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LIST OF ABBREVIATIONS
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ABSTRACT

BIOINFORMATIC PIPELINE FOR DETERMINING TERMINAL REPEATS IN THE

HUMAN CYTOMEGALOVIRUS GENOME ASSEMBLED WITH PACBIO LONG

READ SEQUENCES

By Ahemd Ali Al Qaffas, M.B.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of

Bioinformatics at Virginia Commonwealth University.

Virginia Commonwealth University, 2022.

Major Advisor: Michael Mcvoy, Professor of Pediatrics, Department of Pediatrics

Human Cytomegalovirus (HCMV) is a member of the betaherpesvirinae subfamily of the

Herpesvirus family. HCMV infection is common among adults worldwide, with an estimated

seroprevalence of 66 to 95%, depending on the geographic region (Zuhair et al., 2019). Although

most of the virus genomic content has been studied extensively, the terminal repeating region

sequences remain understudied. Two main challenges hindered the study of the region: a)

limitations of sequencing technologies; and b) misassembly of the repeats due to its complex
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nature. Here I show a novel bioinformatics pipeline that takes advantage of PacBio's long reads

to resolve the challenges mentioned earlier. Implementation of the pipeline yielded results that

supported previous assumptions of the terminal region, showed evidence of new findings, and

provided in-depth analysis of the terminal repeat known as the a sequence.

Keywords: Human Cytomegalovirus, HCMV, PacBio, Third-Generation Sequencing,

Bioinformatics.
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INTRODUCTION

1.1) Background

Human Cytomegalovirus (HCMV) is a member of the betaherpesvirinae subfamily of the

Herpesvirus family. HCMV infection is common among adults worldwide, with an estimated

seroprevalence of 66 to 95%, depending on the geographic region (Zuhair et. al, 2019), and

seroprevalence ranging from 45 to 100% among women of reproductive age (Cannon et. al,

2010). Overall, HCMV infection is typically asymptomatic but considered life-threatening in

immunocompromised individuals such as AIDS patients, people who have gone through organ

transplantation, and the elderly (Griffiths, 2015). HCMV infection can be classified in three

types: primary, non-primary, and congenital. Most people are infected through exposure to body

fluids, sexual contact, and organ transplantation. The primary infection has mild flu-like

symptoms such as fever, cough, and sore throat. Non-primary infection is of two subtypes; the

first, infection with a different strain of an already infected host. The second, a lifetime recurring

infection from reactivated latent viruses. Recurring non-primary infection occurs due to the

failure of the immune system to completely clear the primary viral infection resulting in viral

latency (Wang and Zhao, 2020). Finally, congenital HCMV infection of a fetus follows either

primary infection, reinfection, or recurrent infection of the mother. About 10% of all newborns

with congenital HCMV infection show disabilities such as hearing loss and mental disabilities

(Leung et.al, 2003). Congintal HCMV infection is the most frequent among all congenital

infections with an estimated prevalence of 2.5% of all newborns am other congenital infections

(Stagno et. al, 1986). HCMV can spread via the bloodstream. It has a wide range of cell tropism
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that includes epithelial cells, endothelial cells, fibroblasts, and leukocytes (Gerna, 2019; Sinzger

et.al, 2008).

HCMV is associated with an increase in morbidity and mortality in people with

cardiovascular diseases (Simanek et al., 2011), different cancerous malignancies (Fulkerson et

al., 2021), or when reactivated during sepsis (Kalil and Florescu, 2011). The virus is prone to

establishing life-long latency (Reeves and Sinclair, 2008). The impact HCMV has on people's

health worldwide makes it one of the most highly studied viruses for the past sixty years. Still, a

wide knowledge gap exists concerning its behavior in human hosts and the structure of its

complex genome.

A total of 334 complete genomic DNA sequences have been submitted to GenBank. Most

of the HCMV genomic sequences have been reported accurately except for the terminal and

junctional repeats. An accurate reconstruction of these regions is hindered by the limitation of

sequencing technologies as well as the complexity within the viral terminal sequence. For these

reasons, the functional relevance of the repeats remains mostly unknown. Here I show a novel

bioinformatical pipeline that utilizes third-generation sequencing and a multi-mapping process to

generate an accurate structure prediction of the terminal repeat nucleotide sequences, their

frequency and prevalence in the virus genome assembled with long reads sequencing technology

(PacBio).

1.2) Viral structure and genome
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HCMV is a double-stranded DNA virus with high guanine-to-cytosine content. The

~230-kb genome with about 170 open reading frames is encapsidated within a capsid which is

surrounded by tegument proteins and covered by a lipid bilayer envelope (Figure 1). The

envelope contains different glycoproteins that are essential for viral attachment and entry into

cells (Crough and Khanna, 2009).

Figure 1) HCMV structure (from Gugliesi et. al., 2020). Mature virion with its genome enclosed

by three different layers: nucleocapsid, tegument proteins, and envelope.

Herpesviruses have six different genomic structures that are classified from A to F

(Figure 2). The HCMV genome belongs to class E. Its genome contains long (L) and short (S)
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segments, defined by terminal and internal inverted repeats (TRL/IRL, IRS/TRS) flanking

unique long (UL) and unique short (US) regions with the following pattern:

TRL-UL-IRL-IRS-US-TRS. Homologous recombination during genome replication gives rise to

four different genome isoforms in which UL and US regions are inverted. TRL is composed of

two repeating sequences, a and b, while IRL is composed of the inverted sequence of a and b

known as a’ and b’. Similarly, TRS is composed of c and a sequences while IRS is composed of

the inverted sequences known as c’ and a’. The region of the genome where all three repeats are

present is known as the junction region (Figure 3). Some genomes have multiple a sequences on

the left end and/or at the junction region at lower prevalence. The right end of the genome can

either have one a sequence copy or entirely lack an a sequence.
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Figure 2) Classes of Herpesvirus genome structures (not to scale) as defined by Roizman and

Pellett (2001). Unique and repeat regions are shown as horizontal lines and rectangles,

respectively. The orientations of repeats are shown by arrows. The nomenclature of unique and

repeat regions, including the terminal redundancy (a) and its internal, inverted copy (a’), is

indicated for the class E genome.
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Figure 3) HCMV genomic structure and isoforms. The four isoforms: (a) Prototype; P, (b)

inverted long; IL, (c) inverted long inverted short; ILIS, and (d) inverted short; IS. The genome

has three repeat sequences: the a sequence (yellow) present as a (direct) or a’ (inverted) copies;

the b sequence (red or gray), present as b (direct) or b’ (inverted) copies, and the c sequence

(purple or green) present as c (direct) or c’ (inverted) copies. Recombination between inverted

repeats generates the four isoforms with a predicted equimolar ratio where a complete inversion

of L (a-b-UL-b’-a’) or S segments (a’-c’-US-c-[a]) occurs (Shanley, 2000; Martí-Carreras and
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Maes, 2019). The area that contains all three repeats in between the L and S segments is known

as the junction region.

