
Virginia Commonwealth University Virginia Commonwealth University 

VCU Scholars Compass VCU Scholars Compass 

Theses and Dissertations Graduate School 

2022 

Estimating the Statistics of Operational Loss Through the Estimating the Statistics of Operational Loss Through the 

Analyzation of a Time Series Analyzation of a Time Series 

Maurice L. Brown 
Virginia Commonwealth University 

Follow this and additional works at: https://scholarscompass.vcu.edu/etd 

 Part of the Analysis Commons, Applied Mathematics Commons, Applied Statistics Commons, 

Business Analytics Commons, Longitudinal Data Analysis and Time Series Commons, and the Statistical 

Models Commons 

 

© The Author 

Downloaded from Downloaded from 
https://scholarscompass.vcu.edu/etd/6973 

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It 
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars 
Compass. For more information, please contact libcompass@vcu.edu. 

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F6973&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/177?utm_source=scholarscompass.vcu.edu%2Fetd%2F6973&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/115?utm_source=scholarscompass.vcu.edu%2Fetd%2F6973&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/209?utm_source=scholarscompass.vcu.edu%2Fetd%2F6973&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1398?utm_source=scholarscompass.vcu.edu%2Fetd%2F6973&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/822?utm_source=scholarscompass.vcu.edu%2Fetd%2F6973&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/827?utm_source=scholarscompass.vcu.edu%2Fetd%2F6973&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/827?utm_source=scholarscompass.vcu.edu%2Fetd%2F6973&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/6973?utm_source=scholarscompass.vcu.edu%2Fetd%2F6973&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


c©Maurice L. Brown, May 2022

All Rights Reserved.



ESTIMATING THE STATISTICS OF OPERATIONAL LOSS THROUGH THE

ANALYZATION OF A TIME SERIES

A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor

of Philosophy at Virginia Commonwealth University.

by

MAURICE L. BROWN

M.S. in Mathematics Education at Virginia State University – 2010-2012

B.S. in Applied Mathematics at Virginia State University – 2006-2010

A.S. in General Studies at Columbia College – 2003-2005

Advisor: Cheng Ly,

Associate Professor, Department of Statistical Sciences and Operations Research

Virginia Commonwealth University

Richmond, Virginia

May, 2022



Acknowledgements

First and foremost, I wish to thank my advisor (Dr. Cheng Ly) and the program

director (Dr. Angela Reynolds). Your patience with me as I navigated through this process

has meant more to me than I could ever express in words. I would like to acknowledge

and thank Virginia Commonwealth University for allowing me to conduct my research and

providing any assistance requested. To the staff members and professors that I crossed paths

with along the way, I give a special thanks for their continued support. Most noteably my

commitee members: Dr. Suzanne Robertson, Dr. Paul Brooks, Dr. Harold Ogrosky, and

Dr. Ye Chen. Finally, I want to acknowledge my peers, who struggled with me, shared

ideas, exchanged looks of dread at upcoming assignments and exams, and most importantly,

motivated each other to be successful. Their enthusiasm, friendly smiles and willingness to

provide honest feedback enhanced my research experience.

Dedication

I dedicate this work to my family and friends. Particularly to my daughter who has

always looked to me for guidance and reassurance of her own ability to achieve her dreams,

which has driven me to push harder and be a beacon of light for her. I also dedicate this

dissertation to those who have believed in me, when at times I didn’t. Thank you for being

my cheerleader throughout this process. Your belief in me has never wavered. It would be

unbecoming of me not to mention my fraternal brothers who have challenged me, shared

ideas and motivated me to complete this doctoral program. I will always appreciate all they

have done. My colleagues and friends from Philadelphia, PA, Hopewell Virginia, Virginia

Army National Guard, Virginia State University, Virginia Commonwealth University, and

those whose paths I’ve crossed from other walks of life, your support has not been taken for

granted.

i



TABLE OF CONTENTS

Chapter Page

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Defining Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Operational Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Impact of Operational Risk . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Analyzing Operational Risk with Time Series, Frequency and Loss

Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Issues in Analyzing Operational Risk . . . . . . . . . . . . . . . . . 8

1.3 Plans and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Single loss time series with Homogeneous Poisson Process . . . . . . . . . . . . 12

2.1 Cumulative Loss Statistics in Arbitrary Time Windows . . . . . . . . . . 13

2.2 Relationship Between Autocovariance Function and Cumulative Loss

Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Summary of Homogeneous Poisson Process . . . . . . . . . . . . . . . . . 15

3 Time series with Inhomogeneous Poisson Process . . . . . . . . . . . . . . . . . 17

3.1 Autcovariance with Inhomogeneous Poisson Process . . . . . . . . . . . . 19

3.2 Summary of Time Series with Inhomogeneous Poisson Process . . . . . . . 23

4 Multiple Loss Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Calculating Statistics for Two Correlated Loss Time Series . . . . . . . . 26

4.2 Summary of Multiple Loss Categories . . . . . . . . . . . . . . . . . . . . 29

ii



5 Applying the Model to Industry-wide Averages . . . . . . . . . . . . . . . . . . 32

5.1 Extracting Data from a Real-world Source . . . . . . . . . . . . . . . . . . 32

5.2 Fitting the Data to the Model . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Effects of time window on covariance of loss distributions . . . . . . . . . 39

6 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

iii



LIST OF TABLES

Table Page

1 Severity distribution family and statistics. . . . . . . . . . . . . . . . . . . . . . 7

2 Risk Categories and Abbreviation . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Extracted data of frequency of events with loss category proportions [21]. . . . . 34

4 Extracted data of severity of events with loss category proportions [21]. . . . . . 34

5 Frequency of Losses by Year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Severity of Events by Year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Statistics by Risk Categories. The average frequency (# events in a year,

per institution) and the variances (absent from Fig. 14A), segmented by the

7 risk categories. The last column is the severity (e-Millions) per event. . . . . 38

iv



LIST OF FIGURES

Figure Page

1 Topology of financial risks in banks [2]. . . . . . . . . . . . . . . . . . . . . . . . 2

2 Regulatory Capital ratios for the “Advanced Measurement Approach” Banks. . . 4

3 Top loss events of 2017, Industry wide [7]. . . . . . . . . . . . . . . . . . . . . . . 5

4 Example of Time Series with time represented on the x-axis and the magni-

tude of loss distribution on the y-axis. . . . . . . . . . . . . . . . . . . . . . . . . 6

5 Varying operational risk loss statistics. . . . . . . . . . . . . . . . . . . . . . . . 10

6 Validation of results for homogeneous Poisson Process frequency model. . . . . . 15

7 The effect of the number of realizations on AR(t). . . . . . . . . . . . . . . . . . 20

8 Validation of results for inhomogeneous Poisson Process frequency model (3.1). . 22

9 Inhomogeneous Poisson process with scalar adjustments to analytical formulas. . 23

10 Analytic theory vs Monte Carlo simulations of cross-covariance of cumulative

losses in different time windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

11 More demonstrations of the analytic theory for covariance of cumulative losses

with Tw = 1 year throughout, but varying the input correlation c and ran-

domly choosing the severity distribution parameters. . . . . . . . . . . . . . . . . 30

12 Financial Losses and percentage of financial losses by event type as reported

by ORX 2019 [21]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

13 Amount of losses in millions, and percentage of amount of losses as reported

by ORX 2019 [21]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

14 The year-to-year covariances of ORX data. . . . . . . . . . . . . . . . . . . . . . 43

15 Fitting model to ORX data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

16 Covariance of loss distributions fit to ORX data. . . . . . . . . . . . . . . . . . 44

v



Abstract

ESTIMATING THE STATISTICS OF OPERATIONAL LOSS THROUGH THE

ANALYZATION OF A TIME SERIES

By Maurice L. Brown

A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor

of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2022.

Advisor: Cheng Ly,

Associate Professor, Department of Statistical Sciences and Operations Research

In the world of finance, appropriately understanding risk is key to success or fail-

ure because it is a fundamental driver for institutional behavior. Here we focus on risk as

it relates to the operations of financial institutions, namely operational risk. Quantifying

operational risk begins with data in the form of a time series of realized losses, which can

occur for a number of reasons, can vary over different time intervals, and can pose a chal-

lenge that is exacerbated by having to account for both frequency and severity of losses.

