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Abstract

MATHEMATICAL MODELS OF INFECTION PREVENTION PROGRAMS IN

HOSPITAL SETTINGS

By Kelly A. Reagan

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy, Systems Modeling and Analysis at Virginia Commonwealth

University.

Virginia Commonwealth University, 2022.

Advisor: David M. Chan, Ph.D.,

Associate Professor, Department of Mathematics and Applied Mathematics

Hospitals play a vital role in providing for the healthcare needs of a community.

Patients can develop hospital-acquired infections (HAIs) during their hospitalization

due to exposure to foreign bacteria, viruses, and fungi. Infection prevention programs

target and reduce HAIs, but implementing the infection prevention programs often

comes with a cost. The goal of my research is to use mathematical models to quantify

the impact of infection prevention programs on cases of HAIs and total healthcare

costs. First, I use a Markov chain model to quantify how one infection prevention

program reduces general HAIs in the hospital. Then, I calculate the impact of resis-

tance by healthcare leaders to implement two infection prevention techniques on two

HAIs in the hospital. I used ordinary differential equations to quantify the timing

of initiation and termination of two infection prevention programs within a region

divided into two components to understand how a community intervention and a lo-

calized intervention affect the peak number of infections in an epidemic. Finally, I

viii



used an agent-based model to quantify the impact of one specific infection prevention

program on one HAI in one ward within the hospital. Overall, my research supports

implementing the specific infection prevention programs examined to reduce the bur-

den on healthcare systems and improve patient outcomes.
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CHAPTER 1

INTRODUCTION

Mathematical epidemiology focuses on modeling infectious diseases to better under-

stand the causes, predict the spread, determine ways to control the spread and sim-

ulate how various disease prevention programs may affect the disease’s impact on a

community. A specific set of infections, hospital-acquired infections (HAIs), are in-

fections that a patient develops during their stay at the hospital. Because a patient is

not often admitted with an HAI, it is important to prevent HAIs with proper infection

prevention programming to reduce the patient’s length of stay, overall morbidity, mor-

tality and healthcare costs. My research focuses on quantifying the potential impact

of infection prevention programs on HAIs.

I employ mathematical models to fit the settings and conditions within the hos-

pital. My process includes identifying model variables, parameters, estimating the

costs of the prevention program as well as the costs of the infection, and providing

conclusions targeted towards healthcare leaders to inform best practices.

Mathematical modeling allows me to perform studies on HAIs in silico. The

experiments that I simulate often cannot be done in a clinical setting due to ethical

standards of treatment. Because of this, precise parameter values are unknown and

have to be estimated through simulations. The results from the mathematical models

provide general trends for complicated problems. The mathematical simulations are

low cost, provide quick results, are easily modifiable and have defined control and

treatment groups.

HAIs affect about one in 25 hospitalized patients and are largely preventable
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[Johnson et al., 2014, Magill et al., 2014, Bearman et al., 2019]. In 2001, HAIs were

one of the leading causes of death in the United States [Wenzel and Edmond, 2001].

Cases of HAIs declined from 2015 until 2020 due to successful infection prevention

and control policies enforced by the Centers for Disease Control and Prevention’s

(CDC) National Healthcare Safety Network. Unfortunately, due to the COVID-19

pandemic and the subsequent stress placed on healthcare facilities, HAI incidence has

increased since the pandemic began in late 2019 [Weiner-Lastinger et al., 2022]. This

highlights the importance of maintaining the effectiveness of HAI prevention practices

even when public health emergencies arise [Weiner-Lastinger et al., 2022].

Revelas [2012] broadly defines HAIs to be infections “acquired in the hospital or

healthcare service unit that first appear 48 hours or more after hospital admission

or within 30 days after discharge of patient care”. Some HAIs include “catheter-

associated urinary tract infections, central line-associated bloodstream infections, sur-

gical site infections, ventilator-associated pneumonia, hospital-acquired pneumonia,

and Clostridioides difficile infections” [Monegro et al., 2017]. The CDC provides

context for the morbidity of HAIs in the United States in Table 1.

Major Site of Infection Estimated Number

Pneumonia 157,500

Gastrointestinal Illness 123,100

Urinary Tract Infections 93,300

Primary Bloodstream Infections 71,900

Surgical site infections from any inpatient surgery 157,500

Other types of infections 118,500

Estimated total number of infections in hospitals 721,800

Table 1 : HAI Estimates Occurring in US Acute Care Hospitals, 2011 [Centers for
Disease Control and Prevention, 2018]

HAIs are most frequently caused by viruses, bacteria and fungal pathogens. Mon-
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itoring and treating HAIs has become increasingly more difficult because patients are

being discharged from the hospital sooner than ever due to medical and technological

advances [Collins, 2011]. HAIs also continue to challenge healthcare systems due to

increasing bacterial and antibiotic resistance [Revelas, 2012].

The World Health Organization suggests that HAIs continue to plague even

the most advanced hospitals. This is due to the fact that medical devices and pa-

tient wounds provide access for external bacteria to enter the patient’s body. Also,

drug-resistant bacteria make it difficult for patients to be treated under traditional

preventative practices [Serra-Burriel et al., 2020].

Mortality rates, length of patient stay in the hospital and cost are much higher

for patients with HAIs than patients without HAIs [Glance et al., 2011]. Further, the

total cost of the hospital stay is about “2.6 to 6 times higher in patients with HAI

compared with patients without HAIs” [Glance et al., 2011], and they cost about

$45,000 on average [Dancer, 2014].

HAIs are largely preventable when effective infection prevention strategies are

sustainably implemented and followed at high compliance levels [Bearman et al.,

2019]. These prevention strategies often include improving catheter insertion tech-

niques, following contact precautions, monitoring hand hygiene, disinfecting caps for

IV lines and bathing patients, especially near the site of device insertion. These often

prevent and reduce HAIs from developing or worsening [Bearman et al., 2018, Climo

et al., 2013]. Healthcare institutions need to have effective leadership and access to

information on infection control practices in order to sustain best practices [Bearman

et al., 2019].

In summary, prior research indicates that HAIs are a burden to healthcare sys-

tems and infection intervention strategies can prevent HAIs from developing. In the

following chapters I develop and utilize mathematical models to quantify the impact
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of infection prevention strategies on yearly HAIs and the associated costs. Providing

estimations on the number of cases of HAIs and potential savings related to the tim-

ing and effectiveness of implementing the program allows healthcare leaders to make

decisions on whether or not the infection prevention program should be incorporated

into their standard practices.

In Chapter 2, I first examine how CHG bathing, an infection intervention pro-

gram, affects general HAIs. This was done using a Markov chain model examining

different levels of compliance in CHG bathing, and then measuring the effects on

the number of HAIs and associated costs. I also examine the effects of the delay

in implementing infection prevention strategies that can occur at the administrative

level of a hospital. Here, I employ a Markov chain model to quantify implementing

CHG bathing at 10% incremental compliances, and examine how the delay in starting

CHG bathing and using a standardized central line bundle kit affects cases of central-

line bloodstream infections (CLABSI) and catheter-associated urinary tract infections

(CAUTI). I also look at costs associated with treating HAIs and implementing these

programs.

In Chapter 3, I quantify the interplay of implementation and termination of

different infection prevention strategies during a pandemic. The research was inspired

by the beginning of the COVID-19 pandemic when healthcare workers did not have

enough personal protective equipment (PPE) to adequately keep them safe from

the transmission of the virus in addition to social distancing being introduced and

enforced in the community. I used a Susceptible-Infected-Recovered (SIR) Model,

which is a system of ordinary differential equations, to model the dynamics of the

two infection prevention techniques and how they affect the timing and the size of

the peak number of infections during the outbreak.

In Chapter 4, I simulate implementing a specific infection intervention program
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in efforts to reduce the incidence of Clostridiodes difficile infections (CDIs) in only

the Bone Marrow Transplant (BMT) unit within a hospital. I use an agent-based

model (ABM) to quantify how testing a patient for Clostridiodes difficile (C. diff )

before the patient is admitted to the BMT Unit affects the number of cases of CDI.

The process of testing a patient for C. diff before admission is called active detection

and isolation (ADI). I quantify the impact of implementing ADI on the number of

community-acquired and hospital-acquired cases of CDI. I also calculate the costs

associated with implementing ADI, and compare it to the cost of not using ADI as

an infection prevention practice.
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CHAPTER 2

CHLORHEXIDINE GLUCONATE BATHING AND A

STANDARDIZED CENTRAL LINE BUNDLE KIT

2.1 Background

As medical technology has advanced, the use of invasive devices within hospitals

has increased. These invasive devices prolong life but offer foreign entities access

to the body [Kollef et al., 2021]. The use of vascular catheters, such as central vein,

arterial and pulmonary artery catheters can result in a patient developing central line-

associated blood stream infections (CLABSIs). Urinary catheters, such as urethral,

supracubic and percutaneous nephrostomy catheters can cause a patient to develop

catheter-associated urinary tract infections (CAUTIs) [Kollef et al., 2021]. Patients

may also acquire an HAI from being immunocompromised, receiving prophylactic

antibiotics and being exposed to pathogens in the hospital environment [Kollef et al.,

2021].

Prevention strategies are effective in reducing HAIs in hospital units [Glance

et al., 2011]. In an effort to reduce HAIs, studies have been conducted to determine

the effectiveness with bathing patients with an antimicrobial solution, chlorhexidine

gluconate (CHG) [Frost et al., 2016, Rupp et al., 2012]. CHG is a strong antiseptic

because it affects the membrane structure of bacteria, yeasts and viruses [Donskey

and Deshpande, 2016]. Chlorhexidine also is known for having residual antiseptic

effects hours after application, which also makes it favorable in clinical applications

[Donskey and Deshpande, 2016].

To quantify the number of infections that can be prevented by CHG bathing,
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Climo et al. [2013] and Amirov et al. [2017] conducted clinical studies to estimate

the impact of CHG bathing on the reduction of HAIs compared to the use of soap

and water. Bathing patients with CHG washcloths in prior studies showed that

patients often had adverse skin reactions, but the study by Climo et al. [2013] showed

that patients rarely had adverse skin reactions. Amirov et al. [2017] focused on

determining the effect of CHG bathing in hospital units where patients stayed for

months and years rather than days. They also concluded the CHG bathing reduces

the incidence of HAIs.

In a meta-analysis study, Frost et al. [2016] estimated the reduction of HAI

risk with daily CHG CLABSI, vancomycin-resistant Enterococcus (VRE), CAUTI,

Methicillin-resistant Staphylococcus aureus (MRSA), ventilator-associated pnuemo-

nia (VAP), and CDI. They reported a 56% decreased risk of CLABSI, 37% decreased

risk for VRE, 7% decreased risk of CAUTI, 36% decreased risk of MRSA bacteraemia,

18% decreased risk of VAP, and a 7% decreased risk of CDI with daily CHG bathing.

In addition, Huang et al. [2016] conducted a meta-analysis study on CHG data and

reported a 32% decreased risk of acquiring CAUTI.

Another method of improving patient outcomes with central lines is using a

standardized central line bundle kit. This kit includes all of the materials needed

to insert a central line, including the supplies to clean the patient with CHG, in

addition to the educational material for healthcare workers to reference in order to

maximize the success of the insertion [McMullan et al., 2013]. The alternative is

that a healthcare professional would gather the supplies themselves and remember

the process of inserting a central line [Fenik et al., 2013].

The use of a standardized central line bundle kit is one infection prevention

program that has proven to reduce CLABSIs [McMullan et al., 2013, Lee et al., 2018].

The wards of the hospital with the lowest central line kit utilization had the highest
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rate of CLABSI, and the ward with the highest utilization of the kit had the lowest

rate of CLABSI. Fenik et al. [2013] found that healthcare workers spent less time

and wasted fewer materials with the bundled kit than if they obtained the materials

together themselves. Upon implementation of the standardized central line bundle

kit, McMullan et al. [2013] saw a 59% decrease in CLABSI cases over a five-year

period. Allen et al. [2014] also reported a decrease in CLABSIs from 2.72 per 1,000

catheter-days before the intervention to 0.40 per 1,000 over the 37 months following

intervention when the standardized kit was incorporated into the care of patients

within the ICUs of Fletcher Allen Hospital in Vermont.

CLABSIs and CAUTIs are largely preventable with proper education and main-

tenance of the patient’s device under the care of the patient’s healthcare team [MacE-

wan et al.]. According to Magill et al. [2014], 4% of all hospitalized patients had at

least one HAI at the time of their research. In the same study, CAUTIs accounted for

12.9% of all HAIs and CLABSIs accounted for 9.9% of all HAIs [Magill et al., 2014].

However, research by Agency for Healthcare Research and Quality [2019] supports

CAUTI (32%) and CLABSI (14%) accounting for 46% of all HAIs.

Although CHG bathing and implementing a standardized central line bundle

kit have clinical research support to improve patient outcomes, successful prevention

practices are not always put into practice. New practices or improvement of current

practices may be rejected by “active resistors”, individuals in healthcare leadership

positions who can stop initiatives before they start, and by “organizational consti-

pators”, healthcare leaders who slow the implementation of a new practice. The

ideas may be rejected because infection prevention initiatives may directly contradict

mandates given to other divisions, such as reducing supply costs per patient days.

Resistance can create unnecessary delays that have large ramifications for patient

outcomes as well as the health system’s overall fiscal health.
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The goal of this chapter is to quantify the costs and predict the number of pre-

ventable HAIs associated with the quality and timing of two infection prevention

programs. More specifically, I examine how the compliance level of CHG bathing

affects annual rates of HAIs and their costs. Additionally, I calculated the number of

preventable CLABSI and CAUTI cases and their associated costs when the standard-

ized central line bundle kit and CHG bathing are not immediately put into the routine

practice of caring for patients with urinary catheters, central lines, when healthcare

leaders delay implementing these prevention practices.

2.2 Mathematical Modeling with Markov Chains, HAIs Prevented and

Money Saved

Here, the objective is to track a patient’s status throughout their stay in the

hospital to keep track of a patient’s infection status, whether or not they receive the

infection intervention program, and whether they are being admitted or discharged.

I note that the timing of events during their stay influence a patient’s probability

of developing an infection. A Markov chain model was used because infections are

probabilistic in nature. So, the outcome for an individual patient is only determined

by these probabilities that they received a device, or acquired an infection.

2.2.1 Markov Chain Modeling the Reduction of HAIs with CHG Bathing

AMarkov chain model is a mathematical modeling technique consisting of various

compartments and the probabilities of transitioning into another compartment. The

compartments are chained together with directed pathways where one compartment

can transition into another compartment as seen in Figure 1. The current state of the

system depends on the conditional probability that an event occurred at the previous

time step. I use a discrete Markov chain model where each time step is a single day.
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The model incorporates the classes of patients and the daily probabilities that

a patient was bathed, discharged or infected. In Figure 1, patient compartments or

states are depicted by black boxes and the transitions between the compartments are

denoted by the colored arrows. Nj (j = 0, 1, 2) are patients who have not been CHG

bathed or become infected. Pj (j = 0, 1, 2, 3) are patients who received a CHG bath

j days ago. Patients who have an HAI are in PI .

The CHG bathing bathing compliance is the daily probability that a patient will

receive a CHG bath, and is represented by the blue arrows. When a patient received a

CHG bath, they transition into the P0 class, meaning that the patient just received a

CHG bath. The red arrows are the probabilities of being discharged. When a patient

is discharged, a new patient is admitted into N0. The likelihood of getting an HAI is

denoted by the yellow arrows.

When a patient gets an HAI, they move into the PI class where they remain for

the rest of their stay. Finally, if a patient is not bathed, discharged, or infected with

an HAI on a given day, the patient moves to the next state in the diagram as denoted

by the green arrows.

The green arrows transition patients into the j + 1 state from where they were

previously, except for patients in terminal states of N2 and P3. Without receiving a

CHG bath, getting an HAI or being discharged, patients in N2 transition into P3 and

patients in P3 remain in P3. This is because a patient’s microbiome regenerates after

72 hours, or three days, of injury (such as invasive surgery or an accident) [Howard

et al., 2017]. So, a patient who was admitted to the hospital two days ago and a

patient who received a CHG bath three days ago both have regenerated microbiomes.

However, the probability of getting an HAI is lower for patients in P3 than for patients

in N2, since they have residual CHG on their skin, which continues to kill bacteria.

The state of the system, A(t), is given by
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Figure 1 : Markov chain model schematic with all possible patient states and arrows
denoting possible transitions between states.

A(t) =

[
N0(t) N1(t) N2(t) P0(t) P1(t) P2(t) P3(t) PI(t)

]T
. To deter-

mine the distribution of patients on day t+ 1, I use

A(t+ 1) = [B][I][D]A(t),

where D, I and B are transition matrices that represent the probabilities of being

discharged, infected, and bathed for all patient states, respectively. D, the discharge
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matrix, is defined by

1 δ δ δ δ δ δ δ′

0 1− δ 0 0 0 0 0 0

0 0 1− δ 0 0 0 0 0

0 0 0 1− δ 0 0 0 0

0 0 0 0 1− δ 0 0 0

0 0 0 0 0 1− δ 0 0

0 0 0 0 0 0 1− δ 0

0 0 0 0 0 0 0 1− δ′



(2.1)

. I, the infection matrix, is defined by

1− r′0 0 0 0 0 0 0 0

0 1− r′1 0 0 0 0 0 0

0 0 1− r′2 0 0 0 0 0

0 0 0 1− r0 0 0 0 0

0 0 0 0 1− r1 0 0 0

0 0 0 0 0 1− r2 0 0

0 0 0 0 0 0 1− r3 0

r′0 r′1 r′2 r0 r1 r2 r3 1



(2.2)
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. B, the CHG bathing matrix, is defined by

0 0 0 0 0 0 0 0

1− β 0 0 0 0 0 0 0

0 1− β 0 0 0 0 0 0

β β β β β β β 0

0 0 0 1− β 0 0 0 0

0 0 0 0 1− β 0 0 0

0 0 1− β 0 0 1− β 1− β 0

0 0 0 0 0 0 0 1



. (2.3)

δ is the discharge rate for N0, N1, N2, P0, P1, P2, P3 and δ′ is discharge rate for PI ,

which was assumed to be lower due to the HAI. ri and r′i are the infection rates.

Specifically, ri = (1 − (3−i)α
3

)r for i = 0, 1, 2, 3 and r′i = ηri for i = 0, 1, 2, η ∈ [0, 1],

where α is the CHG bathing effectiveness and η is a newly admitted patient’s resis-

tance to infection with their unaltered microbiome. β is the CHG bathing compliance

rate.

The costs associated with giving patients CHG baths are calculated based upon

the number of patient baths given, and is calculated by tracking the number of pa-

tients who entered P0 at every time step. The number of HAIs are calculated by

counting all of the patients who entered PI . The total cost calculation include costs

related to bathing materials and the costs associated with HAIs.

2.2.2 Potential Annual Savings and Prevented HAIs

To quantify the impact of incorporating CHG bathing as an infection prevention

practice, the transition rates in Table 2 are estimated from two years of data from

Virginia Commonwealth University (VCU) Medical Center in Richmond, VA. This
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data includes the average observed incidence rate of 1.025 cases per 1,000 patient days

for CLABSI, CAUTI, and CDI in 2017 and 2018 [Bearman et al., 2018]. VCU Medical

Center recorded an average total of 318 CAUTIs, CLABSIs and CDIs between 2017

and 2018.

The estimated average reduction in the probability of acquiring an HAI due to

CHG bathing, α = 32%, was based on the reductions of risk of HAIs in Frost et al.

[2016] and Huang et al. [2016]. r is calculated with a baseline compliance rate of 60%

and the effect of CHG bathing on the reduction of incidence of CLABSI, CAUTI,

and CDI [Frost et al., 2016, Huang et al., 2016]. The baseline compliance rate of

60% is estimated to be the average compliance rate of CHG bathing followed at VCU

Medical Center.

In order to calculate the costs of implementing CHG bathing, K. Gurney from

VCU Medical Center prices one CHG bath to cost $5.71 (personal communication,

October 18, 2018). Patients who do not receive a CHG bath on a given day were

assumed to receive a bath with non-CHG wipes, which costs $1.16 per bath, as priced

by K. Gurney (personal communication, October 18, 2018). Each specific HAI has

an individual cost to the hospital. On average, I assume an HAI costs the hospital

$45,000 as presented by Dancer [2014].

