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Abstract

INCORPORATING ONTOLOGICAL INFORMATION IN BIOMEDICAL

ENTITY LINKING OF PHRASES IN CLINICAL TEXT

By Evan French

A Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2022.

Director: Thesis Dr. Bridget McInnes,

Professor, Department of Computer Science

Biomedical Entity Linking (BEL) is the task of mapping spans of text within

biomedical documents to normalized, unique identifiers within an ontology. Trans-

lational application of BEL on clinical notes has enormous potential for augmenting

discretely captured data in electronic health records, but the existing paradigm for

evaluating BEL systems developed in academia is not well aligned with real-world use

cases. In this work, we demonstrate a proof of concept for incorporating ontological

similarity into the training and evaluation of BEL systems to begin to rectify this

misalignment.

This thesis has two primary components: 1) a comprehensive literature review

and 2) a methodology section to propose novel BEL techniques to contribute to

scientific progress in the field. In the literature review component, I survey the pro-

gression of BEL from its inception in the late 80s to present day state of the art

systems, provide a comprehensive list of datasets available for training BEL systems,

reference shared tasks focused on BEL, and outline the technical components that

vii



comprise BEL systems. In the methodology component, I describe my experiments

incorporating ontological information into training a BERT encoder for entity linking.
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CHAPTER 1

INTRODUCTION

Biomedical entity linking (BEL), also known as normalization, is a natural language

processing (NLP) task dealing with the mapping of spans of text within biomedical

documents to normalized, unique identifiers within an ontology. It is functionally

a classification task where the number of possible classes is defined by the number

of concepts in the ontology. While there is precedent for performing entity linking

jointly with the identification of mention spans [2, 3], most research in the field [4, 1,

5, 6] focuses on BEL as a downstream task, which assumes that the mentions have

already been identified.

Translational application of BEL in the clinical domain has enormous potential

for facilitating programmatic access to patient data trapped in free text notes [7],

which have traditionally been accessible primarily through manual chart review. An

NLP pipeline which extracted and normalized mentions using BEL could massively

expand the scale at which important data from notes could be used to augment

discrete data from electronic health records (EHR), which are commonly used in

clinical research [8].

BEL systems developed for academic research typically use one or more of the

datasets listed in section 2.2 and evaluate their performance based on a binary mea-

sure of whether predicted concepts for each mention exactly match the annotated

concept. We raise two concerns with this approach and propose incorporating non-

binary similarity measures derived from ontological information into both the training

and evaluation of BEL systems.
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Our first concern is that binary evaluation is not well aligned with translational

applications in which researchers frequently identify cohorts, comorbidities, and other

criteria using sets of hierarchically related concepts [9], rather than considering any

single concept in isolation. For example, when defining a cohort of kidney trans-

plant recipients, researchers might include all of the concepts “kidney transplant”

(C0022671), “allotransplantation of left kidney” (C4707445), and “allotransplanta-

tion of right kidney” (C4707446) in their inclusion criteria, making the concepts

functionally equivalent at the level of specificity required for their use case [10]. Sim-

ply stated, close enough is often good enough for real world uses, whereas under the

current paradigm for evaluating research results, very close is considered completely

wrong.

Our second concern is that binary evaluation against gold standard annotations

implies a level unequivocal certainty in the mappings, which is not shared by the

creators of these datasets themselves. For example, the curators of the 2019 n2c2

BEL dataset, which we use in this work, acknowledge numerous limitations to their

annotation process, including the fact that some mentions could be correctly mapped

to multiple distinct concepts. The true level of ambiguity for the gold standard anno-

tations can be quantified by the level of inter-annotator agreement, which was only

74.20% even after a third annotator adjudicated disagreements between annotator

pairs in the first round of annotation. Binary evaluation naively ignores the possi-

bility that an expert medical coder could have reasonably mapped a mention to a

different concept than the one annotated, as was apparently the case for more than

25% of the n2c2 2019 dataset. We believe that using similarity-based evaluation met-

rics could potentially smooth the effects of annotator bias by giving partial credit to

predictions which are similar to the gold standard.

This thesis is organized as follows: chapter 2 reviews the progression of BEL

2



from its origin in the 1980’s to present day, chapter 3 provides background informa-

tion about the ontology and dataset we used in our study, chapter 4 describes the

experiments we conducted to incorporate ontological similarity into a BEL model, in

chapter 5 we discuss our results and compare them to previous work, and in chapter 6

we summarize our findings and outline future work.
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CHAPTER 2

LITERATURE REVIEW

2.1 History

2.1.1 Early Work

In the late 1980’s, medical literature was expanding rapidly, but physicians were

unable to search it effectively due to unfamiliarity with the Medical Subject Headings

(MeSH) vocabulary used to index citations in the MEDLINE database [11]. This

impediment motivated the initial work on BEL. To improve search efficacy for non-

expert users, two physicians at Massachusetts General Hospital proposed MicroMeSH

in 1987, an “intelligent search assistant” for searching the MEDLINE database, which

used a synonym, acronym, and abbreviation dictionary to map users’ search queries

to a list of possible MeSH terms with wildcard matching [11]. The idea was later

expanded to facilitate the MeSH indexing of articles directly with systems such as

CLARIT (1991) [12], SAPHIRE (1995) [13], OSCAR4 (2011) [14], and MetaMap

(2001) [15]. These subsequent systems used linguistic rules, patterns, and dictionaries

to map concept mentions to MeSH terms. MetaMap became the backbone of the

Medical Text Indexer (MTI) [16] in 2004. Today, the National Library of Medicine

(NLM) at the National Institutes of Health (NIH) employs MTI as the automated

first-line indexer for over 350 journals.

Application of BEL to clinical text was not far behind indexing publications.

