
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2022

The l1-norm regularized l1-norm best-fit line problem and The l1-norm regularized l1-norm best-fit line problem and

applications applications

Xiao Ling

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons, and the

Philosophy of Science Commons

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/6972

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars
Compass. For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F6972&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=scholarscompass.vcu.edu%2Fetd%2F6972&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/536?utm_source=scholarscompass.vcu.edu%2Fetd%2F6972&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/6972?utm_source=scholarscompass.vcu.edu%2Fetd%2F6972&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

©Xiao Ling, May 2022

All Rights Reserved.

THE `1-NORM REGULARIZED `1-NORM BEST-FIT LINE PROBLEM AND

APPLICATIONS

A Dissertation submitted in partial fulfillment of the requirements for the degree

of Doctor of Philosophy at Virginia Commonwealth University.

by

XIAO LING

Doctor of Philosophy in Systems Modeling and Analysis

Director: Paul Brooks,

Professor, Department of Information Systems

Virginia Commonwealth University

Richmond, Virginia

May, 2022

i

Dedication

This dissertation is wholeheartedly dedicated to the memory of my grandparents.

Acknowledgements

I would like to first thank my advisor, Paul Brooks. I am deeply grateful for

his mentorship and openness to my interests while also providing guidance and

for generously sharing his ideas, skills, knowledge, and resources. I am constantly

inspired by his diligence, persistence, and sharpness. He always held me to the

highest standards with confidence in me, for which I will forever be grateful. I am

convinced that my academic journey will not be possible without Prof. Brooks.

Besides, I would like to thank Prof. Bui, his work immediately leads to one of

my projects. I appreciate the elegant concepts he has exposed me to. Moreover,

thanks to Prof. Larson and Prof. Cano for the optimization concepts and CUDA

concepts you have taught me, I would not be able to finish the 2 projects without

your excellent lectures. I also thank them for their participation in the thesis com-

mittee and for their valuable time and helpful comments.

In addition to my advisors, I would like to thank some excellent people for

opening my eyes to this wonderful academic journey. You inspired me and directly

lifted my life trajectory. Reetam Majumder and Robert Clark thank you for your

encouragement that motivated me to continue my doctoral studies.

Finally, I would like to thank my father for educating me in ”Scientia potentia

est”. I believe this is why I remain persistent in seeking knowledge.

TABLE OF CONTENTS

Chapter Page

Dedication .

Acknowledgements .

Table of Contents .

List of Tables .

List of Figures .

Abstract .

1 Introduction . 1

1.1 The `1-norm projection . 1
1.2 Principal Component Analysis, SharpEL and Kernel Princi-

pal Component Analysis . 3
1.3 Low-Rank Approximation . 5
1.4 Related Approaches to Sparse Robust Subspace Estimation 8
1.5 Applications in Computer Vision 10
1.6 Kernel Principal Component Analysis and the Preimage Problem . 12

2 The `1-norm regularized `1-norm best-fit lines 14

2.1 Motivation . 14
2.2 Related Works . 15
2.3 Problem Formulation . 16
2.4 Estimating an `1-norm regularized `1-norm best-fit line 17
2.5 Synthetic Experiments . 25

2.5.1 A Toy Example . 26
2.5.2 Evaluation of Effectiveness . 30

2.6 Implementing Algorithms 1 and 2 on NVIDIA Graphical Pro-
cessing Units . 33
2.6.1 Introduction . 33
2.6.2 Computational Speedup Results 35

2.6.3 Solution Path with Varying Dimensions and Lambdas 36
2.7 Background Modeling Applications 38

2.7.1 Background Subtraction Methods 41
2.7.2 Deep Learning Comparison 42

2.8 Conclusion . 45
2.9 Discussion . 46

3 Image Denoising via Patch-based `1-norm Principal Component Analysis 48

3.1 Introduction . 48
3.2 Denoising Scheme . 48

3.2.1 Dictionary Learning . 49
3.2.2 Hard Thresholding and Aggregating 52

3.3 Experiment Results . 53
3.4 Conclusion . 57

4 Kernel `1-norm Principal Component Analysis for Denoising 58

4.1 Introduction . 58
4.2 An `1-norm Basis in KPCA . 60
4.3 Experiment Results . 62

4.3.1 Spiral Data . 63
4.3.2 Clustering Example . 65
4.3.3 Object Images with Changing Illumination Color Temperature 66

4.4 Geometric Interpretation . 68
4.5 Conclusions . 69
4.6 Discussion . 70

Appendix A Code . 72

Vita . 89

LIST OF TABLES

Table Page

1 Solution Path for toy example. The best-fit line is varying over the
four lambda intervals. 26

2 The computation results of algorithm 1 over all breakpoints 29

3 The standard deviation of the discordance(1-|vTestvtrue|) to the true
line is subscript below the mean. −− stands for values less than 0.001. . 31

4 The standard deviation of the `0 of solutions in percent is subscript
below the mean. 31

5 Speedup results for a matrix of dimension row index × column
header. A value greater than 1 demonstrates the efficacy of the
implementation of Algorithm 1. 37

6 Average and standard deviation time in seconds for 10 replications
for each dataset with varying number of columns with fixed num-
ber of rows at 1000, 2000, and 5000 in the left table. Average and
standard deviation time in seconds over 10 replications, varying the
number of rows with the fixed number of columns at 1000,2000, and
5000 in the right table. 38

7 Average and standard deviation of breakpoints in millions over 10
replications varying the number of columns with the fixed number
of rows at 1000, 2000, and 5000 in the left table. Average and stan-
dard deviation of breakpoints in millions over 10 replications vary-
ing the number of rows with the fixed number of columns at 1000,
2000, and 5000 in the right table. 39

8 Background modeling confusion matrix. The table on the left shows
the performance metrics of the SOBS method. The right one shows
the performance metrics of the Algorithm 1. 44

9 Results in PSNR(dB) of the patch-based schemes. 56

10 Two contaminated spirals of Cycles 1 and 3 are denoised by preserv-
ing 1, . . ., and 4 components, respectively. Each setting was repli-
cated 5 times to obtain the mean and standard deviation of the two
measures. 65

11 PSNR comparison between two methods. The PSNR for each object
with different noise realizations are averaged over 12 images. The
standard deviation is in the subscript. 68

LIST OF FIGURES

Figure Page

1 Geometric Interpretation of Breakpoints 27

2 Lambda behavior in 3000 rows × varying columns on the left.
Lambda behavior in varying rows × 1000 columns on the right.
The discordance is read on the left y-axis for solid lines and `0 on
the right y-axis for dashed lines. 32

3 Discordance and `0 curve with respect to λ. 33

4 The architecture of a Spark Application 34

5 One dimensional decomposition using blocks and threads. The
formula will map each thread to an element in the vector. 35

6 Kernel Definition . 36

7 Algorithm 1 running time . 37

8 Number of breakpoints from Algorithm 2. 38

9 Background subtraction pipeline. N is the number of frames that are
used for background initialization. T is the T time sequence frame. [8] . 40

10 Data Initialization . 42

11 From top to bottom, the rows consist of 160th, 200th and 258th frames.
Column (a) is the original frame; (b) and (d) show the results of
our algorithm; and (c) and (e) show the results of PCA. Columns
(b) and (c) are background images and (d) and (e) are foreground
images. 43

12 A toy image of resolution 2× 3 (Left) and its neuronal map(right). . . . 44

13 Estimated binary background and foreground. From left to right,
the rows consist of raw, SOBS, Algorithm 1, and ground truth
frames. From top to bottom, 33th, 321th,417th and 438th frames. 45

14 SharpEL denoising scheme by hard-thresholding 50

15 PSNR as a function of choices of λ. 53

16 From top to bottom, rows of images are corrupted by Gaussian noise
with σ= 10, 20 and 25. Column (a) stores the noisy images, (b)
shows the NML results, (c) shows BM3D results, (d) shows PB-PCA
results, (e) shows the results of KSVD and (f) shows the results of
SharpEL. 54

17 From top to bottom, rows of images are corrupted by Gaussian noise
with σ= 10, 20, 30, and 50. Column (a) stores the noisy images, (b)
shows the NML results, (c) shows BM3D results, (d) shows PB-PCA
results, (e) shows the results of SharpEL. 55

18 Schematic diagram illustrating how outliers and nonlinearities can
distort the principal component. a the outlier drags the PC compo-
nent away from the data. b the PC not even close to the true pattern. . . 59

19 pfkpca2 reconstructions with preserving the top four components
(odd rows) versus those of pfkpca1 (even rows). Rows 1 and 2 are
results for the 1-cycle spiral, and rows 3 and 4 are results for the 3-
cycle spiral. The first column shows the raw data along with the true
curve. The following six columns are reconstructions based on the
preservation of 1, . . ., and 4 components. 64

20 The first column of the image contains two copies of the original data
with noise added. The next 6 columns contain preimages produced
by pfkpca2 (first row) and pfkpca1 (second row) when preserving
1, 2, . . ., 6 components. 66

21 For each of the three objects, one example from 12 images is shown
in rows 1, 4, and 7 with noise added (variance 5, 10, 15, 20, 25, 30,
and 35). Rows 2, 5, and 8 contain the denoised example images from
pfkpca2 and rows 3, 6, and 9 contain those from pfkpca1. 67

22 The example of bad denoising performance. The Lc are not parallel
to the underlying pattern(thick parabola). The noisy point (solid
circle) was drag towards preimage (open circle) along the 1st steep-
est descent, which is far away from true point (triangle). 69

23 Four plots on left are based on sample of 2000 from a polynomial
of degree 2. Plots on right are based on sample of 2000 points from
a polynomial of degree 4. Three layers are exhibited. Middle layer
consists of contaminated points. Error surface of ‖Φ(·) − PΦ(·)‖ is
on the top layer, and corresponding preimages along with true line
(thick curve) are at bottom. Top row represents preserving first 1
and 2 L2 PCs. Second row represents preserving first 1 and 2 L1 PCs. . . 70

Abstract

THE `1-NORM REGULARIZED `1-NORM BEST-FIT LINE PROBLEM AND

APPLICATIONS

By Xiao Ling

A Dissertation submitted in partial fulfillment of the requirements for the degree

of Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2022.

Director: Paul Brooks,

Professor, Department of Information Systems

The best-fit subspace or low-rank approximation of a data matrix revolves

around the norm approximation technique. `2-norm criterion is probably the most

widely used norm for fitting subspaces. As the computational power increases, the

`1-norm analogue has recently gained attention from the academic community. It is

widely agreed that the `1 norm is insensitive to outliers, compared to its `2 variant.

Because of the polyhedral structure interrelated with linear programming (LP),

the `0 norm is commonly relaxed into the `1-norm problem to induce sparsity in

models. In this work, we examine the role of the `1-norm approximation in several

domains. Our focus is on the underlying characterization of the `1-norm subspace,

the parallel implementation of the algorithm, and its applications in the field of

computer vision.

Chapter 2 develops a sparse and outlier insensitive method to fit a one-

dimensional subspace that can be used as a replacement for eigenvector meth-

ods such as principal component analysis. The method is insensitive to outlier

observations by formulating procedures as optimization problems that seek the

best-fit line according to the `1 norm. It is also capable of producing sparse princi-

pal components with an additional penalty term to take sparseness into account.

Our algorithm has a worst-case time complexity of O(m2n log n). This chapter

also presents the results of the implementation of this algorithm in the parallel

and heterogeneous environment of NVIDIA CUDA and discusses the behavior of

the algorithm in various settings. Our goal is to demonstrate the scalability and

efficiency of our new approach.

Chapter 3 proposes an image denoising approach based on an `1-norm best-fit

line algorithm. The denoising process is expressed as a best-fit subspace estima-

tion problem, where the best-fit subspaces are derived in a `1-norm minimization

framework. This new approach is competitive with existing approaches in terms

of objective error metrics and visual fidelity and has the advantage that it can be

implemented in parallel for large-scale applications. Numerical experiments illus-

trate that the technique can be successfully applied to the classical case of additive

Gaussian noise. The performance of our approach is experimentally verified on a

variety of images and noise levels.

Chapter 4 describes a method for denoising data using kernel principal com-

ponent analysis (KPCA) that is able to recover preimages of the intrinsic variables

in the feature space using a single line search along the gradient descent direction

of its squared projection error. This method combines a projection-free preimage

estimation algorithm with an `1-norm kernel PCA (KPCA). Those two stages pro-

vide distinct advantages to other KPCA preimage methods in the sense that it is

insensitive to outliers and computationally efficient. The method can enhance the

results of a range of unsupervised learning tasks such as denoising, clustering, and

dimensionality reduction. Numerical experiments in the Amsterdam Library of

Object Images demonstrate that the proposed method performs better in terms of

mean squared error than the `2-norm analogue as well as on toy synthetic data.

The proposed method is applied to different data sets and the performances are

reported.

CHAPTER 1

INTRODUCTION

Subspace fitting or low rank matrix approximation, which is the basis for applied

problems such as pattern recognition, signal processing, and computer vision, is

one of the main topics in data science. In this introduction, we describe the idea

of `1-norm projection, low rank approximation, two sparse outlier-insensitive sub-

space estimation approaches, applications in computer vision, kernel principal

component analysis, and the preimage Problem.

1.1 The `1-norm projection

Given a vector v ∈ Rm, the `1-norm projection of x ∈ Rm onto the line {αv : α ∈ R}

can be found by solving the following optimization problem

min
α∈R
‖x− vα‖1 (1.1)

where x is a data point in Rm and ‖x‖1 or `1-norm of x is
∑m

i=1 ‖xi‖. (1.1) can be

further cast as the following constrained linear program (LP):

min
α∈R

λ+,λ−∈Rm

m∑
j=1

(λ+
j + λ−j), (1.2)

subject to:

vjα + λ+
j − λ−j = xj, j = 1, . . . ,m,

λ+
j , λ

−
j ≥ 0, j = 1, . . . ,m,

α unrestricted.

1

The dual of (1.2) is

max
π∈Rm

m∑
j=1

πjxj, (1.3)

subject to:

m∑
j=1

πjvj = 0,

−1 ≤ πj ≤ 1, j = 1, . . . ,m.

Given v = (3, 2, 1, 5)T , the projection of x = (2,−1,−3, 1)T preserves the third coor-

dinate (the element in v equal to 1). Therefore, we have α = −3 and the distance

is

‖x− vα‖1 = |2 + 9|+ | − 1 + 6|+ | − 3 + 3|+ |1 + 15| = 32.

The reconstruction can be derived as

vα = −3 · (3, 2, 1, 5)T = (−9,−6,−3,−15)T .

Finally, the Euclidean distance from the origin to the projection or the length of the

reconstruction is

‖vα‖ =
√

81 + 36 + 9 + 225 =
√

351.

For two points x1, x2 ∈ Rm, if they use the same unit directions with signs to project

onto a line {αv : α ∈ R}, then the optimal dual solutions for the projection linear

program are the same. To prove this, we rewrite (1.2) in vector and matrix notation.

min cTx (1.4)

subject to:

Ax = b

2

where c =



0

1

1

...


, x =



α

λ+
1

λ−1
...


, b =


x1

x2

...

, and A =


v1 1 −1 0 0 · · ·

v2 0 0 1 −1 · · ·
...

.

Let us partition x as

xB

xN

, where xB is the vector of m basic variables and xN

be the vector of m + 1 non-basic variables. Similarly, divide A into A = (AB,AN),

where AB is a matrixm×m corresponding tom basic variables, and AN is a matrix

m× (m+ 1) corresponding to them+ 1 non-basic variables. Therefore, the optimal

solution to (1.4) will be xB = A−1B b. Any feasible basic solution will have α as basic

because it is unrestricted in sign. The remaining m− 1 basic variables will be from

each pair (λ+
j , λ

−
j) for j 6= ̂ for some preserved directions. Given that two points

use the same unit directions with signs, AB in two LPs will be the same. The dual

solution πT
B = cTBA

−1
B shall also be the same as each other.

1.2 Principal Component Analysis, SharpEL and Kernel Principal Component

Analysis

Principal component analysis (PCA) is one of the most popular methods in

subspace estimation. Given a data matrix X ∈ Rn×m with zero column means,

where n and m denote the number of points and the dimension of the original

input space. PCA provides a rank r approximation on criterion `2, by solving the

problem for each value of r.

min
U,V
‖X − AV T‖2

2 s.t.V TV = Ir (1.5)

where, V ∈ Rm×r is the principal subspace whose columns are the basis (principal

components), A ∈ Rn×r is the coordinates of projected points. (1.5) can be inter-

3

preted as minimizing the sum of squared distances of points from their projection

in a subspace of dimensions r < m. The solution to (1.5) is the solution of following

maximization problem.

max
V
‖XV ‖2

2 = max
V

V TΣV s.t.V TV = Ir[64] (1.6)

where Σ = XTX
n

is the covariance matrix of X . The columns of solution V are the

eigenvectors of Σ. In another words, λv = Σv, v must lie in the span of all points

xi, i = 1 · · ·n. Thus, λxTi v = xTi Σv is always true for each point. The kernel principal

component analysis (KPCA) is PCA in a higher-dimensional space F constructed

by the feature map Φ : Rm 7→ RN(N � m). Given that the data mapped into

F with Φ, KPCA (of `2-norm) is naturally the problem to find the eigenvectors of

Σ̄ = Φ(X)TΦ(X)
n

[73]. In a similar vein, λΦ(xi)
Tv = Φ(xi)

T Σ̄v. For all feature rep-

resentation Φ(xi), λΦ(xi)
TαTΦ(xi) = Φ(xi)

T Φ(X)TΦ(X)
n

αTΦ(xi) is always true,where

α are linear combination coefficients. Most often, the map Φ is implicitly defined;

therefore, a predefined function should be chosen as representations with respect

to Φ(x). [7] first remarked on the connection between a kernel and the dot product

in another space such that k(x, x′)X = 〈Φi(x),Φi(x
′)〉F , where k(., .) is a similarity

function giving rise to a Gram matrix K in F . Therefore, KPCA can be solved by

nλKα = K2α. [39] introduces the `1-norm kernel principal component analysis

problem,

max
v

n∑
i=1

‖Φ(xi)
Tv‖1 s.t.‖v‖2 = 1 (1.7)

where v is principal component in F (kernel principal component) and Φ(xi) is

xi’s feature representation. The solution can be approximated by a modified Power

iteration method [29] in a finite number of steps.

The problem (1.5) can be modified into the following `1-norm minimization

4

problem. Consider the optimization problem to find an `1-norm best-fit one-

dimensional subspace:

min
v,α

∑
i∈n

‖xi − vαi‖1. (1.8)

where xi, i ∈ n are given points in Rm. An approximate solution vector v∗ de-

termines a line through the origin corresponding to the best-fit subspace. An al-

gorithm called SharpEL is proposed to approximate v by calculating a series of

weighted medians [10]. Each element of a component v can be calculated indepen-

dently by sorting several lists of ratios. SharpEL can be used to generate the basis

for robust principal component analysis. An optimal solution to (1.5) is an optimal

solution to (1.6). However, the same relationship does not hold for (1.7) and (1.8)

because of the use of the `1 norm.

1.3 Low-Rank Approximation

The best-fit subspace problem is closely related to the low-rank approxima-

tion problem. There are growing needs for a robust and sparse alternative of PCA,

and this has led to an active research area in low-rank approximation by leading

scholars. In this section, we will describe the general idea of the low-rank approxi-

mation and some popular methods for solving the problems. We define the nuclear

norm of L, ‖L‖∗, as the sum of the singular values of L. Minimizing ‖L‖∗ encour-

ages L to be low rank. Low-Rank approximation is based on the assumption that

a matrix X can be decomposed into a low-rank matrix L and a sparse matrix S,

namely X = L + S. Minimizing the `1 norm of S encourages sparsity. For a ma-

trix A ∈ Rm×n, ‖X‖2,1 =
∑m

i=1

√∑n
j=1 X

2
ij . The ‖X · ‖2,1 can force L to have zero

columns corresponding to outliers.

Given a collection of centered data pointsX ∈ Rn×m, the low-rank approxima-

5

tion is a minimization mathematical problem, as in

min
L
‖X − L‖p s.t. rank(L) ≤ r

where ‖ · ‖p can be `1, `2 norm, etc, under the assumption that a data matrix X

can be decomposed into a low-rank matrix L. The problem is, in general, convex.

For example, the low-rank approximation problem Principal Component Pursuit

(PCP) problem and Low-Rank and Block-Sparse Matrix Decomposition (LRBS)

can be formulated as:

PCP : min
L,S
‖L‖∗ + λ‖S‖1 s.t. L+ S = X. (1.9)

LRBS : min
L,S
‖L‖∗ + kλ‖S‖2,1 + k(1− λ)‖L‖2,1 s.t. L+ S = X. (1.10)

whereL is low-rank matrix andS is the sparse matrix. The (1.9) and (1.10) problem

are convex and can be solved by various methods. An augmented Lagrange mul-

tiplier (ALM) algorithm used in [17] and an alternating direction method (ADM)

algorithm used in [83]. ALM and ADM methods use the following Lagrangian

function of (1.9):

L(L, S, Z) = ‖L‖∗ + λ‖S‖1 + ZT (X − L− S) +
β

2
‖X − L− S‖2

F , (1.11)

where β is a positive penalty parameter. The difference between ALM and ADM

is that ALM minimizes (1.11) with respect to L and S, by setting (Lj+1, Sj+1) =

arg minL(L, S, Zj) and updating the Lagrangian multiplier matrix Zj+1 = Zj +

β(X − Lj − Sj)[51]. [59] introduces a related variant ALM scheme. In contrast,

ADM sets Lj+1 = arg minL(L, Sj, Zj), Sj+1 = arg minL(Lj, S, Zj) and Zj+1 = Zj +

β(X − Lj − Sj). The form of Lj+1 and Sj+1 usually have closed form solutions [97,

49, 16, 48]. (1.10) can be solved by ALM by minimizing the following Lagrangian

6

function of (1.10)[82]:

L(L, S, Z) =‖L‖∗ + kλ‖S‖2,1 + k(1− λ)‖L‖2,1+

ZT (X − L− S) +
β

2
‖X − L− S‖2

F . (1.12)

The problem (1.9) is convex and can be solved by ALM-based algorithms.

