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Quantifying contributions of climate, geography, and gene flow to
divergence: a case study for three North American pines
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Abstract

Long-lived species of trees, especially conifers, often display weak patterns of
reproductive isolation, but clear patterns of local adaptation and phenotypic divergence.
Discovering the evolutionary history of these patterns is paramount to a generalized
understanding of speciation and the processes that confer population persistence versus
those that compromise adaptive potential under rapidly changing environments. Forest
trees have long generation times and low migratory potential making them especially
vulnerable to population fragmentation and reductions of genetic diversity due to
insufficient tracking of niche optima and adaptational lags. Within clades of the genus
Pinus, evolutionary histories appear to be riddled with hybridization (i.e., interspecific
gene flow), periods of isolation, and effective population size changes that co-occur with
major shifts in climate. Quantifying the relative contributions of each of these factors to
divergence and changes to genetic diversity requires a multidisciplinary approach
involving historical species distributional modeling, demographic inference, and
associations of genetic structure to climate and geography.

This dissertation focuses on identifying drivers of divergence and explaining
differing levels of reproductive isolation across three ecologically and economically

valuable North American pine species (Pinus pungens, P. rigida, and P. taeda). First, we
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inferred demographic histories and found the recurrence of interspecific gene flow
between P. pungens and P. rigida, as well as population size reductions during the last
glacial period, to be important contributors to the mode and tempo of previously
documented reproductive isolation between these species. Seasonality and elevation
associated with both genetic and distributional differences indicating ecological
divergence was also important to the divergences among the three focal species, but the
relationship of P. taeda to the other two species remains enigmatic. Next, we illustrate
how genomic patterns of differentiation across genic and intergenic regions can explain
differing levels of reproductive isolation through pairwise assessments and mapping
RADseq contigs to the annotated genome of P. taeda. Finally, in estimating the extent of
hybridization and genetic diversity in shared forest stands of P. pungens and P. rigida,
we discovered a general lack of hybridization at present and low genetic diversity in
southern, trailing edge populations.

Striking congruences across results, various methods employed, and work
previously performed for the genus Pinus all provide support for emerging hypotheses
related to forest tree speciation and biodiversity. This dissertation also presents useful
information for forest conservation and management planning. At present, the adaptive
potential of P. pungens, a montane pine with highly fragmented populations, is low based
on genetic diversity estimates, its current distribution, and restricted levels of interspecific

gene flow.
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Introduction

It is increasingly evident that the process of speciation does not strictly adhere to a simple
model of vicariance among geographically isolated populations. Divergence often
proceeds with varying levels of gene flow, natural selection, and geographic isolation.
Over the last few decades, an array of tools has been developed allowing us to more
thoroughly investigate the multitude of ways in which species arise and the varying ways
in which reproductive isolation evolves. For many lineages, there is a strong role of
ecologically driven adaptation contributing to the evolution of reproductive isolation and
hence the origin of new species (Hendry et al. 2007). Yet for others, geographically and
ecologically separated populations comprise single species taxonomically housed within
monotypic genera (e.g., Kou et al. 2019). Different degrees of gene flow, isolation,
population size change, and local adaptation among populations may explain variations
in observed diversification rate (Liu et al. 2014; Kou et al. 2019; Kremer and Hipp 2019;
Wu et al. 2022). Here, we consider general mechanisms of speciation for conifers; the
timing of which is particularly apt given the explosion of genomic data for these

charismatic plants.

Mechanisms driving speciation for conifers are not as well characterized as in other
groups of plants despite a long history of crossing and common garden experiments. This
is likely driven by their long generation times, large genome sizes, historical lack of
genomic resources, and propensities to hybridize (Petit and Hampe 2006). Of the few
detailed examples available (e.g., Mao and Wang 2011), there is a complex interplay

among gene flow across populations (including hybridization), demographic processes



within populations, and local adaptation to the formation of new conifer species. For
conifers, we think this complexity is best thought of within models of ecological speciation

(Rundle and Nosil 2005).

Ecological divergence plays a major role in the establishment and maintenance of
reproductive isolation in plants (Hendry et al. 2007), which suggests ecological speciation
as a major generator of plant biodiversity. This model of speciation requires the buildup
of reproductive isolation through ecological divergence among populations driving the
development of prezygotic and postzygotic isolating mechanisms (Harvey et al. 2019).
For conifers, prezygotic isolating mechanisms are often related to differential timing of
phenological events (e.g., Zobel 1969), while postzygotic isolating mechanisms are
centered on hybrid inferiority due to genomic conflict among the mixing of genetic material
from ecologically diverged lineages (e.g., Manley and Ledig 1979). In all cases, ecological
divergence can be thought of in the context of the relationship between the fundamental
and realized niche and how these evolve across populations, species, and lineages. We
argue, as does Pearman et al. (2007), that the relative time scales required for
evolutionary processes to occur may be better understood if we looked through the
kaleidoscopic lens of niche dynamics within and across lineages, as well as current and

historical landscapes (Figure i; Figure ii).

The rate of adaptation, niche evolution, and speciation are often affected by the same
suite of interconnected factors (Figure i). For example, a reduction in realized niche

breadth during founder events (Pearman et al. 2007), has constraints on niche evolution



due to limited genetic variation (Schiffers et al. 2014). Likewise, niche evolution within a
more homogeneous environment (e.g., low landscape complexity with gradual,
unidirectional changes in climate) may be restricted to directional instead of divergent
shifts when tracking fithess optima (Figure ii.a,b). Additional influencers of niche evolution
could include the presence of biotic interactions (e.g., competition; Pearman et al. 2007)
and the underlying genetic architecture of traits under selection (Schiffers et al. 2014),
which affects movement of the realized niche within the space defined by the fundamental
niche. Due to these interconnections and the scope of variation housed within each factor,
it is unlikely that generalized predictions towards the rate of speciation and the
development of reproductive isolation will emerge without further empirical and theoretical
work (Figure ii.b and Figure ii.c are hypotheses respectively posed in Kou et al. 2020 and
Bolte and Eckert 2020). We do anticipate though that with a focused comparison of taxa
sharing similar demographic histories, life history traits, and geographical distributions,

trends will emerge.

Fortunately, a multitude of methods and data types have been developed and collected
over the last decade allowing us to now begin rigorously linking concepts of niche
evolution, ecological speciation, and evolutionary genetics to further our understanding
of macroevolutionary trends within clades of plants, like conifers, where this knowledge
is limited. As argued above, we think one of the major keys to understanding mechanisms
of conifer speciation is to think about niche evolution and its multifarious influences within
a model of ecological speciation (Figure ii). This is not to say that all speciation within

conifers requires adaptive evolution, but that a modeling framework that explicitly



acknowledges this often noted attribute of conifer lineages may be more illuminating than
one without it, especially if the goal is to estimate the relative importance of factors

contributing to species formation.

The genus Pinus is the most diverse group of conifers with over 110 species that inhabit
an array of geographic regions and climatic regimes, providing an extensive resource for
comparative investigation into conifer speciation and the development of reproductive
isolation (Zukowska and Wachowiak 2016; Jin et al. 2021). Much of the genomic,
evolutionary-based research performed in the genus Pinus has used economically
valuable species as focal taxa. As a result, many species that do not hold reasonably high
economic value have been largely ignored regardless of their high ecological importance.
One such species is Table Mountain pine (Pinus pungens Lamb.). While conservation
efforts are being made to restore populations of this montane conifer (Jetton et al. 2015),
no genetic data, especially genome-wide data, have been collected. The phylogenetic
relationships between P. pungens Lamb. and two other related species, P. rigida Mill. and
P. taeda L., have been notoriously difficult to resolve (Hernandez-Ledén et al. 2013;
Saladin et al. 2017; Gernandt et al. 2018). Hybridization challenges phylogenetic
inference and may explain the lack of consensus in defining the relationships across
these three species. Employing a demographic inference framework that uses genome-
wide nuclear data and range-wide samples of each species is an appropriate next step
to estimate the extent of intraspecific gene flow, the timing of gene flow, and the role of
gene flow in the maintenance of species boundaries. All of which is considerably

important information to predicting outcomes of forest management plans.



In this dissertation, we focused on inferring the divergence histories for three related pine
species of eastern North America and analyzing niche and genetic differentiation through
geographic and climate variable associations to elucidate potential drivers in differential
developments of reproductive isolation. Chapter 1 describes a complex divergence
history involving gene flow and population size changes for P. pungens and P. rigida and
identifies potential drivers, such as seasonality and fire regime, involved in the
development of reproductive isolation. The gene flow dynamics between these two focal
species inspired Chapter 2, which expanded demographic inference to include a third
related species, P. taeda, which actively hybridizes with P. rigida at present (Smouse and
Saylor 1973). While the relationship of P. taeda relative to P. pungens and P. rigida,
remains enigmatic post-demographic inference, we were able to describe the genomic
distribution of our RADseq data by mapping contigs to the annotated genome of P. taeda.
We observed contrasting levels of differentiation in pairwise species comparisons across
contigs associated with genic and intergenic regions. We found that the higher levels of
differentiation (Fst) in comparisons with P. pungens correspond to greater strength of
reproductive isolation (as described in ecological assays and artificial crossing
experiments; Zobel 1969; Critchfield 1963). In Chapter 3, we focused more closely on the
development of reproductive isolation between P. pungens and P. rigida by examining
the extent of current hybridization across three sympatric stands and mapping RADseq
contigs to the P. taeda genome (as performed in Chapter 2). We provide convincing
evidence that species boundaries have been maintained through reduced hybrid fitness

in sympatric stands (reinforcement) and ecological character displacement. From



population genetic summaries, we also observed lower genetic diversity in southern,
trailing edge populations. We took our evidence of reproductive isolation across species
and genetic differences across populations and contextualized them for relevance to

forest conservation and management planning.

Throughout this work, we examine metrics associated with niche and distributional
overlap across time and landscape to explain patterns in genetic data and the
development of reproductive isolation in terms of both tempo and mode for three species
of North American pines. Our findings illustrate how high rates of interspecific gene flow,
likely in tandem with disruptive selection acting on ecological traits, can promote the rapid
development of reproductive isolation. Whether the speciation histories and drivers of
divergence are unique to the focal species of this dissertation or part of a larger pattern
will remain unknown until more clade-specific investigations are performed for coniferous
species. Given conifers are foundational species to many forest ecosystems, we foresee
a heightened interest in genetically-based inferences for these taxa, as well as are
hopeful for how this knowledge can contribute to the general understanding of when, why,

and how reproductive isolation evolves in long-lived tree species.
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Figure i Conceptualizing factors involved in speciation and the interconnectivity among
the factors often considered during investigations related to niche evolution, adaptation,
and speciation. This is a modified figure from Bolte and Eckert (2020).
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Figure ii Hypotheses related to speciation rate in relation to ecological divergence
scenarios. a) Simple, 2-dimensional schematic showing the relationship between the
realized niche (i.e., where the species is known to occur), the fundamental niche (i.e.
where the species has the capacity to occur) and the hypothesized importance of
divergent selection in the time needed for reproductive isolation to develop when all other
factors from Figure i are held constant. For the top two diagrams (i.e., stabilizing selection
versus directional selection) imagine the niche spaces for two species are stacked on top
of each other after completion of reproductive isolation. b) Hypothesized relationship
between environmental complexity and speciation rate. Open circles meet expectations.
Closed circles may have life history traits or genetic architectures that allow deviation from
expectations. c) Hypothesized relationship between combined factors of standing genetic
variation and environmental complexity on the probability for niche divergence. In
environments with low complexity the probability of niche divergence is low regardless of
standing genetic variation. In homogeneous environments it is hypothesized that niche
stasis or niche directional shifts are more likely to occur than niche divergence. This is a
modified figure from Bolte and Eckert (2020).
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Chapter 1

Divergence amid recurring gene flow: the complex demographic
histories inferred for Pinus pungens and P. rigida align with a growing
expectation for forest trees

Abstract

Long-lived species of trees, especially conifers, often display weak patterns of
reproductive isolation, but clear patterns of local adaptation and phenotypic divergence.
Discovering the evolutionary history of these patterns is paramount to a generalized
understanding of speciation for long-lived plants. We focus on two closely related yet
phenotypically divergent pine species, Pinus pungens and P. rigida, that co-exist along
high elevation ridgelines of the southern Appalachian Mountains. In this study, we
performed historical species distribution modeling (SDM) to form hypotheses related to
population size change and gene flow to be tested in a demographic inference framework.
We further sought to identify drivers of divergence by associating climate and geographic
variables with genetic structure within and across species boundaries. Population
structure within each species was absent based on genome-wide RADseq data, however
signals of admixture were present range-wide, and species-level genetic differences
associated with precipitation seasonality and elevation. When combined with information
from contemporary and historical species distribution models, these patterns are
consistent with a complex evolutionary history of speciation influenced by Quaternary
climate. This was confirmed using inferences based on the multidimensional site-

frequency spectrum, where demographic modeling inferred recurring gene flow since
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divergence (2.74 million years ago) and population size reductions that occurred during
the last glacial period (~35.2 thousand years ago). This suggests that phenotypic and
genomic divergence, including the evolution of divergent phenological schedules leading
to partial reproductive isolation, as previously documented for these two species, can

happen rapidly, even between long-lived species of pines.