CHARTLINE (1992) [17] and MedLEE (1995) [18] used similar dictionary match-

ing techniques to extract and link entities in clinical reports to the Unified Medical
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Language System (UMLS). REX (2006) [19], by physicians Friedlin and McDonald,

linked mentions from clinical notes to ICD-9-CM codes to facilitate medical record

coding and included the novel feature of negation recognition to mitigate false posi-

tives for negative mentions (i.e. patient denies smoking). Friedlin later adapted his

REX system to identify adverse drug reactions (ADR) mentioned on drug labels and

link them to the Medical Dictionary for Regulatory Activities (MedDRA) with a sys-

tem called SPLICER [20]. Shortly after Friedlin’s publications, Savova et al. [21] also

released an end-to-end clinical NLP system called cTAKES (2010), which included an

entity linking component. QuickUMLS [22] (2016) addressed the computational per-

formance limitations of its predecessors by using an approximate dictionary matching

algorithm, CPMerge, to achieve higher F1 scores than both MetaMap and cTAKES

while requiring only a fraction of their runtime.

For developing the first generation of BEL systems, which relied exclusively on

dictionary matching techniques and jointly performed NER and entity linking, re-

searchers generally annotated their own training data from scratch. This changed

in the mid-2010s with the release of prominent entity linking corpora, such as the

ShARe/CLEF eHealth Challenge corpus[23] and the NCBI dataset [24] which pro-

vided a set of linked mentions out of the box. For the first time, researchers could

model BEL as an independent task, limiting the scope of their work to matching a

mention assumed to be an entity to its corresponding concept. This allowed for more

complex perturbations of pre-extracted mentions, which would have been combinato-

rially intractable when considering a document in its entirety. D’Souza and Ng [25]

broke ground with an influential sieve-based method that attempted to match men-

tions to concepts through ten progressively fuzzy layers of morphological permuta-

tions. Leal et al. [26] applied a rule-based similarity approach to the ShARe/CLEF

dataset by searching for matches by minimizing Levenshtein distance to SNOMED-
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CT candidates and resolving ties by choosing the SNOMED-CT concept with the

lowest Information Content (IC) [27]. While these systems were more sophisticated

than their predecessors, they still shared many of the core limitations of the earliest

work. Rule-based systems are generally fast, but they are unable to consider seman-

tic meaning, so they struggle when linking mentions that require either context (i.e.

does “depression” refer to a mood disorder or a sunken area?) or when vernacular

for describing a concept is too lexically diverse (i.e. how many ways can you say

“inadequate oral intake”?).

2.1.2 Modern Era

While dictionary-based clinical NLP methods remain popular for production im-

plementation because of their interpretability and configurability [7], learning-based

methods have largely replaced them in informatics research because of their superior

performance. This paradigm shift transitioned BEL from a matching problem to a

mapping problem requiring successful systems to numerically represent mentions and

concepts and train models to connect them. One of the best-known early attempts at

applying machine learning to BEL was DNorm [2], which used TF-IDF representa-

tions of mentions and concepts to train a linear classifier to score pairs of mention and

concept representations. DNorm demonstrated a nearly 10 point gain in F-measure

performance over existing rule-based baselines, becoming the defacto baseline for sub-

sequent systems. The author later incorporated DNorm into a joint NER and BEL

model called TaggerOne [28], which considered the results of two scoring functions in

semi-Markov models that determined both the mention boundaries of the entity and

linked it to the appropriate concept.

The first round of deep learning techniques applied to BEL represented to-

kens with static vector representations of words (such as TF-IDF and word embed-
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dings [29]) and used architectures like CNN and BiLSTM to demonstrate improve-

ment over classical machine learning (ML) baselines like DNorm [30, 31, 32]. The

emergence of deep contextual embeddings, such as ELMo[33] and BERT[34], effected

a sea change in natural language processing research, and BEL research has been no

exception. While some researchers still investigate using static embeddings as their

primary form of representation, all current state of the art systems use some form of

deep contextualized embeddings, with BERT encoders pre-trained on clinical and/or

biomedical text being the clear favorites [1, 4, 6]. As with classical ML BEL, both

binary [35] and multi-class [36] classification models are popular, but the improved

quality of representations and the ability to train the encoder has opened up other

options as well, like similarity-based ranking [1] and clustering [6].

2.2 Datasets

The set of biomedical corpora annotated for BEL continues to increase every

year and this task continues to become a prominent research interest. Important

dimensions for diversity of these datasets are the domain of the text corpus, target

ontology for linking, and the types of entities being linked. Scientific literature, the

original BEL domain, remains popular, with corpora often annotating broad ranges of

biomedical concepts mapped to MeSH terms or UMLS concepts. Several BioCreative

challenges have published corpora in this domain focused on niche entities like genes

or chemicals, which sometimes map to smaller ontologies. Clinical domain datasets

are often targeted to entities which provide clinical utility such as disorders, problems,

tests, and treatments. These are generally mapped to either the UMLS or ICD codes.

Other sources for datasets include online social media such as Tweets and discussion

forum posts, as well as drug packaging labels, and Wikipedia. There is a particular

research interest in using BEL to link adverse drug events (ADE) to either MedDRA
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or the UMLS. We identified at least seven datasets that have been curated for the sole

purpose of linking drugs and ADEs. Table 1 shows for each dataset, the document

type, entity types, the target ontology, the number of documents in the dataset, the

number of mentions, and number of unique mentions (when provided).

