,

due to its popularity and simplicity, to obfuscate applications traffic signatures from

any adversary.
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One of the adopted traffic shaping schemes is packet-padding that applies a

padding bytes to a percentage p of the application traffic packets. Although the selection

of these padded packets could follow different distributions, we select these packets

uniformly in which each packet of the traffic will be padded with a certain probability

p. The size of the padding bytes will follow a random distribution such as Poisson

distribution or Gaussian distribution. Note that the actual padding size will depend on

the configuration parameters of the distribution. For example, if we set the standard

deviation σ and the mean µ parameters of the Gaussian distribution to a very small

value and a large value respectively, the outcome padding sizes will follow a large

uniform padding distribution. To guarantee that none of the padded packets exceed

the maximum transmission unit (MTU), we truncate the outcome padding sizes as

needed.

Another popular traffic shaping technique is packet-delaying that shapes the

inter-packet transmission times (IPTs). In doing this, we increase the queueing time of

each packet, before sending it down to the WiFi driver, with a random delay selected

from a uniform distribution. Similar to packet-padding scheme, packet-delaying scheme

could follow any other distribution.

Recent studies show that over half of the connections made by mobile applica-

tions are insecure since they don’t use any of the network or application level encryp-

tion [126]. Consequently, open or unencrypted WiFi hotspot connections expose several

data packet fields such as “IP" header in which the adversary could easily identify the

applications/flows from these packets even when we are using any of the privacy pre-

serving schemes. In mitigating this vulnerability, PrivacyGuard applies IPSec tunneling

scheme between the PrivacyGuard’s ends as described in Section 7.5.1, on top of any

used traffic shaping scheme, to prevent eavesdropping any of the packet fields. The

choice of using tunneling is entirely configurable and would be selectively applied for

selected applications based on the network condition (i.e., WiFi is either open or unen-
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Figure 25: Use-case scenario of PrivacyGuard.

crypted).

Although the current implementation of PrivacyGuard adopts the traffic shaping

and IPSec tunneling techniques discussed above as a proof of concept of privacy pre-

serving schemes, PrivacyGuard is a flexible framework that easily could be extended

to support several other privacy preserving schemes such as injecting fake superfluous

packets, chopping packets into fixed-size segments, traffic morphing, etc. Moreover,

PrivacyGuard enables, through defining flow policies as described later, to configure

the applied privacy preserving to adapt its performance to the current context.

7.5.1 PrivacyGuard Basic Operation

Figure 25 shows a typical use case of PrivacyGuard, which consists of two edge

agents i) Client Agent, and ii) Infrastructure Agent that run at two different ends as

shown. The client agent always runs on the user’s mobile devices with system-level

permission. However, the place of running the infrastructure agent depends on the

configuration ability of the WiFi APs. In environments, where it is a common practice

to manage and configure the WiFi APs (i.e., home, campus, office, etc.), infrastructure

agent runs on the APs. On the other hand, where it is less common to manage and

configure the WiFi APs (i.e., public hotspots, coffee shop, airport, etc.), infrastructure

agent runs as a proxy server in the cloud. Note that running these agents on edge

devices is similar to the Bring-Your-Own-Device (BYOD) model that is widely widely

accepted by the community. Moreover, the community has accepted several works
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recently to adopt SDN on WiFi APs [127] and mobile devices [119, 53].

In PrivacyGuard, both of these agents agree on the traffic shaping policies per-

application per-flow as well as the symmetric keys for IPsec tunneling between the two

agents. While the client agent applies traffic shaping policies on the uplink network

flows generated from the mobile devices, the infrastructure agent applies traffic shaping

policies on the downlink network flows to the mobile devices. Note that, PrivacyGuard

only applies policies on the selected set of sensitive mobile applications provided by

the user. In PrivacyGuard, both agents utilize Open vSwitch (OVS) to set and enforce

traffic shaping policies correctly on the network flows from/to sensitive mobile applica-

tions as we describe in the next section. It is important to highlight that PrivacyGuard

is entirely transparent to applications and networks in which it can be seamlessly de-

ployed into any network configuration without requiring any support from application

providers.