We introduce a stochastic point process model for the frequency distribution that has two

important parameters (average frequency and time scale). The advantages of this model

are that the parameters, which we systematically vary to demonstrate accuracy, can be fit

with sufficient data but are also intuitive enough to rely on expert judgement when data

is insufficient. Furthermore, we address how to estimate the risk of losses on an arbitrary

time scale for a specific frequency model where mathematical techniques can be feasibly

applied to analytically calculate the mean, variance, and co-variances that are accurate

compared to more time-consuming Monte Carlo simulations. Additionally, the auto- and

vi



cross-correlation functions become mathematically tractable, enabling analytic calculations

of cumulative loss statistics over larger time horizons that would otherwise be intractable

due to temporal correlations of losses for long time windows. Finally, we demonstrate the

strengths and shortcomings of our new approach by using combined data from a consortium

of institutions, comparing this data to our model and correlation calculations, and showing

that different time horizons can lead to a large range of loss statistics that can significantly

affect calculations of capital requirements.
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CHAPTER 1

INTRODUCTION

1.1 Background Information

Risk for some is just a board game, but in the world of finance, it is the key to either

success or failure, as risk is the fundamental element that affects financial behavior. Tradi-

tionally, operational risk has been neglected compared to credit and market risk; it is often

thought of as “other” despite how it has severely harmed institutions when not properly

accounted for [1, 2]. For example, in the last few decades operational losses have been ex-

traordinary, as we will discuss in more detail later. With operational risk we often encounter

data that is represented by time series of losses which are used in models to calculate statis-

tics that can then be utilized to make predictions, mitigate, and understand the dynamics

of operational losses. The Basel II Committee has suggested several approaches to calculate

the regulatory capital for the bank’s exposure to operational risk. The approaches are given

in a ‘continuum’ of increasing sophistication and risk sensitivity: (1) Basic Indicator Ap-

proach, (2) Standardized Approach and (3) Advanced Measurement Approaches (AMA) [1,

2]. Among the 3 approaches, the Advanced Measurement Approaches (AMA) is known to

be the most risk sensitive compared to the other 2 approaches (the Basic Indicator Approach

and the Standardized Approach) that are often used for smaller institutions [1, 2]. Here we

will only focus on the AMA because it is used for the larger banks that tend to suffer larger

operational losses, and requires the most sophisticated mathematical and statistical methods
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1.1.1 Defining Risk

While it is imperative to calculate risk as accurately as possible, it is important to

understand that there is not a unique or uniform definition of risk [3]. However, we will

define risk as it relates to the operations of financial institutions, namely operational risk.

Whenever the probability of loss exists, it is referred to as risk. There are numerous actions

and activities that can fall under this umbrella definition of risk. Therefore, it is important

that we identify how we will refer to risk here. Generally speaking, there are three types of

risk that concern financial institutions: business risk, non-business risk and financial risk.

Financial Risk is one of the major concerns of every business across fields and geographies

[4]. Like the overarching term, “Risk”, as we have defined it here, financial risk is also broken

down into categories, as depicted in Figure 1. Our focus will be on operational risk.

Fig. 1.: Topology of financial risks in banks [2].
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1.1.2 Operational Risk

Operational risk is defined as the risk of loss resulting from inadequate or failed internal

processes, people or systems, or from external events [1]. Loss can occur for a number of

reasons, providing a number of sources for operational risk. The major sources of operational

risk include operational process reliability, IT security, outsourcing of operations, dependence

on key suppliers, implementation of strategic change, integration of acquisitions, fraud, error,

customer service quality, regulatory compliance, recruitment, training and retention of staff,

and social and environmental impacts [1]. Operational risk is a key risk category that can

severely harm a business if not properly accounted for. It is intrinsic to financial institutions

and poses a significant threat to their financial solvency [5].

1.1.3 Impact of Operational Risk

Over the last 20 years, risks that financial institutions are being forced to face have

increased in complexity and present greater challenges that are not related to market or

credit risk. These risks have resulted in bankruptcies, mergers, and stock price declines [2].

There have been more than 100 operational losses each exceeding $100 million, and a number

of losses exceeding $1 billion, that have impacted financial firms since the end of the 1980s

[6]. For example, the nation’s five largest mortgage servicers, Bank of America Corporation,

JPMorgan Chase & Co., Wells Fargo & Company, Citigroup Inc., and Ally Financial Inc.

collectively agreed to a $25 billion settlement with U.S. Federal government to address past

improper mortgage loan servicing and foreclosure fraud [5]. UBS lost $2.3 billion due to

unauthorized trades, and Royal Bank of Scotland Group PLC (RBS) lost $275 million in

a settlement to resolve allegations of misleading investors in mortgage-backed securities [5].

Furthermore, in the most recent Dodd-Frank Act Stress Test (a routine test banks have

to go through with federal regulators to determine solvency), the severely adverse scenario

projected operational risk losses for the thirty-five participating Bank Holding Companies

3



of $135 billion, or 23 percent of the $578 billion in aggregate losses projected for these firms

over the nine quarters ending in March of 2020 [5].

As mentioned previously, the Advanced Measurement Approach (AMA) for calculating

how much capital an institution holds is a government regulatory requirement for larger

banks [5]. Figure 2 shows the percentage of capital dedication to operational risk of major

U.S. Banks. Also, in Figure 3, data from [7] outlines leading operational losses in 2017.

The amount of loss was significant and impactful, particularly within the U.S. This type of

data further exemplifies operational risk as an important source of risk for banks. Therefore,

understanding the key factors of operational risk as well as quantifying their impacts is an

important task in risk measurement and management [5].

Fig. 2.: Regulatory Capital ratios for the “Advanced Measurement Approach” Banks.
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Fig. 3.: Top loss events of 2017, Industry wide [7].

1.2 Analyzing Operational Risk with Time Series, Frequency and Loss Distri-

butions

Embrechts and Hofert [8] informs us that according to the 2008 LDCE, the vast majority

of banks model frequency and severity distributions separately. For modeling the frequency

distribution, the Poisson (93%) and the Negative Binomial (19%) are usually used. For

modeling the severity distribution, 31% of the banks use a single distributional model (with

log-normal (33%) and Weibull (17%) the most common choices), 29% use two distributions

glued together (for the body, empirical (26%) and log-normal (19%); for the tail, gener-

alized Pareto (31%) and log-normal (14%)), and 19% use two separate distributions for

high-frequency/low-severity and low-frequency/highseverity losses (2011). However, here we

recognize operational losses modeled as realizations of a continuous stochastic process from

combining a counting process (frequency) and a continuous severity distribution [3]. The
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Fig. 4.: Example of Time Series with time represented on the x-axis and the magnitude of

loss distribution on the y-axis.

broad loss categories discussed previously naturally have different time scales for frequency

of events as well as different (severity) magnitudes. A sequence of numerical data points in

successive order is defined as a time series. An examiner of data chooses a convenient time

window to analyze statistically. This information can then be used to find associated pat-

terns to predict future activity, to model how risk changes over time, to make comparisons

to shifts in variables within the same time window, or to identify seasonality, peaks and

troughs. In operational risk one examines the magnitude of losses as well as the frequency

of occurrence of loss. Loss events are chaotic in nature with events occurring at irregular

instances of time, which makes it imperative to examine frequency distributions to under-

stand the underlying loss arrival process [2]. The most common distributions used when

analyzing frequency include binomial, geometric, Poisson, and negative binomial distribu-

tions, with the latter two being more common than the others. The magnitude of losses

are depicted by severity distributions. Chernobai [2] states that due to the specific nature

6



of operational loss data, the distributions that most often apply to modeling loss are right

skewed or heavy-tailed. These distributions include the gamma, lognormal, Weibull, Pareto

and the Burr. The severity distribution selected is determined by the type of loss being

examined, but heavy tailed distributions, such as the GPD or Weibull commonly describe

operational loss magnitudes [2].

For the severity distribution we consider several distribution functions fS(x):

fS(x) =
1

Γ(α)β

(
x

β

)α−1
exp

(
− x/β

)
, for x > 0;α, β > 0, Gamma (1.1)

fS(x) =
1

x
√

2πσ
exp

(
− (log(x)− µ)2

2σ2

)
, for x > 0;µ ∈ R, σ > 0, Lognormal (1.2)

fS(x) =
1

σ

(
1 + k

x

σ

)−1−1/k
, for x > 0, GPD (1.3)

fS(x) =
b

a

(x
a

)b−1
exp

(
−
(x
a

)b )
, for x > 0; b > 0; a > 0, Weibull (1.4)

fS(x) =

kc
α

(
x
α

)c−1
(

1 +
(
x
α

)c)k+1
, for x > 0;α > 0; c > 0; k > 0, Burr (1.5)

The statistics for these common parametric PDFs are displayed in Table 1.

Table 1.: Severity distribution family and statistics.

Here Γ(x) =
∫∞
0
zx−1e−z dz and B(x, y) = Γ(x)Γ(y)/Γ(x + y). To insure the mean

and variances are finite, in GPD we have 0 ≤ k < 1
2
, in Burr we have k > 2

c
.