HCMV strains aren’t defined by a phenotypic profile, unique surface proteins, or the total

variation of the genomic composition. HCMV strains are defined by either analyzing the lengths

of their endonuclease fragments at polymorphic regions (Adler, 1988), by polymorphisms within

the a sequence (Bale et. al., 1993), or by analysis of short tandem repeating sequences across the

viral genome (Walker et. al., 2001).

Genomes of different HCMV strains and their genetic features have been compared

before (Sijmons et al., 2014) to aid in the understanding of the functions of genes located within

the UL and US regions. It has been found that only 45 out of about 170 genes are essential for

viral replication in cell culture, all of which are located within the UL region, leaving the whole

US genomic region dispensable (Dunn et.al, 2003). Most genes that are located within the UL

region are abbreviated with Unique Long followed by a numeric reference (e.g., UL1). Similarly,

genes that are located within the US region are abbreviated with Unique Short followed by a

numeric reference.

Certain genes and their subsequent protein products are essential in targeting special cell

types. For instance, a trimeric complex of glycoproteins H, L, and O are believed to be required

for entry into all cell types, while and additional pentameric complex of gH and gL with UL128,

UL120, and UL131A is required for entry into endothelial and epithelial cells. Other genes are

essential for DNA replication such as those encoding the Immediate Early protein 2 and UL84

(Vanarsdall and Johnson, 2012). The essentiality of a gene, however, can be dependent on the

target cell. For example, genes encoding UL128, UL130, and UL131A are critical for viral
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replication in endothelial and epithelial cells but are not essential in fibroblast replication.

Wild-type HCMV has a wider range of cell tropism while laboratory strains often have lost genes

needed to infect certain cell types (Wilkinson et. al., 2015).

One of the most understudied regions of the HCMV genome are the terminal repeat

regions. The terminal repeats TRL and TRS are composed of the short repetitive sequences

called a - b and c - a sequences respectively (Mcvoy and Nixon, 2005). The functional

significance of the terminal repeats of HCMV remains largely unknown. One reason that

accounts for such ambiguity is the nature of the genomic regions. The regions are composed of

multiple short repeats and unique segments in between these repeats of different lengths. In

addition, the regions as a whole are highly polymorphic between strains. The terminal repeat

sequences vary in length; the a sequence is about 700 bp long, the b sequence \varies from a

single base to 11 kb, while the c sequence consists of ~ 2000 bp. The repeats were originally

defined by restriction cleavage which showed three distinct DNA fragments of different sizes.

The naming was made based on the size of the fragment.

The a sequence is poorly annotated in many genomic sequences due to its complex nature

which consists of short repeating sequences ranging from 8 to 23 bp (Figure 4). The a sequence,

in particular, holds a greater significance for it is the only repeating sequence that is present at

both termini and the junctional region, has a multiple copy number with different frequencies,

and inner variation within each sample. The copy number of a sequences at left termini is most

often one but left ends with two or three a sequences occur with decreasing prevalence. On the

right end the copy number of a sequences is either one or zero. Both b and c sequences have a

similar repetitive short nucleic region but each has a single copy in their respective genomic
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locations. Recalling that a and b sequences are highly polymorphic between strains adds to the

hurdle in analyzing these regions.

Like bacteriophages, herpesviruses reproduce their genomes as concatemers that are

packaged into premade procapsids. Other genes are essential for DNA packaging such as UL51,

UL56, and UL89 which encode subunits of the HCMV terminase complex. Additional

components are required for DNA packaging, including the cis-acting DNA packaging signals

pac1 and pac2, located near the terminal regions of the genome (Theiß et.al, 2019). Although

based on herpesvirus-conserved sequence motifs a pac1 sequence is present near the left end of

the HCMV a sequence, the HCMV pac2, presumed to be located near the end of the a sequence,

lacks canonical features of herpesvirus pac2 elements and remains cryptic. Moreover, that the

right ends of some HCMV genomes lack an a sequence and instead end with a c sequence

suggests that formation of these ends may rely on a second pac2 element near the end of the c

sequence. However, the functional relevance of these putative cryptic pac2 sequences has not be

confirmed by mutagenesis. The current understanding of functional regions within the HCMV

genome across all its strains remains underdeveloped. Generating a good annotation of the

terminal repeats will help in a better understanding of the virus.

Although the a sequence appears important for genome isomerization, the functional

relevance of the process remains unknown (Sauer et. al, 2010). Most of the repeats and their

sequences remain functionally ambiguous. The entire b sequence is functionally ambiguous due

to strain-to-strain polymorphism and the number of internal repeats. This is also the case for

most of the a and c sequences.
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Figure 4) Dot-Plot of terminal repeats from HCMV strain TB40-EF (ASN: MW439038.1)

against themselves. The a sequence (top) is composed of small repeating sequences ranging from

8 bp to 23 bp. The b sequence (bottom left) contains short repeats ranging from 6 to about 30 bp.

The c sequence (bottom right) is less complex but contains multiple short sequences of ~ 10 bp

long.

The functional importance of the terminal repeats remains, for the most part, unknown

due to the complexity of the region and the limitations of sequencing technologies that hinders

the proper analysis of the repeats. A known function of the repeat region is differentiation

between types of HCMV strains. For example, Guinea pig cytomegalovirus (GPCMV) has a

more simplistic arrangement of a 1 kb terminal repeat sequence compared to HCMV. Their
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known function is to divide GPCMV genomes into two types: type 1 contains a single copy on

the left end of the genome while type 2 genomes have a single copy on each end (Gao and Isom,

1984). It was found (Nixon and McVoy, 2002) that circularization of type 2 GCMV genome

leads to deletion of one copy of the terminal repeat but those copies are duplicated and restored

during cleavage events. Such occurrence indicates that replication of type 1 genomes has a piece

of different machinery that leads to the formation of either type simultaneously. This is the case

across different cytomegaloviruses. It’s worth noting that a sequences counterparts within other

herpesvirus genomes contain a hypothetical signal that is essential in the inversion of the L and S

genome components during recombination events. This DNA signal is located within a region of

multiplicity of heterogeneous short-tandem-repeats. In HCMV, the terminal repeats are more

complex, have a greater length, and greater polymorphism between different strains.

1.3) Sequencing Technologies and Their Challenges

Analyzing the terminal repeats starts with choosing the appropriate sequencing

technology. Illumina (Cronn et.al, 2008) is the most frequently used next-generation sequencing

technology (NGS; Segerman, 2020). Like many other NGS technologies, Illumina calling of

bases is done with each nucleotide incorporation in the DNA by DNA-polymerases in a parallel

high throughput fashion (Hu et. al., 2021). Illumina reads are typically 50 bp to 300 bp long with

read quality of 1 error every 1000 bases sequenced (Ewing et.al, 1998). Although Illumina

sequencing is ideal for some organisms, it is not a good candidate for sequencing any viral

complete genomes of higher complexity. Illumina's short reads are too short to be used with

assembly nor dealing with complex long repeating sequences. In particular, the nature of TRL,

junctional region, and TRS short repeats and their variable length is both a computational and
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logical challenge. Assembling HCMV regions of repeats typically results in a consensus that

contains wide gaps in each region or a low mapping quality score [MQ = 0] (figure 5).