[44] developed an updating scheme with closed-form solutions at each ALM iter-

ation. An ALM variant called DNDP-ALM proposed in [18] improved the original

optimization problem and incorporated noise into the constraints. [3, 78] solves

PCP by taking advantages of the multi-block structure. [47] introduce the exact

and inexact ALM methods that achieves a good performance in solving the PCP

problem. [66] proposed an algorithm approximately an order of magnitude faster

than inexact ALM to construct a sparse component of the same quality. [77] de-

scribed a simple and almost parameter-free algorithm by reformulating the PCP

as an unconstrained nonconvex program and then performing alternating mini-

mization scheme. A parallel splitting ALM method was introduced in [52]. [30]

described an ADM algorithm is able to achieve global convergence under standard

assumptions. [53] proposes the first linear time algorithm for exactly solving very

large PCP problems. A scalable algorithm proposed in [50] is able to generate sub-

optimal solution to PCP. [31] combines an ADM with a Gaussian back substitution

procedure [100] to solve the PCP. MATLAB LRSLibrary [79] provides various al-

gorithms and variants to the PCP problem. [22] presented a method for robust

principal component analysis (RPCA) that can be used for automatic learning of

subspace for data. [67] propose a simple alternating minimization algorithm for

solving a minor variation on the original Principal Component Pursuit (PCP). Un-

der the same assumption to PCP, similar problem formulations have been studied.

7

[95] described a problem minL,S ‖L‖∗ + λ‖S‖1,2 called Outlier Pursuit can be ef-

ficiently solved by proximal gradient algorithm ([16]). [36] presented a more ro-

bust and less biased nonconvex formulation and solved using augmented Lagrange

multiplier framework. [101] described a novel low-rank and sparse decomposition

problem called Go Decomposition (GoDec).

The rank-one components can be obtained by the singular value decomposition

factorization of L, which will be used to compare with the Algorithm 1 results in

later experiments.

1.4 Related Approaches to Sparse Robust Subspace Estimation

For comparison, we also examined a different approach, robust sparse princi-

pal component analysis [57] (RSPCA), a method that maximizes `1-norm variance.

We will explain the relationship and examine the difference between RSPCA and

our algorithm the `1-norm regularized `1-norm best-fit lines (Algorithm 1, in Chap-

ter 2). Taking a collection of centered data pointsX ∈ Rn×m, the two problems used

to derive heuristic algorithms RSPCA [57] and Algorithm 1 are formulated as fol-

lows,

RSPCA: max
vT v=1
‖v‖1<t

‖Xv‖1, (1.13)

Algorithm 1: min
v,α
‖X − αvT‖1 + λ‖v‖1, (1.14)

where v is the optimal ith one-dimensional best-fit subspace. One may notice that

αvT is a rank one matrix in the (1.14) problem formulation. Both optimizations

achieve robustness and sparseness by applying the `1 norm to the objective func-

tions, along with additional penalties. The formulations show that the two ap-

proaches attack the problem from different perspectives. The RSPCA objective

8

function maximizes the `1-norm of `2-norm projections. On the other hand, the

objective goal of Algorithm 1 is to minimize the reconstruction error along with a

penalty. λ is a parameter that controls the sparsity of the solution through the `1

norm of the solution. Thus, we define that this penalty is the `1-norm regularized

by λ. Note that the solutions to (1.13) and (1.14) are different, because they are not

dual to each other.

Both approaches use heuristic approximation algorithms, the difference being

that an iteration algorithm is used to approximate a reasonable sparse local maxi-

mum solution v in RSPCA. On the other hand, Algorithm 1 is carried out by several

independent sortings; therefore, it is deterministic, scalable, and suitable for paral-

lel or distributed implementations. However, the one-dimensional subspace fitting

algorithm for RSPCA is not scalable, which means that it is not suitable for big data.

Furthermore, the greedy algorithm optimizes the projection directions one by one,

making it easy to get stuck in a local solution.

The computational complexity of the RSPCA approximation algorithm is

aroundO(nm logm)k and the Algorithm 1 approximation algorithm isO(m2n log n),

where k is the number of iterations for convergence. An important issue for RSPCA

is that random initialization does not guarantee convergence to a better local op-

timal. Therefore, additional computational complexity will be involved if a good

initialization is required, such as a PCA input v.

As we will demonstrate, Algorithm 1 has some distinct advantages in that it

does not depend on initialization, is deterministic and scalable. More importantly,

the Algorithm 1 can be processed in parallel for increased efficiency, which is suit-

able for implementation in a distributed or parallel framework.

9

1.5 Applications in Computer Vision

The best-fit subspace or low-rank approximation algorithms have been widely

used in the field of computer vision, such as background subtraction (modeling)

and image denoising. Background subtraction is the process of separating the fore-

ground objects (non-static objects) from the background scene. And image denois-

ing is the process of separating the noise with true pixels as much as possible.

The connection between image denoising and `1 norm optimization algorithms

can be traced to a method called sparse coding. The basic idea of sparse coding is

to choose a small number of components in a dictionary (i.e. principal compo-

nents) learned by some matrix decomposition frameworks to estimate the signal of

interest [45, 76, 81]. Low-rank approximation also finds its applications in image

denoising [33, 34, 99]. A group of neighborhood patches is the input matrix used

to learn a dictionary using low-rank approximation techniques. Here, we first in-

troduce several popular patch-based image denoising methods, which will be used

as benchmarks in later experiments. We first define a grayscale image or a frame as

a two-dimensional data matrix with each entry ranging from 0 to 255. The higher

the value, the brighter this pixel is. Given a corrupted data matrixX = X̂ +E with

observations stacked in rows, where X̂ represents an implicit true signal usually

of low rank and E represents noise. X̂ are the denoised patches (a collection of

subregions of an image) for image denoising. NLM [14] outlined an approach that

is considered the foundation of many patch-based methods for image denoising as

an alternative to the pixel-wise bilateral filter [6, 25, 86, 5]. The method replaces

a target patch with an average of similar patches in a specified search window. In

extension, Deledalle et al. [23] expressed the problem as a weighted maximum

likelihood estimation problem (PPB). Aharon et al. [1] presented an iterative dic-

10

tionary learning algorithm (K-SVD) by seeking the sparse linear combination of

columns (atoms) of an adaptive dictionary that is learned by solving a low-rank

approximation problem[26]. Later in 2007, Dabov et al. [21] proposed the widely

adopted BM3D denoising method. In this method, the grouped patches in three di-

mensions are transformed into a wavelet domain and then filtered by a Wiener filter

to estimate the denoised patches. The results of computational experiments have

shown that K-SVD and BM3D are among the best denoising algorithms in terms

of the peak signal-to-noise ratio (PSNR) and visual fidelity. Deledalle et al. [23]

simplified dictionary generation by employing PCA in collections of overlapping

patches with excellent results using Patch based Global PCA (PGPCA) and Patch

based Local PCA (PLPCA) [24]. PGPCA constructs a dictionary by carrying out

PCA on the whole compilation of patches extracted from the image. PLPCA con-

structs local dictionaries by performing PCA on a small group of patches extracted

from a series of predefined windows of the image.

In background subtraction applications, pixels that have not changed or have

changed gradually are considered as background, and pixels that have changed

dramatically are considered as foreground objects. The low-rank approximation

algorithms find their applications in background subtraction in the sense that low-

rank subspaces naturally represent a gradual change over points (frames). [17]

demonstrates the effectiveness of the Principal Component Pursuit in its back-

ground subtraction experiment. Practically, pixels that have not changed could

be part of moving objects, for example, if they have the same color as the back-

ground. Similarly, pixels that have changed could be part of the background when

illumination changes occur, for example.

For image denoising and background subtraction applications, the number of

features is usually large (e.g., the resolution of an image or a frame). Therefore, a

11

scalable algorithm will be more efficient in terms of running time. Moreover, [87]

points out challenging situations in background subtraction such as illumination

changes, intermittent moving foreground moving background and etc. A robust

method is more suitable for tackling such challenges. In light of this, we incorporate

Algorithm 1 into background subtraction and an image denoising framework to

tackle those challenges.

1.6 Kernel Principal Component Analysis and the Preimage Problem

The last chapter describes a method that applies a kernel `1 norm principal

component analysis to a novel preimage estimation procedure called projection-

free kernel principal component analysis (pfkpca2). Kernel principal component

analysis (KPCA) seeks the best-fit linear subspace embedded with some underly-

ing structures in a higher-dimensional space. Suppose that we are given a point (in-

put, pattern, or observation) x ∈ X ⊆ Rm, with an image Φ(x) in the feature space

F a higher-dimensional space constructed by the feature map Φ : Rm 7→ RN(N �

m). Most often, the map Φ is implicitly defined; therefore, a predefined function

should be chosen as representations with respect to Φ(x). [7] first remarked on the

connection between a kernel and the dot product in another space such that

k(x, x′)X = 〈Φi(x),Φi(x
′)〉F , (1.15)

where k(., .) is a similarity function giving rise to a Gram matrix K in F . In one

example, [91] used a predefined kernel for the dot product in a classifier decision

function. For kernels satisfying Mercer’s condition, there exists an implicit Φ [74].

Equation 1.15 enables us to compute dot products in the feature space by means of

the inputs without any knowledge of Φ. Accordingly, it was shown that the nor-

malized feature principal score of point x is a linear combination of feature repre-

12

sentations in the work by [71]. The discussion so far has concentrated on PCA in

feature space. However, in some applications, such as denoising or compressing,

the reconstruction of the KPCA results in the input space would be of primary in-

terest. This is the so-called preimage problem as put forward in [72]. It is studied

as finding an approximated x in the input space such that the function

f(z) = ‖Φ(z)− PnΦ(x)‖2 (1.16)

is minimized, where Pn is a projection operator operating on the top n eigenvec-

tors. With a small modification to the formulation 1.16, they used the gradient

method to find the preimage. Moreover, Schölkopf et al. [72, 74] pointed out that

an exact preimage does not exist in general. [58] later proposed the fixed-point

iteration algorithm, which suffers from numerical instability and is limited by ra-

dial basis kernels. [42] proposed a non-iterative method inspired by the connec-

tion between kernel PCA and metric multidimensional scaling sacrificing efficiency.

[69] modified the preceding method only involving the feature distance. In a sim-

ilar vein, [32] proposed a more efficient method without computing the distance

in both spaces. [15] described a projection-free method based on the observation

that the true manifold is typically nearly parallel to the level curve of the function

‖Φ(·) − PnΦ(·)‖2. This algorithm does not try to attack the nonlinear optimization

problem itself, rather it simply mimics the line search in two spaces. In Chapter

4, we give a geometric interpretation that provides some insights on the relation

between the error surface and the preimages. We then develop a method based on

the kernel `1-norm principal components to increase insensitivity to outliers.

13

CHAPTER 2

THE `1-NORM REGULARIZED `1-NORM BEST-FIT LINES

2.1 Motivation

Subspace estimation can be used for dimension reduction by projecting data in

a high-dimensional feature space to a low-dimensional subspace. It sheds light on

a broad range of tasks from computer vision to pattern recognition. Conventional

principal component analysis (PCA), hereafter referred to as `2-PCA, is a widely

used technique to finding a best-fit subspace. `2-PCA produces the linear combina-

tions of the original features such that the combinations capture maximal variance.

`2-PCA can be computed via the singular value decomposition (SVD) of the data

matrix. The `2 metric is sensitive to outliers in the data matrix. A solution to this

disadvantage is replacing the `2 metric with an `1-norm analog [40, 17, 13, 56, 37].

Another drawback of PCA is that it is difficult to interpret the principal compo-

nents (PCs) without domain knowledge, for example, in movie recommendation

data a linear combination of adventure, historical, and action might come up with

western genre. But, difficulty arises when the dimension increases. To help with in-

terpretation, we can encourage sparsity in the PC loadings. There have been many

works applying `1-regularization to a variety of problems since [85] proposed the

LASSO method for regression problems. [92] demonstrated the significance and

efficacy of the `1-regularization as a vehicle of inducing sparsity. A simple and in-

tuitive definition of sparsity of data is the number of nonzero entries in the dataset,

quantified by `0 norm.

In this chapter, we propose an algorithm with modest computational require-

14

ments for `1 regularization with the traditional squared `2-norm cost replaced by

the `1 cost. Consider the optimization problem to find an `1-norm regularized `1-

norm best-fit one-dimensional subspace:

min
v,α

∑
i∈N

‖xi − vαi‖1 + λ‖v‖1, (2.1)

where xi, i ∈ N are points in Rm. An optimal vector v∗ determines a line through

the origin corresponding to the best-fit subspace. For each point xi, the optimal co-

efficient α∗i specifies the locations of the projected points vαi on the line defined by

v∗. Due to the nature of the `1 norm, some components of v will be reduced to zero

if λ is large enough. Therefore, our proposed method simultaneously generates

both a best-fit and a sparse line in m dimensions, which makes it suitable for large

or high-dimensional data. The method can be extended to the problem of fitting

subspaces. The problem in (2.1) is non-linear, non-convex, and non-differentiable.

Therefore,we adapt the approximation algorithm of [13] to the regularized prob-

lem.

2.2 Related Works

Boscovitch outlined an algorithm with complexity O(n2) for data in two di-

mensions by evaluating a simple ratio at each point to find a line that best fits the n

points in the least absolute deviation (LAD) context in 1760. Later in 1887, Edge-

worth came up with a famous weighted median solution enlightened by Laplace.

[37, 38] presented an alternative minimization algorithm using weighted median

and convex quadratic programming with random initialization. [12] described a

non-convex polynomial-time algorithm for finding an `1-norm best-fit hyperplane

using LP. [80] propose a polynomial-time algorithm to approximate the `1-low-

rank subspace. [10] demonstrate an equivalence between their approach, that of

15

[90], and that of [13]. [28] recently showed that finding an `1-norm best-fit line is

NP-hard.

To the best of our knowledge, the `1-regularized `1-norm best-fit line problem

has not been directly attempted. However, `1-regularized LAD regression(`1-LAD)

is a quite active area. `1-LAD is a special case of optimal subspace fitting to data.

In the regression context, regularization can support variable selection, while error

measurement is designed to be insensitive to outliers in the response variable. [92]

is the first attempt to combine LAD and Lasso in the regression sense. The weighted

version of the `1-LAD methods, such as [93] studied a near-oracle performance

method to fit an `1-LAD. Recently, [61] showed us an iterative algorithm using the

parametric simplex method to solve this problem.

2.3 Problem Formulation

In this section, we will extend the sorting method introduced in [13] to the

setting where we add a penalty for sparsity. First, we introduce four sets of goal

variables ε+ij, ε−ij and ζ+
j , ζ

−
j . The optimization problem in (2.1) can be recast as the

following constrained mathematical program.

min
v∈Rm,α∈Rn

ε+,ε−∈Rn×m+ ,

ζ+,ζ−∈Rm+

∑
i∈N

∑
j∈M

(ε+ij + ε−ij) + λ
∑
j∈M

(ζ+
j + ζ−j), (2.2)

subject to:

vjαi + ε+ij − ε−ij = xij, i ∈ N, j ∈M,

vj + ζ+
j − ζ−j = 0, j ∈M,

ε+ij, ε
−
ij, ζ

+
j , ζ

−
j ≥ 0, i ∈ N, j ∈M.

Proposition 1. The formulation (2.2) is equivalent to (2.1).

16

Proof. The presence of absolute values in the objective function can be avoided by

replacing each xij−vjαi with ε+ij−ε−ij, ε+ij, ε−ij ≥ 0 and each vj with ζ+
j −ζ−j , ζ+

j , ζ
−
j ≥ 0,

and these become the constraints. The new objective function
∑n

i=1

∑m
j=1 |ε

+
ij−ε−ij|+

λ|ζ+
j −ζ−j | can be replaced with

∑n
i=1

∑m
j=1(ε+ij+ε

−
ij)+λ(ζ+

j +ζ−j). This linear program

will have an optimal solution with at least one of the values in ε+ij, ε−ij and ζ+, ζ− is

zero respectively. In that case, xij−vjαi = ε+ij , if xij−vjαi > 0, and xij−vjαi = −ε−ij ,

if xij− vjαi < 0. vj = ζ+
j , if vj > 0, and vj = −ζ−j , if vj < 0. Any feasible solution for

(2.2) generates an objective function value which is the same as that of (2.1) using

the same vlaues for v and α, and vice-versa. Therefore, an optimal solution to (2.1)

generates a feasible solution for (2.2) and vice-versa.

An optimal solution to (2.2) will be a vector v∗ ∈ Rm, along with scalars α∗i , i ∈

N . For each point i, the feature j, two pairs (ε+∗ij ,ε−∗ij) reflect the distance along each

unit direction j between the point and its projection. The pairs (ζ+∗
j , ζ−∗j) provide

the difference from zero for each coordinate of v∗.

Proposition 2. [11] Let v 6= 0 be a given vector inRm. Then there is an `1-norm projection

from the point x ∈ Rm on the line defined by v that can be reached using at most m − 1

unit directions.

Proof. A proof is in [11].

2.4 Estimating an `1-norm regularized `1-norm best-fit line

The modification is to impose the preservation of one of the coordinates,̂, in

the projections of the n points originated in the work of [90, 20]. This means that

each point will use the samem−1 unit directions to project onto the line defined by

v. The modification will give us a linear program. By modifying the mathematical

program in (2.2), we can obtain an estimation of an `1 regularized `1-norm best-fit

17

line.

By the proof of Proposition 2, if x̂ 6= 0, then v̂ 6= 0[11]. Therefore, we can set

v̂ = 1 and set αi = xi̂ to preserve ̂ without loss of generality for the error term,

though the regularization term is affected. We will optimize over lines defined by

v preserving a direction ̂ with v̂.

The remaining components can be found by solving an LP.

z̂(λ) = min
v∈Rm,v̂=1

ε+,ε−∈Rn×m,
ζ+,ζ−∈Rm

∑
i∈N

∑
j∈M

(ε+ij + ε−ij) + λ
∑
j∈M

(ζ+
j + ζ−j), (2.3)

subject to:

vjxi̂ + ε+ij − ε−ij = xij, i ∈ N, j ∈M ; j 6= ̂,

vj + ζ+
j − ζ−j = 0, j ∈M,

ε+ij, ε
−
ij, ζ

+
j , ζ

−
j ≥ 0, i ∈ N, j ∈M.

Each of the n data points generates 2m − 1 constraints in this LP. By solving these

m LPs and selecting the vector v from the solutions associated with the smallest

values of the objective function m, we will have the `1-norm regularized `1-norm

best-fit line under the assumption that all points project by preserving the same

coordinate and v̂=1. The following lemma describes how to generate solutions to

the LPs by sorting several ratios.

Lemma 1. For data xi ∈ Rm, i ∈ N , and for a λ ∈ R, an optimal solution to (2.3) can be

constructed as follows. If xi̂ = 0 for all i, then set v = 0. Otherwise, set v̂ = 1 and for

each j 6= ̂,

• Take points xi, i ∈ N such that xi̂ 6= 0 and sort the ratios xij
xi̂

in increasing order.

• If there is a ı̃ where
∣∣∣sgn

(
xı̃j
xı̃̂

)
λ+

∑
i∈N :
i<ı̃
|xi̂| −

∑
i∈N :
i>ı̃
|xi̂|

∣∣∣ ≤ |xı̃̂|, then set vj =

18

xı̃j
xı̃̂

.

• If no such ı̃ exists, then set vj = 0.

Proof. The problem is separable into m independent small sub-problems, one for

each column j. For a given j, we can introduce goal variables ε+i , ε−i , ζ+, and ζ− to

transform the problem for finding vj into a linear program of the form

min
vj,ε

+,ε−,λ
ζ+,ζ−

∑
i∈N

(ε+i + ε−i) + λ(ζ+ + ζ−), (2.4)

s.t.vjxi̂ + ε+i − ε−i = xij, i ∈ N, (2.5)

vj + ζ+ − ζ− = 0. (2.6)

Under the assumption that all points used the same unit direction ̂ to project

onto a best-fit regularized line, we can set v̂ = 1 in (2.1) and obtain the following

optimization problem

min
v,α,λ

n∑
i=1

m∑
j=1

|xij − vjxi̂|+ λ
m∑
j=1

|vj| (2.7)

= min
v,α,λ

n∑
i=1

m∑
j=1

|xi̂|
∣∣∣∣xijxi̂ − vj

∣∣∣∣+ λ
m∑
j=1

|vj|. (2.8)

We will show that the solution for vj stated in Theorem 2.1 is optimal by con-

structing a dual feasible solution with the same objective function value. Suppose

that the ratios xij
xi̂

, i ∈ N , are sorted in increasing order. The primal objective func-

tion value (2.4) becomes

∑
i∈N |xi̂|

∣∣∣xijxi̂ − xı̃j
xı̃̂

∣∣∣+ λ
∣∣∣xı̃jxı̃̂ ∣∣∣ if vj 6= 0,∑

i∈N |xij| if vj = 0.