The simulations were run in Matlab for 100 days before calculating the results

for 365 days at steady state with 850 patients in the hospital. The time step was one

day. Costs were calculated using $5.71 for one CHG bath on one patient, $1.16 for a

non-CHG bath for one patient and $45,000 if a patient got an HAI. If a patient did

not receive a CHG bath, then they received a non-CHG bath. The number of daily

CHG baths, non-CHG baths and HAIs were tracked over one year and the costs were

totaled for each 10% CHG bathing compliance rate.

The results show the impact of increasing the CHG bathing compliance on the
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Parameter Symbol Value

Daily probability of infection r 0.00134 (32% effectiveness)

CHG bathing effectiveness α 0.32 HAIs per day

Unaltered microbiome resistance η 0.95 per day

Discharge rate for all classes except PI δ 0.2 patients per day

Discharge rate for PI δ′ 0.1 patients per day

Table 2 : Parameter values used in the Markov chain model simulations with CHG
bathing compliance is increased in 10% increments.

number of HAIs and the amount of healthcare costs saved. In Figure 2, every 10% in-

crease in CHG bathing compliance results in about 10 HAIs prevented. Additionally,

Figure 3 shows that every 10% increase in CHG bathing compliance would result in

about $450,000 saved per year.

Assuming 90% is an attainable compliance rate to reach, increasing the CHG

bathing compliance from 60% to 90% incurs an additional cost of $106,291.65 spent

on CHG bathing wipes. However, at 32% reduction in HAI incidence, increasing the

compliance rate from 60% to 90% results in 20 averted infections and $815,301.75

saved cost. Further, based on the HAI mortality rate of 15%-25%, approximately 5

lives will be saved [O’Horo et al., 2012].

2.2.3 Markov Chain Modeling and the Timing of Implementing Infection

Prevention Programs

Unfortunately, it is not always straightforward to change hospital practices. Ac-

tive resistors and organizational constipators are individuals in leadership positions

who block change, delay adoption of best practices, and inhibit new prevention pro-

tocols from being implemented in hospital systems. A strategy to overcome active

15



Figure 2 : The decrease in yearly HAIs
at 32% reduction in incidence due to
CHG bathing with an increase in CHG
bathing compliance.

Figure 3 : The increase of overall sav-
ings with a 32% reduction in incidence
due to CHG bathing by increasing CHG
bathing compliance from 0%.

resistors is to present data and scientific evidence supporting a new practice over the

current practice.

To quantify the impact of active resistors and organizational constipators, the

Markov chain model is expanded to focus on the delay of implementation of CHG

bathing and the use of the standardized central line bundle kit, and examine this

delayed effect on CLABSIs and CAUTIs. Patient compartments are modified to in-

clude patients with urinary Foley catheters (foleys), central lines, both and neither

devices. CHG bathing reduces incidence of CLABSI and CAUTI because of its an-

timicrobial properties that fight harmful bacteria [Donskey and Deshpande, 2016].

The standardized central line bundle kit reduces incidence of CLABSI because it pro-

vides everything that a healthcare worker needs in order to successfully and sanitarily

insert a central line [McMullan et al., 2013, Lee et al., 2018].

In this model, there are different patient types: newly admitted patients without

a central line or foley, N , patients without a central line or foley and are not newly

admitted, O, patients with a central line and have not received a new central line
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with the standardized kit in i days (i = 0, 1, 2, 3), Ci, patients with a foley and have

not had a CHG bath in i days (i = 0, 1, 2, 3), Fi, and patients with both a central line

and a foley and have not received wither a new central line or a CHG bath in i days

(i = 0, 1, 2, 3), Ti. It is assumed that the effectiveness of the intervention program

decreases each day until i = 3, when the altered microbiome regenerates [Howard

et al., 2017]. If a patient receives a device during their hospital stay, then they move

to the i = 0 subclass. Patients with central lines may acquire CLABSI, and patients

with foleys may acquire CAUTI. U , B and I patient classes have CAUTI, CLABSI

or both CAUTI and CLABSI respectively. Patient compartments are denoted by the

black boxes in Figure 4.

Patients with CLABSI or CAUTI may develop a secondary infection of the other

type. Patients may also acquire both infections within the same day. Additional

infections beyond acquiring CAUTI and CLABSI are not considered. If a patient

acquires an infection, their transition is denoted by the red arrows in Figure 4. If a

patient does not acquire a new infection or utilize a new intervention, then the patient

moves to the i+ 1 version of the same class, as they did in the general HAI Markov

chain model. If the patient has an infection or is within the circulating class, O, the

patient stays within their class as indicated in Figure 4 by the purple arrows. If a

patient is discharged, as indicated by the green arrows, then a new patient is admitted

into N . If a patient gets a device, then they move into C, T or F as indicated by the

gold arrows.

The distribution of patients in each class at each time step, t (number of days),

is given by the state vector

X(t) = [N(t), O(t), C0(t), C1(t), C2(t), C3(t), F0(t), F1(t), F2(t), F3(t), ...

T0(t), T1(t), T2(t), T3(t), B(t), U(t), I(t)].
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Figure 4 : A flow diagram of the model. The gold arrows, ρp, indicate a patient getting
a device. The red arrows, r, show patients acquiring an infection. The green arrows,
δw, are patients being discharged. The purple arrows are the patients’ progression
through the diagram if the patient does not receive any actions.

The distribution of patients on day t+1 is defined by the state vector X(t+1) =

[B∗][I∗][P ∗][D∗]X(t), where B∗, I∗, P ∗, and D∗ are transition matrices. In particular

B∗ represents patients receiving a CHG bath or obtaining a new standardized central

line kit. I∗ represents the probability of patients getting an infection. P ∗ represents

the probability of getting a central line or foley, and D∗ is the transition matrix for

being discharged.

The patient’s average length of stay, 1
δw
, differs for each class w. The daily

probability of getting an intervention p, ρp, is calculated using, ρp = 1 − (1 −K)δw ,

where K represents the percentage of hospitalized patients with intervention p. It is

assumed that getting a catheter and getting a central line are independent events.

The infection rate, r, is calculated with a baseline compliance rate of 60% CHG

bathing and with the pre- and post-intervention values of the standardized kit. The

reduction of incidence of CAUTI and CLABSI due to CHG bathing is represented by

η. The reduction of CLABSI due to the standardized kit is represented by κ. The
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equation for r for those with central lines or both devices is ri = (1 − (3−i)ηκ
3

)r for

(i = 0, 1, 2, 3). The equation for r for patients with catheters is ri = (1− (3−i)η
3

)r for

(i = 0, 1, 2, 3). Chlorhexidine’s antimicrobial agents can last on the skin for up to 48

hours and it is assumed that the effectiveness of the CHG reduced the longer it has

been on the skin, which is why the infection rate increases with each day since the

patient received a CHG bath or since the patient was first admitted [Ilango et al.,

2013, Donskey and Deshpande, 2016].

2.2.4 Number of CLABSIs, CAUTIs and Total Cost Due to Delaying

Best Practices

Overall, I calculate the impact of active resistors and organizational constipators

on yearly CLABSIs and CAUTIs by looking at the changes to annual number of HAIs

and associated costs. In the Markov chain model, I estimate the values for ri, rk, η, κ

and r (see Table 3 for values) by running simulations to mimic data from VCUMedical

Center before both interventions. The parameters η and κ were estimated based

upon the reduction of incidence of the infection prevention programs on CLABSI

and CAUTI. Prior to the standardized central line bundle kit and CHG bathing

interventions, there were 80 CLABSI and 39 CAUTI infections annually at VCU

Medical Center. The probability of a patient developing CAUTI was 0.1257 per 1000

patient days and 0.2579 per 1000 patient days for CLABSI. The simulations were run

in Matlab R2018b with time steps of one day. The results are based on simulations

run for 100 days to reach steady state and then calculated for 365 days with 850

patients.

The Markov chain model simulations were run with parameter values associated

with patients with central lines and foleys. The specific values from literature used

to calculate δw and ρp are presented in Table 3, which also contains the calculation
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for the infection rates, r.

Monetizing the impact of the delay of infection prevention programs on CLAB-

SIs and CAUTIs includes costs related to CHG bathing materials for CAUTI, the

standardized central line bundle kit for CLABSI, and the costs associated with HAIs.

The costs used in this project are different from the previous project because they

were updated at the time of completing the project. In this study, the updated cost

for one CHG bath costs $8.47 (US dollars). Patients that do not receive a CHG

bath on a given day were assumed to receive a bath with non-CHG wipes that cost

$2.47 per bath. The non-centralized central line bundle costs $0.04 more due to the

compilation of necessary supplies needed to insert a central line compared to the

standardized central line bundle kit. On average, I assumed that a CAUTI infection

costed $13,793 [Agency for Healthcare Research and Quality, 2017] and a CLABSI

infection costed $70,696 [Agency for Healthcare Research and Quality, 2013]. The

total cost calculation includes the number of CHG baths given, the number of non-

CHG baths given, the number of standardized central line bundle kits used and the

costs associated with getting CAUTI and CLABSI over one year.

Implementation of CHG bathing and the standardized central line bundle kit,

and the associated costs, are simulated to be initiated in increments of six-month

delays, and compared to no implementation over 5 years. Simulations were run for

the desired delay amount without either infection prevention program, then once

the time delay was reached, the programs were implemented hospital-wide at 100%

compliance. Overall, as the delay in implementation for the infection intervention

programs increases, the number of HAIs increases as seen in Figure 5, and the associ-

ated savings in healthcare costs by implementation decreases seen in Figures 6 and 7.

When a linear trend line is fit to the results, every six-month delay in improvement of

CHG bathing compliance results in about 11 preventable CAUTIs and an additional
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Parameter
Parameter
Symbol

Parameter
Value

Source

Discharge rate for patients
with central lines

δCL 0.0556 [Dube et al., 2020]

Discharge rate for
patients with CAUTI

δCAUTI 0.0556 [Al-Hazmi, 2015]

Discharge rate for patients with
central lines and catheters

δboth 0.0556 [Dube et al., 2020]

Discharge rate for
patients with CLABSI

δCLABSI 0.0417 [Dube et al., 2020]

Discharge rate for patients
with catheters

δCATH 0.1 [Al-Hazmi, 2015]

Discharge rate for all other
patients in the hospital

δOther 0.2 [Baek et al., 2018]

Probability of getting a central line ρCL 0.01232 [Chopra et al., 2014]

Probability of getting a catheter ρCATH 0.01270 [Carrouget et al., 2017]

Probability of getting both a
central line and a catheter

ρBoth 1.565*10−4 [Chopra et al., 2014]
[Carrouget et al., 2017]

Actual infection rate for
those who have received a
central line or both devices in i days

ri (1− (3−i)(η+κ)
3 )r∗

Estimated based
upon data

Actual infection rate for
those who have
received a catheter k days ago

rk (1− (3−i)κ
3 )r#

Estimated based
upon data

Reduction of incidence of CAUTI
and CLABSI due to CHG bathing

η 0.11
Estimated based
upon data

Reduction of CLABSI due to the
standardized kit

κ 0.49
Estimated based
upon data

Base infection rate for
patients with central lines or
both devices

r∗ 4.5*10−9 Estimated based
upon data

Base infection rate for
patients with catheters

r# 1.15*10−10 Estimated based
upon data

Table 3 : Parameter values used in the Markov chain model simulations to quantify
the impact of resistors and constipators on CLABSIs and CAUTIs.
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cost of $11,000. Every six-month delay in implementing the standardized central line

bundle kit results in about 10 CLABSIs and an additional $715,000 in costs.

Figure 5 : Number of infections over five years when the infection prevention program
is delayed by x months. The number of CAUTIs over five years is represented by the
red data points, and the number of CLABSIs over five years is represented by the
blue data points.

2.3 Conclusions

Delaying implementation of infection prevention initiatives leads to increased

HAIs and total associated healthcare costs. If more expensive intervention strate-

gies reduce infections, such as with CHG bathing, the strategies may end up saving

healthcare costs. When the standardized central line bundle kit and CHG bathing

are immediately implemented, healthcare systems comparable to VCU Medical Cen-

ter can prevent approximately 200 HAIs. Each monthly delay led to decreases in total

associated healthcare savings. There were less overall savings for CAUTI infections

due to the $6.00 difference with the implementation of CHG compared to a $0.04 dif-

ference for the standardized central line bundle kit. Also, the healthcare costs dealing
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Figure 6 : Amount of savings over five years when the use of CHG bathing is
delayed by x months. As the number of months to implement the infection prevention
programs increases, the potential cost savings decreases.

with a CAUTI were less than for CLABSI.

The role of active resistors and organizational constipators in implementing CHG

bathing and the standardized central line bundle kit had a dramatic impact on health-

care costs and patient outcomes. The model was limited by the assumptions, such as

not including educational and monitoring costs or considering varying levels of com-

pliance, but allowed for predictions and quantitative analysis of immediate or delay

in implementation of CHG bathing and the standardized central line bundle kit.

Using Markov chain modeling to simulate the impact of CHG bathing and the

standardized central line bundle kit allowed me to estimate results that would have

been otherwise unethical to perform in a clinical setting. Additionally, performing all

of the simulations as clinical studies would have taken years to complete, and would

have required researchers to make sure that other infection intervention programs
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Figure 7 : Amount of savings over five years when the use of CHG bathing and
the standardized central line bundle kit is delayed by x months. As the number of
months to implement the infection prevention programs increases, the potential cost
savings decreases.

were not introduced during the study period. The mathematical simulations allowed

for the programs to be isolated without confounding variables affecting the results.

With only a few extra dollars spent on each patient, thousands of dollars can

be saved over the span of years. Also, applying the standardized central line bundle

kit and/or CHG bathing to any patient reduces the risk of developing HAIs, which

reduces the amount of time that a patient spends in the hospital. Reducing a patient’s

length of stay allows the hospital to see more patients and reduce healthcare costs.
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CHAPTER 3

FLATTENING THE CURVE

3.1 Introduction

Highly contagious diseases require public health officials to develop and enforce

prevention programs within communities to reduce the burden that these diseases

have. Some highly contagious diseases include norovirus (stomach flu), influenza,

meningitis, hand, foot and mouth disease, pertussis (whooping cough), sexually trans-

mitted infections, Methicillin-resistant staphylococcus aureus (MRSA), tuberculosis

and severe acute respiratory syndrome coronavirus 2 (COVID-19). Some prevention

programs are not resource intensive, such as encouraging people to wash their hands

and to stay home if they are feeling sick. Other programs, such as vaccines, require

extensive research and supplies in order for the programs to be effective in preventing

transmission.

During outbreaks of highly virulent diseases, various intervention strategies may

be implemented to reduce disease spread and “flatten the infection curve.” Flattening

the curve allows for smaller peaks of infections, that are often delayed. This is critical

for the success of healthcare services. Not only do these strategies allow for more time

to prepare for the influx of patients, but caring for a smaller number of patients at

one time prevents healthcare providers and systems from being overwhelmed.

Consider a population broken up into two components: a smaller subset of the

community where an intervention strategy is lost, and large city or small country

where an intervention strategy is implemented. Examples of the smaller subset are

schools, religious centers, healthcare facilities, nursing homes, jails or homeless shel-
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ters.

For example, schools could be considered to be a small subset of a community.

Schools may lose a mask mandate that required the faculty and the students to wear

a protective mask during the day. Alternatively, schools may also lose adequate air

circulation or the air quality might be reduced if proper circulation systems cannot

be afforded or if the school has to close windows during the winter. The remainder

of the community, the larger subset, may have to follow a mask mandate when they

are outside of their homes or be required to social distance (maintain at least six feet

apart from other people).

In the example of a community with a large religious organization as the smaller

subset, the religious center may also act as a school, a shelter or a meeting place. The

religious center may lose its ability to keep safe distance between people during large

events or if there was an increased need to shelter people. Then, in the remainder of

the community, the larger subset, a vaccine could be introduced.

My research considers the case of dividing the community into hospitals and

the general population in application to studying a future highly virulent strain of

COVID-19. COVID-19 is a disease caused by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) [WHO, 2020]. Common symptoms are respiratory in-

fections, fever and dry cough [WHO, 2020]. Patients usually develop symptoms within

twelve days [Lauer et al., 2020]. The virus is contracted from other infectious indi-

viduals from direct contact with mouth or nose droplets [WHO, 2020], and from a

person touching an infected object or surface [Lauer et al., 2020].

One COVID-19 prevention program is social distancing. Social distancing in-

volves maintaining a minimum of six feet between people and is recommended to

help stop the spread of the virus. It is not resource-intensive and is effective in reduc-

ing the spread of COVID-19 [Nanotkar et al., 2020]. Caley et al. [2008] showed that
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social distancing was effective during the Spanish Influenza of 1918. Approximately

260 per 100,000 lives were likely saved as a result of social distancing [Caley et al.,

2008]. Social distancing is critical in preventing infections when there exist asymp-

tomatic carriers within a community [Whitehead and Feibel, 2020, Wilder-Smith and

Freedman, 2020].

Another infection prevention program that reduces the transmission of many in-

fections is the use of personal protective equipment (PPE). The Occupational Safety

and Health Administration recommends that all healthcare workers protect them-

selves with PPE when interacting with infectious patients. PPE are any pieces of

equipment worn in order to reduce injury or illness due to hazards in the workplace

[OSHA, 2020]. In the specific case of studying COVID-19, goggles or face shields,

facemasks and gloves are all recommended by the CDC as PPE to prevent the trans-

mission of the virus [Centers for Disease Control and Prevention, 2020]. Contact

precautions or airborne precautions (depending on the patient) and eye protection

should all be utilized to prevent the spread of the virus [OSHA, 2020], as well as stan-

dard precautions like washing hands. The demand for PPE increases as COVID-19

becomes more prevalent.

This research focuses on the timing of initiation and termination of social dis-

tancing in the general community and PPE use in hospitals, and how these affect

the total number of COVID-19 cases. Previous studies reported combinations of dis-

ease control methods are most effective in reducing the transmission of COVID-19

[Patiño-Lugo et al., 2020, Nussbaumer-Streit et al., 2020]. Additionally, assuming

early control of the epidemic, I considered the results of removing social distancing

restrictions. Overall, I analyzed the impact of these intervention strategies on the

total number of infections on a scale of a small country.
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Figure 8 : SIR model diagram with transition rates β(t) and 1
d
.

3.2 Mathematical Modeling

The focus on this study is to examine the effect of the removal and start of

intervention strategies. In particular the implementation of social distancing on the

general public, and the loss of PPE in healthcare facilities. To accomplish this, I use a

simple Susceptible-Infected-Recovered (SIR) model with a time-dependent infection

rate, β(t). The model to calculate the total number of COVID-19 cases is given by,

dS

dt
= −β(t)SI

dI

dt
= β(t)SI − 1

d
I

dR

dt
= 1

d
I,

(3.1)

where d represents the length of time individuals remain infectious.

The infection rate, β(t), is defined to be

β(t) = β1(t)H + β2(t)(1−H), (3.2)

where H is the weighted proportion of the infection rate parameter that is due to the

infections within the hospital. β1 and β2 are defined as

β1(t) =

 βhEh, t ≤ Th

βh, t > Th

, (3.3)
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and

β2(t) =

 βs, t ≤ Ts

βsEs, t > Ts

, (3.4)

where βh and βs are the base infection rates in the hospital setting and outside

hospitals, respectively. Eh is the effectiveness of PPE in hospitals, and Es is the

effectiveness of social distancing in preventing the spread of the disease. Th is when

hospitals run out of effective PPE. Ts is the initiation time of social distancing.

The proportion of infections due to hospital transmission varies by community.

This proportion is likely to be much smaller in countries with efficient and properly

staffed healthcare systems than in countries where that is not the case, and the hos-

pital or healthcare facilities could be the main hub of transmission. The effectiveness

of PPE, Eh, may vary with the quality of PPE as well as with proper or repeated use.

The effectiveness of social distancing, Es, is likely to vary dramatically between and

within communities based on how seriously the local population follows recommended

or mandated mitigation strategies. The values of Eh and Es were varied.

Figures 9 and 10 give examples of the infection parameter β1(t), β2(t), and β

when social distancing starts on day 45 and 105 (Ts = 45, 105), respectively, and

hospitals run out of PPE on day 100 (Th = 100). In this example, the weighted

proportion of the infection rate parameter that is due to the infections within the

hospital, H, is 15%. In Figure 9 initially β is large since there is no social distancing,

and then decreases, once social distancing starts. After β drops, due to the start of

social distancing, it rises again after the hospitals run out of PPE.
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Figure 9 : Social distancing begins at 45 days with modest effectiveness level and
PPE are lost at 100 days.