Figure 5) HCMV strain Ig-KG-H2p28S (H2p28; unpublished) Illumina read mapping. Illumina

reads were used to assemble strain H2p28 using its parent strain (MT894141.2). Reads with low

mapping quality were removed. Mapping results show a gap between TRL (top panel),

junctional region (middle panel), and TRS (bottom panel). Both parent and offspring ought to

have very low genomic variance. However, the nature of HCMV repeats and the limitation of

NGS have posed a hurdle in mapping and assembling the reads to the terminal repeating region

of the genome.

17



Except for a few labs that have specific techniques to deal with the repeating regions,

most of the submitted whole genomic sequences of HCMV have a poor annotation of these

regions. To deal with the issue of assembling the repeats using Illumina reads, we collaborated

with Dr. Andrew Davison’s lab in Glasgow, UK. The technique used in their lab is a stepwise

elongation of the junctional repeats in multiple sequencing runs. After generating a consensus of

the junctional repeats, the b’-a’ sequence and the c’-a’ sequence are reverse- complemented, and

‘pasted’ in their respective genomic regions. This approach has two main issues: it assumes that

the repeats are identical across the genome and it fails to predict the exact copy number of the a

sequence across the genome. Although Illumina sequencing technology generates great quality

reads with high coverage, the complexity of repeat sequences and the short length of the reads

prevents a correct assembly of the terminal repeat sequences.

Another approach to reconstructing the terminal repeats would be using third-generation

sequencing (3GS). 3GS can produce long reads with lengths in kilobases without the need for the

amplification step required by second-generation sequencing. Single-Molecule, Real-Time

(SMRT) sequencing technology, developed by Pacific Bioscience (PacBio;

http://www.pacificbiosciences.com/), is the most frequently used 3GS (Mehdi et.al, 2017).

SMRT sequencing starts by segmenting a whole genomic DNA . Each segment gets isolated in a

single cell where two DNA adapter sequences are ligated to it. Later, annealing of the DNA

molecule occurs then two primers are added to the adapters. The newly generated complex is

then bound to a DNA polymerase. At this stage, the circular template will get sequenced over

multiple times, generating subreads. A consensus of the sub-reads is then generated, representing

the initial DNA segment. SMRT sequencing can produce reads with an average of 10kb in

length. A hurdle of using PacBio reads would be the higher error rate of 13-15% generated as
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either deletions or insertions (Kulski, 2016). However, using the circular consensus sequencing

(CCS) technique reduces the error rate to less than 1%. CCS reads (also known as HiFi reads) are

generated by creating a consensus of subreads sequenced in a single circularized DNA molecule

by passing DNA polymerase over the segment multiple times. Each read is the consensus of both

forward and reverse strand (figure 6).

Having longer and more accurate reads that span the terminal region is useful in

reconstructing a more accurate representation of the HCMV genome. Using PacBio CCS reads

has one major issue: the average read length is dependent on the fragmented DNA molecules.

Meaning, that read length is affected by either random fragmentation or by reaching the end of a

genome. With HCMV, reads of opposite termini may map wrongfully to the other end of the

junction region due to mapping error during the assembly of reads. Such errors are generated

when the sequence within reads is similar enough to multiple parts of the used reference. For

example, reads that contain a and b sequences of the left termini can map to the junction region

due to the high similarity of their sequences and that of the reference sequence or due to clipping

preferences used by mapping tools. It is worth mentioning that most of the commonly used

assembly tools produce lower quality viral genome assemblies when compared with larger

organisms’ genome assemblies (Sutton et.al, 2019). With the use of CCS reads, assembling and

analyzing the repeats can be made with great precision. Table 1 summarizes common advantages

and disadvantages between NGS and 3GS. Choosing CCS reads is a more reasonable approach

to correctly identifying the terminal repeats.
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Figure 6) Illustration of SMRT sequencing. Each DNA segment is represented by a single

PacBio read (HiFi read). Adapters are added to the segment alongside primers. DNA annealing

results in the circulation of the newly formed complex.
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Table 1) Common advantages and disadvantages between NGS and 3GS.

Read depth Error Rate Cost Read length

NGS > 1000 Error < 1/1000 ++ 200bp

3GS < 500 11 - 15% ++++ 15kb on average

1.4) Misalignment of terminal repeats

Correct mapping of the reads is required to analyze the terminal repeats effectively. The

length of PacBio reads poses an issue during the alignment of reads to their reference. Most

mapping tools use a matching percentage score from a position-specific matrix or a graph

algorithm to align reads to the most likely genomic region. Since PacBio reads have an average

of about 15kb in length, mapping of reads results in misalignment if a repeat sequence is long

enough to be flagged as a valid mapping segment. For example, reads that include parts or all of

the a sequence would possibly be mapped in three different genomic regions; once in each

terminus and once in the junction. The latter is considered a misalignment because the correct

reads belong to the b’-a’ sequence which is the reverse complement of the a-b sequence. Another

reason for such misalignment is that some reads belong to another isoform. The genomic

orientation of that isoform terminates with the reverse complement of the a-b sequence due to
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the inversion of the UL genomic segment. Similarly, reads from the right end that contain the c-a

sequence will map to the junctional region due to the inversion of the S segment. Noting that

since right ends contain either on or zero a sequences, it is expected to see less of wrongly

mapped reads containing c-a sequences (figure 7). To perform any sort of quality analysis, this

issue has to be resolved.