19

The dual linear program to (2.4) is

max
π,γ

∑
i∈N

xij
xi̂
πi, (2.9)

s.t.
∑
i∈N

πi + γ = 0, (2.10)

− |xi̂| ≤ πi ≤ |xi̂|, i ∈ N, (2.11)

− λ ≤ γ ≤ λ. (2.12)

Suppose there is an ı̃ satisfying (1). Then let γ = −sgn
(
xı̃j
xı̃̂

)
λ and let

πi =


|xi̂| if i > ı̃,

−|xi̂| if i < ı̃,

−γ −
∑

i 6=ı̃ πi if i = ı̃.

This solution satisfies complementary slackness. To show that the solution is dual

feasible, we need to show that πı̃ satisfies the bounds in (2.11) (all other bounds

and constraints are satisfied):

|πı̃| = | − γ −
∑
i 6=ı̃

πi|, (2.13)

=

∣∣∣∣∣sgn
(
xı̃j
xı̃̂

)
λ+

∑
i:i<ı̃

|xi̂| −
∑
i:i>ı̃

|xi̂|

∣∣∣∣∣ , (2.14)

≤ |xı̃̂|. (2.15)

The inequality is due to (1). The dual solution has the following objective function

20

value. ∑
i∈N

xij
xi̂
πi =

∑
i:i>ı̃

xij
xi̂
|xi̂| −

∑
i:i<ı̃

xij
xi̂
|xi̂|+

xı̃j
xı̃̂

(
−γ −

∑
i 6=ı̃ πi

)
,

=
∑

i:i>ı̃ |xi̂|
(
xij
xi̂
− xı̃j

xı̃̂

)
+∑

i:i<ı̃ |xi̂|
(
−xij
xi̂

+
xı̃j
xı̃̂

)
+

λsgn
(
xı̃j
xı̃̂

)
xı̃j
xı̃̂
,

=
∑

i∈N |xi̂|
∣∣∣xijxi̂ − xı̃j

xı̃̂

∣∣∣+ λ
∣∣∣xı̃jxı̃̂ ∣∣∣ ,

which is the same as the objective function value for the corresponding primal so-

lution, and is therefore optimal. Now suppose that there is no ı̃ satisfying (1). Note

that if (1) is satisfied for some ı̃ with sgn
(
xı̃j
xı̃̂

)
= +, then

λ ≥
∑
i:i>ı̃

|xi̂| −
∑
i:i≤ı̃

|xi̂|, (2.16)

λ ≤
∑
i:i≥ı̃

|xi̂| −
∑
i:i<ı̃

|xi̂|. (2.17)

If (1) is violated for each ı̃, then for each ı̃ either the lower bound (2.16) or the

upper bound (2.17) for λ is violated. If for a given ı̃, the lower bound (2.16) is

violated, then λ <
∑

i:i>ı̃ |xi̂|−
∑

i:i≤ı̃ |xi̂|. This implies that the upper bound (2.17)

is satisfied. If we now consider point ı̃ + 1, then the upper bound is the same as

the lower bound for ı̃ and is therefore satisfied. So λ must violate the lower bound

for ı̃ + 1, and we can consider ı̃ + 2 and so on. Then lower bound is violated for

all points with sgn
(
xı̃j
xı̃̂

)
= +, in particular the largest, and so λ < 0, contradicting

the choice of λ. A symmetric argument holds for ı̃ with sgn
(
xı̃j
xı̃̂

)
= −. Therefore,

λ >
∑

i:i≥ı̃ |xi̂| −
∑

i:i<ı̃ |xi̂|, for every ı̃ with sgn
(
xı̃j
xı̃̂

)
= + and λ >

∑
i:i≤ı̃ |xi̂| −

21

∑
i:i>ı̃ |xi̂| for every ı̃ with sgn

(
xı̃j
xı̃̂

)
= −. In particular,

λ >

∣∣∣∣∣∣∣
∑

i:
xij
xi̂

<0

|xi̂| −
∑

i:
xij
xi̂

>0

|xi̂|

∣∣∣∣∣∣∣ . (2.18)

A dual feasible solution is to set

πi =

 |xi̂| ifxij
xi̂

> 0,

−|xi̂| ifxij
xi̂

< 0,

and γ =

∣∣∣∣∑i:
xij
xi̂

<0
|xi̂| −

∑
i:
xij
xi̂

>0
|xi̂|

∣∣∣∣. Note that |γ| < λ by the development above.

The dual objective function is
∑

i∈N |xij|, which is the same as the primal objective

function value when vj = 0, and is therefore optimal.

Given a penalty λ, an optimal solution to (2) with the preservation of one co-

ordinate ̂ requires the sorting of (m− 1) lists of ratios according to the lemma (1).

Thus, m independent LPs or sortings are used to find the lowest value of the objec-

tive function. Therefore, for a penalty λ, it requires sorting m(m− 1) lists of ratios

in total, each costing (n log n) running time. Algorithm 1 yields an O(m2n log n)

running time limit in the worst-case scenario.

Proposition 3. For a given λ and data xi ∈ Rm, i ∈ N , Algorithm 1 finds an optimal

solution to (2.3).

Proof. For each fixed coordinate, Algorithm 1 finds an optimal solution according

to Lemma 1. From among those solutions, Algorithm 1 picks the one with the

smallest combination of error plus regularization term.

Algorithm 1 finds the best solution that preserves each coordinate ̂ and v̂=1

for any value of λ. Algorithm 2 seeks the intervals constructed by successive break-

22

Algorithm 1 Estimating an `1-norm regularized `1-norm best-fit line v∗ for given λ.
Input: xi ∈ Rm for i = 1, . . . , n. λ.
Output: v∗
1: Set z∗ =∞
2: for ̂ ∈M do
3: Set v̂ = 1.
4: for j ∈M : j 6= ̂ do
5: Set vj = 0.
6: Sort

{
xij
xi̂

: i ∈ N, xi̂ 6= 0
}

.
7: for ı̃ ∈ N : xı̃̂ 6= 0 do
8: if sgn

(
xij
xi̂

)
λ ∈ (

∑
i:i>ı̃

|xi̂| −
∑
i:i≤ı̃
|xi̂|,

∑
i:i≥ı̃
|xi̂| −

∑
i:i<ı̃

|xi̂|] then

9: Set vj =
xı̃j
xı̃̂

.
10: end if
11: end for
12: end for
13: set z =

∑
i∈N

∑
j∈M
|xij − vjxi̂|+ λ

∑
j∈M
|vj|

14: if z < z∗ then
15: Set z∗ = z, v∗ = v
16: end if
17: end for
18: return v∗

points, λs at which the solution is going to change. Algorithm 2 does not determine

which coordinate ̂ is best to preserve for each interval.

Proposition 4. For data xi ∈ Rm, i ∈ N , Algorithms 2 and 3 generate the entire solution

path for (2.3) under the assumption that all points are projected, preserving the same unit

direction and v̂=1 for the preserved direction ̂.

Proof. For each fixed coordinate ̂ and each coordinate j of v, Algorithm 2 finds

the breakpoints where the conditions of Lemma 1 are satisfied. Algorithm 3 iter-

ates through each interval for λ from Algorithm 2 and finds the intervals where

preserving ̂ minimizes the objective function value.

It is necessary to “merge” the intervals for each possible preserved coordinate ̂

23

Algorithm 2 Find all major breakpoints.
Input: xi ∈ Rm for i = 1, . . . , n.
Output: Ordered breakpoints for the penalty Λ and solutions v̂(λ) for each choice

of preserved coordinate ̂, and each λ ∈ Λ.
1: Set Λ = {0,∞}.
2: for ̂ ∈M do
3: Set v̂̂ = 1.
4: for j ∈M : j 6= ̂ do
5: Set λmax = 0.
6: Sort

{
xij
xi̂

: i ∈ N, xi̂ 6= 0
}

.
7: for ı̃ ∈ N : xı̃̂ 6= 0 do

8: Set λ = sgn
(
xı̃j
xı̃̂

)(∑
i:i>ı̃

|xi̂| −
∑
i:i<ı̃

|xi̂|
)
− |xı̃̂|

9: if λ+ 2|xı̃̂| > 0, then
10: Set Λ = Λ ∪max{0, λ}.
11: Set v̂j(max{0, λ}) =

xı̃j
xı̃̂

.
12: end if
13: if λ+ 2|xı̃̂| > λmax, then
14: Set λmax = λ+ 2|xı̃̂|.
15: end if
16: end for
17: Set Λ = Λ ∪ {λmax}.
18: Set v̂j(λmax) = 0.
19: end for
20: end for
21: Sort Λ.
22: return Λ, {v̂j(λ) : j ∈M, ̂ ∈M,λ ∈ Λ}

and determine when the preservation of each coordinate results in the lowest value

of the objective function. Therefore, we need Algorithm 3 to check each consecutive

interval for λ from Algorithm 2 to determine if changing the preserved coordinate

̂ can reduce the objective function value, which may result in new breakpoints that

were not discovered using Algorithm 2.

24

Algorithm 3 Solution Path for `1-norm Regularized `1-norm best-fit line
Input: A ordered set of breakpoints for the penalty (λk : k = 1, . . . , K) and solu-

tions v̂(λk) for each choice of preserved coordinate ̂, and each k = 1, . . . , K.
Output: Breakpoints for the penalty Λ and solutions v∗(λ) for each λ ∈ Λ.
1: Set Λ = ∅.
2: for k = 1, . . . , K − 1 do
3: for ̂ ∈M do
4: Set z ̂(λk) =

∑
i∈N ‖xi − v̂xi̂‖1 + λk‖v̂(λk)‖1.

5: end for
6: for j ∈M do
7: βL = max

{
zj(λk)−z̂(λk)

‖v̂(λk)‖1−‖vj(λk)‖1 : ̂ ∈M, ‖vj(λk)‖1 < ‖v̂(λk)‖1

}
.

8: βU = min
{

z̂(λk)−zj(λk)
‖vj(λk)‖1−‖v̂(λk)‖1 : ̂ ∈M, ‖vj(λk)‖1 > ‖v̂(λk)‖1

}
.

9: if
∣∣{̂ : zj(λk) > z ̂(λk), ‖vj(λk)‖1 = ‖v̂(λk)‖1

}∣∣ = 0, then
10: if 0 < βL < βU and λk + βL ≤ λk+1, then
11: Set Λ = Λ ∪ {λk + βL}.
12: Set v∗(λk + βL) = vj(λk).
13: else if βL ≤ 0 < βU , then
14: Set Λ = Λ ∪ {λk}.
15: Set v∗(λk) = vj(λk).
16: end if
17: end if
18: end for
19: end for
20: return Λ, {v∗(λ) : λ ∈ Λ}

2.5 Synthetic Experiments

In this section, we shall first shift our attention by analyzing a toy sample, try-

ing to understand the complete solution path in terms of breakpoints and coordi-

nate preservation, that is, how breakpoints affect solutions by changing preserved

coordinates ̂. Next, we conducted simulation studies to evaluate the performance

of the Algorithm 1 against some classic low-rank approximation algorithms. Two

measurements, discordance(1−|vTv|) and `0 norm of the solution vector v are used

to evaluate the competing methods.

25

2.5.1 A Toy Example

Let us first consider five points (4,−2, 3,−6)T , (−3, 4, 2,−1)T , (2, 3,−3,−2)T ,

(−3, 4, 2, 3)T , (5, 3, 2,−1)T . Algorithm 2 generates breakpoints {1, 3} for ̂ = 1, {4, 6}

for ̂ = 2, {0, 2} for ̂ = 3 and {3, 5, 11} for ̂ = 4. The collection of breakpoints

is {0, 1, 2, 3, 4, 5, 6, 11}. We now illustrate that the optimal solution (under the as-

sumption that all points preserve the same coordinate) might change due to the ex-

istence of additional breakpoints between successive breakpoints generated from

Algorithm 2. Algorithm 3 iterates by preserving j = 1, 2, 3 to find the lowest objec-

tive value over the lambda interval (3.5, 4], giving rise to an additional breakpoint

3.5. The value of the objective function comprises the error term (
∑
‖x − vjxij‖1)

and the penalty term (‖vj‖1), both fixed over each interval for each coordinate j.

Algorithm 2 finds all possible breakpoints without filtering comparable larger ob-

jective function values, which is assessed in Algorithm 3. In other words, Algorithm

3 further narrows the breakpoint intervals of Algorithm 2 by evaluatingm objective

function values. The complete solution path is summarized in Table 1.

Table 1.: Solution Path for toy example. The best-fit line is varying over the four lambda
intervals.

λ z∗(λ) v∗(λ)

(0.0, 3.0) (34.5, 42.0) (-0.7,0.3,-0.5,1.0)
(3.0, 3.5) (42.0, 42.9) (-0.7,0.3,0.0,1.0)
(3.5, 11) (42.9, 52.0) (1.0,0.0,0.0,-0.2)
(11,∞) (52.0,∞) (1.0,0.0,0.0,0.0)

The objective function z̂ is a linear function with respect to λ over a certain

interval for each preserved ̂, in the sense that the intercept is
∑
‖xij − v̂xi̂‖1, and

‖v̂‖1 is a slope. Algorithm 3 gives 38.8 + 1.2λ, 35 + 2.5λ, 46 + 1λ, and 36 + 2λ

represented by four lines in Figure 1. Geometrically speaking, intersection points

26

3.5 11
35

40

45

50

55

60

λz̂

̂ = 1
̂ = 2
̂ = 3
̂ = 4

Fig. 1.: Geometric Interpretation of Breakpoints

represent the value of λs, where it is preferable to preserve the coordinate ̂ instead

of another. There is an intersection that occurs between 38.8 + 1.2λ and 36 + 2λ in

the interval (3,4], resulting in an additional breakpoint that changes the preserved

direction from ̂ = 1 to ̂ = 4. This result is consistent with that of Table 1, where

the first two solutions preserve ̂ = 4 and the last two solutions preserve ̂ = 1. The

computational results at every stage are summarized in Table 2.

Remark 1. For some lambda values, the normalized vector v∗

‖v∗‖ , where v∗ is the best-fit one-

dimensional subspace generated by Algorithm 1, does not minimize the objective function

(2.3).

Proof. To justify the remark 1, we use the toy example in Section (2.5.1). Given λ =

3.49, Algorithm 1 produces the best-fit v∗ = (1, 0, 0,−0.2)T with the object function

2.1 42.91. Under the same λ, one solution v = (−0.67, 0.33, 0, 1)T yields a slightly

larger value 43.0. In contrast, evaluating the objective function
∑

i∈N ‖xi−w
αi
w̂
‖1 +

λ‖w‖1 at w = v∗

‖v∗‖ and w = v
‖v‖ produces 42.91 and 41.61. This example shows that

we cannot always obtain an optimal solution by setting one of the coordinates to

1.

27

The successive dimension can be computed by applying the Algorithm 1 to the

data projected in the null space of the acquired subspace.

28

Table 2.: The computation results of algorithm 1 over all breakpoints

̂ j xj x̂
xj
x̂

λ− λ+ (0,1] (1,2] (2,3] (3,4] (4,5] (5,6] (6,11]
1 1 2 4 -3 -1.33 -17 -11
2 1 2 4 -3 -1.33 -11 -5
3 1 2 -2 4 -0.5 -5 3 -0.5 -0.5 -0.5
4 1 2 3 5 0.6 -13 -3
5 1 2 3 2 1.5 -17 -13
6 1 3 -3 2 -1.5 -17 -13
7 1 3 2 -3 -0.67 -13 -7
8 1 3 2 -3 -0.67 -7 -1
9 1 3 2 5 0.4 -9 1 0.4

10 1 3 3 4 0.75 -17 -9
11 1 4 -6 4 -1.5 -17 -9
12 1 4 -2 2 -1 -9 -5
13 1 4 3 -3 -1 -5 1 -1
14 1 4 -1 5 -0.2 1 11 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2
15 1 4 -1 -3 0.33 -17 -11
16 2 1 4 -2 -2 -16 -12
17 2 1 -3 4 -0.75 -12 -4
18 2 1 -3 4 -0.75 -4 4 -0.75 -0.75 -0.75 -0.75
19 2 1 2 3 0.67 -10 -4
20 2 1 5 3 1.67 -16 -10
21 2 3 3 -2 -1.5 -16 -12
22 2 3 -3 3 -1 -12 -6
23 2 3 2 4 0.5 -2 6 0.5 0.5 0.5 0.5 0.5 0.5
24 2 3 2 4 0.5 -10 -2
25 2 3 2 3 0.67 -16 -10
26 2 4 -2 3 -0.67 -16 -10
27 2 4 -1 3 -0.33 -10 -4
28 2 4 -1 4 -0.25 -4 4 -0.25 -0.25 -0.25 -0.25
29 2 4 3 4 0.75 -12 -4
30 2 4 -6 -2 3 -16 -12
31 3 1 -3 2 -1.5 -12 -8
32 3 1 -3 2 -1.5 -8 -4
33 3 1 2 -3 -0.67 -4 2 -0.67 -0.67
34 3 1 4 3 1.33 -8 -2
35 3 1 5 2 2.5 -12 -8
36 3 2 3 -3 -1 -12 -6
37 3 2 -2 3 -0.67 -6 0
38 3 2 3 2 1.5 -4 0
39 3 2 4 2 2 -8 -4
40 3 2 4 2 2 -12 -8
41 3 4 -6 3 -2 -12 -6
42 3 4 -1 2 -0.5 -6 -2
43 3 4 -1 2 -0.5 -2 2 -0.5 -0.5
44 3 4 -2 -3 0.67 -8 -2
45 3 4 3 2 1.5 -12 -8
46 4 1 5 -1 -5 -13 -11
47 4 1 2 -2 -1 -11 -7
48 4 1 -3 3 -1 -7 -1
49 4 1 4 -6 -0.67 -1 11 -0.67 -0.67 -0.67 -0.67 -0.67 -0.67 -0.67
50 4 1 -3 -1 3 -13 -11
51 4 2 4 -1 -4 -13 -11
52 4 2 3 -1 -3 -11 -9
53 4 2 3 -2 -1.5 -9 -5
54 4 2 -2 -6 0.33 -7 5 0.33 0.33 0.33 0.33 0.33
55 4 2 4 3 1.33 -13 -7
56 4 3 2 -1 -2 -13 -11
57 4 3 2 -1 -2 -11 -9
58 4 3 3 -6 -0.5 -9 3 -0.5 -0.5 -0.5
59 4 3 2 3 0.67 -9 -3
60 4 3 -3 -2 1.5 -13 -9

29

2.5.2 Evaluation of Effectiveness

In this section, we demonstrate the effectiveness of Algorithm 1 compared

to principal component pursuit [17] (PCP), augmented lagrange multiplier[82]

(LRBS) and alternating direction multiplier method [84] (ADM). For each con-

figuration, a total of 10 replications are performed. For each replication, we create

datasets with n observations ∈ Rm including nC outliers. Therefore, the values of n

andm are the number of rows and the number of columns of input data. The values

of nC and mC are the number of rows and columns contaminated. Each element

of the ”true” v is sampled from a Uniform distribution (-1,1) and v is normalized

for all replications. α is sampled from a Uniform distribution (-100,100). Synthetic

data are generated by αvT + ε, where ε is the noise sampled from a Laplacian dis-

tribution Laplace (0, 1) with the probability density function f(ε|0, 1) = 0.5e−|ε|.

There is a link between the median and the Laplace distribution in the sense that

the maximum likelihood estimator of location parameter for a list of independent

and identically distributed samples following the Laplacian distribution is the sam-

ple median [46]. Outlier observations are created by sampling the first five coor-

dinates from a Uniform (100,150) distribution. All free parameters for PCP, LRBS,

and ADM are set by default. The default value λ for Algorithm 1 is chosen as the

average value of all breakpoints.

As can be seen in Table 3, Algorithm 1 and PCP produce accurate estimation in

terms of low discordance over all configurations. (The cosine of the angle between

two unit vectors vest and vtrue is equal to their dot product. Therefore, a smaller

discordance implies a smaller angle between two unit vectors.) However, the pre-

cision of PCA, LRBS and ADM decreases significantly compared to that of Algo-

rithm 1, when contamination is introduced into the data. In terms of `0 in Table

30

Table 3.: The standard deviation of the discordance(1-|vTestvtrue|) to the true line is sub-
script below the mean. −− stands for values less than 0.001.

n m nC mC PCA PCP LRBS ADM Algorithm 1
1000 100 0 0 −− −− −− −− −−
1000 100 100 5 0.9.05 −− −− 0.9.13 −−
10000 100 0 0 −− −− −− −− −−
10000 100 1000 5 0.80.1 −− 0.87.09 0.84.11 −−
1000 1000 0 0 −− −− −− −− −−
1000 1000 100 5 0.9.04 −− 0.96.05 0.9.08 −−
1000 2000 0 0 −− −− −− −− −−
1000 2000 100 5 0.9.06 −− 0.99.04 0.98.08 −−
5000 2000 0 0 −− −− −− −− −−
5000 2000 1000 5 0.9.02 −− 0.98.02 0.97.02 −−

4, the solutions of PCA and PCP do not exhibit any sparsity, whereas Algorithm 1

produces more sparser solution for a given λwithout sacrificing much precision in

presence of outliers. We will explore the effect of λ on sparsity in late experiment.

