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Naturally developed proteins are capable of carrying out a wide variety of molecular 

functions due to their highly precise three-dimensional structures, which are determined 

by their genetically encoded sequences of amino acids. A thorough knowledge of protein 

structures and interactions at the atomic level will enable researchers to get a deep 

foundational understanding of the molecular interactions and enzymatic processes 

required for cells, resulting in more effective therapeutic interventions. This dissertation 

intends to use structural knowledge from solved protein structures for two distinct 

objectives. 

 In the first project, we conducted a bioinformatics structural analysis of 

experimental protein structures using our novel paradigm "3D Interaction Homology". The 

three-dimensional structure of biological macromolecules, particularly proteins, provides 
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us with a better understanding of protein interactions and functions, enabling us to 

establish hypotheses about how to modulate, regulate, or modify their functions. 

Therefore, the Kellogg lab proposed a new paradigm for the building and refinement of 

protein structure models using 3D hydropathic maps. To accomplish this goal, we have 

been characterizing the hydropathic interaction residue environments by compiling a 

database of residue type- and backbone angle-dependent 3D maps. In this work, 3D 

hydropathic interaction maps feature of the HINT (Hydropathic INTeraction) program 

enabled calculation and visualization of the 3D hydropathic environments of the three 

aromatic amino acid residues. We have shown that these 3D maps are information rich 

descriptors of preferred conformations, interaction types and energetics, and solvent 

accessibility. We calculated and analyzed sidechain-to-environment 3D maps for over 

70,000 phenylalanine, tyrosine, and tryptophan residues. Moreover, significant and 

occurrence of some special noncovalent interactions (π-π and π-cation) were calculated 

and analyzed. This recognition of even these subtle interactions in the 3D hydropathic 

environment maps is key support for our interaction homology paradigm of protein 

structure elucidation and possibly prediction. 

 In the second project, we aimed to investigate the physical interaction between a 

vitamin B6-salvage enzyme, pyridoxine-5' phosphate oxidase (PNPO), and a vitamin B6-

dependent enzyme, dopa decarboxylase (DDC), employing different approaches, 

including molecular modeling, biophysical, enzyme kinetics, and site-directed 

mutagenesis studies. PLP, the active vitamer of B6, serves as a cofactor for approximately 

180 B6-dependent (PLP-dependent) enzymes and play crucial roles on many of cellular  

Functions, e.g., heme, amino acid, neurotransmitter, DNA/RNA biosynthesis. Vitamin B6 

deficiency is suspected to contribute to several pathologies, e.g., seizures, autism, 



  

 
 

 
 

 

xii 

schizophrenia, epilepsy, and Alzheimer’s disease. High levels of vitamin B6 are also 

linked to neurotoxic effects due in part to potential toxicity by free PLP in the cell. 

Therefore, the cellular content of free PLP is kept very low. Understanding the role of this 

vitamin in these pathologies requires knowledge on its metabolism and regulation, and 

subsequent transfer to dozens of apo-B6 enzymes. We hypothesize that the transfer of 

PLP from the donor PNPO salvage enzyme to the acceptor apo-B6 enzyme DDC requires 

that both enzymes form a complex to offer an efficient and protected means of delivery 

of the highly reactive PLP. Knowledge of the 3D protein structures of PNPO and DDC (in 

both active state or holo-form and inactive state or apo-form) enabled us to undertake 

protein-protein docking and molecular dynamics simulations studies to predict the most 

likely near-native structure of the complex. The physical binding between PNPO and DDC 

were experimentally characterized using fluorescence polarization (FP), surface plasmon 

resonance (SPR), and isothermal calorimetry (ITC) techniques. The dissociation 

constants (KD) was observed to be in low micromolar range. Expectedly, interactions 

between PNPO and apoDDC was found to be about 3-fold stronger than interactions 

between PNPO and holoDDC, with KD values of 0.92 ± 0.07 µM and 2.59 ± 0.11 µM, 

respectively. PLP transfer studies were carried out to demonstrate that PLP is capable of 

transferring from PNPO and activating the apoDDC. Site mutation investigations of critical 

residues identified by computational/modeling studies to be important in protein-protein 

interaction were carried out but showed negligible effect on the complex formation. 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

1.   Introduction 

 Proteins are the workhorses of the cellular machinery, and a major structural 

feature of cells and cell membranes. They play a variety of critical cellular roles and are 

essential for the normal structure, function, and regulation of body tissues and organs.1,2 

Proteins serve as the molecular foundation for numerous biological activities, including 

signal transduction, transport, metabolism, gene expression, cell development, and 

proliferation.1–4 Furthermore, essential cellular processes including DNA replication, 

transcription, translation, and transmembrane signal transduction are all dependent on 

specific proteins. Proteins are distinguished according to their usual functions in the body 

such as enzymes, antibodies, messengers, structural components, and 

transport/storage proteins.5,6  

 The biological activity of a protein is governed by the type and arrangement of the 

amino acid sequence in three dimensions, which governs the protein fold,  appropriate 

arrangement of amino acid residues in an active site, or specific interactions with other 

proteins for structural, regulatory or other functions. The three-dimensional structure of 

biological macromolecules, and proteins in particular, gives us a better knowledge of  
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protein interactions and functions, allowing us to develop hypotheses to modulate, 

regulate, or modify their functions. Knowledge of how cells and organs work require an 

understanding of how proteins function, which is associated with understanding structure 

and interactions of proteins. When we consider the number of available protein 

sequences to the number of available protein structures, it is clear that new protein 