3.3 Results

To examine the effects of these intervention strategies, the simulations are divided

into three categories of effectiveness of social distancing: high (75%, Es = 0.25),

moderate (60%, Es = 0.4) and modest (40%, Es = 0.6). Social distancing is simulated

to be initiated at different points in time, Ts, after 45, 60, 75, 90 and 105 days of

the initial outbreak. These initiation times are chosen based on the peak number of

infectious individual occurred around 100 days. I assume the effectiveness of PPE

was 80% (Eh = 0.2). To explore the loss of PPE, I consider the cases where there is

an early loss of PPE at 50 days (Th = 50), and a loss near the peak of the number

of infectious individuals at 100 days (Th = 100). It is assumed that once PPE run

out, supplies are not replenished to any significant degree within the time frame of

the simulations. I also assume for convenience that βs = βh.

The initial conditions are S(0) = 4, 500, 000, I(0) = 2, R(0) = 0 to simulate two

cases being introduced into a small country in an outbreak situation. To solve the
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Figure 10 : Social distancing begins at 105 days with modest effectiveness level and
PPE are lost at 100 days.

system of ODEs, the equations were discretized in Microsoft Excel with time steps

of one day and Forward Euler’s Method was applied. The system of ODEs was also

solved in Matlab using ode15s. The simulations are run for 530 days to capture

the dynamics over the course of a year and a half.

Parameters are chosen to exhibit a peak in the infectious class occurring around

100 days without using any intervention strategies. I also assume that individuals

would be infectious for two weeks, and that infections occur between close proximity

between individuals. It is possible that a disease like COVID-19 may be transmitted

through contact with surfaces, though I assume that social distancing and the use

of proper PPE will dramatically reduce the spread through close proximal vicinity

including transfer through surfaces.

The spread of COVID-19 is complex in many respects. Many individuals are

asymptomatic [Whitehead and Feibel, 2020]. Spread can occur between individuals

in close proximity through the air, or through contact to surfaces where the virus can
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remain over time [WHO, 2020]. Due to many factors including the inability to con-

duct widespread testing, it is difficult to estimate infection rates. Additionally, rates

found in the literature vary over a wide range of values [Mandal et al., 2020, Zhang

et al., 2020, Roda et al., 2020, Cherniha et al., 2020]. Roda et al. [2020] specifically

mentioned that modeling parameters and results vary because of the uncertainty of

when the outbreak began, the complexities in defining who is infected with COVID-

19, and the wide range in the case-infection ratio [Roda et al., 2020]. In retrospect,

patients did not contract COVID-19 from healthcare facilities at high rates during

the initial outbreak of COVID-19 [Pryor et al., 2022]. Due to this, I consider a future

virulent strain of COVID-19.

3.3.1 Highly effective social distancing

Individuals need to obtain food and other goods, and at times medical care, which

makes social distancing impossible to achieve at extremely high percentages. In this

situation I assume highly effective social distancing reduces the infection parameter

by 75%. Figure 11 shows that postponing social distancing results in a dramatic

increase in the peak number of infections. Starting social distancing before day 75

results in a peak of approximately 225,000 infections, whereas after 75 days, peaks

of 1,000,000 infections or more occur. Delays in peaks allow for healthcare agencies

both time to prepare and with lower peaks the ability to better handle the patient

load.

Comparing β in Figure 9 and 10, it is clear what the effect of a delayed social

distancing from initiating on day 45 in the former and on day 105 in the latter has on

the transmission rate. The former situation has a lower overall β between day 45 and

105. This decrease in β during this time results in the delay in the peak infections

seen in Figure 11. In general initiating social distancing 15 days earlier results in a
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delay in the peak by almost 100 days, unless social distancing starts near 100 days in

which the peak occurs early.

Similar results are seen in Figure 12 where the overall percentage of people who

become infected rises well above 50% when social distancing starts after day 75. This

quickly becomes over 90% of the population having been infected in most cases where

social distancing is started after 90 days. Also seen in Figure 12 is the importance of

hospital protocols and PPEs where there is high hospital transmission. In the case

with low transmission and early social distancing, as seen by the red and blue curves

in Figure 12, the epidemic can be controlled to very low levels when social distancing

begins before 70 days. Starting social distancing later, such at 100 days, abates the

effect of hospital transmission since eventually each situation eventually reaches the

same effective β.

Figure 12 shows the effects of losing PPE. For low hospital transmission the

percent eventually infected drops 3% to 10% for a given day of initiation of social

distancing. In the high hospital transmission case the percent can drop nearly 20%

in some instances. However, when initiation starts early or very late there is nearly

no difference between the early loss of PPE on day 50, or when PPE are lost near the

peak of the infection on day 100.

3.3.2 Moderately effective social distancing

In the case with moderately effective social distancing, with a reduction of 60%

in the infection parameter (Es = 0.4), I see in some cases more than twice the size in

infection peaks than in the highly effective case, see Figure 13. This decrease in the

effectiveness results in the peaks with early social distancing range from 550,000 to

600,000 individuals, whereas the with late social distancing the peaks are again over

1,000,000. Overall this is a significant rise in the peak number of cases with this drop
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Figure 11 : The social distancing effectiveness is 75%, hospital transmission is 15%
and the hospital runs out of PPEs at 100 days.
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Figure 12 : The percentage of the total population infected when social distancing
has a high effectiveness level.
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in effectiveness.

There are still delays in the peak with early initiation of social distancing, though

the delays are noticeably shorter. In the highly effective case the peaks occurred

around 340, 250, and 150 days for social distancing initiation occurring on day 45,

60 and 75, respectively. In the moderately effective scenario the peaks occur approx-

imately on days 200, 170 and 140. Overall these peaks are delayed by approximately

a month for implementing 15 days earlier. This is around a third of the delay in the

highly effective case.

In Figure 14, around day 85, there is an increase in the percentage of the popula-

tion infected eventually by the virus. However in this case, due to the effectiveness of

social distancing, the benefits to the overall percentage of infected are reduced where

a majority of the population will eventually become infected. The effect of low and

high hospital transmission are relatively small.

The effect of losing PPE is evident in Figure 14 where under low hospital trans-

mission a reduction of 3% to 5% is typical depending on the day of initiation of social

distancing. In the case of high hospital transmission the percent reduction may range

as large as 13%, though again there is little effect whether initiation occurs early or

late.

Modest effective social distancing

For modest effective social distancing, 40% effective (Es = 0.6), the overall effect

are unsurprisingly relatively small. In Figure 15 the number of infections at the peak

are at or above 1,000,000 individuals. It is interesting to observe that there is a small

increase in the peak number of infections with an earlier delay in initiation of social

distancing. The cause of the increase in the size of the peak is due to the higher

infection rate that occurs after day 100, and the fact that on day 100 there is a larger
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Figure 13 : The social distancing effectiveness is 60%, hospital transmission is 15%
and the hospital runs out of PPEs at 100 days.
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Figure 14 : The percentage of the total population infected when social distancing
is moderately effective.
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susceptible population for the situations with earlier initiation, see Figure 15.

The delay in peak infectious individuals exhibited here is on the order of about

10 days for each 15 day increment of earlier initiation of social distancing. This delay

can be important in order to prepare, though the with large scale of the peaks of

infectious individuals the benefits are small compared to the cases of moderate and

high effectiveness.

In Figure 16 nearly the entire population acquires the infection. The effect of

high and low hospital transmission and when the low of PPE occur is relatively small

when compared to the entire population, though the trends are similar to the other

cases. There is a dip in the percentage of infected with the delay in loss of PPE on day

100, this is again due to the higher infection rate on a large susceptible population.

3.3.3 Impact of terminating social distancing

Finally, I examine the situation where social distancing is terminated after being

initiated. In particular, I consider the case where social distancing starts on day

45 and then is terminated on days 150, 200, 250, and 300. The results are seen in

Figure 17.

In each case of termination, a relatively large peak soon follows the termination.

Without termination the peak is a little over 200,000, though the peak grows to over

1.5 million with early termination after 150 days, and to near 700,000 for the late

termination on day 300. Each additional delay of 50 days does have noticeable drop

in the peak as well as a delay in the timing of the peak.

Figure 18 shows that the earlier that social distancing is terminated, the higher

the percentage of the population is infected when social distancing begins at day

45. There are modest differences in the low and high hospital transmission cases.

This does show that ending social distancing before day 300 results in about 90% of
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Figure 15 : The social distancing effectiveness is 40%, hospital transmission is 15%
and the hospital runs out of PPEs at 100 days.
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Figure 16 : The percentage of the population when social distancing has a modest
effectiveness level.
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Figure 17 : The social distancing effectiveness is 60%, hospital transmission is 15%
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the population acquiring the virus, whereas waiting an additional 150 days results in

about 55% of the population getting infected.

3.4 Conclusions

I developed an SIR model with a time-dependent infection parameter that fo-

cuses on the intervention strategies, social distancing and PPE use within hospitals.

My simulations examine a regional population of 4.5 million. Due to change from ini-

tiation and termination of social distancing as well as hospitals running out of PPE,

there is dramatic variation in when the peak number of infectious individuals occur

and the size of this peak.

My model is unique because it analyzes the interaction between starting one

infection prevention program and the loss of another. The example that I chose to

model is beginning social distancing and losing adequate PPE supplies in an outbreak
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of a virulent strain of COVID-19. The model uses average values for nationwide

estimates. I also do not include other factors such as contract tracing and vaccination.

It is clear of the importance of healthcare facilities having sufficient equipment

to reduce the transmission of the disease within the facilities. However, it is also

important that the effectiveness of social distancing is critical in reducing the number

of infections. Public education of social distancing is vital to save lives and to not

burden the health system within each community.

3.5 Discussion

This research example considers a future strain of COVID-19. At the beginning

of the COVID-19 pandemic in 2019, many parameters related to transmission of

the virus were unknown since historical data related to COVID-19 did not exist

[Petropoulos and Makridakis, 2020]. Also, at the time of the research, I made educated

inferences that disease transmission within the country due to hospitalizations may

be 5%, 10% or 15% in the most severe situations. As I know now, hospital-acquired

COVID-19 accounts for about 0.10% of total COVID-19 cases [Pryor et al., 2020].

Instead of applying the model to a country divided by hospitals and the rest of the

community, hospitals could be replaced by a congregate setting where transmission

is high. The initiation and termination of social distancing may still be governed

by the region, but other settings may set their own regulations by extending social

distancing. The implementation of social distancing may also be delayed if facilities

have to rearrange their space and residents, if possible. The effectiveness of social

distancing in the community would not be different than with the hospital example.

However, social distancing can be challenging in congregate settings by limitations of

the physical space.

PPE in nursing homes, jails, homeless shelters and schools would include face
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masks, face shields, gloves and perhaps disinfectants. The timing of the loss of PPE

for staff and residents would still impact the transmission of a disease or infection

through the space, but it would also impact the willingness of staff to show up for

work and/or perform their job at high quality due to safety concerns. In the hospital

setting, the effectiveness of PPE would be mostly driven by the availability of new

supplies since healthcare workers are trained on proper use of PPE. In the congregate

settings, the effectiveness would be mostly determined by the education around PPE

use and by the enforcement of correct use.

Overall, I found that the infection prevention program on the larger subset of

the country has the largest impact on the number of cases of the disease or infection.

There is a large variation in simulation results when the effectiveness and initiation of

the community infection prevention program varies and when the smaller subset loses

an infection prevention program. It is clear of the importance of the smaller subset

having the infection prevention program in place. However, it is also important that

the effectiveness of the community infection prevention program is critical in reducing

the number of infections. An ineffective community program has little effect on the

spread of the disease within the population.
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CHAPTER 4

CLOSTRIDIOIDES DIFFICILE AND ACTIVE DETECTION AND

ISOLATION

4.1 Introduction

Clostridioides difficile (C. diff ) is an anaerobic bacterium that produces spores

and toxins which lead to diarrhea and colitis. Many healthy people live with C. diff

bacteria in their gut as a part of their natural microbiome. However, when the gut is

disturbed, the C. diff bacteria can produce harmful toxins and cause a Clostridioides

difficile infection (CDI). Symptoms of CDI include severe watery diarrhea, fever,

stomach tenderness, loss of appetite and nausea [Centers for Disease Control and

Prevention, 2021]. CDIs are one of the most common healthcare-associated infections

in the United States [Lee et al., 2021]. The CDC report that there are nearly half

a million infections in the United States per year [Centers for Disease Control and

Prevention, 2021]. One report from 2021 estimates that C. diff infections nearly

quadruple hospitalization costs [Spanos, 2021]. It is also estimated that the cost of

treating CDI is $1.5 billion annually in the United States [Zimlichman et al., 2013].

Cases of CDI can be classified upon their origin: community-acquired or hospital-

acquired (hospital-onset). If a patient develops symptoms of CDI within 48 hours of

admission and their last hospital discharge was at least 12 weeks ago, then their case

is classified as being community-acquired CDI. However, if a patient has been in the

hospital for more than 48 hours, then the CDI case is considered to be hospital-

acquired [Ofori et al., 2018]. A patient may have acquired CDI from the community

through outpatient healthcare institutions, receiving antibiotics through the outpa-
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tient healthcare institution or ingesting contaminated food or water [Ofori et al.,

2018].

Immune-compromised individuals, elderly people and patients prescribed antibi-

otics are more susceptible to getting CDI than the general population [Lee et al., 2021].

Immune-compromised individuals lack the ability to fight off harmful bacteria, such

as toxic C. diff spores. Elderly people are more susceptible to CDI due to frequent

healthcare visits and physiological changes to their gut [Jump, 2013]. Antibiotics

alter the patient’s microbiome, which can trigger otherwise unproblematic C. diff to

produce toxins. In particular, patients in the Bone Marrow Transplant (BMT) unit

are prone to CDI since they are immune-compromised and are prescribed antibiotics

during their treatment [Barker et al., 2018].

C. diff is transmitted when asymptomatically colonized, which I will refer to as

just colonized, and infectious patients shed C. diff spores into the environment and

the spores enter a susceptible patient’s body through the mouth [Mayo Clinic Staff,

2022, Gilboa et al., 2020]. If the patient has three or more loose stools within 24

hours, the patient is tested for toxigenic C. diff to confirm that the patient has CDI

and not another diarrhea-causing condition [Lee et al., 2021]. When the patient is

symptomatic and tested, they are placed under contact precautions. Contact precau-

tions include hand washing with soap and water, wearing gloves and gowns, requiring

patients to stay in an isolated room, and sanitizing the room and equipment with

sporicidal disinfectants [Widmer et al., 2017, Doll et al., 2019].

Instead of only testing patients with symptoms, one can implement active detec-

tion and isolation (ADI) where patients are initially tested before entering the hospital

to determine whether they are colonized by C. diff [Thompson, 2018]. When a pa-

tient tests positive for C. diff bacteria upon admission, that patient is placed under

contact precautions and is immediately isolated for the remainder of their stay at the
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hospital [Cho et al., 2018].

ADI is not always implemented due to costs and being more resource-intensive

than traditional techniques of testing a patient only when they are symptomatic

[Madden et al., 2018, Weinstein et al., 2007]. Examples of the additional resources

needed for ADI are tests, rooms for isolating patients, healthcare workers to admin-

ister the test and protective equipment for healthcare workers. Resistance towards

not implementing ADI also includes feedback from patients about increased isolation,

depression, anxiety, prolonging the patient’s length of stay, and increased wait time

in emergency departments [Weinstein et al., 2007].

Overall though, ADI has shown to reduce the incidence of CDI [Weinstein et al.,

2007, Longtin et al., 2016, Lanzas and Dubberke, 2014, Cho et al., 2018, Barker et al.,

2018]. Particularly vulnerable wards in the hospital, such as the BMT Unit, could

benefit from ADI [Barker et al., 2018]. The goal of my research is to use mathematical

modeling to describe how ADI decreases CDIs and to quantify the costs associated

with ADI compared to testing patients when they show symptoms of CDI in the BMT

Unit.

4.2 Mathematical Model

Because patients acquire C. diff indirectly by ingesting C. diff spores from the

environment, the mathematical modeling technique used for implementing ADI in the

BMT Unit must also incorporate patient interactions with a contaminated environ-

ment. Due to the small number of patients in the BMT unit of the hospital, I utilized

an agent-based model (ABM) to simulate the interactions between the patients and

the environment. ABM is a simulation technique incorporating agents and an envi-

ronment. The agents are autonomous and they can interact with other agents and/or

the environment. In my example, the agents only interact with the environment. The
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agents’ actions in the simulations are governed by rules.

I use an ABM to model patients staying the BMT unit to study the transmission

of C. diff within the unit. In the model, the agents are patients that exhibit indepen-

dent behavior from other agents. The environment is the BMT unit and healthcare

workers. The environment’s level of contamination is determined by the spores shed

by colonized and infectious patients. When a patient is discharged, I assume that

the patient’s room is disinfected and another patient is admitted into the room. So,

the level of C. diff contamination within the environment decreases when a patient

is discharged.

Although the patients do not directly interact with one another, the indirect pa-

tient contributions to the contamination of the environment causes C. diff to spread.

Patients in the BMT unit are at high risk for CDI because of long hospitalizations,

high antibiotic use and because chemotherapy negatively impacts a patient’s intestinal

health [Barker et al., 2018].

I implement two agent-based models, ADI-model and non-ADI model, to measure

the outcomes of implementing ADI on the transmission of C. diff. The two models

consider the practice of testing only symptomatic patients, non-ADI model, depicted

by Figure 19, and the process of ADI of patients, ADI-model, depicted by Figure 20.

The ABM has two main components: the environment and the agents. First,

the environment, P (t), estimates the amount of contamination in the environment

and Ω(t) is the proportion of environment that is contaminated with C. diff spores.

P (t) is defined as:

P (t+ 1) = max(0, 0.4P (t) +
∑

αiTi(t)),

where i ∈ {CA, CH , CN , CS, IN , IS, R,D}, αi ∈ {−1, 0, 1, 2}, and Ti is the number of

spores shed by class i.
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Figure 19 : Model diagram for non-ADI model with patient states susceptible, S, sus-
ceptible on antibiotics, SA, asymptomatic colonization by environment, CH , asymp-
tomatic colonization by antibiotics, CA, admitted with asymptomatic colonization,
CN , infectious, not-screened yet, IN , infectious, screened, IS, and recovered, R. The
arrows indicate a probability of transitioning to the next class.

The contribution of patients shedding spores is quantified by α∗ where ∗ denotes

the particular class, or state, of the patient. The maximum of zero and the summation

was taken to maintain a non-negative level of C. diff spores in the environment. A

positive α∗ value indicated that the class added spores to the environment and a

negative value removed spores from the environment. Spores are eliminated when a

patient is discharged.

Ω(t) utilizes the total contribution of infectious spores by colonized and infected

patients and is scaled by η and ψ. η influences the threshold point where the environ-

ment is at 50% contamination. ψ determines how quickly the environment becomes

toxic to patients. Ω(t) is defined as:

Ω(t+ 1) =
ψP (t)

η + ψP (t)
.

The second component of my ABM is the set of patients in the BMT Unit.
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Figure 20 : Model diagram for ADI-model when ADI is implemented. The differences
between non-ADI model and ADI-model are highlighted in gold.

Patients can be in one of eight different compartments on any given day. As seen in

Figure 19, for non-ADI model, patients can either be admitted into S, if they are not

colonized, or CN , if they are. I assume that the general population is colonized at a

rate of (1− b). From S, a patient can be prescribed antibiotics and move into the SA

class, or they can become colonized from exposure with a contaminated environment

(transmitted via surfaces and healthcare workers) and transition into the CH class.

Every patient can be discharged from class κ, κ ∈ {S, SA, CH , CA, CN , R}, at a rate of

δκ, unless they are infectious. Patients are transitioned from susceptible to colonized

at the rate σzΩ(t), z ∈ {S, SA}.

From SA, if a patient becomes colonized, the patient moves into CA. Any colo-

nized patient, CA, CH , CN , can develop CDI and transition into IN . Patients in IN

have not yet been placed under contact precautions. Once a patient is in IN , they

can only transition into the IS class. While a patient is being treated for CDI in IS,

they stay in IS with additional contact precautions. When they recover, they move

to R. Once a patient is in R, they remain there until they are discharged.