Figure 7) Misassembly of reads containing terminal repeats to the junctional region. Part of the

b’ sequence (red line) and c’ sequence (green line) are shown. Reads that belong to the left

terminal region of an isoform which have a hard stop at the right end of the a sequence are

shown in the sky-blue box and reads that belong to the right end of the genome have a hard stop

at the left end of the a sequence are shown in dark green box. Both sets of reads are wrongly

mapped to the junctional region. Note that the frequency of wrongly mapped reads in the sky

blue box is higher than the ones in the dark green box which is a direct indication of the

prevalence of right end reads that have a c sequence without the a sequence.
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The functional and structural ambiguity of the terminal repeats, the limitation sequencing

technologies have, and the complexity of the regions raises a problem that can be solved

bioinformatically. Here, I will demonstrate a computational approach to annotating the terminal

repeats using PacBio CCS reads and a novel pipeline that will provide a better reconstruction of

the repeats and an in-depth analysis of the region. Upon successful construction of the termini,

the analysis of the regions will help in defining the ratio of genomic isoforms and validate the

current assumption of equimolar presence, estimate the total copy number and possible

frequencies of the a sequences within a sample, quantify the frequency of the a sequence at the

right end, investigate evidence for heterogeneity within a sequences at different locations in the

genome, locate cleavage sites at the right end, and infer pac2 sequence and location. Gathering

such information will help in developing a better understanding of HCMV and provide a possible

antiviral approach.
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Methods

2.1) Used tools

Reads were obtained from PacBio sequencing using Sequel 2 System 2 and HiFi

SMRTbell library with P2/C2 chemistry according to the manufacturer’s instruction at the

Genomic Core at Virginia Commonwealth University. Evaluation of DNA quality was done

using Agilent’s Femto Pulse System. The Qubit fluorometer was used to quantify DNA

concentration. Concentration and purification of the DNA samples were done by adding 0.45

volumes of AMPure PB magnetic beds. SMRTbell™ Express Template Prep Kit 2.0 was used

for sequencing libraries preparation. BluePippin Systems was used to combine and size-selected

electrophoretically with the 0.75% DF Marker S1 high-pass 6-10kb vs3 cassette. Qubit 1X

dsDNA HS assay kit was used to measure the concentration of the library pool, and the Femto

Pulse System was used to confirm the final size distribution. A total of 3 different raw reads of

HCMV from the obtained reads will be used as follows: TB40EF (S1; ASN#MW439038),

TB40EE (S2; ASN#MW439039), and Ig-KG-H2P14S (S3; ASN# MT894141.2). CCS of the

reads set was obtained using PacBio SMRT Link software package ccs package version 4.2.0

(commit v4.2.0-1-g450908e4). The bam files containing the raw reads of S1, S2, and S3 were

processed using the CCS tool with default arguments and the numbers of reads obtained are

shown in table 2. Mapping was performed with minimap2 Version 2.18-r1015 (Li, 2018).

Clipping minimization was performed by Samclip version 0.4. SAM/BAM file modifications

were made using SAMTools and BCFtools version 1.13 (Danecek et.al, 2021). Minimap2 with

arguments (-H -N -ax map-hifi), Samclip argument (--max 0), and samtools argument (view -Sbh

-F 4) was used to generate a filtered alignment in a BAM format. The generated BAM that
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contains only the reads mapped to the reference was converted to fastQ format using samtools

fastq package. Similarly, filtered reads were mapped to the complete genomic sequence of their

respective whole-genome references for the next step alignment. Visualization of the alignment

used beIGV2 version 10.3. BBMap tools, package 'filterbyname' version Sept,1, 2016. R studio

(RStudio Team, 2020) was used to generate different plots with the aid of the ggplot2 package

(Wickham 2016). Python (Van Rossum and Drake, 2009) was used to script a novel pipeline that

performs mapping, format conversion, and calling of variants via command line.

Table 2) Number of CCS reads obtained from TB40EF (S1), TB40EE (S2), and Ig-KG-H2P14S

(S3). CCS reads are statistically generated from multiple subreads generated from the same DNA

fragment used in the sequencing machine.

Sample Number of Raw Reads Number of CCS Reads

S1 530635 16920

S2 270024 6985

S3 1118396 29340

2.2) Pipeline Logic and Description

2.2.A) Resolving read misalignment

To tackle the issue of read misalignment, two computational approaches were used: the

first was to filter out reads known to map to the junctional region based on the reference

coordinates. To filter out reads that belong to the junction region, reads that include parts of b',
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a', and c' sequences were extracted from the CCS file. The second step of this approach was to

delete the entire junctional sequence from the reference FASTA file. Finally, filtered reads in the

newly obtained CCS files were mapped to the modified reference file. The first approach runs in

three mapping steps as follows:

● On the first mapping step, a small segment (SS) of length 80 bp was selected as a

reference to align against all reads. The small segments contain either a right-end

sequence of UL and left-end sequence of b’ (UL-b’) or right-end of c’ and left-end of US

sequence (c’-US). Reads that don’t align to either one of the small segments will be

filtered out leaving only mapped reads (Figure 8).

Figure 8) Mapped reads with either UL-b’ or c’-US. Blue; small segment used as a reference.

Green; CCS reads mapped to the sequence.

● In the next step, reads that are mapped to small segments are aligned against WGS as a

reference. Such mapping results in two files, one for UL-b’ and one for c’-US, each of

which contains the alignment of reads in the terminal and the junction region. In theory,

removing reads that are known to map to the junctional region would spare reads that
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map to the terminal sequences (Figure 9). The remaining reads are either terminated by

random cuts during library preparation or by reaching the end of a genome. This

approach filters reads according to the a’ sequence coordinates. In the case of the UL-b’

alignment file, reads that are aligned to the junctional region contain some that cross

b’-a’-c’ region and some that terminate before the a’ sequence. Separating the two reads

that are at least N base-pair (15> N >= 1) into the opposite end of a sequence ensures that

selected reads contain at least N bp of c’ sequence . Similarly, c’-US alignment file is

filtered based on the opposite end of the a’ sequence ensuring that at least N bp includes

b’ sequence. Validation of the output of this step can be made by visualizing the

alignment. The filtered reads (i.e., containing b’-a’-c’) are removed from the initial CCS

reads.
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Figure 9) Second step mapping of raw reads to the complete genomic sequence. Target reads to

be extracted are defined by any read that spans across the entire junctional region. Those are

determined by a’ sequence (blue line). Reads that are aligned to the UL-b’ region (red) and those

that are aligned to c-US (gray) are shown to have reads that contain parts of the b’-a’-c’

sequence. Reads that fall outside of the opposite end of the blue box and most of the aligned

reads in their respective file are the target reads for extraction.

● The third and final mapping step is to modify the reference sequence file by deleting the

junction region altogether and mapping it against the newly filtered reads file. (Figure

10). The modified genomic sequence is used for the final alignment against the reads,

resulting in mapping to the ends of reads that contain some variation in their predicted

alignment. For the left termini, the mapping will show four categorizations of reads:

1. Reads that contain a-b sequence and continue with UL of the P isoform and r

eads that contain a-b sequence and continue with UL of the IL isoform.These

28



reads can be used to quantify the frequency of the isoforms and to predict variant

differences within a sequences.

2. Reads that are short enough to be mapped to a-b sequence only and lack UL.

3. Reads that contain a-b sequence and have a hard stop at the end of the b sequence.

These reads would require further analysis and validation for these are the first

encounters of evidence of inverted b-a segment as a terminal end.

Figure 10) Visualization of reads mapped to the left terminal post alignments steps. Alignment

between modified genomic sequence and filtered reads is shown. Reads that contain a-b

sequence and carry on with the P isomer UL region are grouped in the upper panel. The bottom

panel contains reads from the IL isoform (colored).
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Similarly, and with respect to the right termini, the mapping shows three different sets (Figure

11):

A) The set of reads that contain US that matches the reference orientation and c-a sequence. This

set contains two subsets:

a. Reads that end with a single copy of a sequence.

b. Reads that contain extra segments (figure 10; panel 1:T).