7.6 Performance Evaluation

7.6.1 Experiments Setup

In our experiments we use a Nexus 4 smartphone with Android 4.4 running Pri-

vacyGuard client agent as a user device, and an Ubuntu 16.04 laptop with Intel Core

i5-2520M @2.5GHz CPU running PrivacyGuard infrastructure agent as a Wi-Fi AP.

We install 8 commercially available IoT device-based applications on the Nexus device

which acts as the gateway. These applications span different domains including home

appliance, medical and fitness. We use three different traffic shaping schemes based on

packet-padding and packet-delaying. The first is Norm_Pad, which is a packet-padding

scheme where the padding bytes size follows a Gaussian Distribution and µ and σ pa-

rameters are set to 400 and 100 bytes respectively. The second is Norm_Pad_Delay

that applies both a packet-padding scheme (same as Norm_Pad), and a packet-delaying

scheme. In order to calculate the delay, we calculate both the average minimum IPT
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(min) and the average maximum IPT (max) of all the applications. Then, we use that

min-max range to generate uniformly distributed random delays to extend the IPTs

of the targeted application/flow. In our implementation, we set min and max to 0ms

and 20ms respectively. The last scheme is Max_Pad_Delay that pads packets with

the maximum possible bytes and also use the packet-delaying scheme. We run 100

classification experiments for each application for each of the traffic shaping schemes.

We evaluate our experiments with metrics based on both efficiency and overhead.

Efficiency is measured using the accuracy and precision metrics. The accuracy of a

traffic shaping scheme of a specific application is the percentage of the true positive

classifications (i.e., the number of the target application classification experiments that

are correctly identified the target application) to the total application classification

experiments. On the other hand, the precision is the percentage of the true positive

classifications to the summation of the true positive classifications and the false positive

classifications (i.e., the number of the other applications classification experiments that

are wrongly identified as the target application). An application with a low precision

indicates that the used traffic shaping scheme confuses the adversary in which it makes

him falsely identify a large portion of the traffic of the other applications as the target

application. Note that the efficiency metrics are calculated based on the classification

models discussed in Section 4.1.

The overhead is measured in terms of: i) the network bandwidth overhead measured

as the percentage of the additional bytes sent over the network, and ii) the energy

overhead measured the percentage of additional power consumption. To measure the

actual power consumption, we connect the battery of Nexus 4 to the Monsoon Power

Monitor device.
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Figure 26: The accuracy
of Norm_Pad scheme for
different applications and
p values.
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Figure 27:
The accuracy of
Norm_Pad_Delay
scheme for differ-
ent applications
and p values.
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Figure 28: The
accuracy of
Max_Pad_Delay
scheme for differ-
ent applications
and p values.
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7.6.2 Traffic Shaping Schemes Performance

In this section, we analyze and evaluate the performance of Norm_Pad, Norm_Pad_Delay,

and Max_Pad_Delay traffic shaping schemes as examples of different privacy preserv-

ing schemes. Figure 26 shows the accuracy of Norm_Pad scheme with different prob-

abilities (p) for the eight applications. As shown, as p increases, the scheme becomes

more efficient in obfuscating the application signature that results in a decreasing iden-

tification accuracy. It is interesting to observe that while the scheme has high efficiency

for some of the applications such as the Fitbit application with large values of p, it fails

in obfuscating other applications such as the Flux-lightbulb application. We also tried

different configurations of the scheme in which it generates similar results.

By analyzing the traffic characteristics of the applications with low efficiency (i.e.,

Elegato-plug, Avea-lightbulb, Flux-lightbulb, and iLink-lightbulb), we observed that

these applications transmit their packets at periodic patterns. Therefore, any privacy

scheme that is based only on packet-padding will have a low efficiency in obfuscating

these applications. However, in Figure 27 that plots the accuracy of Norm_Pad_Delay

scheme, all applications show better efficiency (i.e., low accuracy) as p increases. There-

fore, different applications/flows have different traffic characteristics that require differ-

ent privacy preserving schemes in order to achieve high efficiency.
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Figure 29: The preci-
sion of Max_Pad_Delay
scheme for different ap-
plications and p values.