48



Incorporating ADI alters one patient compartment and one transition between

compartments in the model. With ADI implemented, before patients are admitted,

they are tested for colonization of C. diff bacteria and are immediately placed under

contact precautions in CS if they test positive. Otherwise, if they are not colonized,

they are placed in S, seen in Figure 20.

The goal of the research is to determine how ADI reduces cases of CDI, and to

track hospital-acquired and community-acquired infections. Patients that transition

from either CH to IN or CA to IN count as hospital-acquired CDIs. The number

of community-acquired cases of CDI is calculated by counting the number of new

patients entering IN from CN in non-ADI model. In ADI-model, the number of

community-acquired cases was calculated by adding all of the patients who transition

from CS to IS.

The other research goal is to quantify the cost of implementing ADI and compare

it to the cost of testing patients only when they are symptomatic. In non-ADI model,

any time a patient entered IN , a test was taken and accounted for. In ADI-model,

all admitted patients were tested in addition to any patient who entered IN from

{CH , CA} or IS from CS. Other costs to consider are the costs of contact precautions

and disinfecting patient rooms. Contact precautions were implemented for patients in

IS in non-ADI model and for patients in both CS and IS in ADI-model. In addition to

disinfecting rooms occupied by patients in IS, ADI-model assumes full environmental

cleaning of rooms occupied by patients in CS as well.
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4.3 Results

4.3.1 Simulation Results

In order to quantify the impact of implementing ADI in the BMT unit, I assume

the unit to always be at full capacity of 21 patients. Patients have an average stay

of six weeks. Simulations were run in Matlab R2021a for one year before making

calculations to avoid transients. Results are based on the averages of 100 - 10 year

simulations.

The parameters used in the simulations are shown in Table 4. Huang et al.

[2016] estimated that about 20% of patients are already colonized with C. diff upon

admission, so the remaining 80%, b, are assumed to be admitted into S. In the

BMT Unit, patients are prescribed antibiotics due to being immune-compromised

[BeTheMatch.org, 2022]. These patients typically receive antibiotics within the first

six days of their hospital stay, so the daily probability of being prescribed antibiotics

is λ = 1/6. If a patient develops CDI, a 10-day course of antibiotics is typically used

to treat the infection, so γ = 1/10 is the daily rate of recovery from CDI [Leffler and

Lamont, 2015].

The remaining parameters are estimated based upon CDI data from the BMT

unit within VCUMedical Center from February 2014 until December 2019 (77 months)

before ADI. The data are visualized in Figure 21. The data has a yearly average of

25.29 infections and a yearly standard deviation of 4.19 infections.

The averages taken over 100 simulations with my estimated parameters in non-

ADI model agree with the real data as confirmed by a two-sample t-test under 99%

confidence. After the simulations were run, a random sample of 77 months was taken

by using the datasample method in Matlab R2021a. An F-test was conducted at

99% confidence to test if the variances between the simulated data and the real data
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were the same. The null hypothesis that the variances were the same was not rejected,

so a two-sample t-test could be conducted. A t-test looks at overall variability in the

simulated data and compares it to the overall variability in the real data.

Figure 21 : Monthly C. diff data from VCU Medical Center BMT unit from February
2014 - December 2019.

When ADI is implemented, there is an estimated 23% decrease in the total num-

ber of infections between non-ADI model and ADI-model in Table 5. The number of

community-acquired infections does not change because 20% of patients are assumed

to be colonized with C. diff from the community in both models. This results in

an overall reduction in 6.42 CDIs per year, which is a 84.38% reduction in hospital-

acquired cases. The reduction in cases of CDI from ADI-model compared to the data

are statistically significantly different under 99% confidence in a two-sample t-test.

Unfortunately, community-acquired infections are inevitable since about 20% of

the population is already colonized with C. diff [Hung et al., 2015]. However, as

expected, implementing ADI reduces the number of hospital-acquired infections due
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Parameter
symbol

Parameter description
Parameter
value

Source

αIN
Contribution of spores by
patients in the IN state

2 Estimated

b
Proportion of patients admitted
as susceptible

0.800 [Hung et al., 2015]

η Environment coefficient 1000 Estimated

ψ Environment impact scalar 6 Estimated

γ Rate of recovery 0.100 [Leffler and Lamont, 2015]
λ Rate of antibiotic prescription 0.167 [BeTheMatch.org, 2022]

σS

Rate of susceptible patients
becoming colonized with C. diff
from the environment

0.010 Estimated

σSA

Rate of susceptible patients on
antibiotics becoming colonized
with C. diff

0.050 Estimated

θCA

Rate of colonized patients on
antibiotics becoming symptomatic

0.017 Estimated

θCH

Rate of colonized patients from
the environment becoming
symptomatic

0.100 Estimated

θCN

Rate of admitted
colonized patients becoming
symptomatic in non-ADI model

0.017 Estimated

θCS

Rate of admitted
colonized patients becoming
symptomatic in ADI-model

0.017 Estimated

Table 4 : Parameter values used in the simulations. Estimated parameters come from
data from the BMT Unit at VCU Medical Center from February 2014 - December
2019.

to contact precautions placed on colonized patients and the contribution of spores

to the environment is reduced. When the environment is less contaminated, patients

are less likely to acquire C. diff.

For all cases of CDI, according to research conducted by Barker et al. [2020],

the excess hospital cost attributable to a new case of CDI is $13,779.31. Table 5

shows that the average of 25.29 infections per year results in $348,478.75 spent on

treating patients with CDI. Non-ADI model had an average of 25.60 infections per
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Data non-ADI model ADI-model

Percent of infections
that are community-acquired

69.00% 70.31% 93.84%

Percent of infections
that are hospital-acquired

31.00% 29.69% 6.16%

Average number of
community-acquired
infections per year

17.25 17.98 17.99

Average number of
hospital-acquired
infections per year

7.75 7.62 1.19

Average number of
infections per year

25.29 25.60 19.18

Number of tests per year – 25.60 195.46

Number of additional patients
placed under contact precautions per year

– – 17

Number of additional rooms
to disinfect upon discharge

– – 17

Cost of infections per year $348,478.75 $352,750.34 $264,287.17
Cost of tests per year – $200.19 $1,329.40
Cost of additional contact
precautions per year

– – $1,845.35

Cost of additional terminal
cleaning per year

– – $9,616.73

Total cost per year – $352,950.53 $277,277.75

Table 5 : Results from ABM simulations over ten years with 100 simulations.

year which results in $352,750.34 spent on treating patients with CDI. When the

number of infections are reduced to an average of 19.18 in ADI-model, the total cost

for treating patients with CDI decreases to $264,287.17. This results in $88,463.17

saved by preventing CDI with ADI.

ADI reduces CDIs, but does require more resources than not implementing ADI.

Additional costs associated with ADI include the cost of testing a patient, $7.82,

implementing contact precautions, $108.55, and thoroughly disinfecting any room

that contained a colonized or infectious patient $565.69 [Barker et al., 2020].

As seen in Table 5, increasing the number of tests from 25.60 without ADI to
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195.46 results in about 170 additional tests. One-hundred seventy additional tests

(170 * $7.82) costs $1,329.40. Implementing contact precautions on an additional 17

patients ($108.55 * 17), those patients who were colonized upon admission in ADI-

model, costs $1,845.35. Then, disinfecting the 17 additional rooms ($565.69 * 17) of

the CS patients costs $9,616.73.

Although ADI requires these additional costs, these costs do not outweigh the

costs of treating cases of CDI. Seven preventable cases of CDI by not implementing

ADI costs $96,455.17 ($13,779.31 * 7) based on costs from Barker et al. [2020]. The

costs of treating CDI and the costs of ADI resources are combined at the bottom of

Table 5. Comparing ADI-model to non-ADI model, I see that ADI can save about

$83,663.69 per year.

4.3.2 Parameter Sensitivity Analysis

I explore implementing ADI by adjusting the values of the parameters to de-

termine how the results are sensitive to each of the parameters. This allows one to

understand which parameters within the model are most significant in influencing the

number of yearly infections. Here, each parameter was doubled and cut in half. The

outcomes of the number of yearly community-acquired CDIs, hospital-acquired CDIs,

average number of yearly CDIs and number of tests used per year were calculated

after adjusting the parameters. These results are shown in Table 6 for non-ADI model

and in Table 7 for ADI-model.

The parameters chosen are those that could potentially be monitored or mod-

ified with medical and scientific advancements. For instance, σS and σSA
could be

monitored if it was known exactly how and when a patient became colonized with ad-

ditional testing. ψ could be altered by the effectiveness of disinfecting patient rooms.

Being able to predict how quickly a patient who is colonized upon admission became
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non-ADI model
# of Comm.
Infs Per Year

# of Hosp.
Infs Per Year

Mean # of
Yearly Infs

# Tests
Per Year

σS
= 0.01 17.98 7.62 25.60 25.60
= 0.02 17.95 7.90 25.85 25.85
= 0.005 17.98 7.46 25.44 25.44

σSA

= 0.05 17.98 7.62 25.60 25.60
= 0.1 17.80 16.36 34.15 34.15
= 0.025 18.16 3.76 21.92 21.92

ψ
= 6 17.98 7.62 25.60 25.60
= 12 17.81 15.85 33.66 33.66
= 3 17.75 3.61 21.36 21.36

θCN

= 0.02 17.98 7.62 25.60 25.60
= 0.04 26.75 7.64 34.38 34.38
= 0.01 10.55 7.62 18.17 18.17

γ
= 0.1 17.98 7.62 25.60 25.60
= 0.2 18.06 7.47 25.53 25.53
= 0.05 17.59 8.08 25.67 25.67

Table 6 : Parameter sensitivity results for non-ADI model, when ADI is not imple-
mented.

symptomatic, θCN
and θCS

, would influence the urgency of preventative practices to

be used on these patients. The strength of the antibiotics used to treat CDI would

impact how quickly a patient recovered, which is γ in both models.

By manipulating the parameters, I found that both models are sensitive to σSA
,

the rate at which susceptible patients on antibiotics become colonized, but neither

model is sensitive to σS. In Table 6, doubling σSA
more than doubles the number

of yearly hospital-acquired infections per year and cutting σSA
in half reduces yearly

hospital-acquired cases by more than 50%. The results for the parameter sensitivity

analysis for ADI-model in Table 7 show a similar reaction towards hospital-acquired

CDIs to altering σSA
.

Because all BMT patients receive antibiotics as a part of their treatment, increas-
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ADI-model
# of Comm.
Infs Per Year

# of Hosp.
Infs Per Year

Mean # of
Yearly Infs

# Tests
Per Year

σS
= 0.01 17.99 1.19 19.18 195.46
= 0.02 18.00 1.16 19.19 195.46
= 0.005 17.79 1.17 18.96 195.35

σSA

= 0.05 17.99 1.19 19.18 195.46
= 0.1 17.84 2.43 20.26 196.50
= 0.025 17.51 0.61 18.11 194.57

ψ
= 6 17.99 1.19 19.18 195.46
= 12 18.07 1.18 19.25 195.57
= 3 18.06 1.12 19.17 195.51

θCS

= 0.02 17.99 1.19 19.18 195.46
= 0.04 26.62 1.17 27.79 204.01
= 0.01 10.61 1.20 11.81 188.41

γ
= 0.1 17.99 1.19 19.18 195.46
= 0.2 17.99 1.18 19.17 196.20
= 0.05 17.58 1.23 18.81 192.75

Table 7 : Parameter sensitivity analysis for ADI-model, when ADI is implemented.

ing the rate that those patients become colonized and ultimately symptomatic would

increase the number of yearly infections. Similarly, reducing the rate of colonization

would allow patients to avoid getting C. diff before they are discharged. The models

are not reactive to σS because patients rarely transition from S to CH .

In Table 6, I see that non-ADI model is sensitive to ψ. When ψ is doubled,

the number of hospital-acquired infections per year more than doubles. When ψ

is reduced by half, the number of hospital-acquired infections is reduced by about

53%. Because the environment is less controlled in non-ADI model, since colonized

patients are unknown and therefore shed spores into the environment. This impacts

the environment and increases the rate of susceptible patients becoming colonized

that could increase the number of hospital-acquired C. diff cases. ADI-model is less
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effected by the environment because there are fewer unknown colonized patients and

therefore fewer spores contaminating the environment.

In Table 7, I see that ADI-model is not sensitive to ψ since increased awareness

of who is colonized with C. diff reduces the amount of spores that contaminate the

environment. ψ scales the effect of the environment, but with only 6% of patients

getting CDI due to the contaminated environment in ADI-model, doubling or halving

the value does not impact many patients.

Both models are also sensitive to θCN
and θCS

, the rates of patients who are

colonized upon admission become symptomatic. Tables 6 and 7 both show that yearly

community-acquired cases of CDI are doubled when θCN
and θCS

are respectively

doubled. When θCN
and θCS

are reduced by half, the number of community-acquired

infections are reduced by about 39%.

θCN
and θCS

are significant parameters because they represent the movement of

patients into the symptomatic infected class. Decreasing the rate of this transition

would allow patients to stay within the colonized class until they are discharged. ADI

identifies colonized patients initially and institutes preventative measures to decrease

the spores from spreading into the environment. Otherwise colonized patients that are

not immediately isolated can contribute more spores to the environment consequently

causing more infections to susceptible patients.

Both models are not sensitive to γ since γ affects recovery of CDI, which does not

play a large role in transmission of C. diff. While γ affects the amount of spores con-

tributed into the environment by patients waiting to recover from CDI, the additional

days spent in IS are not enough days for a patient to make a significant contribution

of spores into the environment to impact yearly infections.
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4.4 Discussion

Utilizing an ABM with eight patient states allows me to quantify the impact of

implementing ADI in the BMT unit on the number of cases of CDI and to generate

a data set statistically similar to the data provided by VCU Medical Center. The

data have a yearly average of 25.29 infections and a yearly standard deviation of 4.19

infections. Upon implementing ADI, I found a 25% reduction, on average, in total

cases of CDI per year. Additionally, there is an 84.38% decrease in hospital-acquired

cases alone.

Modeling patients in the BMT unit is challenging due to the varying underlying

conditions that the patients are in, the variable, long length of stays and the high rate

of antibiotic prescription [Barker et al., 2018]. Cases of CDI may occur in outbreaks

due to a contaminated environment or may be isolated cases from those that are

colonized.

ADI reduces hospital-acquired cases of CDI due to the reduction of spore shed-

ding by infectious patients through the implementation of contact precautions on

all known cases of colonization and active infection. However, while ADI identifies

community-acquired colonizations, it cannot prevent community-acquired coloniza-

tions from being admitted into the BMT unit.

My results are in agreement with other studies of implementing ADI in the BMT

unit showing that ADI could reduce hospital-acquired cases of CDI. My results showed

a 84.38% decrease in hospital-acquired cases of CDI when ADI was implemented.

Barker et al. [2018] showed an 82.93% reduction, and Lanzas and Dubberke [2014]

showed a 25% reduction in hospital-acquired cases of CDI with ADI. Lanzas and

Dubberke [2014] studied six medicine wards within a hospital with two strains of C.

diff. The data in the study showed that 58% of CDI cases were hospital-acquired.
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After using an ABM to model ADI, the mean number of hospital-acquired CDI cases

were reduced by 25% [Lanzas and Dubberke, 2014]. Because the study was set in less

vulnerable wards within the hospital, it is less likely that the patients would develop

CDI.

Barker et al. [2018] studied the impact of ADI on CDI cases specifically in

the BMT unit at a hospital in Madison, Wisconsin. Pre-intervention and post-

intervention data show that 10.3% of BMT patients were tested for C. diff upon

admission before screening was implemented and increased to 74.5% upon implemen-

tation [Barker et al., 2018]. There was a 82.93% decrease in hospital-acquired cases

of CDI within the study.

The parameter sensitivity analysis provides insight on which parameters are most

important to focus on to prevent or lower the chance of patients getting CDI. Both

models, with and without ADI, are sensitive to σSA
, the rate at which susceptible pa-

tients on antibiotics become colonized, and θCN
and θCS

, the rates of patients who are

colonized upon admission become symptomatic. Healthcare providers should moni-

tor patients who are prescribed antibiotics by potentially testing those patients for C.

diff bacteria and toxins. Furthermore, knowing which patients are admitted with C.

diff would allow for proper contact precautions and careful antibiotic prescription to

occur to prevent the asymptomatic colonization from becoming an active and symp-

tomatic infection. It is also important to note that results are not sensitive in terms

of the parameters estimating the effects of the environment under ADI since the col-

onized patients are better controlled, unlike in the non-ADI situation. This implies

that awareness of which patients are colonized upon admission ultimately reduces the

environment’s impacts on other patients.

The basic structure of my model could allow for more questions about preventing

cases of CDI from occurring by altering different parameters, such as the testing
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accuracy. In this study I did not consider the effect of testing accuracy of CDI. I

assumed that testing of CDI and colonization is 100% accurate. If this was not the

case, then patient transitions would be more complicated as well as the resulting

dynamics.

Overall, the ABM allowed me to track the status of patients in the BMT unit in

order to track patients developing CDI, with and without ADI in place. I were also

able to break down the cases of CDI into hospital-acquired and community-acquired

to quantify the impact of ADI on the reduction of hospital-acquired cases specifically.

Given the high cost of a case of CDI and the relatively low cost of a PCR test, my

study also supports the implementation of ADI from a cost savings perspective.
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CHAPTER 5

CONCLUSIONS AND DISCUSSION

I have presented multiple different mathematical models that simulate the effects of

different intervention strategies in order to limit the cases of hospital-acquired in-

fections. In each of these different models, I quantified the subsequent impact on

yearly cases of HAIs and estimated the resulting costs. This research supports imple-

menting the particular intervention strategies examined within each model where the

cost of implementing the infection prevention programs outweigh the cost of treating

HAIs. Reducing HAIs allows hospitals to decrease the amount of resources and time

necessary for treating each individual patient, which has positive consequences for

healthcare costs and for the patient’s experience during their hospitalization.

A variety of mathematical modeling techniques were used in my research. The

studies that I conducted incorporated a combination of infection prevention tech-

niques. Each problem also presented unique set of assumptions, focused on a specific

set of HAIs, and required me to track and emphasize different components of the

model. Developing mathematical models to quantify the impact of infection pre-

vention programs is challenging because the parameters required for the simulations

have to be estimated. Clinical studies cannot be ethically performed for the research

problems proposed, so precise parameters are not available.

Chapter 2 supports early action of using CHG bathing to prevent HAIs, and en-

courages healthcare leaders to enforce high levels of CHG bathing compliance hospital-

wide. I also saw that immediate full implementation of the standardized central line

bundle kit and CHG bathing resulted in more CLABSIs and CAUTIs prevented and
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more savings than when the implementation of these programs were delayed.

In Chapter 3, I simulated the loss of one infection intervention practice and the

start of another. The results predict how the interplay of the two strategies affects

the community as a whole. I found that the effectiveness of the infection prevention

program used on the entire community has the largest impact on the size and timing

of the peak number of infections during an outbreak.

Finally, in Chapter 4, I modeled the reduction in hospital-acquired cases of CDI

when ADI was implemented on patients in the BMT Unit. While community-acquired

cases were not reduced, they were identified with ADI and therefore the amount of

spores being contributed to the environment was reduced. Because the environment

was less contaminated, hospital-acquired cases of CDI decreased when ADI was im-

plemented. The parameter sensitivity analysis allowed me to identify transitions

between patient states that had the greatest impact on yearly cases of CDI. I found

that the rate of patients on antibiotics becoming colonized with C. diff and patients

who are colonized becoming symptomatic have a significant impact on cases of CDI.

