
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2022

Approximating Bayesian Optimal Sequential Designs using Approximating Bayesian Optimal Sequential Designs using

Gaussian Process Models Indexed on Belief States Gaussian Process Models Indexed on Belief States

Joseph Burris
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Design of Experiments and Sample Surveys Commons

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/7111

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars
Compass. For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F7111&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/821?utm_source=scholarscompass.vcu.edu%2Fetd%2F7111&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/7111?utm_source=scholarscompass.vcu.edu%2Fetd%2F7111&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

©Joseph Burris, August 2022

All Rights Reserved.

DISSERTATION APPROXIMATING BAYESIAN OPTIMAL SEQUENTIAL

DESIGNS USING GAUSSIAN PROCESS MODELS INDEXED ON BELIEF

STATES

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

by

JOSEPH BURRIS

B.S., The University of Maryland, U.S.A. - September 2011 to December 2014

M.S., Virginia Commonwealth University - August 2015 to May 2017

Director: Dissertation,

Dr. David Edwards, Department of Statistical Sciences and Operations Research

Virginia Commonwealth University

Richmond, Virginia

August, 2022

i

Acknowledgements

I would first like to thank my brother Daniel for being my best friend and

constant companion. Second, I would like to thank the rest of my family: Mom,

Dad, and Leah for your constant support. Finally, I would like to thank Dr. Edwards

for guiding me though my Graduate and Doctoral education. Without your DOE II

course, I wouldn’t have pursued an interest in this field. Without your help with the

NASA assistantship this Ph.D. probably wouldn’t have happened at all.

ii

TABLE OF CONTENTS

Chapter Page

Acknowledgements . ii

Table of Contents . iii

List of Tables . iv

List of Figures . v

Abstract . ix

1 Introduction . 1

2 Background . 7

3 Approximate Value Iteration using Distance-Based Modeling with

Conjugate Priors . 18

3.1 Positive Definite Kernels for Probability Distributions 18

3.1.1 Covariant Metrics . 19

3.2 Kernel Regression . 23

3.2.1 Gaussian Process Models . 24

3.3 Potential Issues . 26

3.4 Applications using Conjugate Models 27

3.5 Linear-Gaussian Problem . 27

3.5.1 Ordinary Kriging Model . 31

3.5.2 Universal Kriging . 33

3.6 Beta-Binomial Model . 35

3.7 Results . 37

3.8 Conclusions . 38

iii

4 Bayesian Optimal Sequential Designs via Approximate Dynamic Pro-

gramming using Sequential Importance Sampling 39

4.1 Sequential Monte Carlo . 40

4.2 Application to BOSD . 41

4.3 Application . 46

4.4 Particle Approximations and Distance 48

4.5 Geometry of the Belief State Space 50

4.6 Results . 54

4.7 Conclusions . 59

5 Batch Bayesian Optimal Sequential Designs via Approximate Dy-

namic Programming . 61

5.1 Application . 61

5.2 Results and Conclusions . 62

6 Conclusions and Future Work . 65

Appendix A Optimal Sequential Designs for Logistic Regression Model . . . 68

Appendix B Optimal Batch Sequential Designs for Logistic Regression Model 76

References . 80

Vita . 88

iv

LIST OF TABLES

Table Page

1 Common distance measures belonging to D2
α|β 22

2 Example Particle Filter Approximations 41

3 Expected Utilities for Approximate BOSDs for x0 ∼ N(0, 50) 58

4 Initial Sample and Added Sample Sizes by Number of Trials 58

5 Initial Sample and Added Sample Sizes by Number of Trials 62

6 Expected Utilities for Approximately Optimal Batch Sequential De-

signs for x0 ∼ N(0, 50) . 63

v

LIST OF FIGURES

Figure Page

1 Exact BOSD Calculated via Backward Induction. 4

2 Expected utility for all possible designs. The dashed line denotes

optimal designs. 29

3 Contour plots of Ũ1 for L = 1, 2, 3 from left to right fit using the

method in Huan and Marzouk’s original paper. 30

4 Contour plots of Ũ1 for L = 1, 2, 3 from left to right fit using an

Ordinary Kriging model using the original exploration policy. 32

5 Contour plots of Ũ1 for L = 1, 2, 3 from left to right fit using an

Ordinary Kriging model using the retaining exploration policy. 33

6 Contour plots of Ũ1 for L = 1, 2, 3 from left to right fit using an

Universal Kriging model using the original exploration policy. 34

7 Contour plots of Ũ1 for L = 1, 2, 3 from left to right fit using an

Universal Kriging model using the retaining exploration policy. 35

8 Approximate BOSD for Example 2. Iteration 10 of the ADP algorithm. . 37

9 Example Distance Errors with Particle Approximations 49

10 Particle Approximation to Posteriors for (ξ, y) = (1, F)and (ξ, y) = (2, T) 50

11 Number of MCMC Samples Needed for Backward Induction 51

12 Example Variogram . 52

13 Radii around a Point in a 2D Spatial Point Process 53

vi

14 Ripley’s K-Like Plot for the D-Optimality Utility at T = 5 54

15 Myopic Design for the Logistic Regression Model using the KL-Divergence

Utility T = 5 . 56

16 Expected Utility for Sequential Design for the Logistic Regression

Model using the KL-Divergence Utility T = 5 57

17 Comparison of Variograms for T = 4 Surrogate Model from the

T = 5 Logistic Regression Design for KL-Divergence (Top Left), D-

Optimality (Top Right), Target Precision (Bottom Left), and Robust

Target Precision (Bottom Right) . 59

18 Batch Sequential Design for the Logistic Regression Model using the

KL-Divergence Utility T = 6 . 64

19 Myopic and Full Sequential Designs for the Logistic Regression Model

in Section 4 for the D-Optimality Utility T = 5 68

20 Myopic and Full Sequential Designs for the Logistic Regression Model

in Section 4 for the KL-Divergence Utility T = 5 69

21 Myopic and Full Sequential Designs for the Logistic Regression Model

in Section 4 for the Target Precision Utility T = 5 70

22 Myopic and Full Sequential Designs for the Logistic Regression Model

in Section 4 for the Robust Target Precision Utility T = 5 71

23 Myopic and Full Sequential Designs for the Logistic Regression Model

in Section 4 for the D-Optimality Utility T = 6 72

24 Myopic and Full Sequential Designs for the Logistic Regression Model

in Section 4 for the KL-Divergence Utility T = 6 73

25 Myopic and Full Sequential Designs for the Logistic Regression Model

in Section 4 for the Target Precision Utility T = 6 74

vii

26 Myopic and Full Sequential Designs for the Logistic Regression Model

in Section 4 for the Robust Target Precision Utility T = 6 75

27 Myopic and Full Sequential Designs for the Logistic Regression Model

in Section 5 for the D-Optimality Utility T = 6 76

28 Myopic and Full Sequential Designs for the Logistic Regression Model

in Section 5 for the KL-Divergence Utility T = 6 77

29 Myopic and Full Sequential Designs for the Logistic Regression Model

in Section 5 for the Target Precision Utility T = 6 78

30 Myopic and Full Sequential Designs for the Logistic Regression Model

in Section 5 for the Robust Target Precision Utility T = 6 79

viii

Abstract

DISSERTATION APPROXIMATING BAYESIAN OPTIMAL SEQUENTIAL

DESIGNS USING GAUSSIAN PROCESS MODELS INDEXED ON BELIEF

STATES

By Joseph Burris

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2022.

Director: Dissertation,

Dr. David Edwards, Department of Statistical Sciences and Operations Research

Fully sequential optimal Bayesian experimentation can offer greater utility

than both traditional Bayesian designs and greedy sequential methods, but practi-

cally cannot be solved due to numerical complexity and continuous outcome spaces.

Approximate solutions can be found via approximate dynamic programming, but

rely on surrogate models of the expected utility at each trial of the experiment with

hand-chosen features or use methods which ignore the underlying geometry of the

space of probability distributions. We propose the use of Gaussian process models

indexed on the belief states visited in experimentation to provide utility-agnostic sur-

rogate models for approximating Bayesian optimal sequential designs which require

no feature engineering. This novel methodology for approximating Bayesian optimal

ix

sequential designs is then applied to conjugate models and to particle approxima-

tions for different batch sizes.

x

CHAPTER 1

INTRODUCTION

Experimental design always relies on some prior knowledge of the process of interest

in order to choose both possible models and the design region for variables of interest.

The Bayesian philosophy extends this idea by formalizing the use of prior information

into the mathematics itself via a prior distribution. Beliefs about the unknown

parameters θ are encoded in a probability distribution known as the prior distribution

p (θ). The experimenter’s beliefs about the parameters change after having observed

data y, and the data is assumed to follow a known likelihood given the unknown

parameters p (y | θ). The experimenter’s beliefs about θ can then be updated using

Bayes’ Theorem:

p (θ | y) = p (y, θ)

p (y)
=

p (y | θ) p (θ)∫
Θ
p (y | θ) p (θ) dθ

Like most problems in the Bayesian paradigm, deriving Bayesian optimal designs

algebraically is extremely difficult, if not impossible, except in special cases making

numerical methods the most common choice [1]. Bayesian optimal designs optimize

the expected utility gained over all parameter values and outcomes. Most commonly,

Bayesian optimal designs use utility functions based solely on the posterior distri-

bution to measure information about model parameters. However, utility functions

1

are flexible enough to measure other quantities of interest such as the number of

successful treatments of patients or total costs of experimentation.

Traditionally, Bayesian optimal designs are static in that the choice of design

points is fixed at the beginning of the experiment which allows for trials to be ran-

domized. However, design points can also be chosen sequentially. Sequential ex-

perimentation, also known as adaptive experimentation, is commonly considered in

medical research [2]. While a large randomized trial may be more robust, sequences

of experiments can allow for later patients to benefit from information gained from

earlier trials. Consider the following example, an experimenter is comparing three

treatments with prior probabilities of success defined below.

θ1 ∼ Beta (1, 2)

θ2 ∼ Beta (45, 35)

θ3 ∼ Beta (3, 3)

We are interested in maximizing the number of successes within a fixed cohort,

but want to balance that with the number of successes in a wider population once

the best performing treatment is identified. For this example, we will consider a

cohort of eight patients and measure the broader success by the expected success

rate of the best performing treatment multiplied by 40. Most commonly, sequen-

tial experimentation is performed in a myopic fashion: individual experiments are

performed in sequence without knowledge of the experiments that will follow due

2

to computational convenience. The Beta distribution is conjugate to the Bernoulli

likelihood. For θ ∼ Beta (α, β) with outcome y, we have

p (θ|y = Failure) ∼ Beta (α, β + 1)

p (θ|y = Success) ∼ Beta (α + 1, β)

Since E [θ] = α
α+β

, no number of failures within the eight trials will have E [θ2]

fall less than E [θ1] or E [θ3]. This yields an optimal myopic design with an expected

utility of (40 + 8) · 45
(45+35)

= 27. Alternatively, we can consider all possible outcomes

of all future trials choices for each trial of the experiment. This yields the design

illustrated in Figure 1. The color of each cell denotes the optimal treatment choice at

that point of the experiment. Below each cell are two more cells denoting a success

or failure of the last trial with cell widths proportional to the likelihood of observing

that outcome given the current prior. A cell to the left of its parent cell is chosen if

a failure was observed while a cell to the right of its parent is should be chosen if a

success was observed. Cell width is proportional to the probability of arriving in that

cell. For example, choosing treatment 3 is optimal for trial 1. Since θ3 ∼ Beta (3, 3),

both success and failure are equally likely outcomes resulting in the cells for trial

2 having equal width. If trial 1 results in a success, we proceed to the right side

shaded by circles. In this case, treatment 3 is still optimal. If failure is observed

for trial 1, instead we proceed to the left shaded by crosses. In this case, treatment

1 is the optimal next choice given we have less confidence in treatment 3. This

proceeds like so until after the final trial where the best treatment is administered to

3

40 more experimental units. Compared to the myopic case, the full Bayesian optimal

sequential design (BOSD) has expected utility of 28.407 compared to 27.

Fig. 1. Exact BOSD Calculated via Backward Induction.

