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Abstract 

While cancer patients often experience tumor reduction after receiving chemotherapy, tumors 

can eventually emerge from a state of dormancy. Cancer cells  treated with the topoisomerase II 

poison, etoposide (ETO),  enter senescence, which is a durable and prolonged cell cycle growth 

arrest. Different murine lung cell lines were screened for their levels of senescence induction by 

ETO, and those showed promising senescence induction were then treated with the senolytic, 

ABT263, to promote apoptosis. The hypothesis of this work was that  non-small cell lung cancer 

cell lines will have different degrees of senescence and that the magnitude of the response to 

senolytics would reflect the extent of senescence induction. An additional goal of this study was 

to identify an appropriate mouse lung cancer line that could be used to study the interactions with 

the immune system. X577, E889, X381 and CMT167 cells had different degrees of senescence, 

and  had different degrees of response to the treatment with ABT263. However, there was no 

clear correlation between the extent of senescence induction and the response to ABT263, and 

this is assumed to be due to the different genetic makeup of the cells. After analysis of the time 

to recovery from the treatment with ETO and  ABT263, it was determined that X577 cells had 

the potential  be investigated in vivo. 

1. Introduction 

1.1. Cancer background  

Cancer is a disease in which cells undergo mutations that allow them to grow uncontrollably and, 

in some cases, to metastasize. Cancer is thought to be driven by defects in the host’s genes or by 

defects in gene regulation. Cancer cells differ from normal cells in their ability to sustain 

proliferative signaling, evade growth suppressors, resist cell death, enable replicative 

immortality, induce angiogenesis, and activate invasion and metastasis (Hanahan, 2011). 

According to the NIH, lung cancer is one of the leading causes of new cancer cases in 2021. It 

was estimated that lung cancer would represent 12.4% of all new cancer cases in the U.S., and, 

compared to other cancer related deaths, there were going to be 22% lung cancer deaths with the 

five-year survival rate of 21.7% (NIH, 2021). 

1.2. Lung cancer background 

There are two main types of lung cancer, non-small cell lung cancer (NSCLC) and small cell 

lung cancer (SCLC). The main subtypes of NSCLC are adenocarcinoma, squamous cell 

carcinoma, and large cell carcinoma. About 80-85% of lung cancers are NSCLC.  
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Adenocarcinomas start in cells that normally secrete mucus and they’re usually found in the 

outer parts of the lung and are more likely to be found before they have spread. This cancer 

occurs mainly in people that smoke or used to smoke; it is also the most common type of lung 

cancer seen in people who don’t smoke. It is more common in women than in men, and it is 

more likely to occur in younger people than other types of lung cancer.  

Squamous cell carcinomas start in squamous cells, which are flat cells that line the inside of the 

airways in the lungs and it can be found in the central part of the lungs, near a main airway 

(bronchus).  

Large cell (undifferentiated) carcinomas can appear in any part of the lung, this type of lung 

cancer tend to grow and spread quickly, which can make it harder to treat. 

 SCLC tends to grow and spread faster than NSCLC and about 70% of patients with SCLC will 

have cancer that has already metastasized by the time they are diagnosed. There are two main 

types of small cell lung cancer, small cell carcinoma and combined small cell carcinoma. 

Chemotherapy and radiation therapy work best at treating SCLC because of how fast it grows. 

Unfortunately, for most people, the cancer will return at some point. 

There are different treatments for NSCLC, some of which are, but not limited to, surgery, 

radiation therapy, chemotherapy, targeted therapy, immunotherapy, laser therapy, photodynamic 

therapy, cryosurgery, and electrocautery. Small cell lung cancer has six types of standard 

treatments: surgery, chemotherapy, radiation therapy, immunotherapy, laser therapy, and 

endoscopic stent placement.  

1.3. Chemotherapy treatment 

Chemotherapy uses drugs to stop the growth of cancer cells, either by killing the cells or by 

stopping the cells from dividing. Chemotherapy can be used to cure cancer, lessen the chance it 

will return, or stop or slows its growth. It can be used to shrink tumors in patients that experience 

pain and other problems from cancer. Systemic chemotherapy is chemotherapy that is taken 

orally, injected intravenously or intramuscularly. Regional chemotherapy is chemotherapy 

placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen. 

Chemotherapy drugs can be used alone or in combination with other chemotherapy drugs or 

immunotherapy. Chemotherapy is used with other cancer treatments to decrease the size of 

tumor before surgery, kill cancer cells that may remain after surgery or radiation therapy, kill 
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cancer cells that have returned or metastasized to other parts in the body, or help other 

chemotherapy drugs work better.  

According to the American Cancer Society, chemotherapeutic drugs can cause side effects, the 

magnitude of which depend on the type and dose of drugs given and how long they are taken. 

Some side effects examples are, but not limited to, hair loss, mouth sores, loss of appetite or 

weight changes, nausea and vomiting, and diarrhea or constipation. Chemotherapeutic drugs can 

also affect the bone marrow blood-forming cells and can lead to increased chance of infections, 

easy bruising or bleeding, and fatigue. These side effects usually subside after treatment is 

finished. Although patients can be given drugs that can help prevent or reduce nausea and 

vomiting (American, 2020), there are no available treatment for other serious side effects such as 

peripheral neuropathy, chemo-brain, renal damage from platinum based drugs, and cardiotoxicity 

of drugs such as doxorubicin. 

A two-step treatment of chemotherapy can slow down the growth of cancer and drive the tumors 

to cell death giving the patient a longer remission period or suppressing cancer recurrence. The 

two-step approach we have been studying is the induction of senescence followed by the use of 

senolytics.  

1.4. Senescence  

Senescence is a durable and prolonged growth arrest by which cancer cells can escape 

chemotherapy-induced death (Sharpless et. al., 2015). Senolytics are a drug class that targets and 

kills senescent cells (Dorr et. al., Xu et. al., Zhu et. al., 2013). Senescence induction by different 

stimuli share some common characteristics including an essentially stable growth arrest, relative 

resistance to apoptosis, persistent DNA damage signaling, changes in heterochromatin, 

decreased lamin B1 levels, and increased expression of the cyclin-dependent kinase inhibitors, 

p16, p21 and senescence-associated β-galactosidase (SA-β-gal). Senescent cells secrete 

proinflammatory cytokines, chemokines, matrix metalloproteinases bioactive lipids, noncoding 

nucleotides, vesicles, and growth factors, collectively 

termed the senescence-associated secretory phenotype 

(SASP) (Prasanna et. al., 2021).  

Senescence induction can also occur in tumor cells by 

targeted chemotherapy. Figure on the right illustrates the 

phenotype of senescent cells appears as macro-molecular 
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damage, dysregulated metabolism, apoptosis resistance, and a secretome which has diverse 

inflammatory mediators, growth factors, and different enzymes called the senescence-associated 

secretory phenotype (SASP) (Hernandez-Segura et. al., 2018).  

There are different types of senescence: DNA damage-induced senescence, oncogene-induced 

senescence, oxidative stress-induced senescence, chemotherapy-induced senescence, 

mitochondrial dysfunction-associated senescence, epigenetically induced senescence, paracrine 

senescence, and replicative senescence (Hernandez-Segura et. al., 2018).  