B) The set of reads that doesn’t contain any single copy of the a sequence.

C) The set of reads that contain US from a different isoform and c-a sequence.

Figure 11) Visualization of reads mapped to the right terminal post alignments steps. The a

sequence (blue line) and alignment between modified genomic sequence and filtered reads are

shown. The top panel (1:T) shows reads that contain US-c-a and extra copies or partial copies of

the a sequence. Bottom panel (3:) shows reads that contain US-c-a segments from both P and IS

orientations of the S segment. Reads containing parts that didn’t map to the reference sequence

(colored) had either an extra copy of the a sequence (right bottom panel)
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The second approach used to resolve the misalignment of reads belonging to the repeats

that were mapped to the wrong genomic regions is to collectively map the reads to a distinct

region of the WGS in a multi-alignment fashion. That is, to use different regions of the WGS,

one at a time, to extract reads that are mapped to that region in a separate file. The filtered reads

files (FRF; figure 12) contain filtered reads that are aligned to different references; Initially, CCS

reads are aligned twice; once to the a string and once to the c string fasta files. The term string is

equivalent to ‘sequence’ computationally. The a, b, and c strings are obtained from whole

genome assembly using LoReTTA (Al Qaffas et.al, 2021; version 1.0) which provides a good

starting point for a better prediction of the string inquiry. The result of the mapping is two BAM

files containing tags of reads that are mapped to their respective strings. Tags are used to give

information about the alignment type, direction, and quality. Most notably the primary alignment

tag is defined in minimap by the alignment with the highest score. Disabling any other alignment

(with option -N) provides a more accurate mapping of the repeats. Reads tagged in the two bam

files are then extracted as a.fastq and c.fastq files respectively. The two files will branch out as

follows:

● The a.fastq file is mapped to the b string generating ab.fastq file which contains both the

a and b reads. The ab.fastq file is then mapped to the c string generating two files;

abc.fastq file which contains reads that are certain to belong to the junction region since

the file contains parts of all the repeating strings that occur only in that region;

ab_no_c.fastq, which contains reads that don't include any of the c string in them. The

latter file is used to separate reads of the right termini of each isoform from reads of the

junction region. That is, to map the reads in ab_no_c.fastq three times; once with part (~
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2kb) of UL left-end region which belongs to the P isoform string (UL_P); and once with

the reverse and complement of the same segment of UL to represent the same part in the

IL isoform (UL_IL). Merging the two files results in the fastq file UL_All which includes

all the reads from both UL_P and UL__IL.

● Likewise, the c.fsatq file is mapped twice; once against the a string excluding any reads

that include the a sequence (c_no_a.fastq); and once against the b string excluding reads

that include the b sequence. Reads within the latter fastq file, c_no_abfastq, are mapped

twice to the US either to P (US_P) or the IS (US_IS) isoform right end with each string

being 2 kb in length. Merging of the two files US_P and US_IS results in US_ALL fastq

file.
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Figure 12) FRF pipeline; Each sequence in fasta format (square) is mapped to sequencing reads

file fastq format (diamond).
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The second approach takes into account the misalignment of reads by defining the

terminal regions of P, IL, and US isoforms (Figure 13). It is reasonable to say that if many reads

start or end at a given X position and those reads terminate at the a sequence ends, they reach

one of the isoform genomic ends. This is supported by the IL string being the reverse

complement of the P isoform. That is, IL’s terminal region is a reverse complement of L and

starts from a, b, and UL150A. Similarly and with the same relation to the P isoform, IS is

formed. The strategy of this definition, overall, is to filter reads obtained from end-stage FRF

based on the definition of each terminal region of HCMV.

Figure 13) Definition of terminal regions based on the content of reads; each definition consists

of a hard stop (star) two repeating sequences followed by a gene that is located around the end of

the UL or US segments. (P) the expected sequence of the prototype’s terminal region which

includes ORF of RL1 gene. (IL) the expected sequence of the IL’s terminal region which

includes the RL150A ORF. (IS) the expected sequence of the IS’s terminal region which includes

US1 ORF. (Ps) the expected sequence of the P isoform right terminus including US34A. Note

that IS and P termini containing one a sequence are shown.
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2.2.B) Bioinformatics Scripts

Resolving the misalignment of reads is done by the Python script ‘Terminal_Analyzer.py’ which

generates the FRF reads described earlier. The Python script (Supplementary Data S1) takes 8

fasta files (a, b, c, UL_p/IS, US_P/Is, and reference) and the CCS reads with the minimal

required options being the a and the reference fasta files. For each fasta file input and with the

exclusion of the reference fasta, the following will be generated:

1- BAM file of alignments for each reference used according to the pipeline.

2- FASTQ file for each filtered from (1).

3- Calculations of:

I- Read filtering percentile which is obtained using the following formula:

%FRF = (filtered reads/ total CCS reads) * 100

II- Within-repeat variants in case of the a, b, and c sequences analysis.

Shortening the length of reads was used to resolve the issue of validating stops within repeated

regions. Extracting the first and last 20 bp from each read and its reverse-complement provides

position validation by counts of repeats. The arbitrary number of 20 bp is long enough to be used

by mapping tools when scoring. It provides, also, that the string belongs to the used repeat

sequence not another (P = (¼)^20 = 9.094947e-13). The approach is carried out using

“stat_cuts.py” Python script and visualization of the alignment is obtained from R script with

name " HCMV_Analysis_plots.r '' (supplementary Data S2 and S3 respectively) . The script

outputs four text files corresponding to each case mentioned earlier. The text file contains the
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position of the read mapping placement and counts the number of total reads at the same position

(figure 14).

Figure 14) Subread extraction. 20 bp of each read’s starting string (red) and ending string (blue)

is extracted and saved as a fasta file for mapping with the reference. The reverse and

complement of each read’s starting string (light blue) and ending string (light red) are similarly

extracted for mapping.

2.2.C) Notes

● The used alinger, minimap2, can suppress multi-alignment of reads using the

argument ‘--secondary=no’. However, there is no way provided to prevent
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splitting of reads to suppress secondary alignment. In order to count the number

of unique reads in any FRF, samtools flag -F0x900 was used.

● Generating the alignment plot based on the definition mentioned above (figure

12) was used individually using the samtools and coordinates of the a sequence

across the genome. The command used was:

samtools view -Sbh {reads} "{ref_name}:1-10" > out.bam

Results

Results from the first approach to deal with misalignment issues are not reported here due

to failure in the filtering reads from the alignment files using common bioinformatics tools.