Distribution Mean E[S] = µS Variance E[S2]− E[S]2 = σ2
S Allowable Parameters

Gamma αβ αβ2 α, β > 0

Lognormal exp (µ+ σ2/2)
(
eσ

2 − 1
)
e2µ+σ

2
σ > 0

GPD σ
(1−k)

σ2

(1−k)2(1−2k) σ > 0 and 0 ≤ k < 1
2

Weibull aΓ
(

1 + 1
b

)
a2Γ

(
1 + 2

b

)
− a2

(
Γ
(
1 + 1

b

) )2
a, b > 0

Burr kαB
(
k − 1

c
, 1 + 1

c

)
kα2B

(
k − 2

c
, 1 + 2

c

)
− (kα)2B

(
k − 1

c
, 1 + 1

c

)2
α, c, k > 0 and k > 2

c
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1.2.1 Issues in Analyzing Operational Risk

To control operational risk it is necessary to understand both advantages as well as

limits of a mathematical prediction [3]. Due to the fact that losses can occur with different

time-scales, ranging from a daily, monthly, or yearly basis, one must consider frequency

distribution models carefully, as well as the manner in which data is collected. For instance,

one must determine if time will be based on the date of occurrence of a risk loss event, the

date of discovery, or the date of invoice of loss, as each can result in different outputs.[8]

states that Operational Risk losses arising from legal events are often not identified until

months after the date of their occurrence. They further note that, the question arises about

the date that a bank should assign such losses within its internal loss database (e.g., date of

occurrence, date of discovery, date of accounting, date of agreement or settlement). Choices

of this date are not specified by Basel II. However, this can have a significant impact on

the assessment of a bank’s OR profile [8]. For our purposes, we will only address how the

frequency distribution is modeled. Another consideration is how a single event contributes

to other types of loss, which then implies dependency. Not only does the dependency create

an issue in calculating predictions and statistics, but the ability to even determine such

dependency in reporting data is a major focus for modelers. In order to instigate the selection

of proper measures for operational risk loss mitigation, financial institutions must be able to

consider multiple factors and assumptions, but still maintain confidence in their predictions

of loss. Developments in information systems and computing technology have facilitated

improvements in the measurement and management of operational risk. However, the same

technological advancements that are reshaping today’s business environment are also likely

to expose banks to even greater operational risks in the future. Thus, the desire to develop

these methods stem from the inability in current common practices to assess operational

risk losses in certain categories and time scales, and as mentioned by [3], it is therefore

8



imperative that banks and supervisors continue to strengthen their approach to managing

and mitigating operational risk.

There are risk categories where the data is scarce (e.g., Employee Practices & Workplace

Safety, Technology and Infrastructure Failure, see Fig. 3) and commonly used methods to

fit a loss distribution model to data would suffer from insufficient sample size. Similarly,

estimating the correlation between loss categories with scarce data is challenging because

the status quo is to fit a heavy-tailed copula (e.g., t-copula) to the data [9]. This challenge

is further exacerbated by the common practice of fitting the copula to the raw data that

has more samples rather than on cumulative data summed over the desired time window,

i.e., yearly capital is a common desired output [2] but correlations might be calculated with

monthly/daily data that has more samples.

1.3 Plans and Assumptions

Here we introduce a stochastic point process model for the frequency distribution that

has two main parameters: average frequency and a time scale parameter. The advantages

of this model are as follows: i) the parameters could be fit with sufficient data but are also

intuitive enough to rely on expert judgement when data is insufficient, ii) when coupled with

an independent severity distribution model, the auto- and cross-correlation functions are

mathematically tractable, so we can analytically calculate the cumulative loss statistics over

varying time windows using tools from signal processing [10] and computational neuroscience

[11, 12, 13, 14, 15, 16]. Finally, we will demonstrate the strengths and shortcomings of our

new approach by using freely available loss data from several operational risk categories. Our

loss distribution model and correlation calculations will be compared to common industry

practices [9], that in particular heavily rely on data for fitting a heavy-tailed copula.Using

combined data from a consortium of institutions, we fit our model to loss statistics of an

average institution, and show that different time windows of (cumulative) losses can lead to

9



a large range of loss statistics, which in turn can significantly effect calculations of capital

requirements.

In general, the objective is to estimate a cumulative loss distribution and to derive

entities of interest from it [3], i.e., the 99.9 percentile of the cumulative loss distribution is

a common measure of capital, or Value-at-Risk (VaR). Additionally, our proposed methods

could potentially address the shortcomings we have previously highlighted in the AMA.

t

R
1

t

Δt

Tw

μ
R

σ2
R μ

R
σ2
R

Δt
Tw

μ
R

σ2
R

μ
R σ2

R

Δt

Tw

, losses in small time windows Δt

, losses (cumulative) in Tw

R
RA

,R
1

R
2
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2

B

R
1
,R

1

R
2
,R

2
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1 
,R

2
)=?

Cov(R
1 
,R

2
)=?

Fig. 5.: Varying operational risk loss statistics.

Figure 5 displays how operational risk loss statistics can vary depending on risk category

and on time window operations. A gives examples of two different loss time series (top and

bottom). For each loss category, two time series from the same loss data are shown: losses

in small windows (∆t dark blue) which are denoted by Rj(t) and cumulative losses in time

window Tw denoted by Rj(t) . Right panels show aggregate loss distributions averaged

over time, marked with corresponding statistics of interest. B depicts the range of the

joint distributions of (R1, R2) (dark blue) and (R1,R2) (light blue). The covariance and

correlation are important for calculating aggregate capital different risk categories, but can

depend on time window of observations.
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The overall loss distribution model is often based on assumptions about the frequency

and severity of operational risk loss categories [1, 2]. To enable mathematical analysis, one

of our key assumptions is to assume that the time series is stationary (i.e., the statistics do

not vary over time) and that frequency is independent of severity. That is:

µ(t0) = µ(t1) = µX (1.6)

Another common assumption in mathematical calculations of time series is that the

system is ergodic, so that the average over time is equal to the average over trials:

µX =
1

T

∫ T

0

x(t) dt, T = time interval (1.7)
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CHAPTER 2

SINGLE LOSS TIME SERIES WITH HOMOGENEOUS POISSON PROCESS

We first consider a simple time series where the frequency distribution is given by a homo-

geneous Poisson Process with rate ν events/time, and independent severity distribution fS.

We present the calculation of second order statistics of the whole time series for a given loss

category. For each risk type and a given period, operational losses are represented by a time

series Rj, where j indexes a time interval of size ∆t (assumed to be small enough so that at

most one operational loss event can occur).

In a homogeneous Poisson process, the probability of a loss event in a time bin is νr∆t

and each time bin is independent. To derive the first and second order statistics, we use the

PDF of Rj:

fR = Itj ∗ Sj,

where

Itj =


0, no loss event at tj

1, have loss event at tj

(2.1)

We have the mean is:

E[R] = 0 ∗ (1− νr∆t) +

∫ T

0

s(νr∆t)f(s) ds (2.2)

= νr∆t

∫ T

0

sf(s) ds = (νr∆t)µs (2.3)

12



where µS is the mean of the chosen severity distribution. The variance is:

σ2
R = E[R2]− E[R]2 = E[R2]− (νr∆tµs)

2

where

E[R2] = 02 ∗ (1− νr∆t) +

∫ T

0

s2(νr∆t)f(s) ds = (νr∆t)µs2

therefore,

σ2
R = (νr∆t)µs2 − (νr∆tµs)

2 (2.4)

2.1 Cumulative Loss Statistics in Arbitrary Time Windows

For the purposes of aggregating capital over different time horizons (i.e., yearly capital

assessment is regulatory requirement [1, 2]), we consider cumulative losses over different time

windows to understand how this practice of using different time windows might effect the

statistics. Development of methods to capture cumulative losses in arbitrary time windows

may also help institutions handle certain operational loss categories that occur infrequently

and other categories where data are collected infrequently. Recall that Rj is the loss in small

time bin ∆t, the cumulative losses in a time window of length Tw that contains n := Tw/∆t

time bins is:

Rl =
n∑
j=1

Rj+(l−1)∗n

where the subscript l denotes the lth window of length Tw. The mean is:

µR =
∑

E[Rj] = n∆t
(
νrµS

)
= TwνrµS (2.5)

With a homogeneous Poisson Process model, each of the Rj are independent, making the

calculation of the variance tractable because the covariance terms are 0:

σ2
R =

∑
V ar(Rj) + 2

∑
j<k

Cov(Rj, Rk) = n∆t
[
(νr∆t)µs2 − (νr∆tµs)

2
]

(2.6)
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2.2 Relationship Between Autocovariance Function and Cumulative Loss Statis-

tics

The autocovariance function is a common tool used to quantify the temporal dynamics

of a time series; here we define it as:

A(t) = Eτ [Rt+τRτ ]− Eτ [Rτ ]
2 (2.7)

A(t) specifies how correlated (or degree of co-variability) two points separated by time

t are, on average. Note that A(t = 0) = σ2
T is the (point-wise) variance in time. The

autocovariance has a nice relationship with the cumulative loss in a window of length Tw

whenever the time series satisfies stationarity [10]:

σ2
R =

∫ Tw

−Tw
A(t)

(
Tw − |t|

)
dt (2.8)

Indeed, we can use this equation to derive equation (2.6); note that the Autocovari-

ance function of Rj with a Poisson Process frequency distribution and independent severity

distribution is:

A(t) = σ2
Rδ(t) = σ2

R

1

∆t
. (2.9)

Substituting this into equation (2.8), we get:

σ2
R = σ2

R

(
Tw − |t|

)∣∣∣
t=0

= σ2
RTw =

(
νrµs2 − (νrµs)

2∆t
)
Tw,

noting that n := Tw/∆t we get:

σ2
R = σ2

RTw = n∆t[(ν∆t)µs2 − (ν∆tµs)
2]

We discover that this is the same as equation (2.6).This nice property will become

useful as a method to determine variance in more complex cases, such as when we consider

dependent events.
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Fig. 6.: Validation of results for homogeneous Poisson Process frequency model.