DNA damage-induced senescence occurs when DNA is damaged and this damage can induce 

either senescence or apoptosis, depending on how damaged the DNA is (Hernandez-Segura et. 

al., 2018; Munoz-Espin, 2014). Oncogene-induced senescence occurs by the activation of 

oncogenes, such as Ras, or the inactivation of tumor suppressors, such as PTEN (Hernandez-

Segura et. al., 2018; Munoz-Espin, 2014; Sharpless et. al., 2015). Chemotherapy-induced 

senescence occurs after the use of multiple anticancer drugs, such as the topoisomerase II poison, 

ETO, which induce DNA damage, and others that can act through different mechanisms, such as 

the inhibition of pro-survival proteins like the BCL2 family (Saleh et.al., 2020). Epigenetically 

induced senescence occurs with the use of DNA methylase inhibitors, such as 5-asa-2’-

deoxycytudine, or histone deacetylases inhibitors, such as sodium butyrate (Petrova et. al., 2016). 

Paracrine senescence is induced by the SASP produced by a primary senescent cell (Acosta et. 

al., 2013). Replicative senescence occurs when there is a decrease in proliferation potential after 

multiple cell division that eventually lead to total arrest (Hernandez-Segura et. al., 2018), which 

is the shorting of telomeres as a consequence of multiple cell divisions in non-transformed cells 

(Sharpless et. al., 2015).  

ETO was the first agent recognized as a topoisomerase II (topo II) inhibiting anticancer drug. In 

1983, the FDA approved ETO as a cancer treatment in clinical settings (Hande, 1998). ETO, is 

converted to O-demethylated metabolites, in a reaction that is mediated by CYP3A4 and 

CYP3A5; the metabolites have similar potency at inhibiting topoisomerase II as the parent 

compound. The parent drug, ETO, and its metabolites stabilize the double-stranded DNA 

cleavage normally catalyzed by topoisomerase II (topo II) and inhibit the religation of DNA 

breaks. These double-strand DNA breaks subsequently trigger the desired antitumor effects 

which is cell death, but can also be senescence (Yang, et. al., 2009).  
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Induction of cellular senescence is a mechanism by which cancer therapies exert antitumor 

activity and tumor stasis. Conversely, there is an increasing amount of evidence from preclinical 

studies shows that radiation and chemotherapy cause accumulation of senescent cells both in 

tumor and normal tissue. This increase of senescent cells in tumors can promote tumor relapse, 

metastasis, and resistance to therapy; furthermore, senescent cells in normal tissue can contribute 

to certain radiation- and chemotherapy-induced side effects (Prasanna et. al. 2021).  

After senescence induction, cells can recover from senescence, and re-emerge into an actively 

proliferating state (Chakradeo et. al., 2016; Saleh et. al., 2020). Although, the recovery process is 

unclear, we believe that it can be from previously senescent cells, cells in growth arrest from 

quiescent, or cells that are resistant to treatment. The senescent cells are in growth arrest; 

however, a portion of the cell population may die. When the cells that have entered into 

senescence are treated with a senolytic, a portion of the senescent cell population are targeted for 

cellular death; this would leave some cells, those that did not enter senescence and those that 

could resist the senolytic treatment, alive. The surviving cells will eventually grow and 

proliferate as previously and even more aggressively than before because those cells are 

considered to be drug resistant. This recovery phenomenon is seen in patients with cancer; they 

are treated with chemotherapy and the treatment works for a period of time, which can be 

months or years, and suddenly the cancer reoccurs more rigorous and aggressive than before. 

This indicates that the use of senolytics is vital in regards to the clearance of the senescent cells.  

1.5. Apoptosis  

Apoptosis is a programmed cell death pathway that is associated with a set of biochemical and 

physical changes involving the nucleus, the cytoplasm, and the plasma membrane. During the 

early stages of apoptosis, the cells round up and shrink. In the cytoplasm, the endoplasmic 

reticulum dilates and the cisternae swell to form vesicles and vacuoles. In the nucleus, chromatic 

condenses and accumulate into dense compact masses and is fragmented internucleosomally by 

endonucleases. The nucleus becomes convoluted and buds off into several fragments, which are 

encapsulated within the forming apoptotic bodies. In the plasma membrane, cell junctions are 

disintegrated and the plasma membrane becomes gets twisted around and eventually starts to 

make a rounded outgrowth on the surface of the cell. The cell can then break up in an elaborate 

manner which will lead to the falling away of several membrane spheres containing the packaged 

cellular contents; this is identified as apoptotic bodies of various sizes (Lawen, 2003).  
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1.6. Senolytics 

Senescent cells express prosurvival proteins that block apoptosis, such as BCL2 and BCLXL 

(Chang et. al., 2016; Short et. al., 2019; Wang et. al., 2017). Senotherapeutics are a new drug 

class that selectively kill senescent cells, which are known as senolytics (Saleh et. al., 2020; 

Short et. al., 2019). During the last decade, several senolytics have been identified and have been 

used in clinical trials. Preclinical data implies that senolytics alleviate disease in numerous 

organs, improve physical function and resilience, and suppress all causes of mortality (Robbins, 

et. al., 2020). Different senolytics were investigated for this study. ABT263, navitoclax, 

ABT199, and A1155463 are BH3 mimetics which prevent the BCL2 family proteins from 

inhibiting the action of pro-apoptotic proteins. Upon activation, the pro-apoptotic proteins 

permeate the mitochondria, allowing cytochrome C release into the cytoplasm where it binds and 

activate the apoptotic protease activating factor-1 allowing its binding to ATP and the formation 

of the apoptosome resulting in the activation of caspase-3 and finally cellular apoptosis (Zhan et. 

al., 2019). Another senolytic is ARV525, which is a BET family protein degrader, that is thought 

to produce senolysis by targeting NHEJ and autophagy in senescent cells (Wakita, et. al., 2020). 

1.7. Preliminary data and research introduction 

The human lung cancer cell line, A549, was shown in our laboratory to undergo senescence upon 

treatment with ETO, and to die upon exposure to the senolytic agent, ABT263, both in vitro and 

in vivo (Saleh et. al.). However, these studies were performed in an immune deficient animal that 

would not reject the human tumor cells. In order to identify a mouse cell line to study the 

interaction of the immune system when treated with ETO and ABT263, mouse lung cancer cell 

lines, including CMT167, with different genetic backgrounds (Noland et. al., 2011) were 

investigated.  

Senescence induction was monitored based on the upregulation of the lysosomal content, β-

galactosidase expression, as well as the upregulation of Cathepsin D1, p21, p53, and the down 

regulation of Lamin B1. Cells that responded to ETO by undergoing senescence were then tested 

with senolytics, including ABT263, and ARV825. 

ABT263 is a senolytic which targets the BCL2 family (Zhan et. al., 2019). ABT263 has shown to 

be toxic when used in large doses (Zhan et. al., 2019); therefore, a less toxic with a more 

therapeutic index drug, AZD0466, was tested in murine lung cancer lines. AZD0466 is a potent 

dual BCL2 /BCLXL inhibitor which can drive cells into apoptosis (Patterson et. al., 2021). 
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Another drug class is ARV825, which is a BET family protein degrader that provokes senolysis 

in senescent cells (Wakita et. al., 2020). 

2. Methods and Materials  

2.1. Cell lines and drug treatments  

The six cell lines were provided by researchers at Virginia Commonwealth University: H Li 

(Y856, X577, X381, E889, X911, and Y143). All cell lines were maintained in DMEM (Thermo 

Fisher, Waltham, MA, USA) with 10% (v/v) fetal bovine serum (Gemini, West Sacramento, CA, 

USA), and 100 U·mL-1 penicillin G sodium/100 μg·mL-1 streptomycin sulfate (Thermo Fisher). 