Specifically, the approach relies on the Venn diagram exclusion principle which is not

implemented in tested tools but with faulty results. The results include multiple reads that

aligned in small part with the target region. Hence, the pipeline implementation included only the

second approach that dealt with misalignment issues and its results. The pipeline was run using

S1 and S3 successfully. Generating a total of 21 FRFs. S2, however, had a low number of reads

(n=6985) which hindered a good internal representation of the sample genomic composition and

structural orientation.
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3.1) FRFs Alignment and Analysis

Analysis of TB40EF

A total of 16920 reads were used to generate end-stage FRFs that were mapped against S1 WGS

as a reference. The following plots show the mapping of end-stage FRFs against the prototype as

a reference. For each plot, the top red box represents the WGS region and the ruler represents the

window size. S1.plot.1.a shows reads that are mapped to the reference from UL_P_Ter (top

panel), UL_IL_Jun (middle panel), and all reads that contain RL1 ORF (bottom panel). Two blue

lines, RL1 and the b sequence are shown for reference. Both UL_P and UL_IL_Jun had the same

reads mapping to both (n=60). A total of 3 reads had an extra segment before the reference’s first

nucleotide (position = 0); the top two reads contained an extra copy of the a sequence. The

bottom read contained a small segment (~174bp) of the c sequence. The total number of reads

mapped to the left of the L segment -excluding a and b- is 299 reads. S1.plot.1.b shows the

mapping overview of the right end of the L segment at the junction region from the files

UL_IL_Ter (top panel) and all CSS reads that contained UL150/UL150A (bottom panel). Two

Blue lines showing UL150 and the b sequence for reference. Both UL_P_jun and UL_IL_Ter

had the same reads mapping to both (n=62). The total number of reads mapped to the right of the

L segment -excluding a and b- is 334. A single read that extends with an extra copy of the a

sequence. One read contained part of the c sequence. For the S segment, S1.plot.2.a shows

duplicate ORF of genes US33, US34, and US34A. On the other hand, S1.plot2.b shows two

reads containing an extra copy of the a sequence.
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S1.plot.1.a) Mapping overview of left of L segment. FRFs UL_P_Ter (top panel), UL_IL_Jun

(middle panel), and all reads that contain RL1 ORF (bottom panel) alignment are shown. All the

three files alignment showing two reads containing parts of an additional a sequence (top

colored) and one read containing part of the c sequence (bottom colored).
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S1.plot.1.b) Mapping overview of right end of L segment. FRF UL_IL_Ter (top panel) shows an

additional a sequence to the right. Mapping of all CSS reads that contained UL150/UL150A

(bottom panel) shows a read containing an additional a sequence (colored top) and one read

containing an additional c sequence (colored bottom) .
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S1.plot.2.a) Mapping overview of S segment alignment with FRFst; the S1 genome includes a

duplication of US33A, US34, and US34A on both ends of the US region, which in turn hinders

an accurate filtration of reads based on their position.

S1.plot.2.b) Mapping overview of right of the S segment alignment with FRFs US_P_c_no_a

(top panel) and US_P_Ter (bottom panel). Alignment with US_P_Ter shows two reads with an

extra copy of the a sequence (colored).
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Analysis of Ig-KG-H2P14S

A total of 29340 reads were used to generate FRFs that were mapped against S3 WGS. The

following plots show both ends of the L and S segments aligned with end-stage FRFs. For each

plot, the top red box represents the WGS region and the ruler represents the window size.

Concerning the L segment, S3.plot.1.a shows an overview of the left L segment alignment with

FRFs UL_P and UL_IL_Jun. The plot shows UL_IL_Jun had 5 extra reads not present in

UL_P_Ter (n=74). The non-viral sequence was found in a single read within RL1 ORF.

S3.plot.1.b shows an overview of the right of L segment alignment with FRF UL_IL_Ter. The

alignment shows five reads that contained part of the c sequence indicating that they belong to

the junctional region of the prototype. In addition, it shows one read that contained an extra copy

plus 22bp of the a sequence. With respect to the S segment, S3.plot.2.a shows an overview of the

left of S segment alignment with FRFs US_P_Jun, US_IS and US_IS_ter_c_no_a. S3.plot.2.b

shows an overview of the right end of S segment alignment with FRFs US_P_Ter, US_IS_Jun

and US_P_Ter_c_no_a.
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S3.plot.1.a) Mapping overview of left of L segment. UL_P_Ter (top panel), UL_IL_Jun (middle

panel), and all reads that contain RL1 ORF (bottom panel). Two blue lines, RL1 and the b

sequence, are shown for reference. Top panel shows one read containing part of the c sequence

colored). Middle panel shows two reads with part of the c sequence (colored). Bottom panel

shows 3 reads with part of the c sequence (colored). All of the FRF show a read that contains

none-viral sequence within RL1 ORF.

43



S3.plot.1.b) Mapping overview of right end of L segment at the junctional region. FRF

UL_IL_Ter (top panel) and all CSS reads that contain UL150/UL150A ORF (bottom panel)

alignment is shown. Both panels show an extra copy of the a sequence (colored).
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S3.plot.2.a) Mapping overview of left end of S segment. Alignment of FRFs US_P_Jun (top

panel), US_IS_Ter_c_no_a (middle panel), and US_IS_Ter (bottom panel) is shown. Both top

and bottom panel show three reads containing extra copies of the a sequence. Middle panel does

not contain a hard stop c sequence end on the left side.
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S3.plot.2.b) Mapping overview of right end of S segment. Alignment of FRFs US_P_Ter (top

panel), US_IS_Jun (middle panel), US_P_Ter_c_no_a (bottom panel) is shown. A total of four

reads had an extra copy of the a sequence (colored).
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3.2) FRFs Reads’ count

Table 3) Initial FRFs counts of S3; Reads that contain the a (blue), b (red), and c (green) sequences are

reported below. For the c file, additional filtration was made to remove reads that contained a sequence

(c_no_a) or b sequence (c_no_b).

FRF Number of Reads Percentage (total reads)

a 785 2.6755 %

b 498 1.6973 %

c 959 3.2686 %

c_no_a 514 1.7519 %

c_no_b 911 3.105 %

Table 4) Conjoint FRFs of S3; the a file was mapped against the b sequence. The ab file was

mapped to exclude reads continuing the c sequence (ab_no_c_) or include all three (abc). The

c_no_b file was aligned to the a sequence to generate the ca_no_b file.

FRF Number of Reads Percentage (total reads)

a+b 337 1.1486 %

ab_no_c 289 0.985 %

abc 48 0.1636 %

ca_no_b 397 1.3531 %
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Table 5) Regional FRFs of S3; alignments between FRFs and L/S/IL/IS unique regions were

performed and end-stage FRFs were generated as follows: (UL_P_Ter) from ab_no_c and a

sequence from the left end of P L segment, (UL_IL_Ter) from ab_no_c and the left end of IL L

segment, (UL_P_Jun) ab_no_c and a sequence from the right end of P L segment, (UL_IL_Jun)

from ab_no_c and the right end of IL L segment, (US_P_Jun) c_no_b and left end of P S

segment post the junction region, (US_IS_Jun) c_no_b and left end of IS S segment post the

junction region, (US_P_Ter) ca_no_b and the right end of P S segment, (US_P_Ter_no_a)

c_no_a and right end of P S segment, (US_IS_Ter) ca_no_b and the right end of IS S segment,

and (US_IS_Ter_no_a) c_no_a and right end of IS S segment.