Practical calculation of BOSDs has been held back by its computational com-

plexity until recently except in special cases [3]. For example, optimizing the Kullback–

Leibler divergence from the prior to the posterior is a very common utility. This same

concept is used in the derivation of the classic D-optimality criterion from frequentist

statistics [1]. For the case of most BOSDs for linear models under the KL-divergence

utility, the static optimal design has global optimality eliminating the need for se-

quential experimentation given a fixed design space [1]. In cases with a finite set

of outcomes, the BOSD can be simply calculated exactly and represented similar

4

to a flowchart (e.g., Figure 1) though the size of the problem may make it compu-

tationally prohibitive. The finite outcome has can be extended to an infinite trial

case with diminishing returns of the outcome. This is equivalent to the well ex-

plored multi-armed bandit problem and has simpler asymptotic solutions in addition

to other heuristic solutions which perform well [4, 5]. However, in most cases, the

BOSD can neither be expressed as a static design nor even as a flowchart. Instead,

the BOSD is a sequence of functions dictating which design point to choose for any

possible outcome given all previous outcomes and decisions. In these cases, approxi-

mations must be used. The field of approximating solutions to these types problems

is called approximate dynamic programming (ADP). ADP uses surrogate models to

approximate the functions which dictate the optimal design points without actually

performing the optimization needed to get an exact value [6]. The application of

ADP to BOSD was first explored in Huan and Marzouk’s 2016 paper on the sub-

ject [7]. While this paper laid the groundwork, its methods predict the utility for

each trial of the experiment using statistics of the possible posterior distributions

as features for a regression model. However, improper choice of features can result

in the algorithm converging to a suboptimal solution. Recent advances utilize Deep

Neural Networks to choose design points based on the sequence of design points and

outcomes alone [8, 9, 10]. While these methods can made fast predictions due to the

lack of intermediate calculations of the posterior, they cannot take advantage of the

underlying structure of the space of reachable probability distributions. The method

proposed in this dissertation uses the statistical distance between different posterior

distributions to allow for a utility-agnostic approach which can be applied to prob-

5

lems regardless of utility function and takes advantage of the underlying geometry

of the set of reachable distributions. Chapter 2 gives background on the BOSD

problem and the approximate dynamic programming algorithm. In Chapter 3, we

outline how to apply Gaussian processes to find approximately optimal Bayesian

sequential designs for models with conjugate priors. In Chapter 4, we introduce a

more complex methodology which can apply to a broader class of models at the cost

of computation time. In Chapter 5, we apply this method to cases where multiple

trials are independently performed in a sequence of batches. For this dissertation, we

will assume the only element of the experiment state is the belief state though the

methods presented easily extend to the broader case. Chapter 6 recaps the presented

methodology and discusses future work.

6

CHAPTER 2

BACKGROUND

Beliefs about the unknown parameters θ are encoded in a probability distribution

known as the prior distribution p (θ). The experimenter’s beliefs about the param-

eters change after having observed data y. For parameters θ, possible outcomes y,

design ξ, the static Bayesian optimal design problem for an experiment with T trials

has the following form:

ξ∗ = argmax
ξ∈χT

∫
Y

∫
Θ

ω (ξ,y, θ) p (θ | y, ξ) p (y | ξ) dθdy (2.1)

Here, ω (ξ, y, θ) is the utility function, p (y | ξ) is the marginal probability of observ-

ing outcome vector y under design ξ, p (θ | y, ξ) is the posterior probability given

vector y under design ξ, and χ is the design space of a single trial which can have any

number of factors. More generally, the utility, u, can be thought of as a functional

of the posterior pdf pθ|y,ξ.

ξ∗ = argmax
ξ∈χT

∫
Y

u
(
ξ,y, pθ|y,ξ

)
p (y | ξ) dy (2.2)

Bayesian optimal designs optimize the expected utility gained over all parameter

values and outcomes. For example, optimizing the Kullback–Leibler divergence from

the prior to the posterior is expressed in Equation 2.3.

7

ξ∗ = argmax
ξ∈χT

∫
Y

∫
Θ

log

(
p (θ|y, ξ)
p (θ)

)
p (θ|y, ξ) dθ

 p (y | ξ) dy (2.3)

More about traditional Bayesian optimal design can be found in Chaloner and

Verdinelli’s seminal review article on the subject[1]. As opposed to a single static

design, a sequential design is optimized by an optimal policy. This policy dictates

the actions of the experimenter at each trial given the previous design points chosen

and previous responses observed. Bellman defines the optimal policy as follows:

“An optimal policy has the property that whatever the initial state

and initial decision are, the remaining decisions must constitute an op-

timal policy with regard to the state resulting from the first decision.”

[11]

This is known as Bellman’s Principle of Optimality, a fundamental result in Dy-

namic Programming [11]. Bellman’s Principle leads to the Bellman Equations for

the Bayesian sequential design problem.

BOSDs fall under the umbrella of Markov Decision Processes (MDPs). MDPs

are defined over a state space S and action space A and have the Markov property

that the probability of transitioning from state s to state s′ is determined only by the

current state s and the chosen action a. The state for a simple BOSD is exactly the

current prior distribution which we will call the belief state. Note that while by and

large belief state transitions are performed via Bayes’ Rule, belief state transitions

could just as easily fit other probabilistic frameworks such as the Dempster-Shafer

calculus [12]. BOSDs can be considered a specific type of Partially Observable MDP

8

(POMDP). POMDPs extend the MDP to include uncertainty about the current state

of the process [13]. At each transition, an observation is observed causing the belief

state to change. In general, POMDPs have applications in AI and control theory.

For example, in a quality control application, the states of machines on an assembly

line can transition from being functional to nonfunctional. Belief about the state of

the machines transitions based on observations from samples taken off the assembly

line instead of direct observations. For cases where for any given state, the set of

possible outcomes is isomorphic to the set of reachable states, the POMDP reduces

to an MDP [14]. BOSDs have this exact property since we are never interested

in a particular realization of θ, only its distribution. As BOSDs are a subset of

POMDPs even though they reduce to MDPs, algorithms to solve for optimal POMDP

policies can be applied to the BOSD problem. In particular, Thurn used a nearest-

neighbor approach using KL-Divergence and MCMC sampling to approximate the

value function of an infinite-horizon stationary POMDP [15]. The methodology used

in this paper similarly uses a distance-based model of the belief state.

In general, most MDP literature assumes stationarity and an infinite horizon.

The infinite-horizon, stationary MDP is the backbone of reinforcement learning and

has a vast corpus of literature outside the Bayesian experiment design context. In

the Bayesian experimental design context, the infinite-horizon, stationary case is well

explored in particular for medical research. The problem of assigning independent

treatments is equivalent to the well explored multi-armed bandit problem and has

simpler asymptotic solutions in addition to other heuristic solutions which perform

well [4, 5]. Optimal stopping problems are also well explored with a focus on de-

9

veloping algorithms which perform better computationally than backward induction

[16, 17]. Nasrollahzadeh and Khademi give a review of current optimal stopping

algorithms for adaptive dose-finding trials [18].

This manuscript focuses on BOSDs with a fixed number of trials. In this case,

the BOSD is non-stationary and has a finite-horizon. BOSDs are finite-horizon in

that the experiment has a fixed number of trials and are non-stationary in that the

reward function depends on the trial. For example, when maximizing for information

gain, only the KL-Divergence at the final belief state is judged. Examination of this

problem from a MDP perspective is fairly recent with Huan and Marzouk in 2016

developing a methodology using linear surrogate models. Since then, multiple amor-

tized approaches which formulate optimal policies which map a history of designs

and outcomes to a new design point using deep neural networks. Foster et al. and

Blau et al. use the Prior Contrastive Estimation bound to develop neural networks

which choose optimal design points for maximizing information gain without having

to evaluate intermediate posteriors [9, 10]. Shen and Huan take a policy-gradient

approach which uses gradient descent to train a neural network policy for maximiz-

ing information gain which is significantly faster than Huan and Marzouk’s previous

approximate dynamic programming approach [8]. Note Shen and Huan’s method

extends to other utility functions just as well.

The methodology presented in this paper uses Gaussian process surrogate mod-

els indexed on the belief states themselves and thus requires evaluating the belief

state at each stage of the experiment. While slower in most cases than recent meth-

ods which avoid calculating intermediate belief states, use of the belief states directly

10

allows for surrogates to take advantage of relationships between belief states whose

design point-outcome vectors are different, but have similar belief states regardless.

All information about the experiment at trial t is encoded in the experiment

state xt. While in general, for a BOSD, xt can contain information beyond the

current belief state such as running costs, the vast majority of applications have xt

as the belief state exactly. As mentioned before, this dissertation will assume xt is the

belief state exactly though the methods presented can be easily extended to cover

the broader case. At each trial xt transitions to state xt+1 via Markov transition

function Ft (xt, yt, ξt). The belief component of the experiment state propagates via

Bayes’ Rule.

Let ut (xt, yt, ξt) denote the immediate utility gained from trial t. Note ut can

be different for each trial. For example, ut might be zero for all t ̸= T with uT (xT)

measuring the all information gained about the parameters at the final trial. In this

case, the final utility is all that matters— there is no immediate utility gain from

the intermediary trials. Denote the total expected utility at trial t for state xt to

be Ut (xt, yt, ξt). Ut (xt, yt, ξt) denotes the expected utility we can gain from future

experiments given we make all optimal choices from there on out. Equation 2.4

follows [7].

Ut (xt) = max
ξt∈χt

∫
yt

p (yt | xt, ξt)

[ut (xt, yt, ξt) + Ut+1 (Ft (xt, yt, ξt))] dyt, ∀t = 1, 2, . . . , T (2.4)

UT+1 (xT+1) = uT+1 (xT+1)

11

Each trial’s expected utility is a combination of the immediate utility gain

ut (xt, yt, ξt) and the expected utility gain from all future trials Ut+1 (Ft (xt, yt, ξt)).

Since we assume the experiment state is the belief state exactly, the transition func-

tion is simply Bayes’ Rule. BOSD problems can be solved via Backward Induction

for a finite set of outcomes, design points, and states since all possible sequences can

be enumerated (see Algorithm 1) [19].

Algorithm 1 Backward Induction

1: for xT+1 ∈ XT+1 do

2: UT+1 (xT+1)← uT+1 (xT+1)

3: end for

4: for t = T, . . . , 1 do

5: for xt ∈ Xt do

6: Ut (xt)← maxξt∈χk

∑
yt∈Yt

p (yt|xt, ξ) · [ut (xt, yt, ξt) + Ut+1 (Ft (xt, yt, ξt))]

7: end for

8: end for

Backward Induction is best visualized as a decision tree. The deepest nodes of

the tree are all possible final designs. The utility of these designs are calculated.

Their parent nodes then use this information to decide the best course of action

given all possible outcomes. This process is repeated backwards all the way up to

the root of the tree. The optimal policy can be traced by following the decision tree

back down given the outcomes observed. Backward Induction suffers the “Curse of

Dimensionality.” Because the size of XT+1, the set of all terminal decisions, grows

exponentially with T , the total number of calculations is also exponential with T .

12

Since the problem is so complex, approximation can be used instead of direct com-

putation. The Bellman equations at each trial can be approximated to generate the

following myopic design problem [7]:

Ũt (xt) = max
ξt∈χt

∫
y

p (yt | xt, ξt) ·

[
ut (xt, yt, ξt) + Ũt+1 (Ft (xt, yt, ξt))

]
dyt, ∀t = 1, 2, . . . , T

where Ũt+1 (Ft (xt, yt, ξt)) is some approximation to Ut+1 (Ft (xt, yt, ξt)). For

good enough approximations at each trial, a policy close to optimality can be reached.

In particular, BOSDs with continuous likelihoods can be implemented under this

scheme. As mentioned previously, this type of approach is called approximate dy-

namic programming and has its own vast corpus of literature outside the statistical

paradigm.

Approximate dynamic programming problems can be solved by an iterative al-

gorithm with two basic steps: simulation and approximate value iteration. The

simulation step simulates experiments sequentially by choosing a design point, sim-

ulating an experimental trial, and repeating until the experiment is finished. Design

points can be chosen using two different methods: exploration and exploitation. Ex-

ploration selects each new design point using heuristics. For example, one heuristic

might randomly select each new design point [7] while another might use Latin hy-

percube sampling to ensure a more even coverage across the design space. Heuristic

solutions such as myopic designs can also be used to explore the design region. The

13

chosen heuristic is called the exploration policy and is denoted πexplore. Note that

since the utility is exactly known for the final trial of the experiment, πexplore is

simply optimizing the exact expected utility. πexplore is generally a function of the

number of value iterations with the proportion of explorations to exploitations tend-

ing to zero to guarantee convergence. On the other hand, exploitation selects the

most optimal design point based on the approximate expected utility, E
[
Ũt

]
. Since

the approximate utility functional is built using the results from previous iterations,

we are exploiting the information we have learned so far during the ADP algorithm.

Each full experiment simulation is called an experimental trajectory.