Domain Doc Type Citation Date Entity(ies) Ontology Doc Count Mentions Unique Concepts

Scientific Literature

Biomedical Abstract

GENIA [37] 2003 Biomedical (broad) MeSH 2,000 93,293 –

NCBI Disease [24] 2014 Disorder MeSH 793 6,892 790

MedMentions [38] 2019 Biomedical (broad) UMLS 4,392 352,496 34,724

MM-ST21pv [38] 2019 Biomedical (broad) UMLS 4,392 203,282 25,419

PubMedDS [39] 2021 Biomedical (broad) MeSH 13,197,430 57,943,354 44,881

Biomedical Article

BC5CDR [40] 2016 Chemical, Disorder MeSH 1,500 10,227 –

CRAFT [41] 2016 Biomedical (broad) Many– 97 – –

BioNLP-2019 [42] 2019 Bacteria Biotope NCBI 392 7,232 1,072

PharmaCoNER [43] (ESP) 2019 Chemical, Drug UMLS 1,000 7,624 –

BC7NLMCHEM [44] 2021 Chemical MeSH 150 38,342 2,064

Multi Source
Quaero [45] (FRA) 2014 Biomedical (broad) UMLS 2,538 26,407 5,796

Mantra [46] 2014 Biomedical (broad) UMLS 1,450 5,530 3,780

Figure Caption BC6BioID [47] 2017 Gene,Chemical ChEBI,UniProt 17,883 133,003 7,652

Clinical
Clinical Note

ShARe/CLEF [23] 2013 Disorder UMLS 431 19,557 1,871

CUILESS2016 [48] 2018 Disorder UMLS 431 5,397 1,738

N2C2 2019 [49] (Luo, 2019) 2019 Problem, Test, Treatment UMLS 100 10,919 3,792

MADE [50] 2019 ADE, Drug, Indication MedDRA 1,089 43,000 –

Cantemist [51] (ESP) 2020 Oncology ICD-O† 1,301 16,030 850

BRONCO [52] (DE) 2021 Oncology ICD-10, OPS††, ATC††† 200 11,124 4,027

Online Literature

Drug Label TAC2017 [53] 2017 ADE MedDRA 200 26,488 –

Tweets

Twitter ADR [54] 2015 ADE, Indication UMLS 1,784 1,693 –

SMM4H-17 [55] 2017 ADE MedDRA 25,678 – –

TwADR-L [56] 2016 ADE SIDER? 1,436 – 273

Drug Forum

DailyStrength ADR [54] 2015 ADE, Indication UMLS 6,279 4,929 –

CADEC [57] 2015 ADE,Disorder,Drug AMT,MedDRA,SNOMED 1,253 9,111 3,591

PsyTAR [58] 2019 ADE,Disorder UMLS 891 7,414 1,671

COMETA [59] 2020 Biomedical (broad) UMLS – 20,000 3,645

Wikipedia WikiMed [39] 2021 Biomedical (broad) UMLS 393,618 1,067,083 57,739

Table 1. Biomedical Entity Linking Datasets

†International Classification of Diseases for Oncology ††Operationen und

Prozedurenschlüssel †††Anatomical Therapeutic Chemical Classification System;

2.3 Shared Tasks

There have been a number of shared tasks focused on BEL, starting with the

inaugural BioCreative challenge in 2004. Table 2 shows the different tasks that have
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been organized over the years. We classify these tasks into three categories based

on the type of text that was annotated as outlined in the previous section. Within

each category, the tasks are ordered based on their date. The table also includes the

document source, entities and the associated ontology.

The majority of shared tasks focus on scientific literature with the early BioCre-

ative tasks mapping a broad class of biomedical entities to concepts in the MeSH

ontology[60]. Since that time, new shared tasks have been developed every four years

or so, expanding from abstracts to full text, and incorporating new entity types. The

clinical shared tasks began in 2013 [23] focusing on disorders with the most recent

task [49] expanding to include both treatments and tests. The social media shared

tasks both happened in 2017 and focused on adverse drug reactions(ADR).

2.4 Technical Discussion

All BEL systems are a pipeline of various components and techniques which can

be mix and matched to fit a practitioner’s data and use case. In this section we will

discuss the major categories of techniques, how they work, and where they’ve been

applied.

2.4.1 Preprocessing

Many BEL publications make no mention of any pre-processing of the input cor-

pus prior to training. Whether this step is implied or simply omitted is not entirely

clear, but where mentioned, many systems follow standard pre-processing steps such

as converting all text to lowercase and removing punctuation. Authors frequently

correct spelling on the NCBI Disease dataset, for which D’Souza, et al. [25] curated

a corpus-specific dictionary to this end, but we have not seen a generalizable tool in

use for other datasets. Two additional common steps are expanding abbreviations
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to full form using the Abbreviation Plus Pseudo-Precision (Ab3P)[65] tool and sep-

arating composite mentions into distinct parts (i.e. “BRCA1/2” into “BRCA1” and

“BRCA2”) using the SimConcept[66] tool. Finally, it is common practice to append

the mentions from the training set to the synonym dictionary when evaluating per-

formance on the test set [25, 1]. However, some have questioned whether this results

in an unfair evaluation given the frequent overlap of mentions between training and

test datasets [67].

2.4.2 Mention Representation

Rule-based systems represent mentions using tokens[15, 25], in other words, ac-

tual human-readable words and phrases. These representations can do fairly well

given that many mentions are morphologically similar to known synonyms of their

corresponding concept, but this technique has a real upper bound when mentions

differ significantly from known synonyms. Representing mentions numerically opens

up a world of possibilities for choosing sophisticated learning algorithms. The sim-

plest such representation is Term Frequency-Inverse Document Frequency (TF-IDF)

vectors, used in the first machine learning-based BEL system, DNorm[2]. This tech-

nique scores tokens with a ratio its frequency in a mention by its overall frequency

in the set of concept synonyms. While this technique is intuitive, it fails to capture

semantic meaning and shares many shortcomings with token representation. Word

embeddings, which project tokens into a latent semantic vector space, do address the

problem capturing semantic meaning. The first iteration of such techniques, led by

Word2Vec[29], created static vector representations of tokens which effectively ag-

gregated the contextual usage of a given token within a corpus and embedded it in

the semantic space. For the first time, word embeddings allowed us to mathemat-

ically compare the similarity of two given tokens without requiring any additional
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knowledge. The improved quality of these representations correlated with a higher

quality output from the systems which incorporated them. The primary downside

to these static representations is that they cannot capture the nuance of words that

have different meanings in different contexts. Deep contextualized embeddings such

as ELMo[33] and BERT[34] capture not only aggregate semantic meaning, but also

take into account a token’s context within a specific sentence. These techniques pro-

vide unquestionably state of the art embedding quality embeddings, which are the

foundation of all the current top performing BEL systems. However, quality comes at

a computational cost and generating deep contextualized embeddings at any practical

scale requires access to a GPU. The final major category of representations is graph-

based techniques, such as concept vectors. Node2Vec [68], as employed by Ferré,

et al. [69] in their CONTES system, models concepts in an ontology as nodes in a

graph and relationships between concepts as edges, it then generates a vector space

which embeds concepts such that connected nodes in the graph correspond to close-

ness within the vector space. CONTES used these concept vectors only to represent

concepts, and learned a mapping between the semantic space representing mentions

and the ontology space generated by Node2Vec. They also note that this technique

may not scale well to large ontologies.