Introduction

The process of speciation has been characterized as a continuum of divergence
underpinned with the expectation that reproductive isolation strengthens over time
leading to increased genomic conflict between species (Seehausen et al. 2014). While
the term continuum suggests linear directionality, it is better thought of as a multivariate
trajectory that is nonlinear, allowing stalls and even breakdown of reproductive barriers in
the overall progression toward complete reproductive isolation (Cannon and Petit 2020;
Kulmuni et al. 2020). Indeed, speciation can occur with or without ongoing gene flow and
demographic processes such as expansions, contractions, isolation, and introgression
leave detectable genetic patterns within and among populations of species that affect the
evolution of reproductive isolation (Nosil 2012; e.g., Gao et al. 2012). Divergence histories
with gene flow are an emerging pattern for species of forest trees with reproductive
isolation often developing through prezygotic isolating mechanisms and reinforced by

environmental adaptation (Abbott 2017; Cavender-Bares 2019). Together, these two
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processes can facilitate the development of genomic incompatibilities over time (Baack

et al. 2015).

Climate and geography are well-established drivers of demographic processes and
patterns (Hewitt 2001). For the past 2.6 million years, Quaternary climate has oscillated
between glacial and interglacial periods causing changes in species distributions, but the
significance of these changes and their influence on population differentiation has varied
by region and taxon (Hewitt 2004; Lascoux et al. 2004). In North America, the effects of
Quaternary climate on tree species distributions and patterns of genetic diversity have
been profound but more drastic for species native to northern (i.e., previously glaciated)
and eastern regions. For instance, the geographical distribution of white oak (Quercus
alba L.), a native tree species to eastern North America, experienced greater shifts since
the last interglacial period (LIG), approximately 120 thousand years ago (kya), compared
to the distributional shifts of valley oak (Quercus lobata Née) in California (Gugger et al.
2013). For the latter, distributional, and hence niche, stability was correlated with higher

levels of genetic diversity.

Given the climate instability of eastern North America since the LIG, a host of
phylogeographic studies have reported genetic diversity estimates for taxa of this region
and the genetic structuring of populations due to geographic barriers such as the
Appalachian Mountains and Mississippi River (Soltis et al. 2006) as well as postglacial
expansion (e.g., Gougherty et al. 2020). The vast majority of tree taxa in these studies,

however, were angiosperms, with the divergence history of only one closely related pair
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of conifer species native to this region, Picea mariana (Mill.) Britton, Sterns, & Poggenb.
and P. rubens Sarg., being fully characterized (Perron et al. 2000; Lafontaine et al. 2015).
The relative differences in geographical distributions and genetic diversities across P.
mariana and P. rubens, as well as models of demographic inference, suggest a
progenitor-derivative species relationship that initiated approximately 110 kya through
population contractions and geographical isolation. Despite this history, these two species
actively hybridize today. In general, speciation among conifer lineages remains an
enigmatic process (Bolte and Eckert 2020), largely because there is a mismatch between
species-level taxonomy and the existence of reproductive isolation, so that hybridization
among species is common both naturally as well as artificially (Critchfield 1986). The
ability to hybridize, moreover, is idiosyncratic, with examples ranging from well-developed
incompatibilities among populations within species (e.g., P. muricata D. Don; Critchfield
1967) to the almost complete lack of incompatibilities among diverged and geographically
distant species (P. wallichiana A. B. Jacks. from central Asia and P. monticola Douglas
ex D. Don from western North America; Wright 1959). Thus, the tempo and mode for the
evolution of reproductive isolation for conifers remains largely unexplained despite
decades of research into patterns of natural hybridization, crossing rates, and the
mechanisms behind documented incompatibilities (McWilliam 1959; Kriebel 1972;

Hagman 1975; Critchfield 1986; Vasilyeva and Goroshkevich 2018).

The key to understanding the evolution of reproductive isolation, and hence a more

developed explanation of the process of speciation for conifers, is the role of demography

and gene flow during the divergence among lineages. Analytical approaches have been
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developed to infer past demographic processes from population genomic data, which can
now easily be generated even for conifers (Parchman et al. 2018). While many studies
have used demographic inference methods to describe the phylogeographic history of a
single species (e.g., Gugger et al. 2013; Li et al. 2013; Bagley et al. 2020; Ju et al. 2019;
Park and Donoghue 2019; Capblancq et al. 2020; Yang et al. 2020; Labiszak et al. 2021),
some of these established methods have also been used to infer divergence histories
between two or three species (e.g., Zou et al. 2013; Christe et al. 2017; Kim et al. 2018;
Menon et al. 2018). Single species inferences have found that the last glacial maximum
(LGM; ~21 kya) affected distributional shifts and intraspecific gene flow dynamics, while
multispecies studies have focused almost solely on how these climatic oscillations drove
periods of increased and decreased interspecific gene flow which contributed to the
formation of environmentally dependent hybrid zones, ancient periodical introgression, or

adaptive divergence in the development of reproductive isolation.

The number of potential divergence histories underlying even a modest number of
species is vast. The preemptive formation of a hypothesis from historical species
distribution modeling (SDM), however, can aid in defining a more realistic set of models
from which to make inference, as well as to examine the impact of climate change on
genetic diversity and demographic processes (Carstens and Richards 2007). For
example, Lima et al. (2017) modeled distributional changes for Eugenia dysenterica DC.
between the LGM and today which led to a hypothesis that range stability was more likely
than range expansion or contraction in this South American region. Their SDM informed

hypothesis was supported by range-wide, E. dysenterica genetic data. Likewise, SDMs
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across several time points allows for estimation of habitat suitability change (i.e., a proxy
for contraction or expansion) and distributional overlap of multiple species (i.e., potential
gene flow). With these quantified changes, testable hypotheses emerge, lending to more
deliberate investigations of speciation through justified parameter selection (Richards et
al. 2007). Of course, there are inherent limitations associated with SDMs and interpreting
historical distributions should be done cautiously but using SDMs to complement
demographic inference is now common in the field of phylogeography (Hickerson et al.
2010; Gavin et al. 2014; Peterson and Anamza 2015). For example, where a species
occurs is determined to some degree by its traits and thus at least partially its genetics,
so that non-optimal inference can occur by ignoring putative adaptation within lineages
during SDM formation and testing. Indeed, lkeda et al. (2017) found that SDM predictions
under future climate scenarios improved with acknowledgement of local adaptation in
Populus fremontii S. Watson (i.e., three identified genetic clusters across the full species

distributional range were modeled independently).

Here, we focus on two closely related, yet phenotypically diverged, pine species, Table
Mountain pine (Pinus pungens Lamb.) and pitch pine (Pinus rigida Mill.). Recent
estimates from multiple time-calibrated phylogenies across nuclear and plastid DNA have
placed the time of divergence in the range of 1.5 to 17.4 million years ago (mya;
Hernandez-Leon et al. 2013; Saladin et al. 2017; Gernandt et al. 2018; Jin et al. 2021),
with these studies either placing them as sister species (e.g., Hernandez-Leon et al. 2013;
Saladin et al. 2017) or as part of a clade with P. serotina Michx. as the sister to P. rigida

(e.g., Gernandt et al. 2018; Jin et al. 2021). Changes in climate, fire regime, and
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geographic distributions have likely influenced species divergence (Keeley 2012). This is
plausible given that P. pungens populations are restricted to high elevations of the
Appalachian Mountains, while the much larger distribution of P. rigida ranges from
Georgia into portions of eastern Canada. It is particularly interesting that these recently
diverged species are found in sympatry, yet hybridization has rarely been observed in the
field (Zobel 1969), although they can be reciprocally crossed to yield viable offspring
(Critchfield 1963). An ecological study of three sympatric P. pungens and P. rigida
populations indicated that the timing of pollen release was separated by approximately
four weeks, enough to sustain partial reproductive isolation at these sites (Zobel 1969),
which is a common contributor to prezygotic isolation among conifer species (Dorman
and Barber 1956; Critchfield 1963). It was also noted that while P. pungens was most
densely populated on arid, rocky, steep southwestern slopes, P. rigida was less confined
to these areas (Zobel 1969), thus suggesting environmental adaptation through
ecological character displacement may also be important in the divergence of these two

closely related species.

Considering the dynamic interplay of climate, topography, and ecology potentially
involved in the divergence of these two pine species, we asked three questions: 1) Which
demographic processes were involved in the divergence of P. pungens and P. rigida? 2)
Does the timing of demographic events align with shifts in climate? 3) To what extent are
climate and geographic variables associated with genetic differentiation? To answer
these three questions, we hypothesized that P. pungens and P. rigida experienced

divergence with gene flow followed by population contraction and isolation (i.e., different
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refugia) initiated during the LGM as an explanation for strongly diverged traits and
phenological schedules. From historical SDM predictions across four time points since
the LIG, we formed additional hypotheses to be tested within a demographic inference
framework. Three hypotheses corresponded to SDM predictions from specific general
circulation models (GCMs) and were compared to a fourth hypothesis formed from
ensembled SDM predictions. We then used the multidimensional, folded site frequency
spectrum from 2168 genome-wide, unlinked single nucleotide polymorphisms (SNPs)
across 300 trees to infer demographic processes and timing of divergence. Our best-fit
demographic model inferred initial divergence at 2.74 mya, aligning with the start of the
Quaternary Period, and described divergence as occurring with ongoing gene flow and
drastic population size reductions during the last glacial period (~35.2 kya). SDM
hypotheses were partially supported, especially for ongoing gene flow and population size
reductions during the LGM. We conclude that climatic oscillations, differential adaptation
to seasonality, and gene flow influenced the divergence of P. pungens and P. rigida and
present evidence from SDM, genetic association analyses, and demographic inference

as support.

Methods

Sampling
Range-wide samples of needle tissue were obtained from 14 populations of Pinus

pungens and 19 populations of Pinus rigida (Figure 1.1). Each population consisted of 4-

18



12 trees with each sampled tree distanced by approximately 50 m from the next to avoid
potential kinship (Table 1.1). Needle tissue was dried using silica beads, then

approximately 10 mg of tissue was cut and lysed for DNA extraction.

DNA sequence data

Genomic DNA was extracted from all 300 sampled trees using DNeasy Plant Kits
(Qiagen) following the manufacturer’s protocol. Four ddRADseq libraries (Peterson et al.
2012), each containing up to 96 multiplexed samples, were prepared using the procedure
from Parchman et al. (2012). EcoRI and Msel restriction enzymes were used to digest all
four libraries before performing ligation of adaptors and barcodes. After PCR, agarose
gel electrophoresis was used to separate then select DNA fragments between 300-500
bp in length. The pooled DNA was isolated using a QIAquick Gel Extraction Kit (Qiagen).
Single-end sequencing was conducted on lllumina HiSeq 4000 platform by Novogene
Corporation (Sacramento, CA). Raw fastq files were demultiplexed using GBSX (Herten
et al. 2015) version 1.2, allowing two mismatches (-mb 2). The dDocent bioinformatics
pipeline (Puritz et al. 2014) was subsequently used to generate a reference assembly
and call variants. The reference assembly was optimized using shell scripts and
documentation within dDocent (cutoffs: individual = 6, coverage = 6; clustering similarity:
-c 0.92), utilizing cd-hit-est (Fu et al. 2012) for assembly. The initial variant calling
produced 87,548 single nucleotide polymorphisms (SNPs) that were further filtered using
vcftools (Danecek et al. 2011) version 0.1.15. We retained only biallelic SNPs with
sequencing data for at least 50% of the samples, minor allele frequency (MAF) > 0.01,

summed depth across samples > 100 and < 10000, and alternate allele call quality > 50.
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Additionally, stringent filtering steps were taken to minimize the potential misassembly of
paralogous genomic regions. Removing loci with excessive coverage and retaining only
loci with two alleles present, as above, should ameliorate the influence of misassembled
paralogous loci in our data (Hapke and Thiele 2016; McKinney et al. 2018). Lastly, we
retained loci with Fis >-0.5, as misassembly to paralogous genomic regions can lead to
abnormal levels of heterozygosity (Hohenlohe et al. 2013; McKinney et al. 2017). To
account for linkage disequilibrium among the 20,932 SNPs that passed quality controls,
which if not properly acknowledged can lead to erroneous inferences of demographic
history (Gutenkunst et al. 2009), we thinned the dataset to one SNP per contig (--thin

100). The reduced 2168 SNP dataset was used in all analyses.

