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Abstract

Abstract: A diameter-2-critical (D2C) graph is a graph with diameter two such that re-

moving any edge increases the diameter or disconnects the graph. In this paper, we

look at other lesser-studied properties of D2C graphs, focusing mainly on their inde-

pendence number and minimum degree. We show that there exist D2C graphs with

minimum degree strictly larger than their independence number, and that this gap can

be arbitrarily large. We also exhibit D2C graphs with maximum number of common

neighbors strictly greater than their independence number, and that this gap can be ar-

bitrarily large. Furthermore, we exhibit a D2C graph whose number of distinct degrees

in its degree sequence is strictly greater than its independence number. Additionally, we

characterize D2C graphs with independence number 2 and show that all such graphs

have independence number greater or equal to their minimum degree.



Chapter 1

Preliminaries

1.1 Basic Graph Theory Definitions

A graph G is a set of vertices and edges such that each edge has exactly two vertices as its

endpoints. The set of vertices in G is called the vertex set of G, denoted V(G). Likewise,

the set of edges in G is called the edge set of G, denoted E(G). The complement of a

graph G, denoted Gc, is defined such that V(G) = V(Gc) and for u, v ∈ V(G), uv ∈ E(Gc)

if and only if uv /∈ E(G).

A loop is an edge whose endpoints are the same [26]. Multiple edges are two or more

edges all having the same two endpoints. A simple graph is a graph that contains no

loops or multiple edges. Unless otherwise stated, all graphs are assumed to be simple.

The order of a graph G, denoted n(G), is the number of vertices in G. The size of G is

the number of edges in G. If an edge e ∈ E(G) has endpoints u and v, the edge e is said

to be incident with u and v, and u and v are said to be adjacent to each other. If two

vertices u and v are adjacent, we say that they are neighbors. If a vertex w is adjacent

to vertices u and v, then we say that u and v have w as a common neighbor. The open

neighborhood of a vertex v, denoted N(v), is the set of vertices adjacent to v. The closed

neighborhood of v, denoted N[v], is N(v) ∪ {v} (v together with its neighbors). A set of
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pairwise non-adjacent vertices form an independent set, and a set of pairwise adjacent

vertices form a clique. The maximum cardinality of a clique in a graph G is called the

clique number of G, denoted ω(G).

The degree of a vertex v, denoted d(v), is the number of edges incident with v. A

vertex v with d(v) = 1 is called a leaf, and an edge incident with a leaf is called a

pendant edge. A vertex v ∈ V(G) has minimum degree if, given any vertex u ∈ V(G),

d(v) ⩽ d(u). The minimum degree of a graph G, denoted δ(G), is the cardinality of a

vertex of minimum degree. Likewise, a vertex v ∈ V(G) has maximum degree if, given

any vertex u ∈ V(G), d(v) ⩾ d(u). The maximum degree of a graph G, denoted ∆(G), is

the cardinality of a vertex of maximum degree. A regular graph is a graph where every

vertex has the same degree.

A walk on a graph is an alternating set of vertices and edges v0, e0, v1, e1, ..., vn−1, en−1,

vn such that ei has endpoints vi and vi+1. A path is a walk with no repeating edges or

vertices. A path which begins at a vertex u and ends at a vertex v is referred to as a

u, v-path. A cycle is a closed path. The length of the shortest cycle in G is called the

girth of G. If G does not contain a cycle, then G is said to have infinite girth.

A connected graph is a graph G such that for all u, v ∈ V(G), there exists a u, v-path.

A tree is a connected graph that contains no cycles. A graph which is not connected

is called a disconnected graph. A component H of a graph G is a maximal connected

subgraph of G, meaning that adding any edge or vertex from V(G) or E(G) that is not

part of V(H) or E(H) results in a disconnected graph. A cut vertex v in a graph G is a

vertex whose removal from G increases the number of components in G. Likewise, a cut

edge (or a bridge) e in a graph G is an edge whose removal from G increases the number

of components in G. A vertex cut is a set S ⊂ V(G) such that G − S has more than one

component or G − S has only one vertex. The vertex connectivity of a graph, denoted

κ(G), is the minimum size of a vertex cut. If κ(G) ⩾ k, we say that G is k-connected.

There are several very basic classes of graphs. A cycle graph, denoted Cn, is a graph
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such that V(Cn) induces a cycle of length n. A path graph, denoted Pn, is a graph such

that V(Pn) induces a path of length n. A complete graph, denoted Kn, is a graph such

that if u, v ∈ V(G) and u ̸= v, then uv ∈ E(G). A bipartite graph is a graph which

every v ∈ V(G) can be partitioned into one of two independent sets, called partite sets.

A complete bipartite graph, denoted Km,n, is a bipartite graph with partite sets X and

Y such that |X| = m, |Y| = n, and if x ∈ X and y ∈ Y, then xy ∈ E(G). The complete

bipartite graphs Km,n with m = 1 and/or n = 1 are called stars. The complete bipartite

graphs Km,n where m = n are called balanced complete bipartite graphs.

A subgraph H of a graph G is a graph such that V(H) ⊆ V(G) and E(H) ⊆ E(G).

If H ̸= G, then H is called a proper subgraph of G. If V(H) = V(G), then H is called

a spanning subgraph of G. A spanning subgraph that is also a tree is referred to as

a spanning tree of G. If S ⊆ V(G), then the subgraph induced by S, denoted G[S], is

the subgraph H formed by letting V(H) = S, and for u, v ∈ S, uv ∈ E(H) if and only if

uv ∈ E(G).

A dominating set is a set D ⊂ V(G) such that if v ∈ V(G) − D, then there exists a

vertex u ∈ D adjacent to v. If there exists v ∈ V(G) such that {v} is a dominating set, then

v is called a dominating vertex. A dominating edge is an edge whose endpoints form a

dominating set.

The distance between two vertices u and v, denoted d(u, v), is the length of a shortest

path between u and v. The diameter of a graph is the maximum distance between any

two vertices in G. Given a vertex v, the distance to the vertex furthest away from v is

called the eccentricity of v, denoted ϵ(v). More formally, ϵ(v) is the smallest integer

k such that for all u ∈ V(G), d(u, v) ⩽ k. If u has the smallest eccentricity of all the

vertices in G, then the radius of G is the value of ϵ(u). More formally, the radius of G is

the greatest integer k such that for all u ∈ V(G), ϵ(u) ⩾ k. (We can similarly define the

diameter of G to be the smallest integer j such that for all u ∈ V(G), ϵ(u) ⩽ k.)
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1.2 Independence Number

A maximal independent set is an independent set that is not contained in a larger in-

dependent set. More precisely, an independent set I is maximal if, given any vertex

v ∈ V(G) \ I, {v}∪ I is not an independent set. An independent set M is called maximum

if, given another independent set S in G, |S| ⩽ |M|. The independence number of a graph

G, denoted α(G), is the cardinality of a maximum independent set. The independence

number is a widely studied graph invariant that is NP-hard to compute [10].

1.2.1 Basic Results on the Independence Number

Suppose that you partitioned V(G) into independent sets I1, I2, ..., In. Letting each Ij

represent a color, we call such a partition a proper coloring of G. The chromatic number

of a graph, denoted χ(G), is the minimum number of colors needed in a proper coloring

of G.

The chromatic number provides a well-known lower bound on the independence

number of a graph.

Proposition 1. For a graph G, α(G)χ(G) ⩾ n(G).

Proof. Let χ(G) = j, let α(G) = k and let X1,X2, ...,Xj be a proper coloring of G. We see

that since a proper coloring partitions V(G), n(G) = |X1| + |X2| + ... + |Xj|. Since each Xi

is an independent set, |X1|+ |X2|+ ...+ |Xj| ⩽ jk = α(G)χ(G), as we wanted to show.

Theorem 1. [24] For any graph G, χ(G) ⩽ ∆(G) + 1.

From Theorem 1 and Proposition 1, we get a lower bound of the independence num-

ber in terms of the maximum degree.

Corollary 1. For any graph G, α(G) ⩾ n
∆(G)+1

.

A matching in a graph is a set of edges such that no two edges share an endpoint.

The matching number of a graph G (denoted α ′(G)) is the maximum size of a matching
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in G. The matching number of a graph gives both a lower and an upper bound on the

independence number of a graph.