Etoposide (Sigma-Aldrich, St. Louis, MO, USA), ABT263 (AbbVie) ABT199 (APExBio, 

Houston TX, USA), A1155463 (APExBio), ARV825 (AbbVie), and AZD0466 (AbbVie) were 

all dissolved in DMSO and administered in the dark at the desired concentrations. 

2.2 SA-β-galactosidase staining and C12FDG quantification  

Histochemical staining of SA-β-galactosidase by X-Gal, quantification of SA-β-galactosidase 

positive cells by C12FDG flow cytometry. For X-Gal staining of cells, cells were fixed and 

stained. All images taken on an Olympus (Tokyo, Japan) inverted microscope at 20×. For 

C12FDG, cells were treated with 100 nM bafilomycin for 60 minutes at 37oC, then 10 μM 

C12FDG for 2 hours at 37oC, subsequently, the cells were collected and centrifuged, washed with 

PBS and re-centrifuged, finally, the pallet was re-suspended in PBS and immediately analyzed 

with flow cytometry (excitation/emission = 490/514). 

2.3 Cell viability  

Number of viable cells were obtained by hemocytometer at various time points during and/or 

after treatment. Media was replenished every 48 hours. Non-viable cells were aspirated and only 

viable cells were counted. 

2.4. Antibodies  

The following primary antibodies were used: cleaved caspase 3 (Cell Signaling, Danvers, MA, 

USA. Cat. Num.: 9664S), BCLXL (Cell Signaling. Cat. Num.: 2764S), BCL2 (Abcam, 

Cambridge, UK. Cat. Num.: GR249198-74), BCLW (Cell Signaling. Cat. Num.: 2724S) Bax 

(Cell Signaling. Cat. Num.: 2772S), Bak (Cell Signaling. Cat. Num.: 12105S), Lamin B1 (Cell 

Signaling. Cat. Num.: 12586S), β-actin (Cell Signaling. Cat. Num.: 4976S), Bim (Cell Signaling. 

Cat. Num.: 2933S), Cathepsin D (Cell Signaling. Cat. Num.: 2248S), Noxa (Cell Signaling. Cat. 

Num.:14766S), P21(Santa Cruz Biotechnology, Santa Cruz, CA, USA. Cat. Num.: SC-397), P53 
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(Cell Signaling. Cat. Num.: 9282S). The secondary antibody used was anti-rabbit IgG (Cell 

Signaling. Cat. Num.: 7074S). 

2.5. Annexin-V/PI and APC Annexin-V/7-AAD apoptosis staining  

Apoptosis quantification, based on Annexin-V/PI (BD Biosciences, San Diego, CA, USA) or 

APC Annexin-V/7-AAD (BioLegend, San Diego, CA, USA) by flow cytometry were conducted 

by collecting supernatant and cells then centrifuge. Wash pallet with PBS and re-centrifuge. 

Suspend pellet in 106 μL of staining buffer (per sample: 100 μL 1X Annexin-V Binding Buffer, 

3 μL propidium iodide, and 3 μL FITC Annexin-V). Cells expressing GFP were stained with 

APC Annexin V (per sample: 100 μL 1X Annexin-V Binding Buffer, 3 μL APC Annexin-V, and 

3 μL 7-AAD). Cell were stained for 15 minutes at room temperature and analyzed by flow 

cytometry immediately. 

2.6. Western blotting  

After the indicated treatments, cells were lifted from the culture plates, collected, and lysed using 

M-PER mammalian protein extraction reagent (Thermo Scientific, McAllen, TX, USA) 

containing protease and phosphatase inhibitors (Sigma Aldrich). Protein concentrations were 

determined by the Bradford assay (Bio-Rad Laboratories). Total protein was then diluted in SDS 

sample buffer and dry boiled for 5-10 minutes. Protein samples were subjected to SDS-

polyacrylamide gel electrophoresis, transferred to polyvinylidene difluoride membrane, and 

blocked in 5% FBS, 1x PBS, 0.1% Tween 20 (Fisher) for 2 hours. Primary antibodies used at a 

1:1000 dilution except for BCL2 1:2000 dilution and β-actin 1:4000 dilution with overnight 

incubation in 4oC, followed by extensive washing with Tween-PBS (PBS with 0.1% Tween 20). 

The membrane was then incubated with secondary antibody of horseradish peroxidase-

conjugated goat anti-rabbit IgG antibody (1:2000) for 2 hours at room temperature or overnight 

in 4oC, followed by extensive washing with Tween-PBS (PBS with 0.1% Tween 20). Blots were 

developed using Pierce enhanced chemiluminescence reagents (Thermo Fisher Scientific).  

2.7. Statistical analysis  

Quantitative data are shown as mean ± SEM from at least three independent experiments, which 

were performed in triplicates. For statistical analysis, GraphPad Prism 8 software (San Diego, 

CA, USA) was used. Statistical data were analyzed using one- or two-way ANOVA unless 

otherwise indicated. 
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3. Results  

To disclose past research on lung cancer, figures 1, 2,  3 were adapted from studies by Valerie 

Carpenter with her permission. 

3.1 Senescence induction in A549, a non-small human lung cancer cell line, in vitro.  

Cellular senescence is “a well-established, highly-programmed response to various DNA 

damaging antitumor modalities wherein a cancer cell enters into a durable and prolonged growth 

arrest” (Saleh et al., 2019). ETO, which inhibits topoisomerase II, is used in the treatment of 

non-small cell lung cancer. Human non-small-cell lung carcinoma (NSCLC) cells (A549) were 

treated with ETO at a concentration of 8.7 μM for 72 hours, based on pharmacokinetic data 

(Smyth et. al.). Figure 1A illustrates the promotion of senescence by ETO based on the increased 

SA-β-gal activity by X-gal and C12FDG. Another marker of senescence is the degradation of 

Lamin B1, which is shown in figure 1B. 

A                  B 

 

 

 

 

 

 

 

 

Fig. 1. Etoposide induced senescence in human lung cancer cells, A549. Etoposide A549 cells were 
exposed to etoposide at a concentration of 8.7 μM for 72 hours. (A) A549 cells were assessed for 
increased expression of SA-β-gal using X-gal (bright-field images, objective 20x) or C12FDG (bar graph). 
****P < 0.0001 indicates statistical significance of treated condition compared to controls as determined 
using unpaired, Student’s t-test. (B) Western blotting for Lamin B1 following treatment with etoposide. 
All images are representative fields or blots from three independent experiments (n = 3), and quantitative 
graphs are mean ± SEM from three independent experiments (n = 3). 

3.2 A549 Sensitivity to the senolytic, ABT263, in vitro 

Cells induced into senescence by ETO were treated with ABT263 and after the treatment of 

ABT263, the surviving cells were stained with crystal violet. Figure 2A, shows that treatment 

with ABT263 resulted in a significant elimination of senescent cells, but not control cells. Figure 
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2B confirms this finding in a time course study where a single 48-hour treatment with 2 μM 

ABT263 notably reduced the number of viable cells, but did not affect the non-senescent cells. 

This indicates that ABT263 only targets senescent cells, and has no effect on the non-senescent 

cells. It was observed that as ABT263 drives cells toward cell death, its ability to do so, 

diminishes over time as the cells recover from senescence, which is observed on days 8 to 14 on 

the cell viability time course in the lower portion of figure 2B.  