Last is the approximation step where the design points from the simulation

step are used to develop the approximate expected utility functional. Ideally, the

approximate utility functional is both fast and accurate. However, these are often

two competing goals. For example, polynomial regression models based on the mean

and log-variance of the current belief state have been used to approximate utility

functionals [7]. These features were chosen based on the analytical expression for

KL-divergence between two normal distributions. However, while the exact utility

is known to be highly correlated with these features, the same guarantee cannot be

made for earlier trials in the experiment. Furthermore, If the chosen features produce

biased estimates during the approximation step, the algorithm will solve a problem

that is too far removed from the original optimal design problem. On a broader scale,

feature engineering remains a topic of interest in many fields including statistics and

machine learning and has been explored extensively. Even still, feature engineering

14

remains as much an art as it a science. Even with expert knowledge of the data,

models must be evaluated and refined over multiple iterations via trial and error [20].

Algorithm 2 Solving the sOED problem using Approximate Dynamic Programming

[7].

1: Set parameters: Select number of experiments T , features {ϕt}
T
t=1, exploration

policy πexplore, number of policy updates N , number of exploration trajectories

M explore, number of exploitation trajectories M exploit. Denote the total number

of experimental trajectories M := M explore +M exploit.

2: for i = 1, . . . , N do.

3: Simulation: Exploration— Simulate M explore exploration trajectories by

sampling θt from the current belief state xt, ξt from exploration policy πexplore,

and yt from the likelihood p (yt | ξt, θt). Transition to xt+1 ← Ft (xt, yt, ξt) Repeat

for t = 0, . . . , T .

4: Store all posterior belief states visited in X i
t,explore =

{
xj
t

}Mexplore

j=1
, t =

1, . . . , T + 1

5: Exploitation— If i > 1, simulateM exploit exploitation trajectories by sampling

θt from the current belief state xt, calculating

ξt ← arg max
ξ∗t ∈χt

∫
y

p (yt|xt, ξ)
[
ut (xt, yt, ξ

∗
t) + Ũ i−1

t+1 (Ft (xt, yt, ξ
∗
t))
]
dyt

and sample yt from the likelihood p (yt | ξt, θt). Transition to xt+1 ← Ft (xt, yt, ξt)

Repeat for t = 0, . . . , T .

6: Store all posterior belief states visited in X i
t,exploit =

{
xj
t

}Mexploit

j=1
, t =

1, . . . , T + 1

15

7: Approximate value iteration: Construct functions Ũ i
t via backward in-

duction using new regression points
{
X i

t,explore ∪ X i
t,exploit

}
, t = 1, . . . , T using the

method below

8: Fit Ũ i
T+1 by using features ϕT calculated from

{
xj
T+1, U

i
T+1

(
xj
T+1

)}M
j=1

9: for t = T, . . . , 1 do

10: for j = 1, . . . ,M where xj
t are the sampled states from{

X i
t,explore ∪ X l

t,exploit

}
do

11: Compute

Û i
t

(
xj
t

)
= max

ξ∗t ∈χt

∫
y

p (yt|xt, ξ
∗
t)
[
ut

(
xj
t , yt, ξt

)
+ Ũ i−1

t+1

(
Ft

(
xj
t , yt, ξ

′

t

))]
dyt

12: Then fit Ũ i
t by using features ϕt calculated from

{
xj
t , Û

i
t

(
xj
t

)}M

j=1

13: end for

14: end for

15: end for

16: Return final policy parameterization: ŨN
t , t = 1, . . . , T

Consider again an experiment with overall utility being the difference in Kullback–

Leibler divergence between prior at trial 1 and posterior at trial T . Since the

overall utility is a functional of the final posterior exclusively, for some trial t of

the experiment, the final achieved utility of the experiment depends only upon on

the current belief state xt, subsequent design points {ξs}Ts=t+1, and subsequent out-

comes {ys}Ts=t+1. For an optimal sequential design, we will always choose optimal

design points no matter the outcome observed. This leaves the expected utility

16

E [Ut+1 (Ft (xt, yt, ξt))] given a certain outcome and design point as a functional of

the posterior exclusively. This same logic applies to any utility functional which

only depends on the final posterior. This includes most common utility functionals

used in Bayesian optimal experimental design including mutual information between

models, quadratic loss, and Shannon information gain [3]. It follows that the most

complete model possible only needs to be a functional of the posterior belief state.

This paper addresses the potential problems caused due to inaccurate features by

implementing distance-based approximations based on the current belief state.

17

CHAPTER 3

APPROXIMATE VALUE ITERATION USING DISTANCE-BASED

MODELING WITH CONJUGATE PRIORS

Consider the set of belief states visited during the simulation at step t:
{
xj
t

}M
j=1

. For

two similar belief states x0
t and x1

t , we expect their corresponding expected utilities

U (x0
t) and U (x1

t) to also be similar. When we visit a new belief state x∗
t in the next

iteration of the ADP algorithm, we could impute U (x∗
t) based on how similar x∗

t is to

each belief state in
{
xj
t

}M
j=1

. This concept is known as distance-based modeling and

is the backbone of many statistical and machine learning models including k-means

clustering, regression trees, and kernel regression [21, 22]. Using a distance-based

model eliminates the need for feature engineering since the entire belief state is

one feature. However, in order to develop a distance-based model for belief states,

we need to be able to compute the similarity between the belief state of interest

x∗
t and the previously visited belief states

{
xj
t

}M
j=1

. This is done by developing a

positive-definite kernel based on a chosen measure of distance between probability

distributions.

3.1 Positive Definite Kernels for Probability Distributions

The locations on which the distance-based model fit is called where it is indexed.

For example, most Gaussian processes in spatial statistics applications are indexed

pairs of latitude and longitude. Correlation between two points is defined based on

18

the distance between them along the curvature of the Earth. We aim to build a

distance-based model indexed on the belief states visited during the experimental

process. To do this, the distance between two belief states must be defined. While

these are several ways to measure distance between probability distributions, we fo-

cus on covariant metrics since they are computationally simple and do not depend on

the geometry of the parameter space. Note that modeling functionals of distributions

via kernel regression is not novel. Distribution regression has a deep history in ma-

chine learning though typical applications only have access to empirical distributions

observed from real world data [23].

3.1.1 Covariant Metrics

Covariant metrics define the distance between two distributions by comparing

their probability density functions. While there many different ways to compare

two probability densities, only the ones which are conditionally positive definite

and symmetric are useful to us. Specifically, a real valued function k on X × X is

conditionally positive definite if and only if k is symmetric and
∑n

i,j cicjk (xi, xj) ≥ 0

for all n ∈ N, xi ∈ X , i = 1, . . . , n, and ci ∈ R, i = 1, . . . , n, with
∑n

i ci = 0

[24]. Conditionally positive definite kernels can be used to construct positive definite

kernels using two methods [24, 25]:

K (P,Q) :=
1

2

[
−D2 (p, q) +D2 (p, 0) +D2 (0, q)

]
(3.1)

and

19

K (P,Q) := exp
[
−t ·D2 (p, q)

]
(3.2)

Here, D2 is our distance function comparing probability densities p and q be-

longing to random variables P and Q, and t is a positive constant. Equation 3.1

adjusts the kernel by “centering” it around a measure with zero probability. On the

other hand, Equation 3.2 exponentiates the distance guaranteeing positive definite-

ness and fixes K between 0 and 1. This makes Equation 3.2 a natural choice when

modeling correlation. Additionally, the Schur Product Theorem combined with other

basic properties of positive definite matrices guarantees that for any positive definite

matrix H, matrix H∗ defined as

H∗
ij = a1H

1
ij + a2H

2
ij + · · ·+ akH

k
ij (3.3)

is also positive definite if a1, a2, . . . , ak > 0 for any k ∈ Z+ [26]. This leads

to a flexible family of covariance matrices even if only a single distance measure

is available. A covariance function completely specified by the distance between

locations is called isotropic. Isotropic covariance is a common assumption made in

spatial modeling and is usually assumed unless diagnostics illustrate otherwise [27].

Consider measures P and µ on X . Measure µ dominates measure P if and only

if for any set x ∈ X , µ (x) ≥ p (x). The existence of µ is trivial for most cases; for

example, all probability distributions on Rn with finite probability are dominated

by the Lebesgue measure which leads to “normal” integration [24]. However, some

distributions are not dominated by the Lebesgue measure such as the Dirac mixture

20

distributions used in Section 4. Given two probability measures P and Q dominated

by measure µ on X , the kernel

D2
α|β (P,Q) =

∫
X
d2α|β (p (x) , q (x)) dµ (x) (3.4)

is conditionally positive definite and symmetric, and is independent of domi-

nating measure µ given d2α|β belongs to the family defined in Equation 3.5 below

[24].

d2α|β (p (x) , q (x)) =
2

1
β (p (x)α + q (x)α)

1
α − 2

1
α

(
p (x)β + q (x)β

) 1
β

2
1
β − 2

1
α

(3.5)

for α ∈ [1,∞] , β ∈ [−∞,−1] ∪
[
1
2
, α
]
with

lim
α→β

d2α|β (p (x) , q (x)) =

(
p (x)β + q (x)β

) 1
β
−1

log 2
·[

p (x)β log

(
2p (x)β

p (x)β + q (x)β

)
+ q (x)β log

(
2q (x)β

p (x)β + q (x)β

)]

Many common measures of distance between probability distributions belong to

this family as shown in Table 1.

21

Table 1. Common distance measures belonging to D2
α|β

Distance Measure

1
2
D2

1| 1
2

Squared Hellinger Distance

D2
1|−∞ Total Variation Distance

D2
1|1 Jensen-Shannon Distance

D2
1|−1 Symmetric χ2-measure

While it is possible to find an optimal covariant metric belonging to this set as

was done in Hein and Bosquest’s paper, we will focus on squared Hellinger Distance

for computational considerations [24].

d2
1| 1

2
(p (x) , q (x)) = p (x) + q (x)− 2

√
p (x) q (x) (3.6)

Squared Hellinger distance can be interpreted as the total difference in mass

between each distribution p and q and their geometric mean. Squared Hellinger

distance (H2) has an explicit parametric form for many common distributions in-

cluding Normal, Gamma, and Beta distributions [28, 29]. Making a prediction using

the model will require calculating the squared Hellinger Distance from the belief

state of interest to each belief state in the set of training data. For models with a

finite number of outcomes, the computation time is manageable. However, a more

complex outcome space would make Monte Carlo integration of the expectation too

22

costly to implement without a formula for the distance directly. Gaussian quadrature

however still may be a viable option in the general case.

3.2 Kernel Regression

The term kernel regression refers to two distinctly different techniques. The first

estimates ŷ = E (Y |X = x) using probability kernels. Not all probability kernels are

positive definite kernels and vice-versa which is why we will focus instead on the

second type. The second type of kernel regression is also called kernel ridge regression

as well as RKHS regression and derived as follows. Given a symmetric positive

definite kernel K on set X , there exists a unique Hilbert space of functions of X for

which K is a reproducing kernel otherwise known as a Reproducing Kernel Hilbert

Space (RKHS) [30]. The details of RKHS will not be discussed in this proposal;

however, they are required to use a special case of the Representer Theorem [31].

The problem

min
f∈H

n∑
i=1

C (yi, f (xi)) + λ ∥f∥2 (3.7)

where C is convex in f admits a representation as

fλ (·) =
n∑

i=1

ciK (xi, ·) . (3.8)

In particular, when C is quadratic, Equation 3.7 can be solved using a linear

system. Kernel ridge regression uses C (yi, f (xi)) = (yi − f (xi))
2 giving Equation

3.7 the same form as classical linear Ridge regression. The kernel ridge regression

estimate for x ∈ X equals

23

ŷ = k (x)T [G+ λI]−1 y (3.9)

where Gij = K (xi, xj) and [k (x)]i = k (x, xi) [31]. The difficulty in kernel ridge

regression comes in choosing optimal λ and optimal parameters for k (·). We use

k-fold cross-validation in Sections 4 and 5, but use maximum likelihood in Section 3.