2.3 Summary of Homogeneous Poisson Process

Results from Figure 6 demonstrates the accuracy of our analytic calculations for a wide

variety of severity distribution parameters. The dark blue stars are the loss statistics in

small time windows ∆t calculated by Monte Carlo, while the analytic formulas are solid

black curves. The light blue stars are the loss statistics in a larger time window (Tw = 1 year

here), following the dark/light blue coloring convention in Fig 5. Overall we see that our
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formulas are very accurate. The analytic calculations for the mean and variance of aggregate

loss distributions with frequency distribution as a homogeneous Poisson process with rate

νr = 75 (events/year) for commonly used severity distributions (see Table 1); see Table 7

to compare to industry-wide frequency averages. A shows the mean µR and variance σ2
R

of aggregate loss distribution in small windows ∆t = 0.001 in time units of years (≈ 0.365

day), with Monte Carlo simulations in stars and calculations with solid curves (Eq. (2.3) and

(2.4)). For Lognormal, σ =
√

2 log(2),
√

2 log(3),
√

2 log(4); ; vertical axis is log-scale for

Lognormal, and Weibull variance. B Shows the mean µR and variance σ2
R of cumulative losses

in large time windows Tw = 1 year, with Monte Carlo simulations in stars and calculations

with solid curves (Eq. (2.5) and (2.6)).

The formulas we derived for the mean and variance of aggregate loss distributions,

assuming a homogeneous Poisson process frequency distribution and independent severity

distribution (Equation (2.3), (2.4), (2.5), (2.6)), are straightforward calculations but have

scarcely been reported. This could be due to a number of factors, including: focus on tailend

loss distribution, desire to keep methods proprietary, reliance on Monte Carlo simulations,

lack of temporal dependence, etc. Nevertheless, our work shows analytic calculations are

possible for this common frequency distribution model and very accurate.
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CHAPTER 3

TIME SERIES WITH INHOMOGENEOUS POISSON PROCESS

Realistic models of loss frequencies must account for dependence between loss events; oper-

ations of institutions are not simply memory-less. Operational risk models, such as the loss

distribution approach, frequently use past internal losses to forecast operational loss expo-

sure. However, the ability of past losses to predict exposure, particularly tail exposure, has

not been thoroughly examined in the literature [17]. [18] notes that while making advances

in some areas, banks still rely on many highly subjective operational-risk detection tools,

centered on self-assessment and control reviews. Such tools have been ineffective in detecting

cyberrisk, fraud, aspects of conduct risk, and other critical operational-risk categories. Ad-

ditionally, they miss low-frequency, high-severity events, such as misconduct among a small

group of frontline employees (2020). Thus, it is imperative that we investigate a time series

utilizing an inhomogeneous Poisson Process model where each of the Rj are dependent, and

the probability of Rt > 0 depends on time. This makes the calculation of the statistics, the

variance in particular, difficult to analyze. We revisit the definition of variance:

σ2
R =

∑
V ar(Rj) + 2

∑
j<k

Cov(Rj, Rk)

In this case the covariance terms will result in combinatorial blowup. That is, the

covariance of cumulative losses in larger windows Tw are unwieldy because of the possible

correlation of a large number,
(
n
2

)
, of different RjRk terms (here n = Tw/(∆t)). In addition,

the non-Markovian nature of Rj and Rk pose calculation hardships. However, we are not left

without a method to determine the variance, as we can use equation (2.8). This provides us

with the unique situation because the autocovariance A(t) is tractable. Therefore, with an
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inhomogeneous Poisson Process, the autocovariance not only serves as a statistical analysis

tool, but also as a method to determine the variance in a time series. While the pdf of R

will not change, that is: R = S ∗ νt∆t. What does change is our calculation of ν. We model

ν depending on time by a stochastic differential equation.

τν ′t = −νt + τa
∑
k

δ(t− tk) (3.1)

Here tk is a random point in time given by a homogeneous point process with rate γ, a is the

jump size of νt at times tk, and τ is the time-scale that determines how fast νt decays to 0 in

the absence of random jumps at tk. This frequency distribution model has three parameters

that essentially control two main factors: (γ, a) that control the magnitude of the frequency

of events, and τ that is a measure the memory of a loss category. In contrast to other time

series models, this stochastic differential equation formulation consists of parameters that are

intuitive and easy to understand for decision makers: memory or time-scale and frequency.

We let D(t) =
∑
k

δ(t− tk), E[D(t)] = γ, and recognize that the only source of randomness

on the rhs is D, to acquire the mean of νt:

νt = a

∫ ∞
0

D(t′)e
−(t−t′)

τ dt

E [νt] = a

∫ ∞
0

E [D(t′)] e
−(t−t′)

τ dt = aγτ

This yields

E [R] = E [S] ∗ E [νt] = µs(aγτ) (3.2)

For the variance we will require the 2nd moment of νt.

ν2t = a2
∫ ∞
0

∫ ∞
0

D(t− u)D(t− v)e
−u
τ e

−v
τ dudv (3.3)
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Note that E [D(t− u)D(t− v)] = γ2 + γδ(u− v).

E
[
ν2t
]

= a2
∫ ∞
0

∫ ∞
0

[
γ2 + γδ(u− v)

]
e
−u
τ e

−v
τ dudv

= γ2(aτ)2 + a2γ

∫ ∞
0

e
−2v
τ dv = γ2(aτ)2 +

a2γτ

2

The variance of νt is:

V ar(νt) =
a2γτ

2
(3.4)

The autocovariance E[νt′νt′+t] − E[νt]
2 is similarly calculated by replacing D(t − u) with

D(t′ + t− u) in equation (3.3):

Aνt(t) =
a2γτ

2
e−|t|/τ (3.5)

Since the second moment of R is:

Eν
[
E[R2|νt]

]
= µS2∆tEνt [νt] = µS2(aτγ∆t),

the variance of R is:

σ2
R = µS2(aτγ∆t)− (µSaτγ∆t)2 (3.6)

For cumulative losses in larger time windows, the statistics are calculated similarly, with:

µR =
∑

E[Rj] = n∆t
(
aγτµS

)
= TwaγτµS (3.7)

We have determined our mean for cumulative losses in large time windows of an inhomo-

geneous Poisson process, but the variance will require the use of the calculation of our auto

covariance. We can then substitute into equation (2.8), and get the variance of cumulative

losses in a time window Tw.

3.1 Autcovariance with Inhomogeneous Poisson Process

As mentioned above, the autocovariance (ACF) serves dual purposes in regards to

investigating the statistics of the inhomogeneous Poisson process. We have utilized some of
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the properties of autocovariance to determine the variance of ν and R. More importantly

however, the autocovariance will help us determine the dependency of our random variables

at different time points. Simply put, it will give us an indication of whether or not one

occurrence of loss is dependent upon a loss from a previous time step. To determine the

autocovariance of νt we utilize E[νt′νt′+t] − E[νt]
2 and use similar calculation but simply

replacing D(t− u) with D(t′ + t− u) in equation (3.3) to get:

Aνt(t) =
a2γτ

2
e−|t|/τ (3.8)

When determining the ACF of Rt it is first important to note that the autocovariance

contains the variance when τ = 0. We argue that due to the temporal structure of Rt, which

is solely based upon νt, the auto covariance of our time series is approximately:

AR(t) = Aνt(t) ∗ var(Rt). (3.9)

By substituting t = 0, we readily determine the ACF of Rt because it is just Aνt(t) scaled

by a factor. Therefore,

AR(t) = σ2
Re
−|t|/τ . (3.10)

-50 50
Time Lag (Years)

0

4

8

12

A
u

to
c
o

v
a

ri
a

n
c
e

 o
f 
t

A B

0
0

2

4

A
u

to
c
o

v
a

ri
a

n
c
e

 o
f 
R

N=1

N=500

N=1000

N=2500

N=5000

N=10000

N=50000

-50 50
Time Lag (Years)

0

Analytic Formula

Monte Carlo (N=1000)
Analytic Formula
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From Figure 7, it initially appears as if our analytic calculation of AR(t) has large errors.