Even with today’s medical advancements, HAIs continue to increase the mortal-

ity and morbidity of hospitalizations as antibiotic-resistant organisms become more

prevalent. HAIs are preventable through the implementation of infection prevention

programs. Overall, effective compliance and early initiation of infection prevention

programs can reduce the burden of HAIs on healthcare systems and improve patient

outcomes.
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Appendix A

ABBREVIATIONS

ABM Agent-based model

ADI Active Detection and Isolation

BMT Bone Marrow Transplant

CAUTI Catheter-associated urinary tract infection

CDC Centers for Disease Control and Prevention

CDI Clostridiodes difficile infection

CHG Chlorhexidine gluconate

CLABSI Central line-associated bloodstream infection

HAI Hospital-acquired infection

PPE Personal protective equipment

VCU Virginia Commonwealth University
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Appendix B

MATLAB CODE– CHG BATHING ONLY

infectionsTable = ["Uniform discharge rate" "discharge ...
PI" "Daily probability of infection" "CHG Bathing ...
compliance" "Number of yearly infections" "N0 at ...
equi" "N1 at equi" "N2 at equi" "P0 at equi" "P1 at ...
equi" "P2 at equi" "P3 at equi" "PI at equi" "total ...
number of patients"];

betaValues = [0 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00];
∆Values = [1/14 1/12 1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2];

%28% effectiveness
rValues = [0.000345];

%71% effectiveness
%rValues = [0.000665];

for d=1:length(∆Values)
for r=1:length(rValues)

for b=1:length(betaValues)
infections = [];
∆N0 = ∆Values(d); %discharge rates
∆N1 = ∆N0;
∆N2 = ∆N0;
∆P0 = ∆N0;
∆P1 = ∆N0;
∆P2 = ∆N0;
∆P3 = ∆N0;
∆PI = 1/10;

% 28% effectiveness
r3 = rValues(r); %infection rates
r2 = (1-.0933333)*rValues(r);
r1 = (1-.1866666)*rValues(r);
r0 = (1-.28)*rValues(r);
r0prime = 0.95*r0;
r1prime = 0.95*r1;
r2prime = 0.95*r2;

% 71% effectiveness
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% r3 = rValues(r); %infection rates
% r2 = (1-.236666667)*rValues(r);
% r1 = (1-.473333333)*rValues(r);
% r0 = (1-.71)*rValues(r);
% r0prime = 0.95*r0;
% r1prime = 0.95*r1;
% r2prime = 0.95*r2;

beta0=betaValues(b); %each of the bathing ...
rates for the iterations are set here

beta1=betaValues(b);
beta2=betaValues(b);
beta3=betaValues(b);

t = 365; %number of days the simulation was run

% N0 = 125; %number of patients in each class
% N1 = 50;
% N2 = 25;
% P0 = 150;
% P1 = 150;
% P2 = 150;
% P3 = 150;
% PI=50;

N0 = 0;
N1 = 850;
N2 = 0;
P0 = 0;
P1 = 0;
P2 = 0;
P3 = 0;
PI = 0;

totalPop = N0 + N1 + N2 + P0 + P1 + P2 + P3 ...
+ PI;

% % ----- discharge matrix -----
dischargeMatrix = zeros(8,8); %setting up ...

the discharge matrix

dischargeMatrix(1,1) = 1;
dischargeMatrix(1,2) = ∆N1;
dischargeMatrix(1,3) = ∆N2;
dischargeMatrix(1,4) = ∆P0;
dischargeMatrix(1,5) = ∆P1;
dischargeMatrix(1,6) = ∆P2;
dischargeMatrix(1,7) = ∆P3;
dischargeMatrix(1,8) = ∆PI;

dischargeMatrix(2,2) = 1 - ∆N1;
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dischargeMatrix(3,3) = 1 - ∆N2;
dischargeMatrix(4,4) = 1 - ∆P0;
dischargeMatrix(5,5) = 1 - ∆P1;
dischargeMatrix(6,6) = 1 - ∆P2;
dischargeMatrix(7,7) = 1 - ∆P3;
dischargeMatrix(8,8) = 1 - ∆PI;

% % ----- infection matrix -----
infectMatrix = zeros(8,8); %setting up the ...

infection matrix

infectMatrix(1,1) = 1 - r0prime;
infectMatrix(2,2) = 1 - r1prime;
infectMatrix(3,3) = 1 - r2prime;
infectMatrix(4,4) = 1 - r0;
infectMatrix(5,5) = 1 - r1;
infectMatrix(6,6) = 1 - r2;
infectMatrix(7,7) = 1 - r3;
infectMatrix(8,8) = 1;

infectMatrix(8,1) = r0prime;
infectMatrix(8,2) = r1prime;
infectMatrix(8,3) = r2prime;
infectMatrix(8,4) = r0;
infectMatrix(8,5) = r1;
infectMatrix(8,6) = r2;
infectMatrix(8,7) = r3;

% % ----- bathing matrix -----
batheMatrix = zeros(8,8); %setting up the ...

bathing matrix

batheMatrix(2,1) = 1 - beta0; %then entered ...
into the matrix

batheMatrix(3,2) = 1 - beta1; %the code is ...
set up this way to accomodate

batheMatrix(7,3) = 1 - beta2; %for when I ...
want the bathing rate to be

batheMatrix(5,4) = 1 - beta0; %a random ...
number from a normal distribution

batheMatrix(6,5) = 1 - beta1;
batheMatrix(7,6) = 1 - beta2;
batheMatrix(7,7) = 1 - beta3;
batheMatrix(8,8) = 1;

batheMatrix(4,1) = beta0;
batheMatrix(4,2) = beta1;
batheMatrix(4,3) = beta2;
batheMatrix(4,4) = beta0;
batheMatrix(4,5) = beta1;
batheMatrix(4,6) = beta2;
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batheMatrix(4,7) = beta3;

% % ----- patient matrix -----
patientMatrix = zeros(8,1); %setting up the ...

patient matrix
patientMatrix(1,1)=N0;
patientMatrix(2,1)=N1;
patientMatrix(3,1)=N2;
patientMatrix(4,1)=P0;
patientMatrix(5,1)=P1;
patientMatrix(6,1)=P2;
patientMatrix(7,1)=P3;
patientMatrix(8,1)=PI;

newPatients0 =[];
newPatients1 = [];
newPatients2 = [];
patients0 = [];
patients1 = [];
patients2 = [];
patients3=[];
patientsInfected = [];
application1 = dischargeMatrix*infectMatrix;
application2 = application1*batheMatrix;

for i = 1:465
patientMatrix = application2*patientMatrix;
newPatients0 = ...

[newPatients0;patientMatrix(1,1)];
newPatients1 = ...

[newPatients1;patientMatrix(2,1)];
newPatients2 = [newPatients2; ...

patientMatrix(3,1)];
patients0 = [patients0;patientMatrix(4,1)];
patients1 = [patients1;patientMatrix(5,1)];
patients2 = [patients2;patientMatrix(6,1)];
patients3 = [patients3;patientMatrix(7,1)];
patientsInfected = ...

[patientsInfected;patientMatrix(8,1)];

end
ceil(patientMatrix);
newInfectionsMatrix = [];

for m=1:465 %calculating new infections
newInfections = r0prime*newPatients0(m) ...

+ r1prime*newPatients1(m) + ...
r2prime*newPatients2(m)+ ...
r0*patients0(m) + r1*patients1(m) + ...
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r2*patients2(m) + r3*patients3(m);
newInfectionsMatrix = ...

[newInfectionsMatrix; newInfections];
end

newInfectionsMatrix2 = [];
for j=100:465 %only looking at new ...

infections beyond one hundred days of ...
the simulation
newInfections2 = ...

r0prime*newPatients0(j) + ...
r1prime*newPatients1(j) + ...
r2prime*newPatients2(j)+ ...
r0*patients0(j) + r1*patients1(j) + ...
r2*patients2(j) + r3*patients3(j);

newInfectionsMatrix2 = ...
[newInfectionsMatrix2; newInfections2];

end

sum(newInfectionsMatrix2);
infections = ...

[infections;sum(newInfectionsMatrix2)];

ev = 465;
infectionVector = [∆Values(d) ∆PI ...

rValues(r) betaValues(b) ...
mean(infections) newPatients0(ev) ...
newPatients1(ev) newPatients2(ev) ...
patients0(ev) patients1(ev) ...
patients2(ev) patients3(ev) ...
patientsInfected(ev) ...
sum(newPatients0(ev)+newPatients1(ev)+newPatients2(ev)

+patients0(ev)+patients1(ev)+ ...
patients2(ev)+patients3(ev)+patientsInfected(ev))];

infectionsTable = [infectionsTable; ...
infectionVector];

end
end

end
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Appendix C

MATLAB CODE – RESISTORS AND CONSTIPATORS

clear all

betaStar = 1.0;

∆CL = 1/18; %average LOS for patient with central line: ...
18 days ...
(https://academic.oup.com/intqhc/article/29/1/63/2660332)

∆Cath = 1/10; %average LOS for patient with catheter: ...
10 days ...
(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378875/)

∆CLinf = 1/24; %average LOS for patient with CLABSI: 24 ...
days ...
(https://academic.oup.com/intqhc/article/29/1/63/2660332)

∆Cathinf = 1/18; %average LOS for patient with CAUTI: ...
18 days ...
(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378875/)

∆Other = 1/5; %average LOS for patient in hospital ...
without device

%getCL = 0.2; ...
%https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4997807/

%getCath = 0.12; ...
%https://www.ncbi.nlm.nih.gov/pubmed/28392431

getCL = 0.0123203;
getCath = 0.012702;
getCLandCath = getCL*getCath;

eta1 = 0.59;
eta2 = 0.5;
eta3 = 0.55;

kappa1 = 0.3;
kappa2 = 0.3;

%CLABSI has a 56% reduction with CHG bathing
% Need to also include further reduction with ...

standardized kit
% estimating impact to be an additional 10%
r03 = 0.000405;
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r02 = (1- (eta1 +kappa1)*(1/3))*r03;
r01 = (1- (eta1 + kappa1)*(2/3))*r03;
r00 = (1- (eta1 + kappa1))*r03;
%CAUTI has a 32% reduction with CHG bathing
r13 = 0.03;
r12 = (1- (eta2 /3))*r13;
r11 = (1 - (eta2 *(2/3))) * r13;
r10 = (1 - eta2)* r13;
%I am going to assume a 44% reduction if you have both
% Need to also include further reduction with ...

standardized kit
% estimating further impact to be 10%
r23 = (r03+r13)/3;
r22 = (1 - (eta3+kappa2)/3)*r23;
r21 = (1 - 2*(eta3+kappa2)/3) * r23;
r20 = (1 - (eta3+kappa2))*r23;

r03prime = r23;
r02prime = (1 - (eta3+kappa2)/3)*r03prime;
r01prime = (1 - 2*(eta3+kappa2)/3)*r03prime;
r00prime = (1 - (eta3+kappa2))*r03prime;

r13prime = r23;
r12prime = (1 - (eta3+kappa2)/3)*r13prime;
r11prime = (1 - 2*(eta3+kappa2)/3)*r03prime;
r10prime = (1 - (eta3+kappa2))*r03prime;

rI0 = r23;
rI1 = r23;

years = 5; %years interested in computing to
daysInYear = 365;
daysInMonth = 30.4;
currentComp = 0.6; %current CHG bathing compliance
desiredComp = 0.9; %desired CHG bathing compliance

monthIncrementTest = [0 3 6 9 12 15 18 21 24 27 30 33 ...
36 39 42 45 48 51 54 57 60];

%monthIncrementTest = [0 3 6 9 12 15 18 21 24 27 30 33 ...
36 39 42 45 48 51 54]; %comment out (1)

%monthIncrementTest = [0 3 6 9 12 15 18 21 24 27 30 33 ...
36 39 42 45 48]; %comment out (1)-(2)

%monthIncrementTest = [0 3 6 9 12 15 18 21 24 27 30 33 ...
36 39 42];
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%comment out (1)-(3)

%monthIncrementTest = [0 3 6 9 12 15 18 21 24 27 30 33 ...
36]; %comment

%out (1)-(4)

%monthIncrementTest = [0 3 6 9 12 15 18 21 24 27 30]; ...
%comment out (1)-(5)

%monthIncrementTest = [0 3 6 9 12 15 18 21 24]; ...
%comment out (1)-(6)

%monthIncrementTest = [0 3 6 9 12 15 18]; %comment out ...
(1)-(7)

%monthIncrementTest = [0 3 6 9 12]; %comment out (1)-(8)

%monthIncrementTest = [0 3 6]; %comment out (1)-(9)
% monthIncrementTest = [0];

timeStep = ceil(daysInMonth*monthIncrementTest);
inc = (desiredComp - ...

currentComp)/(length(monthIncrementTest)-1);

ss = 300;
t = years*daysInYear + ss ; %total time

%betaChoices = [0 0.225 .45 .675 .90];
beta=[];
betaInc=[currentComp:inc:desiredComp];

for i=1:t
if (i≥1) && (i<timeStep(2))

beta(1,i)=betaInc(1,1);
elseif (i≥timeStep(2))&& (i<timeStep(3))

beta(1,i) = betaInc(1,2);
elseif (i≥timeStep(3))&& (i<timeStep(4)) %(9)

beta(1,i) = betaInc(1,3);
elseif (i≥timeStep(4))&& (i<timeStep(5)) %(9)

beta(1,i) = betaInc(1,4);
elseif (i≥timeStep(5))&& (i<timeStep(6)) %(8)

beta(1,i) = betaInc(1,5);
elseif (i≥timeStep(6))&& (i<timeStep(7)) %(8)

beta(1,i) = betaInc(1,6);
elseif (i≥timeStep(7))&& (i<timeStep(8)) %(7)

beta(1,i) = betaInc(1,7);
elseif (i≥timeStep(8)) && (i<timeStep(9) )%(7)

beta(1,i) = betaInc(1,8);
elseif (i≥timeStep(9))&& (i<timeStep(10)) %(6)

beta(1,i) = betaInc(1,9);
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elseif (i≥timeStep(10))&& (i<timeStep(11)) %(6)
beta(1,i) = betaInc(1,10);

elseif (i≥timeStep(11))&& (i<timeStep(12)) %(5)
beta(1,i) = betaInc(1,11);

elseif (i≥timeStep(12))&& (i<timeStep(13)) %(5)
beta(1,i) = betaInc(1,12);

elseif (i≥timeStep(13))&& (i<timeStep(14)) %(4)
beta(1,i) = betaInc(1,13);

elseif (i≥timeStep(14))&& (i<timeStep(15)) %(4)
beta(1,i) = betaInc(1,14);

elseif (i≥timeStep(15))&& (i<timeStep(16)) %(3)
beta(1,i) = betaInc(1,15);

elseif (i≥timeStep(16))&& (i<timeStep(17)) %(3)
beta(1,i) = betaInc(1,16);

elseif (i≥timeStep(17))&& (i<timeStep(18)) %(2)
beta(1,i) = betaInc(1,17);

elseif (i≥timeStep(18))&& (i<timeStep(19)) %(2)
beta(1,i) = betaInc(1,18);

elseif (i≥timeStep(19))&& (i<timeStep(20)) %(1)
beta(1,i) = betaInc(1,19);

elseif (i≥timeStep(20))&& (i<timeStep(21)) %(1)
beta(1,i) = betaInc(1,20);

else
beta(i) = 0.9;

end
end

% for i=1:t
% if i≥ 0 && i<365+ss
% beta(1,i) = betaChoices(1);
% elseif i≥365+ss && i<730+ss
% beta(1,i) = betaChoices(2);
% elseif i≥ 730+ss && i< 1095+ss
% beta(1,i) = betaChoices(3);
% elseif i≥1095+ss && i< 1460+ss
% beta(1,i) = betaChoices(4);
% else
% beta(1,i) = betaChoices(5);
% end
% end

plot(beta)

newPatients = [];
circPatients = [];
clPatients0 = [];
clPatients1 = [];
clPatients2 = [];
clPatients3 = [];
cathPatients0 = [];
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cathPatients1 = [];
cathPatients2 = [];
cathPatients3 = [];
bothPatients0 = [];
bothPatients1 = [];
bothPatients2 = [];
bothPatients3 = [];
infPatients0 = [];
infPatients1 = [];
infPatients2 = [];
infPatients00 = [];
infPatients11 = [];

N = 100;
O = 0;
P00 = 100;
P01 = 0;
P02 = 0;
P03 = 0;
P10 = 400;
P11 = 0;
P12 = 0;
P13 =0;
P20 = 250;
P21 = 0;
P22 =0;
P23 = 0;
I0 = 0;
I1 =0;
I2 = 0;
I00 = 0;
I11 = 0;

totalPop = N + O + P00 + P01 + P02 + P03 + P10 + P11 + ...
P12 + ...
P13 + P20 + P21 + P22 + P23 + I0 + I1 + I2 + I00 + I11;

dischargeMatrix = zeros(19,19);
deviceMatrix = zeros(19,19);
batheMatrix = zeros(19,19);
infectMatrix = zeros(19,19);
kitMatrix = zeros(19,19);

patientMatrix = zeros(19,1); %setting up the patient matrix
patientMatrix(1,1)=N;
patientMatrix(2,1)=O;
patientMatrix(3,1)=P00;
patientMatrix(4,1)=P01;
patientMatrix(5,1)=P02;
patientMatrix(6,1)=P03;
patientMatrix(7,1)=P10;
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patientMatrix(8,1)=P11;
patientMatrix(9,1)=P12;
patientMatrix(10,1)=P13;
patientMatrix(11,1)=P20;
patientMatrix(12,1)=P21;
patientMatrix(13,1)=P22;
patientMatrix(14,1)=P23;
patientMatrix(15,1)=I0;
patientMatrix(16,1)=I1;
patientMatrix(17,1)=I2;
patientMatrix(18,1) = I00;
patientMatrix(19,1) = I11;

for b=1:length(beta)
for w=1:length(betaStar)

bothinfections = [];
CAUTIinfections = [];
CLABSIinfections = [];

%probability of getting device
pN0 = getCL;
pN1 = getCath;
pN2 = getCLandCath;
pO0 = getCL;
pO1 = getCath;
pO2 = getCLandCath;
pO3 = getCLandCath;
p00 = getCLandCath;
p01 = getCLandCath;
p02 = getCLandCath;
p03 = getCLandCath;
p10 = getCLandCath;
p11 = getCLandCath;
p12 = getCLandCath;
p13 = getCLandCath;

t = years*daysInYear + ss ; %number of days the ...
simulation was run

%initial distribution of patients
N = 100;
O = 0;
P00 = 100;
P01 = 0;
P02 = 0;
P03 = 0;
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P10 = 400;
P11 = 0;
P12 = 0;
P13 =0;
P20 = 250;
P21 = 0;
P22 =0;
P23 = 0;
I0 = 0;
I1 =0;
I2 = 0;
I00 = 0;
I11 = 0;

%t = 730+300;

totalPop = N + O + P00 + P01 + P02 + P03 + P10 ...
+ P11 + P12 + ...
P13 + P20 + P21 + P22 + P23 + I0 + I1 + I2 ...