Proposition 2. For any graph G, n(G) − 2α ′(G) ⩽ α(G) ⩽ n(G) − α ′(G)

Proof. Let M be a maximum matching in G. Since M is maximum, removing M from G

leaves an independent set I of size n(G) − 2α ′(G). Thus, α(G) ⩾ n(G) − 2α ′(G).

Now consider a maximum-sized independent set I. For each edge e ∈ M, the set

I contains at most one endpoint from e. Since there are α ′(G) edges in M, α(G) ⩽

n− α ′(G), as we wanted to show.
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Chapter 2

Diameter-2-Critical Graphs

2.1 Diameter 2 Graphs

Diameter 2 graphs are of particular interest because many graphs which are not widely

studied have diameter 2. In fact, almost all graphs have diameter 2.

Theorem 2. [1] Almost all graphs have diameter 2.

Proof. For u, v ∈ V(G), assume that the probability that u and v are adjacent in G,

P(uv ∈ E(G)) = 1
2
. This clearly implies that P(uv /∈ E(G)) = 1

2
. Next, let w ∈ V(G). Since

P(uw ∈ E(G)) = 1
2

and P(vw ∈ E(G)) = 1
2
, the probability that both uw, vw ∈ E(G) is 1

4
.

This means that the probability that at least one of uw, vw /∈ E(G) is 3
4
.

Thus, the probability that u and v are not adjacent and do not share a common

neighbor is 1
2

(
3
4

)n−2. Summing over all
(
n
2

)
pairs of vertices, we have that the probability

that G does not have diameter 2 is 1
2

(
n
2

)(
3
4

)n−2, which goes to 0 as n → ∞. This is what

we wanted to show.

Proposition 3. Let G have diameter 2, and let v ∈ V(G). Then N(v) is a dominating set

Proof. Suppose there exists w ∈ V(G) such that w /∈ N[v] and if u ∈ N(v), u is not

adjacent to w. We then see that d(v,w) ⩾ 3, contradicting the fact that G has diameter 2.

Thus, we conclude that N(v) forms a dominating set in G.
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2.2 What is a Diameter-2-Critical Graph?

Often when trying to learn the different properties about a general class of graphs, it is

useful to study their critical graphs.

We can think of a critical graph as a subset of a class of graphs C with property X.

If G ∈ C and removing any edge from C changes property X, then we say that G is an

X-critical graph.

For example, if we wanted to study the graphs with independence number 2, we

may want to study a smaller class of independence number 2 graphs for which more

is known. Independence number critical graphs (which are known as alpha-critical

graphs) are graphs in which removing any edge increases the independence number of

the graph.

There are also vertex critical graphs. In these graphs, the critical property X must

change if any vertex is removed (but not necessarily when any edge is removed). These

generally do not share the same properties as the class of edge critical graphs for a given

property.

A diameter-2-critical graph (abbreviated D2C) is a diameter 2 graph G such that for

any edge e ∈ E(G) that is not a cut-edge, G− e has diameter strictly larger than 2. If for

an edge e ∈ E(G), G−e has strictly larger diameter than G, we call e a critical edge. Thus,

we can alternatively define D2C graphs as diameter 2 graphs in which every edge is a

critical edge. Examples of D2C graphs include P3, C4, C5, all complete bipartite graphs,

the Petersen Graph, the Clebsch Graph, the Wagner Graph, and the Hoffman-Singleton

Graph.

D2C graphs are a subset of a large class of graphs known as diameter-n-critical

graphs, diameter n graphs G such that for any edge e ∈ E(G) that is not a cut-edge,

G− e has diameter strictly larger than n.

In general, D2C graphs do not have a lot of underlying structure. Indeed, it was

proven in [11] that diameter-n-critical graphs cannot be constructed by finite extensions

7



Figure 2.1: Petersen Graph

Figure 2.2: Wagner Graph

Figure 2.3: Clebsch Graph

Figure 2.4: Hoffman-Singleton Graph
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or characterized by forbidden subgraphs. However, there are methods for constructing

D2C graphs from non-D2C graphs. In Section 2.6, we will show two such methods for

constructing D2C graphs introduced by Loh and Ma (see [19]).

2.3 Properties of D2C Graphs

Proposition 4. If P is a proper spanning subgraph of a D2C graph, then P is not D2C.

Proof. If P is a proper spanning subgraph of a D2C graph G, then it is obtained from G

by removing a non-empty set of edges. By the definition of a D2C graph, P will not have

diameter 2 and thus cannot be a D2C graph.

u v

wz

Figure 2.5: Removing edges from a D2C graph always increases its diameter.

Proposition 5. If G contains a D2C proper spanning subgraph, then G is not D2C.

Proof. If G contains a D2C graph as a proper spanning subgraph H, then G can be

transformed into H by removing a non-empty set S of edges from G. But then the edges

in S are not critical edges. Thus, G is not D2C.

9



u v

wz

Figure 2.6: The edge vz can be removed to obtain a D2C graph C4, meaning that vz is
not a critical edge.

Theorem 3. The only D2C bipartite graphs are complete bipartite graphs. Furthermore, all

complete bipartite graphs are D2C.

Proof. Every non-complete bipartite graph is a proper spanning subgraph of a larger

complete bipartite graph. We will prove that all complete bipartite graphs are D2C,

from which it will follow from Proposition 4 that any other bipartite graph is not D2C.

Let G be a complete bipartite graph, and let xy ∈ E(G) having endpoints x,y ∈ V(G).

We first note that any two distinct vertices in the same partite set share at least 1 common

neighbor in the other partite set (since G is a complete bipartite graph). Thus, G has

diameter 2. We also note that removing xy from G leaves the vertices x and y at least

distance three from each other, so G− xy has at least diameter 3. Thus, G is D2C.

All trees are bipartite graphs. The only complete bipartite graphs which are trees are

stars, so we get another result directly from Theorem 3.

Corollary 2. The only D2C trees are stars.

We can also now classify D2C graphs with a dominating vertex.

Corollary 3. The only D2C graphs with a dominating vertex are stars.

10



u

v

Figure 2.7: If an edge uv is removed from Km,n, d(u, v) = 3.

Proof. Any graph G with a dominating vertex contains a star as a spanning subgraph H.

If G = H, then G is a star. If G ̸= H, then by definition of a proper subgraph, it contains

a star as a proper spanning subgraph. By Proposition 5, G is not D2C.

Theorem 4. The only D2C graphs with cut-edges are stars.

Proof. Suppose that a D2C graph G contains a cut-edge uv. If u has a neighbor y ̸= v,

and v has a neighbor z ̸= u, since uv is a cut-edge, we would have that d(y, z) = 3. We

also see that if G is just the cut edge uv, then then diameter of G is 1. Thus, if G is a D2C

graph with a cut-edge, then either N(u) = {v} or N(v) = {u}, but not both.

Without loss of generality, suppose that N(u) = {v}. We now show that v is a domi-

nating vertex. If v is not a dominating vertex, there exists some vertex x /∈ N(v). Since

N(u) = {v}, it follows that d(u, v) ⩾ 3. This contradicts our assumption that G is D2C,

and thus v is a dominating vertex. By Corollary 3, G can only be a star. Since every

edge in a star is a cut-edge, we conclude that the only D2C graphs with cut-edges are

stars.

11



vu

Figure 2.8: D2C graph with cut-edge uv

Since every pendant edge is a cut-edge, we see that the only D2C graphs with pen-

dant edges are stars.

Corollary 4. The only D2C graphs containing pendant edges are stars. Thus, if G is a D2C

graph and G is not a star, then δ(G) ⩾ 2.

Theorem 5. The only D2C graphs with cut vertices are stars.

Proof. Suppose that a D2C graph G contains a cut-vertex v. We show that v is a dom-

inating vertex. If v is not a dominating vertex, then there exists some vertex x /∈ N(v).

Since v is a cut vertex, G− v contains at least two components. At most one of the com-

ponents will contain x, so let u be a vertex which is not in this component. We see that

d(u, x) ⩾ 3, contradicting our assumption that G is D2C. Thus, v is a dominating vertex.

By Corollary 3, G can only be a star. Since every edge in a star is a cut-edge, the only

D2C graphs which contain cut-vertices are stars.

v

Figure 2.9: D2C graph with cut vertex v

Theorem 6. Let v be a vertex of minimum degree in a D2C graph G, and let S be the set of

vertices distance 2 from v in G. For all w ∈ N(v), w must contain a neighbor in S.

12



S

N(v)

v

w

Figure 2.10: If w does not have a neighbor in S, then wv is not a critical edge.