However, when we increase the number of realizations we can see our analytical calculation

begin to converge to the Monte Carlo simulation, which convinces us that our calculations

are accurate.

Specifically, the number of realizations effects AR(t) significantly. Consider the inhomo-

geneous Poisson process model for the frequency distribution in (3.8) (νi = 4 events/year,

a = 1 event/year, τ = 5 years), with a gamma distribution for the severity S ∼Gamma(α =

1.5, β = 2.5). A is a comparison of Aνt(t) calculated from Monte Carlo simulations (cyan)

of Eq. (3.1) with theoretical calculation (black, from Eq. (3.8)) shows good agreement with

relatively few realizations (N = 1000, 1000 years for each realization). B is a comparison

of AR(t)∆t calculated from Monte Carlo simulations (rainbow) with theoretical calculation

(black, from Eq. (3.10)) shows that many realizations are required to achieve accuracy.

Just as we have accomplished previously, we can confidently use the calculation of our

autocovariance, equation (3.10), substitute into (2.8), and get the variance of cumulative

losses in a time window Tw:

σ2
R =

1

∆t

∫ Tw

−Tw
AR(t)

(
Tw − |t|

)
dt =

because of symmetry

2
1

∆t

∫ Tw

0

σ2
Re
−t/τ

(
Tw − t

)
dt = 2

σ2
R

∆t

[∫ Tw

0

e−t/τTw dt−
∫ Tw

0

σ2
Re
−t/τ t dt

]
=
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Now, using integration by parts,

σ2
R = 2

σ2
R

∆t

[
−Twτe−t/τ

∣∣∣Tw
0
−
(
t(−τe−t/τ )−

∫ Tw

0

−τe−t/τ dt
)]

= 2
σ2
R

∆t

[
−Twτe−t/τ

∣∣∣Tw
0
−
(
− tτe−t/τ + τ 2e−t/τ

)∣∣∣Tw
0

]
= 2

σ2
R

∆t

[(
− Twτe−t/τ + Twτ

)
−
(

(−Twτe−t/τ + τ 2e−t/τ )−
(

0 + τ 2)
)]

= 2
σ2
R

∆t
τ
(
Tw + τ(e−Tw/τ − 1)

)
(3.11)
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Fig. 8.: Validation of results for inhomogeneous Poisson Process frequency model (3.1).
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Fig. 9.: Inhomogeneous Poisson process with scalar adjustments to analytical formulas.

3.2 Summary of Time Series with Inhomogeneous Poisson Process

Figure 8 displays our results from an inhomogeneous Poisson process by comparing

the mean and var of R and R following format of Figure 6; here we set τ = 1.2, a =

1, γ = 75/2. A) Comparing the analytic formula for µR (Eq.(3.2), σ2
R (Eq.(3.6)) (solid lines)

with the Monte Carlo simulations (stars), and similarly for R in (B): µR (Eq.(3.7)), and

σ2
R (Eq.(3.11)). The general trends for σ2

R are captured (see Fig. 9A) The Monte Carlo

simulations are for 50,000 realizations with each being 100 years.

The analytic formulas we derived (Eq (3.2), (3.6), (3.7), (3.11); black lines in Fig 8) are

generally very accurate in comparison to the Monte Carlo simulations (stars, Fig 8). The

glaring exception is the analytic approximation of σ2
R in Fig 8B (bottom row, black lines);
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our theory does not accurately capture the Monte Carlo simulations (light blue stars).

This was initially surprising to us, previously believing that there might have been

an error in our analytic calculation and/or in the Monte Carlo simulations. After much

investigation and careful re-checking, we are certain that this quantitative mismatch is not

easily rectifiable in these operational risk models. Indeed, this quantitative mismatch in

using this exact same calculation (Eq. (3.11)) to approximate statistics in different time

windows has previously been reported in the literature. Although the details of the models

are different, we see this in the variance/covariance of (spike) statistics (see Fig 2C, Fig 5B,

Fig 6B2 in [14], Fig 3B,C,D in [13], Fig 2 in [15]) where the important trends are captured

rather than precise exquisite matching.

Despite quantitative inaccuracies between the Monte Carlo simulation and the analytic

formula (Eq.(3.11)) for σ2
R, a simple scalar factor can yield accurate results.As such, Our

analytic calculation still has value in capturing the qualitative trends of the Monte Carlo

simulations. These simple scalar factors can yield relatively accurate approximations (Fig

9), indicating that our formula

σ2
R = 2

µS2(aτγ∆t)− (µSaτγ∆t)2

∆t
τ
(
T + τ(e−T/τ − 1)

)
(3.12)

reveals the relative trends as parameters are varied. Fig 9A shows the comparisons of the

analytic theory but all 3 gray curves in each panel is scaled by a factor. Specifically, A is the

same as Figure 8B, except analytic formula are scaled by 2, 1.5, 1.6, 1.5, 1.6, respectively.

The scaling factors were manually determined.

Fig 9B shows how our analytic calculation approximates the statistics as the time-scale

of the inhomogeneous frequency distribution, τ , varies; note that as τ increases there appears

to be more discrepancies between the Monte Carlo and the analytic calculations. The last

panel on the far-right for σ2
R shows both the original formula (black) and the curve scaled

by 2.74 (gray; computed as least-squares fit to the stars). In detail, B fixes all parameters
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(a = 1, γ = 75/3.1) except τ that varies from 0.5 to 3.1 (unit=years), using a Gamma

distributed severity distribution S ∼Gamma(α = 20, β = 3) ; last column has σ2
R scaled by

2.74. The accuracy of the theory slightly diminishes as τ increases.

In Figures 8–9, rather than simulating a realization of along time series (as in Fig. 6),

we simulated many realizations (50,000) of a moderate length time. This was to insure that

the autocovariance of Rt was accurately captured compared to the theory (Eq. (3.10)); see

Figure 7B with 50,000 realizations in red. Note that a very small number of realizations

can accurately capture the autocovariance of the time-varying inhomogeneous Poisson rate

νt (Fig. 7A).
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CHAPTER 4

MULTIPLE LOSS CATEGORIES

4.1 Calculating Statistics for Two Correlated Loss Time Series

Here we extend the methods for a single loss category to two loss categories, which often

suffices for calculating aggregate capital because pairwise correlations are commonly used

to determine diversification of risk [2]. It is commonplace in the operational risk literature

and elsewhere to describe dependence using correlation [19]. To capture dependencies of

potential Operational Risk losses across or within business lines or event types, the notion of

correlations, or more general, the notion of copulas, may be used [8]. Although we assume

that the frequency distributions for both loss categories have the same form as Eq. (3.1):

τ1ν
′
1 = −ν1 + τ1a1

∑
k1

δ(t− tk1) (4.1)

τ2ν
′
2 = −ν2 + τ2a2

∑
k2

δ(t− tk2) (4.2)

a key difference is that the frequencies can be correlated. The random times tk1 , tk2 are

again governed by an inhomogeneous Poisson Process with rates γ1 and γ2, respectively,

but the random times (tk1 , tk2) can be correlated. The parameter c ∈ [−1, 1] is a measure

of the correlation between tk1 , tk2 ; letting γ̄ := min(γ1, γ2), the value |c|γ̄ is the probability

per unit time that ν1 and ν2 instantaneously jump at the same time, both in the positive

direction if c > 0 and in opposite directions when c < 0. The marginal statistics of νj, Vj

(the cumulative frequency in Tw), Rj and Rj, for j ∈ {1, 2}, are the same as with a single
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loss time series:

E[νj] = ajτjγj (4.3)

V ar(νj) =
a2jγjτj

2
(4.4)

E [Vj] = Twajγjτj (4.5)

V ar (Vj) = a2jγjτ
2
j

(
Tw + τj(e

−Tw/τj − 1)
)

(4.6)

µRj = µSj(ajγjτj∆t) (4.7)

σ2
Rj

= µS2
j
(ajτjγj∆t)− (µSjajτjγj∆t)

2 (4.8)

µRj = TwajγjτjµSj (4.9)

σ2
Rj = 2

σ2
Rj

∆t
τj

(
Tw + τj(e

−Tw/τj − 1)
)
. (4.10)

To generalize the theory and calculations from the prior section, we consider the cross-

covaraince function of CCν(t) := E[ν1(t
′+t)ν2(t

′)]−E[ν1]E[ν2]; note that CCν(t) 6= CCν(−t),

unlike with the autocovariance function where A(t) = A(−t) for both R and νt. The analo-

gous equation to Eq. (3.5) is:

ν1(t
′)ν2(t

′ + t) = a1a2

∫ ∞
0

∫ ∞
0

D1(t
′ + t− u)D2(t

′ − v)e
−u
τ1 e

−v
τ2 du dv. (4.11)

where Dj(t) =
∑
kj

δ(t− tkj). Since

E[D1(t
′ + t− u)D2(t

′ − v)]− γ1γ2 = cγ̄δ(t− u+ v)

by construction, we take the expected value of Eq. (4.11), using similar calculations as before

to get:

CCν(t) = cγ̄a1a2
τ1τ2
τ1 + τ2

 e−t/τ1 , if t ≥ 0

e−|t|/τ2 , if t < 0
(4.12)

We apply the same arguments as before when deriving AR(t) (Eq. (3.10)): since Rj and

Dj have the same temporal support, the cross-covariance functions must be of a similar form.
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We first derive the point-wise covariance for the losses in small windows ∆t: Cov(R1, R2)

and set this to CCR(t = 0) to get:

CCR(t) = Cov(R1, R2)

 e−t/τ1 , if t ≥ 0

e−|t|/τ2 , if t < 0
(4.13)

To derive Cov(R1, R2), we employ similar methods for σ2
R (Eq. 3.11):

E[R1(t)R2(t)] = Eν
[
E[R1R2|ν]

]
= µS1µS2Eν [ν1ν2](∆t)2

= µS1µS2

(
cγ̄a1a2

τ1τ2
τ1 + τ2

(∆t)2 + (a1τ1γ1∆t)(a2τ2γ2∆t)
)
, (4.14)

to get:

Cov(R1, R2) = µS1µS2cγ̄a1a2
τ1τ2
τ1 + τ2

(∆t)2. (4.15)

Using the same method as before to relate the autocovariance of R to the variance of cu-

mulative losses in larger time windows Tw, we relate the cross-covariance function to the

covariance of cumulative losses in Tw:

Cov(R1,R2) =

∫ Tw

−Tw
CCR(t)

(
Tw − |t|

)
dt

= Cov(R1, R2)
τ1

(
Tw + τ1(e

−Tw/τ1 − 1)
)

+ τ2

(
Tw + τ2(e

−Tw/τ2 − 1)
)

∆t
(4.16)

= cγ̄µS1µS2a1a2
τ1τ2
τ1 + τ2

[
τ1

(
Tw + τ1(e

−Tw/τ1 − 1)
)

+ τ2

(
Tw + τ2(e

−Tw/τ2 − 1)
)]

∆t

(4.17)

Recall that the (point-wise) covariance of the frequency distributions is:

Cov(ν1, ν2) = cγ̄a1a2
τ1τ2
τ1 + τ2

. (4.18)

It follows naturally from the above calculations for Cov(R1,R2) that Cov(ν1, ν2) in larger
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time windows Tw is:

Cov = cγ̄a1a2
τ1τ2
τ1 + τ2

[
τ1

(
Tw + τ1(e

−Tw/τ1 − 1)
)

+ τ2

(
Tw + τ2(e

−Tw/τ2 − 1)
)]

(4.19)

We state this equation for completeness, and also because it will be used in our application.
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Fig. 10.: Analytic theory vs Monte Carlo simulations of cross-covariance of cumulative losses

in different time windows.

4.2 Summary of Multiple Loss Categories

We can see from figure 10 that our analytic theory captures covariance of cumulative

losses in different time windows. In A) we see comparisons of cross-covariance of frequency

rates (ν1, ν2), CCν(t). In cyan is the Monte Carlo, with very few realizations, and in solid

black is our analytic theory (Eq (4.12)), with input correlations c = ±0.7. In B) we see com-

parisons of cross-covariance, the function of actual loss time series CCR(t), and Monte Carlo

in colors, with fixed N = 1000 but total time 2000 years (blue), 5000 years (red), 10,000 years
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Fig. 11.: More demonstrations of the analytic theory for covariance of cumulative losses

with Tw = 1 year throughout, but varying the input correlation c and randomly choosing the

severity distribution parameters.

(green). The analytic theory is the dashed black, Eq (4.13), with input correlations c = ±0.5.

Unsurprisingly, our calculations more accurately capture the Monte Carlo simulations as we

increase the number of years. This is reminiscent of our findings with the autocovariance

of R (AR(t)), where we found more realizations leading to better accuracy between analyt-

ical formulas and Monte Carlo simulations. C) gives us a picture of the accuracy of our

analytical equation for varying time windows Tw for a fixed c = 0.25. The fixed parame-
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ters are: a1 = 1.5, τ1 = 1.3 years, γ1 = 30 years−1, a2 = 2, τ2 = 0.75 years, γ2 = 40 years−1;

S1 ∼GPD(k = .15, σ = 50), S2 ∼Weibull(a = 5, b = 0.4). Lastly, D) displays comparisons

for Cov(R1, R2) and Cov(R1,R2) with Tw = 1 year and Tw = 2 years, with the same for-

mat as before. The input correlation c varies across a wide-range. A positive correlation is

apparent between our analytical and Monte Carlo simulations.

Additionally, we provide more demonstrations of the analytic theory for covariance

of cumulative losses in figure 11. Here we set Tw = 1 year throughout, but we vary the

input correlation c (see legend for coloring) and randomly choose the severity distribution

parameters, all uniform distributions (independent) with the same ranges as in Figs 6,8.

The horizontal axes is the Monte Carlo, vertical is the analytic theory; the diagonal line is

solid black, so perfect accuracy are points that are on the black line. A–B S1 ∼Lognormal,

S2 ∼GPD, with ∆t windows (A) and Tw = 1 year (B). C–D S1 ∼Weibull, S2 ∼Burr, with ∆t

windows (C) and Tw = 1 year (D). The fixed parameters are: a1 = 1.5, τ1 = 1.3 years, γ1 =

30 years−1, a2 = 2, τ2 = 0.75 years, γ2 = 40 years−1. In either figure, we notice that when

c < 0, our analytical and Monte Carlo don’t match. This is likely due to how we simulate

negative correlations in ν1,2, where a fraction (c) of the instantaneous jumps are in opposite

directions – we did not fully explore the other ways to simulate negative correlations because

positive correlations are the main focus operational risk.
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CHAPTER 5

APPLYING THE MODEL TO INDUSTRY-WIDE AVERAGES

5.1 Extracting Data from a Real-world Source

From a statistical point of view, the data scarcity of operational risk losses is still

one of the major problems to be solved to adequately estimate model parameters and test

model assumptions[8]. Furthermore, obtaining actual operational risk loss data with granu-

lar details for a particular institution is extremely difficult due to proprietary reasons. Loss

information could reveal vulnerabilities in operations that institutions do not want to be

publicly available, especially to business competitors. [19] notes that there are three well-

known providers of external loss data for banks, namely the Fitch Group, the SAS Institute

and the Operational Riskdata eXchange Association (ORX). Fitch and SAS construct their

databases from publicly available information (media reports, regulatory filings, legal judg-

ments, etc,) about operational losses over US$1 million, and the data can be purchased from

these vendors. The most easily attainable and detailed operational risk loss data we found

was provided by ORX, an organization that facilitates sharing of actual operational risk

losses among its member institutions in a secure and anonymous platform [20]. ORX pro-

vides information to the public about the total count of loss events and the amount of losses

in prior years, as well as the number of member institutions contributing data in a given

year [21, 22]. Moreover, the cumulative frequency and severity losses data are available by

risk categories. While the ORX data provides useful and intuitive data, it was important

that we extract only the data relevant to the models we wish to provide. With our focus

on financial, operational risk, we only utilized data related to retail, private and commercial

banking and the categories of loss provided, which are presented in Table 2. These categories
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of risk in the banking business lines of the ORX report coincide with our earlier definition

of operational risk.

Table 2.: Risk Categories and Abbreviation

The convention used for Operational Risk loss categories are segmented into the 7

categories below. Although the names of each category can vary slightly, the actual

descriptions are equivalent; we adopt the naming convention used in ORX [21, 22].

Risk Categories

Abbreviation Definition

IF Internal Fraud

EF External Fraud

EPWS Employment Practices, Workplace Safety

CPBP Clients, Products, Business Practices

DPS Disasters and Public Safety

TIF Technology and Infrastructure Failure

EDPM Execution, Delivery and Process Management
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Table 3.: Extracted data of frequency of events with loss category proportions [21].