3.2.1 Gaussian Process Models

The Maximum Likelihood Estimation method for choosing optimal kernel ridge

regression parameters assumes an underlying Gaussian process model. While this ap-

proaches the problem from a different angle, the resulting prediction is identical aside

from the method of parameter estimation. Gaussian processes have seen extensive

use in many different fields such as spatial statistics, modeling computer simulations,

and machine learning. Gaussian process models have been used for ADP since their

introduction to the field by Deisenroth in 2008 in many applications including op-

timizing fishing management and haptic feedback [32, 33, 34]. Their proven history

in the field and their familiarity for practitioners motivate our investigation of the

model in the optimal BOSD context. However, the methods used in this paper are

rooted in spatial statistics. These models are called kriging models in honor of John

Krige who first applied them to the analysis of mining valuation in 1951 [22]. Since

then, kriging models have seen widespread use in many different applications includ-

ing valuing real estate, modeling air quality, and studying galaxies [35, 36, 37]. The

24

form of a Kriging model can be seen below:

y (s) = X (s)β + ε (s)

ε (s) ∼ N
(
0, σ2H (ϕ; s) + τ 2I

)
(3.10)

H (ϕ; si, sj)ij = ρ (ϕ; ∥si − sj∥)

The universal kriging model is a modified linear model where all data is assumed

to be tied to a site s. Consider modeling the vegetation index of different locations

based on average annual rainfall. The sites s are the locations where data is observed.

The average annual rainfall is a predictor of the vegetation index, but is also itself

location dependent. It along with the intercept make up X (s). Still, there are more

factors involved in predicting the vegetation index than just rainfall that are also

location dependent, e.g., altitude and locations of urban centers. These are wrapped

up in the site-dependent error ε (s). Some amount of error is assumed to be non-site

dependent, for example measurement error. This type of error is called the nugget

effect and is denoted by τ 2. Site dependent error depends has a magnitude component

σ2 and a correlation component H (ϕ; s). For two observations at locations si and

sj, the correlation between them is assumed to depend on the distance between the

two sites and parameter vector ϕ. For ρ (ϕ; ·) to be a valid correlation function, we

need to meet two requirements: ρ ∈ [0, 1], and ρ (ϕ; ·) is a positive definite function.

ρ ∈ [0, 1] is a simple condition to fulfill for any function with known extrema, and

given a conditionally positive definite distance, either Equation 3.1 or Equation 3.2

can be used. For example, ρ (ϕ; ∥si − sj∥) = exp
[
−ϕ ∥si − sj∥2

]
is commonly used

for spatial statistics. To apply the kriging model to BOSD, the sites used are the

25

belief states observed during the simulation step of Algorithm 2
{
xj
t

}M
j=1

. Any belief

state dependent covariates such as the mean and log-variance of the current belief

state are encoded in X (s). Finally, ∥si − sj∥ refers to some statistical distance

described in Section 3.1. For some new site s,

ŷ (s) = xT (s) β̂ + γ̂ (s)T Σ̂−1
(
y −Xβ̂

)
(3.11)

where γ̂ (s)i = σ̂2ρ
(
ϕ̂; ∥si − s∥

)
, β̂ =

[
XT Σ̂−1X

]−1

XT Σ̂−1y, and

Σ̂ = σ̂2H
(
ϕ̂; s

)
+ τ̂ 2I[27]. Since the model assumes Gaussian likelihood, param-

eters ϕ̂, σ̂2, and τ̂ 2 are calculated using Maximum Likelihood or Restricted Maxi-

mum Likelihood. This can be optimized directly, via approximate methods such as

Newton-Raphson or Scoring, or some combination of multiple methods [38]. This

is notably faster than the grid search used for GLS; however, the assumption of

Gaussian error is loose unless Ũ is being approximated using Monte Carlo.

3.3 Potential Issues

Kernel regression is fundamentally a spline which has its pros and cons when

used in ADP. On one hand, using a spline makes few assumptions ensuring accurate

interpolation for values inside the range of the data. On the other hand, splines will

not make assumptions outside the range of the data. This places high importance

on πexplore to make sure the necessary regions of the design space are covered. Some

common exploration policies include epsilon-greedy where a combination of optimal

and random choices are used and the addition of a noise component to optimal

design points. Kernel regression also requires inversion of an M by M matrix to fit

26

a model which is order O (M3) in time and O (M2) in memory [39]. Depending on

the number of trajectories simulated and the number of trials, kernel regression may

not be computationally feasible. Some solutions include using a divide and conquer

approach and randomly selecting a subset of trajectories to use as data instead of

the whole sample though these approaches may impact the convergence of the ADP

algorithm [39, 40]. When using a Gaussian process model, the correlation function

can also be extended to include a temporal component based on experiment trial

requiring only a single model to be fit, but the larger model increases prediction

time [41].

3.4 Applications using Conjugate Models

We considered two examples for conjugate models: a Linear-Gaussian used as a

benchmark by Huan and Marzouk in their paper as well as the simple Beta-Bernoulli

model used in Section 1.

3.5 Linear-Gaussian Problem

The Linear-Gaussian model has a single parameter of interest θ with prior

N (µ0, σ
2
0) and has error ϵ ∼ N (0, σ2

ϵ).

yk = θdk + ϵ

Given observation dk, the posterior belief state evolves to

(
µk+1, σ

2
k+1

)
∼ N

 yk/dk
σ2
ϵ/d2k

+ µk

σ2
k

1
σ2
ϵ/d2k

+ 1
σ2
k

,
1

1
σ2
ϵ/d2k

+ 1
σ2
k

 . (3.12)

27

We consider the benchmark design from Huan and Marzouk of N = 2 exper-

iments with prior parameters µ0 = 0 and σ2
0 = 9, error variance σ2

ϵ = 1, and with

design points d ∈ [.1, 3]. The proposed utility function is has no intermediate rewards

with the terminal reward being the KL-divergence from posterior to prior penalized

by the log variance:

u2 (x2) = DKL (x2 ∥ x0)− 2
(
log σ2

N − log 2
)2

= log
σ2
N

σ2
0

+
σ2
0 + (µ0 − µN)

2

2σ2
N

− 1

2
− 2

(
log σ2

N − log 2
)2

Huan showed the expected utility for this experiment attains a maximum at any

pair of designs (d∗0, d
∗
1) such that

d∗20 + d∗21 =
1

9

[
exp

(
18014398509481984 log 3− 5117414861322735

9007199254740992

)
− 1

]
≈ 0.45546311542230206

with U (d∗0, d
∗
1) ≈ 0.783289 [7]. Figure 2 shows the exact utility of each pair of

design points in the region of interest.

28

Fig. 2. Expected utility for all possible designs. The dashed line denotes optimal

designs.

The surrogate model used in their paper is the linear model shown in Equation

3.13 with µi and σ2
i being the mean and variance θ at belief state si

Ũ (si) = β0 + β1µi + β2 log σ
2
i + β3µ

2
i + β4µi log σ

2
i + β5

(
log σ2

i

)2
+ εi (3.13)

ε (si) ∼ N
(
0, τ 2

)
The exploration policy used by Huan and Marzouk randomly selects d ∼ N (1.25, 0.52)

for each design point, projecting any values outside [0.1, 3] back inside. L = 3 it-

erations of the ADP algorithm were used. The resulting contour plots are shown

replicated in Figure 3.

29

Fig. 3. Contour plots of Ũ1 for L = 1, 2, 3 from left to right fit using the method in

Huan and Marzouk’s original paper.

We examined four surrogate models in addition to replicating the results of the

original paper: an intercept only kriging model and a kriging model with features

derived from Huan and Marzouk’s original paper; each with two different exploration

policies. Both models have the following covariance structure:

30

ε (s) ∼ N
(
0, σ2

1H
1 + σ2

2H
2 + σ2

3H
3 + τ 2I

)
(3.14)

Hk
ij =

[
1−H2 (si, sj)

]k
H2 (si, sj) = 1−

√
2σiσj

σ2
i + σ2

j

exp

[
−1

4

(µi − µj)
2

σ2
i + σ2

j

]
(3.15)

si and sj denote the belief states at sites i and j. These belief states are normal

random variables with means µi and µj and variances σ2
i and σ2

j respectively. L = 3

iterations of the ADP algorithm were used for each design. All estimates were cal-

culated using Restricted Maximum Likelihood (REML). For each surrogate model,

two exploration methods were used. The first method follows Huan and Marzouk’s

original paper, discarding previous simulated trajectories each iteration. The sec-

ond method kept all previous simulated trajectories each iteration. Both methods

simulated 100 exploration trajectories the first iteration, then 30 the following two

iterations. We used SciPy’s implementation of the L-BFGS-B algorithm for the ex-

ploitation step and the Nelder-Mead simplex method to find the REML estimate of

the Gaussian process model [42]. More information on both algorithms can be found

in Kelley’s texbook Iterative Methods for Optimization.

3.5.1 Ordinary Kriging Model

An intercept only kriging model is also called an ordinary kriging model. Con-

tour plots of Ũ1 for belief states reached after the first trial are shown in Figure 4. We

can see the kriging model is accurate in areas sufficiently explored by the ADP algo-

rithm. The optimal sequential design found is d0 = 0.1238, with d1 ≈ 0.6634±4e−5

31

depending on the outcome observed for d0. Since d
2
0+d21 = 0.12382+0.66342 ≈ 0.4554,

we know this design combination lies of the circle of optimal designs.

Fig. 4. Contour plots of Ũ1 for L = 1, 2, 3 from left to right fit using an Ordinary

Kriging model using the original exploration policy.

32

Fig. 5. Contour plots of Ũ1 for L = 1, 2, 3 from left to right fit using an Ordinary

Kriging model using the retaining exploration policy.

3.5.2 Universal Kriging

The universal kriging model includes the following linear predictors in addition

to the intercept: µ, log σ2, µ2, log2 σ2, andµ log σ2. Contour plots of Ũ1 using the

universal kriging model are shown in Figure 6. Unlike the ordinary kriging model,

the quadratic terms in the universal kriging model predicts high utility for σ2 ≈ 2.5

and |µ| > 4. This quality is present in Huan and Marzouk’s original model as

seen in Figure 3 and is mainly due to the µ2 effect included in the model. The

33

flat central region present in Figure 4 is also present showing the impact of using

the Kriging method. The optimal sequential design found is d0 = 0.1351, then

d1 ≈ 0.6612 ± 4e − 4. Since d20 + d21 = 0.13512 + 0.66112 ≈ 0.4554, we know this

design combination lies of the circle of optimal designs.

Fig. 6. Contour plots of Ũ1 for L = 1, 2, 3 from left to right fit using an Universal

Kriging model using the original exploration policy.

34

Fig. 7. Contour plots of Ũ1 for L = 1, 2, 3 from left to right fit using an Universal

Kriging model using the retaining exploration policy.

3.6 Beta-Binomial Model

We once again consider the Beta-Binomial model from Section 1. Recall that

since we have a finite number of outcomes and possible design points, we can use

backward induction to solve the problem exactly. Figure 1 displays the exact BOSD.

We can decompose the squared Hellinger distance as shown in Equation 3.16.

35

1−H2 (xi, xj) =

∫ ∫ ∫ √
pi (θ1, θ2θ3) pj (θ1, θ2θ3)dθ1dθ2dθ3

=

∫ ∫ ∫ √
p1i (θ1) p2i (θ2) p3i (θ3) p1j (θ1) p2j (θ2) p3j (θ3)dθ1dθ2dθ3

=

∫ √
p1i (θ1) p1j (θ1)dθ1 ·

∫ √
p2i (θ2) p2j (θ2)dθ2 ·

∫ √
p3i (θ3) p3j (θ3)dθ3

(3.16)

=
(
1−H2 (θ1i, θ1j)

) (
1−H2 (θ2i, θ2j)

) (
1−H2 (θ3i, θ3j)

)
The expression for the squared Hellinger distance between two Beta random variables

xi, xj is known to be Equation 3.17.

1−H2 (xi, xj) =
B
(

αi+αj

2
,
βi+βj

2

)
√
B (αi, βi)B (αj, βj)

(3.17)

Combining Equation 3.16 and Equation 3.17 then yields the expression for squared

Hellinger distance used in the surrogate models. The surrogate model used can be

seen in Equation 3.18.

y (s) = µ+ ε (s)

ε (s) ∼ N
(
0, σ2

1K
1 + σ2

2K
2 + σ2

4K
4 + τ 2I

)
(3.18)

Kk
ij =

[
1−H2 (si, sj)

]k
The exploration policy used randomly selects from the three treatments with

equal probability. Exploitation simply calculates the estimated utility at for each

36

possible outcome and selects the best performer. The first iteration used 200 ex-

ploration trajectories while the subsequent 10 iterations used 100 exploration and

100 exploitation. All trajectories were carried over from previous iterations to fit

the surrogate models. Again, REML was carried out using the Nelder-Mead simplex

method.

3.7 Results

In the L = 11 iterations run, the algorithm did not converge to the exact optimal

solution. Iteration 10 performed the best of the 11 iterations with an expected utility

of 28.147 and can be seen in Figure 8. The approximate BOSD is 99% efficient

compared to the myopic design’s 95% efficiency which is a notable increase and

extremely close to optimal.