Proof. Suppose that w has no neighbor in S. This means that the possible neighbors of

w are v and vertices in N(v). We see that |{v} ∪ N(v) − {w}| = |N(v)| = δ(G), so w can

have at most δ(G) neighbors. Therefore, it must have exactly δ(G) neighbors, meaning

that N(w) = N(v) − {w}+ {v}.

We show that the edge wv is not a critical edge. In G − wv, w is still adjacent to all

the other vertices in N(v). Also, since w does not have a neighbor in S, the distance from

v to a vertex in S does not change. Likewise, the distance between a vertex in N(v) and

S will not be affected by the removal of wv. Thus, we see that the diameter of G − wv

is still 2. This contradicts our assumption that G was D2C, and so we conclude that w

must contain a neighbor in S.

Theorem 6 gives some structure which is common to all D2C graphs, but not all

diameter 2 graphs. This will be used in Section 4.4 to classify all D2C graphs with α = 2.

2.4 The Murty-Simon Conjecture

Much of the research done on D2C graphs centers on finding the maximum number

edges in an n-vertex D2C graph. This extremal problem has been studied since at least

the 1960’s, when Murty and Simon conjectured that the upper edge bound for D2C

graph is ⌊n2

4
⌋.
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Conjecture 1. [3] If G is a D2C graph with e edges, then e ⩽ ⌊n2

4
⌋, with equality if and only if

G is a complete bipartite graph with balanced bipartite sets.

Although the conjecture has not been fully proven, it has been proven for small D2C

graphs (n ⩽ 24, see [7]) and very large D2C graphs (n ⩾ 2 ↑↑ 1014, see [9] and [17]).

The best upper bound on the number of edges in any D2C graph was proven in 1987

by Fan (see [7]).

Theorem 7. [7] If G is a D2C graph, then the maximum number of edges in G is .2532n2.

Many recent results have focused on proving the Murty-Simon Conjecture for differ-

ent classes of graphs. Notably, it has been shown that the upper bound on the number

of edges for non-bipartite D2C graphs with a dominating edge is strictly less than the

Murty-Simon Conjecture bound.

Theorem 8. [3] If G is a non-bipartite D2C graph with a dominating edge and e edges, then

apart from the graph H5 (see [3]), e ⩽ ⌊n2

4
⌋− 2.

2.5 Regular D2C Graphs

The edge bounds of D2C graphs can be very useful in narrowing down the possible

number of regular D2C graphs. For instance, we can classify regular D2C graphs with a

dominating edge using Theorem 8.

Theorem 9. The only regular D2C graphs with a dominating edge are complete bipartite graphs

with balanced partite sets.

Proof. Let G be a k-regular non-bipartite D2C graph with order n, e edges, and a dom-

inating edge. We see that the degree sum of G is kn. By the Handshaking Lemma

(see [26]), e = kn
2

. By Theorem 8, e ⩽ n2

4
− 2, and so kn

2
⩽ n2

4
− 2. Multiplying by

two, we have that kn ⩽ n2

2
− 4. Dividing by n, we have that k ⩽ n

2
− 4

n
< n

2
. Thus,

14



2k < n. However, since G has a dominating edge ed with endpoints u and v, we have

that n(G) = |N[u]− {v}|+ |N[v]− {u}| = k+k = 2k. By this contradiction, we conclude that

if G is a regular D2C graphs with a dominating edge, then it cannot be non-bipartite.

Thus, if G contains a dominating edge, then it must be bipartite. From Theorem 3, we

see that the only D2C bipartite graphs are complete bipartite graphs. Indeed, we see that

every edge in a complete bipartite graph is a dominating edge. Since the only regular

complete bipartite graphs are Kn,n, we conclude that the only regular D2C graphs with

a dominating edge are complete bipartite graphs with balanced partite sets.

Using the calculations done in the proof of Theorem 9, Theorem 7 shows that for

regular D2C graphs, k ⩽ .5064n. An upper bound on k can be found by using the fact

that k-regular diameter 2 graphs have at most 1 + k + k2 vertices. Thus, n ⩽ 1 + k + k2.

This makes it possible to generate all of the k-regular D2C graphs when k is small.

2.6 Constructing Diameter-2-Critical Graphs

2.6.1 Using Constructions by Loh and Ma

Infinite families of D2C graphs can be constructed using a method introduced by Po-

Shen Loh and Jie Ma in [19].

To do this, begin with a diameter 2 graph G whose complement also has diameter 2.

If n(G) = k, begin with a copy of G such that its k vertices are labeled v1, ..., vk. These

vertices will be called vertex set A, and this graph will be referred to as G.

15



v1

v2

v3v4

v5

Figure 2.11: C5 can be used as G since diam(C5) = 2 and it is self-complementary.

Next, add k more vertices labeled v ′
1, ..., v

′
k, which will be referred to as vertex set B.

Then, add edge v ′
iv

′
j (i ̸= j) to B if and only if vivj /∈ E(G). (So in this step, we add a

copy of the complement of G to the vertex set B.) The edges in the vertex set B must be

added exactly the way that was done in this step to assure that the final graph is D2C.

v1

v2

v3v4

v5

v ′
1

v ′
2

v ′
4 v ′

3

v ′
5

Figure 2.12: On left: Vertex set A with copy of G. On right: vertex set B with copy of Gc.

Finally, we add the edge viv
′
i for all 1 ⩽ i ⩽ k. This adds a perfect matching between

the vertex sets A and B. The resulting graph, which we denote G ′, is a D2C graph.

To prove that G ′ is D2C, the authors first argue that G ′ has diameter 2. First, looking

at vi ∈ A and v ′
k ∈ B, by construction, either vivk ∈ E(G ′) or v ′

iv
′
k ∈ E(G ′). If vivk ∈

E(G ′), using this edge and the edge vkv
′
k in the perfect matching, we see that vi and v ′

k

16



Figure 2.13: Final construction of D2C graph G ′, which is isomorphic to the Petersen
graph.

are distance two apart. On the other hand, if v ′
iv

′
k ∈ E(G ′), using this edge and the edge

viv
′
i in the perfect matching, we again see that vi and v ′

k are distance 2 apart.

Since G and its complement have diameter at most 2, any pair of vertices in the same

vertex set are at most distance 2 apart. Finally, vertices vi ∈ A and v ′
i ∈ B are distance

one apart (adjacent by the perfect matching), and so we conclude that G ′ has diameter

2.

Next we need to show that every edge in G ′ is critical. If the edge viv
′
i is removed,

given that if vivk ∈ E(G ′), then v ′
iv

′
k /∈ E(G ′), we have that d(vi, v

′
i) ⩾ 3. Next, if any

edge vivk is removed from A, given that if vivk ∈ E(G ′), then v ′
iv

′
k /∈ E(G ′), we have that

d(vi, v
′
k) ⩾ 3. Likewise, if any edge v ′

iv
′
k is removed from B, given that if v ′

iv
′
k ∈ E(G ′),

then vivk /∈ E(G ′), we have that d(v ′
i, vk) ⩾ 3. Thus, every edge is critical, and G ′ is D2C.

We will refer to this construction as Loh-Ma’s Construction 2.1 (as it is called in [19]).

Given such a graph G ′, we have another construction using G ′ to create an additional

infinite family of D2C graphs. To do this, simply join a set of disjoint vertices C with all

17



of the vertices in A. This new graph G ′′ will also be D2C.

Figure 2.14: D2C graph G ′′, where two new vertices and the blue edges have been added
to G ′.

To prove this, consider c ∈ C. We see that if we remove the edge cvi, then since the

only neighbor of v ′
i in A is vi, d(c, v ′

i) ⩾ 3. Thus, every new edge added is a critical

edge. Also, using what we already know about G ′ above, we again see that every edge

between two vertices in the G ′ subgraph is a critical edge. Thus, we conclude that G ′′ is

D2C.

This new construction of joining vertices to the vertex set A will be referred to as

Loh-Ma’s Construction 2.2 (as it is referred to in [19]).

2.6.2 Using Random Graphs

Another method of obtaining D2C graphs can be done using a mathematical computer

software such as Sage (see [23]). Begin by generating a random graph of any size G. We

can generate code so that Sage will check if a given edge in a graph is critical. If it is

not, remove the edge from the graph. Do this until every edge in the graph is critical.
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Since no critical edges are removed, the diameter of the resulting graph must still be

two. Also, since all non-critical edges are removed, all edges of the resulting graph must

be critical. Thus, this resulting graph must be D2C.
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Chapter 3

Automated Conjecturing For

Diameter-2-Critical Graphs

3.1 Methods

In this section, we give a number of conjectures related to the independence number and

minimum degree of D2C graphs. These conjectures were found using the mathematics

software Sage.