On the contrary, ADM and LRBS have some degree of sparsity along with a large

discordance.

Table 4.: The standard deviation of the `0 of solutions in percent is subscript below the
mean.

n m nC mC PCA PCP LRBS ADM Algorithm 1
1000 100 0 0 1000.0 1000.0 1000.0 1000.0 96.80.8

1000 100 100 5 1000.0 1000.0 1000.0 99.80.4 97.20.8

10000 100 0 0 1000.0 1000.0 1000.0 1000.0 97.22.4

10000 100 1000 5 1000.0 1000.0 99.90.3 99.90.3 96.20.8

1000 1000 0 0 1000.0 1000.0 1000.0 1000.0 98.30.8

1000 1000 100 5 1000.0 1000.0 98.51.3 98.81.6 91.70.9

1000 2000 0 0 1000.0 1000.0 1000.0 1000.0 90.20.8

1000 2000 100 5 1000.0 1000.0 99.11.4 98.41.9 91.41.0

5000 2000 0 0 1000.0 1000.0 1000.0 1000.0 90.20.7

5000 2000 1000 5 1000.0 1000.0 94.83.7 90.612.0 89.90.6

31

Positive regularization terms λ are used to control the level of sparsity in the

solution. And there shall be a maximum lambda beyond which all elements are 0

except one of the elements is 1. In Figure 2, the lambda behaviors are illustrated

in two settings, varying columns by fixed row number (right) and varying rows

by fixed column number (left). As can be seen, with the same number of rows,

Algorithm 1 is more sensitive to data with a larger number of columns in terms

of the increasing rate of discordance and the decreasing rate of `0. With the same

number of columns, Algorithm 1 is more sensitive to data with a smaller number

of rows. It also shows that a λ less than the intersection point (between the discor-

dance curve, and the `0-norm curve) will lead to a fairly accurate solution with a

certain level of sparsity. Figure 3 further shows a discordance curve and the `0 curve

intersects around 30% `0 levels in five data sets of different rows and columns. Fur-

thermore, Figures 3 illustrate that Algorithm 1 is more sensitive to λwhen working

on a smaller data set in all dimensions.

0 2,000 4,000 6,000 8,000
0

0.2

0.4

0.6

0.8

1

λ

D
is

co
rd

an
ce

3000x1000
3000x2000
3000x3000

0 2,000 4,000 6,000 8,000
0

0.2

0.4

0.6

0.8

1

0 1,000 2,000 3,000 4,000 5,000
0

0.2

0.4

0.6

0.8

1

λ

1000x1000
2000x1000
3000x1000

0 1,000 2,000 3,000 4,000 5,000
0

0.2

0.4

0.6

0.8

1

`0

Fig. 2.: Lambda behavior in 3000 rows × varying columns on the left. Lambda behavior
in varying rows × 1000 columns on the right. The discordance is read on the left y-axis for
solid lines and `0 on the right y-axis for dashed lines.

32

500 1,000 1,500
0

0.2

0.4

0.6

0.8

1

λ

D
is

co
rd

an
ce

100x100 200x200 300x300 400x400 500x500

500 1,000 1,500
0

0.2

0.4

0.6

0.8

1

Fig. 3.: Discordance and `0 curve with respect to λ.

2.6 Implementing Algorithms 1 and 2 on NVIDIA Graphical Processing Units

In this section, we briefly discuss the implementation of Algorithms 1 and 2 on

NVIDIA CUDA, a general-purpose parallel computing platform. We recognize that

Algorithms 1 and 2 can be implemented in a parallel framework such as CUDA, in

the sense that sorting one of the m lists is independent of the others.

2.6.1 Introduction

Recent distributed parallel computing technologies offer a solution for han-

dling big data by increasing overall throughput (number of jobs or tasks executed

per unit of time). Apache Spark [98] and CUDA [70] are the popular means of

parallel computing platforms. Apache Spark architecture provides a user-friendly

programming paradigm to deal with large data within a cluster of nodes. Its fault-

tolerant mechanism and high-throughput capability ensure that large data pro-

cessing continues. Users create a Spark application (master node) that connects

to a cluster manager, which in turn allocates resources (worker node). The worker

33

nodes are responsible for performing computations and storing partitioned data.

A driver is responsible for monitoring, scheduling, analyzing, and delivering task

instructions to all workers. All tasks run in parallel.

Driver Program
Cluster

Manger

Executor

Partition1

Task Task

Partition2

Task Task

Executor

Partition3

Task Task

Partition4

Task Task

Master Node

Worker Node

Worker Node

Fig. 4.: The architecture of a Spark Application

CUDA compute platform provides a scalable programming paradigm that ex-

tends C, C++, Python, and Fortran to be capable of executing parallel algorithms

within thread groups on GPUs. CUDA application is heterogeneous in the sense

that parallel and sequential abstractions coexist in one application,namely kernel

and host. Users initialize a C/C++ application(host on CPU) connecting to a kernel

interface, which in turn allocates the resources on the GPU. Devices are responsi-

ble for performing computations and partitioning the cache. A kernel is a C++/C

function with the qualifier global . It will run independently on GPU threads

with a unique ID, as illustrated in Figure 5. In this toy application, 2 blocks with 4

34

threads are launched for parallel computation on each element of the vector, which

will be cached on the GPU. The memory location of each element can be indexed

with three built-in variables threadIdx.x, blockIdx.x and blockDim.x. We will

dive into more details in the next section.

thread 0
thread 1
thread 2
thread 3

thread 0
thread 1
thread 2
thread 3

x0 x1 x2 x3

≪ 2, 4 ≫

x4 x5 x6 x7Host

Device

Kernel

0 1

x0 : threadIdx.x+ blockIdx.x · blockDim.x = 0 + 0 · 2

Fig. 5.: One dimensional decomposition using blocks and threads. The formula will
map each thread to an element in the vector.

2.6.2 Computational Speedup Results

In this section, we run our CUDA application on a NVIDIA GeForce RTX

3060 laptop GPU with 3840 cores and 6 gigabytes of graphics memory. We run

CPU implementations on an Intel 8-core I9 processor along with 40 gigabytes of

memory. Figure 6 shows a snippet of this application that computes the quo-

tients between the kth column and all columns and stores the result in the vector

d out through three built-in variables threadIdx.x, blockIdx.x, blockDim.x and

gridDim.x. threadIdx.x is the index of each element in one block, and blockIdx.x

is the index of each block in CPU memory. gridDim.x (the number of blocks) and

blockDim.x (the number of threads per block) for this practical task are specified in

≪ 128, 128 ≫. This tells runtime to create 128 copies of kernel and running them

35

in parallel. Each of these parallel invocations is a block. The code for Algorithms 1

and 2 is in the Appendix.

//Device code declaration of the matrix column-wise division kernel

1.__global__ void mykernel(float* d_out,float* d_in,int rows,int

cols,int k) {↪→

2. int idx=threadIdx.x+blockIdx.x*blockDim.x; //handle the data at

this index↪→

3. while (idx < rows*cols) {

4. d_out[idx]=d_in[idx]/d_in[idx%rows+k*rows]; //Each thread

computes one quotient↪→

5. idx+= gridDim.x*blockDim.x;}}

//Host code

6.int main() {mykernel<<<128,128>>>(d_out,d_in,rows,cols,k) //invoke

kernel}↪→

Fig. 6.: Kernel Definition

We then run this CUDA implementation with 10 replications for each size and

average over the runtime. Table 5 gives the speedup overview for 121 different

input sizes. It shows up to 16.57 speedup over the R implementation and implies

an increasing speedup as the size increases.

2.6.3 Solution Path with Varying Dimensions and Lambdas

In this section, we first evaluate the behavior of the solution of Algorithm 1 un-

der different regularization parameters λ and input dimensions in terms of norm

`0 and discordance. We also evaluated the space requirements for the number

of breakpoints generated by Algorithm 2. All experiments were carried out on a

CUDA GPU.

Tables 6 show the average elapsed time to compute Algorithm 1 on 10 replica-

tions for each size. For example, Algorithm 1 of a 5000 × 1000 matrix takes about

26 seconds and 127 seconds for a 1000 × 5000 matrix on the GPU. Since the run-

36

Table 5.: Speedup results for a matrix of dimension row index × column header. A value
greater than 1 demonstrates the efficacy of the implementation of Algorithm 1.

100 200 300 400 500 600 700 800 900 1000 2000
100 0.83 1.62 2.28 3.09 3.17 3.67 4.69 4.56 4.64 5.01 5.35
200 1.70 3.17 3.95 5.10 5.72 5.85 5.90 6.46 5.65 6.13 7.13
300 2.61 3.84 5.45 6.09 6.48 6.02 6.79 7.31 6.01 6.45 7.86
400 3.60 4.88 6.12 7.02 6.76 7.81 6.51 7.11 7.47 8.15 9.59
500 3.26 6.02 6.90 6.87 8.07 6.88 7.49 8.24 8.88 9.55 11.03
600 3.77 6.19 6.44 7.91 7.16 7.75 8.64 9.34 8.26 8.91 10.99
700 4.76 6.41 7.34 6.83 7.77 8.74 9.72 8.60 9.34 9.70 11.78
800 5.06 7.24 8.03 7.50 8.55 9.53 8.67 9.47 9.99 10.63 11.82
900 4.95 6.56 6.63 8.07 9.22 8.40 9.37 10.00 10.74 11.26 12.54

1000 5.42 7.01 7.16 8.62 9.84 9.17 9.92 10.65 11.32 12.00 13.52
2000 6.57 8.81 9.77 11.42 12.75 12.51 13.86 13.79 14.67 15.30 16.57

ning time of Algorithm 1 is directly proportional to m2 and n, the matrix of larger

columns requires more computation time than the matrix of fewer columns. This

can also be illustrated by the time in terms of input rows, with 5000 columns being

the steepest line in Figure 7. Lastly, Figures 8 and Table 7 illustrate that the number

of breakpoints generated by Algorithm 2 is directly proportional to n and m2.

200 400 600 800 1,000
0

20

40

60

80

100

120

Input columns

n=1000
n=2000
n=5000

200 400 600 800 1,000
0

20

40

60

80

100

120

Input rows

m=1000
m=2000
m=5000

Fig. 7.: Algorithm 1 running time

37

Table 6.: Average and standard deviation time in seconds for 10 replications for each
dataset with varying number of columns with fixed number of rows at 1000, 2000, and
5000 in the left table. Average and standard deviation time in seconds over 10 replications,
varying the number of rows with the fixed number of columns at 1000,2000, and 5000 in
the right table.

1000 2000 5000
100 0.098 0.008 0.184 0.013 0.372 0.015

200 0.329 0.016 0.606 0.031 1.209 0.027

300 0.743 0.012 1.269 0.038 2.658 0.064

400 1.118 0.344 1.973 0.049 4.536 0.065

500 1.649 0.062 2.802 0.069 6.897 0.168

600 2.392 0.019 4.347 0.115 9.895 0.202

700 3.127 0.085 5.351 0.060 13.078 0.352

800 3.782 0.013 7.369 0.203 17.075 0.317

900 4.574 0.021 9.004 0.205 21.325 0.272

1000 5.671 0.116 10.451 0.284 26.380 0.412

1000 2000 5000
100 0.836 0.013 3.053 0.004 15.223 0.010

200 1.540 0.012 5.458 0.016 26.837 0.034

300 2.397 0.009 7.942 0.006 38.974 0.041

400 2.790 0.012 9.411 0.018 50.777 0.057

500 3.134 0.017 10.859 0.004 63.932 0.070

600 4.021 0.004 13.488 0.015 76.215 0.047

700 4.421 0.010 15.079 0.017 88.683 0.061

800 4.768 0.006 17.530 0.017 100.569 0.068

900 5.160 0.007 19.070 0.025 115.010 0.277

1000 5.524 0.004 20.612 0.023 127.561 0.074

200 400 600 800 1,000
0

200

400

600

800

1,000

1,200

Input rows

Br
ea

kp
oi

nt
s(

m
ill

io
ns

)

m=1000
m=2000
m=5000

200 400 600 800 1,000
0

200

400

600

800

1,000

1,200

Input columns

n=1000
n=2000
n=5000

Fig. 8.: Number of breakpoints from Algorithm 2.

2.7 Background Modeling Applications

We summarize the existing research efforts on background subtraction and im-

age denoising. Computer vision has been an active research field for the past sev-

eral decades. Many applications such as activity recognition, object detection, and

automated video surveillance in this research field need in the first place to extract

38

Table 7.: Average and standard deviation of breakpoints in millions over 10 replications
varying the number of columns with the fixed number of rows at 1000, 2000, and 5000 in the
left table. Average and standard deviation of breakpoints in millions over 10 replications
varying the number of rows with the fixed number of columns at 1000, 2000, and 5000 in
the right table.

1000 2000 5000
100 3 0.09 6 0.19 16 0.48

200 11 0.32 22 0.62 55 1.52

300 23 0.51 45 0.85 113 2.35

400 37 0.90 74 1.59 185 4.29

500 54 1.24 107 2.36 268 5.94

600 72 1.35 145 2.59 361 7.63

700 93 1.35 186 2.63 465 7.70

800 116 1.18 231 2.86 576 7.80

900 139 0.91 279 2.86 695 7.00

1000 165 1.29 329 3.04 820 6.85

1000 2000 5000
100 17 0.77 51 1.69 200 8.12

200 33 1.34 100 2.60 366 15.64

300 50 1.48 146 4.17 534 16.63

400 66 1.69 192 6.16 700 26.84

500 83 1.72 238 7.88 869 27.42

600 99 1.67 285 7.67 1033 27.32

700 116 1.85 332 8.24 1195 29.47

800 132 1.34 381 7.28 1365 35.68

900 148 1.21 429 9.86 1534 35.67

1000 165 1.29 476 10.17 1705 41.92

objects (foreground objects) from scene backgrounds. The widely used approach

is the background subtraction method. The background subtraction paradigm is

essentially a pipeline consisting of initialization of the background model, fore-

ground detection, and background maintenance, as shown in Figure 9. In this

paradigm, we first use N frames to estimate a scene background and combine it

with the N+1 frame to get the N+1 foreground and background. Next, the N+1

background enters the background maintenance process and the N+1 foreground

enters as a foreground result. These two procedures are executed recursively as

time passes.

The simplest way to generate a background at the initial stage is to acquire

a ground truth image, which is obtained after removing foreground objects with

a semiautomatic method. Some video scenes need a robust or adaptive model to

handle illumination changes or dynamic backgrounds when there are waving trees,

rippling water, or fluttering catkins [88]. The problem that many background sub-

39

Video

Frames

Background

Initialization

Foreground

Detection

Background

Maintenance

Foreground

Mask

T + 1 Frame

T ≤ N

T > N

Fig. 9.: Background subtraction pipeline. N is the number of frames that are used for
background initialization. T is the T time sequence frame. [8]

traction methods are susceptible to outliers represented by illumination changes or

intermittent motion has existed for years. There are many background modeling

methods designed to handle these situations. They can be classified into the fol-

lowing categories: basic models, statistical models, and subspace learning models

[9]. In the basic model, central tendency parameters such as mean and median

were proposed to be representations of the background in a scene [43]. Then, a

classification rule is applied on the absolute difference between the background

image and the current frame. Pixels are classified as background and foreground

according to this rule [8]. In statistical models, each pixel is modeled as a proba-

bilistic distribution. Some classical models, such as the Gaussian model proposed

by [94], model the background of the scene as a texture surface; each pixel on the

texture surface follows a Gaussian distribution. Then the standard score for each

pixel is computed and pixels away from the mean by a threshold are marked as

foreground. Nonparametric statistical models such as kernel density estimation

(KDE) were developed to handle background with fast variations. The idea is to

compute the weighted average of the gray scale values in a window around the es-

40

timated pixel, and the weight is defined by the kernel functions such as polynomial

and Gaussian kernel. However, KDEs require significant computing time and data

storage.

Subspace learning model is based on the assumption that the low-rank ma-

trix represents the static background and the sparse matrix captures foreground

objects. To understand this, we first convert each frame to a vector and then stack

them by row to a data matrix. Moreover, if we stack all the backgrounds by row as

a matrix, it will be a low-rank matrix because each row is almost identical. In a sim-

ilar vein, the matrix consisting only of foreground pixels is sparse. Thus, a video

sequence can roughly be decomposed into a low rank and a sparse matrix based

on [17]. [4] work implies that the set of images of a convex Lambertian object with

distant illumination can be approximated accurately using a low-dimensional sub-

space. We now present a robust and parallel computed background subtraction

method and demonstrate its effectiveness on intermittent motion video, in which

foreground objects stop for a while and then move away.

2.7.1 Background Subtraction Methods

We first parse a video into a n×m two-dimensional data set, where n represents

the number of frames and m represents the number of pixels of each frame. The

MP4 sample comes from scenebackgroundmodeling.net. A video file can be parsed

into a certain number of frames. Each frame can be further converted into a two-

dimensional grayscale pixel matrix and then converted to a vector with pixel values

per column. Figure 10 illustrates this process for each frame. We need to transfer

video frames into a matrix organized into named columns before continuing our

algorithm. The very first step is to load the video frames with APIs.

We illustrate the performance of our algorithm against PCA in a video se-

41

x11 x12 x13

x21 x22 x23

x31 x32 x33
x11 x12 x13 x21 x22 x23 x31 x32 x33

x11 x12 x13

x21 x22 x23

x31 x32 x33

x11 x12 x13 x21 x22 x23 x31 x32 x33

Original

frame1

frame2

Cleaned Data

Fig. 10.: Data Initialization

quence from [35]. The original sequence is a scene in which a person stops for

a while and then moves away. There are 258 frames with resolution 140 × 140.

Each frame is converted to a vector of grayscale values and then stacked as rows.

Therefore, the input matrix X , is in 258 × 19, 600. Figure 11 shows the results for

the 160th, 200th and 258th frames for our algorithm and PCA.

Both algorithms did not distinguish the foreground from the background in

frame 160 because the foreground remains still in the first 145 frames. We notice

that the foreground is completely separated by our approach in column (b) for

frames 200 and 258, however, there remain ghost artifacts for PCA in column (c).

Similarly, we observe more artifacts of the background for PCA in column (e) than

for our algorithm in column (d).

2.7.2 Deep Learning Comparison

In this section, we compare the performance metrics of the Algorithm 1 applied

to a video sequence with that of a neural network method called self-organized

background subtraction (SOBS) proposed by [54]. The basic idea of SOBS is as-

signing a weight vector w ∈ Rn×n to each pixel in initial background model (first

42

Fig. 11.: From top to bottom, the rows consist of 160th, 200th and 258th frames. Column
(a) is the original frame; (b) and (d) show the results of our algorithm; and (c) and (e)
show the results of PCA. Columns (b) and (c) are background images and (d) and (e) are
foreground images.

frame) (see Figure 12). The subtraction method is between the incoming pixel val-

ues and their corresponding pixel model. If a weight vector has been found as a

match using similarity metric to determine, the incoming pixel value is considered

as background pixel or foreground otherwise. Background modeling construction

is self-organized in the sense that the process is automated and each learned pat-

tern is independent. SOBS can detect forground pixels very well [2], which can be

demonstrated on a higher rate of true positive in following experiment.

The data set contains raw highway video frames, and the binary foreground

truth and shadow masks come from the autonomous transportation agents for

on-scene networked incident management systme of highway traffic (ATON)[89].

Matlab code is provided by [75]. To quantify performance metrics, we use the fol-

43

a b c

d e f

a1 a2 a3 b1 b2 b3 c1 c2 c3

a4 a5 a6 b4 b5 b6 c4 c5 c6

a7 a8 a9 b7 b8 b9 c7 c8 c9

d1 d2 d3 e1 e2 e3 f1 f2 f3

d4 d5 d6 e4 e5 e6 f4 f5 f6

d7 d8 d9 e7 e8 e9 f7 f8 f9

Image

Weighted Vector

Fig. 12.: A toy image of resolution 2× 3 (Left) and its neuronal map(right).

lowing four metrics in [75] to construct a confusion matrix. True positive (TP) is

the percentage of foreground pixels detected correctly. False positive (FP) is the

percentage of background pixels that are incorrectly detected as foreground pix-

els. True negative (TN) is the percentage of background pixels detected correctly.

False negatives (FN) are the percentage of foreground pixels incorrectly detected

as background pixels.

P N

T 72.6 96.4

F 3.6 27.4

P N

T 70.1 97.2

F 2.8 29.9

Table 8.: Background modeling confusion matrix. The table on the left shows the perfor-
mance metrics of the SOBS method. The right one shows the performance metrics of the
Algorithm 1.

Table 8 shows that SOBS is slightly better at detecting the foreground pixels

than Algorithm 1. However, Algorithm 1 is better at detecting background pixels

than SOBS. This fact can be illustrated in Figure13, the results of the algorithm

1 in the third column show more details (black pixels in the foreground) in the

foreground than the SOBS results (second column). Moreover, the background in

44

the second column contains some anomalies.

Fig. 13.: Estimated binary background and foreground. From left to right, the rows consist
of raw, SOBS, Algorithm 1, and ground truth frames. From top to bottom, 33th, 321th,417th
and 438th frames.