Population structure and genetic diversity

Patterns of genetic diversity and structure within and between P. pungens and P. rigida
were assessed using a suite of standard methods. Overall patterns of genetic structure
were investigated using principal component analysis (PCA), as employed in the prcomp
function of the stats version 4.0.4 package, on centered and scaled genotypes following
Patterson et al. (2006), in R version 3.6.2 (R Development Core Team, 2021). Genetic
diversity within each species was examined using multilocus estimates of observed and
expected heterozygosity (Ho and He) for each population using a custom R script
(www.github.com/boltece/Speciation_2pines). An individual-based assignment test was
conducted using fastSTRUCTURE (Raj et al. 2014) with cluster assignments ranging
from K= 2to K= 7. Ten replicate runs of each cluster assignment were conducted. The

cluster assignment with the highest log-likelihood value was determined to be the best fit.
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Individual admixture assignments were then aligned and averaged across the 10 runs
using the pophelper version 1.2.0 (Francis 2017) package in R. Third, multilocus,
hierarchical fixation indices (F-statistics) were defined by nesting trees into populations
and populations into species, with Fcr describing differentiation between species and Fsc
describing population differentiation within species (Yang 1998). F-statistics and
associated confidence intervals (95% Cls) from bootstrap resampling (n = 100 replicates)

were calculated in the hierfstat version 0.5-7 package (Goudet and Jombart 2020) in R.

To assess influences on within-species genetic structure, Mantel tests (Mantel 1967)
were used to examine Isolation-by-Distance (IBD; Wright 1943) and Isolation-by-
Environment (IBE; Wang and Bradburd 2014). In these analyses, the Mantel correlation
coefficient (r) was calculated between linearized pairwise Fst, estimated with the method
of Weir and Cockerham (1984) using the hierfstat package in R, and either geographical
(IBD) or environmental (IBE) distances. For geographical distances, latitude, and
longitude records for each tree in a population were averaged to obtain one
representative coordinate per population. Geographic distances among populations were
then calculated using the Vincenty (ellipsoid) method within the geosphere version 1.5-
10 package (Hijmans 2019) in R. Environmental distances were calculated as Euclidean
distances using extracted raster values associated with the mean population coordinates
from 19 bioclimatic variables, downloaded from WorldClim at 30 arc second resolution
(version 2.1; Fick and Hijmans 2017). Values associated with the mean population
coordinates for were extracted using the raster version 2.5-7 R package. Environmental

data were centered and scaled prior to estimation of distances. Additionally, we used a
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Mantel test to assess correlation between population-based environmental distances and

population-based geographic distances.

Associations between genetic structure and environment

To test the multivariate relationships among genotype, climate, and geography within and
across species, redundancy analysis (RDA) was conducted using the vegan version 2.5-
7 package (Oksanen et al. 2020) in R version 4.0.4 (R Core Development Team, 2021).
Genotype data were coded as counts of the minor allele for each sample (i.e., 0,1, or 2
copies) and then standardized following Patterson et al. (2006). Climate raster data (i.e.,
19 bioclimatic variables at 30 arc second resolutions), as well as elevational raster data
from WorldClim, were extracted, as mentioned above, from geographic coordinates for
each sampled tree and then tested for correlation using Pearson’s correlation coefficient
(r). Five bioclimatic variables that were not highly correlated (r < |0.75|) but known to
influence diversification in the genus Pinus (Jin et al. 2021; Menon et al. 2018) were
retained for analysis: Bio 2 (mean diurnal range), Bio 10 (maximum temperature of the
warmest quarter), and Bio 11 (minimum temperature of the coldest quarter), Bio 15
(precipitation seasonality), and Bio 17 (precipitation of the driest quarter). The full
explanatory data set included these five bioclimatic variables, latitude, longitude, and
elevation. The multivariate relationship between genetic variation, climate, and
geography was then evaluated through RDA. Statistical significance of the RDA model
(a=0.05), as well as each axis within the model, was assessed using a permutation-
based analysis of variance (ANOVA) procedure with 999 permutations (Legendre and

Legendre 2012). The influence of predictor variables, as well as their confounded effects,
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in RDA were quantified using variance partitioning as employed in the varpart function of

the vegan package in R.

Species distribution modeling

To help formulate a testable hypothesis in the inference of demography from genomic
data (see Richards et al. 2007), species distribution modeling (SDM) was performed for
each species to identify areas of suitable habitat under current climate conditions and
across three historical time periods (HOL, ~6 kya, interglacial; LGM, ~21 kya, glacial; and
LIG, ~120 kya, interglacial). These temporal inferences were then used to help identify
plausible demographic responses. For example, if overlap in modeled habitat suitability
changed over time, the hypothesis for demographic inference would include changes in
gene flow parameters over time. If the amount of suitable habitat changed over time, the
hypothesis would also include changes in effective population size to allow for potential
expansions or contractions. This in effect helps to constrain the possible parameter space

for exploration.

Occurrence records for P. pungens were downloaded from GBIF.org (18th December

2018; GBIF occurrence download, https://doi.org/10.15468/dl.urehu0) and combined with
known occurrences published by Jetton et al. (2015). For P. rigida, all occurrence records
were downloaded from GBIF.org (29th December 2015; GBIF occurrence download,

http://doi.org/10.15468/dl.akOweh). Records were examined for presence within or close to

the known geographical range of each species (Little 1971). Records far outside the

known geographic range were pruned. The remaining locations were then thinned to one
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occurrence per 10 km to reduce the effects of sampling bias using the spThin version
0.1.0.1 package (Aiello-Lammens et al. 2015) in R. The resulting occurrence dataset
included 84 records for P. pungens and 252 records for P. rigida (available at
www.github.com/boltece/Speciation_2pines). All subsequent analyses were performed

in R version 3.6.2 (R Development Core Team, 2021).

The same bioclimatic variables (Bio2, Bio10, Bio11, Bio15, Bio17) selected for RDA were
used in species distribution modeling but were downloaded from WorldClim version 1.4
(Hijmans et al. 2005) at 2.5 arc minute resolution. The change in resolution from above
was necessary because paleo-climate data in 30 arc second resolution were not
available for the LGM. Paleoclimate raster data for the LGM (~21 kya) and Holocene
(HOL, ~6 kya) were downloaded for three General Circulation Models (GCMs; CCSM4,
MIROC-ESM, and MPI-ESM). Ensembles were built by averaging the habitat suitability
predictions from the three GCMs for each time period (e.g., Menon et al. 2018). SDM
predictions associated with each individual GCM, for both the HOL and LGM, were
analyzed for incongruences as recommended in Varela et al. (2015). Paleoclimate data
for the LIG (~120 kya) were only available at 30 arc second resolution and required
downscaling to 2.5 arc minute resolution using the aggregate function (fact = 5) of the
raster package. Only one GCM is available for the LIG from WorldClim (NCAR-CCSM,;

Otto-Bliesner et al. 2006); therefore, no ensemble was built.

Raster layers were cropped to the same extent using the raster package to include the

most northern and eastern extent of P. rigida, and the most western and southern extent
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of P. pungens. Species distribution models (SDMs) were built using MAXENT version 3.4.1
(Phillips et al. 2017) and all possible features and parameter combinations were
evaluated using the ENMeval version 2.0.0 R package (Kass et al. 2021). Metadata

about model fitting and evaluation are available in (Bolte et al. 2022).

The selected features used in predictive modeling were those associated with the best-
fit model as determined using AIC. Raw raster predictions were standardized to have the
sum of all grid cells equal the value of one using the raster.standardize function in the
ENMTools version 1.0.5 (Warren et al. 2021) R package. Standardized predictions were
then transformed to a cumulative raster prediction with habitat suitability scaled from 0
to 1, allowing for quantitative SDM comparisons across species and time. Next, SDM
cumulative raster predictions were converted into coordinate points using the sf version
0.9-7 R package to calculate the number of points with habitat suitability values greater
than 0.5 (i.e., moderate to high suitability areas). Population size expansion or
contraction was hypothesized if the number of points increased or decreased over time,
respectively. Overlap (i.e., shared points across species) in SDM predictions for each
time period was measured using the inner_join function in the dplyr version 1.0.5 R
package. The extent of modeled species distributional overlap was also quantified using
the raster.overlap function in ENMTools, thus providing measures for Schoener's D
(1968) and Warren’s | (Warren et al. 2008). Four testable hypotheses were formed from
these quantifications. Three of which were formed from predictions associated with each
GCM used in HOL and LGM SDMs. The fourth hypothesis was formed from ensembled

SDM predictions for the HOL and LGM.
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Demographic modeling

Demographic modeling was conducted using Diffusion Approximation for Demographic
Inference (dadi v.2.0.5; Gutenkunst et al. 2009). A model of pure divergence (SI; strict
isolation) was compared against twelve other demographic models representing different
potential divergence scenarios with or without gene flow and effective population size
changes (Appendix 1, Figure 1.51). Based on SDM predictions across four time points,
we hypothesized that a model that allowed changes in effective population size and rate
of gene flow before the LIG would best fit the genetic data. Ten replicate runs of each
model were performed in dadi with a 200 x 220 x 240 grid space and the nonlinear
Broyden-Fletcher-Goldfarb-Shannon (BFGS) optimization routine. Model selection was
conducted using Akaike information criterion (AIC; Akaike 1974). The best replicate run
(highest log composite likelihood) for each model was then used to calculate AAIC
(AlCmodel i — AlCbest model) SCOres (Burnham and Anderson 2002). From the best supported
model, upper and lower 95% confidence intervals (Cls) for all parameters were obtained
using the Fisher Information Matrix (FIM)-based uncertainty analysis. Unscaled
parameter estimates and their 95% Cls were obtained using a per lineage substitution
rate of 7.28 x 10'° substitutions/site/year rate for Pinaceae (De La Torre et al. 2017) and
a generation time of 25 years (Ma et al. 2006). Genome length (L) a requirement for
determining Nref (= 6/4uL) from dadi parameters, was calculated as the sum across
contigs (i.e., RADtags) of the number of bp per SNP. This quantity was calculated for
each contig by dividing 92 bp (i.e., the trimmed length of each contig) by the number of

SNPs in the contig from the unthinned SNP dataset (n = 20,932 SNPs in total). This was
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necessary because only a single SNP was retained per contig and counting all bp in a
contig would upwardly bias the genome length (i.e., the SNPs were dropped but the bp

they occupy would be counted).

Results

Population structure and genetic diversity

A clear separation at the species level was apparent along PC1, which explained 4.232%
of the variation across the 2168 SNP x 300 tree data set (Figure 1.2a). Of the 2168 SNPs
analyzed, 380 of them were fixed for the same allele across all samples of P. pungens,
and 196 SNPs were fixed (i.e., not polymorphic) across samples of P. rigida. The other
1592 SNPs had variant calls within both species. Lack of population clustering within each
species was observed when the PCA was labeled by population (Appendix 1, Figure
1.S2). Using hierarchical F-statistics, the estimate of differentiation between species (Fcr)
was 0.117 (95% CI: 0.099 — 0.136) and similarly to that among all sampled populations
(Fst = 0.123, 95% CI: 0.106 — 0.143), thus highlighting structure is largely due to
differences between species. Differentiation among populations within species was
consequently much lower (Fsc = 0.007 (95% CI: 0.0055-0.0088) whether analyzed jointly
(Fsc) or separately (see Table 1.2). In the analysis of structure, K = 2 had the highest log-
likelihood values (Figure 1.2b). Admixture in small proportions (assigning to the other
species by 2-10%) was observed in 41 out of the 300 samples (13.67% of samples)

across both species. There were 16 trees with ancestry coefficients higher than 10%
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assignment to the other species: four P. rigida samples (2.29% of sampled P. rigida) and
twelve P. pungens samples (9.60% of sampled P. pungens). Admixture proportions were
moderately correlated to latitude (Pearson’s r = -0.414), longitude (Pearson’s r=-0.291),
and elevation (Pearson’s r = 0.445). All three correlative relationships were significant (p
< 0.001). Ancestry assignments for each tree at K = 3 through K = 7 are available in
Appendix 1 (Figure 1.S3). All cluster assignments analyzed did not reveal intraspecific
population structure. To be certain the signals of admixture were not artifacts of missing
data, we plotted the relationship of missing data to the ancestral coefficient for each tree.
For the samples with admixture present, the assigned ancestral coefficients at K= 2 do
not appear to be artifacts of missing data (Appendix 1, Figure 1.S4). Admixture was

present in trees with both low and moderate levels of missing data.

Pairwise Fst estimates for P. pungens ranged from 0 to 0.0457, while a similar but
narrower range of values (0 — 0.0257) was noted for P. rigida. The highest pairwise Fst
value across both species was between two P. pungens populations located in Virginia,
PU_DT and PU_BB (Table 1.1). Interestingly, PU_DT in general had higher pairwise Fst
values (0.0146 — 0.0457) compared to all the other sampled P. pungens populations. For
P. rigida, the Rl_SH population located in Ohio had higher pairwise Fst values for 16 out
of the 18 comparisons (0.0123 — 0.0257). The two populations that had low pairwise Fst
values with RI_SH were geographically nearby: RI_OH located in Ohio (pairwise Fst =0,
distance: 90.1 km) and RI_KY located in Kentucky (pairwise Fst =0.0089, distance: 107.7
km). The highest pairwise Fstvalue among P. rigida populations was between RI_SH and

RI_HH, which are geographically distant from one another. From the Mantel tests for IBD
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and IBE, Pearson correlations were low (Table 1.2). The correlation with geographical
distances was highest for P. rigida (Mantel r = 0.176, p = 0.055). From the Mantel test,
the correlation between geographic distance and environmental distance was high for

both P. rigida (r = 0.611, p = 0.001) and P. pungens (r = 0.893, p = 0.001).