To do this, we first inputted the G6 strings of a collection of known diameter-2-critical

graphs into Sage. (A list of the G6 strings for all D2C graphs with n ⩽ 9 can be found in

[20].) We then used the computer program Conjecturing (see [18]) to generate a number

of conjectures about the independence number and minimum degree of D2C graphs.

The program Conjecturing takes the list of D2C graphs which we inputted and com-

pares the independence number/minimum degree of the graphs to a multitude of other

graph invariants. Conjecturing then outputs the invariants for which the independence

number/minimum degree are lower/upper bounds for all the inputted D2C graphs. If

Conjecturing outputs a conjecture which is already known to be true, then that conjec-

ture can be added to a list called ’theory’. This will prevent the conjecture from being
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outputted again as a conjecture, and can help the program make better conjectures.

In this section, we show a select list of the conjectures which Conjecturing generated

on D2C graphs. In the following conjectures, independence number(x) refers to the

independence number and min degree(x) refers to the minimum degree.

3.2 Lower Bounds on the Independence Number of D2C

Graphs

The parameter max common neighbors(x) refers to the maximum number of common

neighbors between any pair of vertices in a graph G.

Conjecture 2. For all D2C graphs, independence number(x) ⩾ max common neighbors(x).

Conejcture 2 is false. A construction of an infinite family of graphs can be found in

Section 5.1.

The parameter diameter(x) simply refers to the diameter of a graph G.

Proposition 6. For all D2C graphs, independence number(x) ⩾ diameter(x).

Proof. All D2C graphs have diameter 2 by definition. For a graph G to have diameter 2,

there must exist at least two non-adjacent vertices u and v in V(G). Thus, G contains the

independent set {u, v}, from which it follows that α(G) ⩾ 2.

The parameter radius(x) refers to the radius of a graph G. By definition, the radius

of a graph is less than or equal to the diameter of a graph. Thus, we have the following

corollary to Proposition 6.

Proposition 7. For all D2C graphs, independence number(x) ⩾ radius(x).

The degree sequence of a graph G is a listing of the degree of each vertex in V(G),

typically in non-ascending order. The parameter distinct degrees(x) refers to the number

of distinct integers in the degree sequence of G.
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Conjecture 3. For all D2C graphs, independence number(x) ⩾ distinct degrees(x).

Conjecture 3 is false; the construction of a counterexample can be found in Section

5.2. This has led us to conjecture the following:

Conjecture 4. For all natural numbers k, there exists a D2C graphs such that independence number(x)

< distinct degrees(x) + k.

The parameter median degree(x) refers to the median of the degree sequence of a

graph G.

Conjecture 5. For all D2C graphs, independence number(x) ⩾ median degree(x).

We trivially have that min degree(x) ⩽ median degree(x). Given our construction

of D2C graphs in Section 5.1 such that min degree(x) > independence number(x), we

conclude that Conjecture 5 is false.

The Havel-Hakimi algorithm is used to determine whether a given non-increasing

sequence of non-negative integers comes from a graph (see [12] and [13]). If we repeat-

edly apply the Havel-Hakimi algorithm to a degree sequence which represents a graph

(a graphical sequence), then the Havel-Hakimi algorithm will produce a finite number

of zeros. The number of zeroes in the degree sequence after applying the Havel-Hakimi

algorithm is called the residue of a graph G. The parameter residue(x) refers to the

residue of G.

The residue of a graph provides a lower bound for the independence number of a

graph (regardless of whether the graph is D2C or not).

Theorem 10. [8] For any graph G, independence number(x) ⩾ residue(x).

The parameter average degree(x) refers to the median of the degree sequence of a

graph G. We trivially have that for all graphs, min degree(x) ⩽ average degree(x).

Proposition 8. For all graphs, min degree(x) ⩽ average degree(x).
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3.3 Upper Bounds on the Independence Number of D2C

Graphs

Given a degree sequence d1,d2, ...,dn in non-increasing order, the parameter barrus q(x)

is the maximum value of k for which k ⩽ dk (see [4]). If a graph G has order n(G),

then the parameter barrus bound(x) is equal to n(G)−barrus q(x). The parameter bar-

rus bound(x) is an upper bound on the independence number of a graph.

Theorem 11. [4] For all D2C graphs, independence number(x) ⩽ barrus bound(x).

The parameter size(x) simply refers to the size of a graph G.

Proposition 9. For all D2C graphs, independence number(x) ⩽ size(x).

Proof. Since all D2C graphs G are connected, it must contain at least n − 1 edges. Since

D2C graphs are connected graphs, G is not a disjoint set of n vertices. Thus, α(G) ⩽

n− 1.

Given a degree sequence d1,d2, ...,dn in non-decreasing order, the annihilation num-

ber is the largest index k such that
∑k

i=1 di ⩽
∑n

i=k+1 di. The parameter annihila-

tion number(x) denotes the annihilation number of a graph G. Pepper proved that the

annihilation number is an upper bound on the independence number of a graph in [21].

Theorem 12. For any graph, independence number(x) ⩽ annihilation number(x).

The parameter girth(x) simply refers to the girth of a graph.

Conjecture 6. For all D2C graphs, independence number(x) ⩽ diameter(x)girth(x)

We see that the girth of any complete bipartite graph is 4. Thus, for any complete

bipartite graph, diameter(x)girth(x) = 16. However, for n ⩾ 17, the complete graph Kn,n

has independence number strictly greater than 16. Thus, there are infinitely many D2C

graphs for which Conjecture 6 is false.
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3.4 Vertex Connectivity of D2C Graphs

One conjecture regarding the vertex connectivity of D2C graphs was made in hopes that

it would help prove Conjecture 8.

Conjecture 7. For all D2C graphs G, δ(G) = κ(G).

Graphs in which δ(G) = κ(G) are known as maximally connected graphs. Thus,

Conjecture 7 asks if every D2C graph is maximally connected. This conjecture has not

yet been proven or disproven. It is, however, true for any D2C graph that could be

constructed using Loh-Ma’s Construction 2.1.

Theorem 13. For all D2C graphs G formed using Loh-Ma’s Construction 2.1, δ(G) = κ(G).

Proof. Let G ′ be a D2C graph constructed by Loh-Ma’s Construction 2.1 with vertex sets

A and B, where G ′[A] is the complement of G ′[B]. We first argue that in any cut set

S ⊂ V(G ′) leaving G ′[A] or G ′[B] connected, |S| ⩾ δ. We first note that removing S must

disconnect G ′[A] or G ′[B] to disconnect G ′ (since A and B are connected by a perfect

matching). Therefore, without loss of generality, suppose removing S disconnects G ′[A]

but leaves G ′[B] connected. Let SA = S ∩ V(G ′[A]) and SB = S ∩ V(G ′[B]), and let v be a

vertex in some component C of G ′[A]−SA. Denote the set of vertices in G ′[B] adjacent to

the vertices in C as CB. In order to disconnect the component that v is in, we must remove

all of the vertices in CB (since S leaves G ′[B] connected). Thus, any cut set of G ′ must have

cardinality at least |S| ⩾ |CB|+|SA| = |C|+|SA| ⩾ |N(v)∩C|+|N(v)∩CB|+|N(v)∩SA| ⩾ d(v).

Thus, we conclude for this case that κ(G ′) ⩾ δ(G ′). Since removing the neighbors of a

minimum degree vertex form a cut set of size κ(G ′), we conclude that κ(G ′) = δ(G ′) for

this case.

Now suppose that any cut set S of G ′ disconnects both G ′[A] and G ′[B]. Then if G

was the original graph that was used in construction 2.1, κ(G ′) ⩾ κ(G)+κ(Gc), where Gc

is the complement of G. Since for all graphs, κ(G)+κ(Gc) ⩾ min{δ(G), δ(Gc)}+1 = δ(G ′)
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(see [16]). Thus, in this case, κ(G ′) ⩾ δ(G ′). Since removing the vertices of a minimum

degree vertex form a cut set of size κ(G ′), κ(G ′) ⩽ δ(G ′). Hence, κ(G ′) = δ(G ′) for this

case.