+ I00 + I11;

% % ----- discharge matrix -----
%setting up the discharge matrix

dischargeMatrix(1,1) = 1;
dischargeMatrix(1,2) = ∆Other;
dischargeMatrix(1,3) = ∆CL;
dischargeMatrix(1,4) = ∆CL;
dischargeMatrix(1,5) = ∆CL;
dischargeMatrix(1,6) = ∆CL;
dischargeMatrix(1,7) = ∆Cath;
dischargeMatrix(1,8) = ∆Cath;
dischargeMatrix(1,9) = ∆Cath;
dischargeMatrix(1,10) = ∆Cath;
dischargeMatrix(1,11) = ∆CL;
dischargeMatrix(1,12) = ∆CL;
dischargeMatrix(1,13) = ∆CL;
dischargeMatrix(1,14) = ∆CL;
dischargeMatrix(1,15) = ∆CLinf;
dischargeMatrix(1,16) = ∆Cathinf;
dischargeMatrix(1,17) = ∆CLinf;
dischargeMatrix(1,18) = ∆CLinf;
dischargeMatrix(1,19) = ∆CLinf;

dischargeMatrix(2,2) = 1 - ∆Other;
dischargeMatrix(3,3) = 1 - ∆CL;
dischargeMatrix(4,4) = 1 - ∆CL;
dischargeMatrix(5,5) = 1 - ∆CL;
dischargeMatrix(6,6) = 1 - ∆CL;
dischargeMatrix(7,7) = 1 - ∆Cath;
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dischargeMatrix(8,8) = 1 - ∆Cath;
dischargeMatrix(9,9) = 1 - ∆Cath;
dischargeMatrix(10,10) = 1 - ∆Cath;
dischargeMatrix(11,11) = 1 - ∆CL;
dischargeMatrix(12,12) = 1 - ∆CL;
dischargeMatrix(13,13) = 1 - ∆CL;
dischargeMatrix(14,14) = 1 - ∆CL;
dischargeMatrix(15,15) = 1 - ∆CLinf;
dischargeMatrix(16,16) = 1 - ∆Cathinf;
dischargeMatrix(17,17) = 1 - ∆CLinf;
dischargeMatrix(18,18) = 1 - ∆CLinf;
dischargeMatrix(19,19) = 1-∆CLinf;

% % ----- infection matrix -----

infectMatrix(1,1) = 1;
infectMatrix(2,2) = 1;

infectMatrix(3,3) = 1 ;
infectMatrix(4,4) = 1 ;
infectMatrix(5,5) = 1 - r02;
infectMatrix(6,6) = 1 - r03;
infectMatrix(7,7) = 1 ;
infectMatrix(8,8) = 1 ;
infectMatrix(9,9) = 1 ;
infectMatrix(10,10) = 1 - r13 ;
infectMatrix(11,11) = 1 - r20 - r00prime - ...

r10prime ;
infectMatrix(12,12) = 1 - r21 - r01prime - ...

r11prime ;
infectMatrix(13,13) = 1 - r22 - r02prime - ...

r12prime ;
infectMatrix(14,14) = 1 - r23 - r03prime - ...

r13prime ;
infectMatrix(15,15) = 1;
infectMatrix(16,16) = 1;
infectMatrix(17,17) = 1;
infectMatrix(18,18) = 1 - rI0;
infectMatrix(19,19) = 1- rI1;

infectMatrix(15,3) = 0;
infectMatrix(15,4) = 0;
infectMatrix(15,5) = r02;
infectMatrix(15,6) = r03;

infectMatrix(16,7) = 0;
infectMatrix(16,8) = 0;
infectMatrix(16,9) = 0;
infectMatrix(16,10) = r13;
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infectMatrix(15,11) = r00prime;
infectMatrix(16,11) = r10prime;
infectMatrix(17,11) = r20;

infectMatrix(15,12) = r01prime;
infectMatrix(16,12) = r11prime;
infectMatrix(17,12) = r21;

infectMatrix(15,13) = r02prime;
infectMatrix(16,13) = r12prime;
infectMatrix(17,13) = r22;

infectMatrix(15,14) = r03prime;
infectMatrix(16,14) = r13prime;
infectMatrix(17,14) = r23;

infectMatrix(17,18) = rI0;
infectMatrix(17,19) = rI1;

% % ----- bathing matrix -----

batheMatrix(2,1) = 1;
batheMatrix(3,2) = 1;

batheMatrix(3,3) = beta(b);
batheMatrix(4,3) = 1- beta(b);

batheMatrix(3,4) = beta(b);
batheMatrix(5,4) = 1-beta(b);

batheMatrix(3,5) = beta(b);
batheMatrix(6,5) = 1- beta(b);

batheMatrix(3,6) = beta(b);
batheMatrix(6,6) = 1-beta(b);

batheMatrix(7,7) = beta(b);
batheMatrix(8,7) = 1-beta(b);

batheMatrix(7,8) = beta(b);
batheMatrix(9,8) = 1-beta(b);

batheMatrix(7,9) = beta(b);
batheMatrix(10,9) = 1-beta(b);

batheMatrix(7,10) = beta(b);
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batheMatrix(10,10) = 1 - beta(b);

batheMatrix(11,11) = beta(b);
batheMatrix(12,11) = 1-beta(b);

batheMatrix(11,12) = beta(b);
batheMatrix(13,12) = 1- beta(b);

batheMatrix(11,13) = beta(b);
batheMatrix(14,13) = 1-beta(b);

batheMatrix(11,14) = beta(b);
batheMatrix(14,14) = 1 - beta(b);

batheMatrix(15,15) = 1;
batheMatrix(16,16) = 1;
batheMatrix(17,17) = 1;
batheMatrix(18,18) = 1;
batheMatrix(19,19) = 1;

% % ----- device matrix ------

deviceMatrix(1,1) = 1 - pN0 - pN1 - pN2;
deviceMatrix(2,2) = 1 - pO0 - pO1 - pO2;
deviceMatrix(3,1) = pN0;
deviceMatrix(3,2) = pO0;
deviceMatrix(3,3) = 1-p00;
deviceMatrix(4,4) = 1- p01;
deviceMatrix(5,5) = 1- p02;
deviceMatrix(6,6) = 1- p03;
deviceMatrix(7,7) = 1 - p10;
deviceMatrix(8,8) = 1 - p11;
deviceMatrix(9,9) = 1 - p12;
deviceMatrix(10,10) = 1 - p13;
deviceMatrix(7,1) = pN1;
deviceMatrix(7,2) = pO1;
deviceMatrix(11,1) = pN2;
deviceMatrix(11,2) = pO2;
deviceMatrix(11,3) = p00;
deviceMatrix(11,4) = p01;
deviceMatrix(11,5) = p02;
deviceMatrix(11,6) = p03;
deviceMatrix(11,7) = p10;
deviceMatrix(11,8) = p11;
deviceMatrix(11,9) = p12;
deviceMatrix(11,10) = p13;
deviceMatrix(11,11) = 1;
deviceMatrix(12,12) = 1;
deviceMatrix(13,13) = 1;
deviceMatrix(14,14) = 1;
deviceMatrix(15,15) = 1;
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deviceMatrix(16,16) =1;
deviceMatrix(17,17) =1;
deviceMatrix(18,18) = 1;
deviceMatrix(19,19)=1;

% % ----- central line standardized kit matrix ...
------

%setting up standardized kit matrix

kitMatrix(1,1) = 1;
kitMatrix(2,2) = 1;

kitMatrix(3,3) = betaStar(w);
kitMatrix(4,3) = 1- betaStar(w);

kitMatrix(3,4) = betaStar(w);
kitMatrix(5,4) = 1-betaStar(w);

kitMatrix(3,5) = betaStar(w);
kitMatrix(6,5) = 1- betaStar(w);

kitMatrix(3,6) = betaStar(w);
kitMatrix(6,6) = 1-betaStar(w);

kitMatrix(7,7) = 1;
kitMatrix(8,8) = 1;
kitMatrix(9,9) = 1;
kitMatrix(10,10) = 1;

kitMatrix(11,11) = betaStar(w);
kitMatrix(12,11) = 1-betaStar(w);

kitMatrix(11,12) = betaStar(w);
kitMatrix(13,12) = 1- betaStar(w);

kitMatrix(11,13) = betaStar(w);
kitMatrix(14,13) = 1-betaStar(w);

kitMatrix(11,14) = betaStar(w);
kitMatrix(14,14) = 1 - betaStar(w);

kitMatrix(15,15) = 1;
kitMatrix(16,16) = 1;
kitMatrix(17,17) = 1;
kitMatrix(18,18) = 1;
kitMatrix(19,19) = 1;

%

application1 =infectMatrix*deviceMatrix;
application2 = application1*batheMatrix;
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application3 = application2*kitMatrix;
application4 = application3*dischargeMatrix;

patientMatrix = application4*patientMatrix;

newPatients(b,1) = patientMatrix(1,1);
circPatients(b,1) = patientMatrix(2,1);
clPatients0(b,1) = patientMatrix(3,1);
clPatients1(b,1) = patientMatrix(4,1);
clPatients2(b,1) = patientMatrix(5,1);
clPatients3(b,1) = patientMatrix(6,1);
cathPatients0(b,1) = patientMatrix(7,1);
cathPatients1(b,1) = patientMatrix(8,1);
cathPatients2(b,1) = patientMatrix(9,1);
cathPatients3(b,1) = patientMatrix(10,1);
bothPatients0(b,1) = patientMatrix(11,1);
bothPatients1(b,1) = patientMatrix(12,1);
bothPatients2(b,1) = patientMatrix(13,1);
bothPatients3(b,1) = patientMatrix(14,1);
infPatients0(b,1) = patientMatrix(15,1);
infPatients1(b,1) = patientMatrix(16,1);
infPatients2(b,1) = patientMatrix(17,1);
infPatients00(b,1) = patientMatrix(18,1);
infPatients11(b,1) = patientMatrix(19,1);

ceil(patientMatrix); %rounding patient values up

end
end

newCAUTIInfectionsMatrix6Months = [];
newCAUTIInfectionsMatrix12Months = [];
newCAUTIInfectionsMatrix18Months = [];
newCAUTIInfectionsMatrix24Months = [];
newCAUTIInfectionsMatrix30Months = [];
newCAUTIInfectionsMatrix36Months = [];
newCAUTIInfectionsMatrix42Months = [];
newCAUTIInfectionsMatrix48Months = [];
newCAUTIInfectionsMatrix54Months = [];
newCAUTIInfectionsMatrix60Months = [];
newCAUTIInfectionsMatrix=[];

newCLABSIInfectionsMatrix6Months = [];
newCLABSIInfectionsMatrix12Months = [];
newCLABSIInfectionsMatrix18Months = [];
newCLABSIInfectionsMatrix24Months = [];
newCLABSIInfectionsMatrix30Months = [];
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newCLABSIInfectionsMatrix36Months = [];
newCLABSIInfectionsMatrix42Months = [];
newCLABSIInfectionsMatrix48Months = [];
newCLABSIInfectionsMatrix54Months = [];
newCLABSIInfectionsMatrix60Months = [];
newCLABSIInfectionsMatrix=[];

newBothInfectionsMatrix6Months = [];
newBothInfectionsMatrix12Months = [];
newBothInfectionsMatrix18Months = [];
newBothInfectionsMatrix24Months = [];
newBothInfectionsMatrix30Months = [];
newBothInfectionsMatrix36Months = [];
newBothInfectionsMatrix42Months = [];
newBothInfectionsMatrix48Months = [];
newBothInfectionsMatrix54Months = [];
newBothInfectionsMatrix60Months = [];
newBothInfectionsMatrix=[];

sixMonths = ceil(30.4*6)+ss; %calculating new infections
for p=(sixMonths - ss):sixMonths

newBothinfections6Months = ...
bothPatients0(p)*r00prime + ...
bothPatients1(p)*r01prime ...
+ bothPatients2(p)*r02prime + ...

bothPatients3(p)*r03prime ...
+ + bothPatients0(p)*r10prime + ...

bothPatients1(p)*r11prime ...
+ bothPatients2(p)*r12prime + ...

bothPatients3(p)*r13prime ...
+ bothPatients0(p)*r20 + bothPatients1(p)*r21 ...
+ bothPatients2(p)*r22 + bothPatients3(p)*r23 + ...

infPatients00(p)*rI0 ...
+ infPatients11(p)*rI1;

newCLABSIinfections6Months = clPatients0(p)*r00+ ...
clPatients1(p)*r01+ clPatients2(p)*r02 + ...
clPatients3(p)*r03 ;

newCAUTIinfections6Months = cathPatients0(p)*r10 + ...
cathPatients2(p)*r12 + cathPatients1(p)*r11+ ...
cathPatients3(p)*r13 ;

newBothMatrix(p,1) = newBothinfections6Months;
newCLABSIMatrix(p,1) = newCLABSIinfections6Months;
newCAUTIMatrix(p,1) = newCAUTIinfections6Months;

end
sixMonSumCLABSI = sum(newCLABSIMatrix(ss:sixMonths))
sixMonSumCAUTI = sum(newCAUTIMatrix(ss:sixMonths))
sixMonSumBoth = sum(newBothMatrix(ss:sixMonths))
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twelveMonths = 365+ss;
for p=sixMonths+1:twelveMonths

newBothinfections12Months = ...
bothPatients0(p)*r00prime + ...
bothPatients1(p)*r01prime ...
+ bothPatients2(p)*r02prime + ...

bothPatients3(p)*r03prime ...
+ + bothPatients0(p)*r10prime + ...

bothPatients1(p)*r11prime ...
+ bothPatients2(p)*r12prime + ...

bothPatients3(p)*r13prime ...
+ bothPatients0(p)*r20 + bothPatients1(p)*r21 ...
+ bothPatients2(p)*r22 + bothPatients3(p)*r23 + ...

infPatients00(p)*rI0 ...
+ infPatients11(p)*rI1;

newCLABSIinfections12Months = clPatients0(p)*r00+ ...
clPatients1(p)*r01+ clPatients2(p)*r02 + ...
clPatients3(p)*r03 ;

newCAUTIinfections12Months = cathPatients0(p)*r10 + ...
cathPatients2(p)*r12 + cathPatients1(p)*r11+ ...
cathPatients3(p)*r13 ;

newBothMatrix(p,1) = newBothinfections12Months;
newCLABSIMatrix(p,1) = newCLABSIinfections12Months;
newCAUTIMatrix(p,1) = newCAUTIinfections12Months;

end
twelveMonSumCLABSI = sum(newCLABSIMatrix(ss:twelveMonths))
twelveMonSumCAUTI = sum(newCAUTIMatrix(ss:twelveMonths))
twelveMonSumBoth = sum(newBothMatrix(ss:twelveMonths))

eighteenMonths = ceil(30.4*18)+ss;
for p=twelveMonths+1:eighteenMonths

newBothinfections18Months = ...
bothPatients0(p)*r00prime + ...
bothPatients1(p)*r01prime ...
+ bothPatients2(p)*r02prime + ...

bothPatients3(p)*r03prime ...
+ + bothPatients0(p)*r10prime + ...

bothPatients1(p)*r11prime ...
+ bothPatients2(p)*r12prime + ...

bothPatients3(p)*r13prime ...
+ bothPatients0(p)*r20 + bothPatients1(p)*r21 ...
+ bothPatients2(p)*r22 + bothPatients3(p)*r23 + ...

infPatients00(p)*rI0 ...
+ infPatients11(p)*rI1;

newCLABSIinfections18Months = clPatients0(p)*r00+ ...
clPatients1(p)*r01+ clPatients2(p)*r02 + ...
clPatients3(p)*r03 ;
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newCAUTIinfections18Months = cathPatients0(p)*r10 + ...
cathPatients2(p)*r12 + cathPatients1(p)*r11+ ...
cathPatients3(p)*r13 ;

newBothMatrix(p,1) = newBothinfections18Months;
newCLABSIMatrix(p,1) = newCLABSIinfections18Months;
newCAUTIMatrix(p,1) = newCAUTIinfections18Months;

end
eighteenMonSumCLABSI = ...

sum(newCLABSIMatrix(ss:eighteenMonths))
eighteenMonSumCAUTI = sum(newCAUTIMatrix(ss:eighteenMonths))
eighteenMonSumBoth = sum(newBothMatrix(ss:eighteenMonths))

twentyFourMonths = ceil(30.4*24)+ss;
for p=eighteenMonths+1:twentyFourMonths

newBothinfections24Months = ...
bothPatients0(p)*r00prime + ...
bothPatients1(p)*r01prime ...
+ bothPatients2(p)*r02prime + ...

bothPatients3(p)*r03prime ...
+ + bothPatients0(p)*r10prime + ...

bothPatients1(p)*r11prime ...
+ bothPatients2(p)*r12prime + ...

bothPatients3(p)*r13prime ...
+ bothPatients0(p)*r20 + bothPatients1(p)*r21 ...
+ bothPatients2(p)*r22 + bothPatients3(p)*r23 + ...

infPatients00(p)*rI0 ...
+ infPatients11(p)*rI1;

newCLABSIinfections24Months = clPatients0(p)*r00+ ...
clPatients1(p)*r01+ clPatients2(p)*r02 + ...
clPatients3(p)*r03 ;

newCAUTIinfections24Months = cathPatients0(p)*r10 + ...
cathPatients2(p)*r12 + cathPatients1(p)*r11+ ...
cathPatients3(p)*r13 ;

newBothMatrix(p,1) = newBothinfections24Months;
newCLABSIMatrix(p,1) = newCLABSIinfections24Months;
newCAUTIMatrix(p,1) = newCAUTIinfections24Months;

end
twentyFourMonSumCLABSI = ...

sum(newCLABSIMatrix(ss:twentyFourMonths))
twentyFourMonSumCAUTI = ...

sum(newCAUTIMatrix(ss:twentyFourMonths))
twentyFourMonSumBoth = ...

sum(newBothMatrix(ss:twentyFourMonths))

thirtyMonths = ceil(30.4*30)+ss;
for p=twentyFourMonths+1:thirtyMonths

newBothinfections30Months = ...
bothPatients0(p)*r00prime + ...
bothPatients1(p)*r01prime ...
+ bothPatients2(p)*r02prime + ...

bothPatients3(p)*r03prime ...
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+ + bothPatients0(p)*r10prime + ...
bothPatients1(p)*r11prime ...

+ bothPatients2(p)*r12prime + ...
bothPatients3(p)*r13prime ...

+ bothPatients0(p)*r20 + bothPatients1(p)*r21 ...
+ bothPatients2(p)*r22 + bothPatients3(p)*r23 + ...

infPatients00(p)*rI0 ...
+ infPatients11(p)*rI1;

newCLABSIinfections30Months = clPatients0(p)*r00+ ...
clPatients1(p)*r01+ clPatients2(p)*r02 + ...
clPatients3(p)*r03 ;

newCAUTIinfections30Months = cathPatients0(p)*r10 + ...
cathPatients2(p)*r12 + cathPatients1(p)*r11+ ...
cathPatients3(p)*r13 ;

newBothMatrix(p,1) = newBothinfections30Months;
newCLABSIMatrix(p,1) = newCLABSIinfections30Months;
newCAUTIMatrix(p,1) = newCAUTIinfections30Months;

end
thirtyMonSumCLABSI = sum(newCLABSIMatrix(ss:thirtyMonths))
thirtyMonSumCAUTI = sum(newCAUTIMatrix(ss:thirtyMonths))
thirtyMonSumBoth = sum(newBothMatrix(ss:thirtyMonths))

thirtySixMonths = ceil(30.4*36)+ss;
for p=thirtyMonths+1:thirtySixMonths

newBothinfections36Months = ...
bothPatients0(p)*r00prime + ...
bothPatients1(p)*r01prime ...
+ bothPatients2(p)*r02prime + ...

bothPatients3(p)*r03prime ...
+ + bothPatients0(p)*r10prime + ...

bothPatients1(p)*r11prime ...
+ bothPatients2(p)*r12prime + ...

bothPatients3(p)*r13prime ...
+ bothPatients0(p)*r20 + bothPatients1(p)*r21 ...
+ bothPatients2(p)*r22 + bothPatients3(p)*r23 + ...

infPatients00(p)*rI0 ...
+ infPatients11(p)*rI1;

newCLABSIinfections36Months = clPatients0(p)*r00+ ...
clPatients1(p)*r01+ clPatients2(p)*r02 + ...
clPatients3(p)*r03 ;

newCAUTIinfections36Months = cathPatients0(p)*r10 + ...
cathPatients2(p)*r12 + cathPatients1(p)*r11+ ...
cathPatients3(p)*r13 ;

newBothMatrix(p,1) = newBothinfections36Months;
newCLABSIMatrix(p,1) = newCLABSIinfections36Months;
newCAUTIMatrix(p,1) = newCAUTIinfections36Months;

end
thirtySixMonSumCLABSI = ...

sum(newCLABSIMatrix(ss:thirtySixMonths))
thirtySixMonSumCAUTI = ...

sum(newCAUTIMatrix(ss:thirtySixMonths))
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thirtySixMonSumBoth = sum(newBothMatrix(ss:thirtySixMonths))

fortyTwoMonths = ceil(30.4*42)+ss;
for p=thirtySixMonths+1:fortyTwoMonths

newBothinfections42Months = ...
bothPatients0(p)*r00prime + ...
bothPatients1(p)*r01prime ...
+ bothPatients2(p)*r02prime + ...

bothPatients3(p)*r03prime ...
+ + bothPatients0(p)*r10prime + ...

bothPatients1(p)*r11prime ...
+ bothPatients2(p)*r12prime + ...

bothPatients3(p)*r13prime ...
+ bothPatients0(p)*r20 + bothPatients1(p)*r21 ...
+ bothPatients2(p)*r22 + bothPatients3(p)*r23 + ...

infPatients00(p)*rI0 ...
+ infPatients11(p)*rI1;

newCLABSIinfections42Months = clPatients0(p)*r00+ ...
clPatients1(p)*r01+ clPatients2(p)*r02 + ...
clPatients3(p)*r03 ;

newCAUTIinfections42Months = cathPatients0(p)*r10 + ...
cathPatients2(p)*r12 + cathPatients1(p)*r11+ ...
cathPatients3(p)*r13 ;

newBothMatrix(p,1) = newBothinfections42Months;
newCLABSIMatrix(p,1) = newCLABSIinfections42Months;
newCAUTIMatrix(p,1) = newCAUTIinfections42Months;

end
fortyTwoMonSumCLABSI = ...