Fig. 8. Approximate BOSD for Example 2. Iteration 10 of the ADP algorithm.

37

3.8 Conclusions

Gaussian process surrogate models indexed on belief states found optimal so-

lutions for the Linear-Gaussian model and a near optimal solution for the Beta-

Bernoulli model. Applications where the conjugate distribution has an known ex-

pression of statistical distance are limited however. The Beta-Bernoulli model is the

most obviously useful in a practical application and is well documented for the infi-

nite horizon case [5]. In other cases such, linear regression with unknown variance,

a Monte Carlo integration in combination with a known formula may perform well.

For a simple hierarchical model, we have

H2 (pxy, qxy) =

∫
Y

∫
X

√
pxy (x, y) qxy (x, y)dxdy

=

∫
Y

√
py (y) qy (y)

∫
X

√
px|y (x, y) qx|y (x, y)dxdy

=

∫
Y

√
p (y) q (y)

(
1−H2

(
px|y, qx|y

)
(y)
)
dy

=
(
1−H2 (py, qy)

) ∫
Y

√
py (y) qy (y)H

2
(
px|y, qx|y

)
(y) dy.

Depending on the distribution of y,
∫
Y

√
py (y) qy (y)H

2
(
px|y, qx|y

)
(y) dy may be

reasonable to estimate via numerical methods. The proposed methodology could be

adapted to a much broader class of models where this is the case.

38

CHAPTER 4

BAYESIAN OPTIMAL SEQUENTIAL DESIGNS VIA

APPROXIMATE DYNAMIC PROGRAMMING USING

SEQUENTIAL IMPORTANCE SAMPLING

Application of the ADP algorithm using distance-based modeling requires a repre-

sentation of the belief state at each experimental outcome and the ability to quickly

compute some statistical difference between these representations. As shown in 3,

these criteria are can be easily satisfied for cases with conjugate priors. In cases

without conjugate priors, approximations to the posterior must be used. Unfortu-

nately, many approximations to the posterior lack either a quick method to compute

statistical differences between them or do not perform well in sequential scenarios.

For instance, the Normal asymptotic and variational approximations to the posterior

have closed forms for both Hellinger distance and Jensen-Shannon divergence, but

may not always be appropriate [43]. On the other hand, variational approximations

using Normal mixture distributions would be much more accurate; however, normal

mixture distributions do not have a statistical distance between them which is quick

to compute [44]. Sampling via measure transport would be accurate, but transfer

maps lack an informative distance measure [45, 46]. Sequential Monte Carlo (SMC)

and similar methods such as grid approximations are the only methods we found

fitting both criteria.

39

4.1 Sequential Monte Carlo

Sequential Monte Carlo (SIS), known as Particle Filtering for Markov models,

is an extension of importance sampling where distributions are approximated using

weighted samples. To perform SIS, draw a sample from the prior {θk}Kk=1 ∼ p (θ).

We can approximate {w̃t
k}

K,T
k=1,t=1

p (θ)
appx∼

K∑
k=1

1

K
δθk (θ) . (4.1)

δθk (θ) denotes a Dirac delta measure which has probability 1 when θ = θk and

0 otherwise. Then following Bayes Theorem,

p (θ|y, ξ) appx∼
∑K

k=1 p (y|θ, ξ) δθk (θ)∑K
k=1 p (y|θk, ξ) δϕk

(θk)
. (4.2)

Consider the initial sample to be a weighted sample with weights wk = K−1∀k =

1, 2, . . . , K. The posterior is then another weighted sample with

wk =
p (y|θ, ξ)∑K

k=1 p (y|θk, ξ) δθk (θk)
. (4.3)

Importance sampling effectively creates a conjugate prior. By continuing to re-

weight the initial samples, we can compute approximations to belief states deeper

into the experiment. However, the accuracy of the approximation decreases as the

distance between the initial sampling distribution and the approximated belief state

increases. Typically, the effective sample size (ESS) of the current weight vector is

used as a benchmark to determine the accuracy of the current approximation.

40

ESS =

[
K∑
k=1

w2
k

]−1

(4.4)

Once ESS falls below some predetermined threshold, the current sample must be

replaced. Typically, this is done using the Resample-Move algorithm by filtering out

samples with low probability via bootstrap sampling, then perturbing the resampled

particles to add diversity via Markov Chain Monte Carlo [47].

4.2 Application to BOSD

In order to apply methods from Section 3.1, we need a measure µ dominating all

Dirac delta mixtures we need to compare. Since the sample is fixed at this point, we

dominate the measure of the mixture weights by measuring 1 at each mixed Dirac

delta. This leads to simply replacing any integration with a summation over the

sampled values instead. Since Particle Filtering approximates the current belief state

with a mixture of Dirac delta functions, the only probability mass the approximation

has is at the particle locations. Consider three PF approximations with probability

mass following the table below:

Table 2. Example Particle Filter Approximations

x 0 1 1.01 2

p̂1 (x) 0.5 0.5 0 0

p̂2 (x) 0.5 0 0.5 0

p̂3 (x) 0.5 0 0 0.5

41

Intuition and non-covariant metrics would suggest p̂1 and p̂2 should be closer

together than p̂1 and p̂3. However, every statistical distance belonging to the fam-

ily given by Equation 3.5 would determine the two distances are the same. While

technically correct, these distances are uninformative, especially since these distri-

butions are approximations of other smooth distributions. For the surrogate model

to perform properly, the distance between two approximations must be reflective of

the distance between the distributions being approximated. The simplest solution is

to ensure the particles used for each approximation are the same before computing

distances. While this does rule out the use of MCMC methods, importance sam-

pling can work perfectly fine. Using importance sampling, generate a sample from

the prior based on some proposal distribution. Then, re-weight the new sample using

the recorded design points and observations from previous trials.

How to choose such a proposal distribution may differ problem to problem or

may differ even trial to trial. For example, consider a scenario where simulated belief

states concentrates at several different modes. Ensuring adequate representation

among all simulated belief states may be difficult if not impossible if the spread

among belief states is too large. Importance sampling using a mixture distribution

comprised of approximations to the current stage’s belief states as the proposal is

a natural fit, but calculating the mixture weights ultimately proved too difficult.

Instead, we simply use the prior as the proposal distribution. The pdf of belief state

xN for an sequential design has

p (θ | xT) ∝ p (θ | x0)
T∏
t=1

p (yt | θ, ξt) . (4.5)

42

Since we need to compare distances for different combinations of {yt}Tt=1, the

prior is the only common element. Ultimately, it would be ideal for particles to be

concentrated in areas of interest however we had little luck finding optimal weight

configurations despite trying heuristics, convex optimization, and subgradient meth-

ods [48, 49]. If necessary, the total number of particles can be increased when chang-

ing the base particle set to accommodate unexpected spread among belief states

though it will increase computation time. Under a given particle approximation

Θ = {θk}Kk=1, the squared Hellinger Distance between two distributions is

H2 (p (x) , q (x)) =
1

2

[∑
θk∈Θ

p (θk) + q (θk)− 2
√

p (θk) q (θk)

]

= 1−
∑
θk∈Θ

√
pkqk = 1−

K∑
k=1

exp

[
1

2
(log pk + log qk)

]
.

Where pk and qk are the importance weights for distributions p and q under

sample Θ. Note that if stored in log-scale, calculation of the squared Hellinger dis-

tance requires one exponentiation as the only slow computation. Approximate Value

Iteration using a distance-based model requires calculating the distance from each

belief state in X i
t to each belief state from the trial after it X i

t+1. These calculations

are for the most part simple arithmetic between large matrices of log-scale weights

which allows for substantial improvements in runtime by using GPU acceleration

via CUDA. Compared to computing on a CPU where most tasks are performed in

singular threads, GPUs excel at performing simple operations in extreme parallel.

Nvidia’s CUDA is a framework allows for GPUs to be used in non-graphical ap-

43

plications. GPU acceleration via CUDA is commonly used in machine learning via

platforms such as TensorFlow, PyTorch, and CuPy. We used CuPy and NumPy to

implement our algorithm due to their low barrier of entry [50, 51].

In addition to changes required due to shifting particle approximations, Algo-

rithm 2 is adjusted by no longer simulating outcomes when expanding the set of

visited belief states. In practice, we found simulating outcomes could not identify

rare events and selecting outcomes independently of the marginal probability pro-

duced better results. Additionally, we follow the suggestion of Deisenroth and have

an larger initial exploration sample to drive exploitation [34].

44

Algorithm 3 Solving sOED using ADP via Kernel Regression and SMC.
1: for i = 1, . . . , N do
2: Set parameters: Select number of experiments T , exploration policy πexplore,

number of policy updates N , number of importance samples K, number of exploration
trajectories M explore

i for i = 1, . . . , N , and number of exploitation trajectories M exploit
i

for i = 1, . . . , N . Denote the total number of experimental trajectories to be added for
i > 0 Mi :=M explore

i +M exploit
i .

3: Set SMC approximations ψ0 (·) , . . . , ψT+1 (·). Sample K samples from each.
4: for i = 1, . . . , N do
5: State Set Augmentation: Sample M explore

i exploration trajectories: Sample
ξt and yt from exploration policy πexplore. Transition xt+1 ← Ft (xt, yt, ξt). Repeat for
t = 0, . . . , T

6: Store all posterior belief states visited in Xt,explore =
{
xjt

}Mexplore
i

j=1
for t =

1, . . . , T + 1
7: Exploitation— If i > 1, simulate M exploit

i exploitation trajectories: Compute

particle approximations
{
ψt

(
xjt

)}Mexploit
i

j=1
and

{
ψt+1

(
xjt

)}Mexploit
i

j=1
, then calculate

ξt ← arg max
ξ∗t ∈χt

∫
y

p (yt|ψt (xt) , ξ)
[
ut (ψt (xt) , yt, ξ

∗
t) + Ũ i−1

t+1 (Ft (ψt (xt) , yt, ξ
∗
t))
]
dyt

, and sample yt from πexplore. Transition xt+1 ← Ft (xt, yt, ξt). Repeat for t = 0, . . . , T

8: Store all posterior belief states visited in X i
t,exploit =

{
xjt

}Mexploit
i

j=1
for t =

1, . . . , T + 1
9: end for

45

10: Approximate value iteration: Construct functions Ũ i
t via backward induction

using all belief states X i
t+1 := ∪il=1

{
X l
t+1,explore ∪ X l

t+1,exploit

}
, t = 1, . . . , T − 1 using

the method below
11: Calculate Û j

T+1 ← E
[
xjT+1

]
for j = 1, . . . ,M by applying an MCMC kernel to

each ψj
T+1

(
xjT+1

)
, then store them.

12: If necessary, apply a variance stabilizing transform TT+1 to Û i
T+1

(
xjT+1

)
13: Then construct Ũ i

T+1 via kernel regression using data set coupled with inverse

transform T−1
T+1 if applicable

{
ψT+1

(
xjt

)
, Û i

T+1

(
xjt

)}∑i
l=1 Ml

j=1
and a kernel as described

in Section 3.1.
14: for t = T, . . . , 1 do

15: Compute
{
ψt

(
xjt

)}Mexploit
i

j=1
and

{
ψt+1

(
xjt+1

)}Mexploit
i

j=1

16: for j = 1, . . . ,
∑i

l=1Ml do
17: Compute

Û i
t

(
xjt

)
= max

ξ∗t ∈χt

∫
y

p (yt|ψt (xt) , ξ
∗
t)
[
ut

(
ψt

(
xjt

)
, yt, ξt

)
+ Ũ i

t+1

(
Ft

(
ψt+1

(
xjt

)
, yt, ξ

′
t

))]
dyt

18: If necessary, apply a variance stabilizing transform Tt to Û
i
t

(
xjt

)
19: Then construct Ũ i

t via kernel regression using data set coupled with inverse

transform T−1
t if applicable

{
ψt

(
xjt

)
, Û i

t

(
xjt

)}∑i
l=1 Ml

j=1
and a kernel as described in

Section 3.1.
20: end for
21: end for
22: end for
23: Return final policy parameterization: ŨN

t , t = 1, . . . , T

4.3 Application

Drovandi et al. performed simulation experiments testing myopic Bayesian op-

timal designs to identify various target stimulus probabilities [52]. Three different

likelihoods were tested using both binary and count data. These sequential experi-

46

ments were replicated 500 times each with up to 100 trials per experiment to examine

how close the posterior median came to the target parameters generating the data.