25



Chapter 4

Diameter-2-Critical Graphs where δ ⩽ α

4.1 Original Conjecture of Study

As mentioned, we originally studied D2C graphs in order to find properties which ex-

tended to general diameter 2 graphs. We first used the computer program Conjecturing

(see [18]) to find and prove conjectures specific to D2C graphs. One of these conjectures

became of great interest, as it was not true for general diameter 2 graphs, but was true

for tens of thousands of D2C graphs that were tested in Sage (see [23]).

Conjecture 8. For all D2C graphs, δ(G) ⩽ α(G).

Since the independence number of a graph is NP-hard to compute, we cannot use

brute force calculations to find the independence number of D2C graphs. Thus, finding

the relationship between the minimum degree and the independence number can be

quite difficult for a class of graph as broad as D2C graphs.

This led to the creation of a number of different proof techniques, which we will

discuss in Section 4.2.
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4.2 Proving that δ ⩽ α

There are several useful proof methods for proving that δ ⩽ α for a D2C graph. These

include finding a stable vertex, as well as assuming that δ > α for a class of D2C graphs,

and getting a contradiction.

4.2.1 Stable Vertex Argument

A stable vertex is a vertex v such that the subgraph induced by N(v) forms an indepen-

dent set S. If v is a stable vertex, then we see that δ(G) ⩽ d(v) = |S| ⩽ α(G). Therefore,

if a graph contains a stable vertex, then δ ⩽ α.

Proposition 10. If G contains a stable vertex, then δ(G) ⩽ α(G).

Since all the vertices of a triangle-free graph are stable vertices, we immediately get

the following lemma.

Lemma 1. If G is triangle-free, then δ(G) ⩽ α(G).

We originally conjectured that every D2C graph contains a stable vertex. A subgraph

of the Cameron Graph (see [2]), shown in Figure 4.1, was the first counterexample found

(for its G6 String, see Appendix A).

Figure 4.1: First D2C graph found with no stable vertex
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Given that that there are infinitely many counterexamples to Conjecture 8 (see Section

5.1), there are also infinitely many D2C graphs that do not contain a stable vertex.

We also note that D2C graphs with no stable vertex can also have the property that

α(G) ⩾ δ(G) (such as the D2C Cameron subgraph in Figure 4.1).

4.2.2 Looking at Subsets of D2C Graphs

For proving any conjecture about D2C graphs, we can first try to prove the conjecture

for smaller classes of graphs. This originally led to the proof that all D2C graphs with

α = 2 have the property that α ⩾ δ (see Theorem 14), and allowed us to classify all D2C

graphs with α = 2 (see Section 4.4).

Another class of graphs for which some results on D2C graphs are known are regular

D2C graphs (see Section 2.5). It is known that for all 2- and 3-regular D2C graphs,

α(G) ⩾ δ(G) (see Section 4.4). We conjecture that α(G) ⩾ δ(G) for all 4-regular D2C

graphs.

4.3 Proving that δ ⩽ α for all D2C Graphs with α = 2

We already know that all complete bipartite graphs are D2C. Since all complete bipartite

graphs are triangle-free, by Lemma 1, we have that δ ⩽ α for all complete bipartite

graphs.

A more interesting class of D2C graphs where δ ⩽ α are α = 2 graphs.

Theorem 14. If G is a D2C critical where α(G) = 2, then α(G) ⩾ δ(G).

To prove this, we will first prove two lemmas from which the result will directly

follow.

Lemma 2. If G is a diameter 2 graph with α(G) = 2, then for any v ∈ V(G), the set of vertices

S distance 2 from v forms a clique.
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Proof. Suppose S is not a clique. Then there exists two non-adjacent vertices s1, s2 ∈

S. We then see that v, s1, s2, form an independent set of size 3. This contradicts our

assumption that α(G) = 2, and so we conclude that S must be a clique.

S

N(v)

v

u

s1 s2

Figure 4.2: If S is not a clique, then the green vertices form an independent set of size 3

Lemma 3. If G is a D2C graph with α(G) = 2, then for any v ∈ V(G) where d(v) = δ, N(v) is

an independent set.

Proof. Let v ∈ V(G) have minimum degree, and suppose that for u,w ∈ N(v), uw ∈

E(G). We argue that uw is not a critical edge, contradicting our assumption that G is

D2C. We first see that since G has diameter 2, removing uw cannot increase the distance

between v and any of the vertices in S. We also see that the vertices in N(v) all share v as

a neighbor, and so vertices in N(v) will still be at most distance 2 apart in G−uw. Since

(by Lemma 2) S forms a clique, these vertices are all distance 1 apart.

Now consider s ∈ S. Since v has minimum degree, it follows from Theorem 6 that u

contains a neighbor r ∈ S. Since S is a clique, s is adjacent to (or is) r. Thus, u and s are

at most distance 2 apart in G− uw. A similar argument works to show that the vertices

w and s are at most distance 2 apart. Having considered all pairs of vertices in G, we

conclude that G − uw has diameter 2. This contradicts our assumption that G is D2C,

and so it must be true that v is a stable vertex.
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S (Clique)

N(v)

v

u

r

w

Figure 4.3: Any edge in N(v), such as the red edge uw, is not critical

Thus, any vertex of minimum degree in a D2C graph with α = 2 is a stable vertex.

So we conclude that α ⩾ δ for all D2C graphs with α = 2.

4.4 Characterizing D2C Graphs with α = 2

We can use the result from Theorem 14 to characterize all D2C graphs with α = 2. To do

so, we will argue that if v is a minimum degree vertex, then |S| ⩽ 2, where S denotes the

set of vertices distance 2 from v.

We will again prove two lemmas, from which the result will follow.

Lemma 4. There does not exist a D2C graph G with the following properties: (i) α = 2, (ii) if

v ∈ V(G) has minimum degree, then |S| ⩾ 3, and (iii) d(v) = 1.

Proof. Let u ∈ N(v). If d(v) = 1, then in order for G to have diameter 2, u must be a

dominating vertex. However, if |S| ⩾ 3, and S is a clique, then G is not a star. From

Corollary 3, G is not D2C.

Lemma 5. There does not exist a D2C graph G with the following properties: (i) α = 2, (ii) if

v ∈ V(G) has minimum degree, then |S| ⩾ 3, and (iii) if u,w ∈ N(v), then u and w share a

common neighbor x ∈ S.
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Proof. We first note that by Theorem 14 and Lemma 4, v must have exactly two neighbors

u and w. Suppose that u and w share a common neighbor x ∈ S. We will argue that

either ux or wx is not a critical edge. Since G is D2C and has α = 2, u and w must form

an independent set (Lemma 3), and S must be a clique (Lemma 2).

Since |S| ⩾ 3, and since N(v) must form a dominating set, at least one of u or w has

at least two neighbors in S. Without loss of generality, suppose that u has at least two

neighbors in S.

We now argue that ux is not a critical edge. Since wx ∈ E(G), d(v, x) = 2. Since S is a

clique, and both u and w have a neighbor in S, for all s ∈ S, d(u, s) ⩽ 2 and d(w, s) ⩽ 2.

Furthermore, we see that if in G−ux, v is distance 3 (or more) from a vertex s ∈ S, s ̸= x,

then v needed to be distance 3 from s in G. Since G has diameter 2, we conclude that this

is not possible. Finally, since u and w share a common neighbor v, they are still distance

2 apart in G− ux. Thus, we conclude that G− ux has diameter 2.

Thus, the edge ux is not critical, and so we conclude that such a graph G does not

exist.

Lemma 6. There does not exist a D2C graph G with the following properties: (i) α = 2, (ii) if

v ∈ V(G) has minimum degree, then |S| ⩾ 3.

Proof. Let u,w ∈ N(V) as in the proof of Lemma 5. Since |S| ⩾ 3, and since N(v) must

form a dominating set, at least one of u or w has at least two neighbors in S. Without

loss of generality, suppose that u has at least two neighbors in S. Suppose that u has

neighbors x,y ∈ S.

We now argue that xy is not a critical edge. We first see that since S is a clique,

removing xy will not increase the distance between any two vertices in S above 2. We

also see that N(v) still forms a dominating set, and so v is still distance 2 from vertices

in N(v) and in S. We also see that since the vertices in N(v) all still share a common

neighbor v, these vertices are still at most distance 2 from each other.

Next, since S is a clique in G and u is adjacent to x and y, removing xy from G will
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still leave u at most distance 2 from every vertex. Finally, by Lemma 5, w shares no

common neighbors with u, and by Theorem 6, it contains some other neighbor z ∈ S.