 0
 20
 40
 60
 80

 100
 120
 140

0.4 0.6 0.8 1.0

En
er

gy
 O

ve
rh

ea
d 

 (%
)

Probability (p)

Figure 30: The power
consumption overhead
of Max_Pad_Delay
scheme.
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Figure 31: The network
bandwidth overhead
of Max_Pad_Delay
scheme.
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Figure 28 shows the accuracy of Max_Pad_Delay scheme in which its efficiency

exceeds the other two schemes even at low values of p. This is because some applications

such as Elegato-plug iLink-lightbulb, and Flux-lightbulb transmit many large size packets

in which the signature patterns of these traffic are hard to be obfuscated with a padding

scheme using few padding bytes. However, when we pad the packets to the maximum

possible packet size (i.e., MTU size), it becomes hard to identify the signature of these

traffic.

In addition, Figure 29 shows the precision of the same scheme. As shown, the

precision drops gracefully as p increases that help significantly in obfuscating the ap-

plications/flows by confusing the adversary more. For example, while Figure 28 states

that an adversary will be 25% of the time is able to correctly identify the iLink-lightbulb

application when p is 0.8, Figure 29 states that only 60% all the traffic identified as

the iLink-lightbulb application is correct identifications. Therefore, we could easily con-

clude that Max_Pad_Delay scheme with p set to 0.8 will be able to obfuscate the

iLink- lightbulb application approximately 85% of the time.

Unfortunately, the high efficiency of Max_Pad_Delay scheme comes with its as-

sociated overhead. Figures 30 and 31 show the energy consumption and network band-

width overhead respectively for Max_Pad_Delay scheme. The overhead of this scheme

exceeds the overhead of the other schemes at all p values (we omit the other figures
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Figure 32: Flow policies for traffic shaping schemes.

due to space limitation). This is an example that privacy preserving schemes with high

efficiency will be typically associated with high overhead. Moreover, from figures 26

and 27, we can see that the two different schemes have similar efficiency (i.e., accuracy

is 60%) for the Fitbit application for p values of 0.8 and 0.6 respectively. Note that

while the first scheme has significant overhead in terms of network bandwidth because

of large p, the other scheme achieves an equivalent efficiency but with lower network

overhead (lower p) and additional packet delays. Since different schemes could have

equivalent efficiency but with different overheads, policies need to be carefully designed

based on the impact of these overheads on the application, user, device, and network.

7.6.3 PrivacyGuard Programmability and Flexibility

We will evaluate the flexibility and programmability of PrivacyGuard in terms

of the ability to provide such flexible obfuscation schemes and their efficiency under
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different contexts. In the following, we will refer to the policies listed in Figure 32.

We first evaluate the programmability and flexibility of PrivacyGuard. High sen-

sitive applications such as Fitbit could reveal sensitive activities while the user is at

home. Therefore, a policy like Policy #1 that applies high efficient scheme (i.e.,

Max_Pad_Delay scheme) is used for such sensitive applications/flows. However, Fig-

ure 30 shows that such high efficient scheme incurs a 150% increase in energy con-

sumption. Since PrivacyGuard has the capability to create and set different context

parameters dynamically, Policy #1 is configured to be only applied during the time

periods with the sensitive activities. This flexibility in setting the policy results in a

significant energy saving.

In addition, Policy #1 and Policy #2 show an example of the fine-grained pro-

gramming ability of PrivacyGuard in configuring different policies for different flows of

the same application. Different obfuscation schemes such as like Max_Pad_Delay and

Norm_Pad schemes configured in Policy #1 and Policy #2 respectively are suitable

for different flows with different traffic characteristics (i.e., periodic traffic with large

packet sizes versus real time traffic).

Next, we evaluate PrivacyGuard ability in adapting the selected policies to the

contexts changes with respect to privacy and performance. Policy #4 is an example

of a policy that applies Max_Pad_Delay scheme for high performance efficiency for

sensitive applications such as the Fitbit application when the network load is unsatu-

rated. Figure 28 shows that the this policy has a very high performance in obfuscating

the Fitbit application with an accuracy as low as 15% when p is set to 1, which comes

with a high network overhead of about 150% additional transmitted bytes as shown

in Figure 31. However, when the network condition changes to a saturated network

with high load, PrivacyGuard switches to apply Policy #3 for the Fitbit application.