Heterozygosity estimates for each population are listed in Table 1.1 and were only
moderately correlated with geography and elevation. Observed heterozygosity of P.
pungens (Ho = 0.127 + 0.015 SD), averaged across SNPs and populations, was higher
than the average expected heterozygosity (He = 0.118 + 0.008 SD), both of which were
higher than the almost equal values for P. rigida (Ho = 0.102 + 0.009 SD; He = 0.104 +
0.005 SD; Table 1.2). Across both species, observed heterozygosity was mildly
associated with geography and elevation. For P. rigida, the highest correlation was with
elevation (r=0.300, p-value = 0.212), followed by correlation with longitude (r=0.113, p-
value = 0.646). Observed heterozygosity in P. pungens had a negative correlative
relationship with elevation (r = -0.105, p-value = 0.721) and positive correlative
relationship with longitude (r = 0.175, p-values = 0.549). Correlations between latitude
and heterozygosity were low in both species (r = -0.008 for P. rigida; r = 0.08 for P.

pungens; p-values > 0.785).

Associations between genetic structure and environment
The combined effects of climate and geography explained 1.52% (adj. r?) to 4.16% (r?) of
the genetic variance across 2168 SNPs and 300 sampled trees. The first RDA axis

accounted for the bulk of the explanatory variance (42.3%, Figure 1.3) and was the only
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RDA axis with a p-value (p < 0.001) less than commonly accepted thresholds of
significance (e.g., « = 0.05). The first RDA was dominated by effects of elevation and
Bio15 (precipitation seasonality). Average elevation associated with P. pungens samples
was 724.68 m (£ 224.17 SD), while average elevation across P. rigida samples was lower
(399.69 m, + 292.26 SD). The average for Bio15 (precipitation seasonality) was 11.33 (+
1.83 SD) for P. pungens, and higher for P. rigida (14.23 + 3.97 SD). Considering the
standard deviations around the mean, overlap in values for elevation and precipitation
seasonality provide some context to present day overlap in species distributions along
the southern Appalachian Mountains. Comparisons of predictor loadings across both
RDA axes show latitude, longitude, and Bio11 (mean temperature of the coldest quarter)
as also important to explaining the variance both within (RDA 2, 9.77%) and across

species (RDA1).

Partitioning the effects of each predictor set revealed that climate independently (i.e.,
conditioned on geography) accounted for 31.93% of the explanatory variance. Geography
independently (i.e., conditioned on climate) accounted for 34.10% of the explained
variance. The confounded effect, due to the correlations inherent to the chosen

geographic and climatic predictor variables, was 33.97%.

Species distribution modeling
Because population structure within each of the focal species was not observed from our
genetic data (i.e., no clear genetic clusters were identified), we produced SDMs using

occurrence records across the full distributional range of each species. The best-fit SDM
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for P. pungens used a linear and quadratic feature class with a 1.0 regularization
multiplier, while the SDM for P. rigida used a linear, quadratic, and hinge feature class
with a regularization multiplier of 3.0. The AUC associated with the training data of the P.
pungens and P. rigida SDMs was 0.929 and 0.912, respectively. Metadata, data inputs,
outputs, and statistical results for model evaluation are available in Bolte et al. (2022).
The climatic variables with the highest permutation importance were Bio11 (mean
temperature of the coldest quarter) and Bio15 (precipitation seasonality) which
contributed 41.1% and 39.7% to the P. pungens SDM and 19.5% and 62.4% to the P.
rigida SDM. Of the five climate variables included in the RDA, Bio15 and Bio11 had the
highest loadings along RDA axis 1, helping to explain differences across species. The
tandem reporting of Bio15 and Bio11 importance to both genetic differentiation and
species distributions could be indicative that these climatic variables were drivers in the

divergence of these two species.

Distributional overlap was observed in all analyzed SDMs at each of the four time points,
therefore all four hypotheses stated that gene flow occurred between the LIG and present
day (Figure 1.4). The areas of high habitat suitability shifted substantially over time for
both species though, with overlapping areas of suitable habitat exhibiting some of these
fluctuations, as well. Current SDMs indicated a larger area of suitable habitat for P. rigida
(11,128 grid cells had > 0.5 habitat suitability) compared to P. pungens (6,632 grid cells)
with 14.1% overlap in distributional predictions (Figure 1.4). SDM ensembled predictions
for HOL indicated the highest overlap (21.2% of grid cells with > 0.5 habitat suitability),

while LGM ensembled predictions indicated the lowest overlap (9.1%). Likewise,

31



calculations of overlap from full distributional predictions were the lowest (Schoener’s D
= 0.217) for LGM followed by the LIG (Schoener's D = 0.288). The highest distributional
overlap was associated with the current SDM (Schoener’s D = 0.612; Figure 1.S5). Raster
plots associated with the SDM predictions across the four time points (LGM and HOL

ensemble predictions) and species are in Appendix 1, Figure 1.S5.

LGM predictions across the three GCMs varied substantially in terms of where and to
what extent there was suitable habitat. We observed drastic reduction in suitable habitat
for both species from predictions associated with the CCSM4 GCM. MPI-ESM associated
predictions indicated reductions for P. rigida, while MIROC associated predictions
indicated habitat expansion for P. rigida since the LIG. As found in Varela et al. (2015),
the use of Bio2 and Bio15 in historical SDM modeling for the LGM led to very different
predictions across GCM types making averaged predictions (i.e., the ensemble approach)
potentially misleading. We have provided model predictions associated with each LGM-
GCM in Appendix 1 (Figure 1.S6). Calculations of overlap from all LGM-GCM predictions
(range = 2.0 - 18.3%) were lower than overlap estimates from other time periods providing
some indication of consistency and usefulness to the widely implemented ensemble
technique. For the HOL, predictions were more similar across GCMs with overlap varying
between 13.1 and 20.5% (Appendix 1, Figure 1.S7). Hypotheses associated with each

GCM and the ensemble are presented in Figure 1.4.

The ensembled prediction for P. pungens and P. rigida during the LGM shows multiple

potential refugial areas that overlap (Figure 1.S5). From the MIROC-ESM GCM-based
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model predictions, interspecific gene flow during the LGM may have been possible just
south of the glacial extent, but CCSM4 and MPI-ESM GCM-based predictions (Figure
1.S6) indicate two, small overlapping refugial regions farther south than where either
species currently occurs. Ensembled distributions for P. pungens and P. rigida during the
HOL were proximal to each other, with high habitat suitability west of and along the
Appalachian Mountains (Figure 1.S5). These distributions may have promoted both

intraspecific and interspecific gene flow to occur ~6 kya.

Demographic modeling

The best replicate run (highest composite log-likelihood) for each of the thirteen modeled
divergence scenarios, their associated parameter outputs, and AAIC (AlCmodel i — AlCbest
model) @are summarized in Appendix 1 (Table 1.S1 and Table 1.S2). A model that allowed
changes in both effective population size and rate of symmetrical gene flow across two
time periods (PSCMIGCs) best fit the 2168 SNP data set (Table 1.2) and had small,
normally distributed residuals (Figure 1.S8). This model was 20.84 AIC units better than
the second best-fit model (PSCMIGs; Table 1.3), which inferred change in population size
estimates across two time intervals but inferred only one, constant symmetrical gene flow

parameter across time intervals.

Initial divergence was estimated to be 2.74 mya (95% CI: 2.25 — 3.24). The first time
interval during divergence (T7) lasted 98.7% of the total divergence time with symmetrical
gene flow (M;) occurring at a rate of 48.6 (95% CI: 33.1 — 64.1) migrants per generation
(Figure 1.5). The effective size of the ancestral population (Nref) was 36,137 (95% CI:

31,367 — 40,908; Figure 1.5) prior to divergence. For most of the divergence history, P.
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pungens had an effective population size of Nps = 1,024,573 (95% CI: 140,601 -
1,908,546) while P. rigida had a relatively smaller, but still large, effective size of Nrs =
758,920 (95% CI: 214,423 - 1,303,417). The second time interval (T2) during divergence
was estimated to have begun 35.2 kya (95% ClI: 32.9 - 37.4) when effective population
sizes decreased instantaneously to 3,448 (95% CI: 3,226 - 3,669) for P. pungens (Np2)
and 3,935 (95% ClI: 3,679 - 4,191) for P. rigida (Nr2). During this time interval, the relative
rate of symmetrical gene flow dropped from 48.6 to 38.4 (95% CI: 35.7 — 41.1) migrants

per generation.

Discussion

Using a multidisciplinary approach, we demonstrated that the divergence history of P.
pungens and P. rigida involved a complex mixture of population size changes linked to
changing climates, as well as changing rates of gene flow. We also demonstrated that
consideration of each GCM-based SDM prediction is important to hypothesis formation
for phylogeographic and demographic inference studies as the more widely employed
method of ensembling historical SDM predictions can be misleading, especially when
inferences include population size change. All four of our SDM hypotheses were
supported in terms of gene flow occurrence since the LIG, but only Hypothesis 1 (CCSM4)
for population size change since the LIG was supported by genetic data. The best-fit

demographic model using 2168 SNPs as summarized using the multidimensional site
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frequency spectrum indicated initial divergence to have occurred 2.74 mya, an estimate
similar to the one inferred in Saladin et al. (2017; 2.66 mya). Our best-fit model also
indicated a large reduction in effective population size which coincided with a reduction
in gene flow during the last glacial period (~10,000 years before the last glacial maxima).
A three-epoch model to test SDM observations of expansion since the LGM was included,
but model fit did not improve. This could be due to the more pronounced impact of a
recent bottleneck to site frequency spectrum patterns or that our data simply did not

capture expansion.

Climate drives divergence

The total divergence time inferred for P. pungens and P. rigida (2.74 mya) aligns with the
onset of the Quaternary Period (~2.6 mya), a time period widely recognized as driving
adaptations to seasonality for many temperate species (Dobzhansky 1950; Savolainen
et al. 2004; Jump and Penuelas 2005; Williams and Jackson 2007; Bonebrake and
Mastrandea 2010). For P. pungens and P. rigida, Bio15 (precipitation seasonality) was
important to genetic differentiation (RDA) and species distributions (SDMs) which strongly
implies adaptations to seasonality were drivers of divergence. Phenological traits have
been linked to seasonal variation within various plant species of North America (Jump
and Penuelas 2005), and differences in seasonality requirements for P. pungens and P.
rigida likely explain the observed trait differences in seed size, reproductive age, timing
of pollen release, and rates of seedling establishment across these two species (Zobel

1969; Della-Bianca 1990; Ledig et al. 2015).
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Using niche and trait data, the phylogenetic inference of Jin et al. (2021) also identified
precipitation seasonality (Bio15) as a driver of diversification in eastern North American
pines along with Bio1 (annual mean temperature), Bio8 (mean temperature of the wettest
quarter), elevation, and soil silt content. Although three of these variables were not
included in our RDA, the two that were (i.e., Bio15 and elevation) were most important to
explaining species level genetic differences. In terms of distributional differences between
these two species, narrow niche requirements for Bio15 and elevation help explain the
patchy distribution of P. pungens along the southern Appalachian Mountains, while
contrastingly, populations of P. rigida may have evolved a response to increased
precipitation seasonality during the Quaternary period. In a study of pinyon pine
diversification, Ortiz-Medrano et al. (2016) suggested the response to seasonality as
potentially linked to the evolution of plasticity. This could explain P. rigida’s less stringent
niche requirements for Bio15 and elevation, larger geographic distribution, greater trait
variation, and proposed latitudinal expansion into northeastern North America (Ledig et

al. 2015).

The evolution of fire-related traits in pines has been linked to the mid-Miocene period, but
fire intensity and frequency in certain geographic regions have been cyclical in nature
allowing the evolution of adaptive traits related to fire endurance, tolerance, or avoidance
possible across multiple geologic time scales (e.g., He et al. 2012; Lafon et al. 2017; Jin
et al. 2021). Fine-scale geographical distributions of our focal species are locally
divergent across slope aspects in the Appalachian Mountains, with P. pungens primarily

distributed on southwestern slopes and P. rigida primarily distributed on southeastern
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slopes (Zobel 1969). Currently, there is higher fire frequency and intensity on western
slopes. The high levels of cone serotiny and fast seedling development associated with
P. pungens are evolved strategies that confer population persistence in more active fire
regimes (Zobel 1969). Although some northern P. rigida populations exhibit serotiny, the
populations found along the southern Appalachian Mountains, and proximal to P.
pungens, have nonserotinous cones and other traits consistent with enduring fire (e.g.,
thick bark and epicormics; Zobel 1969) as opposed to relying on it (Jin et al. 2021). With
these factors in mind and the correlative evidence between fire intensity and level of
serotiny presented across populations of other pine species (P. halepensis and P.
pinaster; Hernandez-Serrano et al. 2013), we suspect genomic regions involved in the
complex, polygenic trait of serotiny (Parchman et al. 2012; Budde et al. 2014) may have
also contributed to the rapid development reproductive isolation between our focal

species.