 A             B 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Fig. 2. A549 sensitivity to senolytic ABT263. (A) Crystal violet assay showing a dose response for 
ABT263. A549 cells were treated with vehicle or 8.7 μM ETO for 72 hrs and then exposed to the 
indicated concentration of ABT263 for 48 hrs. (B) Cell viability time-courses after treatment of ETO 
and/or ETO + ABT263. All images are representative images and line graphs are mean ± SEM from at 
three independent experiments (n = 3). 

3.3 Senescence induction in the murine lung carcinoma cell line, CMT167 

After demonstrating that the A549 human lung cancer cell line, which enters senescence and 

responds to the senolytic ABT263, a mouse cell line was essential to study the role of the 

immune system in lung cancer with a two-step treatment, senescence induction and the use of 

senolytic(s). Seven mouse NSCLC cell lines (CMT167, Y856, X577, X381, E889, Y143, and 



14 
 

X911) were screened for their β-galactosidase (β-gal) levels by X-gal and C12FDG by flow 

cytometry for quantification of senescence. Figure 3 illustrates the experimental timeline for 

ETO and ABT263 treatments. To induce senescence, cells were treated on day 0 with 2 μM ETO 

for 48 hours and were stained with X-gal or C12FDG for β-gal quantification on day 3.  

 

 

 

 

 

 

Fig. 3. Experimental timeline for etoposide and ABT263 treatments. Cells were exposed to ETO for 48 
hours, for senescence induction, and were placed in DMEM for 24 hours. Cells were then treated with 
ABT263 for 48 hours. All experimental data collected were collected before, during, and after treatment 
of ETO and/or ABT263.  

Figure 4A presents a dose response for ETO to evaluate the expression of SA-β-gal using X-gal 

staining. Senescent cells are enlarged, show an altered morphology and green staining due to the 

upregulation of β-galactosidase. An ABT263 concentration of 2 μM was chosen for further 

experiments because of the significant increase in staining compared to 0.5 and 1.0 μM, but less 

cell death than with 5 μM  . Figure 4B presents a time course to evaluate senescence induction by  

2 μM of ETO, which peaked at 80% on days 3 and 5. To evaluate the senescent cells response to 

the senolytic, ABT263, day 3 was chosen to treat the cells. 

 A 

 

 

B Fig. 4. Etoposide induced senescence in mouse 
lung cancer cells, CMT167. (A) Cells were 
exposed to ETO, indicated concentrations, for 
48 hrs and evaluated on day 3 for their increased 
expression of SA-β-gal using X-gal (bright-field 
images, objective 20X). (B) SA-β-gal time 
course using 2 μM as the choice of 
concentration to evaluate the increased 
expression of SA-β-gal using X-gal (bright-field 
images, objective 20X) or C12FDG for 
quantification.  
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3.4 CMT167 sensitivity to senolytic, ABT263 

In order to eliminate cells induced into senescence, a senolytic was screened to target and drive 

them to apoptosis. The cells induced into senescence by ETO were exposed to ABT263 using the 

concentrations of 10, 5, 2.5, 1.25, 0.625, 0.3125, and 0 μM (figure 5A) for 48 hours and the 

surviving CMT167 cells were stained with crystal violet. ABT263 sensitivity was confirmed by 

performing a cell viability time course using 2 μM of ABT 263. Figures 5B illustrates that 

ABT263 has no effect on the control cells. As illustrated from the viability time courses (figure 

5C) senescent CMT167 cells have a pronounced response to ABT263; however, the effects are 

transient and after day 7 of ETO treatment, CMT167 cells recovered from senescence; that is, the 

cells continued to grow. Furthermore, the response to the treatment with ABT263 diminished 

after day 7 as well. Figure 5C, right panel, when senescent cells escape from senescence,  the 

treatment of ABT263 will no longer be effective. Fig. 5D illustrates a comparison between ETO 

and ETO + ABT. The treatment with ABT263 reduces cell number on day 5 and on day 14. On 

day 5, there is a 77.5% reduction in cell viability and on day 14, there is a 23.7% reduction in 

cell viability.  

To determine whether the ABT263 was promoting apoptosis, cell death was assessed by 

Annexin-V/PI staining and FACS analysis;  it was observed that ABT263 drives cells toward 

apoptosis and there is approximately 50% apoptotic cell death with treatments of ETO followed 

by ABT263, figure 5E. Annexin V staining specifies how early and late apoptosis is induced in 

every treatment. In all treatments groups, early apoptosis occurs in more cells than late apoptosis, 

meaning that the cells were starting the apoptosis process. 

3.5. Senescence induction in the syngeneic murine lung cancer cell line, X577 

The screening for senescence in the six NSCLC cell lines was chosen on day three because in 

previous work with the mouse lung cancer line, CMT167, high levels of senescent positive cells 

were detected after day 3 (Fig. 4B). Figure 6A shows that X577 cells undergo senescence in 

response to ETO based on the increase of green β-gal staining, cell enlargement and the 

granulation of cytoplasmic chromatin fragments (CCFs). Figure 6B, β-gal positive cell 

quantification by flow cytometry, indicates that approximately 37% of the cells have entered into 

senescence. Figure 6C confirms senescence based on the degradation of Lamin B1. A slight  up 

regulation of Cathepsin D is another marker of senescence, which is also observed. Also, an 

upregulation of p53 and p21 are an indication of senescence because the cells are in a stressful 
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environment due to the treatment of ETO. Since the X577 cells demonstrated senescence 

induction, although less than 40%, sensitivity to ABT263 was assessed.  

 A        B          
  

 

 

 

 

 

 

C                        

    

 

 

 

 

 

 

D          E 

Fig. 5. CMT167 sensitivity to 
ABT263. (A) Crystal violet assay 
quantification showing a dose response 
to ABT263 with the concentrations of 
10, 5, 2.5, 1.25, 0.625, 0.3125, and 0 
μM. (B) Cell viability time course for 
CMT167 of controls and 2 μM ABT263 
only; (C) Cell viability of 2 μM ETO 
and/or 2 μM ETO + 2 μM ABT263 and 
a close up look of the effect of ABT263 
to clarify the response of ABT263. (D)  

A bar graph to compare ETO to ETO + ABT treatments on days 5 and 14. ***P ≤ 0.0005 indicates 
statistical significance of treated condition compared to their counterpart as determined using unpaired, 
Student’s t-test.  (E) Annexin-V/PI quantification of apoptosis induced by 2 μM ABT263 with overnight 
exposure. Images and line graphs are representative images or graphs from three independent experiments 
(n = 3). Bar graph is mean ± SEM.  
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Fig. 6. Etoposide induced senescence in mouse lung cancer X577 cells. Cells were exposed to ETO (2 
μM for 48 hrs) and were evaluated for their increased expression of SA-β-gal using (A) X-gal (bright-
field images, objective 20X) or (B) C12FDG, the next day. ** P ≤ 0.0026 indicates statistical significance 
of treated condition compared to controls as determined using unpaired, Student’s t-test. (C) Western 
blotting of Cathepsin D, Lamin B1, P21, and P53 (D) is a quantification of western blots. All images are 
representative images from three independent experiments (n = 3), and quantitative graphs are mean ± 
SEM from three independent experiments (n = 3). Western blots and quantifications are one repeat (n = 
1). 
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18 
 

3.6. X577 sensitivity to ABT263 

Figures 7A and 7B and 7D show that  X577 cells induced into senescence by ETO responded to 

ABT263 largely in the same manner as the CMT167 cells. Figure 7A and 7B show a dose 

response with ABT263 using 5, 2.5, 1.25, 0.625, 0.3125, and 0 μM concentrations.  ABT263 has 

only a modest effect on the control group; however, when cells are induced into senescence with 

the treatment of ETO followed by ABT-263, there is a significant reduction in cell viability. 