Figure 31 shows that this switch adapts to the new network condition by significantly

dropping the network overhead from 150% to 80% at the cost of reducing the obfus-

87



cation scheme efficiency by increasing the accuracy from 15% (high efficiency) to 40%

(moderate efficiency) as shown in Figure 28.

Similarly, a change in the device context such as its battery level that changes from

high to low will trigger PrivacyGuard to apply a similar switch from a high efficient

scheme (Policy #4 ) to a low energy overhead scheme (Policy #3 ) in order to preserve

the remaining battery level. Moreover, a change in the user context by moving into

an insecure location from a secure location, PrivacyGuard seamlessly will enforce the

IPSec tunneling scheme by switching to policy #5 as long as the battery level of the

device is high.

7.7 Conclusion and Future Work

We presented PrivacyGuard one of the component of iprivacy service, a flexible

and programmable privacy-preserving framework to obfuscate the activities of sensitive

IoT and mobile applications from side-channel attacks. In the next chapter, we present

another component of iprivacy, MirageNET that can be used to generate fake packets

and, therefore, has the potential for decreasing the precision of side-channel attacks.
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CHAPTER 8

MIRAGENET - TOWARDS A GAN-BASED FRAMEWORK FOR

SYNTHETIC NETWORK TRAFFIC GENERATION

8.1 Introduction

The application of GAN technology to automatically comprehend and reverse en-

gineer the grammar of networking protocols such as TCP and UDP, or to automat-

ically create a network traffic model of devices and mobile applications, remains to

be investigated. The development of such synthetic network models might have sev-

eral applications in privacy, security, and network optimization. In terms of privacy,

synthetic network models of apps and devices, for example, can generate fake user

activities in smart homes, reducing the accuracy of side-channel attacks for user ac-

tivity inference. In security research, the synthesized network data from these models

could augment training data to build effective intrusion detection systems. Moreover,

real-world honeypots may be constructed utilizing fictitious devices and applications in

order to better understand the attacker’s behavior and interactions with these apps and

devices. Furthermore, application and device synthetic network models might be uti-

lized to replicate a variety of testing scenarios for analyzing performance concerns such

as load balancing, predicting network conditions, and diagnosing network difficulties.

Creating synthetic network models of real-world devices and applications is chal-

lenging, given the black-box nature of their proprietary protocols and applications logic.

Therefore, to automatically reconstruct an application or device’s network model, it is

necessary to automatically understand the network model’s syntax and semantics and

reverse engineer them without use of manual coding. While the syntax part consists of

the protocol, flow, and packet structures, the semantic consists of meaningful network
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activity. For example, a synthetic network model for an IoT device should first generate

network traffic for the ON user event before generating the network traffic for the OFF

event. Thus, an efficient synthetic network model of a device or application should

learn the syntax, semantic, and interdependencies among them automatically.

Given this motivation, we design, evaluate and discuss the challenges of a net-

work packet generation framework that can automatically understand the syntax of

the network packets from the raw network packets and is the first step towards realiz-

ing our vision of creating a GAN based synthetic Network traffic generation framework,

MirageNet’s, that can automatically create synthetic network models of protocols, ap-

plications, and devices. We summarize the contributions as follows:

• We design and develop MirageNet’s initial component; a synthetic Network Packet

Generator framework.

• We present a sequential byte modeling approach for network packet generation

using GANs.

• We describe the challenges, limitations, and solutions towards generating syn-

thetic network packets.

• We validate and evaluate the performance of our framework using synthesized

DNS packets.

8.2 MirageNet Applications

Synthetic data generation is an emerging research topic in the machine learning

domain given it can boost the performance of various machine learning algorithms [128],

solve class imbalance issues when there is insufficient data for certain classes [129], and

most importantly, the ability to model any unknown distribution [18]. Similarly, we be-

lieve synthetic network traffic data can enable new different applications in the network
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Figure 33: Different research and engineering domains where synthetic network traffic would
have significant impact

domain and support existing ones. Figure 33 shows the three areas of applications that

we envision for synthetic network traffic: privacy, security, and network optimization.