2.4.3 Linking Algorithms

The crux of any BEL system is the algorithm which links the representation of

a mention to a concept in the target ontology. The most basic implementation of

this mapping is a dictionary lookup, which checks if the mention is an exact match of

some known concept synonym. To increase recall, systems [25] may create morpho-

logical permutations of the mention and check if the permutations match any known

synonyms, but the expression of natural language is diverse and any system which
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generates enough blind permutations to achieve respectable recall will inevitably gen-

erate a huge number of false positives. But there is still a place for morphological

feature extraction in sophisticated BEL systems, some have used Lucene search to

select a small set of candidate concepts prior to using deep learning techniques to

make a final prediction [70].

Learning algorithms train systems find mappings between mentions and concepts

in a vector space, which allows them to achieve both higher recall and precision.

BEL systems incorporating classical machine learning started with linear classifiers

to learn positive and negative correlations between tokens in mentions and concept

synonyms [2]. As the quality of word representations improved and access to GPUs be-

came widespread in the 2010s, deep learning techniques such as CNN [56], RNN [56],

GRU [31], and BiLSTM [3] came into vogue. Other systems have trained lesser known

learning algorithms such as RankSVM [36] and TreeLSTM [71], but neither of these

have achieved widespread adoption.

As expected, using a BERT for BEL performs quite well. Typically, researchers

use BERT classifiers [4], but sequence-to-sequence translation models have been ex-

plored as well [72]. Other models have leveraged the high quality of BERT embeddings

to rely on simple similarity measures to perform their mapping [1], training only the

encoder and omitting a secondary neural architecture entirely. PageRank, an algo-

rithm originally designed for scoring the relevance of search engine results, has been

used to link entities when using graph-based representations [73].

One technique uncommon in BEL that deserves more attention is clustering,

which Angell, et al. [6] employed following candidate generation by creating an affinity

graph with mention-mention and mention-concept connections for all mentions and

candidates in a given document. They iteratively pruned connections in the graph

to create clusters until each cluster contained exactly one concept linked one or more
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mentions. This approach is especially helpful for disambiguating mentions of generic

phrases which corresponded to entities described more specifically elsewhere in the

document and yielded the current state of the art performance for few-shot entity

linking.

2.4.4 Training Techniques

In addition to the building blocks described in the previous sections, we noted

several training techniques commonly employed by successful BEL systems. The

most common of these is a two step process in which a system first uses a high-

recall technique to select a small pool of candidate concepts from the target ontology,

followed by a higher precision technique to select a single concept for prediction out of

the pool of candidates. The algorithms used for candidate generation vary widely, but

recurring solutions include search engine-style algorithms like bag-of-words retrieval

function BM25 [36] or lucene [70], similarity of mention representations [74, 1], and

edit distance [73]. A related strategy for narrowing the range of possible candidates

is to predict the semantic type of the mention and only consider candidates of the

predicted semantic type. The MedType [39] system was created to perform this type

of semantic type prediction in entity linking pipelines. Another way that semantic

types have been used to augment BEL pipelines is to train the prediction step to rank

all candidates with the correct semantic type over those with the wrong semantic

type [70], as opposed to loss functions which only consider the top-ranked candidate.

The state of the art SAPBERT model [4] attributed its success to a self-alignment

pre-training strategy in which only difficult positive and negative examples for a given

gold concept in each mini-batch are used for training. The subsequent multi-similarity

loss function simultaneously pushes negative examples away from the gold concept,

while pulling the positive examples closer. Finally, it is also common to perform entity
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linking jointly with other NLP tasks, in particular, named entity recognition [75, 76,

28].

2.4.5 Multilingual-based Approaches

Entity linking in non-English corpora presents additional challenges and several

non-English corpora[45, 51, 43] exist to train systems to tackle these challenges. The

most straightforward approach is to link directly from the source documents to an

ontology in the same language. This can work well if the ontology has good coverage,

but in the UMLS, there are many times more English synonyms available than those

in non-English target language, even in the best cases (Spanish and French with more

than six times and twenty-four times respectively[77]). Non-uniform distribution of

non-English synonyms does allow that there are cases in which this strategy could still

work for specific languages and problems, such as identifying disorders in Italian clin-

ical notes[78], but for other languages and use cases, the scarcity of target language

synonyms can be a insurmountable obstacle for this strategy. A naive approach for

overcoming these challenges is to simply translate the non-English mentions into En-

glish using standard translation software and perform BEL on the translations. This

works reasonably well, but is limited by the quality of the translation, which may

struggle to properly translate medical jargon[78]. Roller, et al., 2018[79] combined

these two approaches sequentially, first looking for a match for a given mention in the

target language UMLS, then English language UMLS, and finally searching English

UMLS for the translation of the mention. Deep learning-based approaches[32] favor-

ing encoder models learning a direct mapping from non-English mentions to English

synonyms[80] have performed well. The current best performing model for multi-

lingual BEL adapts the SAPBERT [4] system to map mentions in any language to

language-agnostic CUIs in the UMLS. This system augments the cross-lingual links
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between CUIs by leveraging the titles of Wikipedia articles available in multiple lan-

guages where the article title can be mapped to the UMLS for at least one language.