Reproductive isolation can evolve rapidly during speciation

While P. pungens and P. rigida can be found on the same mountain and even established
within a few meters of each other, mountains are heterogeneous, complex landscapes
offering opportunity for niche evolution along multiple axes of biotic and abiotic influence
for parental species and hybrids alike. The distances to disperse into novel environments
are relatively short in these heterogeneous landscapes thus suggesting diversification
could be more rapid as environmental complexity increases (Bolte and Eckert 2020).

Mountains have rain shadow regions characterized by drought and thus more active fire
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regimes (Parisien and Moritz 2009). A host of adaptive traits in trees are associated with
fire frequency and intensity (Pausas and Schwilk 2012). Among those, the genetic basis
of serotiny is characterized as being polygenic with large effect loci in P. contorta Dougl.
(Parchman et al. 2012) and in P. pinaster Aiton (Budde et al. 2014). Such genetic
architectures, even in complex demographic histories such as the one described here,
can evolve relatively rapidly to produce adaptive responses to shifting optima (e.g., Stetter
et al. 2018; reviewed for forest trees by Lind et al. 2018), so that it is not unreasonable to
expect divergence in fitness-related traits such as serotiny to also contribute to niche
divergence and reproductive isolation. Considering large effect loci associated with
serotiny were also associated with either water stress response, winter temperature, cell
differentiation, or root, shoot, and flower development (Budde et al. 2014), serotiny may
be a trait that contributes to widely distributed genomic islands of divergence thus
explaining the development of ecologically based reproductive isolation between P.
pungens and P. rigida amid recurring gene flow (Nosil and Feder 2012). Given that our
focal species are reciprocally crossable to yield viable offspring (Critchfield 1963), it is
likely that postzygotic ecological processes, such as selection for divergent fire-related
and climatic niches, limits hybrid viability in natural stands as a form of reinforcement
layered on the aforementioned prezygotic divergence of phenological schedules. Indeed,
hybrids are rarely identified in sympatric stands (Zobel 1969; Brown 2021). Thus, it
appears that niche divergence is associated with divergence in reproductive phenologies

during speciation for our focal taxa. Whether niche divergence reinforces reproductive
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isolation based on pollen release timing or divergent pollen release timing is an outcome

of niche divergence itself, however, remains an open question.

The rate of gene flow in our best-fit demographic model was reduced by approximately
10 migrants per generation providing evidence that prezygotic reproductive isolation may
have strengthened during the glacial period. This reduction reflects a scenario of reduced
effective population sizes, reduced rates of gene flow (m), or both. The rate of gene flow
associated with a given time interval should not be interpreted as constant, though. Sousa
et al. (2011) found that posterior distributions for the timing of gene flow parameters in
demographic inference were highly variable across the simulations they performed
making pulses of gene flow (i.e., a gene flow event occurring within a time frame of no
active gene flow), as probable as constant, ongoing gene flow. This likely explains the
high levels of gene flow inferred using dadi with the empirical lack of frequent and
identifiable hybrids in extant samples of each species (Figure 1.2; Brown 2021). While
acknowledging this blurs interpretation of parameter estimates for gene flow, a history
with recurring gene flow events fits the narrative of prezygotic isolation being labile
especially when geographical distributions or reproductive phenology are the factors
involved. Indeed, observations of hybridization occurring between once prezygotically
isolated species have been made and suggests phenological barriers such as timing of
pollen release and flowering may not be permanently established and can shift towards

synchrony in warming climates (Vallejo-Marin and Hiscock 2016).
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Climate instability reduces genetic diversity

Conifers often have high levels of genetic diversity and low levels of population
differentiation because of outcrossing, wind-dispersion, and introgression (Petit and
Hampe 2006). Pinus pungens and P. rigida both have modest levels of genetic diversity
within and across the populations we sampled, and no detectable within-species
population structure given our genome-wide data. Our best-fit model inferred a drastic
effective population size reduction (P. pungens, ~99.7%; P. rigida, ~99.5%) 35 kya. Since
then, climate has continued to oscillate between extreme warming and cooling events
(Jackson and Overpeck, 2000) and for geologic time intervals too short for species with
long generation times and low migratory potential to sufficiently track causing a mismatch
between the breadth of a species’ climatic niche and where populations are established
(Svenning et al. 2015). This dynamic affects population persistence, reduces genetic
variation within populations due to excessive mortality, and thus to some degree limits
the potential for local adaptation in climatically unstable regions. The lack of IBD and IBE
across the populations of our focal species can be explained in one of two ways, the
mismatch described in Svenning et al. (2015) or the primarily nongenic regions
investigated in our RADseq data reflect little to no structure. Our SDM predictions showed
substantial shifts in habitat suitability since the LIG, providing evidence of high climate
instability in temperate eastern North America during the Quaternary period. We
acknowledge though that niche conservatism is an underlying assumption in historical

SDMs, so interpretations were done cautiously. Gene flow and local adaptation affect
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niche dynamics in various ways (Pearman et al. 2008), but neither of these processes

were able to be accounted for in our SDMs.

From a theoretical standpoint, we anticipated the patchy, mountain top distribution of P.
pungens to be characterized by strong patterns of population differentiation. Lack of
structure in P. pungens could be attributed to long distance dispersal or a recent move
up in elevation with genomes still housing elements of historical panmixia. Indeed,
suitable habitat predictions during the HOL, just 6000 years ago, were rather contiguously
distributed (Figure 1.S5 and Figure 1.S7) and may have allowed an increase in
intraspecific gene flow. For P. rigida some structure differentiating the northern
populations from those along the southern Appalachian Mountains was expected from an
empirical standpoint because previously reported trait values in a common garden study
led to identification of three latitudinally arranged genetic groupings (Ledig et al. 2015).
Although structure analysis did not support groupings within P. rigida, our estimates for
isolation-by-distance (IBD) yielded a correlation of 0.177 (p = 0.055) which is suggestive
of structure. While this shows some differentiation across its distribution, pairwise Fst
values were small and on average smaller than those between populations of P. pungens
suggesting higher population connectivity in P. rigida. The three GCM-based SDM
predictions for both P. pungens and P. rigida differed substantially but did consistently
show two or three disjunct refugia where gene flow dynamics intraspecifically and
interspecifically may have been affected. Even though genetic differences may have

accumulated in these separate refugia, the SDM predictions for the HOL were more
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compact and contiguous for our focal taxa, providing greater potential for intraspecific
gene flow across diverged populations and the reestablishment of interspecific gene flow

under a warming climate.

Future work and conclusions

The divergence history of P. pungens and P. rigida involved a complex interplay of
recurring interspecific gene flow and dramatic population size reductions associated with
changes in climate. Future detailed examinations of hybridization between P. pungens
and P. rigida are needed to elucidate the role hybridization plays in the maintenance of
species boundaries. ldeally, future research involving these two species would use a
method that sufficiently captures genic regions so population structure in both species
may be revealed and investigations into genomic islands of divergence that are often
associated with ecological speciation can be performed (Nosil and Feder 2012). It may
also be of interest to conduct population genetic analyses from chloroplast and
mitochondrial DNA to obtain resolved inferences of gene flow directionality (i.e.,

asymmetry) and population connectivity.

While more time, effort, and genomic resources are needed for us to accurately predict
gains and losses in biodiversity or describe the development of reproductive isolation in
conifer speciation, we must recognize that some montane conifer species will be
disproportionately affected by future climate projections (Aitken et al. 2008) and time is of

the essence in terms of capturing and understanding current levels of biodiversity. High
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elevational species such as P. pungens may already be experiencing a tipping point, but
because P. pungens is a charismatic Appalachian tree with populations already
threatened by fire suppression practices over the last century, conservation efforts have
begun through seed banking (Jetton et al. 2015) and prescribed burning experiments of
natural stands (Welch and Waldrop 2001). Our contributions to these conservation efforts
include genome-wide population diversity estimates for P. pungens and P. rigida and a
demographic inference scenario that involves a long history of interspecific gene flow. In
conifer species of the family Pinaceae, there are multiple accounts of introgression
occurring through hybrid zones (De La Torre et al. 2014; Hamilton et al. 2015; Menon et
al. 2018). The implications of introgression are far-reaching as it leads to greater genetic
diversity and thus a greater capacity for adaptive evolution. Trees are often foundation
species in many plant communities, so understanding a population’s potential to
withstand environmental changes provides some insight into the future stability of the

ecological communities dominated by these charismatic plant taxa.
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Table 1.1 Location of sampled populations, number of trees (n) that were sampled, and
the observed heterozygosity (Ho) versus the expected heterozygosity (He = 2pq) for Pinus
pungens and P. rigida populations.

Species Code Location Lat Long n H, H.

P. pungens PU BB Briery Branch, VA 3848  -79.22 8 0.110 0.108
P. pungens PU BN Buchanan State Forest, PA 39.77  -78.43 6 0.141 0.121
P. pungens PU BV Buena Vista, VA 37.76  -79.29 11 0.124 0.120
P. pungens PU DT Dragon's Tooth, VA 37.37  -80.16 7 0.101 0.098
P. pungens PU EG Edinburg Gap, VA 38.79  -78.53 8 0.139 0.124
P. pungens PU EK Elliott Knob, VA 38.17  -79.30 10 0.131 0.123
P. pungens PU GA Walnut Fork, GA 3492  -83.28 10 0.129 0.123
P. pungens PU LG Looking Glass Rock, NC 3530  -82.79 8 0.130 0.119
P. pungens PU NM North Mountain, VA 37.82  -79.63 12 0.130 0.121
P. pungens PU _PM Poor Mountain, VA 37.23  -80.09 11 0.130 0.125
P. pungens PU _SC Pine Mountain, VA 3470  -83.30 8 0.128 0.122
P. pungens PU_SH Shenandoah NP, VA 38.55  -7831 5 0.160 0.128
P. pungens PU_SV Stone Valley Forest, PA 40.66  -77.95 9 0.110 0.110
P. pungens PU TR Table Rock Mountain, NC 35.89  -81.88 12 0.113 0.114
P. rigida RI BR Bass River State Forest, NJ 39.80 -74.41 9 0.101 0.105
P. rigida RI CT Pachaug State Forest, CT 41.54  -71.81 10 0.096 0.107
P. rigida RI DT Dragon's Tooth, VA 37.37  -80.16 10 0.109 0.106
P. rigida RI GA Chattahoochee NF, GA 3475  -83.78 9 0.096 0.103
P. rigida RI GW George Washington NF, VA 3836 -79.20 10 0.102 0.103
P. rigida RI HH Hudson Highlands State Park, NY  41.44  -73.97 7 0.102 0.101
P. rigida RI JF Jefferson NF, VA 37.15  -82.64 10 0.095 0.100
P. rigida RI KY Daniel Boone NF, KY 37.84  -83.62 9 0.113 0.110
P. rigida RI_ ME Acadia NP, ME 4436  -68.19 10 0.107 0.106
P. rigida RI MI Michaux State Forest, PA 3998  -77.44 10 0.123 0.114
P. rigida RI NJ Wharton State Forest, NJ 39.68  -74.53 9 0.098 0.101
P. rigida RI NY Macomb State Park, NY 44.63  -73.58 9 0.101 0.104
P. rigida RI_ OH South Bloomingyville, OH 3945  -82.59 8 0.093 0.096
P. rigida RI_RS Rome Sand Plains, NY 4323  -75.56 9 0.097 0.103
P. rigida RI_SH Shawnee State Park, OH 38.75 -83.13 9 0.082 0.094
P. rigida RI _SP Sproul State Forest, PA 4124 -77.78 9 0.106 0.105
P. rigida RI TN Great Smoky Mountains NP, TN 35.68  -83.58 8 0.099 0.104
P. rigida RI TR Table Rock Mountain, NC 35.89  -81.89 10 0.113 0.112
P. rigida RI VT Bellows Falls, VT 43.11  -72.44 10 0.098 0.104
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Table 1.2 Summary statistics of genetic differentiation for the sampled populations of P.
rigida and P. pungens. Expected (He) and observed heterozygosity (Ho) values are the

averages across 2168 SNPs averaged across populations.

Species Fst IBD r IBE r He Ho
P (95% Cl) (p-value) (p-value) (range) (range)
P. pungens 0.0057 -0.0789 0.0131 0.118 0.127
(0.0032 - 0.0084) (0.638) (0.411) (0.098-0.129) (0.101-0.160)
P. rigida 0.0056 0.1758 -0.0669 0.104 0.102
(0.0032 - 0.0082) (0.055) (0.633) (0.094-0.114) (0.082-0.123)
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Table 1.3 Results of model fitting for thirteen representative demographic models of
divergence. Models are ranked by the number of parameters (k). Log-likelihood (logL)
and Akaike information criterion (AIC) are provided for each model. Model details are
given in the footnote.