Starting with privacy, we see multiple use cases for synthesizing network traffic

such generating traffic simulating real IoT devices and using it to counter side-channel

attacks to prevent the leakage of user activities in sensitive applications such as health-

care[7]. Another use case is developing privacy-conscious federated learning model

where instead of using real data to build network models which can lead to informa-

tion leakage[130], we can train the federated learning models using synthetic data with

similar data distribution.

Another major area that can utilize the synthetic network data is the security

domain. For example, data augmentation using synthetic network traffic can be used

to train anomaly detection systems with a low number of labeled malware samples by

generating synthetic malware samples and adding it to the training data. Additionally,

traffic synthesis can be used to generate packets with a wide range of characteristics

to test protocol vulnerabilities in the device network stack. For example, a malformed

packet can cause certain target device functionalities to fail and cause a denial of service.

Building synthesized malware is another interesting application where attack patterns

can be recorded by deploying "Honeypots" to capture real malware traffic and learn

its properties and use the synthesized malware to build defense mechanisms that can
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Figure 34: Packet Generation Pipeline using MiragePkt

defend against large-scale IoT-based attacks such as Mirai [11].

Finally, we also consider the area of network optimization, where synthetic net-

work traffic simulating certain network conditions such as high congestion can be used

to measure network performance. Moreover, generating scenario-specific synthetic net-

work data can help improve the efficiency of many ML-based network optimization tools.

For example, the efficiency of reinforcement learning-based models can be improved by

training them under an extensive range of network conditions using GANs[128]. Given

the above interesting applications, in the below section, we will discuss our framework

for generating synthetic network packets as a first step towards building a complete

flow generation framework.

8.3 MirageNet Packet Generation Framework

Our focus is to build a packet generation framework that can synthesize the network

packets whose protocol is unknown. We choose this objective given the significance of

generating synthetic data for proprietary protocols where traditional network parsing

tools such as scapy and traffic generators cannot abe utilized as they fail to automat-

ically understand the syntax of the network packet with multiple fields, values, and

their corresponding correlations. Specifically, we focus on building the synthetic packet

generation model using the raw data collected using a tools such as TCP dump that

consists of a binary stream and does not give information about the structure of the

packet. We pre-collect only the raw binary stream of the network packets as the train-

ing data and do not consider any metadata information about the structure or field

values to build our protocol-agnostic packet generation framework. With this motiva-

tion, we design our packet generation as shown in Figure 34 that consists of multiple
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components. We discuss each of these sub-components in detail.

8.3.1 Hex stream data collection

This is the first step of our framework pipeline that performs two significant tasks,

collecting the network packets and extracting raw bye streams from the network pack-

ets. The network packet collection from online or LAN networks that follow proprietary

protocols is challenging, given that traditional network parsing tools such as scapy can-

not identify similar packets belonging to a specific proprietary protocol. For example,

collecting the DNS network packets without knowing any information about the DNS

protocol is difficult. Therefore, in this component, we use Natural language process-

ing and byte similarity-based calculations between packets to identify and filter the

required raw packets by using the byte stream. However, for this work, we generate

DNS packets based on a scapy script and use this component only to extract the hex

stream from the packets. Designing the sub-component to filter network packets having

similar protocol using byte stream is part of our future work.

8.3.2 Tokening the data

The next component of the framework is tokenization that is responsible for trans-

forming the network byte stream data into sequences of tokens where each token is

representing the byte of packet. Our intuition here is to model the packets as sequences

of bytes and use GANs to understand the conditional distribution of bytes in a sequence

of the packets. We first tokenize the data and performs one-hot encoding on each bytes

in a sequence for creating the training data for GAN. However, our goal is to later ex-

tend this in future work with different data pre-processing methods from NLP such as

word-bag, word embedding, or building a word2vec model for bytes of network packets

that can better understand the correlations between the bytes of a network data.
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Figure 35: MiragePkT Generation Framework

8.3.3 MiragePkt packet generation model

Figure 35 shows the overall architecture of the MiragePkt GAN model, which con-

sists of two components generator and a discriminator. The generator’s objective is

to generate the sequence of tokens representing a packet byte stream. The discrimi-

nator’s objective is to extract the features from the generated sequence and identify

whether the generated sequence belongs to the true distribution of the training data.