The authors found that performance for a given language generally correlated with

its similarity to English, likely because more general translation knowledge could be

incorporated into the model [77].
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CHAPTER 3

DATA

3.1 Unified Medical Language System

The Unified Medical Language System Metathesaurus (UMLS) [81] is a com-

pendium of more than 100 biomedical vocabularies that links synonymous terms

for a concept to its Concept Unique Identifier (CUI). The UMLS is a hierarchically

organized ontology in which broad concepts are linked as “parents” of narrower sub-

classifications called “children”. Concepts can have multiple children and can also

have multiple parents. See Figure 1 for an example of ontological parents and children

of a single concept.

Fig. 1. Ontological parents and children of “kidney transplant”

3.2 2019 n2c2 Corpus

The annotated data used in this study were originally curated for the n2c2/UMass

Track on Clinical Concept Normalization as part of the 2019 n2c2 challenge [49].
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The source documents are de-identified clinical discharge summaries contributed by

Partners Healthcare, Beth Israel Deaconess Medical Center, and the University of

Pittsburgh Medical Center. Organizers for the 2010 i2b2/VA challenge [82] anno-

tated text spans (mentions) in these documents corresponding to medical problems,

treatments, and tests for use in an named entity recognition (NER) task. Organizers

for the 2019 n2c2 challenge mapped a subset of those mentions from 100 discharge

summaries to UMLS CUIs corresponding to the SNOMED CT and RxNorm vo-

cabularies. SNOMED CT is a clinical terminology which covers a broad range of

biomedical concepts, while RxNorm is a vocabulary focusing specifically on drugs.

Both vocabularies are included in the UMLS. Mentions of medications were mapped

to RxNorm, while all other mentions were mapped to SNOMED CT where possible.

Mentions which could not be mapped to an appropriate concept, were annotated as

“CUI-less”. During pre-processing, we converted all mentions to lowercase. We also

removed ”CUI-less“ annotations, as well as any annotations which were not contigu-

ous within the text.

It is worth noting that while each mention is mapped to exactly one concept in

the annotations, annotators make editorial decisions in the process of creating a BEL

dataset which have important implications for evaluating model performance on that

dataset. In the paper introducing the n2c2 2019 challenge dataset [49], the organizers

specifically call out a litany of annotation challenges including SNOMED CT con-

cepts which map to multiple CUIs, equivalent concepts from different SNOMED CT

hierarchies, and differing annotator preferences. In cases of conceptual ambiguity,

annotators chose one possible mapping and applied it consistently. When applica-

ble, they preferred SNOMED CT hierarchies which offered broader coverage. Initial

inter-annotator agreement was 67.69% between pairs of professional medical coders,

which increased to 74.20% after adjudication by a third annotator.
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For the challenge, the organizers split the dataset into train and test partitions

with 50 documents each. We removed 10 documents from the test partition to create

a dev partition for validation during the training process. Table 3 provides a summary

of each partition in the dataset with respect to the total number of mentions, number

of unique mentions, and the percentage of annotated mention/concept pairs from the

train partition which are repeated exactly in the given partition.

Split Documents Mentions Unique Mentions Train Overlap

Train 50 6428 3226 1.00

Dev 10 1249 827 0.58

Test 40 5302 2957 0.53

Table 3. Summary of n2c2 dataset

3.3 Dictionary

The dictionary is a list of term/concept pairs curated from target ontology be-

fore entity linking. We limited our dictionary to English language terms from the

SNOMED CT and RxNorm vocabularies in the UMLS. Since the annotations osten-

sibly correspond to problems, treatments, and tests, we further filtered our dictionary

to only include concepts which shared a semantic type with at least one concept from

the train partition. Semantic types are broad categorical groupings of concepts such as

“Disease or Syndrome”. The purpose of this filter was to remove irrelevant classes of

concepts from consideration during training and prediction, such as those correspond-

ing to the semantic type “Reptile”. Finally, we performed some minor formatting of

terms to remove some parenthetical qualifiers and removed any duplicates. The re-

sulting dictionary contains 996,820 entries corresponding to 548,578 unique concepts.

Many concepts are mapped to multiple terms, known as synonyms, which are differ-
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ent ways of referring to the same clinical concept. For example, C0027051 is mapped

to synonyms “heart attack”, “mi - myocardial infarction”, and “infarction of heart”.
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CHAPTER 4

METHODOLOGY

In this section, we describe our methodology. First we describe our language model,

second our baseline architecture, and finally incorporating ontological information

into the model.

4.1 Language Representation Model

Bidirectional Encoder Representations from Transformers (BERT) is a contex-

tualized language representation model first proposed in 2018 [34]. The introductory

paper demonstrated state of the art performance on 11 NLP benchmark tasks and it

has become the de facto encoder used in the top performing BEL systems [6, 4] At a

high level, it performs two tasks: tokenization and encoding.

Tokenization is the process of breaking a string into words and sub-word parts

called tokens. A BERT model contains a dictionary of tokens which it can represent.