Number of losses from 2014-2019 by Type

Internal

Fraud

External

Fraud

Employment

Practices

&

Workplace

Safety

(EPWS)

Clients,

Products

&

Business

Practices

(CPBP)

Disasters

&

Public

Safety

(DPS)

Technology

&

Infrastructure

Failure

(TIF)

Execution,

Delivery

&

Process

Management

(EDPM)

Totals

Retail Banking 4561 100361 35026 39991 2509 2116 51352 235916

Private Banking 140 1671 1794 3268 23 110 3947 10953

Commercial Banking 327 8949 2033 7891 206 631 13462 33499

Totals 5028 110981 38853 51150 2738 2857 68761 280368

% of Total Bank Loss 2% 40% 14% 18% 1% 1% 25%

% Bank Losses to Gross 73%

Table 4.: Extracted data of severity of events with loss category proportions [21].

Total loss in Millions from 2014-2019 by Type

Internal

Fraud

External

Fraud

Employment

Practices

&

Workplace

Safety

(EPWS)

Clients

Products

&

Business

Practices

(CPBP)

Disasters

&

Public

Safety

(DPS)

Technology

&

Infrastructure

Failure

(TIF)

Execution,

Delivery

&

Process

Management

(EDPM)

Totals

Retail Banking 950 7045.2 3394.7 26504.3 389.7 844.4 13655.6 52783.9

Private Banking 161.1 304.4 233.8 2456.2 2.1 27.6 886.6 4071.8

Commercial Banking 158.4 4514 240 12962 30.3 678.4 5425.1 24008.2

Totals 1269.5 11863.6 3868.5 41922.5 422.1 1550.4 19967.3 80863.9

% of Total Bank Loss 2% 15% 5% 52% 1% 2% 25%

% Bank Losses to Gross 56%
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There was a total gross loss of 144.6 e–billion, and a total frequency of events 383,652,

for the years 2014-2019. We pulled this data from page 6 of the ORX Annual Banking

Lost Report [21], by summing both the yearly data for frequency and gross loss. This is of

importance, as we would use these numbers to ensure that our breakdown of the data per

category matched the proportion of frequency of loss events, 73 percent, and, in regards to

severity, the proportion of total gross loss, 56 percent, which were both reported on pages

10 and 12 respectively, in the banking business lines of the report [21]. The final piece of

extracted data would be the frequency of loss and the severity of loss in the banking lines of

the report on pages 11 and 13 [21]. With this in hand we determine the proportions of each

loss category. The following tables, Table 3 & Table 4 respectively, outline the extracted

data from pages 11 and 13. To ensure that the development of our tables were accurate,

we calculated these proportions and displayed them in row 6, column 2 of Table 3 & Table

4. Since we want to focus on bank loss, as opposed to the inclusion of all loss types and

categories, we needed to specifically obtain the proportion of each type of bank loss relative

to total bank loss. Row 5 of Table 3 & Table 4 capture this information by simply dividing

our row 4 totals by the value found in row 4 column 8 (sum total of severity and frequency

respectively). This we be an imperative step for assumptions we would be forced to use

moving forward. We give further insight of the ORX data with the representation of Figures

12 & 13.

While all of this data is useful, it is cumulative from 2014 - 2019. To better fit and

test our model with data we need to be able to view the data over different time windows,

i.e., years, months, weeks, etc. For our purposes we want to partition the data down to be

analyzed per year. Secondly, to show that the model is applicable to specific events that

a financial institution would find interest in, we want to narrow the data down to specific

types of loss, as opposed to total operational loss, which can result from a vast number of

loss categories.
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In order to accomplish this task we utilize the percentage breakdown for banking event

types, and make an assumption that, outside of major outlier events, the percentage break-

down would remain in approximately the same percentage for each of the five years. We then

ensured that these numbers total back up to the cumulative numbers and percentages that

were reported by ORX [21]. Specifically, we took the total number of events and the severity

of those events, and recorded them in the second column of Table 5 & Table 6. In column

3 of these same tables we include the number of banks that participated in the ORX study.

This gives relevance to the data as it applies to a true picture of banking loss around the

world. This piece of data also allows us to calculate averages per bank, which we present in

table 7. Next we take the proportion of each type of bank loss reported from row 5 of table 3

& table 4 and divide them by the respective values in column 2. While this method may not

reflect the actual values for each individual year, it does provide a very realistic approach to

apply data that is otherwise inaccessible. This data is formulated and represented in Table

5 & Table 6 below.

Table 5.: Frequency of Losses by Year

Total Number

of

Events

Number

of

firms

Assuming 73%

of loss due to

Bank Loss

Assuming 2%

due to

Internal Loss

Assuming 15%

due to

External fraud

Assuming 5%

due to

EPWS

Assuming 52%

due to

CPBP

Assuming 1%

due to

DPS

Assuming 2%

due to

TIF

Assuming 25%

due to

EDPM

2014 65766 80 48009.18 960.1836 19203.67 6721.2852 8641.652 480.0918 480.0918 12002.3

2015 69519 85 50748.87 1014.977 20299.55 7104.8418 9134.797 507.4887 507.4887 12687.22

2016 65797 92 48031.81 960.6362 19212.72 6724.4534 8645.726 480.3181 480.3181 12007.95

2017 63491 96 46348.43 926.9686 18539.37 6488.7802 8342.717 463.4843 463.4843 11587.11

2018 59642 97 43538.66 870.7732 17415.46 6095.4124 7836.959 435.3866 435.3866 10884.67

2019 59437 100 43389.01 867.7802 17355.6 6074.4614 7810.022 433.8901 433.8901 10847.25

Totals 383652

mean 46,678 934 18,671 6,535 8,402 467 467 11,669

standard deviation 2862.1094 57.24219 1144.844 400.69531 515.1797 28.621094 28.621094 715.5273

variance 53.498686 7.565857 33.83554 20.017375 22.69757 5.3498686 5.3498686 26.74934

Lastly, in order to analyze means, variance and covariance of the data as it relates to

different institutions, we succinctly describe this data as total industry-wide frequency and

severity by risk categories. We then divide by the number of institutions contributing data
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Table 6.: Severity of Events by Year

Total

Gross loss

in Millions

Number

of

firms

Assuming 73%

of loss due to

Bank Loss

Assuming 2%

due to

Internal Loss

Assuming 15%

due to

External fraud

Assuming 5%

due to

EPWS

Assuming 52%

due to

CPBP

Assuming 1%

due to

DPS

Assuming 2%

due to

TIF

Assuming 25%

due to

EDPM

2014 37600 80 21,056 421.12 3158.4 1052.8 10949.12 210.56 421.12 5264

2015 25100 85 14,056 281.12 2108.4 702.8 7309.12 140.56 281.12 3514

2016 28500 92 15,960 319.2 2394 798 8299.2 159.6 319.2 3990

2017 20000 96 11,200 224 1680 560 5824 112 224 2800

2018 17600 97 9,856 197.12 1478.4 492.8 5125.12 98.56 197.12 2464

2019 15800 100 8,848 176.96 1327.2 442.4 4600.96 88.48 176.96 2212

Totals 144600

mean 13,496 270 2,024 675 7,018 135 270 3,374

standard deviation 4553.32 91.0664 682.998 227.666 2367.726 45.5332 91.0664 1138.33

variance 67.478293 9.542872 26.13423 15.08861 48.65929 6.747829 9.5428717 33.739146

to get approximate loss data per institution. Even though institutions vary in size and have

different realized operational loss statistics, this data is likely the best and most detailed

data that is publicly available.

The columns of table 7 show: The average frequency (# events in a year, per institution)

and the variances (absent from Fig. 14A), segmented by the 7 risk categories. The last

column is the severity (e-Millions) per event, which is the only information we have access

to for fitting our models to µS. The overall average frequency and severity without regard

to category are: 514.13 events/year and 321.68 e-Millions/event (resp.). Same ORX data

the same source as in Figure 14.

5.2 Fitting the Data to the Model

In practice the Poisson distribution is widely used for frequency distribution and its

parameter is estimated independently from the internal and/or external loss data, whereas,

the parameters of alternative severity distributions are estimated from the internal and/or

external loss data [19]. So fitting our model to ORX data mainly requires dealing with the

frequency distribution, i.e., fitting cj,k(j 6= k), aj, τj, γj, giving a total of 42 parameters to

determine with the 7 loss categories (7 different a, τ, γ and 21 input correlations cj,k(j 6= k)).
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Table 7.: Statistics by Risk Categories. The average frequency (# events in a year, per

institution) and the variances (absent from Fig. 14A), segmented by the 7 risk categories.

The last column is the severity (e-Millions) per event.