The power-logistic model used is defined in Equation 4.6.

log

(
p

1− p

)
= θ0 + θ1

ξ − 1

λ
(4.6)

Drovandi et al. examined three cases: λ = 1, λ → 0, and 0 < λ ≤ 1 with

three different utility functions. We implemented the model for the λ = 1 case

for N = 5, . . . , 10 trials and all utility functions, then compared the results to the

myopic methods used in their paper. The utility functions used are defined as the KL

Divergence, Bayesian D-Optimal, and Precision for a target dose response stimulus.

The KL Divergence utility used in this paper is

uT (xT) = DKL (xT ∥ x0) =

∫
Θ

p (θ | xT) log
p (θ | x0)

p (θ | xT)
dθ. (4.7)

Drovandi et al. actually use DKL (xt ∥ xt−1), but this utility does not translate

well to the fully sequential case. Instead, we used the classic KL-Divergence utility

shown in Equation 4.7. The Bayesian D-Optimality utility is

uT (xT) = [det (Var [θ | xT])]
−1 . (4.8)

Note for a normal posterior this is equivalent to the KL-Divergence utility. The

last utility used by Drovandi et al. is the target precision utility:

uT (xT) = [Var [D∗|xT]]
−1 (4.9)

47

where D∗ is the stimulus which produces a probability equal to p∗ of a positive

response. For λ = 1,

D∗ =
logit (p∗)− θ0

θ1
+ 1. (4.10)

In practice we found the variance of the Monte Carlo estimate of the target

precision utility caused difficulty in modeling it. We implemented a more robust

measure of spread for the target precision based on the interquartile range.

uT (xT) = [IQR [D∗|xT]]
−1 (4.11)

Like Drovandi et al., we consider the case of p∗ = .2. Drovandi et al. used

a prior distribution of x0 ∼ N(0, 100). Their paper considers myopic experiments

out to 100 iterations resulting in a final belief state proportional to N(0, 10). We

examine a prior of N (0, 50) as a middle ground.

4.4 Particle Approximations and Distance

A natural question with Monte Carlo methods is how many samples are neces-

sary. For two belief states xiand xj with design point-outcome pairs {(ξit, yit)}
T
t=1 and

{(ξit, yit)}
T
t=1, their Hellinger distance is equal to

H2 (xi, xj; Θ) = 1− p (θ | x0)
∑
θk∈Θ

√√√√ T∏
t=1

p (yt | θk, ξt)
T∏
t=1

p (yt | θk, ξt).

From as modeling perspective, the worst-case scenario is determining two belief

states are similar when they are actually different since this can cause the model

48

to make inaccurate predictions. This scenario requires poor representation of both

belief states and having excess samples in their intersection. Determining two belief

states dissimilar when they actually are similar reduces the predictive power of the

model, but does not cause inaccurate predictions. This is caused by poor representa-

tion in the area of the intersection of the two distributions and more representation

elsewhere. Generally, both scenarios tend to happen when the variances of the two

belief states are much smaller than the proposal distribution which is more likely

to happen the more trials that have passed. This can also occur if the likelihood

can cause the modes of the belief states to wander far away from the proposal. For

this application, the likelihood of the logistic regression model essentially bisects the

plane along a line determined by choice of ξ as shown in Figure 10. This makes it

both difficult for the mode to move too far from the proposal distribution and difficult

to construct belief states with variance low enough that they cannot be represented

well enough with a few thousand samples.

Fig. 9. Example Distance Errors with Particle Approximations

49

Fig. 10. Particle Approximation to Posteriors for (ξ, y) = (1, F)and (ξ, y) = (2, T)

4.5 Geometry of the Belief State Space

As opposed to Deisenroth’s pioneering work and most other applications of

Gaussian processes, the geometry of the index space is unintuitive. We denote the

space of belief states reachable at trial t as Xt. First, Xt =
(
Ξ×Y

t

)
where the binomial

coefficient denotes the unordered Cartesian product. To give some intuition, for an

outcome space Y of a single element and Ξ a closed interval,
(
Ξ×Y

t

)
is isomorphic

to the interior of a t-dimensional simplex. For Ξ, Y discrete sets, |Xt| =
(|Ξ||Y |+t−1

t

)
.

Drovandi et al. performed a grid search of ξ ∈ {0.1, 0.2, . . . , 2} to find each optimal

design point. Given an appropriate particle representation for the current belief state,

the myopic utility was calculated for each reachable belief state by reweighting the

current approximation according Bayes’ theorem. Following the same methodology,

solve the full sequential design problem via backward induction would require
(
40+t−2
t−1

)
different particle approximations.

50

Fig. 11. Number of MCMC Samples Needed for Backward Induction

For T ≤ 4, an exact solution via Backward Induction may be feasible, but for

T ≥ 5, the computation time is probably too much. For this reason, we consider the

proposed algorithm successful if it can find sequential designs which meet or exceed

the utility of the myopic design for T ≥ 5.

We first need to find a set of initial states for each trial to base future learning

upon. Unlike Deisenroth’s application, determining whether the design region is

approximately covered is not intuitive. To do so, we use two tools: the empirical

variogram and Ripley’s K statistic.

Recall from Equation 3.10 that for an Gaussian process with isotropic variance,

Cov (si, sj) = σ2ρ (ϕ; ∥si − sj∥) + τ 2

51

and

V ar (si) = τ 2

The function of the variance component due to spatial correlation ρ is called the

variogram. This can be estimated empirically much like a histogram by breaking the

set of observed distances into bins and calculating covariance.

ρ̂ (d; δ) =
1

2 |N (d; δ)|
∑

(i,j)∈N(d;δ)

(ui − uj)
2

whereN (d; δ) = {(i, j) : |∥si − sj∥ − d| < δ}. δ denotes the bin width. Consider

the variogram in Figure 12 generated from 4430 design point-observation combina-

tions generated via Latin Hypercube sampling using the D-optimality utility.

Fig. 12. Example Variogram

52

We can see that the covariance increases in an approximately linear function of

the Hellinger distance. Since the variance increases quickly as a function of Hellinger

distance, we need to make sure our initial sample has a sufficient number of obser-

vations for short distances. Ripley’s K function is defined for a given spatial point

process as the expected number of points within a radius r divided by the overall

density of the process [53]. While it is generally used to test the homogeneity of

spatial point processes, we can use it to roughly gauge if we have sufficient coverage

of the state space. Empirically, Ripley’s K can be estimated by

K̂ (r) ∝ 1

n

N∑
i=1

w−1
i |{s : ∥si − s∥ < r \ si}|

where {wi}Ni=1 are weights used for edge correction on bounded spaces. How the

boundaries of the design region and outcome space translate to the state space is

hard to intuit, so we did not correct for the edges.

Fig. 13. Radii around a Point in a 2D Spatial Point Process

53

For the example state-space data set, we have the Ripley’s plot in Figure 14

which shows there are on average 10 observations within a Hellinger distance radius

of .1 and 100 observations for a radius of .2 which should be sufficient based on the

variogram in Figure 12.

Fig. 14. Ripley’s K-Like Plot for the D-Optimality Utility at T = 5

4.6 Results

The proposed methodology works for T = 5 and T = 6 with optimal de-

signs found roughly meeting their myopic counter parts for the KL-divergence, D-

optimality, and Robust Precision utilities, but fail for the target precision utility.

Table 3 summarizes the results. All three utility functions criteria require variance

stabilizing transformations for trials closer to the end of the experiment. Note that

in addition to these results, in a practical setting, the myopic design can be used as

part of the exploration policy. Much like Drovandi et al., we found myopic designs

for the D-optimality utility can have high variability due to how flat the utility is

54

for early trials and subtle changes due to the importance sample. To combat this,

the myopic design used as a benchmark is the best of eight calculations of the same

design. Representations of all the designs and the expected utilities at each stage of

the designs can be found in Appendix A, but an example is shown in Figure 15. In

the same vein as Figures 1 and 8, these diagrams represent the optimal design points

to be chosen at each trial of the experiment. Upon observing an outcome, the reader

proceeds to the cell below and to the left if a failure is observed and below and to the

right if a success is observed. For example, at trial 1, we choose ξ1 = .9. The prior

predictive has each outcome equally likely, so both cells below have equal width. If

we observe a failure, we move to the left with ξ2 = 0.1. Otherwise, we move to the

right where we choose ξ2 = 2.0.

55

Fig. 15. Myopic Design for the Logistic Regression Model using the KL-Divergence

Utility T = 5

In a similar fashion, we can visualize the expected utility at each point of the

experiment such as in Figure 16. Here, we see all outcomes yield high information,

but the outcomes with roughly even successes and failures perform worst. These

scenarios narrow the belief state to a concentrated area near the origin since we

do not think either θ0 or θ1 has much impact on the outcome. While this is new

information, it is still roughly normal making it the closest to the prior of all belief

states.

56

Fig. 16. Expected Utility for Sequential Design for the Logistic Regression Model

using the KL-Divergence Utility T = 5

The Kernel Ridge Regression surrogate models were fit using 3-fold cross vali-

dation with a fixed ridge parameter of k = 0.01 for all utilities except D-optimality

which was fit with k = 0.005. The sizes of M0 and Mi for i > 0 used can be found in

Table 4. Like the original paper, we calculated optimal choices of ξ via a grid search

on ξ a grid search of ξ ∈ {0.1, 0.2, . . . , 2} to find each optimal design point.

57

Table 3. Expected Utilities for Approximate BOSDs for x0 ∼ N(0, 50)

Utility Trials: 5 6

KL Div. Myopic 6.844 6.858

KL Div. Sequential 6.893 6.875

D-Opt. Myopic 0.019 0.028

D-Opt. Sequential 0.019 0.027

Precision Myopic 0.426 0.914

Precision Sequential 0.340 0.387

Robust Precision Myopic 1.830 2.140

Robust Precision Sequential 1.838 2.113

Table 4. Initial Sample and Added Sample Sizes by Number of Trials

Trials: 5 6

M0 126 210

Mi for i > 0 128 256

As shown in Figure 17, the KL-divergence, D-optimality, and Robust Target

Precision have variance zero for Hellinger distance zero while target precision utility

has high variance for distance zero. This indicates the variance stabilizing transfor-

mation could not coerce the data set into a form the Hellinger distance can model.

The transformations we considered were Yeo-Johnson transforms with a variable cen-

ter which have an image of R [54]. When we considered the whole set of Yeo-Johnson

transforms, we found cases where surrogate models would predict values outside the

58

range of the image make them unable to be inverted. Other transforms of the data

may exist that allow the target precision to be modeled with Hellinger distance.

Fig. 17. Comparison of Variograms for T = 4 Surrogate Model from the T = 5 Lo-

gistic Regression Design for KL-Divergence (Top Left), D-Optimality (Top

Right), Target Precision (Bottom Left), and Robust Target Precision (Bot-

tom Right)

4.7 Conclusions

The proposed usage of a single importance sample to compare multiple belief

states works succeeds at allowing the methodology from Section 3 to apply to a

wider class of models. In the example shown, the fully sequential designs found by

59

the proposed algorithm greatly exceed the expected utility of the myopic designs

provided the surrogate model fits. Researchers more adept at programming may

be able to reduce runtimes further by developing CUDA kernels specific to this

application. A potential issue with the proposed methodology is the number of initial

belief states needed to start the learning process. With the particle approximation,

sampling error may not allow for models to account for very large distance values

between belief states. Additionally, covariant metrics cannot compare belief state

whose supports do not overlap such as disjoint uniform distributions. Metrics such

as Wasserstein distance are expensive computationally, but do not require probability

mass to overlap. The representation using transport maps proposed by Huan and

Marzouk may translate well to distance-based modeling via Wasserstein distance

[46]. Approximations to structural kernels may be a viable option. Muandet et al.

give an estimator for the Gassian RBF kernel between two empirical distributions

with error O
(
m− 1

2

)
where m is sample size though it requires taking an inverse

and a determinant [55]. Alternatively, future work could investigate the importance

sample of each trial. Given a set of distributions represented as weights on a shared

sample, minimizing the maximum KL-Divergence from any weighted sample to a

mixture of the weighted samples is convex and can be formulated as a conic program

[56]. While we found the noise due to random sampling too hard to rectify when

attempting this approach, someone more familiar with stochastic optimization may

have success. As mentioned before in Section 4.4, a subgradient approach could also

theoretically work though again we had little success.