A simple word like “read” may be represented by a single token, while a compound

word such as “reading” may be split into the composite parts “read”, “##ing”,

where the “##” represents that the token is appended to another token. When

BERT encounters a word which is not included in its dictionary, it will split the

word into tokens which are included in the dictionary, at the individual letter level if

necessary. During tokenization, BERT adds two additional tokens to the beginning

and end of the resulting token array, known as [CLS] and [SEP] respectively. The

encoding for the [CLS] token is frequently used as an aggregate representation of the

entire input string as in Figure 2.
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Fig. 2. BERT encoding of a mention

Encoding is the process of converting each token output from tokenization into

a numeric vector representation or colloquially, an embedding. To do this, BERT re-

trieves baseline embeddings for each token from the dictionary and feeds them through

a 12 layer transformer architecture, which contextualizes each token with respect to

the tokens to its left and right and projects it into a vector space representing seman-

tic relationships between embeddings. While the original BERT model was trained

to represent general English text from a large corpus of books and Wikipedia articles,

subsequent work developed models which adapted BERT to better represent specific

domains. For example, the BioBERT model [83] was trained on PubMed articles

and abstracts to represent academic writing about biomedical topics and the Clini-

calBERT model [84] was trained on clinical notes from the MIMIC-III database [85]

to represent clinical language.
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4.2 Baseline Architecture

The baseline architecture was inspired by the BioSyn[1] system, which claimed

state of the art performance on four popular BEL datasets (NCBI Disease [24],

BC5CDR Disease[40], BC5CDR Chemical[40] and TAC2017ADR[53]) when it was

published in 2020. During inference, BioSyn creates sparse and dense vector repre-

sentations for each mention and dictionary term using TF-IDF and BioBERT embed-

dings respectively. It then scores the similarity between all mentions and dictionary

terms by performing a matrix multiplication between their sparse and dense vector

representations. The predicted concept for each mention corresponds to the dictio-

nary term which produced the highest score when multiplied with that mention. We

chose this system as our starting point because of its high performance and its con-

ceptual simplicity, which we believed would be ideal for evaluating the contributions

of incorporating ontological knowledge. To create our baseline system, we stripped

out the sparse representations from the BioSyn model, leaving only the dense BERT

embeddings to represent each mention or dictionary term. Our resulting system’s per-

formance is entirely reliant on the quality of the BERT embeddings to successfully

link each mention to the correct concept.

Each training epoch begins with the same process as inference, a matrix multipli-

cation between mention and dictionary embeddings, but instead of selecting only the

most similar term, we identify the top 20 most similar terms for each mention, known

as candidates. Next, we iterate mini-batches (size=16), creating new embeddings

and scoring the similarity between each mention and its candidates. Based on the

candidates’ similarity scores, we calculate negative log likelihood (NLL) loss based on

the softmax probability of each candidate and whether it corresponded to the correct

concept using Equation 4.1, where k is the number of candidates, yi is the target for
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the ith candidate, and pi is the softmax probability for the ith candidate. This loss

function allows the model to predict multiple correct synonyms with high confidence

without penalty.

LossNLL = −log
k∑

i=1

(yi ∗ pi) (4.1)

In the event that a candidate set does not contain any synonyms of the correct

concept, we do not consider it when calculating the mini-batch loss in the baseline

system. Candidate sets can also contain multiple correct synonyms. After each

mini-batch, we backpropogate the loss to update the BERT encoder. After each

epoch, we evaluate performance on the dev dataset. Figure 3 illustrates our baseline

architecture borrowed from the BioSyn [1] system.

Fig. 3. Baseline architecture (figure reproduced with permission from Sung, et al. [1])
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4.3 Incorporating Ontological Information

Our hypothesis is that incorporating ontological information into the training of

a BEL model will improve its predictive performance in terms of UMLS similarity by

pushing ontologically similar terms closer together in the encoder semantic space. To

this end, we propose two architectural changes to our baseline system: 1) Introducing

non-binary labels and 2) modifying the loss function to account for candidate sets

which do not contain a correct synonym.

Traditionally, labels in entity linking are binary, either a candidate term corre-

sponds to the correct concept (label=1), or it does not (label=0). Since the training

process is literally the encoder learning to quantify the semantic output space of the

training data, ostensibly using non-binary labels representing the relative similarity

of each candidate to the correct concept would help the encoder dial in to a more rep-

resentative vector space. In addition to the baseline binary labels, we experimented

with using labels generated by taking the UMLS similarity (Equation 4.4) between

each candidate and the target (linear similarity). To encourage the encoder to focus

primarily on considering candidates that were very ontologically similar to the target,

we also experimented with a logarithmic similarity (log similarity), which attentuates

sharply as the distance between two concepts goes beyond a single parent-child rela-

tionship (Equation 4.2).

label(cui1, cui2) =
1

edist(cui1,cui2)
(4.2)

NLL results in a loss of zero when all candidates for which pi > 0 have a label

of 1. Having non-binary labels allows the loss function to account for the quality of

mistakes made in the predictions, but it doesn’t account for the possibility that the

candidate set does not contain any correct synonyms. To account for this, we created
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a similarity negative log likelihood (SNLL) function which prorates the aggregated

similarity by the max candidate similarity score. By doing this, the model can still

receive a loss of zero if it predicts the most similar candidate available.

LossSNLL = −log

∑k
i=1(yi ∗ pi)
max(yi)

(4.3)

We also tried removing examples from the training set in which the mention

exactly matched at least one incorrect synonym, that is, a synonym corresponding

to a concept other than the one annotated. If the mention matched exactly one syn-

onym, which was incorrect, we call this inconsistent. If the mention exactly matched

both correct and incorrect synonyms, we call this ambiguous. Given the same input

string, the model will create identical embeddings, which should always be ranked

as the most similar candidate. The rationale for removing these during training was

that no amount of training could teach the model to predict the correct concept for

inconsistent examples and that ambiguous examples would similarly always result

in some loss, which would presumably be confusing for the model. However, early

experiments showed that removing these examples did not help performance, so we

left them in place for all reported results.