sum(newCLABSIMatrix(ss:fortyTwoMonths))
fortyTwoMonSumCAUTI = sum(newCAUTIMatrix(ss:fortyTwoMonths))
fortyTwoMonSumBoth = sum(newBothMatrix(ss:fortyTwoMonths))

fortyEightMonths = ceil(30.4*48)+ss;
for p=fortyTwoMonths+1:fortyEightMonths

newBothinfections48Months = ...
bothPatients0(p)*r00prime + ...
bothPatients1(p)*r01prime ...
+ bothPatients2(p)*r02prime + ...

bothPatients3(p)*r03prime ...
+ + bothPatients0(p)*r10prime + ...

bothPatients1(p)*r11prime ...
+ bothPatients2(p)*r12prime + ...

bothPatients3(p)*r13prime ...
+ bothPatients0(p)*r20 + bothPatients1(p)*r21 ...
+ bothPatients2(p)*r22 + bothPatients3(p)*r23 + ...

infPatients00(p)*rI0 ...
+ infPatients11(p)*rI1;

newCLABSIinfections48Months = clPatients0(p)*r00+ ...
clPatients1(p)*r01+ clPatients2(p)*r02 + ...
clPatients3(p)*r03 ;

newCAUTIinfections48Months = cathPatients0(p)*r10 + ...
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cathPatients2(p)*r12 + cathPatients1(p)*r11+ ...
cathPatients3(p)*r13 ;

newBothMatrix(p,1) = newBothinfections48Months;
newCLABSIMatrix(p,1) = newCLABSIinfections48Months;
newCAUTIMatrix(p,1) = newCAUTIinfections48Months;

end
fortyEightMonSumCLABSI = ...

sum(newCLABSIMatrix(ss:fortyEightMonths))
fortyEightMonSumCAUTI = ...

sum(newCAUTIMatrix(ss:fortyEightMonths))
fortyEightMonSumBoth = ...

sum(newBothMatrix(ss:fortyEightMonths))

fiftyFourMonths = ceil(30.4*54)+ss;
for p=fortyEightMonths+1:fiftyFourMonths

newBothinfections54Months = ...
bothPatients0(p)*r00prime + ...
bothPatients1(p)*r01prime ...
+ bothPatients2(p)*r02prime + ...

bothPatients3(p)*r03prime ...
+ + bothPatients0(p)*r10prime + ...

bothPatients1(p)*r11prime ...
+ bothPatients2(p)*r12prime + ...

bothPatients3(p)*r13prime ...
+ bothPatients0(p)*r20 + bothPatients1(p)*r21 ...
+ bothPatients2(p)*r22 + bothPatients3(p)*r23 + ...

infPatients00(p)*rI0 ...
+ infPatients11(p)*rI1;

newCLABSIinfections54Months = clPatients0(p)*r00+ ...
clPatients1(p)*r01+ clPatients2(p)*r02 + ...
clPatients3(p)*r03 ;

newCAUTIinfections54Months = cathPatients0(p)*r10 + ...
cathPatients2(p)*r12 + cathPatients1(p)*r11+ ...
cathPatients3(p)*r13 ;

newBothMatrix(p,1) = newBothinfections54Months;
newCLABSIMatrix(p,1) = newCLABSIinfections54Months;
newCAUTIMatrix(p,1) = newCAUTIinfections54Months;

end
fiftyFourMonSumCLABSI = ...

sum(newCLABSIMatrix(ss:fiftyFourMonths))
fiftyFourMonSumCAUTI = ...

sum(newCAUTIMatrix(ss:fiftyFourMonths))
fiftyFourMonSumBoth = sum(newBothMatrix(ss:fiftyFourMonths))

sixtyMonths = ceil(30.4*60)+ss;
for p=fiftyFourMonths+1:sixtyMonths

newBothinfections60Months = ...
bothPatients0(p)*r00prime + ...
bothPatients1(p)*r01prime ...
+ bothPatients2(p)*r02prime + ...

bothPatients3(p)*r03prime ...
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+ + bothPatients0(p)*r10prime + ...
bothPatients1(p)*r11prime ...

+ bothPatients2(p)*r12prime + ...
bothPatients3(p)*r13prime ...

+ bothPatients0(p)*r20 + bothPatients1(p)*r21 ...
+ bothPatients2(p)*r22 + bothPatients3(p)*r23 + ...

infPatients00(p)*rI0 ...
+ infPatients11(p)*rI1;

newCLABSIinfections60Months = clPatients0(p)*r00+ ...
clPatients1(p)*r01+ clPatients2(p)*r02 + ...
clPatients3(p)*r03 ;

newCAUTIinfections60Months = cathPatients0(p)*r10 + ...
cathPatients2(p)*r12 + cathPatients1(p)*r11+ ...
cathPatients3(p)*r13 ;

newBothMatrix(p,1) = newBothinfections60Months;
newCLABSIMatrix(p,1) = newCLABSIinfections60Months;
newCAUTIMatrix(p,1) = newCAUTIinfections60Months;

end
sixtyMonSumCLABSI = sum(newCLABSIMatrix(ss:sixtyMonths))
sixtyMonSumCAUTI = sum(newCAUTIMatrix(ss:sixtyMonths))
sixtyMonSumBoth = sum(newBothMatrix(ss:sixtyMonths))

oppBetaVector = 1 - beta;
numberOfBaths = 850*sum(beta);
numberOfNonCHGBaths = 850*sum(oppBetaVector);
numberOfKits = 850*(sum(bothPatients0(ss:sixtyMonths)) ...

+ sum(bothPatients1(ss:sixtyMonths)) + ...
sum(bothPatients2(ss:sixtyMonths))...
+ sum(bothPatients3(ss:sixtyMonths)) + ...

sum(clPatients0(ss:sixtyMonths)) + ...
sum(clPatients1(ss:sixtyMonths)) + ...

sum(clPatients2(ss:sixtyMonths)) + ...
sum(clPatients3(ss:sixtyMonths)))

printVectorCLABSI = [];
printVectorCAUTI = [];
printVectorBoth = [];
printVectorCLABSI = [printVectorCLABSI; sixMonSumCLABSI ...

twelveMonSumCLABSI eighteenMonSumCLABSI ...
twentyFourMonSumCLABSI thirtyMonSumCLABSI ...
thirtySixMonSumCLABSI fortyTwoMonSumCLABSI ...
fortyEightMonSumCLABSI fiftyFourMonSumCLABSI ...
sixtyMonSumCLABSI];

printVectorCAUTI = [printVectorCAUTI; sixMonSumCAUTI ...
twelveMonSumCAUTI eighteenMonSumCAUTI ...
twentyFourMonSumCAUTI thirtyMonSumCAUTI ...
thirtySixMonSumCAUTI fortyTwoMonSumCAUTI ...
fortyEightMonSumCAUTI fiftyFourMonSumCAUTI ...
sixtyMonSumCAUTI];

printVectorBoth = [printVectorBoth; sixMonSumBoth ...
twelveMonSumBoth eighteenMonSumBoth ...
twentyFourMonSumBoth thirtyMonSumBoth ...
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thirtySixMonSumBoth fortyTwoMonSumBoth ...
fortyEightMonSumBoth fiftyFourMonSumBoth ...
sixtyMonSumBoth];

printVector = [printVectorBoth; printVectorCAUTI; ...
printVectorCLABSI];
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Appendix D

MATLAB CODE – SIR MODEL

% SIR Model

S0 = 4500000;
I0 = 2;
R0 = 0;

p0 = [S0 I0 R0];

tspan = 0:530;

[t,p] = ode15s(@Popmodel, tspan, p0);

% Plot
S = p(:,1);
I = p(:,2);
R = p(:,3);

figure(1)
hold on
plot(t, S,'LineWidth',3);
plot(t, I,'LineWidth',3);
plot(t, R,'LineWidth',3);
legend('S','I','R')
xlabel('Time')
ylabel('Number of Individuals')
title('SIR Model')
hold off

% Function Definitions

function pdot = Popmodel(t,u)

%Parameters for SIR Model
d = 14;

S = u(1);
I = u(2);
R = u(3);
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beta = transmission(t); %beta is time dependent

dS = -beta*S*I; %SIR equations
dI = beta*S*I - (1/d)*I;
dR = (1/d)*I;

pdot=[dS dI dR]';

end

function y = beta1(t)
betah = 0.0000006; %transmission due to hospital
Eh = 0.8; %effectiveness of PPE
tH = 50; %time when PPE runs out
if t≤tH

y = betah*Eh;
else

y = betah;
end

end

function y = beta2(t)
betas = 0.00000006; %transmission due to community
Es = 0.6; %effectiveness of social distancing
tS = 45; %time when social distancing starts
if t≤ tS

y = betas;
else

y = betas*Es;
end

end

function beta = transmission(t)
h = 0.1;
beta = beta1(t)*h + beta2(t)*(1-h);

end
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Appendix E

MATLAB CODE – NON-ADI MODEL

clear

%-------------------------------------------------------------------------
% PARAMETERS
%-------------------------------------------------------------------------
endSim = 1;
yearlyInfectionCounter(1) = 0;
testsYearly = [];
double = 2;
half = 0.5;
ad = 1;

for w=1 :endSim
endTime = 6*365; %10*365;
burnInYear = 1;
adjustTime = 1*365; %run program for this long ...

before making calculatio;ns
tt = endTime + adjustTime;
newInfection = zeros(tt,1);
hospInfection1 = zeros(tt,1);
commInfection1 = zeros(tt,1);
tests = 0;

%CANNOT ADJUST - LIT VALUES
gamma = 1/10*ad; %recovery from C.diff,
tau = 1;
lambda = 1/6*ad; %likelihood of being prescribed ...

antibiotics
theta1 = 1/10*ad;
b = 0.8; % proportion of patients coming in susceptible

%CAN ADJUST
sigma1 = 0.01*ad; %becoming colonized from susceptible
sigma2 = 0.05*ad; %becoming colonized from ...

susceptible on antibiotics
theta2 = 1/60*ad; % moving from colonized in ...

hospital to infectious
theta3 = 1/60*ad;
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alphaCA = 1;%1.06;
alphaC = 1;%1.06;
alphaCH = 1;%1.06;
alphaIN = 2;
alphaIS = 1;%1.03;
alphaR = 1; %1.015;
alphaD = 1;% 1.1;
alpha = 1;
enCo = 1000/ad;
enviroBoost = 6;

%---------------------------------------------------------------------
% INITIALIZING PATIENT STATES & ENVIRONMENT
%---------------------------------------------------------------------

% S = 1, SA = 2, % Ca = 3, C = 4, IN = 5, IS = 6, R ...
= 7, CH = 8

p1 = 1;
p2 = 1;
p3 = 1;
p4 = 1;
p5 = 1;
p6 = 1;
p7 = 1;
p8 = 1;
p9 = 1;
p10 = 1;
p11 = 1;
p12 = 1;
p13 = 1;
p14 = 1;
p15 = 1;
p16 = 2;
p17 = 2;
p18 = 2;
p19 = 2;
p20 = 2;
p21 = 2;

vector = [p1; p2; p3; p4; p5; p6; p7; p8; p9; p10; ...
p11; p12; p13; p14; p15; p16; p17; p18; p19; ...
p20; p21];

vectorNames = {'p1'; 'p2'; 'p3'; 'p4'; 'p5'; 'p6'; ...
'p7'; 'p8'; 'p9'; 'p10'; 'p11'; 'p12'; 'p13'; ...
'p14'; 'p15'; 'p16'; 'p17'; 'p18'; 'p19'; 'p20'; ...
'p21'};

P(1) = 0;
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probPath(1) = 0;

array = zeros(length(vector) , endTime, 4);
array(:,1,1) = vector;
numPatients = size(vector);

initialLOS = [randi([0,42],1); randi([0,42],1); ...
randi([0,42],1); randi([0,42],1); ...
randi([0,42],1); randi([0,42],1); ...
randi([0,42],1); randi([0,42],1); ...
randi([0,42],1); randi([0,42],1); ...
randi([0,42],1); randi([0,42],1); ...
randi([0,42],1); randi([0,42],1); ...
randi([0,42],1); randi([0,42],1); ...
randi([0,42],1); randi([0,42],1); ...
randi([0,42],1); randi([0,42],1); randi([0,42],1)];

array(:,1,2) = initialLOS;

%tests = zeros(numPatients(1),tt);
%---------------------------------------------------------------------
% BIG LOOP ITERATING THROUGH PATIENTS ON ...

INSIDE (i)
% AND DAY SIMULATION ON THE OUTSIDE (j)
%---------------------------------------------------------------------

for j=2:(tt)

for i=1:numPatients %want to iterate this over ...
entire vector except for environment

%-------------------------------------------------------------
% SETTING UP RANDOM NUMBERS TO BE ...

USED BELOW
%-------------------------------------------------------------

r0 = rand();
r1 = rand();
r2 = rand();
r3 = rand();
r4 = rand();
r5 = rand();
r6 = rand();
r7 = rand();
r8 = rand();

%-------------------------------------------------------------
% ADDING TO THE LOS
%-------------------------------------------------------------

array(i,j,2) = array(i,j-1,2) + 1;

104



%-------------------------------------------------------------
% PATIENT TRANSITION STATEMENTS
%-------------------------------------------------------------
if array(i,j-1,1) == 0

%array(i,j,2) = 0;
if r0 ≥ 0.2

array(i,j,1) = 1;
else

array(i,j,1) = 4;
end

elseif array(i,j-1,1) == 1 %patient is in S
if r1≥0 && r1 < lambda

array(i,j,1) = 2;
elseif r1 ≥ lambda && r1 < lambda + ...

sigma1*probPath(j-1)
array(i,j,1) = 8;

else
array(i,j,1) = array(i,j-1,1);

end

elseif array(i,j-1,1) == 2 %patient is in SA
if r2≥ 0 && r2 < sigma2*probPath(j-1)

array(i,j,1) = 3;
else

array(i,j,1) = array(i,j-1,1);
end

elseif array(i,j-1,1) == 3 %patient is in CA
if r3 ≥0 && r3 < theta1

array(i,j,1) = 5;
newInfection(j,1) = ...

newInfection(j,1) + 1;
hospInfection1(j,1) = ...

hospInfection1(j,1) + 1;
%tests(i,j) = 1;
tests = tests + 1;

else
array(i,j,1) = array(i,j-1,1);

end

elseif array(i,j-1,1) == 4 %patient is in C
if r4 ≥ 0 && r4 < theta3

array(i,j,1) = 5;
newInfection(j,1) = ...

newInfection(j,1) + 1;
commInfection1(j,1) = ...

commInfection1(j,1) + 1;
tests = tests + 1;

else
array(i,j,1) = array(i,j-1,1);
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end

elseif array(i,j-1,1) == 5 %patient is in IN
if r5 ≥ 0 && r5 < tau

array(i,j,1) = 6;
else

array(i,j,1) = array(i,j-1,1);
end

elseif array(i,j-1,1) == 6 %patient is in IS
if r6 ≥ 0 && r6 < gamma

array(i,j,1) = 7;
else

array(i,j,1) = array(i,j-1,1);
end

elseif array(i,j-1,1) == 8 %patient is in CH
if r8 ≥0 && r8 < theta2

array(i,j,1) = 5;
newInfection(j,1) = ...

newInfection(j,1) + 1;
hospInfection1(j,1) = ...

hospInfection1(j,1) + 1;
tests = tests + 1;

else
array(i,j,1) = array(i,j-1,1);

end

else %patient is in R
array(i,j,1) = array(i,j-1,1);

end

%-------------------------------------------------------------
% DISCHARGE CALCULATIONS
%------------------------------------------------------------

disNum = 0.8;
disNum2 = 0.9;

if array(i,j,2) > 42 && (array(i,j,3) > 14 ...
| | array(i,j,3) ==0) %array(i,j-1,3) > ...
14 %want to make sure that
%people haven't gotten sick or recovered
%reset LOS counter here, reset page 3 here

if array(i,j,1) == 1 && rand() < ...
disNum2 %∆S
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array(i,j,1) = 0;
array(i,j,2) = 0;
array(i,j,3) = 0;

elseif array(i,j,1) == 2 && rand() < ...
disNum2 %∆SA
array(i,j,1) = 0;
array(i,j,2) = 0;
array(i,j,3) = 0;

elseif array(i,j,1) == 3 && rand()< ...
disNum %∆CA
array(i,j,1) = 0;
array(i,j,2) = 0;
array(i,j,3) = 0;

elseif array(i,j,1) == 4 && rand()< ...
0.99 %∆C
array(i,j,1) = 0;
array(i,j,2) = 0;
array(i,j,3) = 0;

elseif array(i,j,1) == 7 && rand() < ...
disNum %∆R
array(i,j,1) = 0;
array(i,j,2) = 0;
array(i,j,3) = 0;

elseif array(i,j,1) == 8 && rand() < ...
disNum2 %∆CH
array(i,j,1) = 0;
array(i,j,2) = 0;
array(i,j,3) = 0;

end
elseif array(i,j,2) > 56 && array(i,j,1)==7 ...

%person may have been sick or recovered
if rand()< disNum2 %∆R + dR

array(i,j,1) = 0;
array(i,j,2) = 0;
array(i,j,3) = 0;
% disp('sick discharge')

end
else

end

%-------------------------------------------------------------
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% CALCULATING NEW INFECTIONS
%-------------------------------------------------------------

if mod(j,30)==0
monthCount = j/30;
cumulative30DaySumInfected(w,monthCount) ...

= sum(newInfection(j-29:j));

end

if mod(j,365) ==0
m2 = j/365;
yearlyInfectionCounter(w,m2) = ...

sum(newInfection(j-364:j));

end

%-------------------------------------------------------------
% CALCULATING LENGTH OF ...

INFECTIONS PATIENTS
%-------------------------------------------------------------

if array(i,j-1,1)==6 | | array(i,j-1,1)==5 ...
%counting sick LOS
array(i,j,3) = array(i,j-1,3) + 1;

end

end

%-------------------------------------------------------------
% COUNTING PATIENTS IN EACH CLASS ...

ON EACH DAY
%-------------------------------------------------------------

countDischarge = sum(array(:,:,1)==0,1);
countS = sum(array(:,:,1)==1,1);
countSA = sum(array(:,:,1)==2,1);
countCA = sum(array(:,:,1)==3,1);
countC = sum(array(:,:,1)==4,1);
countIN = sum(array(:,:,1)==5,1);
countIS = sum(array(:,:,1)==6,1);
countR = sum(array(:,:,1)==7,1);
countCH = sum(array(:,:,1)==8,1);

%-------------------------------------------------------------
% YEARLY DISCHARGE COUNT
%-------------------------------------------------------------

if mod(j,365) ==0
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m2 = j/365;
sumCountDischarge(w,m2) = ...

sum(countDischarge(j-364:j));
testsYearly = [testsYearly; tests];
tests = 0;

end

%-----------------------------------------------------------------
% ENVIRONMENT AND PROPORTION OF ...