2.8 Conclusion

This article discusses a method to estimate a best-fit line using linear program

relaxation techniques and its connection to another algorithm based on the calcu-

45

lation of adjusted weighted medians. In addition, our algorithms can be processed

in parallel for increased efficiency, which may enable a wide range of new practical

applications.

2.9 Discussion

The least squares principal component analysis (LSPCA) is a gradient-based

principal component regression. Unlike traditional principal component regres-

sion, LSPCA simultaneously finds an orthogonal subspace and fits a hyperplane of

the ambient space of span(Y,XLTL). One can argue that the `1-norm regulariza-

tion could provide this framework with robustness. One obtains straightforwardly

as follows,

min
L,β
‖Y −XLTβ‖2

F + λ‖X −XLTL‖1 (2.19)

A similar gradient descent algorithm can be used to find the approximationsL∗, β∗.

By fixingL, one can obtain the optimal β∗ = (XLT)+Y , problem 1 can be transferred

to

min
L,β
‖Y −XLT (XLT)+Y ‖2

F + λ‖X −XLTL‖1 (2.20)

The key aspect to note here is the regularization term is non-differentiable w.r.t L.

Nonetheless, the gradient can still be computed without closed form by Automatic

Differentiation in some general purpose programming languages.

[63] introduced an ADM based framework to find the sparsest element in a

Bernoulli-Gaussian subspace given its basis. This sparse vector could be learned

46

by solving an alternative relaxation

min
q,x

1

2
‖Y q − x‖2

2 + λγ log(1 +
|x|
γ

)

s.t.‖q‖2 = 1

where, λ > 0 is a penalty parameter and an additional parameter γ > 0 to control

the shape of the threshold operator S. γ is considered to affect the sensitivity of the

threshold operator to the λ. We can still apply the ADM to this relaxation in a sense

that

xk+1 =Sλ,γ[Y q
(k)]

q(k+1) =
Y Tx(k+1)

‖Y Tx(k+1)‖2

, (2.21)

where Sλ,γ(x) is given by
sign(x)γ

2
((|x|

γ
− 1) +

√
(|x|
γ
− 1)2 − 4

γ
(λ− |x|) |x| ≥ λ

0 |x| ≤ λ

It is noted that λ in the threshold function of [63] control the sparsity of solutions.

In addition, α can be used to attenuate the magnitude of the nonzero entries x0(i) =

Θ(1/
√
θp). Hence, x0(i) will be more bigger than most of the other entries in each

row of Y. In another word, α can control the sensitivity of each row of Y biased

towards the first standard basis.

47

CHAPTER 3

IMAGE DENOISING VIA PATCH-BASED `1-NORM PRINCIPAL

COMPONENT ANALYSIS

3.1 Introduction

Image denoising or image filtering is one of the fundamental problems in the

computer vision field for the production of high resolution digital images and is the

first evidence for the development of image inverse problems. Conventional image

denoising methods exploit thresholding of the wavelet transformed coefficients,

followed by reconstructing or smoothing image pixel values. Substantial progress

was made in the first patch-based framework called nonlocal means (NLM) pro-

posed by Buades et al. [14]. Since then, the majority of image denoising meth-

ods have been patch-based, and many of them have produced encouraging results

compared to those of pixel-based methods. Each patch consists of a group of sub-

regions within a search window of the noisy image, which is then used to estimate

the true sub-region. Among all patch-based methods, PCA-based has drawn a lot

of attention. The general idea for PCA-based patch-based methods is looking for a

linear combination of eigen charactristics extracted from collections of patches.

3.2 Denoising Scheme

Often a signal is contaminated by multiple noise sources, however, the normal-

ized sum of independent random variables follows a normal distribution according

to the central limit theorem. Thus, the image is contaminated by an independent

and identically distributed additive Gaussian noise holds under the assumption

48

that all sources of noise are independent. On this condition, a noisy image can be

modeled as x = x̂+ ξ, where x̂ is the underlying true image and ξ follows a normal

distribution with zero mean.

The goal of a denoising method is to separate the noise from the true image

signals as much as possible. The denoising pipeline consists of dictionary learning,

hard thresholding, and aggregation. Figure 14 shows the whole process to estimate

an underlying noise-free image. Suppose an image is an n×n array of pixel values.

In our patch-based denoising, (n−m+1)2 patches of the original pixel array are col-

lected and stacked by rows. This data matrix is used to derive anm2×m2 dictionary

of “clean” signals. Each denoised patch can be estimated by a linear combination

of the columns of this dictionary, respectively. The denoised image can finally be

obtained by aggregating all estimated patches.

Conventional PCA produces best-fit subspaces as measured by the sum-of-

squared distances of points to their projections [65]. PCA also produces linear

combinations of the original features such that the combinations capture maximal

variance. A PCA can be computed via the singular value decomposition (SVD) of

the data matrix. However, computing the SVD is slow and computationally expen-

sive, especially for a larger input matrix. Moreover, SVD is sensitive to outliers. A

possible modification to reduce the sensitivity to outliers is replacing the squared

`2-norm criterion with an `1-norm criterion.

3.2.1 Dictionary Learning

The dictionary will be trained using the SharpEL algorithm [10]. SharpEL

is an iterative method to find successive orthogonal components based on an `1-

norm criterion. Each element of one component can be independently calculated

by sorting several lists of ratios. Consider the optimization problem to find an `1-

49

Noisy Image
(n× n)

Patches Array
((n−m+ 1)2 ×m2)

Dictionary
(m2 ×m2)

Denoised
Image

Denoised
Patches

collect patches

Hard ThresholdAggregate

Smoothing

sharpEL

Fig. 14.: SharpEL denoising scheme by hard-thresholding

norm best-fit one-dimensional subspace:

min
v,α

∑
i∈N

‖xi − vαi‖1, (3.1)

where xi, i ∈ N are given points in Rd. An optimal vector v∗ determines a line

through the origin corresponding to the best-fit subspace. For each point xi, the

optimal coefficient α∗i specifies the locations of the projected points v∗α∗i on the line

defined by v∗. Exact solution is an NP-hard problem [28]. Brooks and Dulá [10]

introduced an approximation algorithm based on the sorting of certain ratios. The

problem (3.1) is recast as the following constrained linear program by imposing

the preservation of one of the directions ̂. Each point will use the same d− 1 unit

directions to project onto the line defined by v. The idea of having all points use

the same d − 1 unit direction was also proposed by [90] and [20]. For the sake of

simplicity, we set v̂ = 1 and αi = xi̂ to impose this assumption without restricting

the line defined by v:

min
v∈Rd,v̂=1,

ε+,ε−

∑
i∈N

d∑
j=1

(ε+ij + ε−ij), (3.2)

50

subject to:

vjxi̂ + ε+ij − ε−ij = xij,i ∈ N, j ∈ {1, . . . , d} : j 6= ̂,

ε+ij, ε
−
ij,i ∈ N, j ∈ {1, . . . , d}.

Each of the data points generates d − 1 constraints in this LP. By solving these d

LPs and selecting the vector v from the solutions associated with the smallest of

the d objective function values, we will have the estimation for `1-norm best fit line.

Brooks and Dulá [10] showed that the LP can be solved directly by sorting d − 1

ratios. With d choices for ĵ and d−1 ratios for each to sort, there are d(d−1) sortings.

These sortings can be calculated in parallel.

This method can be extended by iteratively projecting data onto a subspace

orthogonal to the estimates for v to fit a k-dimensional subspace[10].

Suppose an observed patch xi has been contaminated by a random variable ξ

following N (0, σ):

xi = x̂i + ξ, i = 1, · · · , (n−m+ 1)2, (3.3)

where x̂ is the estimate of the “true value” of that patch in the underlying image. In

this work, the first patch is an area of size m×m at the top left corner of the noisy

image. The remaining patches are extracted in the same manner by right sliding

one pixel each time. Therefore, there are a total of (n−m+1)2 patches of sizem×m

for a image of n× n in this experiment.

The dictionary is obtained by applying SharpEl to the patch array, where N =

(n−m+ 1)2 so that each point corresponds to a patch and d = m2 so that each fea-

ture corresponds to a pixel in a patch. The dictionary is given by allm2 components

v that are iteratively derived by using SharpEl, by projecting the data into the sub-

51

space that is orthogonal to the components recovered so far after each iteration[55].

3.2.2 Hard Thresholding and Aggregating

Suppose we are given a collection of patches of size m × m extracted from

a noisy image. If we stack the patches as rows of a matrix, each column can be

considered as a feature of all patches. Under the assumption that noise spreads in

all directions uniformly, each estimated true patch is the projection to a subspace

of a certain dimension:

x̂i =
m2∑
k=1

(eTk xi)ek (3.4)

where ek represents kth component. Thus, the dot product eTk xi is a representation

in that direction. However, some components ek are less relevant to a good estima-

tion for each patch in terms of PSNR due to the fact that the dictionary is learned

from the entire collection of patches. The common approach to address this issue

is by hard thresholding those representations, that is, the components with small

magnitude representation value will be discarded. This leads to our general for-

mula of estimation for each patch:

x̂i = x̄i +
m2∑
k=1

η(eTk (xi − x̄i))ek (3.5)

where x̄i is the median pixel value of ith patch and η(x) = x·1(λ < |x|). The optimal

choice of parameter λ can be found via standard tuning techniques. Experiments

demonstrate that there exists a quadratic relationship between λ and PSNR in Fig-

ure 15. Although a true mapping of f(λ) = PSNR would not be possible in advance,

a small increment on the λ in each iteration can eventually approximate the optimal

result in terms of PSNR. The search for a choice for λ can also be parallelized. With

52

the estimate of λ, the expression (3.5) is applied to each patch. Once the whole

collection of patches is denoised, it remains to estimate the true pixel values. Since

patches are mostly overlapping each other, the pixel values in most areas will have

multiple estimations. The pixels in the overlapping area are then averaged to get

the final estimation.

12.4 12.8 13.2 13.6 14
36.4

36.6

λ

barbara/σ = 5

5 10 20 30 40 50
25

30

35

40

λ

PS
N

R(
dB

)

house/σ = 10

53.4 53.8 54 54.4 54.8 55
30.2

30.33

λ

lena σ = 20

Fig. 15.: PSNR as a function of choices of λ.

3.3 Experiment Results

In this section, we first apply our method to four standard benchmark images

synthesized by adding Gaussian noise with σ = 5, 10, 15, and 20. Additionally,

we present the results obtained from our method along with some popular patch-

based methods. The objective metric PSNR was calculated by 20 log(255√
MSE

), where

MSE is the mean square error between the noise-free pixel values and their estima-

tions. We also present one of the results for different configurations for subjective

assessment in Figure 16 and 17.

For a given image of size n × n with each patch size of m ×m, the time com-

plexity for procedures SharpEL, thresholding and aggregation with a given λare

O(m4(n−m+1)2 log (n−m+ 1)2),O(m4(n−m+1)2) andO(n2(n−m+1)2) respec-

tively. Previously, we made assumption that the noise-free signal lies in a subspace

53

Fig. 16.: From top to bottom, rows of images are corrupted by Gaussian noise with σ=
10, 20 and 25. Column (a) stores the noisy images, (b) shows the NML results, (c) shows
BM3D results, (d) shows PB-PCA results, (e) shows the results of KSVD and (f) shows the
results of SharpEL.

constructed by a certain combination of m2 orthogonal components. Therefore, m

shall be sufficiently large to hold the textural patterns in the image. On the other

hand, a large choice of m will increase the time complexity dramatically. In Py-

atykh et. al’s work[62], they suggest 4×4, 5×5, and 6×6 patch sizes. The optimal

threshold parameters have been chosen for each configuration as those maximiz-

ing PSNR. All sample grayscale images are fixed in the size of 256× 256 pixels. For

each configuration, we fixed the patch size in 5× 5 resolution. The input matrix for

learning the dictionary, therefore, is in 63,504× 25. Table 9 shows the PSNR results

for each configuration.

For σ = 5, the SharpEl-based procedure is less than 3.8% worse than the best

method for each of the four images. The PSNR for SharpEl for σ = 10 is 8.0% worse

than the best method for the cameraman image and more competitive on the other

54

images. For σ = 15, the performance is at most 8.5% worse than the best method.

For σ = 20 the performance is at most 7.0% worse than the best method. In general,

the performance range for SharpEl is 1.8 to 8.5% worse than the best method and is

typically around 5-6% worse. Figure 16 indicates that SharpEl’s denoised images

are competitive with existing methods and better than the noisy originals. The

performance of SharpEl, coupled with the possibility of parallelization, indicates

that it is a viable method.

Fig. 17.: From top to bottom, rows of images are corrupted by Gaussian noise with σ= 10,
20, 30, and 50. Column (a) stores the noisy images, (b) shows the NML results, (c) shows
BM3D results, (d) shows PB-PCA results, (e) shows the results of SharpEL.

55

N
LM

[1
4]

BM
3D

[2
1]

PG
PC

A
[2

4]

K-
SV

D
[1

]

PL
PC

A
[2

4]

PP
B[

23
]

Sh
ar

pE
l[

10
]

σ
=

5

barbara 37.3 38.8 37.8 38.3 38.6 36.1 37.3
cameraman 36.9 38.3 37.5 37.9 37.9 35.1 37.6

lena 37.9 39.5 38.6 39.1 39.3 36.2 38.7
house 37.8 39.8 38.5 39.1 39.4 37.3 38.3

σ
=

10

barbara 33.4 35.0 33.9 34.2 34.5 33.7 32.2
cameraman 32.5 34.1 33.2 33.4 33.5 33.7 33.8

lena 33.9 35.8 34.7 35.0 35.2 34.0 34.4
house 34.8 36.6 35.1 35.4 35.6 35.0 34.5

σ
=

15

barbara 31.3 32.9 31.6 31.9 32.2 31.7 30.8
cameraman 30.3 31.8 30.4 31.0 30.7 29.5 30.1

lena 31.8 33.6 32.3 32.7 32.7 31.8 31.9
house 33.2 34.8 33.3 33.5 33.7 33.4 31.8

σ
=

20

barbara 29.7 31.5 30.3 30.4 30.6 30.3 29.3
cameraman 29.1 30.3 29.2 29.4 29.4 28.6 29.2

lena 30.2 32.2 30.9 31.0 31.0 30.4 30.3
house 31.8 33.7 31.7 32.2 31.8 31.8 31.5

σ
=

30

barbara 27.5 29.6 28.5 28.2 28.8 28.9 27.4
cameraman 27.2 28.5 27.1 27.2 27.3 28.1 27.6

lena 28.0 30.1 28.9 28.4 29.1 29.5 29.0
house 29.4 32.0 29.9 30.1 30.1 31.2 29.4

σ
=

40

barbara 25.9 28.2 27.2 26.6 27.0 27.4 26.3
cameraman 25.5 27.1 25.7 25.9 25.8 26.7 26.6

lena 26.4 28.5 27.4 27.1 27.2 27.8 27.1
house 27.5 30.6 28.7 28.2 28.3 29.6 29.4

σ
=

50

barbara 24.7 27.2 26.1 25.2 25.7 26.0 25.7
cameraman 24.1 26.1 24.6 24.7 24.6 25.7 25.1

lena 25.1 27.6 26.3 25.7 25.9 26.5 26.5
house 26.0 29.6 27.7 27.0 28.0 28.0 27.1

σ
=

60

barbara 23.7 26.4 25.3 24.4 24.7 25.0 25.6
cameraman 23.0 25.3 23.9 23.7 23.6 24.7 24.4

lena 24.0 26.8 25.5 24.8 24.9 25.4 26.3
house 24.9 28.7 26.8 25.7 25.8 26.5 26.6

Table 9.: Results in PSNR(dB) of the patch-based schemes.
56

3.4 Conclusion

This chapter describes an image denoising scheme based on a best-fit subspace

algorithm and hard thresholding. The novelty of our method is the integration of

a `1-norm best subspace estimation algorithm into the patch-based sparse dictio-

nary image denoising framework. This algorithm can be processed in parallel for

increased efficiency, which may enable a wide range of new practical applications.

The experiment results demonstrate that this scheme achieves competitive results

in terms of PSNR when compared to several state-of-the-art patch-based methods.

57

CHAPTER 4

KERNEL `1-NORM PRINCIPAL COMPONENT ANALYSIS FOR DENOISING

4.1 Introduction

Ordinary principal component analysis (PCA) is a commonly used method

to uncover an underlying pattern of data by linear combinations of variables. The

linear combinations can be obtained by means of matrix factorization into a canon-

ical form. In a typical PCA, the data points (we will use patterns) are projected

onto a subspace such that the first basis vector, (principal component), presents

the greatest variance, the second PC presents the second greatest variance, and so

on. PCA is an efficient method that requires no parameter tuning and is designed

for discovering linear patterns. However, notwithstanding its success, PCA suffers

two major weaknesses: its inability to resist outliers and its inability to capture non-

linear patterns. Since the loss function of the PCA is in terms of squared error, the

result is sensitive to outliers (see Figure 18a). As a consequence, `1 norm based

PCA is attracting considerable interest in the past decades [12, 56, 17, 19, 40]. An-

other major issue of PCA is that difficulties arise in recovering nonlinear patterns

(see Figure 18b). [60] and [96] have pointed out that the components correspond-

ing to smaller eigenvalues have the same importance as those with larger eigen-

values in nonlinear cases. To extract the nonlinear pattern in the input space X ,

kernel-based methods have attracted considerable interest. Typically, those meth-

ods comprise two stages: a module (KPCA) that carries out a standard PCA to

recover the linear patterns in F and a learning algorithm (the preimage problem)

designed to recover nonlinear patterns in X . The necessary algorithms to solve the

58

(a) (b)

Fig. 18.: Schematic diagram illustrating how outliers and nonlinearities can distort the
principal component. a the outlier drags the PC component away from the data. b the PC
not even close to the true pattern.

above problems are of great interest for a broad range of applications from denois-

ing to classification. The main purpose of this paper is to investigate the effect

of incorporating an `1-norm PCA into a projection-free KPCA denoising method

called pfkpca1. The work is motivated by the empirical observation by [15] that

the level sets of f(x) = ‖Φ(x)− PΦ(x)‖2 are almost parallel to the underlying pat-

tern, where Φ(x) is the representation of x in the feature space and PΦ(x) is an

orthogonal projection of Φ(x). In this investigation, we provide an explanation of

the impact of the choice of the similarity measure (kernel) on the denoising per-

formance from a geometric perspective and provide some insights thereof. Then

we compare pfkpca1 with that of [15] and show that it performs well in terms of

denoising datasets such as spirals and pictures with changing temperatures. The

difference between our algorithm and the method proposed by Bui et al. [15] is

the use of an `1-norm KPCA proposed by Kim and Klabjan [39]. We will see the

59

potential benefits of this approach.

The remaining is organized as follows; in the next section, we provide more

introductions to KPCA and the preimage problem. Then in Section 3, we formu-

late (4.3) using kernels and `1-norm minimization. Experiments on synthetic and

computer vision data are examined in (Section 4), followed by a geometric inter-

pretation of our findings (Section 5).

4.2 An `1-norm Basis in KPCA

To perform a line search in feature space, one needs to find the gradient with

respect to Kz. Therefore, the kernel function has to be differentiable. We use the

radial basis function kernel k(z, z′) = e−
‖z−z′‖2

2σ2 in the following experiments, a com-

monly used kernel in support vector machine. Note that a wide selection of kernels

such as polynomial, exponential, or sigmoid are compatible with this algorithm.

We now try to reformulate (1.16) to a function of kernel K.

‖Φ(z)− PnΦ(x)‖2 = 〈Φ(z),Φ(z)〉 − 2〈Φ(z), PnΦ(x)〉+ 〈PnΦ(x), PnΦ(x)〉, (4.1)

PnΦ(x) is the projection onto n-dimensional subspace P of the feature space. [41]

shows that the column space of P is Φ(X)UΛ−1/2, where U and Λ is eigenvectors

and values ofK. Thus, one can computePnΦ(x) without knowing explicit mapping

Φ. We argue that P constructed by `1-norm basis could mitigate the influence of

outliers. [39] developed a fixed point algorithm seeking such basis. One can derive

60

the projections onto P by sequentially updating of K,

〈Φ(z), PnΦ(x)〉 = 〈Φ(z),
n∑
k=1

〈Φ(x), vk〉vk〉

=
n∑
k=1

〈Φ(z), vk〉〈Φ(x), vk〉

=
n∑
k=1

(
Kk
z ckK

k
xck

cTkK
kck

)

where Kk
z is row z of kernel matrix Kk associated with kth basis vk and ck has all

entries in {−1, 1}. Likewise, 〈PnΦ(z), PnΦ(z)〉 =
∑n

k=1(K
k
z ckK

k
z ck

cTkK
kck

). Thus, the error

surface can be written as k(z, z)−
∑n

k=1(K
k
z ckK

k
z ck

cTkK
kck

). To find its derivative with respect

to z, we need to reduce Kk
z in terms of K1

z (the original centralized kernel matrix).