Figure 7C indicates that control cells treated with ABT263 only show a negligible effect, 

indicating that ABT263 doesn’t affect non-senescent cells. In the senescent viability graph 

(figure 7D, right panel), it was observed that the treatment with ETO alone induced the cells into 

senescence until day 7 and that the cells have recovered by day 10. This recovery indicates that 

after the cells have escaped from senescence, ABT263 effects have diminished. Figure 7E is a 

comparison of the effects of ETO alone and ETO + ABT263 on days 5 and 10. From cell 

viability time courses, ABT263 has more efficacious = on X577 cells than on CMT167. 

Again, Annexin-V/PI staining as well as western blotting for caspase 3 cleavage were performed  

to investigate the extent of apoptosis shown in figure 8. As expected, senolytic ABT263 exerts 

its effects against senescent cells by inducing apoptotic cell death. This is shown by the increase 

of Annexin-V/PI staining. With controls, there are about 5% apoptotic cells that appear to be in 

late apoptosis. In cells treated with ABT263 only, there appears to be equal levels of early and 

late apoptosis that sum up to 7% apoptosis. Cells treated with ETO only, and that have been left 

in media for 2 days after treatment, have mostly early apoptosis and when including the late 

apoptotic cells, there is a 20% apoptosis. Furthermore, when cells are treated with ETO for 48 

hours and were given 24 hours in media and 24 hours with ABT263, there is an increase in 

cellular apoptosis and an increase in both late and early apoptosis, indicating that ABT263 drives 

the cells to cell death through the apoptotic pathway.  
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Fig. 7. X577 sensitivity to senolytic ABT263. (A) Crystal violet assay showing a dose response for 
ABT263. (B) Quantification of the crystal violet using ImageJ. (C) Cell viability time courses for X577 of 
controls and ABT263 only; (D) Cell viability after treatment of ETO and/or ETO + ABT263 and a close 
up look of the effect of ABT263 to clarify the response of ABT263. (E) A bar graph to compare ETO to 
ETO + ABT treatments on days 5 and 10. **P ≤ 0.0078 and *P ≤ 0.0186 indicate statistical significance 
of treated condition compared to their counterpart as determined using unpaired, Student’s t-test. All 
images and line graphs are representative images or graphs from three independent experiments (n = 3). 
Bar graph is mean ± SEM from three independent experiments (n = 3).  
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Fig. 8. ABT263 induces apoptotic cell death in senescent cells 
X577. (A) X577 is Annexin-V/PI quantification of apoptosis 
induced by 2 μM ABT263 with overnight exposure. 
Quantification graph is mean ± SEM from three independent 
experiments (n = 3). 

 

 

3.7. Senescence induction in the syngeneic murine lung cancer cell line, E889 

The E889 cell line  also shows significance senescent induction with exposure to ETO (figure 

9A) with the senescent cells being more granulated and staining for β-gal; β-gal positivity was 

approximately 44%. To confirm senescence induction after ETO exposure, Cathepsin D1, p21 

and p53 levels were investigated using western blotting (figures 9C and D). Figure 9C illustrates 

the accumulation of Cathepsin D. The upregulation of p21 on day 2 was also observed, however, 

the protein levels down-regulate on day 3 and 4;, this may indicate that senescence is highest on 

day 2. There is also, the accumulation of p53 throughout the treatment with ETO. 
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Fig. 9. Etoposide induced senescence in mouse lung cancer E889 cells. Cells were exposed to ETO (2 
μM for 48 hrs) and were evaluated for their increased expression of SA-β-gal using (A) X-gal (bright-
field images, objective 20X) or (B) C12FDG, the next day. ** P ≤ 0.0023 indicates statistical significance 
of treated condition compared to controls as determined using unpaired, Student’s t-test. (C) Western 
blotting of Cathepsin D, Lamin B1, P21, and P53 and (D) is western blot quantification. All images are 
representative images from three independent experiments (n = 3), and quantitative graphs are mean ± 
SEM from three independent experiments (n = 3). Western blots and quantifications are one repeat (n = 
1). 
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3.8. E889 sensitivity to ABT263 

ABT263 reduced the number of E889 senescent cells (Figure 10). Figures 10A and B illustrate 

that with the treatment of ABT263 only, the cell viability have to some extent was reduced. After 

the induction of senescence by the exposure to ETO, there was a significant reduction in cell 

viability after the treatment with ABT263 with 5, 2.5, 1.25, 0.625, 0.3125, and 0 μM doses. 

Figures 10C illustrates that E889 cells treated with ABT263 alone showed negligible effects.. 

Figure 10D shows senescence induction after the treatment with ETO. Cells remain arrested  

between days 0 and 5 and by day 7 the cells start to recover. When the cells are treated with ETO 

only, there is a reduction in cell viability; this is due to the stress ETO is inducing on the cells. 

When senescent cells are treated with ABT263, there is a substantial reduction in the cell 

viability; however, the cells escape from senescence, as the effects of ABT263 is diminished. 

Figure 10D, right panel, illustrates the recovery of both ETO only and ETO+ABT263 treated 

cells. Figure 7E is a comparison of the effects of ETO alone and ETO + ABT263 on days 5 and 

12. Numbers were acquired from the same time-course for accuracy. The number of cells are 

reduced on day 5 after treatment of ETO+ABT compared to ETO alone. On day 12, cells treated 

with ETO+ABT have recovered and have reached the same number of cells as the treatment of 

ETO. This indicates that after the recovery of senescence the cells will continue to grow. 

In E889 cells, ETO treatment reduces the number of viable cells (fig. 10D). Therefore, it was 

tested with lower doses of ETO (0.5 μM and 1 μM ) to observe senescence on days 2, 3, and 5. It 

was concluded, from X-gal and C12FDG flow cytometry (supp. figs. 1A, B), the lower doses of 

ETO don’t induce senescence as much as 2 μM ETO. And it was decided that the best 

concentration of ETO is 2 μM.  

To further investigate the effects of ABT263, Annexin-APC/7-AAD staining was performed as 

well as western blotting to monitor the levels of cleaved caspase-3 (figure 11). Senolytic 

ABT263 exerts its effects against senescent cells by inducing apoptotic cell death. This is shown 

by the increase of Annexin-V/PI staining. In figures 11B and C, E889 cells undergo apoptosis 

after the ETO treatment (ETO day 2, 3, and 4), and it shows a significant increase in cleaved 

caspase 3 after the treatment of both ETO and ABT263. This indicated the increase of apoptosis 

with the treatment of ETO+ABT263.   
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Fig. 10. E889 sensitivity to senolytic ABT263. (A) Crystal violet assay showing a dose response for 
ABT263. (B) Quantification of the crystal violet using ImageJ. (C) Cell viability time courses for Y856 of 
controls and ABT263 only; (D) Cell viability after treatment of ETO and/or ETO + ABT263 and a close 
up look of the effect of ABT263 to clarify the response of ABT263. (E) A bar graph to compare ETO to 
ETO + ABT treatments on days 5 and 12. * P ≤ 0.0206 indicates statistical significance of treated 
condition compared to their counterpart as determined using unpaired, Student’s t-test. All images and 
line graphs are representative images or graphs from three independent experiments (n = 3). Bar graph is 
mean ± SEM from three independent experiments (n = 3).  
 