This model training is similar to the vanilla GAN training. However, one of the signif-

icant challenges in generating sequences of bytes using vanilla GANs is its inefficiency

in generating discrete data. Many major GAN architectures perform efficiently with

continuous data and have shown excellent performance with image data. However, for

the tasks of sequence generation GANs have performed poorly in domains such as music

and text. We use a combination of 1D CNN and SoftMax functions in the generator

to predict each of the tokens to form the byte sequence of a network packet. It is to

be noted that, unlike a simple RNN or LSTM-based regression task that can predict

a token based on the previous tokens, this GAN architecture can generate all tokens

of the sequence at once, which is closer to the true distribution of the training data.

The generator and discriminator models consist of ID CNN layers and are built using
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Figure 36: Byte Sequence generation through MiragePKT model training

the improved Wassertain GAN model training [131] that has shown improved synthetic

generation for images. Very recently sequence based GANs to generate sequential data

have been proposed [132, 133] that has motivated this work to model sequence of bytes

as packets using GANs. Figure 36 shows the evolution in byte sequence generation of

the MiragePkt where in the early epochs, the generator model is producing random

sequences without any correlation. However, in the later epochs, the generator learns

to understand the conditional distribution of the bytes in the packet and, therefore,

can generate high-quality sequences at later epochs. We discuss the improvement of

the packet generation during training by showing the verbose text of network packets

later in the evaluation section.

8.3.4 Post processor

Finally, this last component of the framework pipeline generates the hex stream of

the packet from the output of the MiragePkt that consists of a numerical representation

of a packet sequence and then identifies if the packet is of high or low quality before

sending it to the network. Determining the quality of a network packet can be measured

by looking at metrics such as measuring the similarity with the training data, and

measuring the randomness of the data such that the packet does not belong to the

original training data or previously generated packets. We discuss some of these metrics

in our evaluation section that we discuss next.
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Domains

instagram.com

bing.com

google.co.uk

alibaba.com

google.com.br

google.co.in

wikipedia.org

Table 8.: Samples Domains from the Alexa dataset

8.4 Evaluation

We pick DNS packets as our use case for the modeling network packets using GANs

as they follow a complex syntax grammar with multiple fields such as domain name,

questions, etc., and therefore can provide better insights into the challenges of synthetic

packet generation. It is to be noted that DNS packets contain variable length payloads

because of the domain names and therefore in our MiragePkt during the tokenization

step, we get the maximum length of byestreams among the training data packets to

create byte sequences with the max length and append zeros for any packets less than

the max length. Building packet generation for packets with dynamic payloads with

variable sizes or complex conditions is much more challenging than simple deterministic

network packets. We discuss next some of these challenges below.

8.4.1 Dataset Analysis and Experiment

To train MiragePkt, we first generate DNS packets using scapy and then use their

hex stream as our raw training data. We create a python scapy [45] based script that

generates DNS packets using real-world domain names as the payload. Figure 37 shows

the distribution of the domains with variable length and Table 8 shows some of the
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sample domains from the dataset.We implement MiragePkt using PyTorch [84] and

python and train it on a GPU-enabled machine and 32 GB memory. In the below

subsections, we perform the data analysis of the training data and discuss our model

evaluation with different training dataset configurations with different complexity levels.

8.4.2 Impact of Training dataset configurations

The machine learning model efficiency is highly dependent on the data pre-processing

and the final input training data. Therefore, to understand the impact of the train-

ing data on MiragePkt models’ ability to reverse-engineer the DNS network packets

automatically, we create three different training datasets with different complexities,

randomwithvariablelength, comwithfixedlength, comorgwithfixedlength. In the ran-

domwithvariablelength, we pick 50000 variable-length payloads with a distribution of

domain name lengths as shown in Figure 39 . Next, we create the second dataset

comwithfixedlength that consits of 50000 packets with fixed domain length domain and

domain suffix as .com. Finally, the comorgwithfixedlength dataset has 25000 domain

names with suffix as.com and .org each. The comorgwithfixedlength configuration is to

understand the impact of DNS packets with different domain suffixes on MiragePkt. .