60

CHAPTER 5

BATCH BAYESIAN OPTIMAL SEQUENTIAL DESIGNS VIA

APPROXIMATE DYNAMIC PROGRAMMING

The batch sequential case is an alteration of the BOSD problem where batches of

independent trials are chosen in sequence. While the set of reachable belief states

is the same between the batch and full sequential case, the marginal probabilities

of visiting each belief state differs. Note that full sequential and static designs are

special cases of batch sequential designs with batch sizes of 1 and T respectively.

While it is possible for batch sizes to vary dynamically within a design, this disser-

tation focuses on the case of fixed, predetermined batches. For an experiment with

T trials and B batches we denote the number of trials in batch b as Tb with
∑B

b=1 Tb.

Consider each batch then as a single trial. For batch b, we have ξb := (ξ1, . . . , ξTb
)

and yb := (y1, . . . , yTb
) with likelihood defined in Equation 5.1.

p (yb|ξb, xb) := p (xt)

Tb∏
t=1

p (yt|ξt, xt) (5.1)

Under this construction, we apply can Algorithm 3 to the batch problem by

treating it as a regular experiment with B trials.

5.1 Application

We revisit the model from Section 4 for the same choices of utility. Optimal de-

signs were calculated for experiments with trials T = 6 dividing each up into batches

61

Table 5. Initial Sample and Added Sample Sizes by Number of Trials

Iteration Simulations

i = 0 210

i > 0 256

of size two. Due to expanding to a larger design region, we changed algorithms from

a grid search to Nelder-Mead using a soft boundary penalty function for a fixed

number of 40 iterations. A fixed number of iterations was used rather than other

convergence criteria to make it simpler to implement in parallel for the GPU. Recall

that the set of designs for a fixed number of trials is a simplex. With this in mind,

we performed the Nelder-Mead algorithm with Tb + 1 starts with a starting simplex

in each corner of the design space.

5.2 Results and Conclusions

The proposed methodology performed well for all cases. In all cases, the optimal

batch sequential design roughly met or beat the myopic design in performance. Run

times for the batch sequential case were slower though this is expected. The number

of evaluations of the GP model increases exponentially with batch size due to the

increase in outcomes of each belief state.

The results are summarized in Table 6 and graphical representations of the

optimal designs found and their expected utilities can be found in Appendix B.

These diagrams are identical in how they are read to the ones used in 4.6. In

Figure 18, notice how the choice of xi2 is the same regardless of the outcome of xi1

62

Table 6. Expected Utilities for Approximately Optimal Batch Sequential Designs for

x0 ∼ N(0, 50)

Utility Algorithm E [U]

KL Div. Myopic 6.684

KL Div. Sequential 6.652

D-Opt. Myopic 0.116

D-Opt. Sequential 0.131

Precision Myopic 0.067

Precision Sequential 0.067

Robust Precision Myopic 2.114

Robust Precision Sequential 2.124

and how the predicted probability of a success versus a failure remains constant for

the first two trials. This is due to the independence of trials within a batch.

63

Fig. 18. Batch Sequential Design for the Logistic Regression Model using the KL-Di-

vergence Utility T = 6

All future avenues of research discussed in Section 4.7 apply here as well. Ad-

ditionally, tackling the dynamic batch size case without using separate models for

each batch size choice could prove a useful and interesting direction for research.

64

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this dissertation, we propose the novel application of Gaussian process models

indexed on belief states as surrogate models for approximating Bayesian optimal

sequential designs via approximate dynamic programming. We tested this method-

ology for conjugate models, non-conjugate models, and batch sequential designs for

non-conjugate models. The proposed methodology for finding approximate solutions

to Bayesian optimal sequential designs performed adequately in all test cases ex-

amined. Modeling utility via distances between distributions allows for a general

method of finding approximately optimal Bayesian sequential designs. Compared

to recent methods which take design points and outcomes as inputs directly, using

the distances between the belief states to model the utility allows for more direct

comparisons to be made between simulated belief states. Ultimately, the utility of

the proposed methodology hinges on the speed of the distance calculation. Conju-

gate models work very well if they have a parametric formula for a distance, but

also allow for simpler execution numerical methods since the distribution is exactly

known. In other cases where the distribution must be approximated, Monte Carlo

and grid methods which represent all distributions on a unified “basis” will not be ex-

act enough for all cases without careful choice of proposal distributions. For example,

complex Markov processes which require more specific filtering schemes may perform

poorly using these methods since where reachable distributions are concentrated is

65

not easy to calculate without brute force simulation. Future avenues of work may

consider representing belief states in a kernel mean embedding to solve the distance

and approximation problems at the same time [57]. Representing a distribution as

the mean of a kernel function over the support allows for computational tricks that

allow for easy representation of posterior distributions and several distance metrics

to use in comparing distributions [57]. Embedding the mean does require taking

the expectation over the kernel either analytically or numerically which brings the

same computation problems we tried to avoid. Kernels functions of statistics are

certainly much faster though applicability will depend on the model and could re-

quire substantial tuning due to differences in scales of each statistic. Variational

approximations are mentioned briefly, but could use a more thorough examination

to see if there are cases outside the variational approximation to the normal with

known distance formulas or fast distance algorithms. Future work on fast distance

calculations for conjugate models without a known distance formula is a promising

direction for research with many applications for commonly used models as discussed

in Section 3.8. As mentioned in Section 4.7, finding a minimax proposal distribution

from among the set of mixtures of visited belief states is convex when represented

as weights of a single sample. This problem may have other applications in other

information theoretic disciplines. Additionally, as noted in Section 5.2, solving the

dynamic batch size case of the BOSD problem without separate models for each

batch size is potentially useful in many applications.

Algorithmically, there are several improvements that can be made to the algo-

rithm to improve runtimes. When using a grid approximation and a discretization

66

of the outcome space, the distances from posterior distributions of belief states vis-

ited during optimization can be stored in lookup tables which can be stored on disk

until needed in the algorithm. While the code used benefits from GPU accelera-

tion via CuPy, no custom CUDA code was used [50]. Custom CUDA kernels would

undoubtedly improve runtimes.

Especially in cases with non-terminal rewards such as the number of successful

treatments or Markov cost penalties, sequential methods have the potential to greatly

outperform their static counterparts. As more work is done in developing algorithms

to quickly compute approximate solutions for Bayesian optimal sequential designs,

hopefully they will be given more consideration in practical applications. While the

curse of dimensionality can never truly be solved, the computing power to tackle

these problems is available.

67

Appendix A

OPTIMAL SEQUENTIAL DESIGNS FOR LOGISTIC REGRESSION

MODEL

Fig. 19. Myopic and Full Sequential Designs for the Logistic Regression Model in

Section 4 for the D-Optimality Utility T = 5

68

Fig. 20. Myopic and Full Sequential Designs for the Logistic Regression Model in

Section 4 for the KL-Divergence Utility T = 5

69

Fig. 21. Myopic and Full Sequential Designs for the Logistic Regression Model in

Section 4 for the Target Precision Utility T = 5

70

Fig. 22. Myopic and Full Sequential Designs for the Logistic Regression Model in

Section 4 for the Robust Target Precision Utility T = 5

71

Fig. 23. Myopic and Full Sequential Designs for the Logistic Regression Model in

Section 4 for the D-Optimality Utility T = 6

72

Fig. 24. Myopic and Full Sequential Designs for the Logistic Regression Model in

Section 4 for the KL-Divergence Utility T = 6

73

Fig. 25. Myopic and Full Sequential Designs for the Logistic Regression Model in

Section 4 for the Target Precision Utility T = 6

74

Fig. 26. Myopic and Full Sequential Designs for the Logistic Regression Model in

Section 4 for the Robust Target Precision Utility T = 6

75

Appendix B

OPTIMAL BATCH SEQUENTIAL DESIGNS FOR LOGISTIC

REGRESSION MODEL

Fig. 27. Myopic and Full Sequential Designs for the Logistic Regression Model in

Section 5 for the D-Optimality Utility T = 6

76

Fig. 28. Myopic and Full Sequential Designs for the Logistic Regression Model in

Section 5 for the KL-Divergence Utility T = 6

77

Fig. 29. Myopic and Full Sequential Designs for the Logistic Regression Model in

Section 5 for the Target Precision Utility T = 6

78

Fig. 30. Myopic and Full Sequential Designs for the Logistic Regression Model in

Section 5 for the Robust Target Precision Utility T = 6

79

REFERENCES

[1] Kathryn Chaloner and Isabella Verdinelli. “Bayesian experimental design: A

review”. In: Statistical Science (1995), pp. 273–304.

[2] Shein-Chung Chow and Mark Chang. “Adaptive design methods in clinical

trials – a review”. In: Orphanet Journal of Rare Diseases 3.1 (May 2008),

p. 11. issn: 1750-1172. doi: 10.1186/1750-1172-3-11. url: https://doi.

org/10.1186/1750-1172-3-11.

[3] Elizabeth G. Ryan et al. “A Review of Modern Computational Algorithms for

Bayesian Optimal Design”. In: International Statistical Review 84.1 (2016),

pp. 128–154. issn: 1751-5823. doi: 10.1111/insr.12107. url: https://

onlinelibrary.wiley.com/doi/abs/10.1111/insr.12107 (visited on

03/19/2019).

[4] Peter Whittle. “Multi-armed bandits and the Gittins index”. In: Journal of

the Royal Statistical Society: Series B (Methodological) 42.2 (1980), pp. 143–

149.

[5] Sof́ıa S. Villar, Jack Bowden, and James Wason. “Multi-armed Bandit Models

for the Optimal Design of Clinical Trials: Benefits and Challenges.” eng. In:

Statistical science : a review journal of the Institute of Mathematical Statis-

tics 30.2 (2015), pp. 199–215. issn: 0883-4237 2168-8745. doi: 10.1214/14-

STS504.

80

https://doi.org/10.1186/1750-1172-3-11
https://doi.org/10.1186/1750-1172-3-11
https://doi.org/10.1186/1750-1172-3-11
https://doi.org/10.1111/insr.12107
https://onlinelibrary.wiley.com/doi/abs/10.1111/insr.12107
https://onlinelibrary.wiley.com/doi/abs/10.1111/insr.12107
https://doi.org/10.1214/14-STS504
https://doi.org/10.1214/14-STS504

[6] Warren Buckler Powell.Approximate Dynamic Programming: Solving the Curses

of Dimensionality. Hoboken, UNITED STATES: John Wiley & Sons, Incorpo-

rated, 2011. isbn: 978-1-118-02915-2. url: http://ebookcentral.proquest.

com/lib/vcu/detail.action?docID=697550 (visited on 12/07/2019).

[7] Xun Huan and Youssef M. Marzouk. “Sequential Bayesian optimal experi-

mental design via approximate dynamic programming”. In: arXiv preprint

arXiv:1604.08320 (2016).

[8] Wanggang Shen and Xun Huan. Bayesian Sequential Optimal Experimental

Design for Nonlinear Models Using Policy Gradient Reinforcement Learning.

arXiv:2110.15335 [cs, stat]. Mar. 2022. doi: 10.48550/arXiv.2110.15335.

url: http://arxiv.org/abs/2110.15335 (visited on 08/07/2022).

[9] Adam Foster et al. “Deep adaptive design: Amortizing sequential bayesian ex-

perimental design”. In: International Conference on Machine Learning. PMLR.

2021, pp. 3384–3395.

[10] Tom Blau et al. “Optimizing Sequential Experimental Design with Deep Re-

inforcement Learning”. In: International Conference on Machine Learning.

PMLR. 2022, pp. 2107–2128.

[11] Richard Bellman. “The theory of dynamic programming”. In: Bulletin of the

American Mathematical Society 60.6 (1954), pp. 503–515.

[12] A. P. Dempster. “The Dempster–Shafer calculus for statisticians”. en. In: In-

ternational Journal of Approximate Reasoning. In Memory of Philippe Smets

(1938–2005) 48.2 (June 2008), pp. 365–377. issn: 0888-613X. doi: 10.1016/

81

http://ebookcentral.proquest.com/lib/vcu/detail.action?docID=697550
http://ebookcentral.proquest.com/lib/vcu/detail.action?docID=697550
https://doi.org/10.48550/arXiv.2110.15335
http://arxiv.org/abs/2110.15335
https://doi.org/10.1016/j.ijar.2007.03.004
https://doi.org/10.1016/j.ijar.2007.03.004

j.ijar.2007.03.004. url: https://www.sciencedirect.com/science/

article/pii/S0888613X07000278 (visited on 08/07/2022).

[13] Olivier Sigaud and Olivier Buffet. Markov decision processes in artificial in-

telligence. John Wiley & Sons, 2013.

[14] Kevin P Murphy. “A survey of POMDP solution techniques”. In: environment

2.10 (2000).