Each Kk:k>1 can be interpreted as the null space projection of its predecessor such

as

Kk = Kk−1 − Kk−1ck−1(Kk−1ck−1)T

(ck−1)TKk−1ck−1

= Kk−1

(
I − ck−1(Kk−1ck−1)T

(ck−1)TKk−1ck−1

)
= K1

k−1∏
i=1

(
I − ci(K

ici)
T

(ci)TKici

)
. (4.2)

Let Ak:k>1 =
∏k−1

i=1 (I − ci(K
ici)

T

(ci)TKici
) and A1 = I . Thus,

‖Φ(z)− PnΦ(z)‖2 = k(z, z)−K1
z
T

(
n∑
k=1

Akck(Akck)
T

cTkK
kck

)
K1
z (4.3)

= k(z, z)−KT
z CC

TKz. (4.4)

This expression is similar to the original expansion in [15] except C =

[A1c1√
cT1 K

1c1
, · · · , Ancn√

cTnK
ncn

]. It is a differentiable convex function, provided that ker-

nel function is differentiable. Its gradient∇f at point z is∇k(z, z)− 2KT
z CC

T∇Kz.

61

Convexity guarantees there exists α > 0 such that −∇fzTα < 0. To this end, we

have the necessary conditions for the line search. Bui et al. [15] conjectured that

the true pattern is parallel to one of the level sets of the f(x). Since the gradient

direction is orthogonal to the level set curve, one can move close to the preimages

by traveling along the negative gradient by an appropriate amount which can be

determined by a line search. The algorithm is summarized as below.

Algorithm 4 Projection-free Kernel `1-norm PCA Algorithm
Input: Xc = X + ε,
1: Compute Kernel K and its principal subspace C using the KPCA method of

[39].
2: Construct error surface ‖Φ(.)− PnΦ(.)‖2 over Xc with K and C.
3: for z ∈ Xc do
4: Find the 1st steepest descent direction d at z on the surface.
5: Find the first stationary point αd along this direction.
6: Move the point by same α step along the direction d in the input space
7: x̂ = z + αd.
8: end for

Output: X̂ ≈ X .

4.3 Experiment Results

In this section, we run both algorithms on synthetic data sets and two image

data sets contaminated by additive Gaussian noise and attempt to get some favor-

able properties of Algorithm 1. In all cases, we use the radial basis function kernel

k(x, y) = e−
‖x−y‖2

2σ2 and the parameter σ2 has been set to half of the data variance. We

denote [15]’s method as pfkpca2 and Algorithm 1 as pfkpca1. The performance is

assessed using mean squared error (MSE) and the distance between the preimage

and its nearest true image dM. MSE is the mean of the squares of errors between the

estimated values and the true values of the pixels. Note that a preimage of higher

MSE lying on the true manifold is preferred to a preimage with lower MSE that does

62

not lie on the true manifold. Therefore, we consider a low dM value as the primary

measure of performance, followed by a low MSE as a secondary measure.

For image and video data, the peak signal-to-noise ratio (PSNR) in decibels

(dB) is used to measure the image (8-bit RGB) denoising quality defined as

20 log 255√
MSE

. Typical values for the PSNR in lossy image and video compression are

between 30 and 50 dB. We illustrate the proposed and existing approaches using

one baseline image by varying different noise levels for denoising.

4.3.1 Spiral Data

We first use synthetic datasets similar to the one used by [39] to evaluate their

denoising performance. The data consists of Gaussian contaminated (σ = 0.1)

noisy spirals of 1 and 3 cycles with an additional 4 outliers in the middle. The two-

dimensional spiral data of the 1 cycle coordinates are (e0.14x cos(x)+ε, e0.14x sin(x)+

ε), where ε is sampled from a normal distribution (0,0.01) and x is a series of 158

numbers ranging from -19 to -12.7 by step 0.04. 4 outliers coordinates are sampled

from uniform distributions (-0.01,0) and (-0.03,-0.01). The spiral data of the 3 cycle

have the same setting except that x is a series of 476 numbers ranging from -19 to

0. We apply both methods by varying the number of components preserved up to

4, respectively.

Figure 19 contains the results for one pair of spiral datasets. There is a clear

discrepancy between the results in rows 1 and 2 and in rows 3 and 4 in the absence

of outliers in the pfkpca2 results. The preimages indicate that pfkpca2 treats the

outliers as normal points and incorporates them into the spiral, while pfkpca1 leaves

the outliers in the middle which is their true position. The smaller dM values in

Table 10 confirm that the preimages of pfkpca1 are closer to the true manifold than

those of pfkpca2 over five pairs of spiral instances. In the case of preserving the

63

Fig. 19.: pfkpca2 reconstructions with preserving the top four components (odd rows)
versus those of pfkpca1 (even rows). Rows 1 and 2 are results for the 1-cycle spiral, and rows
3 and 4 are results for the 3-cycle spiral. The first column shows the raw data along with
the true curve. The following six columns are reconstructions based on the preservation of
1, . . ., and 4 components.

first component of the 1-cycle spiral, the mean and standard deviation for dM of

pfkpca2 is more than twice that of pfkpca1. The mean values for dM and MSE are

always smaller for pfkpca1 than for pfkpca2 and the standard deviations are smaller

with few exceptions. The evidence suggests that pfkpca1 is less sensitive to outliers

than pfkpca2.

64

Table 10.: Two contaminated spirals of Cycles 1 and 3 are denoised by preserving 1, . . .,
and 4 components, respectively. Each setting was replicated 5 times to obtain the mean and
standard deviation of the two measures.

MSE(‰) dM(‰)
1 2 3 4 1 2 3 4

1-cycle pfkpca2 204.1 193.2 191.4 181.4 1.40.8 0.90.5 0.80.3 1.20.3

pfkpca1 172.5 161.6 182.0 161.6 0.60.3 0.60.3 0.60.3 0.60.3

3-cycle pfkpca2 242.9 263.1 242.9 242.7 6.02.9 9.04.0 6.03.8 6.03.0

pfkpca1 201.6 202.3 222.7 212.3 4.01.2 5.04.9 5.02.6 4.01.5

4.3.2 Clustering Example

In the next example, we demonstrate that denoising with the proposed method

can be a helpful preprocessing step for clustering. The data are generated in a man-

ner similar to an example of [72]. There are initially three point sources at loca-

tion (0,0.7), (0.5,0.1), and (-0.5,-0.1). 100 random points with σ = 0.1 Gaussian

noise are scattered around each point. We attempt to reduce the intracluster and

intercluster variance simultaneously. Figure 20 shows both algorithms successfully

force all points to three sources and the best results using the first 2 components.

This suggests that our proposed preimage estimation algorithm can also be used

as a preprocessing step for clustering. Both methods appear to produce line and

circle patterns as the number of components preserved increases beyond 2. When

preserving three components, preimage from pfkpca1 exhibits less noise for the top

right clusters, but more noise for the bottom left cluster when compared to pfkpca2.

These results are similar to that of [72].

65

Fig. 20.: The first column of the image contains two copies of the original data with noise
added. The next 6 columns contain preimages produced by pfkpca2 (first row) and pfkpca1

(second row) when preserving 1, 2, . . ., 6 components.

4.3.3 Object Images with Changing Illumination Color Temperature

We have used 3 objects from the Amsterdam Library of Object Images (ALOI)

[27] illumination color collection to evaluate the denoising performance of pdfpca1.

Each image is of size 100×100 in frontal view under 12 illumination color temper-

atures (measured in degrees of Kelvin), resulting in objects illuminated under a

reddish to white illumination color. For experimental purpose, all 12 images are

stacked in rows of matrix to which 7 additive Gaussian noises with variance 5, 10,

15, 20, 25, 30, and 35 are applied in each experiment.

Figure 21 shows one example of 12 images for each object in corrupted and de-

noised conditions. The images denoised by pfkpca1 (third, sixth, and ninth rows)

tend to be more consistent and sharp. There are discernible differences in the re-

sults in columns 3 and 4 between the two methods. The quantitative results for all

12 images of each object are summarized in Table 11. pfkpca1 has a higher average

PSNR value for all noise levels and objects. However, the standard deviations for

pfkpca1 is larger than that of pfkpca2 for 15 out of 21 object-noise variance config-

urations. pfkpca1 provides an average performance between 0.1 and 1.6 dB higher

than that of pfkpca2.

66

Fig. 21.: For each of the three objects, one example from 12 images is shown in rows 1, 4,
and 7 with noise added (variance 5, 10, 15, 20, 25, 30, and 35). Rows 2, 5, and 8 contain the
denoised example images from pfkpca2 and rows 3, 6, and 9 contain those from pfkpca1.

67

Table 11.: PSNR comparison between two methods. The PSNR for each object with dif-
ferent noise realizations are averaged over 12 images. The standard deviation is in the sub-
script.

object method 5 10 15 20 25 30 35
bear pfkpca2 39.42.3 34.92.6 32.02.7 29.92.6 28.62.0 27.12.0 26.01.9

pfkpca1 39.72.9 35.22.7 32.72.5 30.82.4 29.42.3 28.22.3 27.12.2

shoe pfkpca2 38.72.7 34.52.8 31.13.2 29.13.0 28.51.8 27.11.6 26.01.5

pfkpca1 39.43.2 35.02.9 32.52.6 30.72.4 29.32.3 28.12.2 27.12.1

fairy pfkpca2 38.92.4 34.42.8 31.83.1 30.72.3 29.22.2 27.82.1 26.62.0

pfkpca1 39.72.9 35.22.6 32.72.5 30.92.4 29.42.4 28.22.4 27.12.3

4.4 Geometric Interpretation

We provide an explanation of poor denoising performance for noise points in

cases when the tangent plane of the level curve Lc of the function f(z) = ‖Φ(z) −

PΦ(z)‖ for a noise point is not parallel to the tangent plane for the true manifold at

the true point.

We illustrate the inconsistency of denoising performance in cases when the

tangent plane for true manifold at the true point is not parallel to the level curve Lc

of the function f(z) = ‖Φ(z)− PΦ(z)‖.

The function f(z) is differentiable, the steepest descent −∇f at a point z is or-

thogonal to any Lc of f at that point. By virtue of the assumption, the line search

along the first steepest descent will reach the representation on the true manifold,

provided that the level curve at z parallel to the manifold ideally. It is certainly

possible that Lc is not parallel to the true manifold. Figure 22 presents a graphic il-

lustration of this situation. For the sake of illustration, a Gaussian noising parabola

and corresponding ‖Φ(·) − PΦ(·)‖ surface is also shown in the Figure 23. This

situation is mostly happening under the pointy area of error surface f(z). Imme-

diately from the loss function, the error surface is determined by the kernel matrix

68

Fig. 22.: The example of bad denoising performance. The Lc are not parallel to the under-
lying pattern(thick parabola). The noisy point (solid circle) was drag towards preimage
(open circle) along the 1st steepest descent, which is far away from true point (triangle).

K. The above reasoning illustrates an important point pertaining to the construc-

tion of the error surface associated withK. Indeed, some differentiable regulariza-

tions which smooth the pointy area could potentially improve the preimage quality

around those areas.

4.5 Conclusions

This article incorporates a kernel `1-norm principal component analysis into

a novel preimage estimation procedure using kernel tricks that can be used for a

wide range of machine learning tasks such as handwriting recognition and image

denoising. We demonstrate that the kernel trick is also applicable to the kernel

`1-norm principal component analysis in section 3. The new method was able to

provide more consistent denoised results compared to the projection-free kernel

69

Fig. 23.: Four plots on left are based on sample of 2000 from a polynomial of degree 2. Plots
on right are based on sample of 2000 points from a polynomial of degree 4. Three layers are
exhibited. Middle layer consists of contaminated points. Error surface of ‖Φ(·) − PΦ(·)‖
is on the top layer, and corresponding preimages along with true line (thick curve) are
at bottom. Top row represents preserving first 1 and 2 L2 PCs. Second row represents
preserving first 1 and 2 L1 PCs.

principal component analysis. We see a couple of potential future projects as fol-

lows: (1) We only consider radial basis function kernel for experiment in this paper;

however, the proposed method is also compatible with other kernels, such as ex-

ponential, polynomial, and sigmoid kernels. (2) The proposed method could be

applied to the data with outliers and nonlinearity.

4.6 Discussion

We can extend least squared PCA into Hilbert space, namely, kernel least abso-

lute supervised PCA. Consider the formulation for least absolute supervised PCA,

min
V,γ
‖Y −XV Tγ‖2

F + λ‖X −XV TV ‖2
F (4.5)

70

problem 4.5 can be extended into high-dimensional feature space with user-chosen

kernels.

min
V,γ
‖Y − Φ(X)V Tγ‖2

F + λ‖Φ(X)− Φ(X)V TV ‖2
F

min
V,γ
‖Y − Φ(X)V Tγ‖2

F + λ(diag(K)− 2〈Φ(X), V 〉〈Φ(X), V 〉+ 〈Φ(X)V TV,Φ(X)V TV 〉

where V is the analog of L in feature space and Φ is an implicit mapping. One may

attempt to use the kernel trick in [72] that V lies on the span(Φ(Xi)), V = WΦ(X).

Then we will have the formulation as below,

min
γ
‖Y −KWγ‖2

F + λ(diag(K)−KWW TKT) (4.6)

where K is the kernel matrix. In this case, W is fixed to eigenvectors of K. There-

fore, formulation 4.6 really is just the kernel principal component regression intro-

duced in [68].

An interesting approach is using the nonlinear kernel trick introduced in [41].

Suppose the column space of Π is Φ(X)UΛ−
1
2 , where U,Λ is eigenvectors and asso-

ciated eigenvalues of K. By Lemma 1 in [41],

min
η,B
‖Y − ZBTη‖2

F + λ(diag(K)− 2〈Z,B〉〈Z,B〉+ 〈ZBTB,ZBTB〉 (4.7)

where Φ(X)V T = ZBT , Φ(X)V TV = ZBTB, and Z = Λ
1
2UT . Formulation 4.7 is

the same as 4.5, the LSPCA in 4.5 can directly be applied to Z.

71

Appendix A

CODE

Algorithm 1

#include <thrust/sort.h>
#include <thrust/iterator/zip_iterator.h>
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/scan.h>
#include <thrust/execution_policy.h>
#include <thrust/gather.h>
#include <thrust/functional.h>
#include <thrust/tuple.h>
#include <thrust/reduce.h>
#include <thrust/random.h>
#include <thrust/for_each.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/sequence.h>
#include <thrust/binary_search.h>
#include <thrust/inner_product.h>
#include <thrust/fill.h>
#include <thrust/copy.h>
#include <thrust/transform_reduce.h>
#include <thrust/set_operations.h>
#include <limits>
#include <iterator>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <string>
#include <stdio.h>
#include <stdlib.h>
#include <istream>

using namespace thrust::placeholders;

__global__ void mykernel(float* d_out,float* d_in,int rows,int
cols,int k){↪→

int idx=threadIdx.x+blockIdx.x*blockDim.x;
while (idx < rows*cols) {

d_out[idx]=d_in[idx]/d_in[idx%rows+k*rows];
idx+= gridDim.x*blockDim.x;

}

72

}

struct s_rat
{
template <typename T1, typename T2>
__host__ __device__
bool operator()(const T1 &t1, const T2 &t2)
{
if (thrust::get<1>(t1) < thrust::get<1>(t2)) return true;
if (thrust::get<1>(t1) > thrust::get<1>(t2)) return false;
if (thrust::get<0>(t1) < thrust::get<0>(t2)) return true;
return 0;

}
};

struct lb
{

const float tot;
lb(float _tot): tot(_tot){}
__host__ __device__
float operator()(float& x) {
return tot-2.0*x;
}

};

typedef thrust::tuple<int,float,float,float> floatTup;
struct int_pred
{

const float reg;
const float tot;
int_pred(float reg,float tot): reg(reg),tot(tot){}
__host__ __device__
bool operator() (const floatTup& tup)
{

const float x = thrust::get<1>(tup);
const float y = thrust::get<2>(tup);
const float z = thrust::get<3>(tup);
return (z<0? (!(reg <= -x && -y< reg)) : (!(y >=reg &&

x < reg)));↪→

}
};

struct xminusvx
{

const float *m_vec1;
const float *m_vec2;
const float *m_A;
float *m_result;

73

size_t v1size;
xminusvx(thrust::device_vector<float> const&

A,thrust::device_vector<float> const& vec1,
thrust::device_vector<float> const&
vec2,thrust::device_vector<float>& result)

↪→

↪→

↪→

{
m_vec1 = thrust::raw_pointer_cast(vec1.data());
m_vec2 = thrust::raw_pointer_cast(vec2.data());
m_result = thrust::raw_pointer_cast(result.data());
m_A=thrust::raw_pointer_cast(A.data());
v1size = vec1.size();

}

__host__ __device__
void operator()(const size_t x) const
{

size_t i = x%v1size;
size_t j = x/v1size;
m_result[i + j * v1size] = fabs(m_A[i+j*v1size] -

m_vec1[i] * m_vec2[j]);↪→

}
};

template <typename T>
struct absv
{
__host__ __device__ T operator()(const T &x) const
{

return (x < T(0)) ? -x : x;
}

};

void rc_find(FILE *fp,int* rows,int* cols)
{

*rows = 0;
int i,j;
*cols = 0;
while((i=fgetc(fp))!=EOF)
{

if (i == ' ') {
++j;

}
else if (i == '\n')
{

(*rows)++;
*cols=j+1;
j = 0;

}

74

}
fclose(fp);

}

int main(int argc,char **argv){

char *problem = (char *) malloc ((100) * sizeof (char));
strcpy(problem,argv[1]);
int lamb = atof(argv[2]);
float *h_in, *d_in,*d_out;

FILE *getrc = fopen(problem,"r");
int rows, cols;
rc_find(getrc,&rows,&cols);
int N = rows*cols;
h_in = (float *) malloc (N*sizeof (float));
FILE *data = fopen(problem,"r");
for (int j=0;j<rows;j++) {

for (int i=0;i<cols;i++){
fscanf(data, "%f",&h_in[i*rows+j]);

}}
fclose(data);

cudaMalloc((void **) &d_in,N*sizeof(float));
cudaMalloc((void **) &d_out,N*sizeof(float));
cudaMemcpy(d_in,h_in,N*sizeof(float),cudaMemcpyHostToDevice c

);
float zopt = 9999999999999;
int alpha;
thrust::device_vector<float> vopt(cols);

for (int k = 0;k<cols;k++)
{

mykernel<<<128,128>>>(d_out,d_in,rows,cols,k);
thrust::device_vector<float> ratio(d_out, d_out+N);
thrust::device_vector<float> xjhat(d_in,d_in+N);
thrust::device_vector<float> l_lamada(N);
thrust::device_vector<float> r_lamada(N);
thrust::device_vector<int> index(ratio.size());
thrust::device_vector<int> jhat(ratio.size());
thrust::sequence(index.begin(), index.end());
thrust::sequence(jhat.begin(), jhat.end());
thrust::transform(index.begin(), index.end(),

index.begin(), _1/rows);↪→

thrust::transform(jhat.begin(), jhat.end(),
jhat.begin(), _1%rows+k*rows);↪→

auto myit = thrust::make_zip_iterator(thrust::make_tupl c
e(ratio.begin(),↪→

index.begin(), jhat.begin()));

75

thrust::sort(myit, myit+N, s_rat());
thrust::gather(thrust::device,jhat.begin(),

jhat.end(),xjhat.begin(),xjhat.begin());↪→

thrust::device_vector<float> abs_xjhat(N);
abs_xjhat = xjhat;
thrust::device_vector<float> inc(N);
thrust::device_vector<float> exc(N);
thrust::transform(abs_xjhat.begin(),abs_xjhat.end(),

abs_xjhat.begin(),absv<float>());
thrust::exclusive_scan_by_key(index.begin(),

index.end(), abs_xjhat.begin(), exc.begin(),0.0,thr c
ust::equal_to<int>(),thrust::plus<float>());

↪→

↪→

thrust::inclusive_scan_by_key(index.begin(),
index.end(), abs_xjhat.begin(), inc.begin(),thrust: c
:equal_to<int>(),thrust::plus<float>
());

↪→

↪→

↪→

thrust::transform(inc.begin(),inc.end(),l_lamada.begin(c
),lb(thrust::reduce(abs_xjhat.begin(),↪→

abs_xjhat.begin()+rows)));
thrust::transform(exc.begin(),exc.end(),r_lamada.begin(c

),lb(thrust::reduce(abs_xjhat.begin(),↪→

abs_xjhat.begin()+rows)));

typedef thrust::device_vector<float>::iterator fit;
typedef thrust::device_vector<int>::iterator iit;
typedef thrust::tuple<iit,fit,fit,fit> tup;
typedef thrust::zip_iterator<tup> zip_it;
zip_it v = thrust::remove_if(thrust::make_zip_iterator(c

thrust::make_tuple(index.begin(),l_lamada.begin(),r c
_lamada.begin(),ratio.begin())),
thrust::make_zip_iterator(thrust::make_tuple(index. c
end(),l_lamada.end(),r_lamada.end(),

↪→

↪→

↪→

↪→

ratio.end())),int_pred(lamb,thrust::reduce(abs_xjhat.be c
gin(),abs_xjhat.begin()+rows)));↪→

tup endTuple = v.get_iterator_tuple();
index.erase(thrust::get<0>(endTuple),index.end());
l_lamada.erase(thrust::get<1>(endTuple),l_lamada.end());
r_lamada.erase(thrust::get<2>(endTuple),r_lamada.end());
ratio.erase(thrust::get<3>(endTuple),ratio.end());

thrust::device_vector<float>vstar(cols);
thrust::device_vector<int>v_keys(cols);
thrust::sequence(v_keys.begin(),v_keys.end());
thrust::set_union_by_key(index.begin(),index.end(),v_ke c

ys.begin(),v_keys.end(),ratio.begin(),vstar.begin(),↪→

v_keys.begin(),vstar.begin());