Since S was originally a clique, z will still be distance 1 from all of the vertices in S after

removing xy. Thus, w will still be distance at most 2 from every vertex in S. Thus, the

edge xy is not critical, and so we conclude that such a graph G does not exist.

Thus, if G is a D2C graph with α = 2, then given a minimum degree vertex v ∈ V(G),

|S| ⩽ 2. Since it follows from Theorem 14 that δ(G) ⩽ 2, we see that the only D2C graphs

with α(G) = 2 are P3,C4, and C5.
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Chapter 5

Counter-examples to Select D2C Graph

Conjectures

5.1 Diameter-2-Critical Graphs Where δ > α

Using the construction of D2C graphs outlined in [19], we can show that Conjecture 8

is not true for all D2C graphs. The construction of a counterexample relies on the fact

that Loh-Ma’s Construction 2.1 requires a graph with diameter 2 whose complement

has diameter 2, but neither graph needs to be D2C. We note that for diameter 2 graphs,

it is possible for δ > α. In fact, the difference can be quite stark. Consider an n-

vertex complete graph G with exactly one edge removed. Then G has diameter 2, but

δ(G) = n− 2 and α(G) = 2.

Finding a diameter 2 graph H whose complement Hc has diameter 2, while also

having that δ(H) > α(H) and δ(Hc) > α(Hc) is more difficult. This is because graphs

with larger minimum degree and smaller independence numbers generally have larger

clique sizes. However, larger graphs have more room to space out edges in order to have

a large minimum degree and both a small independence number and clique size. An

example of a fairly small diameter 2 graph G with δ(H) > α(H) and δ(Hc) > α(Hc) is
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shown below:

We see that we cannot create a graph with δ > α simply using Loh-Ma’s Construc-

tions 2.1 or 2.2 with this graph G. We can, however, use G to create a larger diameter 2

graph H where the minimum degree is much larger than the independence number in

both H and Hc. This lead to the construction of the graph in Figure 5.1, a D2C graph

with minimum degree 9 and independence number 8.

Figure 5.1: First Counterexample Constructed

To find an infinite family of graphs for which α < δ, it is helpful to look at self-
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complementary graphs. These are graphs G that are isomorphic to their complement

graph Gc. This makes computing the independence number and minimum degree easy

when using Loh-Ma’s Construction 2.1 or 2.2. It also assures that, provided that G has

diameter 2, Gc has diameter 2, allowing it to be used in Loh-Ma’s Construction 2.1.

One such class of self-complementary graphs is known as Paley graphs. Paley graphs

G are strongly regular graphs with q vertices such that q is a prime power, q ≡ 1 mod 4,

and each vertex has a distinct label from 0 to q − 1 such that given two distinct vertices

labeled r and s, r and s are adjacent if and only if r− s is a square number in Zq.

By their construction, Paley graphs with q vertices are regular graphs, where each

vertex has degree q−1
2

[25]. It is also known that the clique number of these graphs are

at most
√
q [25]. Since Paley graphs are self-complementary, for any Paley graph G and

its complement Gc, ω(G) = α(G) = ω(Gc) = α(Gc). Therefore, if we use Loh-Ma’s

Construction 2.1 with a Paley graph G, we would have that δ(G) = q−1
2

+ 1 = q+1
2

and

α(G) ⩽ 2
√
q. Since 2

√
q < q+1

2
when q ⩾ 14, any Paley graph with at least 14 vertices

can be used in Loh-Ma’s Construction 2.1 to create a D2C graph with δ > α.

In fact, since d
dq

(2
√
q) < d

dq
(q+1

2
) when q ⩾ 14, the gap between δ and α can be

arbitrarily large.

Proposition 11. Given any natural number k, there exists a D2C graph such that δ > α+ k.

The smallest Paley graph G for which Loh-Ma’s Construction 2.1 can be used is the

Paley graph of order 13, where the graph G ′ has order 26, independence number 6 and

minimum degree 7. This is the smallest known D2C graph (by its order) for which α < δ.

It is also known that the maximum common neighbors between a pair of vertices in

a Paley graph is q−1
4

[25]. Given that in Loh-Ma’s Construction 2.1, the independence

number in the D2C graph G ′ is at most 2
√
q, it will be true that the maximum common

neighbors in G ′ is greater than the independence number of G ′ whenever q−1
4

> 2
√
q.

This is true when q ⩾ 66.

35



Since d
dq

(2
√
q) < d

dq
(q−1

4
) when q ⩾ 66, we get a proposition for the maximum

common neighbors analogous to Proposition 12.

Proposition 12. Let c be the maximum common neighbors of any pair of vertices in G. Given

any natural number k, there exists a D2C graph such that c > α+ k.

5.2 Diameter-2-Critical Graphs Where

distinct degrees(G)> α(G)

The parameter distinct degrees(G) refers to the number of distinct integers in the degree

sequence of G. For all D2C graphs where n ⩽ 11, distinct degrees(G) ⩽ α(G). However,

we can construct a larger D2C graph such that distinct degrees(G) > α(G).

Begin with the Paley graph P with order 13. Label the vertices of P as done in Figure

5.2 (using the same labels v0, v1, ..., v12).

v0

v1

v2

v3v4

v5

v6

v7

v8

v9 v10

v11

v12

Figure 5.2: Paley Graph on 13 vertices
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Create a new graph G by adding the edges v1v3 and v3v9 from P, and then removing

the edges v7v8 and v7v11. This new graph G has five distinct degrees: d(v3) = 8, d(v1) =

d(v9) = 7, d(v8) = d(v11) = 5, d(v7) = 4, and all other vertices have degree 6. Its

complement Gc also has the same five distinct degrees.

We can then use Loh-Ma’s Construction 2.1 on G to create a D2C graph G ′ which

will again have 5 distinct degrees (5,6,7,8,9). Label the vertices of G ′ containing a copy

of Gc as v ′
0, ..., v

′
12 so that vi and v ′

j are endpoints of the perfect matching if and only if

i = j. Although α(G) = 4 and α(Gc) = 4, no two maximum independent sets can be

used from G and Gc to form a maximum independent set in G ′. Thus, α(G ′) ⩽ 7. Given

that the vertices v0, v1, v7, v8, v
′
3, v

′
9, v

′
12 form an independent set, we have that α(G ′) = 7.

Finally, we use Loh-Ma’s Construction 2.2 on G ′ to create a D2C graph with three

more distinct degrees and the same independence number as G ′. To do this, join two

vertices x and y to the vertices making up the copy of G in G ′. Call this new graph G ′′.

Since α(Gc) = 4, we cannot have that α(G ′′) > α(G ′). Thus, α(G ′′) = 7. We also

see now that d(v1) = d(v9) = 10, d(v3) = 11, and d(x) = d(y) = 13, so three new

distinct degrees have been added to G ′. Therefore, G ′′ has eight distinct degrees and

independence number 7, making it a counter-example to Conjecture 3. (For the G6

string of G ′′, see Appendix A).

We conjecture that the gap between the number of distinct degree in G and the

independence number of G can be arbitrarily large.

Conjecture 9. Let D be the number of distinct integers in the degree sequence of G. Given any

natural number k, there exists a D2C graph such that D > α+ k.

5.3 Conclusion

There are still many open questions with regards to the independence number of D2C

graphs. While we know that Conjecture 8 is false for infinitely many graphs, it is unclear
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what the smallest order of a counterexample is. It is also unclear what the smallest value

of α is in a counterexample to Conjecture 8. Indeed, there are also still many classes of

D2C graphs for which it does appear that Conjecture 8 is true. These include 4-regular,

5-regular, and α = 3 graphs. Similar questions remain for Conjectures 2 and 3. Perhaps

most notably, it remains unknown if Conjecture 7 is true for all D2C graphs. The result

of Theorem 13 provides evidence that it could be.
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Appendix A

G6 Strings for select D2C graphs

• Counter-example to conjecture 3:

’[?G?PGqMPxbQBqH|A]V??s?FG?MG?}C?v@?LoG@m?_Ew@?Ko@Clo?eEw?H_m?@kL’

• Cameron D2C subgraph:

"~?Bf???OPOAGPIWhFhw^\_??@?????????????EA???_??g??GP???a??DK?c@GwGCRoB?