24 
 

 

D2 D3 D5
0

5

10

15

20

E889

Day After Treatment

%
 S

en
es

ce
nt

Controls
Etoposide 0.5 µM
Etoposide 1 µM

       B 

 

 

 

 

 

 

 

 

 

Sup. Fig. 1. Lower doses etoposide induced senescence in E889 cells. Cells were exposed to ETO (0.5 
or 1 μM for 48 hrs) and were evaluated for their increased expression of SA-β-gal using X-gal (bright-
field images, objective 20X) or C12FDG on days 2, 3, and 5. All images are representative images from 
three independent experiments (n = 3), and quantitative graph is mean ± SEM from two independent 
experiments (n = 2). 
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 Fig. 11. ABT263 induces apoptotic cell death in senescent cells E889. (A) E889 is Annexin-V/PI 
quantification of apoptosis induced by 2 μM ABT263 with overnight exposure. (B) Western blotting for 
cleaved caspase 3 for E889. (C) A bar graph quantification of western blot. Quantification graphs are 
mean ± SEM from three independent experiments (n = 3) and western blots and quantification is one 
repeat (n = 1).  
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3.9. Senescence induction in the syngeneic murine lung cancer cell line, X381 
The X381 cell line also shows significance senescent induction with exposure to ETO (figure 

12A) with the senescent cells being more granulated and staining for β-gal; β-gal positivity was 

approximately 55%. Due to its significant level of β-gal staining and the quantification of β-gal, 

the effects of ABT263 were investigated with X381 cells. 
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Fig. 12. Etoposide induced senescence in mouse lung cancer X381 cells. Cells were exposed to ETO (2 
μM for 48 hrs) and were evaluated for their increased expression of SA-β-gal using (A) X-gal (bright-
field images, objective 20X) or (B) C12FDG, the next day. *** P ≤ 0.0001 indicates statistical 
significance of treated condition compared to controls as determined using unpaired, Student’s t-test. All 
images are representative images from three independent experiments (n = 3), and quantitative graphs are 
mean ± SEM from three independent experiments (n = 3). 

3.10. X381 sensitivity to ABT263 

ABT263 reduced the number of X381 senescent cells (Figure 13). Figures 13A and 13B 

illustrate that with the treatment of ABT263 alone, the cell viability have to some extent was 

reduced. After the induction of senescence by the exposure to ETO, there was a significant 

reduction in cell viability after the treatment with ABT263 with 5, 2.5, 1.25, 0.625, and 0.3125 

concentrations . 

In the control cells, ABT263 slightly slows down the growth, however, the effect is negligible 

(figure 13C); in figure 13D, ETO only treated cells were reduced and with the addition of 

ABT263 the cell viability number continues to decrease. Figure 13C, right panel, indicates that 

the cells recover from senescence between days 7 and 10. ABT263 killed the senescent cells, and 

the cells that are left are those that are either resistant to ETO, resistant to ABT263, or both, this 

may be the reason why the cells treated with ETO+ABT263 have recovered and have surpassed 

the ETO only treated cells. Figure 13E is a comparison of the effects of ETO alone and ETO + 

ABT263 on days 5 and 12. Numbers were acquired from the same time-course for accuracy. The 

Controls Senescent 
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number of cells are reduced on day 5 after treatment of ETO+ABT compared to ETO alone. On 

day 12, cells treated with ETO+ABT have recovered and have surpassed the number of cells 

treated with ETO.  
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Fig. 13. X381 sensitivity to senolytic ABT263. (A) Crystal violet assay showing a dose response for 
ABT263. (B) Quantification of the crystal violet using ImageJ. (C) Cell viability time courses for X381 of 
controls and ABT263 only; (D) Cell viability after treatment of ETO and/or ETO + ABT263 and a close 
up look of the effect of ABT263 to clarify the response of ABT263. (E) A bar graph to compare ETO to 
ETO + ABT treatments on days 5 and 10. **P ≤ 0.0012 indicate statistical significance of treated 
condition compared to their counterpart as determined using unpaired, Student’s t-test. All images and 
line graphs are representative images or graphs from three independent experiments (n = 3). Bar graph is 
mean ± SEM from three independent experiments (n = 3).  
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To examine how much cell death in induced by ABT263, an Annexin-APC/7-AAD staining was 

assessed (fig. 14), it was observed that there was approximately a 20% increase of cell death with 

the treatments of ETO + ABT263. With controls and senescent cells, there is the same amount of 

early apoptosis and when cells are treated with ABT253 only or ETO only, there is more late 

apoptosis that is observed; furthermore, when the cells are treated with both ETO+ABT263, 

there is an increase of late apoptosis. 

 A 

 

Fig. 14. ABT263 induces apoptotic cell death in 
senescent cells X577. (A) X577 is Annexin-V/PI 
quantification of apoptosis induced by 2 μM ABT263 
with overnight exposure. Quantification graphs are mean 
± SEM from three independent experiments (n = 3). 

 

 

 

3.11. Senescence induction in syngeneic murine lung cancer cell line, Y143 

Figure 15, Y143 doesn’t enter senescence and β-gal quantification (fig. 15B) shows a non-

significant level of β-gal positive cells. In order to compare these cells with other cell lines that 

have significant senescence induction, sensitivity to ABT263 was investigated.  
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Fig. 15. Etoposide induced senescence in mouse lung cancer Y143 cells. Cells were exposed to ETO (2 
μM for 48 hrs) and were evaluated for their increased expression of SA-β-gal using (A) X-gal (bright-
field images, objective 20X) or (B) C12FDG, the next day. ns P ≤ 0.2294 indicates no statistical 
significance of treated condition compared to controls as determined using unpaired, Student’s t-test. All 
images are representative images from three independent experiments (n = 3), and quantitative graphs are 
mean ± SEM from three independent experiments (n = 3). 
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3.12. Y143 sensitivity to ABT263 

ABT263 dose responses were obtained (fig. 16). It was concluded from the dose responses that 

Y143 doesn’t respond to ETO or ABT263. This indicates that when the cells do not senesce, 

ABT263 will have no effect on them. 
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Fig. 16. Y143 sensitivity to senolytic ABT263. (A) Crystal violet assay showing a dose response for 
ABT263. (B) Quantification of the crystal violet using ImageJ. All images and line graphs are 
representative images or graphs from three independent experiments (n = 3). 
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3.13. Senescence induction in the syngeneic murine lung cancer cell line, X911 

X911 cells show a significant level of senescence induction, in sup. fig. 2, due to the increase in 

β-gal staining. Unfortunately, these cells were detaching from plates and no further investigation 

were performed using them. 

 A 

 

 

 

 

 

 

Sup. Fig. 2. Etoposide induced senescence in mouse lung cancer X911 cells. Cells were exposed to ETO 
(2 μM for 48 hrs) and were evaluated for their increased expression of SA-β-gal using (A) X-gal (bright-
field images, objective 20X) or (B) C12FDG, the next day. **** P < 0.0001 indicates statistical 
significance of treated condition compared to controls as determined using unpaired, Student’s t-test. All 
images are representative images from three independent experiments (n = 3), and quantitative graphs are 
mean ± SEM from three independent experiments (n = 3). 