[15] Sebastian Thrun. “Monte carlo pomdps”. In: Advances in neural information

processing systems 12 (1999).

[16] Anthony E Brockwell and Joseph B Kadane. “A gridding method for Bayesian

sequential decision problems”. In: Journal of Computational and Graphical

Statistics 12.3 (2003), pp. 566–584.

[17] Peter Müller et al. “A Bayesian decision-theoretic dose-finding trial”. In: De-

cision analysis 3.4 (2006), pp. 197–207.

[18] Amir Ali Nasrollahzadeh and Amin Khademi. “Optimal stopping of adaptive

dose-finding trials”. In: Service Science 12.2-3 (2020), pp. 80–99.

[19] Mario J. Miranda and Paul L. Fackler. Applied Computational Economics and

Finance. Cambridge, UNITED STATES: MIT Press, 2002. isbn: 978-0-262-

27992-5. url: http://ebookcentral.proquest.com/lib/vcu/detail.

action?docID=3338831 (visited on 12/10/2019).

[20] Fatemeh Nargesian et al. “Learning Feature Engineering for Classification.”

In: Ijcai. 2017, pp. 2529–2535.

82

https://doi.org/10.1016/j.ijar.2007.03.004
https://doi.org/10.1016/j.ijar.2007.03.004
https://www.sciencedirect.com/science/article/pii/S0888613X07000278
https://www.sciencedirect.com/science/article/pii/S0888613X07000278
http://ebookcentral.proquest.com/lib/vcu/detail.action?docID=3338831
http://ebookcentral.proquest.com/lib/vcu/detail.action?docID=3338831

[21] Peter Flach. Machine learning: the art and science of algorithms that make

sense of data. Cambridge University Press, 2012.

[22] Daniel G. Krige. “A statistical approach to some basic mine valuation prob-

lems on the Witwatersrand”. In: Journal of the Southern African Institute of

Mining and Metallurgy 52.6 (1951), pp. 119–139.

[23] Zoltán Szabó et al. “Learning theory for distribution regression”. In: The Jour-

nal of Machine Learning Research 17.1 (2016), pp. 5272–5311.

[24] Matthias Hein and Olivier Bousquet. “Hilbertian Metrics and Positive Definite

Kernels on Probability Measures”. In: (), p. 8.

[25] Isaac J. Schoenberg. “Metric spaces and positive definite functions”. In: Trans-

actions of the American Mathematical Society 44.3 (1938), pp. 522–536.

[26] Rajendra Bhatia. Positive Definite Matrices. Princeton, UNITED STATES:

Princeton University Press, 2007. isbn: 978-1-4008-2778-7. url: http : / /

ebookcentral.proquest.com/lib/vcu/detail.action?docID=445446

(visited on 12/09/2019).

[27] Sudipto Banerjee, Bradley P. Carlin, and Alan E. Gelfand. Hierarchical mod-

eling and analysis for spatial data. Chapman and Hall/CRC, 2014.

[28] Leandro Pardo. Statistical inference based on divergence measures. Chapman

and Hall/CRC, 2018.

[29] U. Kamps. “Distance measures in a one-parameter class of density functions”.

In: Communications in Statistics - Theory and Methods 17.6 (Jan. 1988),

83

http://ebookcentral.proquest.com/lib/vcu/detail.action?docID=445446
http://ebookcentral.proquest.com/lib/vcu/detail.action?docID=445446

pp. 2013–2019. issn: 0361-0926. doi: 10.1080/03610928808829729. url:

https://doi.org/10.1080/03610928808829729 (visited on 11/02/2019).

[30] Nachman Aronszajn. “Theory of reproducing kernels”. In: Transactions of the

American mathematical society 68.3 (1950), pp. 337–404.

[31] Grace Wahba. Spline models for observational data. SIAM, 1990.

[32] Carl Boettiger, Marc Mangel, and Stephan Munch. “Avoiding tipping points

in fisheries management through Gaussian process dynamic programming”.

In: Proceedings of the Royal Society B: Biological Sciences 282.1801 (2015),

p. 20141631.

[33] Julie M. Walker, Allison M. Okamura, and Mykel J. Kochenderfer. “Gaus-

sian Process Dynamic Programming for Optimizing Ungrounded Haptic Guid-

ance”. In: 2018 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS). Oct. 2018, pp. 8758–8764. doi: 10.1109/IROS.2018.

8594395.

[34] Marc Peter Deisenroth, Carl Edward Rasmussen, and Jan Peters. “Gaus-

sian process dynamic programming”. In: Neurocomputing 72.7 (Mar. 2009),

pp. 1508–1524. issn: 09252312. doi: 10.1016/j.neucom.2008.12.019. url:

https://linkinghub.elsevier.com/retrieve/pii/S0925231209000162

(visited on 09/14/2019).

[35] Joaquim Barris and Pilar Garcia Almirall. A density function of the appraisal

value. Calculation and evaluation of the empirical density function of the ap-

praisal value based on comparison method, spatial correlation techniques, re-

84

https://doi.org/10.1080/03610928808829729
https://doi.org/10.1080/03610928808829729
https://doi.org/10.1109/IROS.2018.8594395
https://doi.org/10.1109/IROS.2018.8594395
https://doi.org/10.1016/j.neucom.2008.12.019
https://linkinghub.elsevier.com/retrieve/pii/S0925231209000162

sampling methods, compliant with the Spanish legal framework. Tech. rep. Eu-

ropean Real Estate Society (ERES), 2011.

[36] Sabine Bellstedt et al. “The SLUGGS survey: using extended stellar kinemat-

ics to disentangle the formation histories of low-mass S0 galaxies”. In: Monthly

Notices of the Royal Astronomical Society 467.4 (2017), pp. 4540–4557.

[37] Hanefi Bayraktar and F. Sezer Turalioglu. “A Kriging-based approach for

locating a sampling site—in the assessment of air quality”. In: Stochastic En-

vironmental Research and Risk Assessment 19.4 (2005), pp. 301–305.

[38] Jay D Martin. “Computational improvements to estimating kriging meta-

model parameters”. In: Journal of Mechanical Design 131.8 (2009).

[39] Yuchen Zhang, John Duchi, and Martin Wainwright. “Divide and conquer

kernel ridge regression: A distributed algorithm with minimax optimal rates”.

In: The Journal of Machine Learning Research 16.1 (2015), pp. 3299–3340.

[40] Ahmed El Alaoui and Michael W Mahoney. “Fast randomized kernel methods

with statistical guarantees”. In: arXiv preprint arXiv:1411.0306 (2014).

[41] Warren B. Powell and Jun Ma. “A review of stochastic algorithms with con-

tinuous value function approximation and some new approximate policy it-

eration algorithms for multidimensional continuous applications”. In: Journal

of Control Theory and Applications 9.3 (2011), pp. 336–352.

[42] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Com-

puting in Python”. In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/

s41592-019-0686-2.

85

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2

[43] James O Berger. Statistical decision theory and Bayesian analysis. eng. 2nd

ed.. Springer series in statistics. New York: Springer-Verlag, 1985. isbn: 0-387-

96098-8.

[44] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. “Variational Inference:

A Review for Statisticians”. In: Journal of the American Statistical Asso-

ciation 112.518 (Apr. 2017), pp. 859–877. issn: 0162-1459. doi: 10.1080/

01621459.2017.1285773. url: https://amstat.tandfonline.com/doi/

full/10.1080/01621459.2017.1285773 (visited on 06/05/2019).

[45] Francois Bachoc et al. “Gaussian processes with multidimensional distribution

inputs via optimal transport and Hilbertian embedding”. In: arXiv:1805.00753

[stat] (May 2018). url: http://arxiv.org/abs/1805.00753 (visited on

09/08/2019).

[46] Xun Huan and Youssef Marzouk. “Sequential Optimal Experimental Design

using Transport Maps.” In: (2017). url: https://www.osti.gov/biblio/

1463964.

[47] Arnaud Doucet and Adam Johansen. “A Tutorial on Particle Filtering and

Smoothing: Fifteen Years Later”. In: Handbook of Nonlinear Filtering 12 (Jan.

2009).

[48] Hera Y He and Art B Owen. “Optimal mixture weights in multiple importance

sampling”. In: arXiv preprint arXiv:1411.3954 (2014).

[49] Stephen Boyd and Almir Mutapcic. “Stochastic subgradient methods”. In:

Lecture Notes for EE364b, Stanford University (2008).

86

https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1080/01621459.2017.1285773
https://amstat.tandfonline.com/doi/full/10.1080/01621459.2017.1285773
https://amstat.tandfonline.com/doi/full/10.1080/01621459.2017.1285773
http://arxiv.org/abs/1805.00753
https://www.osti.gov/biblio/1463964
https://www.osti.gov/biblio/1463964

[50] ROYUDNishino and Shohei Hido Crissman Loomis. “Cupy: A numpy-compatible

library for nvidia gpu calculations”. In: 31st confernce on neural information

processing systems 151.7 (2017).

[51] Charles R. Harris et al. “Array programming with NumPy”. en. In: Nature

585.7825 (Sept. 2020), pp. 357–362. issn: 0028-0836, 1476-4687. doi: 10.1038/

s41586-020-2649-2. url: https://www.nature.com/articles/s41586-

020-2649-2 (visited on 07/24/2022).

[52] Christopher C. Drovandi, James M. McGree, and Anthony N. Pettitt. “Se-

quential Monte Carlo for Bayesian sequentially designed experiments for dis-

crete data”. In: Computational Statistics & Data Analysis 57.1 (2013), pp. 320–

335.

[53] Philip M Dixon. Ripley’s K Function. eng. 2014.

[54] In-Kwon Yeo and Richard A Johnson. “A new family of power transformations

to improve normality or symmetry”. In: Biometrika 87.4 (2000), pp. 954–959.

[55] Krikamol Muandet et al. “Learning from distributions via support measure

machines”. In: Advances in neural information processing systems 25 (2012).

[56] Mosek ApS. “Mosek optimization toolbox for matlab”. In: User’s Guide and

Reference Manual, Version 4 (2019).

[57] Krikamol Muandet et al. “Kernel mean embedding of distributions: A re-

view and beyond”. In: Foundations and Trends® in Machine Learning 10.1-2

(2017), pp. 1–141.

87

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://www.nature.com/articles/s41586-020-2649-2
https://www.nature.com/articles/s41586-020-2649-2

Vita

2014 B.S. in Mathematics with Concentration in Statistics and Minor in Com-

puter Science, University of Maryland, College Park

2016-2019 Research Assistant, NASA Langley

2017 M.S. in Mathematics, Virginia Commonwealth University

2022 Ph.D. in Statistical Sciences and Operations Research, Virginia Com-

monwealth University

Publications

• J. Burris, S. R. Wilson, D. J. Edwards, and K. M. Ballard, “Modeling Uncer-

tainty in Time and Fuel Benefit Estimation for TASAR Operational Evalua-

tion,” NASA/TM-2019-220420, Nov. 2019. Accessed: Jul. 26, 2022. [Online].

Available: https://ntrs.nasa.gov/citations/20190033461

• J. Burris, K. Ballard, S. R. Wilson, and D. J. Edwards, “Visualization and

comparison of aircraft trajectories using Gaussian-Smoothed heatmaps,” Qual-

ity Engineering, Sep. 2021, Accessed: Jul. 26, 2022. [Online]. Available:

https://www.tandfonline.com/doi/abs/10.1080/08982112.2021.1976795

88

	Approximating Bayesian Optimal Sequential Designs using Gaussian Process Models Indexed on Belief States
	Downloaded from

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	 Introduction
	 Background
	 Approximate Value Iteration using Distance-Based Modeling with Conjugate Priors
	Positive Definite Kernels for Probability Distributions
	Covariant Metrics

	Kernel Regression
	Gaussian Process Models

	Potential Issues
	Applications using Conjugate Models
	Linear-Gaussian Problem
	Ordinary Kriging Model
	Universal Kriging

	Beta-Binomial Model
	Results
	Conclusions

	 Bayesian Optimal Sequential Designs via Approximate Dynamic Programming using Sequential Importance Sampling
	Sequential Monte Carlo
	Application to BOSD
	Application
	Particle Approximations and Distance
	Geometry of the Belief State Space
	Results
	Conclusions

	 Batch Bayesian Optimal Sequential Designs via Approximate Dynamic Programming
	Application
	Results and Conclusions

	 Conclusions and Future Work
	Appendix Optimal Sequential Designs for Logistic Regression Model
	Appendix Optimal Batch Sequential Designs for Logistic Regression Model
	References
	Vita