FRF Number of Reads
Out of parent FRF

Percentage (total reads)

UL_P_Ter 74 0.2522 %

UL_IL_Ter 78 0.2658%

UL_P_Jun 78 0.2658%

UL_IL_Jun 79 0.2693%

US_P_Jun 201 0.6851%

US_IS_Jun 67 0.2284%

US_P_Ter 36 0.1227%

US_P_Ter_no_a 31 0.1057%

US_IS_Ter 76 0.259%

US_IS_Ter_no_a 72 0.2454%
* FRF frequency spectrum; counts of reads mapped to each compounding reference and their

calculated percentage using the formula (% = (100*FRF)/total number of CCS reads).

** The reads reported include parts or the whole sequence. Including any read is subject to

Minimap2 scoring.
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3.3) Inner variants of repeats

Calling of variants within the a, b, and c repeats were performed using samtools, NGMLR

(Sedlazeck, 2018), and bcftools. No variants were found within the c sequence in both S1 or S3.

The following table shows the found variants within both a and b sequences after mapping reads

that contain either direction of the repeats.

Table 6) Inner variants within S1(A) and S3 (B).

(A)Inner variants of repeats within S1:

Repeat INDEL SNP Position Note

a A:AG - 479 PloyG Tract

a - A:G 639

a - A:C 646

b - C:G 80

b - C:G 189

b - C:G 365

b C:CG - 427

b - G:T 477

*position is reported relative to the sequence itself not the whole genomic coordinates.

** Length of the a sequence = 697 bp and b sequence = 715 bp
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(B) Inner variants of repeats within S3.

Repeat INDEL SNP Position Note

a A:AG,AGG - 299 PloyG Tract

a A:AGG - 439 PloyG Tract

b - G:T 362 15/147 supporting reads

*position is reported relative to the sequence itself not the whole genomic coordinates.

** Length of the a sequence = 704bp and b sequence = 600bp

3.4) Terminal Ends By Definition Plots

The following alignment plot shows the reads based on the definition provided in section 2

(Figure 13) for S3. The S1 terminal ends are not included in this report for the inability to infer

IS or the prototype S ends.
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Terminals of S3 isoforms

S3.dPlot.1) P terminal reads. One read (colored top) had parts of the c sequence. Two sites of

poly(G) tract insertions of 1,2,3 nucleotides within the a sequence.
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S3.dPlot.2) IL terminal reads. One read (colored top) had parts of the a sequence and 5 reads

contained parts of the c sequence.

S3.dPlot.3) IS isomer terminal reads. Reads by definition which includes a and c sequence (top

panel) shows one read containing an extra copy of the a sequence (top colored), a total of 3 reads

containing parts of the b sequence, and a single read that had a deletion within the c sequence.
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Reads by definition which exclude the a sequence (bottom panel) shows random termination of

reads.

S3.dPlot.4) P isomer S segment terminal reads. Reads by definition which includes a and c

sequence (top panel) shows one read containing an extra copy of the a sequence and only one of

the two Poly(G) variants found on the a sequence elsewhere in the genome. Reads by definition

which exclude the a sequence (bottom panel) shows only four reads that include US34A ORF

and part of the c sequence.
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3.5) Mapping of Reads Ends

The output of stat_cuts.py which implement the logic described in Figure 14 are reported below.

Each peak represents the number of reads-end mapped at a given position with respect to the

strain genome.
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S1.plot.sc) Histogram of read ends mapped against S1 genomic sequence: mapping of the left

and right termini of the original (A/B) and reverse complement (C/D) orientation respectively of

CCS reads against S1 WGS. Each point represents (the number of reads mapped, genomic

coordinates). The genomic coordinates reflect the starting position of the alignment.
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S3.plot.sc) Histogram of reads ends mapped against S3 genomic sequence: mapping of the left

and right terminal of the original (A/B) and reverse complement (C/D) orientation respectively

of CCS reads against S1 WGS. Each point represents (the number of reads mapped, genomic

coordinates). The genomic coordinates reflect the starting position of the alignment.
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Discussion

Defining Human Cytomegalovirus terminal repeats has been challenging using

second-generation sequencing due to the technology’s limitation of spanning over the wide and

complex regions of short tandem repeats of the virus that can reach up to 10.7 kb in length. In

addition to sequencing limitations, the presence of four genomic isoforms in any viral sample

hinders an accurate computational reconstruction of each isoform. These challenges, in turn,

overshadow the discovery of structural variants of the repeating region. Such limitations keep the

repeats functionally ambiguous in HCMV. Here, I showed a pipeline that aimed to provide a

bioinformatical pipeline to reconstruct, analize, and infer a better definition of HCMV terminal

repeats. Findings of this research confirmed previous speculation of the nature of HCMV

genomic ends in the sense of accurate cleavage mechanism at terminal ending with an a

sequence. In addition, this research findings supported previous reports of predominantly

presence of one a sequence at left termini in both P and IL isoforms and in the junction. The

findings also supported an equimolar prevalence of the L segment in both viral strains.

Furthermore, data analysis indicates the presence of an additional copy of the a sequence at the

right termini in Ig-KG-H2P14S strain, selective variation of within a sequence on the right

termini when compared to the sequence elsewhere.

The reconstruction pipeline generates multiple sets of subread-containing files called

filtered read files (FRFs, figure 12). Each FRF has been aligned to a different segment of its

respective genome to reduce the number of non-relevant reads for downstream analysis and to

narrow the scope down enough to isolate reads belonging to one isoform over another. The
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pipeline generates 19 files with increased compoundness (tables 3, 4, and 5). FRFs a, b, and c

were used as a baseline for further filtering steps and to call inner variants reported in table 6.

Both the a and b sequences showed a degree of inner variation within them whereas the c

sequence seems to be more resilient to inner variations in both HCMV strains S1 and S3.

Concerning the a sequence, abrupt insertion of 1, 2, and 3 guanine bases within poly(g) tracts

(and similar indels of cytosine within poly(c) within the a’ sequence ) was present in both S1 and

S3. In addition, there is strong evidence that there is a different poly(G)/Poly(C) selective

internal variation within a sequences of S3. Reads of the left terminal a sequence in the P

isoform contained two poly(G) variants at different positions while reads of the left terminal a

sequence in the IL isoform contained only one poly(G) variation (S3.dPlots 1 and 2). Similarly,

evidence of one poly(G) variation within reads belonging to the P isoform right termini were

found in contrast to two poly(G) variation in the counterpart region in IS isoform (S3.dPlot 3 and

4). Such inner variation of the a sequence suggests that during recombination events each unique

a sequence remains adjacent to a specific unique end on either the L and S arms.