No?????????A???\_C?????@?C????O???H?????U@?G?AHAa???r???A?B?????AF??CA‘

V?@O??@o?????\_?\_?C?????????O??????????????aA@??O????????CC??s??????cH

_??????B_GK??gC\_‘??\_???OA\_?Q???OPo??A?????@???????GE????@\_???C??\_?

????@W??????O?‘????A????O??G????CAH??????c_@K????@??GCZ@_@E?W?_OOFGA_QD

AA?CF?‘@@@e?CdB_????@??O?????_??????????G??AD?Q???????????C??O?O???????

AD?CG?C?oAE??A????G???a??W??????_??COR????K?g??C?m??\_????P_?SE?OI?@???

??CGI????@?????????????O????P?????CCA?G?A‘??W?O@@\_?@G_?oCC???CC???????

?_???a??O?????H_CGCA??????GAa@GO?AOA???GOCB?CA?GW@????@?sGC?‘??I@@??@@o

??????‘c?G???C@???@????????AE????A???????B?CO????AA_?_?A@???????O????@_

‘CC_?CAa@@O@O???@@E????@?_AA?COO@??CG???????????Ara?C???????A??‘BoCK?c?

CK_@??OE?M??PACC??__??????????????OcOgR???????????????????_J?CB?AC@????
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??CO?H@C????????AWE?pH_?????gO?C@??_C?A@?AOD????C?KC??gG_???@_?????GA?

??cC@??O??CKI_?C??G???????I?OA‘?I@????????G?????G?G???D@??????@?C?AG_??

??C??G??????CA?o???_Bc?E?GOCOC??iC???S?G‘_??G?G??A‘?@A?HOKC‘???‘O??O\_\

_C??IGM?@C??C?C???C???GPCGG?@?H??G???CC????DE??c????G?????AA?@_G_O?_???

?cA?C?AP?gA@a?I??g??_G??@?GO?O?@?OO????G@??????_??cCG?C?????????????APg

\}_?OOW????G@?G?CQCD?R??_@G???A?????ACH?A_????OOC??Go??????@@a_GK?H????

GA????????C????@??????O?@_G??_?gK_I?A???CGAO???@????W_??CGK?G??A_???A??

?COo??OD?????S??Ca??O??‘G?A@GO???O?HO_?B???@Eg_C_CD_@?CAA??CO?A?cO?x?SH

A?I?GS?H?K@??C@@?W?_Q?@OCG?iC??OQH?‘@_E?o?J?B?C_@?O????CO?@D????_??I?O@

CA???D@CO??C@?P?W@?G???‘????cFC@???GA_E?O_H_H?G?_?OCO?G??@G?G?AH_???c_C

??@?SA???o?@??@@O?ED???IA\_\_\_G??A_AA??A?G?C?G???SG?????Ao@O????O??OO?

?KGac?G\_?F?A@CK???OC??C?????????ACo?G????OoP_???A‘????????????@?G_OC?g

AA????????@\_??\_\_??CG??????Of?aGG??E_?GA_OAQG??E??G?H?G????C??@GOIG??

????????D????Q_?????????GC?@G??GO??????G?C@??K??_??I???A_????O?@_?_????

@???O_?@C???OOK??W?@????????G?@C??CB??????_?@@?_A?O?????G???WDG???ACCA?

?@P??????IG????ALP???GQCG?OgaA??@B???B?@_?????P?C????O?????G??oP????G??

Z??G???OO??A_??O????_?s???B?????????eG?A__?????AOA?Cg?????AA?OO@?AE????

??????YeCK@B?????P_OE?G?_CA?GGA?YCe?C@OG@??A@??GGD??CC????S__CGAO_?@O?@

_?@??Gc?_???@H‘OC@?????????CG???_?W?CO?I?AC?????G_??i?H????????C???P_?‘

_????AE???O@A@O??‘??????@G??G?O?????C_????A????C?O??[?????A?A???__?????

??P@I@??I???????CA??G_?AE??@?O?C_Y?GkCA??????CP??CC??C???A_KAO?p_????@?

C?_?A_OI@?_?C??gDGQO??AB?AAOCa??G‘_G?A???AAK??Z?C??@@??A??AA???AE??@???

_H??HsG?EA?OC???????????C??Q??T?cB?????CG?????@??OI_?_??O?gg?_?????A???

??A???A?_G????KE@??OC?C??????AD??????@???Q??W?KH?H?A?g???c?C_g??AAG???K

?@OG_?GA?GDC???‘cP@CQ?H?AC??????????G??????O@O??W??A_A??Cg_??@?F???????

?SA??????G?_POP_??A?_AOB?AGHA?__A_?????D?Og?????g???@B?????????GO??A??F

???CgC_E?W_??????A??G??@?O??G??????K?A?‘o?????g‘AA???Se???OH@C?@_??oc_@
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?_???Q_DCOcPC?@G@?S?CGG???_K?_GG?@A_?S@????@O?K???C_@?G??I?M?pC???G_???

??????A?_AODHOC_O_AKACO??G?G?AC_??????@?Q?W?AG@KR@?WAQ@OAB@P???GOG@A???

??_?BAq???HWO?HA@?_?CCCA@O?C?@?G_???KA??Co?Ao????@_C????B?I@??bAGE?E?O_

C??C??????DA‘G??@PID@?A?E????AA????‘?SO_a?C??@a?QOoOo?g?S???????????OOG

O_Og?????g??C?@@??QCC@??@COOA?OO???KAA?c??D??A???@???@O@??jC?OI?????HO?

?OC@_o???E@_?T?@??HA?g?OG????@C????A‘B?AO?O??AOg??@?A‘OW@@?__K?AK??IGgG

??CO???oC?????A__C___DAO@??_C???__??@ACCc???E?Q?G????CAO@OGG?E?_ACb??@O

????GgGOG??GA?GGC_?a?GGO@_C_??????@_E???g??G???@AA_?Ga?@A?@A???_aCG?Gh?

?_?G??????_OoGG?qA?_?O?_A@???@g?OO_gAA?????A??O_CGOO_?_ABO??@?D?G??_A?G

O????SC@@_G?@C??gGaC_??I@G??_Ga?_??@A?AG?OGO????D??Gc???????a?S?O?@?_OP

???DA????GIE??A???CO?????G@B?C_???ACC‘OA????CC???QA??c???‘?OHC?@O????\_

Go?_?G?gCG_a??C_?@OL??@?G???A???????K@A????iG?@H?OA??OGIG@????AGIGOPB?D

A??CA?O???ABO????@@?G?Oa?C_C_@O???H@G_G_??_??@???????A?F?@O_??D?W@?H?Q?

?@S?@??SG??CAa??gC_GA_@??a?GCAODG?QEA?KC????A??C???cBS?C?A??S_A?A?‘????

????Cg???????IC_??F@?C?_GCc?@c?AOA@A?????_?????O@?AAAaOBCdC??_@?SO\_\_?

??\_\_SoOoSGA???@aS???A?@??O?A????????H???ICA_aF?C?AGKGO?@???_?S?S???@@

?O@QG????????C_aE_Q?o?OG??@GG??@??CCOOACaI_?CA_?Sd?P_??Q?????c?A?@?C??C

??????CO@G?E_?_???I?A@??‘??OAa_?O?Q__S?C??CIAE??G_A??@P???Oa??I??O?WG?O

P?QCW@I?G@AO?G?@?@???C_c?D???_G????i??_????oC??aGW???‘Ac?AC_AA?C@C?_?I?

_??@E?OK???@‘@Q?????AK@CO?A?@?A@???C_?GSO???_G?A@CoQ???C?CO??@P??qO@??O

‘@?O?????????O??C?gIC??CCg_Q?@K?A?_GO???G???????????????CA?O??__??K?GsH

D?GO_PG??O@_?OC?‘_??g???@_@????_D_H?d?G??C??G@‘PA@O?OCg??????????BCg?C_

?BD??@@G‘a??G????CDA?_@AGG?CQ???A_G????GkO??SC?_??_??????_??@O?O_QE?_?G

AA?EC??@F??aI???C????A_??GG??????cIO?ObOKG???S?OO?_?_?w??"

• Graphs with order 6 to 11 with δ ⩾ 3 and δ = α:

"GCR‘vo", "GCrb‘o", "GCZJdo", "GCY^B_", "HCOfeW{", "HCQb‘rK",
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"HCQbepl", "HCQeR‘}", "HCQeRg}", "HCRbdQY", "HCp‘eji", "HCpdehi",

"I?B~vrw}?", "I?rFf_{N?", "I?rDrqs\?","ICQ‘fIku_", "J?‘FE_{~@}?",

"J?‘FEc{NFw?", "J?‘F?~oNFw?", "J?‘DQnoNFw?", "J?bFF‘wN?{?",

"J?bBeLwNDs?", "J?bDMpw]@m?"