4.4 Evaluation

We used three metrics for evaluating the performance of our system: acc@1,

acc@5, and UMLS similarity. The first, acc@1, is equivalent to common accuracy,

the ratio of predictions in which the predicted concept exactly matched the annotated

concept out of all predictions made. The second, acc@5, is the percent of predictions

for which a correct concept was present in the top five most similar candidates. Fi-

nally, UMLS similarity is the inverse of the minimum distance between two concepts
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within the UMLS ontology plus one, where units of distance are the number of parent-

child links between two concepts. Any concept will have a UMLS similarity of one

with itself and the similarity between two concepts approaches zero as they grow on-

tologically distance. To find the distance, we first identify the least common ancestor

(LCA) of the two concepts and sum the distance between each concept and the LCA

(Equation 4.4).

similarity(cui1, cui2) =
1

1 + dist(cui1, cui2)
(4.4)

Acc@1 is the most popular performance metric for BEL systems, which is use-

ful for comparing systems with previous work. Acc@5 is less popular, but it was

included by the BioSyn [1] authors and we believe it is relevant for models using

similarity scores to make predictions because it gives a sense of how close the model

was to predicting the correct concepts. Metrics which measure ontological similarity

of predictions to their target are nearly absent in BEL literature. One notable excep-

tion is Wright, et al [86], who evaluated their system using six different metrics, one

of them being a normalized variation of the similarity function we employ. Unlike

accuracy, UMLS similarity attempts to measure the severity of the error. Predicting

a concept which is one level more or less specific than the correct concept is penalized

more leniently than a prediction which is ontologically distant. However, ontologi-

cal similarity measures can be problematic when comparing concepts which belong

to different semantic types because the shortest path between them must sometimes

traverse the root of the ontological hierarchy. For example, the concepts “total biliru-

bin” (C0201913) and “elevated total bilirubin” (C0741494) refer to a lab value and

a clinical finding that that lab value is elevated, but because their semantic types

are different, “Laboratory Procedure” and “Finding” respectively, the concepts have
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a UMLS distance of 7 when traversing parent-child links in the UMLS hierarchy.

In contrast, ontological distance can work very well when terms have a parent-child

relationship such as “measurement of substance” (C2316799) and “potassium mea-

surement” (C0202194), which have a UMLS distance of 1. Because concept sets for

translational applications are often defined hierarchically, we maintain that UMLS

similarity is still a reasonable evaluation metric for determining a system’s real world

value despite apparent discontinuities with the similarity of closely related concepts

which are ontologically distant.
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CHAPTER 5

RESULTS

5.1 Experiments

In our experiments, we investigated the effects of three parameters: 1) the base

BERT model (BioBERT, ClinicalBERT), 2) the label type used during training (bi-

nary, linear, log), and 3) the loss function (nll, snll) on model performance. We

used the BioBERT base model, binary labels, and nll loss (BioBERT/binary/nll) as

our baseline and included unsupervised performance of BioBERT and ClinicalBERT

models for reference. We trained all experiments for 50 epochs, saving the model

weights after each epoch. After training, we selected the model iteration with the

highest UMLS similarity on the dev dataset for evaluation on the test dataset.

Our best performing model was the BioBERT/log/nll combination, which out-

performed the baseline with respect to both UMLS similarity and acc@1. The UMLS

similarity performance was better by a statistically significant margin, while the acc@1

improvement was not significant. The BioBERT/binary/snll model achieved the high-

est acc@1 and acc@5, marginally outperforming the baseline, but not significantly.

Generally, models using linear similarity performed worse than binary or log similar-

ity. All trained models outperformed the unsupervised models, but it’s interesting to

note the initial performance gap between BioBERT and ClinicalBERT. Unsupervised

ClinicalBERT outperforms unsupervised BioBERT by 10 points in terms of acc@1,

presumably because the n2c2 data and ClinicalBERT share a source domain, clini-

cal text, whereas BioBERT was trained on biomedical publications. However, this

advantage is apparently erased during training. In every supervised experiment, the
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Dev Test

Model Labels Loss acc@1 acc@5 similarity acc@1 acc@5 similarity

BioBERT

baseline† nll 0.846 0.898 0.878 0.822 0.893 0.856

binary snll 0.860 0.913 0.889 0.826 0.898 0.858

linear
nll 0.833 0.891 0.871 0.810 0.885 0.851

snll 0.845 0.898 0.878 0.806 0.887 0.847

log
nll 0.834 0.894 0.875 0.823 0.891 0.862∗

snll 0.843 0.897 0.879 0.819 0.888 0.858

unsupervised - - - - 0.394 0.526 0.501

ClinicalBERT

binary
nll 0.845 0.893 0.875 0.819 0.892 0.854

snll 0.850 0.905 0.881 0.825 0.895 0.859

linear
nll 0.837 0.883 0.874 0.807 0.878 0.849

snll 0.829 0.882 0.870 0.804 0.873 0.848

log
nll 0.841 0.897 0.878 0.820 0.888 0.859

snll 0.841 0.897 0.881 0.815 0.888 0.857

unsupervised - - - - 0.494 0.603 0.590

Table 4. Experimental results

∗p < 0.05. †Baseline (binary) adapted from [1]

BioBERT and ClinicalBERT acc@1 and UMLS similarity scores are within 0.4 points

of each other when using the same similarity type and loss function. The full set of

results is displayed in Table 4.

Following precedent set by the organizers of the 2019 n2c2 challenge [49], we as-

sessed the significance of each model’s performance with respect to the baseline using

50,000 iterations of approximate randomization. This is a statistical technique appro-

priate for testing the significance of two systems’ performance on the same dataset,

which requires only a list of outputs from the respective systems. For each iteration,

the method randomly swaps paired outputs with a probability of 50% and assesses
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Fig. 4. Code for approximate randomization

the absolute difference in the performance of the actual and randomized results. P-

values are determined by the proportion of times the randomized results produce a

greater absolute difference in performance than actual results. The pseudocode for

the approximate randomization is shown in Figure 4 [87].

5.2 Error Analysis

We manually reviewed instances in which our best performing model predicted an

incorrect concept to determine areas for future improvement. Several classes emerged

as repeated sources of errors. Frequently, the model predicted a concept which seemed

correct, but was at a more broad or narrow level of specification than the correct

concept. Another common mistake was predicting a concept which was functionally

related to the correct concept, but of a different semantic type. Abbreviations which

were not included in the dictionary or training data caused problems. Sometimes
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Error Type Mention Predicted Concept Correct Concept

Too Broad injury to his eyes injury of eye, nos periocular injury

Too Specific enteric fistulae enteroenteric fistula fistula of intestine

Semantic Type gastrostomy tube gastrostomy tube, device placement of gastrostomy tube

Abbreviation staph staphene genus staphylococcus

Vague blunt blunt impact blunt injury

Inconsistent hydration hydration fluid management

Ambiguous allergies allergy allergy

Table 5. Errors classes and examples

mentions were too vague to predict the correct concept. Inconsistent and ambiguous

concepts, as discussed previously, also resulted in errors. Table 5 provides examples

of each class of errors.