Compounded FRFs (table 4) were used to count the number of reads that contain more

than one repeating sequence. Most notably and for S3, the number of reads that had both a and b

sequences (n=337) within them was about seven times the number of reads that contained all

three repeating sequences (n=48). Such observation should not be misunderstood as an issue of

sequencing. Rather, it is a direct issue with alignment prediction by scoring. In other words, The

higher number of reads in the ab file contains reads belonging to the terminal end of the IL

genome (reads with no c sequence) that were included due to the high scoring during the

mapping process. Evidently, excluding reads that contained the c sequence in (ab_no_c, n= 289)
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are missing 48 reads mapped to the abc file. In addition, the ca_no_b file contains reads that map

to the terminal or junction region of the viral genome of IS or P isoform respectively.

End-stage FRFS, on the other hand, are files that include reads aligned to at least one

repeating sequence and a unique sequence of L or S segments (table 5). Visualization of each of

these FRFs against their respective whole genomic sequences reported in S1.plots 1 and 2 [b]

and S3.plots 1 and 2. For S1, the same set of reads was mapped to both counterparts of the P and

IL terminal and junctional regions (S1.plot.1.a and S1.plot.1.b). Such observation suggests an

equimolar presence of the P and IL isoforms of virus S1. Analysis of S termini was not possible

for S1 due to the duplication of the three genes that elongated the c repeats. As a result, the

number of reads long enough to include multiple repeats was lacking. For S3, a similar number

of reads mapped to both counterparts of the P and IL terminal and junctional regions (S3.plot.1.a

and S3.plot.1.b), indicating an equimolar presence of the P and IL isoforms. On the other hand,

mapping of reads belonging to the S segment of both isoforms showed a preference for the IS

isoform (S3.plot.2.a and S3.plot.2.b) as the number of reads belonging to IS termini was about

two-fold the number of reads from P isoform right termini (table 5). S3.plot.1.a shows the

alignment of reads that are mapped to the left end of the P isoform. The alignment shows the

expected sets of reads to map the genomic regions: UL_P_ter, UL_IL_jun, and shows the sets of

all reads that contain RL1 for reference. This is a strong suggestion that both isoforms, P and IL,

have close abundance within the S1 sample. Both files had two reads with an extra copy of the a

sequence and a single read that contained a small part of the c sequence. This wasn’t the case in

S3 where the two sets contained different numbers of reads. Such differences, although minimal

(n=5 reads), suggests a possibility of strain-dependent isoform disproportional prevalence. This

59



is supported by a similar quantitative difference of reads found in the US ends-containing FRFs

of S3 (table 5, S3.plot.2).

Evidence of a different ratio of L to IL and S to IS ends was found in both samples. This

is a direct indication of the non-equimolar presence of the isoforms. Concerning S1, the reads

count supports that the S segment of P is more prevalent than it is for the IS isoform

(supplementary table 1). Reads counts of S3, on the other hand, support that the IS is more

prevalent than the P isoform (table 5). This is also supported by the alignment of the right end of

both IS (S3.dPlot3) and P (S3.dPlot4). Such observations suggest a strain-specific preference for

one isoform over another. These observations can be verified using Southern hybridization to

detect unique restriction fragments of each isoform.

Evidence for genomic termini preference to include an a sequence seems preferable to

terminating with a c sequence in S3. This is supported by the reads count (table 5) and alignment

view of reads by definition (S3.dPlots 3 and 4). Alignment of the S segments ending with an a

sequence shows a unified stop at the end of the repeat sequence. However, alignment of the S

segments lacking an a sequence, from c_no_a files reveals an unexpected termination within the

c sequence. This is the first evidence that the cryptic pac2 in the c sequence is poorly recognized,

resulting in inefficient recognition of the cleavage site. In contrast, the cleavage mechanism

seems to be highly accurate when a terminus ends with the a sequence (supplementary data,

figure S1). This is supported by all plots showing the left end of the L segment and the right end

of S (except for the alignment of c_no_a files).
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Furthermore, alignment plots support the current understanding of having one a

sequence copy predominantly prevalent at the left termini of both the P and IL isoforms. Few

reads supported additional parts of the a sequence. However, analysis of the right termini on both

IS and S showed evidence of having an extra copy of the a sequence in both strains. This

observation has not been reported before in the literature. It can be reasoned that due to the sheer

low number of reads that supports an additional a sequence on both ends (n<5), those reads

belong to the junction region and are mismapped to the termini.

To validate the alignment of the repeating sequences on the appropriate location of the

genome, mapping the first and last 20bp of each read was performed. The alignment was then

quantified by position to reflect the frequency of read termination. The working presumption is

that a random termination should occur across the genome, excluding genomic ends of isoforms.

Indeed, looking at the S1.plot.sc and S3.plot.sc, we see a spike (n>5 reads) for each genomic

region corresponding to an isoform genomic termini.

Here I presented a novel bioinformatics pipeline to reconstruct and analyze the terminal

repeats of HCMV with the highest accuracy possible. The analysis supported previous

understanding of the structured nature of the virus and revealed evidence of novel findings of the

repeating region. This research project took two years to complete, indicating the HCMV

genome complexity. I believe that results from this research are of value to the community, for

the primary goal of this project was to add to and improve our current understanding of the

HCMV genome, hoping to aid the search of antiviral agents.
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Supplementary Data

A web link for each novel script is provided below:

S1:

https://github.com/erekevan/HCMV_Analysis_programs_python/blob/master/Terminal_Analyze

r.py

S2:

https://github.com/erekevan/HCMV_Analysis_programs_python/blob/master/stats_cuts.py

S3:

https://github.com/erekevan/HCMV_Analysis_programs_python/blob/master/HCMV_Analysis_

plots.r

Table S1) End-stage FRFs of S1 read count.

FRF Number of Reads
Out of parent FRF

Percentage (total reads)

UL_P_Ter 60 0.3546 %

UL_IL_Ter 62 0.3664%

UL_P_Jun 62 0.3664%

UL_IL_Jun 60 0.3546 %

US_P_Jun 342 2.0213 %

US_IS_Jun 425 2.5118%

US_P_Ter 233 1.3771 %

US_P_Ter_no_a 192 1.1348%

US_IS_Ter 180 1.0638%

US_IS_Ter_no_a 72 0.4255%
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Samclib was obtained from: https://github.com/tseemann/samclip.git

Pacbio SMRT link was obtained from: https://www.pacb.com/support/software-downloads/

Figure S1) Left end of the P L segment. Magnified alignment showing a uniform stop at the end

of the termini.
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