ENVIRONMENT CONTAMINATED
% CALCULATIONS
%----------------------------------------------------------------

P(j) = max(0.4*P(j-1) +alphaCH*countCH(j) ...
+alphaCA*countCA(j) + alphaC*countC(j) + ...
alphaIN*countIN(j) + alphaIS*countIS(j) + ...
alphaR*countR(j) - alphaD*countDischarge(j),0);

probPath(j) = (alpha*enviroBoost*P(j))/(enCo + ...
alpha*enviroBoost*P(j));

end

%--------------------------------------------------------------------
% YEARLY MEANS AND ST DEVS CALCULATIONS
%---------------------------------------------------------------------

for q=1:length(cumulative30DaySumInfected)
if mod(q,12)==0

yearCount = q/12;
yearlyMean(w,yearCount) = ...

mean(cumulative30DaySumInfected(q-11:q));
yearlyStDev(w,yearCount) = ...

std(cumulative30DaySumInfected(q-11:q));
end

end

for r=1:tt
if mod(r,365) ==0

m3 = r/365;
hospInfYearly(w,m3) = sum(hospInfection1(r-364:r));
commInfYearly(w,m3) = sum(commInfection1(r-364:r));
%testsYearly(w,m3) = sum(tests(r-364:r));

end
end

hospInfSum(w,1) = sum(hospInfYearly(w,:));
commInfSum(w,1) = sum(commInfYearly(w,:));
totalInfSum(w,1) = hospInfSum(w,1) + commInfSum(w,1);
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for v=1:tt
if mod(v,30)==0

m4 = v/30;
hospInfMonthly(w,m4) = sum(hospInfection1(v-29:v));
commInfMonthly(w,m4) = sum(commInfection1(v-29:v));
totalInfMonthly(w,m4) = hospInfMonthly(w,m4) + ...

commInfMonthly(w,m4);
end

end

%-------------------------------------------------------------------------
% COUNTING NUMBER OF TESTS AND ALL INFECTIONS
%-------------------------------------------------------------------------

numberOfTests(w,1) = ...
sum(countIN(adjustTime+1 :endTime+adjustTime));

allInfections(w,1) = ...
sum(newInfection(adjustTime+1 :endTime+adjustTime));

hospInfection1([1:adjustTime],:) = [];
commInfection1([1:adjustTime],:) = [];

allHospInfPercent(w,1) = sum(hospInfection1) / ...
allInfections(w,1);

allCommInfPercent(w,1) = sum(commInfection1) / ...
allInfections(w,1);

%testSave = [testSave; tests];
end

%-------------------------------------------------------------------------
% GETTING RID OF BURN IN YEAR
%-------------------------------------------------------------------------
yearlyInfectionCounter(:,[1:burnInYear]) = [];
yearlyMean(:,[1:burnInYear]) = [];
yearlyStDev(:,[1:burnInYear]) = [];
sumCountDischarge(:,[1:burnInYear]) = [];
hospInfYearly(:,[1:burnInYear]) = [];
commInfYearly(:,[1:burnInYear]) = [];
commInfMonthly(:,[1:12*burnInYear+1]) = [];
cumulative30DaySumInfected(:,[1:12*burnInYear+1]) = [];
hospInfMonthly(:,[1:12*burnInYear+1]) = [];

allYearsInfectionsMeans = ...
mean(yearlyInfectionCounter,'all');

allYearsInfectionsStDev = ...
std(yearlyInfectionCounter,0,'all');

allMonthsInfectionsMeans = ...
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mean(cumulative30DaySumInfected,'all');
allMonthsInfectionsStDev = ...

std(cumulative30DaySumInfected,0,'all');

allYearsHospInfMeanPercent = mean(allHospInfPercent, 'all');
allYearsHospInfCountMean = mean(hospInfYearly, 'all');
allYearsCommInfMeanPercent = mean(allCommInfPercent, 'all');
allYearsCommCountMean = mean(commInfYearly, 'all');

%testsYearly(:,[1:burnInYear]) = [];
%testYearlySum = sum(testsYearly');
%allYearlyMeanTests = mean(testsYearly,'all');

for b=1:length(testsYearly)
if mod(b,11) == 1

testsYearly(b) = nan;
end

end

allYearsAvTests = nanmean(testsYearly);

aa = [allYearsCommInfMeanPercent; ...
allYearsHospInfMeanPercent; allYearsCommCountMean; ...
allYearsHospInfCountMean; allMonthsInfectionsMeans; ...
allMonthsInfectionsStDev; allYearsInfectionsMeans; ...
allYearsInfectionsStDev; allYearsAvTests];

aa = aa';

countHospCol = countCH + countCA;

x = [1:1:366];

% figure
% plot(x,P)
% legend('Amount of Pathogen')
%
% figure
% plot(x,probPath,'r')
% legend('proportion of pathogen in environment')
%

figure
plot(x,countHospCol(:,[365:730],1), 'r', x, ...

countC(:,[365:730],1), 'm', ...
x,countIN(:,[365:730],1), 'b', x, ...
countIS(:,[365:730],1), 'c')

legend('Hospital-onset, Colonized', ...
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'Community-acquried, Colonized', 'Infected, not ...
tested', 'Infected, positive test')

xlabel('Time (days)');
ylabel('Number of patients');
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Appendix F

MATLAB CODE – ADI- MODEL

clear

%-------------------------------------------------------------------------
% PARAMETERS
%-------------------------------------------------------------------------
endSim = 1;
yearlyInfectionCounter(1) = 0;
testsYearly = [];
double = 2;
half = 0.5;

for w=1 :endSim
endTime = 6*365;
burnInYear = 1;
adjustTime = 365; %run program for this long before ...

making calculations
tt = endTime + adjustTime;
newInfection = zeros(tt,1);
hospInfection1 = zeros(tt,1);
commInfection1 = zeros(tt,1);
tests = 0;
cleanRoom = 0;

%CANNOT ADJUST - LIT VALUES
gamma = 1/10; %recovery from C.diff,
tau = 1; %testing accuracy
lambda = 1/6;
theta1 = 1/10;
b = 0.8; % proportion of patients coming in susceptible

%CAN ADJUST
sigma1 = 0.01; %becoming colonized from susceptible
sigma2 = 0.05; %becoming colonized from ...

susceptible on antibiotics
theta2 = 1/60; % moving from colonized in hospital ...

to infectious
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theta4 = 1/60;
alphaCA = 1;%1.06;
alphaCS = 1;%;1.06;
alphaCH = 1;%1.06;
alphaIN = 2;
alphaIS = 1;%;1.03;
alphaR = 1;%1.015;
alphaD = 1;%1.1;
alpha = 1;
enCo = 1000;
enviroBoost = 6;

%---------------------------------------------------------------------
% INITIALIZING PATIENT STATES & ENVIRONMENT
%---------------------------------------------------------------------

% S = 1, SA = 2, CA = 3, CH = 4, IN = 5, CS = 6, IS ...
= 7, R = 8

p1 = 1;
p2 = 1;
p3 = 1;
p4 = 1;
p5 = 1;
p6 = 1;
p7 = 1;
p8 = 1;
p9 = 1;
p10 = 1;
p11 = 1;
p12 = 1;
p13 = 1;
p14 = 1;
p15 = 1;
p16 = 2;
p17 = 2;
p18 = 2;
p19 = 2;
p20 = 2;
p21 = 3;

vector = [p1; p2; p3; p4; p5; p6; p7; p8; p9; p10; ...
p11; p12; p13; p14; p15; p16; p17; p18; p19; ...
p20; p21];

vectorNames = {'p1'; 'p2'; 'p3'; 'p4'; 'p5'; 'p6'; ...
'p7'; 'p8'; 'p9'; 'p10'; 'p11'; 'p12'; 'p13'; ...
'p14'; 'p15'; 'p16'; 'p17'; 'p18'; 'p19'; 'p20'; ...
'p21'};

P(1) = 0;
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probPath(1) = 0;

array = zeros(length(vector) , endTime, 4);
array(:,1,1) = vector;
numPatients = size(vector);

initialLOS = [randi([0,42],1);randi([0,42],1); ...
randi([0,42],1); ...
randi([0,42],1);randi([0,42],1); ...
randi([0,42],1); randi([0,42],1); ...
randi([0,42],1); randi([0,42],1); ...
randi([0,42],1); randi([0,42],1); ...
randi([0,42],1); randi([0,42],1); ...
randi([0,42],1); randi([0,42],1); ...
randi([0,42],1); randi([0,42],1); ...
randi([0,42],1); randi([0,42],1); ...
randi([0,42],1); randi([0,42],1)];

array(:,1,2) = initialLOS;

%---------------------------------------------------------------------
% BIG LOOP ITERATING THROUGH PATIENTS ON ...

INSIDE (i)
% AND DAY SIMULATION ON THE OUTSIDE (j)
%---------------------------------------------------------------------

for j=2:(tt)

for i=1:numPatients %want to iterate this over ...
entire vector except for environment
r0 = rand();
r1 = rand();
r2 = rand();
r3 = rand();
r4 = rand();
r5 = rand();
r6 = rand();
r7 = rand();

%-------------------------------------------------------------
% ADDING TO THE LOS
%-------------------------------------------------------------

array(i,j,2) = array(i,j-1,2) + 1;

%-------------------------------------------------------------
% PATIENT TRANSITION STATEMENTS
%-------------------------------------------------------------

if array(i,j-1,1) == 0
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if r0 ≥ 0.2
array(i,j,1) = 1;
tests = tests + 1;

else
array(i,j,1) = 6;
tests = tests + 1;

end
elseif array(i,j-1,1) == 1 %if patient is ...

in S
if r1 ≥0 && r1 < sigma1*probPath(j-1) ...

%go to 3 via sigma with environment ...
weight factored in
array(i,j,1) = 4;

elseif r1 ≥ sigma1*probPath(j-1) && r1 ...
< sigma1*probPath(j-1) + lambda %go ...
to 2 via lambda
array(i,j,1) = 2;

else
array(i,j,1) = array(i,j-1,1);

end

elseif array(i,j-1,1) == 2 %if patient is ...
in SA

if r2 ≥ 0 && r2 < sigma2*probPath(j-1)
array(i,j,1) = 3; %go to 4 via beta ...

with environment weight factored in
else

array(i,j,1) = array(i,j-1,1);
end

elseif array(i,j-1,1) == 3 %if patient is ...
in CA
if r3 ≥ 0 && r3 < theta1

array(i,j,1) = 5;
newInfection(j,1) = ...

newInfection(j,1) + 1;
hospInfection1(j,1) = ...

hospInfection1(j,1) + 1;
tests = tests + 1;

else
array(i,j,1) = array(i,j-1,1);

end

elseif array(i,j-1,1) == 4 %if patient is ...
in CH
if r4 ≥ 0 && r4 < theta2

array(i,j,1) = 5;
newInfection(j,1) = ...

newInfection(j,1) + 1;
hospInfection1(j,1) = ...
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hospInfection1(j,1) + 1;
tests = tests + 1;

else
array(i,j,1) = array(i,j-1,1);

end
elseif array(i,j-1,1) == 5 %if patient is ...

in IN
if r5 ≥ 0 && r5 < tau

array(i,j,1) = 7;
%newInfection(j,1) = ...

newInfection(j,1) + 1;
else

array(i,j,1) = array(i,j-1,1);
end

elseif array(i,j-1,1)==6 % patient is in CS
if r6 ≥ 0 && r6 < theta4

array(i,j,1) = 7;
newInfection(j,1) = ...

newInfection(j,1) + 1;
commInfection1(j,1) = ...

commInfection1(j,1) + 1;
tests = tests + 1;

else
array(i,j,1) = array(i,j-1,1);

end

elseif array(i,j-1,1)==7 %patient is in IS
if r7 ≥ 0 && r7 < gamma

array(i,j,1) = 8;
else

array(i,j,1) = array(i,j-1,1);
end

else %if patient is in R
array(i,j,1) = array(i,j-1,1);

end

%-------------------------------------------------------------
% DISCHARGE CALCULATIONS
%-------------------------------------------------------------

disNum = 0.8;
disNum2 = 0.9;

if array(i,j,2) > 42 && (array(i,j,3) > 14 ...
| | array(i,j,3) ==0) %array(i,j-1,3) > ...
14 %want to make sure that
%people haven't gotten sick or recovered
%reset LOS counter here, reset page 3 here
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if array(i,j,1) == 1 && rand() < disNum ...
%∆S + dS
array(i,j,1) = 0;
array(i,j,2) = 0;
array(i,j,3) = 0;

%disp('discharge from 1')
elseif array(i,j,1) == 2 && rand() < ...

disNum %∆SA + dSA
array(i,j,1) = 0;
array(i,j,2) = 0;
array(i,j,3) = 0;

%disp('discharge from 2')
elseif array(i,j,1) == 3 && rand()< ...

disNum %∆C + dC
array(i,j,1) = 0;
array(i,j,2) = 0;
array(i,j,3) = 0;

%disp('discharge from 3')

elseif array(i,j,1) == 4 && rand()< disNum
array(i,j,1) = 0;
array(i,j,2) = 0;
array(i,j,3) = 0;

elseif array(i,j,1) == 6 && rand()< disNum
array(i,j,1) = 0;
array(i,j,2) = 0;
array(i,j,3) = 0;
if j > 365
cleanRoom = cleanRoom + 1;
end

elseif array(i,j,1) == 8 && rand() < disNum
array(i,j,1) = 0;
array(i,j,2) = 0;
array(i,j,3) = 0;

%disp('discharge from 6')
end

elseif array(i,j,2) > 56 && array(i,j,1)==8 ...
%person may have been sick or recovered
if rand()< disNum2 %∆R + dR

array(i,j,1) = 0;
array(i,j,2) = 0;
array(i,j,3) = 0;
%disp('sick discharge')

end
else
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%disp(array(i,j-1,2))
%disp(array(i,j-1,1))

end

%-------------------------------------------------------------
% CALCULATING NEW INFECTIONS
%-------------------------------------------------------------

if mod(j,30)==0
monthCount = j/30;
cumulative30DaySumInfected(w,monthCount) ...

= sum(newInfection(j-29:j));
end

if mod(j,365) ==0
m2 = j/365;
yearlyInfectionCounter(w,m2) = ...

sum(newInfection(j-364:j));

end

%-------------------------------------------------------------
% CALCULATING LENGTH OF ...

INFECTIONS PATIENTS
%-------------------------------------------------------------

if array(i,j-1,1)==5 | | array(i,j-1,1)==7 ...
%counting sick LOS
array(i,j,3) = array(i,j-1,3) + 1;

end

end

%-----------------------------------------------------------------
% COUNTING PATIENTS IN EACH CLASS ON ...

EACH DAY
%-----------------------------------------------------------------
countDischarge = sum(array(:,:,1)==0,1);
countS = sum(array(:,:,1)==1,1);
countSA = sum(array(:,:,1)==2,1);
countCA = sum(array(:,:,1)==3,1);
countCH = sum(array(:,:,1)==4,1);
countIN = sum(array(:,:,1)==5,1);
countCS = sum(array(:,:,1) ==6,1);
countIS = sum(array(:,:,1)==7,1);
countR = sum(array(:,:,1)==8,1);

%-----------------------------------------------------------------

119



% YEARLY DISCHARGE COUNT
%-----------------------------------------------------------------

if mod(j,365) ==0
m2 = j/365;
sumCountDischarge(w,m2) = ...

sum(countDischarge(j-364:j));
testsYearly = [testsYearly; tests];
tests = 0;

end

%-----------------------------------------------------------------
% ENVIRONMENT AND PROPORTION OF ...

ENVIRONMENT CONTAMINATED
% CALCULATIONS
%-----------------------------------------------------------------

P(j) = max(0.4*P(j-1) + alphaCA*countCA(j) ...
+alphaCH*countCH(j) + alphaCS*countCS(j) + ...
alphaIN*countIN(j) + alphaIS*countIS(j) + ...
alphaR*countR(j) - alphaD*countDischarge(j),0);

probPath(j) = (alpha*P(j))/(enCo + alpha*P(j));

end

%---------------------------------------------------------------------
% YEARLY MEANS AND ST DEVS CALCULATIONS
%---------------------------------------------------------------------

for k=1:length(cumulative30DaySumInfected)
if mod(k,12)==0

yearCount = k/12;
yearlyMean(w,yearCount) = ...

mean(cumulative30DaySumInfected(k-11:k));
yearlyStDev(w,yearCount) = ...

std(cumulative30DaySumInfected(k-11:k));
end

end
for r=1:tt

if mod(r,365) ==0
m3 = r/365;
hospInfYearly(w,m3) = ...

sum(hospInfection1(r-364:r));
commInfYearly(w,m3) = ...

sum(commInfection1(r-364:r));
% testsYearly(w,m3) = sum(tests(r-364:r));

end
end

hospInfSum(w,1) = sum(hospInfYearly(w,:));
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commInfSum(w,1) = sum(commInfYearly(w,:));
totalInfSum(w,1) = hospInfSum(w,1) + commInfSum(w,1);

for v=1:tt
if mod(v,30)==0

m4 = v/30;
hospInfMonthly(w,m4) = ...

sum(hospInfection1(v-29:v));
commInfMonthly(w,m4) = ...

sum(commInfection1(v-29:v));
totalInfMonthly(w,m4) = ...

hospInfMonthly(w,m4) + commInfMonthly(w,m4);
end

end
%---------------------------------------------------------------------

% COUNTING NUMBER OF TESTS AND ALL INFECTIONS
%------------------------------------------------------------------------

allInfections(w,1) = sum(newInfection(adjustTime+1:tt));

hospInfection1([1:adjustTime],:) = [];
commInfection1([1:adjustTime],:) = [];

allHospInfPercent(w,1) = sum(hospInfection1) / ...
allInfections(w,1);

allCommInfPercent(w,1) = sum(commInfection1) / ...
allInfections(w,1);

end

%-------------------------------------------------------------------------
% GETTING RID OF BURN IN YEAR
%-------------------------------------------------------------------------
yearlyInfectionCounter(:,[1:burnInYear]) = [];
yearlyMean(:,[1:burnInYear]) = [];
yearlyStDev(:,[1:burnInYear]) = [];
sumCountDischarge(:,[1:burnInYear]) = [];
hospInfYearly(:,[1:burnInYear]) = [];
commInfYearly(:,[1:burnInYear]) = [];
commInfMonthly(:,[1:12*burnInYear+1]) = [];
cumulative30DaySumInfected(:,[1:12*burnInYear+1]) = [];
hospInfMonthly(:,[1:12*burnInYear+1]) = [];

allYearsInfectionsMeans = ...
mean(yearlyInfectionCounter,'all');

allYearsInfectionsStDev = ...
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std(yearlyInfectionCounter,0,'all');

allMonthsInfectionsMeans = ...
mean(cumulative30DaySumInfected,'all');

allMonthsInfectionsStDev = ...
std(cumulative30DaySumInfected,0,'all');

allYearsHospInfMeanPercent = mean(allHospInfPercent, 'all');
allYearsHospInfCountMean = mean(hospInfYearly, 'all');
allYearsCommInfMeanPercent = mean(allCommInfPercent, 'all');
allYearsCommCountMean = mean(commInfYearly, 'all');

for b=1:length(testsYearly)
if mod(b,11) == 1

testsYearly(b) = nan;
end

end

allYearsAvTests = nanmean(testsYearly);

aa = [allYearsCommInfMeanPercent; ...
allYearsHospInfMeanPercent; allYearsCommCountMean; ...
allYearsHospInfCountMean; allMonthsInfectionsMeans; ...
allMonthsInfectionsStDev; allYearsInfectionsMeans; ...
allYearsInfectionsStDev; allYearsAvTests];

aa = aa';

countHospCol = countCH + countCA;

%x = [1:1:j-364];
x = [1:1:366];

%
% figure
% plot(x,P)
% legend('Amount of Pathogen')
%
% figure
% plot(x,probPath,'r')
% legend('proportion of pathogen in environment')
%
% figure
% plot(x,countS(:,:,1), x,countSA(:,:,1), ...

x,countCA(:,:,1), x,countCN(:,:,1), x, ...
countCS(:,:,1), x,countIN(:,:,1), x, countIS(:,:,1), ...
x, countR(:,:,1))

% legend('Susceptible','Susceptible on Antibiotics', ...
'Colonized on antibiotics', 'Colonized, not ...
screened', 'Colonized, screened','Infected, not ...
screened','Infected, screened','Recovered')
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% xlabel('Time (days)');
% ylabel('Number of patients');

figure
plot(x,countHospCol(:,[365:730],1), 'r', x, ...

countCS(:,[365:730],1), 'm', ...
x,countIN(:,[365:730],1), 'b', x, ...
countIS(:,[365:730],1), 'c')

legend('Hospital-onset, Colonized', ...
'Community-acquried, Colonized', 'Infected, not ...
tested', 'Infected, positive test')

xlabel('Time (days)');
ylabel('Number of patients');
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Appendix G

MATLAB CODE – T-TEST FOR ABM

% MUST RUN non-ADI model or ADI-model first

filename = '/Users/kellyreagan/Documents/Research/Cases ...
in BMT unit.xlsx';

T = readtable(filename);
data = T([1:77],2);
A = table2array(data);
% figure
% qqplot(A)
%
% figure
% histogram(A)

meanData = mean(A);
stdData = std(A);
varData = var(A);

simData = cumulative30DaySumInfected;
simData = simData';
simData = simData(:)';
simSample=datasample(simData,77);
simSample = simSample';
meanSim = mean(simSample);
stdSim = std(simSample);
varSim = var(simSample);

%figure
%histogram(simSample)

% testing to see if variances are equal -- F-test
% null hypothesis is that the variances are the same
% alter hypothesis is that the variances are not
% h =1 means reject the null hypothesis at the default ...

1% significance
% level
% ci contains the lower and upper boundaries of the 99% ...

confidence interval
% for the true variance ratio
%
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[h,p,ci,stats]=vartest2(A,simSample, 'Alpha', 0.01)

%cannot reject the null hypothesis that the variances ...
are the same

%Now I can run a two sample t-test
[h2,p2,ci2,stats2]=ttest(A,simSample,'Alpha',0.01)

%returned value of h=0 indicates that I cannot reject ...
the null hypothesis
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