Model k logL AIC

Sl 3 -2254.18 4,514.37
MIGs 4 -2201.51 4,411.02
MIGa 5 -2210.81 4,431.62
SCs 5 -2213.93 4,437.86
SGFs 5 -2229.65 4,469.30
SCa 6 -2238.03 4,488.06
SGFa 6 -2241.07 4,494.14
PSC 6 -2277.78 4,567.56
PSCSCs 7 -2178.16 4,370.32
PSCMIGs 7 -1866.42 3,746.84
PSCMIGCs 8 -1853.99 3,726.00
PSCMIGa 10 -2117.91 4,251.82
PSCMIGCs_T3 12 -1925.86 3,875.71

S|, strict isolation; MIGs, symmetrical gene flow; MIGa, asymmetrical gene flow; SCs, secondary
contact with symmetrical gene flow; SCa, secondary contact with asymmetrical gene flow; SGFa,
speciation with asymmetrical gene flow SGFs, speciation with symmetrical gene flow; PSC,
population size change; MIGCs, change in rate of symmetrical gene flow; T3, for three time
intervals. The best-fit model is in bold.
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Figure 1.1 Known geographical distribution of focal species, a) Pinus pungens and b) P.
rigida, (Little 1971) in relation to populations sampled (black dots) for genetic analysis;
Phenotypic characterization of each species was illustrated by Pierre-Joseph Redouté

(Michaux 1819).
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Figure 1.2 Measures of genetic differentiation and diversity among sampled trees of P.
pungens and P. rigida: a) Principal components analysis of 2168 genome-wide single
nucleotide polymorphism (SNPs) for Pinus pungens (blue, left side of PC1) and P. rigida
(orange, right side of PC1); b) log-likelihood values across ten replicate runs in
fastSTRUCTURE for K = 2 through K = 7; c) results of averaged K = 2 ancestry (Q)
assignments for each sample arranged latitudinally in each species.
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Figure 1.3 Redundancy analysis (RDA) of the multilocus genotypes for each tree with
climate and geographic predictor variables (full model). Direction and length of arrows on
each RDA plot correspond to the loadings of each variable.
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Hypothesis 1: Populations of both P. pungens and P. rigida
contracted drastically during the LGM then expanded
across the HOL and PD. Gene flow occurred across the
four time points. Pinus rigida has a larger current
effective population size.

Hypothesis 2: P. pungens experienced slight population
contraction during LGM then expansion. P. rigida experienced
expansion during LGM, contraction during the HOL, then
expansion to PD. Gene flow occurred across the four time
points. Pinus rigida has a larger current effective
population size.

Hypothesis 3: Populations of both P pungens and P. rigida
contracted during the LGM but more drastically for P. rigida,
then they expanded across the HOL and PD. Gene flow
occurred across the four time points. Pinus rigida has
a larger current effective population size.

Hypothesis 4: Populations of both P. pungens and P. rigida
expanded during the LGM but more drastically for P. rigida.
P pungens expanded during the HOL while P, rigida
contracted. Gene flow occurred across the four time
points. Pinus rigida has a larger current effective
population size.

Figure 1.4 Hypotheses associated with each SDM - GCM model prediction versus the
ensemble SDM prediction based on relative grid cell counts of high habitat suitability (>
0.5) for P. rigida, P. pungens, and overlap across four time periods (LIG, LGM, HOL,

and PD). Bolded text were statements supported by the best-fit model of demographic

inference.
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Figure 1.5 The best-fit model (PSCMIGCs) and unscaled parameter estimates from dadi
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lineage population sizes (N;) and a specific rate of symmetrical gene flow (M;).
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Data Archiving Statement

Raw reads generated during this study are available at NCBl SRA database under
BioProject: PRINA803632 (Sample IDs: SAMN25684544 — SAMN25684843). Python
scripts for demographic modeling and R scripts for genetic analyses and producing
SDMs are available at www.github.com/boltece/Speciation_2pines.
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Appendix 1

Figure 1.S1 The thirteen divergence scenarios tested within the program dadi.
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Figure 1.S2 Principal component analysis (PCA) of 300 P. rigida and P. pungens trees

labeled by population assignment.
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Table 1.S1 Parameters and the estimates associated with the best run of each model
type. The model with three time intervals (PSCMIGCsT3) is not included in this table.
Those parameters are summarized in Table 1.S2.

Model 0 T4 T2 NuP1 NuRT nuP2 nuR2 mS1 mS2 mPR mRP
- 2.16 408 4.82E
Stictisolation (SI) 41994 210 . 408 4&E
Gene Flow- sym 5.41 7.1 8.68E 3.21E
(MIGs) 42344 Eo3 02 w02 <01
Gene Flow-asym .. o 821 99 93%€ __ ______ 266E 313
(MiGa) 9 o3 E02  -02 +01  E+0f
ooecondary a0y 692 478 146 17T4E 2256 _
y 07 E03 E03 E01  -01 +01
(SCs)
coecondary a4 B0 273 147 2246 _ 127E 556
y 4% Eo4 E04 E02 -02 +01  E+0f
(SCa)
Ancient GF-asym , . 228 588 269 1.84E _______ 42E 220
(SGFa) 32 E02 E-04 E01  -01 +00  E+0f
Ancient GF-sym oo . 7.89 210 144 154E 29  _
(SGFs) 4% E03 E-03 E01  -01 +01
Pop size change 377 41 2.99 5.45 552 6.24E 1.61E 1.33E . . . .
(PSC) 4" Eo03 E03 E0O1 01 01  -01
Pop i‘;;gh,f”ge' s7g 275 525 102 329 283E 347E 1266
(PeCMIGS) E+00 E-02 E+01 +01 01 01  +01
Pop asgemcé‘g”ge' Jesap 200 137 308 147E 262E 218E _ 562E 414
(Pemaa) E01 E03 E+00 -01  -02  +00 01 E+0f
SS;"G?Z;:QSB 11840 150 195 284 210E 954E 109E 4.86E 383E
semec E+00 E-02 E+01 +01 02 01  +01  +0f
Popsizechange- .o 122 631 363 814E 407E 498E 547E
scsym(Pscscs) 2/18  Eo1  E02 E+00 +01 .01 01 +00
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Table 1.S2 Parameter estimates from the best run (lowest AIC) for the model allowing 3
time intervals (PSCMIGCsT3).

Parameter scaled unscaled
nuP1 13.84 206,046.53
nuR1 16.39 243,895.25

T1 4.96 3,693,145.67
mS1 49.59 0.00167
nuP2 0.11 1,675.62
nuR2 0.18 2,671.88

T2 0.0077 5,756.79
mS2 15.76 0.00053
nuP3 3.88 57,810.81
nuR3 6.19 92,124.16

T3 0.0016 1,182.63
mS3 15.76 0.00053

0 (Nref) 48.64 (14,884.34)
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Chapter 2

Potential drivers in the differential development of reproductive
isolation for three cryptically related North American pine species
(Pinus pungens, P. rigida, and P. taeda)

Abstract

Inferring divergence histories and drivers of reproductive isolation (RI) within clades of
the genus Pinus requires a multidisciplinary approach as histories appear to be riddled
with hybridization, periods of isolation, local adaptation, and effective population size
changes that co-occurred with major shifts in climate. In this study, we performed
historical species distribution modeling (SDM), population structure analysis, redundancy
analysis, and demographic inference to help explain the differential development of RI
across three eastern North American pine species (Pinus pungens, P. rigida, and P.
taeda). The previous work done on these species helped construct a three-species
demographic inference routine that sought to estimate when and to what extent gene flow
occurred across ancestral and extant species boundaries. We found pairwise
demographic inferences to be more informative than the seven three-species models we
tested. Divergence occurred with gene flow for P. pungens and P. rigida as previously
inferred for these two species. Unexpectedly, strict isolation was the best fit model of
divergence for pairwise inferences with P. taeda even though hybridization between P.
rigida and P. taeda is observable at present. Collectively we present strong support for a
common ancestor between P. pungens and P. rigida, but placement of P. taeda relative
to these other two was difficult to ascertain based on comparisons of model AIC scores

and divergence time estimates. We further explored the relationships between and across
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these three species by mapping our RADseq contigs to the annotated P. taeda genome.
Pairwise analysis of Fst for highly differentiated single nucleotide polymorphisms (SNPs)
among contigs that associated with genic regions may help explain the less established
RI between P. rigida and P. taeda and the stronger Rl between P. pungens and the other
two focal species. From the suite of analyses performed and literature reviewed, we
concluded that geography, climate, gene flow, and ecological divergence have all
contributed to standing levels of differentiation across these three pine species and that
the challenges associated with delineation of species relationships from our study and

past phylogenetic inferences may be linked to assumptions of tree bifurcation.

Introduction

The maintenance of species boundaries involves an array of mechanisms, requiring
specific consideration of geography, climate, life history traits, and genetic architectures
to adequately identify drivers of speciation. Investigations within model systems, such as
Arabidopsis, Mimulus, and Helianthus, have helped elucidate the different genetic
architectures associated with the development of pre and postzygotic reproductive
isolation (RI), an important component to the process of speciation, in plants (Widmer,
Lexer, and Cozzolino 2009; Rieseberg and Blackman 2010). A growing body of literature
has associated the development of RI with adaptive evolution (e.g., Nosil and Feder 2012;
Kremer and Hipp 2020). Emerging patterns suggest that adaptive traits are polygenic,
genomic islands of divergence are small and spread throughout the genome, and species
boundaries appear to be permeable with relatively few loci contributing to RI (Zukowska

and Wachowiak 2016). Populus trichocarpa (Torr. and A.Gray ex. Hook.) was the first
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sequenced forest tree genome (Tuskan et al. 2006) and the work done in Populus has
initiated an understanding of how Rl in long-lived trees may involve more complex genetic
architectures (e.g., more traits that are polygenic in nature) than the architectures
associated with Rl in short-lived plant taxa (e.g., a simple inversion; Shang et al. 2020).
In parallel, investigations into divergence among taxa of the genus Quercus has added
depth to our comprehension of how genomes across closely related tree taxa are shaped
by hybridization, ecology, and purifying selection (e.g., Cokus, Gugger and Sork 2015;
Hipp et al. 2020). However, documentation and explanation of general evolutionary
patterns related to the relative contribution of extrinsic and intrinsic barriers to Rl, and
how these barrier loci are distributed across the genomes of closely related tree taxa,
remain in their infancy. Furthermore, it is unclear how the results of speciation studies in
Populus and Quercus can be extrapolated to fit expectations for other tree taxa, especially
those among conifers. Indeed, conifer genomes are substantially larger, have fewer
chromosomes, lower levels of linkage disequilibrium, slower rates of genome evolution,
and more transposable elements (Prunier et al. 2015). All these differences may
contribute to contrasting expectations about the evolutionary tempo and mode for the

development of RI.

Well-annotated genome sequences are useful to determine the distribution of barrier loci
across the genome given that inversions, linkage groups, and functional groups of genes
(e.g., disease resistance, drought tolerance, and phenology) have been previously
described as contributors to Rl (Rieseberg and Blackman 2010; Cokus, Gugger, and Sork

2015; Khodwekar and Gailing 2017). The large size and immense complexity of conifer
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genomes (>15GB) have made sequencing and annotating them a challenge, but draft
genomes with curated annotations are now available for Pinus taeda L. (Neale et al. 2014;
Wegrzyn et al. 2014), Picea abies (L.) H. Karst (Nystedt et al. 2013), Picea glauca
(Moench) Voss (Birol et al. 2013), and Pinus lambertiana Dougl. (Stevens et al. 2016),
presenting opportunities to identify and functionally describe loci contributing to RI. Until
population-level genomic resources for conifers become available, which will help clarify
if islands of divergence or continents of divergence (Nosil and Feder 2012) can also
describe RI in conifers, we can continue to utilize next generation sequencing and
candidate gene approaches to infer demographic histories, identify environmental drivers
of divergence, and assign biological function to highly differentiated loci that are within or
near coding regions. As case studies that employ these methods accumulate, we suspect
patterns related to tempo and mode of divergence will emerge among those that examine
multiple closely related species of comparable genetic architecture, geography, and
climate (Bolte and Eckert 2020). Given that interspecific gene flow is commonly observed
in the divergence histories of forest trees, we anticipate patterns related to the
contributory effects of gene flow to the development of Rl to also emerge, such as the
relative rates at which Rl develops when reinforcement (hybrid fithess reduction) versus

introgression (hybrid zones) is involved.