Many incorrect predictions, particularly those stemming from semantic type con-

fusion, ambiguous, and vague mentions could potentially be addressed by using the

sentence context when embedding the mentions. This would give the encoder the

chance to incorporate information necessary to disambiguate candidates. Another

option specifically to help with semantic type errors would be to include a pipeline

compenent like MedType [39] to predict the semantic type of a mention and limit can-

didates to only concepts of the same semantic type. Other errors, where the predicted

concept and the correct concept appear to be extremely similar are conceivably a re-

sult of the editorial decisions made by the annotators, after all, the post-adjudication

inter-annotator agreement for the n2c2 dataset is only 74.20%, implying that even

the expert medical coders who created the training data didn’t agree on the correct

mapping for more than 25% of the annotations.
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5.3 Comparison to previous work

Table 6 compares the performance of our system with four previous systems

in terms of acc@1, which was the only metric available for comparison. The best

performing system on the n2c2 dataset that we were able to identify was the original

winning submission from the challenge provided by a team from Toyota Technical

Institute (TTI) [88]. Their system averaged SciBERT [89] embeddings to represent

each term and ranked similarity between mentions and dictionary terms using cosine

distance. ScispaCy [90] is a biomedical domain NLP tool based on the industrial

NLP package spaCy. The SapBERT [4] results were adjusted by the KRISBERT [5]

authors to reflect that SapBERT’s evaluation does not attempt to resolve ambiguity,

rather it counts any prediction as correct if the predicted synonym is shared by the

correct concept. KRISBERT is one of the few BEL systems to use mention context

to disambiguate synonyms in order to improve predictive performance. Because we

removed 20% of the test dataset to create a dev dataset, results cannot be directly

compared. However, we found that the TTI system significantly outperformed all

competitors, while our system significantly outperformed the non-TTI systems, using

a proportion test.
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acc@1

Scispacy† 0.546

SapBERT† 0.597

KRISBERT 0.802

Our system 0.826

TTI†† 0.853

Table 6. Comparison to previous work on the n2c2 dataset

†evaluation provided by KRISBERT authors ††winning submission to 2019 n2c2

challenge
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

We consider this work to be a successful proof of concept that ontological similarity

can be incorporated into training a BEL system to better align performance with

translational use cases. We showed that we could improve the system’s performance

with respect to UMLS similarity without sacrificing acc@1, the predominant met-

ric for evaluating BEL systems in academia. We discovered that incorporating log

similarity in our loss function resulted in a better performing model than either bi-

nary or linear similarity. Finally, we demonstrated that using ClinicalBERT as a

base model was less successful than using BioBERT despite its superior unsupervised

performance.

In the process of conducting our experiments and analyzing the results, we noted

several opportunities for future work. First, our error analysis made it abundantly

clear that many mentions require contextual understanding to be properly linked.

Creating embeddings which incorporate the sentence context of each mention could

create more robust representations and help to differentiate ambiguous and inconsis-

tent annotations. Second, using a more sophisticated similarity measure, such as the

one proposed by Jiang and Conrath [91], which incorporates the Information Content

(IC) of each concept, could help normalize inconsistencies in path length arising from

the relative depth of concepts in the ontological hierarchy. We could also combine

this with a relatedness measure as discussed by McInnes and Pedersen [92] to smooth

large similarity differences between concepts which are functionally related and mor-

phologically similar, but have different semantic types. Third, we would like to assess
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whether models trained to maximize UMLS similarity are able to generalize better

to other datasets curated by different annotators than models trained to maximize

accuracy. We are currently in the process of requesting access to a second clinical

BEL dataset, MADE [50], but were unable to finalize all the legal conditions for ac-

cess in time to include it in this work. Finally, the annotated concepts in our training

dataset covered only a small fraction of the possible output. In order to better equip

the model to handle unseen concepts in the test data, we would like to pre-train the

model on the dictionary itself, generating candidates which are ontological parents,

children, siblings, and synonyms of each concept and training the model to learn the

ontological structure of the UMLS itself prior to training on annotated data.
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CHAPTER 7

CONTRIBUTIONS

• Proposed the adoption of similarity-based evaluation of BEL results to better

align with translational use cases and mitigate annotator bias

• Demonstrated that incorporating log similarity in our loss function resulted in

a better performing model than either binary or linear similarity

• Demonstrated that using ClinicalBERT as a base model was less successful than

using BioBERT despite its superior unsupervised performance
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ABBREVIATIONS

ADE Adverse Drug Events

ADR Adverse Drug Reactions

BERT Bidirectional Encoder Representations from Transformers

BiLSTM Bidirectional Long Short-Term Memory (Network)

BEL Biomedical Entity Linking

CNN Convolutional Neural Network

CUI Concept Unique Identifier

ELMo Embeddings from Language Models

GRU Gated Recurrent Unit (Network)

ICD International Classification of Diseases (Vocabulary)

LCA Least Common Ancestor

MedDRA Medical Dictionary for Regulatory Activities (Vocabulary)

MeSH Medical Subject Headings (Vocabulary)

ML Machine Learning

NER Named Entity Recognition

NLL Negative Log Likelihood

NLP Natural Language Processing

RNN Recurrent neural network

SNLL Similarity Negative Log Likelihood

SVM Support Vector Machine

TF-IDF Term Frequency-Inverse Document Frequency

TTI Toyota Technical Institute

UMLS Unified Medical Language System
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