76

thrust::device_vector<float> vx(N);
thrust::device_vector<float>

vec1(d_in+k*rows,d_in+k*rows+rows);↪→

thrust::device_vector<float> A(d_in,d_in+N);
thrust::for_each_n(thrust::device, thrust::counting_ite c

rator<size_t>(0),(N),xminusvx(A,vec1,vstar,vx));↪→

float z = thrust::reduce(vx.begin(),vx.end()) +
lamb*thrust::transform_reduce(vstar.begin(),vstar.e c
nd(),absv<float>(),0.0,thrust::plus<float>());

↪→

↪→

if (z <= zopt) {
zopt = z;
vopt = vstar;
alpha = k;

}
}
float norm = std::sqrt(thrust::inner_product(vopt.begin(),v c

opt.end(),vopt.begin(),0.0f));↪→

thrust::transform(vopt.begin(),vopt.end(),vopt.begin(),_1/= c
norm);↪→

free(h_in);
cudaFree(d_in);
cudaFree(d_out);

return 0;
}

Algorithm 2

#include <thrust/sort.h>
#include <thrust/iterator/zip_iterator.h>
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/scan.h>
#include <thrust/execution_policy.h>
#include <thrust/gather.h>
#include <thrust/functional.h>
#include <thrust/tuple.h>
#include <thrust/reduce.h>
#include <thrust/random.h>
#include <thrust/for_each.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/sequence.h>
#include <thrust/binary_search.h>
#include <thrust/fill.h>
#include <thrust/copy.h>
#include <thrust/transform_reduce.h>

77

#include <thrust/remove.h>
#include <thrust/set_operations.h>
#include <limits>
#include <iterator>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <thrust/extrema.h>
#include <thrust/unique.h>
#include <string>
#include <thrust/count.h>
#include <thrust/merge.h>

using namespace thrust::placeholders;
__global__ void mykernel(float* d_out,float* d_in,int rows,int

cols,int k){↪→

int idx=threadIdx.x+blockIdx.x*blockDim.x;
while (idx < rows*cols) {

d_out[idx]=d_in[idx]/d_in[idx%rows+k*rows];
idx+= gridDim.x*blockDim.x;

}
}
struct s_rat
{

template <typename T1, typename T2>
__host__ __device__
bool operator()(const T1 &t1, const T2 &t2){

if (thrust::get<1>(t1) < thrust::get<1>(t2)) return true;
if (thrust::get<1>(t1) > thrust::get<1>(t2)) return false;
if (thrust::get<0>(t1) < thrust::get<0>(t2)) return true;
return false;

}
};

struct lb
{

const float tot;
lb(float _tot): tot(_tot){}
__host__ __device__
float operator()(float& x) {
return tot-2.0*x;
}

};

struct lb1
{

const float tot;
lb1(float _tot): tot(_tot){}
__host__ __device__

78

float operator()(float& x) {
return 2.0*x-tot;
}

};

struct lbs
{

__host__ __device__
float operator()(float& x,float& y) {
return x+2*y;
}

};

struct is_neg
{

__host__ __device__
bool operator()(const float x)
{
return (signbit(x) || x==0.0);

}
};

struct is_pos
{

__host__ __device__
bool operator()(const float x)
{

return (signbit(-x));
}

};

template <typename T>
struct absv
{

__host__ __device__ T operator()(const T &x) const
{

return (x < T(0)) ? -x : x;
}

};

struct is_k
{

const int tot;
is_k(int _tot): tot(_tot){}

__host__ __device__
bool operator()(const int x)
{

return (x == tot);

79

}
};

template <typename Iterator>
void print_range(Iterator first, Iterator last)
{

typedef typename std::iterator_traits<Iterator>::value_type
T;↪→

thrust::copy(first, last,
std::ostream_iterator<T>(std::cout<< std::setw(6) <<
std::fixed<< std::setprecision(1), " "));

↪→

↪→

std::cout << "\n";
}

template <typename Iterator>
void writefile(Iterator first, Iterator last)
{

typedef typename std::iterator_traits<Iterator>::value_type
T;↪→

std::ofstream output;
output.open("breakpoints");

thrust::copy(first, last,
std::ostream_iterator<T>(std::cout<< std::setw(6) <<
std::fixed<< std::setprecision(1), " "));

↪→

↪→

}

void rc_find(FILE *fp,int* rows,int* cols)
{

*rows = 0;
int i,j;
*cols = 0;

while((i=fgetc(fp))!=EOF)
{

if (i == ' ') {
++j;

}
else if (i == '\n') {

(*rows)++;
*cols=j+1;
j = 0;

}
}
fclose(fp);

}

80

int main(int argc,char **argv){

char *problem = (char *) malloc ((100) * sizeof (char));
strcpy(problem,argv[1]);
float *h_in, *d_in,*d_out;

FILE *getrc = fopen(problem,"r");
int rows, cols;
rc_find(getrc,&rows,&cols);
int N = rows*cols;

h_in = (float *) malloc (N*sizeof (float));
FILE *data = fopen(problem,"r");
for (int j=0;j<rows;j++) {

for (int i=0;i<cols;i++){
fscanf(data, "%f",&h_in[i*rows+j]);

}}
fclose(data);

cudaMalloc((void **) &d_in,N*sizeof(float));
cudaMalloc((void **) &d_out,N*sizeof(float));

cudaMemcpy(d_in,h_in,N*sizeof(float),cudaMemcpyHostToDevice c
);

typedef thrust::device_vector<float> Vector;

float minupp=99999999;
float maxlow=0;
float finalavg=0;
float finalsize=0;
for (int k = 0;k<cols;k++) {
mykernel<<<128,128>>>(d_out,d_in,rows,cols,k);

thrust::device_vector<float> ratio(d_out, d_out+N);
thrust::device_vector<float> xjhat(d_in,d_in+N);
thrust::device_vector<float> l_lamb(N);
thrust::device_vector<float> r_lamb(N);
thrust::device_vector<int> index(ratio.size());
thrust::device_vector<int> jhat(ratio.size());
thrust::sequence(index.begin(), index.end());
thrust::sequence(jhat.begin(), jhat.end());
thrust::transform(index.begin(), index.end(),

index.begin(), _1/rows);↪→

81

thrust::transform(jhat.begin(), jhat.end(), jhat.begin(),
_1%rows+k*rows);↪→

auto myit = thrust::make_zip_iterator(thrust::make_tuple(ra c
tio.begin(), index.begin(),
jhat.begin()));

↪→

↪→

thrust::sort(myit, myit+N, s_rat());
thrust::gather(thrust::device,jhat.begin(),

jhat.end(),xjhat.begin(),xjhat.begin());↪→

thrust::device_vector<float> abs_xjhat(N);
abs_xjhat = xjhat;
thrust::device_vector<float> inc(N);
thrust::device_vector<float> exc(N);
thrust::transform(abs_xjhat.begin(),abs_xjhat.end(),abs_xjh c

at.begin(),absv<float>());↪→

thrust::exclusive_scan_by_key(index.begin(), index.end(),
abs_xjhat.begin(), exc.begin(),0.0,thrust::equal_to<int c
>(),thrust::plus<float>());

↪→

↪→

thrust::inclusive_scan_by_key(index.begin(), index.end(),
abs_xjhat.begin(),
inc.begin(),thrust::equal_to<int>(),thrust::plus<float>
());

↪→

↪→

↪→

thrust::transform(inc.begin(),inc.end(),l_lamb.begin(),lb(t c
hrust::reduce(abs_xjhat.begin(),abs_xjhat.begin()+rows) c
));

↪→

↪→

thrust::transform(exc.begin(),exc.end(),r_lamb.begin(),lb1(c
thrust::reduce(abs_xjhat.begin(),abs_xjhat.begin()+rows c
)));

↪→

↪→

thrust::device_vector<int> se(ratio.size());
thrust::device_vector<float> lambdas(ratio.size());
thrust::sequence(se.begin(), se.end());
thrust::gather_if(se.begin(),se.end(),ratio.begin(),r_lamb. c

begin(),l_lamb.begin(),is_neg());↪→

typedef Vector::iterator Iterator;
thrust::transform(l_lamb.begin(),l_lamb.end(),abs_xjhat.beg c

in(),lambdas.begin(),lbs());↪→

Vector r1(ratio.size());
thrust::remove_copy_if(lambdas.begin(), lambdas.end(),

index.begin(),r1.begin(), is_k(k));↪→

Iterator iter = thrust::remove_if(r1.begin(),
r1.end(),is_neg());↪→

r1.resize(iter-r1.begin());
Iterator iter2 = thrust::unique(r1.begin(),r1.end());
r1.resize(iter2-r1.begin());

typedef thrust::device_vector<float>::iterator ft;

82

ft min = min_element(r1.begin(), r1.end());
ft max = max_element(r1.begin(), r1.end());
if (*min < minupp) minupp = *min;
if (*max > maxlow) maxlow = *max;
float avg = reduce(r1.begin(),r1.end());
float sam = r1.size();
finalavg= avg + finalavg;
finalsize=sam +finalsize;
}
std::cout << minupp << " " << maxlow << " " <<

finalavg/finalsize << std::endl;↪→

cudaFree(d_in);
cudaFree(d_out);
free(h_in);
return 0;

}

Kernel `1-norm PCA

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "type.h"
#include <mkl.h>

int pfkpca (IOINFOptr ioinfo,ENTITYINFOptr entityinfo,
PROBLEMINFOptr probleminfo);↪→

int pfkpca (IOINFOptr ioinfo,ENTITYINFOptr entityinfo,
PROBLEMINFOptr probleminfo)↪→

{
int i,j,l,m,z;
int numattributes_m = entityinfo->numattributes_m;
int numentities_n = entityinfo->numentities_n;
double *points_XT = entityinfo->points_XT;
double *xbzx;
double sum,sum1,sum2,sum4, A;
double* alpha;
double h = 1.2;
double alphastar;
double xhat[numattributes_m];
int jstar=0;
double *kone;
double *kx;
double *kx_tilde;
double **jkx;

83

double **jkx_tilde;
double f,p;
double konesum =0.0;
char output[40];
char err[30];

kx=(double *)malloc(numentities_n*sizeof(double));
kone = (double *)calloc(numentities_n,sizeof(double));
kx_tilde = (double *)calloc(numentities_n,sizeof(double));
xbzx = (double *)calloc(numattributes_m,sizeof(double));
jkx=(double **)calloc(numentities_n,sizeof(double *));
jkx_tilde=(double **)calloc(numentities_n,sizeof(double *));
for (i=0;i<numentities_n;++i)
{
jkx[i]=(double *)calloc(numattributes_m,sizeof(double));
jkx_tilde[i]=(double *)calloc(numattributes_m,sizeof(double));
}

double *Y,*jt,*C,*zmiusx,*jkxcolumsum,*maxA,*zmiusxalpha,*gpri c
me,f_exh,gp_exh;↪→

jt= (double *)calloc((entityinfo->numentities_n*entityinfo->nu c
mattributes_m),sizeof(double));↪→

C= (double *)calloc((entityinfo->numentities_n*entityinfo->nu c
mattributes_m),sizeof(double));↪→

Y = (double *)calloc(numentities_n,sizeof(double));
zmiusx = (double *)calloc((entityinfo->numentities_n*entityinf c

o->numattributes_m),sizeof(double));↪→

zmiusxalpha = (double *)calloc((entityinfo->numentities_n*enti c
tyinfo->numattributes_m),sizeof(double));↪→

alpha =(double *)malloc(600*sizeof(double));
jkxcolumsum = (double *)calloc(numattributes_m,sizeof(double));
maxA = (double *)calloc(numentities_n,sizeof(double));
gprime = (double *)calloc(numattributes_m,sizeof(double));

p = exp(-1.0/((probleminfo->var)));
konesum=0.0;
for(i=0;i<numentities_n;++i)
{
kone[i] =0.0;
for (j=0;j<numentities_n;++j) kone[i] += entityinfo->KK[i][j];
konesum += kone[i];
}

for (z=0;z<numentities_n;z++)
{
for (i = 0;i<numentities_n;++i)
for (j = 0;j<numattributes_m;++j)

84

zmiusx[i*numattributes_m+j] = points_XT[z*numattributes_m+j] c
-points_XT[i*numattributes_m+j];↪→

for (j =0,sum2=0.0;j<numentities_n;++j)
{
kx[j]=1.0;
for (l=0;l<numattributes_m;++l) kx[j] *= pow(p,zmiusx[j*numa c

ttributes_m+l]*zmiusx[j*numattributes_m+l]);↪→

sum2 += kx[j];
}
for (i=0;i<numentities_n;++i)
kx_tilde[i]=kx[i] - (kone[i]+sum2)/numentities_n+konesum/(nu c

mentities_n*numentities_n);↪→

for (i=0;i<numattributes_m;++i)
{
jkxcolumsum[i] =0.0;
for (j = 0,sum1=0.0;j<numentities_n;++j)
{
jkx[j][i] = kx[j] *2*log(p)*(zmiusx[j*numattributes_m+i]);
jkxcolumsum[i] += jkx[j][i];
}
for (j=0;j<numentities_n;++j) jt[j*numattributes_m+i]=jkx[j] c

[i]-jkxcolumsum[i]/numentities_n;↪→

}

for (i=0;i<numentities_n;++i) Y[i] = 0.0;
cblas_dgemv(CblasRowMajor,CblasNoTrans,numentities_n,numentit c

ies_n,1.0,entityinfo->a,numentities_n,kx_tilde,1,0.0,Y,1);↪→

sum = cblas_ddot(numentities_n,kx_tilde,1,Y,1);
↪→

f = 1-(2*sum2/numentities_n)+konesum/(numentities_n*numentiti c
es_n)-sum;↪→

if (f > 10e-9)
{
memcpy(xbzx,jkxcolumsum,sizeof(double)*numattributes_m); c
↪→

cblas_dgemm(CblasRowMajor,CblasTrans,CblasNoTrans,numattribu c
tes_m,numentities_n,numentities_n,1.0,jt,numattributes_m c
,entityinfo->a,numentities_n,0.0,C,numentities_n);

↪→

↪→

cblas_dgemv(CblasRowMajor,CblasNoTrans,numattributes_m,numen c
tities_n,2.0,C,numentities_n,kx_tilde,1,2.0/numentities_ c
n,xbzx,1);

↪→

↪→

sum4 = cblas_dnrm2(numattributes_m,xbzx,1);
for (i = 0;i<numattributes_m;++i) xbzx[i] = xbzx[i]/sum4;
↪→

85

cblas_dgemv(CblasRowMajor,CblasNoTrans,numentities_n,numattr c
ibutes_m,1.0,points_XT,numattributes_m,xbzx,1,0.0,maxA,1 c
);

↪→

↪→

A = maxA[0];
for (i=0;i<numentities_n;++i) if (maxA[i]> A && i !=z) A =

maxA[i];↪→

A = A-maxA[z];
int r = 0;
alpha[r] =0.0;
while(alpha[r]< A)
{
alpha[r+1] = alpha[r] + A*h/499.0;
r = r + 1;
};
alpha[r]=A;
alphastar=f;
for (jstar=1;jstar<r+1;++jstar)
{
for (l= 0;l<numentities_n;++l){
for (j=0;j<numattributes_m;++j)
zmiusxalpha[l*numattributes_m+j] =

zmiusx[l*numattributes_m+j]+alpha[jstar]*xbzx[j];}↪→

sum1 =0.0;
for (j=0;j<numentities_n;++j)
{
kx[j]=1.0;
for (l=0;l<numattributes_m;++l)
kx[j] *= pow(p,zmiusxalpha[j*numattributes_m+l]*zmiusxalp c

ha[j*numattributes_m+l]);↪→

sum1 += kx[j];
}

for (m=0;m<numentities_n;++m)
kx_tilde[m]=kx[m] - (kone[m]-sum1)/numentities_n+konesum/(c

numentities_n*numentities_n);↪→

memset(Y,0,sizeof(double)*numentities_n);
cblas_dgemv(CblasRowMajor,CblasNoTrans,numentities_n,nument c

ities_n,1.0,entityinfo->a,numentities_n,kx_tilde,1,1.0, c
Y,1);

↪→

↪→

sum = cblas_ddot(numentities_n,kx_tilde,1,Y,1);
f_exh = (1-(2*sum1/numentities_n)+konesum/(numentities_n*nu c

mentities_n)-sum);↪→

if (f_exh > alphastar)
{
if(jstar>1)
{
for (l= 0;l<numentities_n;++l)
for (j=0;j<numattributes_m;++j)

86

zmiusxalpha[l*numattributes_m+j] =
zmiusx[l*numattributes_m+j]+alpha[jstar-1]*xbzx[j];↪→

for (j =0,sum1=0.0;j<numentities_n;++j)
{
kx[j] =1.0;
for (l=0;l<numattributes_m;++l)
kx[j] *= pow(p,zmiusxalpha[j*numattributes_m+l]*zmiusxa c

lpha[j*numattributes_m+l]);↪→

sum1 += kx[j];
}
for (j=0;j<numentities_n;++j)
kx_tilde[j]=kx[j] - (kone[j]-sum1)/numentities_n+konesum c

/(numentities_n*numentities_n);↪→

for (m=0;m<numattributes_m;++m)
{
jkxcolumsum[m]=0.0;
for (j = 0;j<numentities_n;++j)
{
jkx[j][m] = kx[j]

*2*log(p)*(zmiusxalpha[j*numattributes_m+m]);↪→

jkxcolumsum[m] += jkx[j][m];
}
for (j=0;j<numentities_n;++j) jt[j*numattributes_m+m]=

jkx[j][m]-jkxcolumsum[m]/numentities_n;↪→

}
memcpy(gprime,jkxcolumsum,sizeof(double)*numattributes_m) c

;↪→

memset(C,0,numattributes_m*numentities_n*sizeof(double));
cblas_dgemm(CblasRowMajor,CblasTrans,CblasNoTrans,numattr c

ibutes_m,numentities_n,numentities_n,1.0,jt,numattrib c
utes_m,entityinfo->a,numentities_n,0.0,C,numentities_ c
n);

↪→

↪→

↪→

cblas_dgemv(CblasRowMajor,CblasNoTrans,numattributes_m,nu c
mentities_n,-2.0,C,numentities_n,kx_tilde,1,-2.0/nume c
ntities_n,gprime,1);

↪→

↪→

gp_exh = cblas_ddot(numattributes_m,gprime,1,xbzx,1);
jstar =(gp_exh > 0.0)? jstar-1:jstar;
break;
}

}
alphastar = f_exh;
}

if (jstar > 1)
{

87

for (l=0;l<numattributes_m;++l)
xhat[l] = points_XT[z*numattributes_m+l]+0.5*(alpha[jstar- c

1]+alpha[jstar])*xbzx[l];↪→

}
else
{
for (l=0;l<numattributes_m;++l)
xhat[l] =points_XT[z*numattributes_m+l]+(alpha[jstar])*xbz c

x[l];↪→

}
}
else
{
for (l=0;l<numattributes_m;++l) xhat[l] =

points_XT[z*numattributes_m+l];↪→

}
}

free(Y);
free(jt);
free(C);
free(zmiusx);
free(jkxcolumsum);
free(maxA);
free(zmiusxalpha);
free(points_XT);
free(kx);
free(kone);
free(kx_tilde);
free(xbzx);
free(jkx);
free(jkx_tilde);
free(gprime);
return 0;

}

88

VITA

Xiao Ling, originally from Shanghai, China, graduated with a Bachelor of Electrical

Engineering degree, a Master of Science in Statistics.

89

Bibliography

[1] Michal Aharon, Michael Elad, and Alfred Bruckstein. K-SVD: An algorithm

for designing overcomplete dictionaries for sparse representation. IEEE

Transactions on Signal Processing, 54(11):4311–4322, 2006.

[2] Bayar Azeez and Fattah Alizadeh. Review and classification of trend-

ing background subtraction-based object detection techniques. In 2020

6th International Engineering Conference “Sustainable Technology and Develop-

ment”(IEC), pages 185–190. IEEE, 2020.

[3] Jianchao Bai, Jicheng Li, Fengmin Xu, and Hongchao Zhang. Generalized

symmetric ADMM for separable convex optimization. Computational Opti-

mization and Applications, 70(1):129–170, 2018.

[4] Ronen Basri and David W. Jacobs. Lambertian reflectance and linear sub-

spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003.

ISSN 01628828. doi: 10.1109/TPAMI.2003.1177153.

[5] Weiss Ben. Fast median and bilateral filtering. ACM SIGGRAPH 2006, pages

519–526, 2006.

[6] Eric Bennett and Leonard McMillan. Video Enhancement Using Per-Pixel

Virtual Exposures. ACM Transactions on Graphics, 24(3):845–852, 2005.

[7] Bernhard Boser, Isabelle Guyon, and Vladimir Vapnik. A training algorithm

for optimal margin classifiers. In Proceedings of the 5th Annual ACM Workshop

on Computational Learning Theory, pages 144–152. ACM, 1992.

90

[8] Thierry Bouwmans. Traditional and recent approaches in background mod-

eling for foreground detection: An overview. Computer Science Review, 11-12:

31–66, 2014.

[9] Thierry Bouwmans, Fatih Porikli, Benjamin Höferlin, and Antoine Vacavant.