3.14. Summary of observations 

Cell lines with significant senescence induction are, from highest senescence induction to lowest: 

CMT167, X911, X381, E889, and X577. Y143 cells did not have a significant senescence 

induction. Table 1 compares all mouse cell lines. Ordering the cell lines from highest to lowest 

sensitivity to ABT263, based on increase in % apoptosis increase from controls on day 4: X577, 

E889, CMT167, and X381. 
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Table 1. Comparison between cell lines. Senescence induction, number of cells on days 5 and on end of 

treatment (day 10/12/14), % reduction was calculated by dividing ETO+ABT by ETO, and increase of % 

apoptosis by Annexin on D4 is the % apoptosis of 48 hrs of ETO exposure and 24 hrs of ABT263 

exposure compared to controls. 

3.15. Etoposide and ABT263 effects on protein levels 

In order to understand how the treatments of ETO and/or ABT263 effects the protein levels, to 

learn how the proteins induce apoptosis and at what levels of proteins are needed to induce 

apoptosis, time-course of western blotting were performed using cell lines X577 and E889. 

Figure 17. X577 cells show an up regulation of the BCL2 family anti-apoptotic proteins (BCL2, 

BCLXL, and BCLW), particularly BCLXL,  after the treatment of ABT263 and/or ETO, this 

suggests that these proteins are upregulated due to cellular stress from chemotherapeutic drugs. 

Pro-apoptotic proteins (Bak and Bax) are up regulated with the treatments of ETO and/or 

ABT263, this denotes the potential activation of cellular apoptosis pathway after senescence 

induction and the treatment of ABT263. BH3-only proteins (Noxa and Bim) have also been up 

regulated after the treatment of ETO and ABT263, allowing pro-apoptotic proteins to activate the 

apoptosis pathway. E889 cells, fig. 18, there is a slight up regulation of the anti-apoptotic 

proteins after drug treatment, especially after the induction of senescence. Bak is down regulated 

when treated with ABT263 only and when treated with ETO on days 2 and 3, this may imply 

that the cells aren’t dying, between days 2 and 3 as much as on day 4 with the treatment of ETO 

Cell 
line 

% 
Senescen
ce 

ETO - 
Numbe
r of 
cells 
(104) 
on D5  

ETO+AB
T - 
Number 
of cells 
(104)  on 
D5  

% 
Reductio
n from 
ETO+AB
T to ETO 
on D5 

ETO - 
Number 
of cells 
(104) at 
end-of-
treatme
nt  

ETO+AB
T - 
Number 
of cells 
(104)  at 
end-of-
treatment  

% 
Reductio
n from 
ETO+AB
T to ETO 
at end-of-
treatment 

Increase 
in % 
Apoptoti
c cells 
on D4  

X577 37 14.75 2.5 83.1 149.75 
(D10) 

78.25 
(D10) 

47.7 
(D10) 

56.24 

E889 44.2 2.7 0.25 90.7 55.25 
(D12) 

57.75 
(D12) 

-4.5 
(D12) 

42.00 

X381 56.9 22 5 77.3 48.00 
(D10) 

48.00 
(D10) 

0 (D10) 19.45 

CMT16
7 

80 6 1.35 77.5 99.60 
(D14) 

76.00 
(D14) 

23.7 
(D12) 

24.20 

Y143 17.8 - - - - - - - 

X911 69 - - - - - - - 
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alone, and this is also observed in western blotting of cleaved caspase 3, figure 11B and C. On 

day 4 of ETO and the combination of ETO and ABT263, there is a down regulation of Bak with 

the treatments of ABT or ETO only, it up-regulated on day 4 of ETO only and with the 

treatments of ETO + ABT indicating cells may have activated apoptosis. Bax is slightly up 

regulated with the treatment of ETO on day 2 and it goes back to its control tone indicating Bax 

doesn’t play a role on cellular apoptosis in this cell line, with the up regulation of Bak on day 4 

of ETO only and the combination of ETO and ABT263, increases the levels of cellular death due 

to the presence of more pro-apoptotic proteins. BH3 proteins, Bim and Noxa, are present in 

control cells and cells treated with ABT263 only and ETO only and are slightly up-regulated on 

day 4 and as well as with the combination, signifying the promotion of cellular apoptosis.  

In conclusion, when cells are treated with ETO they enter intracellular stress and consequently 

senescence, which up regulates p53, figures 6C and 9C, this would then up regulate and activate 

BH3-only proteins. With the up regulation of BH3-only proteins and the accumulation of pro-

apoptotic proteins along with the inhibition of pro-survival proteins, the cells endure cellular 

apoptosis. In conclusion, the changes from western blotting are inconsistent and cannot draw any 

definitive conclusion. Figure 22 illustrates the pathway when cells are treated with ETO and/or 

ABT263. 
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Fig. 17. ABT263 selectivity for BCL2 , BCLXL, and BCLW. (A) X577  western blotting for indicated 
treatments of BCLXL, BCL2, Bak, Bax, Bim, Noxa, and β-actin. (B) Western blots quantifications 
normalized to β-actin using ImageJ. Western blots and quantifications are one repeat (n = 1). 
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Fig. 18. ABT263 selectivity for BCL2 and BCLXL. (A) E889 western blotting for indicated treatments of 
BCLXL, BCL2, Bak, Bax, Bim, Noxa, and β-actin. (B) Western blots quantifications normalized to β-actin 
using ImageJ. Western blots and quantifications are one repeat (n = 1). 
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Fig. 22. Etoposide (ETO) and BH3-mimetics pathways. (A) senescence induction by ETO pathway. 
CYP3A4/5 metabolizes ETO to the O-demethylated metabolites (catechol and quinone). These 
metabolites and the parent drug, ETO, inhibit topoisomerase II causing double stranded DNA breaks and 
thus placing the cell in intracellular stress and consequently inducing senescence. (B) Apoptosis 
promotion by BH3 mimetic drugs. BH3 mimetics inhibit anti-apoptotic proteins (BCL2, BCLXL, and/or 
BCLW) prohibiting them from inhibiting pro-apoptotic proteins (Bak and Bax). From cellular stress and 
senescence, p53 is up regulated and activates BH3-only proteins (Bim and Noxa). The pathway was 
created using BioRender.com.  

 

3.16. ABT263 specificity between the BCL2 family proteins 

BCL2 family members regulate the survival of cells, ABT263 is a BH3 mimetic that inhibits 

BCL2 proteins prohibiting them from biding to pro-apoptotic proteins, such as Bak and Bax. 

To investigate whether ABT263 exerts its effects by inhibiting BCLXL or BCL2. X577, E889, 

and X381 cells were chosen to study the effects of ABT199 or A1155463. A1155463 is a 

BCLXL-specific inhibitor and ABT199 is a BCL2-specific inhibitor (Leverson et. al., 2015). 

Those three cell lines were chosen because of their senescence induction levels and their 

sensitivity to ABT263. After the cells senesced, they were treated with either A1155463 or 

ABT199 on day three for 48 hours, following the same time-line as ABT263.  
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X577 cells, figure 19A, shows that ABT263 may exerts its effects by targeting BCLXL, however, 

it is not clear, and more investigation is needed. E889, figure 19B, clearly shows that ABT263 

exerts its effects by targeting BCLXL, because both ABT263 and A1155463 follow the exact 

trend of response to the drugs. X381 cells, figure 19C, illustrates that ABT263 induces its effects 

by targeting mostly BCLXL, nonetheless, further investigation is needed for certainty.  