The genus Pinus is the most diverse group of conifers with over 110 species that inhabit
an array of geographic and climatic gradients, providing an extensive resource for
comparative investigation into conifer speciation and the development of Rl (Zukowska

and Wachowiak 2016; Jin et al. 2021), but even within the genus Pinus, hard and soft
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pines appear to be distinct in terms of artificial crossing success and diversification rate.
Soft pines of sections Quinquefoliae and Parrya can be successfully crossed with one
another, with the only exception being P. lambertiana Dougl., which suggests genetic
incompatibilities are infrequent or weak in these groups (Critchfield 1967). In contrast,
hard pines of sections Trifoliae and Pinus have more documented cases of reproductive
incompatibilities among its members (Critchfield 1967), but why this is so has yet to be
described. Most investigations into pine speciation, using two or more taxonomically
established species, have taken a phylogeographic approach (e.g., Liu et al. 2014; Zhang
et al. 2014; Zhou et al. 2017; Liu et al. 2019; Yang et al. 2020). Some have gone further
to include evaluations of niche evolution to discern stabilizing selection or diversifying
selection as drivers of divergence (e.g., Menon et al. 2018). Some have incorporated
candidate loci for RI into their analyses to help genetically explain species-level
boundaries (e.g., Gao et al. 2012; Wachowiak et al. 2018). Together, these efforts have
laid essential groundwork for future investigations into the development of RI.
Investigations relevant to hard pine speciation from molecular data are lacking though,
especially in North America, which is surprising given the first conifer genome to be
sequenced was P. taeda. Only two speciation studies have leveraged this genomic
resource to identify biological functions among differentiated loci across defined species,
but these studies involved hard pines clades of Europe and Asia (Gao et al. 2012;
Wachowiak et al. 2018). Given that climatic drivers of divergence differ within and across

continents (Jin et al. 2021), loci involved in Rl may also differ regionally.
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Here, we add to the body of pine speciation literature with an examination of three closely
related eastern North American hard pine species: P. pungens Lamb., P. rigida Mill., and
P. taeda L. (Gernant et al. 2018; Jin et al. 2021). The geographical distributions of these
species differ (Figure 2.1) but have regions of overlap or are proximal enough to one
another to dismiss geographical isolation as a contemporary boundary to gene flow. P.
pungens and P. rigida have differences in pollen release timing that contribute to
prezygotic isolation (Zobel 1969; Ladeau and Clark 2006), yet recurring interspecific gene
flow characterizes their divergence history (Bolte et al. 2022), thus providing evidence of
Rl lability when phenological schedules are responsible, at least in part, for the
maintenance of species boundaries (Vallejo-Marin and Hiscock 2016). Artificial crossing
experiments have indicated though that hybrids of P. pungens and P. rigida have low
yield of sound seeds, suggesting incompatibilities may also explain the lack of
hybridization observed at present. For P. rigida and P. taeda, pollen release timing also
differs by approximately four weeks (i.e., in North Carolina; Zobel 1969; Ladeau and Clark
2006) but these species appear to have remained genetically compatible throughout their
divergence history (Hyun 1960; Critchfield 1963) and continue to hybridize in nature
(Smouse and Saylor 1973). Moreover, hybrids bred between P. rigida and P. taeda are a
valued source of fast-growing timber in cooler climates where natural populations of P.
taeda cannot persist (Hyun and Ahn 1959; Knezick et al. 1985a). Describing the mode of
Rl between P. pungens and P. taeda is more cryptic. They have potentially overlapping
pollen release dates (early to mid-April; Zobel 1969; Ladeau and Clark 2006), yet artificial
crossing experiments did not produce sound seeds (Critchfield 1963), thus RI is

reasonably stronger between P. pungens and P. taeda.
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Inspired by the variable degrees of Rl between these three species, we used a
comprehensive analytical framework to address the following questions: 1) What are the
relative contributions of geography and climate to genetic differences, species
distributions, and patterns of niche evolution? 2) To what extent did gene flow occur
across the ancestral populations and contemporary species boundaries of these three
species? We found through our demographic inference routine, relying on both pairwise
and three species models, confidence in the relationship between P. pungens and P.
rigida. These two species shared a recent common ancestor, but placement of P. taeda
in relation to these two species is less clear. We mapped 5050 RADseq contigs to the P.
taeda annotated genome to characterize the distribution of our genome-wide data that
was used in all genetic analyses. From the genic regions that associated with our data,
we observed high differentiation in comparisons with P. pungens and low differentiation
between P. rigida and P. taeda which may explain differences in genomic compatibility

and relative strengths of RI.

Methods

Sampling
We obtained range-wide samples of needle tissue for 14 populations of Pinus pungens,
19 populations of P. rigida, and 25 populations of P. taeda (Fig. 2.1). Each population

consisted of 2-12 trees with each sampled tree distanced by approximately 50 m from the
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next to avoid potential kinship (Table 2.S1). Needle tissue was dried using silica beads,

then 10 mg of tissue was cut and lysed for DNA extraction.

DNA sequence data

Genomic DNA was extracted from 606 trees using DNeasy Plant Kits (Qiagen) following
the manufacturer’s protocol. We then prepared ddRADseq libraries (Peterson et al. 2012),
using the procedure from Parchman et al. (2012). EcoRI and Msel restriction enzymes
were used to digest all four libraries before performing ligation of adaptors and barcodes.
After PCR, agarose gel electrophoresis was used to separate then select DNA fragments
between 300-500 bp in length. The pooled DNA was isolated using a QIAquick Gel
Extraction Kit (Qiagen). Single-end sequencing was conducted on lllumina HiSeq 4000
platform by Novogene Corporation (Sacramento, CA). Raw fastq files were demultiplexed
using GBSX (Herten et al. 2015) version 1.2, allowing two mismatches (-mb 2). The
dDocent bioinformatics pipeline (Puritz et al. 2014) was used to generate a reference
assembly and call variants. The reference assembly was optimized using shell scripts
and documentation within dDocent (cutoffs: individual = 6, coverage = 6; clustering
similarity: -c 0.92), utilizing cd-hit-est (Fu et al. 2012) for assembly. The initial variant
calling produced 239,628 single nucleotide polymorphisms (SNPs) that were further
filtered using vcftools (Danecek et al. 2011), version 0.1.15. We retained only biallelic
SNPs with sequencing data for at least 50% of the samples, minor allele frequency (MAF)
>0.01, summed depth across samples > 100 and < 15000, and alternate allele call quality
= 50. Sampled trees with excessive missing data (= 50%) were removed from the data

set leaving 515 trees. We further removed 75 samples of P. taeda (i.e., removed 5 - 7
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samples from each population) to make population sample sizes more comparable across
the three species. The remaining 440 samples (86 P. pungens, 122 P. rigida, 232 P.

taeda) were used in all analyses.

To account for linkage disequilibrium before performing demographic inference
(Gutenkunst et al. 2009), we thinned the dataset to one SNP per contig (--thin 100).
Additionally, stringent filtering steps to were taken to minimize the potential misassembly
of paralogous genomic regions. Removing loci with excessive coverage and retaining
only loci with two alleles present are expected to ameliorate the influence of
misassembled paralogous loci in our data (Hapke and Thiele 2016; McKinney et al. 2018).
Furthermore, we retained loci with Fis > -0.5, as misassembly to paralogous genomic
regions can lead to abnormal heterozygosity (Hohenlohe et al. 2013; McKinney et al.
2017). From the 5820 SNPs remaining, we identified 1397 SNPs that were fixed for the
same allele in both P. pungens and P. rigida. To rectify the possibility that the de novo
reference assembly process was biased toward P. taeda identity due to larger sample
size (63% more trees than P. pungens, 48% more trees than P. rigida), we filtered out
55% (determined by averaging the aforementioned sample size discrepancies) of these
1397 SNPs by selecting 628 SNPs with the least amount of missing data. The final filtered

data set for demographic inference was comprised of 5051 SNPs.

Population structure

Overall patterns of genetic structure for P. pungens, P. rigida, and P. taeda were

investigated using principal component analysis (PCA), by following standardization
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routines detailed in Patterson et al. (2006) and employing in the prcomp function of the
stats version 4.0.4 package in R version 3.6.2 (R Development Core Team 2021) and
following standardization routines detailed in Patterson et al. (2006). To further assess
structure and presence of admixture across the 440 samples, an individual-based
assignment test was conducted using fastSTRUCTURE (Raj et al. 2014) with cluster
assignments ranging from K= 3 to K= 7. The cluster assignment with the highest average
log-likelihood value across ten replicate runs was determined to be the best fit. Individual
admixture assignments were then aligned and averaged across the 10 runs using the

pophelper version 1.2.0 (Francis 2017) package in R.

Associations between genetic structure and environment

We tested the multivariate relationships among genotype, climate, and geography by
conducting full and partial redundancy analyses (RDA) within the vegan version 2.5-7
package (Oksanen et al. 2020) in R version 4.0.4 (R Core Development Team 2021).
Genotype data were coded as counts of the minor allele for each sample (i.e., 0,1, or 2
copies) and then standardized following Patterson et al. (2006). Climate raster data (i.e.,
19 bioclimatic variables at 30 arc second resolutions), as well as elevational raster data
from WorldClim, were extracted from geographic coordinates for each sampled tree and
then tested for correlation using Pearson’s correlation coefficient (r) in R. Five bioclimatic
variables that were not highly correlated (r < |0.75|) and known to influence diversification
in the genus Pinus (Menon et al. 2018; Jin et al. 2021; Bolte et al. 2022) were retained
for analysis: Bio 2 (mean diurnal range), Bio 4 (temperature seasonality), and Bio 9 (mean

temperature of the driest quarter), Bio 12 (annual precipitation), and Bio 15 (precipitation
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seasonality). The full explanatory data set included these five bioclimatic variables,
latitude, longitude, and elevation. Statistical significance of all RDA models (a = 0.05), as
well as each axis within full models, was assessed using a permutation-based analysis
of variance (ANOVA) procedure with 999 permutations (Legendre and Legendre 2012).
The influence of predictor variables, as well as their confounded effects, in RDA were
quantified using variance partitioning as employed in the varpart function of the vegan
package in R. We used this same procedure to test the multivariate relationships between

ancestral coefficients, climate, and geography.

Species distribution modeling and niche divergence

To help formulate a testable hypothesis in the inference of demography from genomic
data, species distribution modeling (SDM) was performed for each species to identify
areas of suitable habitat under current climate conditions and across three historical time
periods (see Richards et al. 2007). These temporal inferences were then used to help
identified plausible demographic responses. For example, if overlap in modeled habitat
suitability changed over time, the hypothesis for demographic inference would include

changes in gene flow parameters over time.

Occurrence records for P. pungens were downloaded from GBIF.org (18th December

2018; GBIF occurrence download (https://doi.org/10.15468/dl.urehu0) and combined

with known occurrences published by Jetton et al. (2015). For P. rigida and P. taeda, all
occurrence records were downloaded from GBIF.org (29th December 2015 and 18th

December 2018; GBIF occurrence download (http://doi.org/10.15468/dl.akOweh and
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https://doi.org/10.15468/dl.kiknmo). Records were examined for presence within or close

to the known geographical range of each species (Little 1971), and any over 200 km
outside the known geographic range were pruned. The remaining locations were then
thinned to one occurrence per 10 km to reduce the effects of sampling bias using the
spThin version 0.1.0.1 package (Aiello-Lammens et al. 2015) in R. The resulting
occurrence dataset included 84 records for P. pungens, 252 records for P. rigida, and
361 for P. taeda (Online Resource 2). All subsequent analyses were performed in R

version 3.6.2 (R Development Core Team 2021).

The same bioclimatic variables (Bio2, Bio4, Bio9, Bio12, Bio15) selected for RDA were
used in species distribution modeling but were downloaded from WorldClim version 1.4
(Hijmans et al. 2005) at 2.5 arc minute resolution. Paleoclimate raster data for the LGM
(~21 kya) and Holocene (HOL; ~6 kya) were based on three General Circulation Models
(GCMs; CCSM4, MIROC-ESM, and MPI-ESM). Ensembles were built by averaging the
grid cell values across the three GCMs for each time period, which were then used to
predict species distributions and habitat suitability in the past. Paleoclimate data for the
LIG (~120 kya; Otto-Bliesner et al. 2008) were only available at 30 arc second resolution,
so we downscaled the raster files to 2.5 arc minute resolution to help facilitate
comparative analyses across the four time points. Because only one GCM is available

for the LIG, no ensemble was built.

We built species distribution models (SDMs) using MAXENT version 3.4.1 (Phillips et al.

2017) and determined the best-fit model for each of our focal species using the Akaike
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information criterion (AIC) as implemented in the ENMeval version 2.0.0 R package
(Kass et al. 2021). Raw raster predictions were standardized to have the sum of all grid
cells equal the value of one using the raster.standardize function in the ENMTools
version 1.0.5 (Warren et al. 2021) R package. We then transformed standardized rasters
to cumulative raster predictions with habitat suitability scaled from 0 to 1, which allowed
quantitative SDM comparisons across species and time. Next, SDM cumulative raster
predictions were converted into coordinate points using the sf version 0.9-7 R package
to calculate the number of points with habitat suitability values greater than 0.5 (i.e.,
moderate to high suitability areas). Overlap (i.e., shared points across species) in SDM
predictions for each time period was measured using the inner_join function in the dplyr
version 1.0.5 R package. The extent of modeled species distributional overlap was also
quantified using the raster.overlap function in ENMTools, thus providing measures for
Schoener’s D (1968) and Warren’s | (Warren et al. 2008). A background similarity test
was also performed for each pairwise species comparison to describe niche evolution
(conservatism vs. divergence) during speciation. The same five bioclimatic variables
detailed above, along with the occurrence records from GBIF, were used in this analysis

and executed within the phyloclim version 0.9.5 R package (Hiebl and Calenge 2018).

Demographic modeling

Demographic modeling was conducted using Diffusion Approximation for Demographic
Inference (dadi v.2.0.5; Gutenkunst et al. 2009). Among the seven complex models
tested, we held certain relationships constant based on the results of previous studies.