Background Modeling and Foreground Detection for Video Surveillance. Chapman

and Hall/CRC, London, 2015. ISBN 1482205378.

[10] James Paul Brooks and José H Dulá. Estimating L1-norm best-fit lines for

data. Optimization Online, 2017.

[11] James Paul Brooks and José H Dulá. Approximating l1-norm best-fit lines.

Optimization Online, 2019.

[12] James Paul Brooks, José H Dulá, and Edward L Boone. A pure L1-norm

principal component analysis. Computational Statistics Data Analysis, 61:83–

98, 2013. ISSN 0167-9473.

[13] James Paul Brooks, José H Dulá, Amy L. Pakyz, and Ronald E. Polk. Identi-

fying hospital antimicrobial resistance targets via robust ranking. IISE Trans-

actions on Healthcare Systems Engineering, 7(3):121–128, 2017. ISSN 24725587.

doi: 10.1080/24725579.2017.1339148.

[14] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. Non-local means

denoising. Image Processing On Line, 1:208–212, 2011.

[15] Anh Tuan Bui, Joon-Ku Im, Daniel W Apley, and George C Runger.

Projection-free kernel principal component analysis for denoising. Neuro-

computing, 357:163–176, 2019.

91

[16] Jian Feng Cai, Emmanuel J Candès, and Zuo wei Shen. A singular value

thresholding algorithm for matrix completion. SIAM Journal on Optimization,

20(4):1956–1982, 2010.

[17] Emmanuel Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal

component analysis? Journal of the ACM, 58(3):1–37, 2011. ISSN 0004-5411.

[18] Dan Song Cheng, Jian Zhe Yang, Jun Wang, Da Ming Shi, and Xiao Fang Liu.

Double-noise-dual-problem approach to the augmented lagrange multiplier

method for robust principal component analysis. Soft Computing, 21(10):

2723–2732, 2017.

[19] Flavio Chierichetti, Ravi Kumar, Prabhakar Raghavan, and Tamas Sarlos. Are

web users really Markovian? In Proceedings of the 21st International Conference

on World Wide Web, pages 609–618. ACM, 2012. ISBN 1450312292.

[20] Flavio Chierichetti, Sreenivas Gollapudi, Ravi Kumar, Silvio Lattanzi, Rina

Panigrahy, and David P. Woodruff. Algorithms for `p low-rank approxima-

tion. In Proceedings of the 34th International Conference on Machine Learning,

volume 70, pages 806–814, 2017.

[21] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazar-

ian. Image denoising by sparse 3-D transform-domain collaborative filtering.

IEEE Transactions on Image Processing, 16(8):2080–2095, 2007.

[22] Fernando De la Torre and Michael J Black. Robust principal component anal-

ysis for computer vision. In Proceedings Eighth IEEE International Conference

on Computer Vision. ICCV 2001, volume 1, pages 362–369. IEEE, 2001.

[23] Charles-Alban Deledalle, Loı̈c Denis, and Florence Tupin. Iterative weighted

92

maximum likelihood denoising with probabilistic patch-based weights.

IEEE Transactions on Image Processing, 18(12):2661–2672, 2009.

[24] Charles-Alban Deledalle, Joseph Salmon, Arnak S Dalalyan, et al. Image de-

noising with patch-based PCA: local versus global. In British Machine Vision

Conference, volume 81, pages 425–455, 2011.

[25] Frédo Durand and Julie Dorsey. Fast bilateral filtering for the display of high-

dynamic-range images. In Proceedings of the 29th Annual Conference on Com-

puter Graphics and Interactive Techniques, pages 257–266, 2002.

[26] Michael Elad and Michal Aharon. Image denoising via sparse and redun-

dant representations over learned dictionaries. IEEE Transactions on Image

Processing, 15(12):3736–3745, 2006.

[27] Jan-Mark Geusebroek, Gertjan J Burghouts, and Arnold WM Smeulders. The

amsterdam library of object images. International Journal of Computer Vision,

61(1):103–112, 2005.

[28] Nicolas Gillis and Stephen A. Vavasis. On the complexity of robust PCA and

`1-norm low-rank matrix approximation. Mathematics of Operations Research,

43:1072–1084, 2018.

[29] Gene H Golub and Charles F Van Loan. Matrix computations. JHU press,

2013.

[30] Deren Han, Xiaoming Yuan, Wenxing Zhang, and Xingju Cai. An adm-based

splitting method for separable convex programming. Computational Opti-

mization and Applications, 54(2):343–369, 2013.

93

[31] Bingsheng He, Min Tao, and Xiaoming Yuan. Alternating direction method

with gaussian back substitution for separable convex programming. SIAM

Journal on Optimization, 22(2):313–340, 2012.

[32] Paul Honeine and Cédric Richard. A closed-form solution for the pre-image

problem in kernel-based machines. Journal of Signal Processing Systems, 65

(3):289–299, 2011.

[33] Hui Ji, Sibin Huang, Zuowei Shen, and Yuhong Xu. Robust video restoration

by joint sparse and low rank matrix approximation. SIAM Journal on Imaging

Sciences, 4(4):1122–1142, 2011.

[34] Xixi Jia, Xiangchu Feng, and Weiwei Wang. Adaptive regularizer learning for

low rank approximation with application to image denoising. In 2016 IEEE

International Conference on Image Processing, pages 3096–3100. IEEE, 2016.

[35] Pierre-Marc Jodoin, Lucia Maddalena, Alfredo Petrosino, and Yi Wang. Ex-

tensive benchmark and survey of modeling methods for scene background

initialization. IEEE Transactions on Image Processing, 26(11):5244–5256, 2017.

[36] Zhao Kang, Chong Peng, and Qiang Cheng. Robust pca via nonconvex rank

approximation. In 2015 IEEE International Conference on Data Mining, pages

211–220. IEEE, 2015.

[37] Qi Fa Ke and Takeo Kanade. Robust subspace computation using L1 norm.

Technical report, Carnegie Mellon University, 2003.

[38] Qi Fa Ke and Takeo Kanade. Robust L1-norm factorization in the presence

of outliers and missing data by alternative convex programming. In 2005

94

IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR’05), pages 739–746, 2005.

[39] Cheolmin Kim and Diego Klabjan. A simple and fast algorithm for `1-norm

kernel PCA. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42

(8):1842–1855, 2019.

[40] Nojun Kwak. Principal component analysis based on L1-norm maximiza-

tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008. ISSN

01628828. doi: 10.1109/TPAMI.2008.114.

[41] Nojun Kwak. Nonlinear Projection Trick in Kernel Methods: An Alternative

to the Kernel Trick. IEEE Transactions on Neural Networks and Learning Systems,

24(12):2113–2119, 2013.

[42] James T Kwok and Ivor W Tsang. The pre-image problem in kernel methods.

IEEE Transactions on Neural Networks, 15(6):1517–1525, 2004.

[43] Andrew H S Lai and Nelson Hon Ching Yung. A fast and accurate score-

board algorithm for estimating stationary backgrounds in an image se-

quence. In 1998 IEEE International Symposium on Circuits and Systems (IS-

CAS), volume 4, pages 241–244 vol.4, 1998. doi: 10.1109/ISCAS.1998.698804.

[44] Chul Lee and Edmund Y Lam. Computationally efficient truncated nuclear

norm minimization for high dynamic range imaging. IEEE Transactions on

Image Processing, 25(9):4145–4157, 2016.

[45] Amos Lev, Steven W Zucker, and Azriel Rosenfeld. Iterative enhancemnent

of noisy images. IEEE Transactions on Systems, Man, and Cybernetics, 7(6):

435–442, 1977.

95

[46] Yinbo Li and Gonzalo R Arce. A maximum likelihood approach to least abso-

lute deviation regression. EURASIP Journal on Advances in Signal Processing,

2004(12):1–8, 2004.

[47] Zhouchen Lin, Minming Chen, and Yi Ma. The augmented lagrange mul-

tiplier method for exact recovery of corrupted low-rank matrices. arXiv

preprint arXiv:1009.5055, 2010.

[48] Zhouchen Lin, Risheng Liu, and Zhixun Su. Linearized alternating direc-

tion method with adaptive penalty for low-rank representation. Advances in

Neural Information Processing Systems, 24, 2011.

[49] Guang can Liu, Zhou chen Lin, Yong Yu, et al. Robust subspace segmentation

by low-rank representation. In International Conference on Machine Learning,

2010.

[50] Guangcan Liu and Shuicheng Yan. Active Subspace: Toward Scalable Low-

Rank Learning. Neural Computation, 24(12):3371–3394, 2012. doi: 10.1162/

NECO a 00369.

[51] Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong Yu, and Yi Ma.

Robust recovery of subspace structures by low-rank representation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 35(1):171–184, 2012.

[52] Jing Liu, Yong Rui Duan, and Tong Hui Wang. A Parallel Splitting Aug-

mented Lagrangian Method for Two-Block Separable Convex Programming

with Application in Image Processing. Mathematical Problems in Engineering,

2020, 2020.

96

[53] Risheng Liu, Zhouchen Lin, Siming Wei, and Zhixun Su. Solving prin-

cipal component pursuit in linear time via `1 filtering. arXiv preprint

arXiv:1108.5359, 2011.

[54] Lucia Maddalena and Alfredo Petrosino. A self-organizing approach to back-

ground subtraction for visual surveillance applications. IEEE Transactions on

Image Processing, 17(7):1168–1177, 2008.

[55] Panos P Markopoulos, George N Karystinos, and Dimitris A Pados. Optimal

algorithms for L1-subspace signal processing. IEEE Transactions on Signal

Processing, 62(19):5046–5058, 2014.

[56] Panos P Markopoulos, Mayur Dhanaraj, and Andreas Savakis. Adaptive

L1-norm principal component analysis with online outlier rejection. IEEE

Journal on Selected Topics in Signal Processing, 12(6):1131–1143, 12 2018. ISSN

19324553. doi: 10.1109/JSTSP.2018.2874165.

[57] Deyu Meng, Qian Zhao, and Zongben Xu. Improve robustness of sparse PCA

by L1-norm maximization. Pattern Recognition, 45(1):487–497, 2012.

[58] Sebastian Mika, Bernhard Schölkopf, Alexander J Smola, Klaus-Robert

Müller, Matthias Scholz, and Gunnar Rätsch. Kernel PCA and de-noising

in feature spaces. Advances in Neural Information Processing Systems, 11, 1998.

[59] Kerui Min, Zhengdong Zhang, John Wright, and Yi Ma. Decomposing back-

ground topics from keywords by principal component pursuit. In Proceedings

of the 19th ACM international conference on Information and knowledge manage-

ment, pages 269–278, 2010.

97

[60] Milan Paluš and Ivan Dvořák. Singular-value decomposition in attractor re-

construction: pitfalls and precautions. Physica D: Nonlinear Phenomena, 55

(1-2):221–234, 1992.

[61] Haotian Pang, Han Liu, Robert J Vanderbei, and Tuo Zhao. Parametric sim-

plex method for sparse learning. Advances in Neural Information Processing

Systems, 30, 2017.

[62] Stanislav Pyatykh, Jürgen Hesser, and Lei Zheng. Image noise level estima-

tion by principal component analysis. IEEE Transactions on Image Processing,

22(2):687–699, 2012.

[63] Qing Qu, Ju Sun, and John Wright. Finding a sparse vector in a subspace:

Linear sparsity using alternating directions. IEEE Transactions on Information

Theory, 62(10):5855–5880, 2016. doi: 10.1109/TIT.2016.2601599.

[64] Robert Reris and James Paul Brooks. Principal component analysis and op-

timization: A tutorial. 2015.

[65] Robert A. Reris and James P. Brooks. Principal component analysis and op-

timization: A tutorial. In Proceedings of the 14th INFORMS Computing Society

Conference, pages 212–225, 2015.

[66] Paul Rodriguez and Brendt Wohlberg. Fast principal component pursuit via

alternating minimization. In 2013 IEEE International Conference on Image Pro-

cessing, pages 69–73. IEEE, 2013. ISBN 1479923419.

[67] Paul Rodrı́guez and Brendt Wohlberg. Fast principal component pursuit via

alternating minimization. In 2013 IEEE International Conference on Image Pro-

cessing, pages 69–73, 2013. doi: 10.1109/ICIP.2013.6738015.

98

[68] Roman Rosipal, Mark Girolami, Leonard J Trejo, and Andrzej Cichocki. Ker-

nel PCA for feature extraction and de-noising in nonlinear regression. Neural

Computing & Applications, 10(3):231–243, 2001.

[69] Yogesh Rathi Samuel, Samuel Dambreville, and Allen Tannenbaum. Sta-

tistical shape analysis using kernel PCA. In SPIE, Electronic Imaging.(2006.

Citeseer, 2006.

[70] Jason Sanders and Edward Kandrot. CUDA by example: an introduction to

general-purpose GPU programming. Addison-Wesley Professional, 2010.

[71] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Kernel

principal component analysis. In International Conference on Artificial Neural

Networks, pages 583–588. Springer, 1997.

[72] Bernhard Schölkopf, Sebastian Mika, Alex Smola, Gunnar Rätsch, and

Klaus-Robert Müller. Kernel PCA pattern reconstruction via approximate

pre-images. In International Conference on Artificial Neural Networks, pages

147–152. Springer, 1998.

[73] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear

component analysis as a kernel eigenvalue problem. Neural Computation, 10

(5):1299–1319, 1998.

[74] Bernhard Schölkopf, Sebastian Mika, Chris JC Burges, Philipp Knirsch, K-R

Muller, Gunnar Ratsch, and Alexander J Smola. Input space versus feature

space in kernel-based methods. IEEE Transactions on Neural Networks, 10(5):

1000–1017, 1999.

[75] Kamal Sehairi, Fatima Chouireb, and Jean Meunier. Comparative study of

99

motion detection methods for video surveillance systems. Journal of Electronic

Imaging, 26(2):023025, 2017.

[76] Sreelekshmy Selvin, SG Ajay, B Ganga Gowri, V Sowmya, and KP Soman. `1

trend filter for image denoising. Procedia Computer Science, 93:495–502, 2016.

[77] Yuan Shen, Hongyu Xu, and Xin Liu. An alternating minimization method

for robust principal component analysis. Optimization Methods and Software,

34(6):1251–1276, 2019. ISSN 1055-6788.

[78] Yuan Shen, Yannian Zuo, and Aolin Yu. A Partial PPa S-ADMM for Multi-

Block for Separable Convex Optimization with Linear Constraints. Optimiza-

tion Online, 2020.

[79] Andrews Sobral, Thierry Bouwmans, and El-hadi Zahzah. LRSlibrary: Low-

rank and sparse tools for background modeling and subtraction in videos.

Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and

Video Processing, 2016.

[80] Zhao Song, David P Woodruff, and Pei Lin Zhong. Low rank approximation

with entrywise `1-norm error. In Proceedings of the Annual ACM Symposium

on Theory of Computing, 2017. ISBN 9781450345286. doi: 10.1145/3055399.

3055431.

[81] Anuj Srivastava, Ann B Lee, Eero P Simoncelli, and S-C Zhu. On advances

in statistical modeling of natural images. Journal of Mathematical Imaging and

Vision, 18(1):17–33, 2003.

[82] Gongguo Tang and Arye Nehorai. Robust principal component analysis

100

based on low-rank and block-sparse matrix decomposition. In 2011 45th An-

nual Conference on Information Sciences and Systems, pages 1–5. IEEE, 2011.

[83] Min Tao and Xiao ming Yuan. Recovering Low-Rank and Sparse Compo-

nents of Matrices from Incomplete and Noisy Observations. SIAM Journal

on Optimization, 21(1):57–81, 2011.

[84] Min Tao and Xiaoming Yuan. Recovering low-rank and sparse components

of matrices from incomplete and noisy observations. SIAM Journal on Opti-

mization, 21(1):57–81, 2011.

[85] Robert Tibshirani. Regression shrinkage and selection via the Lasso. Journal

of the Royal Statistical Society. Series B (Methodological), 58(1):267–288, 1996.

[86] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for gray and color

images. In Sixth International Conference on Computer Vision (IEEE Cat. No.

98CH36271), pages 839–846. IEEE, 1998.

[87] K Toyama, J Krumm, B Brumitt, and B Meyers. Principles and practice of

background maintenance. In The Proceedings of the 7th IEEE International Con-

ference on Computer Vision, pages 255–261, 1999.

[88] Kentaro Toyama, John Krumm, Barry Brumitt, and Brian Meyers.

Wallflower: Principles and practice of background maintenance. In Proceed-

ings of the Seventh IEEE International Conference on Computer Vision, volume 1,

pages 255–261. IEEE, 1999.

[89] Mohan Trivedi, Shailendra Bhonsle, and Amarnath Gupta. Database archi-

tecture for autonomous transportation agents for on-scene networked inci-

101

dent management (ATON). In Proceedings 15th International Conference on

Pattern Recognition. ICPR-2000, volume 4, pages 664–667. IEEE, 2000.

[90] Nicholas Tsagkarakis, Panos P Markopoulos, and Dimitris A Pados. On the

L1-norm approximation of a matrix by another of lower rank. In Proceedings

- 2016 15th IEEE International Conference on Machine Learning and Applications,

ICMLA 2016, pages 768–773. Institute of Electrical and Electronics Engineers

Inc., 1 2017.

[91] Vladimir N Vapnik. Nature of Statistical Learning Theory. Springer, 2013. ISBN

0387945598.

[92] Hansheng Wang, Guodong Li, and Guohua Jiang. Robust regression shrink-

age and consistent variable selection through the LAD-Lasso. Journal of Busi-

ness Economic Statistics, 25(3):347–355, 2007.

[93] Lie Wang. The L1 penalized LAD estimator for high dimensional linear re-

gression. Journal of Multivariate Analysis, 120:135–151, 2013.

[94] Christopher Richard Wren, Ali Azarbayejani, Trevor Darrell, and Alex Paul

Pentland. Pfinder: Real-time tracking of the human body. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 19(7):780–785, 1997.

[95] Huan Xu, Constantine Caramanis, and Sujay Sanghavi. Robust PCA via

Outlier Pursuit. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and

A. Culotta, editors, Advances in Neural Information Processing Systems, vol-

ume 23. Curran Associates, Inc., 2010. URL https://proceedings.neurips.

cc/paper/2010/file/fe8c15fed5f808006ce95eddb7366e35-Paper.pdf.

102

https://proceedings.neurips.cc/paper/2010/file/fe8c15fed5f808006ce95eddb7366e35-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/fe8c15fed5f808006ce95eddb7366e35-Paper.pdf

[96] Lei Xu, Erkki Oja, and Ching Y Suen. Modified Hebbian learning for curve

and surface fitting. Neural Networks, 5(3):441–457, 1992.

[97] Jun Feng Yang and Yin Zhang. Alternating direction algorithms for `1-

problems in compressive sensing. SIAM Journal on Scientific Computing, 33

(1):250–278, 2011.

[98] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Arm-

brust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman,

Michael J Franklin, et al. Apache spark: a unified engine for big data pro-

cessing. Communications of the ACM, 59(11):56–65, 2016.

[99] Yongqin Zhang, Ruiwen Kang, Xianlin Peng, Jun Wang, Jihua Zhu, Jinye

Peng, and Hangfan Liu. Image denoising via structure-constrained low-rank

approximation. Neural Computing and Applications, 32(16):12575–12590, 2020.

[100] Yin qiang Zheng, Guang can Liu, Shigeki Sugimoto, Shui Cheng Yan, and

Masatoshi Okutomi. Practical low-rank matrix approximation under robust

l1-norm. In 2012 IEEE Conference on Computer Vision and Pattern Recognition,

pages 1410–1417. IEEE, 2012.

[101] Tianyi Zhou and Dacheng Tao. Godec: Randomized low-rank & sparse ma-

trix decomposition in noisy case. In Proceedings of the 28th International Con-

ference on Machine Learning, ICML 2011, 2011.

103

	The l1-norm regularized l1-norm best-fit line problem and applications
	Downloaded from

	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	 Introduction
	The l1-norm projection
	Principal Component Analysis, SharpEL and Kernel Principal Component Analysis
	Low-Rank Approximation
	Related Approaches to Sparse Robust Subspace Estimation
	Applications in Computer Vision
	Kernel Principal Component Analysis and the Preimage Problem

	 The l1-norm regularized l1-norm best-fit lines
	Motivation
	Related Works
	Problem Formulation
	Estimating an L1-norm regularized L1-norm best-fit line
	Synthetic Experiments
	A Toy Example
	Evaluation of Effectiveness

	Implementing Algorithms 1 and 2 on NVIDIA Graphical Processing Units
	Introduction
	Computational Speedup Results
	Solution Path with Varying Dimensions and Lambdas

	Background Modeling Applications
	Background Subtraction Methods
	Deep Learning Comparison

	Conclusion
	Discussion

	 Image Denoising via Patch-based L1-norm Principal Component Analysis
	Introduction
	Denoising Scheme
	Dictionary Learning
	Hard Thresholding and Aggregating

	Experiment Results
	Conclusion

	 Kernel L1-norm Principal Component Analysis for Denoising
	Introduction
	An L1-norm Basis in KPCA
	Experiment Results
	Spiral Data
	Clustering Example
	Object Images with Changing Illumination Color Temperature

	Geometric Interpretation
	Conclusions
	Discussion

	Appendix Code
	Vita