From Figure 39, shows that for randomwithvariablelength configuration, MiragePkt

performance is highly inefficient across different metrics. The MiragePkt major failure

for this training dataset configuration is its inability to generate valid DNS packets. Ta-

ble 9 shows the different packet errors found while generating the DNS packets where

most of the generated packets have incorrect IP header length and UDP header length

field values. Therefore MiragePkt needs to be improved to understand unknown func-

tions among different bytes of the packet automatically. However, designing such a

network architecture or supporting loss function is very challenging task and needs to

be researched more.

To further validate our above analysis we train MiragePkt with comwithfixedlength

97



Figure 37: Domain length dis-
tribution in the dataset

Figure 38: Features of start
and end bytes

Figure 39: Performance of
MiragePkt

and comorgwithfixedlength that have fixed length payloads but multiple domain suffixes

with the intuition that model performance will increase with decrease in mathemtical

dependencies of the training data . Figure 39 shows that with change of configuration

from comwithfixedlength to comorgwithfixedlength the performance of the MiragePkt

is signficantly improved with a increase in the number of correct packets from 25% to

95% and increase in fakeness from 25% to 94% . It is to be noted that we measure the

fakeness of the packets by searching for the fake byte stream string in the corresponding

training dataset configuration. Therefore, MiragePkt does not memorize or overfit on

the training data and generates high quality synthetic content. Moreover, we observed

that the number of domains generated for comorgwithfixedlength contains both .com

and org in the generated packets. Therefore MiragePkt was able to capture the different

modes of the training data and does not fall into the mode collapse problem where the

GANs only generate one mode of the distribution.

From figure 39 there is not a significant increase the percentage of correctness

or fakeness for the change of configuration from comwithfixedlength to comorgwith-

fixedlength where both configurations have the same fixed length of domains. Therefore,

the change in domain suffix structure does not effect MiragePkt significantly as much

the mathematical dependencies introduced because of variable length domains. It is also

interesting to note that irrespective of the configuration of different configurations the

similarity of the bytes of the synthetic content in all the configurations is performing
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Packet Errors

Bad length value 38 > IP payload

length

IPv4 total length exceeds packet length

Bad length value 39 > IP payload

length

Bad length value 616 > IP payload

length

Malformed Packet (Exception oc-

curred)

Table 9.: The network packet parsing errors for generated packets

well. Therefore, MiragePkt can generate a synthetic packet that is very similar to the

original training dataset. For calculating similarity, we performed a byte-level string

to string similarity to find the max similarity of each generated packet across training

dataset packets and then calculated the average of all the similarity scores. Figure 38

the scatter plot for the first and lat bytes of samples from training data MiragePkt

showing GAN was able to completely understand the last bytes of the payload with

domain suffix .com.

8.4.3 Visualization

For evaluating the synthetic packet visually similar to the process used to evaluate

the quality of synthetic images, we use scapy tool to output the verbose text of the

generated hex byte stream. From Figure 40 shows the improvement of packet generation

during training. At epoch 20, the network packet is malformed and scapy is not able to

construct a valid packet using the generated hex stream. However, at epoch 50, scapy

is fully able to reconstruct the network packet with all the fields. Thus MiragePkt can
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Figure 40: Packet Visualization of MiragePkt using scapy

completely learn the syntax of the DNS packet with their correct field values.

8.5 Related work

Some researchers have recently worked on using GANs to build models that gener-

ate synthetic metadata of network traffic where the metadata is the high level param-

eters of a network flow such as number of bytes, number of packets, and flow duration

[134][135]. In [135] authors used a word2vec embedding approach to generate the flow

metadata parameters of the traffic, given an embedding approach can capture the high-

level relationships among different flow metadata attributes in high dimensional space.

However, their work generates the flow metadata traffic and doesn’t generate the net-

work packets. We believe their work can be extended and augmented to our packet

generation model for building an initial design of a complete network traffic generation

framework.