First, in each of these models, P. pungens and P. rigida maintained ongoing symmetrical
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gene flow as was previously inferred (Bolte et al. 2022). Second, we dismissed
investigating extant gene flow between P. pungens and P. taeda due to the results of
experiments where artificial crosses were unable to produce seeds (Critchfield 1963).
Finally, we assumed the topology P. pungens and P. rigida being more closely related
and more recently diverged as reported from phylogenetic inference of Hernandez- Leon
et al. (2013) and Saladin et al. (2017). Based on SDM predictions across four time points,
we confirmed the findings in Bolte et al. (2022) that there was consistent overlap in
suitable habitat between P. pungens and P. rigida, and we further hypothesized that the
overlap between P. rigida and P. taeda was also consistent enough to allow interspecific
gene flow. Given our research objectives here we focused on gene flow timing and
directionality. While the results of Bolte et al. (2022) indicated recent and dramatic
reductions in effective population sizes for both P. pungens and P. rigida during the last
glacial period, working with three diverged lineages in a demographic inference
framework is computationally taxing, so we omitted inference of population size changes.
We instead fixed the ancestral size of P. pungens and P. rigida to be five times larger
than the combined inferences for current effective population size to acknowledge this

dynamic reported in Bolte et al. (2022).

Our null model considered the pure divergence between ancestral populations and strict
isolation between P. ftaeda and P. rigida. The other six demographic models involved
potential divergence scenarios for the ancestral populations and investigation into the
gene flow dynamics between P. rigida and P. taeda (i.e., parameters shifting between two

time intervals, symmetrical, and asymmetrical genetic exchange (Fig. 2.S2)). The two
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models with the highest composite likelihood among the seven scenarios tested were
then selected for parameter optimization. We performed five replicate runs of each model
in dadi with a 260 x 280 x 300 grid space and the nonlinear Broyden-Fletcher-Goldfarb-
Shannon (BFGS) optimization routine. Model selection was conducted using AIC (Akaike
1974). Unscaled parameter estimates were obtained using a per lineage substitution rate
of 7.28 x 10'° substitutions/site/year rate for Pinaceae (De La Torre et al. 2017) and a
generation time of 25 years (Ma et al. 2006). Genome length was calculated as proposed

in Bolte et al. (2022).

We also explored pairwise model (i.e., two species) inferences to determine level of
accuracy in divergence time and gene flow estimates from our best-fit three population
model. Model types included divergence with strict isolation, divergence with symmetrical
gene flow, and divergence with asymmetrical gene flow for P. pungens and P. rigida, P
pungens and P. taeda, and P. rigida and P. taeda. AlC scores were used to assess
goodness of fit across three replicate runs of each model type and pairwise species
relationships. The best replicate run (lowest AIC) for each model was then used to
calculate AAIC (AlCmodel i — AlCpest moder) SCOres (Burnham and Anderson 2002). From the
best supported pairwise inferences, upper and lower 95% confidence intervals (Cls) for
all parameters were obtained using the Fisher Information Matrix (FIM)-based uncertainty

analysis.

Distribution of RADseq contigs across the Pinus taeda annotated genome
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To determine the extent to which the 5051 SNPs in our analyses were identifiable within
the Pinus taeda genome (Pita.2_01.fa; treegenomesdb.org) and associated with
annotations, we mapped our RADseq contigs using blastn, version 2.5.0 (NCBI). Settings
included e-values less than 10, word sizes greater than 4, and gaps penalized by 1. Under
these settings, all but one contig successfully mapped to regions of the P. taeda genome.
We kept the three best hits (i.e., lowest e-values) per contig. Each hit was matched with
a scaffold identifier (i.e., seqid) from the P. taeda genome. We then further reduced the
data to include only scaffold IDs that had annotations. Because the scaffold sizes can be
long with multiple attributes (i.e., annotated regions), we compared the location of a given
RADseq contig to locations of attributes along the respective scaffold. Attributes
associated with the gene closest to or directly hit by the RADseq contig were retained for

further analyses.

We calculated F-statistics for each of the 5051 SNPs in the hierfstat package (Goudet
2005) and outlier detection was performed in the R package, OutFLANK, version 0.2
(Whitlock and Lotterhos 2014). Fcr (species) Values were then used to parse data into
categories of species level differentiation (e.g., Fct < 0.3, Fct2 0.3, 2 0.75, and 2 0.9) to
report counts and observe trends. We measured the distance of SNPs in relation to genic
regions and created three additional categories. We counted how many SNPs were
outside 20k bp from a gene, within 20k bp from a gene, and within a gene. We subset our
genetic data to include only SNPs having Fcr =2 0.3 and then further subset those into the
aforementioned distance categories to a gene. These three data sets were then subjected

to pairwise estimates of Fst for each species pair using the hierfstat package. This
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analysis was performed to examine differences in the distribution of Fst across the three
distance categories to genes for each species pair (i.e., P. pungens - P. rigida, P. pungens
- P. taeda, P. rigida - P. taeda). To see if EQQNOG descriptions, provided with the P.
taeda genome download (treegenomesdb.org), were enriched in our data at Fcrt values
2 0.3 compared to counts with Fct values < 0.3, we performed Fisher’s Exact tests for
gene descriptions that had multiple records or close counts between the two Fcr

categories.

Results

Population structure and genetic diversity

Principal component analysis (PCA) showed clear separation between P. pungens, P.
rigida, and P. taeda across PC1 and PC2 (Figure 2.2a). The first PC axis explained 4.77%
of the variation across the 5051 SNP x 440 tree data set, while PC2 explained 1.75%. Of
the 5051 SNPs analyzed, 1876 SNPs were fixed in P. pungens, 1242 SNPs were fixed in
P. rigida, and only 328 SNPs were fixed in P. taeda. Among those, P. pungens and P.
rigida had 628 SNPs fixed for the same allele. Fewer SNPs were fixed for the same allele
in comparing P. taeda to the other two species. Only 78 and 81 were shared among those
of P. pungens and P. rigida, respectively. In the analysis of structure, K = 3 had the highest
log-likelihood values (Figure 2.2b). We observed low levels of admixture (2-20%) in
14.0% of sampled P. pungens and 8.2% of sampled P. rigida. Most of this admixture was
assigned to P. taeda ancestry. Among samples of P. taeda, several had low levels of

admixture assigning to either P. pungens or P. rigida, but 14.6% of sampled P. taeda had
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moderate to high levels of admixture (20 — 60%) with P. rigida. Most of this admixture
was found in five of the twenty-five P. taeda populations (Table 2.S1), four of which are
in regions over 400 km from where contemporary geographical distributions overlap

(Figure 2.S3).

Associations between genetic structure and environment

The combined effects of climate and geography explained 4.31% (adj. ) to 6.05% (r?)
of the genetic variance across 5051 SNPs and 440 sampled trees. The first RDA axis
accounted for the bulk of the explanatory variance (63.24%, Figure 2.3a) although RDA
axes 2, 3 and 4 were also important in describing the genetic variation across P. pungens,
P. rigida and P. taeda (p-values < 0.05). The combined variable loadings of RDA1 and
RDAZ2 indicated elevation, latitude, and Bio4 (temperature seasonality) as the primary
predictors of differentiation. With geography removed, Bio15 (precipitation seasonality)
was the highest predictor of differentiation (Figure 2.3b), and with climate removed from

the analysis, elevation and longitude were the highest predictors of differentiation.

The results of full and partial RDAs (Figure 2.3) are summarized in Table 2.1. The higher
explanatory variance associated with the partial model for the independent effect of
geography indicated that it, as opposed to climate alone, was the best predictor of
genome-wide genetic variation across these three species (Figure 2.3c). Species level
clustering was more diffuse among all partial RDAs conducted (Figure 2.3), however,

suggesting both geography and climate are important to genetic differentiation across
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species. We also observed that climate and geography were even stronger predictors of

ancestry (r? = 59.40; Table 2.1; Figure 2.3d-f).

Partitioning the effects of each predictor set revealed that climate independently (i.e.,
conditioned on geography) accounted for 11.07% of the explained variance. Geography
independently (i.e., conditioned on climate) accounted for 25.75% of the explained
variance. The confounded effect, due to the correlations inherent to the chosen

geographic and climatic predictor variables, was 63.17%.

Species distribution modeling

We used MAXENT to predict past geographical distributions during the LIG, LGM, and
HOL and formed testable hypotheses within the demographic inference framework of
dadi, v.2.0.5. The best fit SDM for P. pungens used a linear and quadratic feature class
with a 1.0 regularization multiplier, while the SDMs for both P. rigida and P. taeda used a
linear, quadratic, and hinge feature class with a regularization multiplier of 3.0. All SDMs
had AUC values over 0.85. Data inputs, outputs, and statistical results for model

evaluation are available online (https:/github.com/boltece/Species boundaries 3pines). Bio15

(precipitation seasonality) was the most informative and contributive climate variable to
the SDMs of P. rigida and P. pungens, and Bio9 (mean temperature of the driest quarter)
was most important and contributive to the SDM of P. taeda (Figure 2.S2). Bio4
(temperature seasonality) was the second most important variable to the SDM predictions
of all three species, and in the full RDA was the most important climate descriptor of
genetic variation. Congruency between SDM and RDA variable importance was also

observed in Bio 9, as the highest loadings along RDA axis 1 (Figure 2.3a) were in the
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direction of P. taeda samples. Likewise, Bio15 was the most important variable in the

partial RDA (with geography removed, Figure 2.3b).

Across the four time periods modeled, we observed fluctuations in the areas of moderate
to high habitat suitability for all three species. The greatest differences observed were
among the distributional overlap values (Venn Diagrams of Figure 2.4a) and raster
overlap values (Schoener’s D) associated with P. pungens and P. taeda, which increased
over time (Figure 2.4b). Raster overlap between P. pungens and P. rigida was
consistently high (0.529 — 0.599) relative to the other comparisons made (Figure 2.4b).
The current model predictions, labeled NOW in Figure 2.4a, reflected current
geographical distributions of each species, except for a few small disjunct regions
deemed suitable for habitat. This likely resulted from using a data set reduced to five
climatic variables (Figure 2.S2). Notably though, four of the five most admixed
populations of P. taeda with P. rigida ancestry were from Louisiana and Mississippi
(populations TA_ LA, TA LB, TA_MD, and TA_ME; Table 2.S1), a region that was
predicted to also have suitable habitat during the LIG for P. rigida (Figure 2.4a), but at
present is over 400 km away from natural P. rigida stands, based on distributional maps

in Little (1971; Figure 2.S3).

The background similarity test yielded results of niche conservatism in all pairwise
comparisons as measures of niche overlap were higher than the distributional ranges of
background similarity values. The highest niche overlap was between P. pungens and P.

rigida (Schoener's D = 0.570) with the distributions of asymmetrical background niche

91



similarity values far lower (0.15 < Schoener’s D < 0.3) indicating relatively strong niche
conservatism compared to the other pairwise species assessments (Figure 2.5). There
were similar niche overlap values in the comparisons of P. pungens and P. taeda
(Schoener’'s D = 0.282) as well as P. rigida and P. taeda (Schoener’'s D = 0.295), but the
distributions of background niche similarity were more diverged between P. pungens and

P. taeda.

Demographic modeling

Our workflow for demographic inference is summarized in Figure 2.6. The best-fit model
from our first round of analyses described the two divergence events associated with T1
and T2 as occurring with symmetrical gene flow (Figure 2.6a). This model, as well as the
other six variations tested, inferred an unreasonably shallow divergence time of
approximately 7,310 years ago. Exceptionally high rates of gene flow during T2 were also
consistently inferred across all models that had included those parameters. The best-fit
model indicated 200 migrants per generation (gene flow rate; m = 0.0022) between P.
pungens and P. rigida and 68 migrants per generation (gene flow rate; m = 0.00076)
between P. rigida and P. taeda. Because divergence time estimates are sensitive to
migration and effective population size estimates, we ran the best-fit model from the first
round of inference under different lower and upper bounds (Figure 2.6b). This effort did
not improve model fit. AIC scores were higher (Figure 2.6) than the best-fit model from
the first round of inferences. From the three replicates that converged to provide an
optimal value of 6, which is proportional to the ancestral effective population size (6 =

4Neu), divergence time estimates were larger but still unreasonable. Total divergence
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time estimate ranged from 22,170 years ago. Rate of gene flow between P. pungens and

P. rigida continued to be higher than inferences for P. rigida and P. taeda.

Given these results, we decided to examine the species topology assumed above where
P. rigida and P. pungens were sister species using pairwise comparisons across two-
population models Figure 2.6c-e. Strict isolation models had shallow divergence time as
inferred in the three population models, but unexpectedly divergence time inferences that
involved P. taeda were similar (~2,500 years ago) and more shallow than the divergence
time inferred for P. pungens and P. rigida (20, 535 years ago). The AlIC scores were much
higher, suggesting poor fit, for the models that involved P. taeda though (AIC = 8374 and
8943 versus 4159 in the model for P. pungens and P. rigida). Adding gene flow to the
two-population models instantly alleviated shallow divergence time estimates (Figure
2.6d). Models with the lowest AIC indicated divergence 