Risk Category

Statistics (over 6 years) Grand Average

Frequency Mean Frequency Var Severity

(# events per year) (# events per year)2 (e-Millions per event)

IF 9.22 1.67 250.91

EF 203.51 815.19 106.23

EPWS 71.25 99.91 98.95

CPBP 93.8 173.16 814.51

DPS 5.02 0.496 153.3

TIF 5.24 0.54 539.31

EDPM 1.26 312.93 288.58

The superiority of frequency measures relative to measures based on total losses (such as

the average annual total losses or the standard deviation of quarterly total losses) is likely

the outcome of frequency measures being more stable proxies for risk exposure, as they do

not fluctuate significantly when new tail losses are incurred [17]. We ideally would want

the mean frequency from the model µνj = ajτjγjTw to equal the yearly frequency average

from ORX data (Table 7, 1st column), similarly for the variances (Table 7, 2nd column) and

covariances (Fig 14A). Thus our objective is to determine the value of our parameters in the

the following system:

ajτjγjTw = µνj ,ORX ; for j = 1, . . . , 7

a2jγjτ
2
j

(
Tw + τj(e

−Tw/τj − 1)
)

= σ2
νj ,ORX

; for j = 1, . . . , 7
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cγ̄ajak
τjτk
τj + τk

[
τj

(
Tw + τj(e

−Tw/τj − 1)
)

+ τk

(
Tw + τk(e

−Tw/τk − 1)
)]

=

Cov(νj,ORX , νk,ORX) ; for j 6= k

The process, though tedious in nature, was not overly complicated. We simply developed

an objective function to minimize an equation that sets our calculated statistic of frequency

with the known data from Table7. Specifically, we want to minimize

∑
j

∣∣∣µνj − µνj ,ORX∣∣∣+
∣∣∣σ2
νj
− σ2

νj ,ORX

∣∣∣+
∑
j 6=k

∣∣∣Cov(νj, νk)− Cov(νj,ORX , νk,ORX)
∣∣∣,

and since the ORX data provides yearly averages, we set Tw = 1 year. Utilizing Matlab we

are able to ascertain our needed parameters. Taking a look at how our parameters fit from

Figure 15, we see in A) the 3 yearly frequency statistics we fit: mean µν , variance σ2
ν , and

covariance Cov(νj, νk). In B), which is the same as A but with vertical axes on log-scale to

enhance the differences; one of the model fits has slightly negative covariance (dashed lines)

but it is very small (-0.018). The model fits both under- and over- estimates the actual mean

and variances of yearly frequencies in the ORX data. For the covariances of frequencies, the

model fits tend to under-estimate the data. The model fits are overall good but not perfect

(Fig 15). This may not be surprising given that we have an under-constrained system of

35 equations and 42 unknowns, but note that the parameters themselves have constraints:

aj, τj, γj > 0 and cj,k ∈ (−1, 1), which may explain why we do not have perfect fits.

5.3 Effects of time window on covariance of loss distributions

After finding parameters that capture the frequency distribution well, we can very

quickly assess how the covariance Cov(Rj,Rk) of the actual loss distributions varies with

a large range of time windows; this would usually require time-consuming Monte Carlo
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simulations but our analytic calculations circumvent that. From Eq (4.16):

Cov(Rj,Rk) = cj,kγ̄µSjµSkajak
τjτk
τj + τk

[
τj

(
Tw+τj(e

−Tw/τj−1)
)

+τk

(
Tw+τk(e

−Tw/τk−1)
)]

∆t.

We only need to use the mean severity per event (µSj/k) from Table 7 (far right column).

The results are summarized in Figure 16.In A) we see the resulting Cov(Rj,Rk) for

all 21 pairs as a function of time window Tw (log scale on vertical axes). The statistics can

vary a few orders of magnitude or more for these times. In B) we show the order of smallest

and largest covariance pairs, setting Tw = 1 year for exposition purposes. The ordering does

not change as Tw varies. Here we find that the largest covariance is (CPBP, EDPM), and

the smallest is with (IF,DPS). We note that the univariate statistics for both the frequency

and average severity per event (Table 7) are not at all indicative of which pairs would have

the highest covariance, and neither are the frequencies in Fig 14A (i.e., the largest/smallest

covariance in frequencies do not correspond to the largest/smallest covariance of losses in

Fig 16). This indicates that obtaining an aggregate loss distribution combining frequency

and severity distributions, and the resulting covariances, are not entities one could glean a

priori.

The results in Figure 16 indicate that for all 21 covariances, care must be taken; systems

should use a consistent time window, otherwise the covariances can vary by at least a few

orders of magnitude when treating daily statistics as yearly statistics.
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Fig. 12.: Financial Losses and percentage of financial losses by event type as reported by

ORX 2019 [21].
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Fig. 13.: Amount of losses in millions, and percentage of amount of losses as reported by

ORX 2019 [21].
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Fig. 14.: The year-to-year covariances of ORX data.

A) The covariances of the average frequencies per institution by risk category (see Table 2

for definition of abbreviations). B) Same as A but for average severities. Excluding diagonal

(variances) and lower triangular portion because of symmetry.
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CHAPTER 6

DISCUSSION AND CONCLUSIONS

6.1 Discussion

We present a dynamic stochastic differential equation model for the frequency distri-

bution of Operational Risk loss events. This model is capable of capturing time-varying

changes in the statistics of the frequency and is equipped with temporal correlations that

do not exist in homogeneous Poisson Process models, that are commonly used. Our model

was developed through a progression of calculating the 1st order statistics of a single time

series, the cumulative statistics of a single time series, the statistics in arbitrary time win-

dows of a single time series, as well as all of the latter with multiple time series. During

this process, we introduce an application of methods relating the cumulative loss statistics

to the statistics in smaller time windows, which is inspired by the successful usage in other

disciplines (signal processing [10], computational neuroscience [11, 12, 13, 14, 15, 16]). We

organically progressed from the common homogeneous calculations into the more complex

inhomogeneous calculations, which is synonymous with real life applications of operational

loss.

These modeling techniques were intentionally utilized to be specific to Operational Risk,

thus yielding novel formulas and applications. As such, we were able to gather results, and

then compare those results with simulations using Matlab. While the frequency distribution

model contains complexities, it has only a few parameters, and is amenable to mathemat-

ical calculations that result in relatively accurate formulas. The detailed calculations and

thorough comparisons with Monte Carlo simulations with a large range of parameters, have

been provided in this thesis, and convey that our calculations do in fact coincide with the
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simulations, and become more accurate as we increase the number of realizations in the

Monte Carlo simulations.

According to [8], different emphasis on each element may more closely reflect a specific

loss history and risk profile but also complicate a comparison across banks. Thus, though

the graphs are not provided here, care was taken to consider both the scale and weights

of our parameters. Particularly, we take into consideration that one may want to place

special significance on a particular variable as it reveals distinct characteristics of interest.

In our case, we focus on the covariance as it bears relevance in its connection with copulas

that are commonly used to aggregate loss distributions across different risk categories [23].

With minor alterations to our MATLAB code, which address both scaling and weighing of

our univariate statistics, we find that our calculations well-fit the statistics ascertained from

Monte Carlo simulations. Of most importance is the auto-covariance and cross-covariance,

as this allows financial institutions to determine the relationships of aggregated losses of a

time series.

Finally, we demonstrated how our loss distribution model could be fit to actual op-

erational risk data, although the data was provided by an exchange (ORX) that contained

industry-wide averages without the granular details of loss events that individual institutions

have access to. Nevertheless, the ORX data provided information about the average severity

of losses per event, segmented by the 7 common risk categories, as well as the year-to-year

frequency of events from 2014–2019. Our model captured the mean and variance of yearly

frequencies very well, which we then used to estimate the covariances of aggregate loss dis-

tributions. Our mathematical calculations enabled us to quickly assess how the covariances

of the losses change with different time windows.

We do note that our findings would hold more weight with the ability to adequately

benchmark this model with other state-of-the art models. We concur that benchmarks

should be used extensively to justify model outputs, improve model stability, and maintain
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capital reasonableness [24]. However, all of the state-of-the art models rely on massive data

to fit the both the frequency and severity distributions, which we do not have access to

due to proprietary reasons. Additionally, while the absence of complicated computations

make our model appetizing, it should be acknowledged that it’s inability to be properly

benchmarked with other models make it a sub-optimal choice as a model to be used for

prediction. On the contrary, this is more of a backward looking model with ORX fits, and

a proof of principle that incorrect correlations and covariances that feed into copulas could

produce erroneous results [23]. Lastly, the model is not detailed enough to account for rare

(tail-end) ”black swan” events, as that is normally accounted for by fitting the tail of the

severity distributions. Our work is predominantly a demonstration about how inaccurate

statistics could come about with different time windows.

6.2 Conclusion

There lies financial power in being able to accurately predict the necessary capital

based upon the relationships of loss and aggregated data over different time windows. We

find that if institutions are not careful in their systems, and they are are not using the

same time windows to estimate covariances (especially with risk categories with inherently

different time-scales) that feed into copula calculations, that their results could be inaccurate.

Further research is recommended to determine how this model can be applied to current

industry modeling practices to provide more definitive predictability of necessary capital.

Moreover, continued extensions and customization of this model should be developed. The

implications of its ability to use time varying statistics could prove to be valuable to other

dynamic economic and socioeconomic systems.
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