Very recently, some researchers have used GANs to generate the synthetic pack-

ets[36]. In [36] they use CNN GANs and a special encoding mechanism to generate

different types of network packets such as DNS, Ping, etc. However, our work is signif-

icantly different, given we use different data prepossessing modeling using a sequence-

based approach to model the bytes of a network packet. Moreover, our model design,
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unlike their work which uses a GAN to generate continuous values and then map it to

discrete byte values, uses the softmax in the generator to predict the bytes sequences

of the packet. Furthermore, unlike their work, where the data transformation is done

by duplicating a byte value of a hex stream packet multiple times to achieve high simi-

larity at the cost of increasing the dimensions of training data, our model only requires

the tokenized data, therefore, is more scalable for training and packets with large byte

streams. Recently authors in [136] used a sequence-based approach to generate ad-

versarial packets, which is similar to our sequence-based modeling approach to packet

generation. However, MiragePkt significantly differs in the model design, framework

and our objective to show the challenges with packet generation using DNS packets,

unlike their focus on evading IDS using adversarial packets. Moreover, MiragePkt is

only the first component of our larger vision of building MirageNet.

Very very recently in [37] researchers used a style-based approach to generate a

synthetic pcap file that consists of network packets and a flow. However, our work

differs significantly because we focus on developing synthetic network packets when the

network protocol is unknown and only look at the byte stream network packets for

modeling the packet generation. Moreover, our experiments and metrics in this work

are focused on exploiting the GAN capabilities to understand the limitations, chal-

lenges, and solutions to packet generation. Furthermore, as discussed in our framework

section, the packet generation have multiple components whose objectives of exploiting

NLP-based data processing or building post-processing tools to correct and detect the

randomness of packets are very different from their work.

8.6 Discussion

In this work, we focused on the first step towards realizing MirageNet by develop-

ing MiragePkt where we were able to demonstrate the many intricacies in the packet

generation process, the impact of training data, and the limitations of GANs in compre-

hending some of the mathematical functions. As our future work, we intend to develop

101



a few components that improve the packet generation model.

First, we want to investigate pre- and post-processing components to aid in the

preparation of better training data and to automatically fix any malformed packets with

minor flaws. For example, as a pre-processing step, we can design scripts to identify non-

deterministic regions in the overall training data, such as payload, and map them to any

of their correlated fields, such as header length, to provide metadata that will support

GAN in automatically understanding these mappings. Similarly, a post-processing tool

might be created by employing a reinforcement learning (RL) agent [137] capable of

learning to repair any malformed packet based on replies from a server or device that

is processing the synthesized packets.

Another MiragePkt enhancement would be conditional generation employing con-

ditional GANs [138], where instead of randomly generating any network packet ending

in .com or .org, the MiragePkt may generate packets with a certain domain suffix as

requested by the user during the generation stage. The next important component

we intend to develop is the MirageNet flow generation framework in its entirety. In

this framework, the model must be capable to capture the temporal dependencies be-

tween packets in a flow as well as grasp the protocol syntax. For example, in a TCP

flow, the first three packets must be syn, syn-ack, and ack, in which the model must

automatically capture these rules.
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CHAPTER 9

CONCLUSION AND FUTURE WORK

9.1 Summary

This thesis designs and proposes a security and privacy framework to secure edge-

based IoT devices against network attacks. We build and describe the different secu-

rity and privacy services and their subcomponents to realize our framework. As part

of countering the malware-based attacks, we design an ML-assisted security service

iKnight and evaluate it with different real-world edge-based scenarios such as robust-

ness to noise, adaptability to new devices, and lightweight model deployment. We find

that Semi-Supervised GANs and other ML techniques such as Continual Learning and

Knowledge distillation are efficient for building edge-based IoT classifiers. Moreover,

we design a Dynamic DNN based lightweight ML model for IoT devices and evaluate

their vulnerabilities and defenses.

To counter the side-channel attack for privacy inference, we designed Privacy Guard

that applies dynamic privacy-preserving obfuscation schemes based on network condi-

tions, user policy, and location. Our proposed framework can be enhanced to automat-

ically learn the user-based policies and generate the required obfuscation schemes using

machine learning techniques. Finally, we show the results of MirageNet where we eval-

uate the ability of GANs to generate synthetic network traffic. We discuss the different

challenges with building the complete MirageNet tool and our approach. Overall, in

this thesis, we show the ability and potential of our framework components to counter

network-based attacks with respect to side-channel attacks and malware. However, we

need to ultimately integrate all these tools to build a complete working system that we

plan for our future work.
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