• D2C graphs with 7 ⩾ n ⩾ 10 and δ ⩾ 3:

’I???F~}~_’, ’I??E@~{~?’, ’I??F?~{~?’, ’I??F~z{~?’, ’I?AAFo}~_’,

’I?AEDp{^o’, ’I?AEFo}^?’, ’I?AEDx{]o’, ’I?AEDt{^?’, ’I?ABCt{~_’,

’I?ABEt{n_’, ’I?ABC~w^?’, ’I?ACNp{]_’, ’I?AFCp{^o’, ’I?AFEp{No’,

’I?AFCx{]o’, ’I?AFCt{^?’, ’I?AF?~w^?’, ’I?ABeT{n_’, ’I?ABc^w^?’,

’I?AELp{]o’, ’I?AFfP{Fo’, ’I?AFeX{Mo’, ’I?AFvp{^?’, ’I?BEDp{]o’,

’I?BEDo}]O’, ’I?BEFo}}?’, ’I?BEDxy^?’, ’I?BDEpyNO’, ’I?BD@xY}?’,

’I?BD@x{u_’, ’I?BD@xyu_’, ’I?BD?~w^_’, ’I?B@‘zI~_’, ’I?B@‘ziv_’,

’I?B@‘zM}?’, ’I?B@c^w^_’, ’I?B@d\\{u_’, ’I?B@d\\]}?’, ’I?BF@zWNg’,

’I?BF@zWMw’, ’I?BF@w{u_’, ’I?BDePyNO’, ’I?BDdPZ^?’, ’I?BDeS{^?’,

’I?BDeS{]_’, ’I?BDbS{u_’, ’I?BDbS{uG’, ’I?B@vC{v_’, ’I?B@vE{V_’,

’I?B@uK{}?’, ’I?B@tNwV_’, ’I?BDMp{Mo’, ’I?B@mZwMo’, ’I?B@lZwUo’,

’I?B@hzI}?’, ’I?BFHzWMg’, ’I?BDjZWMw’, ’I?B@~bgFW’, ’I?B@~bgEw’,

’I?B@|pwpW’, ’I?B@|pwow’, ’I?B@xzw}?’, ’I?B@~rw}?’, ’I?Bcu_{Yo’,

’I?Bcsza^?’, ’I?B~vrw}?’, ’I?‘@F_]~_’, ’I?‘@FrUN_’, ’I?‘DFa{V_’,

’I?‘DBo{t_’, ’I?‘DBrsV_’, ’I?‘DBr[\\g’, ’I?‘DEhw^o’, ’I?‘@f_{r_’,

’I?‘@famV_’, ’I?‘@fC{v_’, ’I?‘@fE]^?’, ’I?‘@eUu^?’, ’I?‘CV_{~_’,

’I?‘CV‘{|_’, ’I?‘FAqsNo’, ’I?‘FAo}lO’, ’I?‘FAovn?’, ’I?‘FBqsF_’,

’I?‘FBo{d_’, ’I?‘F@w{v_’, ’I?‘FEc{~?’, ’I?‘F?~o~?’, ’I?‘Db_{ro’,

’I?‘DeHw^o’, ’I?‘DeHyNo’, ’I?‘Dbo{p_’, ’I?‘DfHwVo’, ’I?‘DeXw\\o’,

’I?‘DbVSNg’, ’I?‘DbS{t_’, ’I?‘DbLwvO’, ’I?‘Da^on?’, ’I?‘Da\\w|?’,
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’I?‘EVasN_’, ’I?‘DQno~?’, ’I?‘FfbKNG’, ’I?‘FdZoVO’, ’I?‘F‘zo~?’,

’I?bBF_{u_’, ’I?bBBo{m_’, ’I?bBDhYm_’, ’I?bBDc]^?’, ’I?b@aTong’,

’I?b@aTwl_’, ’I?b@aUq^g’, ’I?b@aUy\\g’, ’I?b@ddM^O’, ’I?b@eVoN_’,

’I?b@bTYl_’, ’I?bAV_{]_’, ’I?bAV_{Kw’, ’I?bATqs[w’, ’I?bATrs[o’,

’I?bBbQseo’, ’I?bBbQYlO’, ’I?bBbO]lo’, ’I?bB‘rI|O’, ’I?bBeUsm_’,

’I?bBeUsmO’, ’I?bBeUsMg’, ’I?bBeTsmG’, ’I?bB‘\\[kg’, ’I?bBQuw\\G’,

’I?bDMpsMw’, ’I?bDJpwd_’, ’I?bF‘xw{?’, ’I?bF‘xw]?’, ’I?bBrqw\\G’,

’I?bDjpw]?’, ’I?bDjpwl?’, ’I?‘bF‘wf_’, ’I?‘bEg{}_’, ’I?‘bEi{u_’,

’I?‘ad_}ro’, ’I?‘aeQuNo’, ’I?‘acgwzg’, ’I?‘acg{y_’, ’I?‘acii~?’,
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’I?‘adK]}?’, ’I?‘fBpwf_’, ’I?‘fCxwd_’, ’I?‘ebQ[ko’, ’I?‘ebQqfO’,

’I?‘eaqsJo’, ’I?‘eaqkLw’, ’I?‘eaoujW’, ’I?‘eaomlO’, ’I?‘eaquNO’,

’I?‘e‘qeVO’, ’I?‘e‘r[wo’, ’I?‘eeW{ko’, ’I?‘efD[n?’, ’I?‘ebVSn?’,

’I?‘eTjSN_’, ’I?‘eIqpN_’, ’I?‘cn@WNW’, ’I?‘cn@wFO’, ’I?‘cn@[MO’,

’I?‘cm‘wjO’, ’I?‘cm_xzG’, ’I?‘cjbgfW’, ’I?‘cjbWjW’, ’I?‘cmPpn?’,

’I?‘ckppzO’, ’I?‘ciroJO’, ’I?‘ciqszO’, ’I?‘ciox~?’, ’I?‘cioxz_’,

’I?‘cjpw~?’, ’I?‘cmhwjG’, ’I?‘cmhin?’, ’I?‘cjfgFW’, ’I?‘cmLwn?’,

’I?‘aljgfg’, ’I?‘aljING’, ’I?‘aliYzG’, ’I?‘ejpwn?’, ’I?‘c~‘w{?’,

’I?bfAoxd_’, ’I?bebOxl_’, ’I?bebpwN_’, ’I?bLbpw\\_’, ’I?rFf_{N?’,

’I?rDrqs\\?’, ’I?qa‘bu}O’, ’I?qa‘ro|_’, ’I?qa‘rSx_’, ’I?qa‘qe|?’,

’I?qa‘ped_’, ’I?qa‘ph|_’, ’I?qa‘iYZw’, ’I?qa‘i]Zo’, ’I?qadpUw_’,

’I?qabi[j_’, ’I?qabYYLw’, ’I?qabWuew’, ’I?qa‘nE}O’, ’I?qdRaYtO’,

’I?q‘qjo{?’, ’I?q‘qjoY_’, ’I?q‘qiw\\?’, ’I?q‘qiww_’, ’I?q‘uhsi_’,

’I?otQxef_’, ’I?opuJoBw’, ’I?opvJcv?’, ’ICOfBa[z?’, ’ICOfBa[Zo’,

’ICOf@pSb?’, ’ICOf@o]v?’, ’ICOf?zwpo’, ’ICOfEqsZW’, ’ICOfCxk{G’,

’ICOedO[|_’, ’ICOedRcN_’, ’ICOedO{x_’, ’ICOedPen?’, ’ICOedOm~?’,
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’ICOebIgno’, ’ICQ‘fPUF_’, ’ICQ‘fIku_’, ’ICQf@rWZG’, ’ICQf@Xpv?’,

’ICQe‘pkmg’, ’ICQe‘qi^?’, ’ICQb‘rGzG’, ’ICQb‘rG^G’, ’ICQb‘rgV?’,

’ICQb‘rKr?’, ’ICQeR_{\\_’, ’ICQeR_{Xg’, ’ICQeJ‘wbO’, ’ICQeHpwbo’,
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