To further investigate the ABT263 mechanism in cell lines X577 and X381, cells were treated 

with first, ETO for 48 hrs, second on day 3, a single treatment of ABT199, the specific BCL2 

inhibitor, with the specific BCLXL inhibitor, A1155463, figure 20. E889 sell line was not chosen 

to test this synergic treatment because it was clear that ABT263 induces apoptosis by targeting 

BCLXL. It was observed that cells treated with ETO + ABT199 + A1155463, following the same 

treatment from ABT263, aren’t affected to the synergic triple drug treatment as ETO + ABT263. 

This suggests that ABT263 targets another protein in addition to BCLXL and BCL2, which is 

BCLw.  

In conclusion, ABT263, has been found to target BCLXL only in E889 cells as well as targeting 

BCLXL, BCL2, and/or BCLW in X577 and X381 cells to induce its senolytic effects. 
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Fig. 19. ABT263 selectivity between BCL2 or BCLXL in X577, E889, and X381. (A) X577 
quantification for crystal violet dose response to ABT199 or A1155463 compared to ABT263. 
(B) E889 quantification for crystal violet dose response to ABT199 or A1155463 compared to 
ABT263. (C) X381 quantification for crystal violet dose response to ABT199 or A1155463 
compared to ABT263. Lines graphs are mean and error ± SEM from three independent 
experiments (n = 3). 
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Fig. 20. ABT263 selectivity between BCL2 and BCLXL in X577 and X381. (A) X577 quantification for 
crystal violet dose response to ETO + ABT199 + A1155463 compared to ETO + ABT263. (B) X381 
quantification for crystal violet dose response to ETO + ABT199 + A1155463 compared to ETO + 
ABT263. Lines graphs are mean and error ± SEM from three independent experiments (n = 3). 
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3.17. ARV825 sensitivity 

To broaden the scope of choices to induce cell death in senescent cells, the inhibition of BET 

family protein was investigated. To investigate BET inhibitor, ARV825, on murine lung cell 

lines Y856, X577, X381, and E889. Non-senescent cells were treated with ARV825 with 

different doses of ARV825 for 48 hours (100, 50, 25, 12.5, 6.25 and 0 nM) and were replenished 

for another 48 hours using the same doses; and senescent cells were treated with ARV825 the as 

the non-senescent were, on day 3 ARV825 was added for 48 hours, with indicated 

concentrations, and ARV825 was replenished for another 48 hours using the same doses. From 

the crystal violet dose response (figure 21) it was concluded in these cell lines ARV825 does not 

induce cellular apoptosis and therefore it cannot be used in these cellular models.  
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Fig. 21. Sensitivity to ARV825. (A, B, C, D) Crystal violet assay showing a dose response for ARV825 
in lines Y856, X577, X381, and E889, respectively. The highest dose of treatment was 100 nM and the 
lowest was 0 nM, we treated with ARV825 for 48 hours and replenished the treatment for another 48 
hours. (E, F, G, H) are quantification graphs of dose responses using ImageJ. All images are 
representative images from three independent experiments (n = 3) and graphs are mean ± SEM from three 
independent (n = 3).  
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4. Discussion  
The hypothesized approach of a two-step treatment for cancer cells with first a senescence 

inducer followed by a senolytic has shown to be a potential treatment for cancer (Robbins, et. al., 

2020). The induction of senescence has proved to be a useful outcome in the treatment of cancer 

and for many years the production of senescence induction agents has been encouraged (Nardella 

et. al., 2011). Nevertheless, senescent cells have been identified as contributors to tumorigenesis 

by promoting many hallmarks of cancer, including evasion of the immune system (Prieto et. al., 

2019). There are other senescence inducers that have been tested in other cellular models like 

cisplatin and doxorubicin (Saleh et. al., 2020; Ahmadinejad et. al., 2022). Other senescence inducers 

may induce different degrees of senescence which can be a more profound or less profound. This 

emphasizes the importance to use senolytics to clear senescent cells.  

In this study, it was observed that non-small cell lung cancer cells were induced into senescence  

by ETO. The cells were enlarged and were more granulated from the CCFs and demonstrated  β-

gal staining, and up-regulation of p53 and p21. Senescent cells that were treated with ABT263 

were driven into apoptosis as shown by plasma membrane structural changes that include the 

translocation of phosphatidylserine from the inner to the outer leaflet (extracellular side) of the 

plasma membrane, which was analyzed after Annexin V/PI staining.  

The hypothesis of this work was different cell lines will have different degrees of senescence and 

that the magnitude of the response to senolytics would reflect the extent of senescence induction. 

The cell lines that were induced into senescence were, from highest level of senescence to 

lowest, CMT167, X911, X381, E889, X577, and Y143. To order the cells lines that respond to 

ABT263 from highest percent reduction to lowest on day 5: E889, X577, CMT167, and X381. 

To order the same cell lines at the end-of-treatment (end of time-course) based on percent 

reduction: X577, CMT167, X381, and E889. Based on the precent apoptosis increase from 

controls on day 4 that is induced by the Annexin V staining, cells with the highest percent 

apoptosis to lowest, X577, E889, X381, and CMT167. In conclusion, there is no correlation 

between the degrees of senescence and the magnitude of the response to senolytic, ABT263.  

Cell line % Senescence positive  % Reduction (D5) 

X577 37 83.1 

E889 44.2 90.7 

X381 56.9 77.3 
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One reason behind this lack of correlation between the magnitude of senescence induction and 

the response to the senolytic, ABT263, can be the different mutations each cell line has.  X577 

cell line was derived from a male mouse and has KrasG12D and Smad4+/-. E889 cell line was derived from 

a male mouse and has KrasG12D, Map3K7-/-, and GFP+. X381 cell line was derived from a male mouse 

and has KrasG12D, PTEN+/-, p53+/-, and GFP+. Y143 cell line was derived from a female mouse and is a  

EML4-ALK mutant cell line.   

From previous work (Saleh et. al., 2020), ABT263 induced its senolytic effects by targeting 

BCLXL, moreover, from work in this project, ABT263 may induce its senolytic effects by 

targeting BCLXL in E889 and more than one BCL2 family member in X577 and X381. 

One possible approach  to improve the response to treatment with ETO and ABT263 would be 

for the  X577 cells to be re-induced into senescence with the exposure of ETO and re-treated 

with ABT263. This may keep the cells in a steady-state of senescence and clear more cells after 

the use of the senolytic, which may give a longer remission period. X381 cells stayed in 

senescence the longest, compared to the other cell lines tested, and in order to clear more 

senescent cells, the cell may need to be treated with multi-treatments of the senolytic, which 

would delay the cancer cells’ recovery from senescence when treated with ETO and ABT263.  

5. Future directions  

Different cell lines respond differently to therapy due to their genetic makeup; furthermore, for 

future research, learning how cancer cell lines differ from each other genetically may help 

provide guidance as to why they respond differently to therapy. Additionally, why some 

senescent cells respond to BCL2 family inhibitors (ABT263) but not BET family protein 

degrader (ARV825) ought to be investigated.  

One of our goals was to determine how the immune system will interact with NSCLC cells when 

treated with a senescence-inducer and a senolytic. In this study, there is one cell line that has 

potential use for in vivo studies, X577, using ETO and ABT263 as the drugs of choice. X577 

cells respond to ABT263 by up-regulating mostly BCLXL, however, when treated with selective 

BCL2 or BCLXL or both, it appeared to have not responded to the senolytics as well as to 

ABT263.  This may be because ABT263 targets a combination of more than one BCL2 family 

protein other than BCL2 and BCLXL only.
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