sequences are being acquired at a far faster rate than structures.7 Indeed, with 

increasing structural knowledge of 3D macromolecules, understanding of protein 

function would be expanded, leading to more successful structure-based drug design 

and therapeutic interventions. Three-dimensional (3D) structure of proteins can be 

determined experimentally, using methods such as X-ray crystallography, nuclear 

magnetic resonance (NMR), Cryo-electron microscopy (Cryo-EM), and neutron 

diffraction, or, computationally, such as homology modeling, Ab Initio and threading 

methods. Each of these methods has its own set of advantages and drawbacks. On the 

other hand, proteins are involved in a complex protein-protein interactions (PPIs) 

network within cells.8,9 PPIs is a large, complex network of interactions that are 

necessary for most cellular functions and regulations. The human interactome is 

estimated to have between 130,000 and 650,000 PPIs.10 Structural characterization of 

protein-protein complexes remains difficult, with one significant reason being the weak 

and transient associations of many biologically relevant protein-protein interactions, 

which makes it difficult to capture many complexes in crystals.11 On the other hand, 

computational techniques, such as molecular docking and dynamics simulations, are 

widely applied to bridge this gap.12
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1.1 Experimental protein structure determination 

 1.1.1 Nuclear magnetic resonance (NMR): Nuclear magnetic resonance (NMR) 

spectroscopy is an indispensable analytical technique for organic chemists. It also 

serves , under certain conditions, as a powerful tool to identify the 3D structure of 

proteins. NMR is a technique for measuring the absorbance of radio frequency (RF) 

radiation through specific nuclei such as 1H, 13C, and 15N when subjected to strong 

magnetic fields.13 This works on the basis of the fact that molecules are magnetic, and 

their nucleus spin in the presence of magnetic field. So that, an energy transfer from the 

base energy to a higher energy level is achievable when an external magnetic field is 

applied. Protons exhibit such spinning states (α or β forms) when external magnetic fields 

are introduced, and the variation between these states is proportional to the intensity of 

the applied magnetic field. Through adding the required pulse frequency of 

electromagnetic radiation specific to atom, the spin state can be changed from α form to 

β form (excited form), a process known as resonance. This resonance spectrum can be 

achieved by varying either the electromagnetic radiation or magnetic field while holding 

one as constant.13 

 One of the most key features for determining molecular structure using NMR is 

chemical shift. The difference between the resonance frequency of the spinning protons 

and the signal of the reference molecule is defined as chemical shift. Each nucleus in 

the molecule, ideally, has a distinct electronic environment and hence a distinct chemical 
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shift that can be recognized. Details about internuclear distances and atom positions can 

be determined by the Nuclear Overhauser effect (NOE), i.e., the magnetization effect is  

shifted from one nuclei to another when they are less than 5 Å apart. This includes the 

position of an atom in three-dimensional space, and can be used to recreate the protein’s 

structure. Several considerations, including inadequate data set, estimated distance 

information and necessity of proteins in solution state, all have an impact on the 

determination of protein structure by NMR. In 2020-2021, 17,011 3D structures were 

deposited in the PDB, including 486 structures attributed to the NMR technique.15 

 

 1.1.2 X-ray crystallography: Until now, X-ray crystallography technique has 

been the primary means to characterize 3D structures of proteins and other 

macromolecules.16 The use of this technique began in the late 1950s, culminating in the 

crystal structure determinations of myoglobin and hemoglobin by Sir John Cowdery 

Kendrew and Max Perutz, respectively, for which they shared the 1962 Nobel Prize in 

Chemistry.17 The ability to acquire a crystal is a prerequisite for a successful structure 

determination. In fact, protein crystallization is a complex process due to lack of 

understanding of the actual physics underlying it. Many factors influence the 

crystallization processes, i.e., pH, temperature, protein and precipitant concentration, as 

well as protein purity and stability.18 Once a crystal is obtained, it  is placed on a 

goniometer and  exposed to X-rays that are generated when accelerated electron 

bombards an anode metal. The X-rays are scattered by the atomic electrons in the 

crystal producing diffraction patterns that contain structural details of the molecule. Since 
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a crystal contains infinite numbers of orderly and repeated molecules, the diffraction 

patterns add up to be detected.  Laue and W. L. Bragg developed the foundation for this 

experiment, which is known as Bragg’s law (equation 1); as a sequence, X-ray diffraction  

is analogous to the reflection of atoms in a plane of crystals. Constructive coherent 

interference must arise in order to produce a diffraction pattern that occurs only when 

the specified equation is fulfilled.  

nλ = 2d sinθ                                                     (1) 

Where λ is the X-ray wavelength, d is the interplanar distance, and θ is the angle between 

the incident and planes.  

 The scattered X-rays by the crystal are captured by a charged coupled device 

(CCD) detector or an image photographic plate, to give diffraction intensity or amplitude 

data. The  diffraction data can be influenced by several factors, such as crystal quality, 

crystal symmetry, X-ray intensity, and detector performance. To produce electron density 

maps, the diffraction or intensity data is processed using several crystallographic 

softwares for crystal system recognition, indexing, intensity calculation, and scaling 

factor. One of the key bottlenecks in crystallography is the phase problem (information 

of the direction of the intensity amplitudes is lost during data collection), but can be 

obtained using molecular replacement, and isomorphous replacement approaches. 

Electron density maps are then computed using a fast Fourier transform method with the 

amplitude and phase information. The electron density map is subsequently used to build 

the 3D atomic structure of the molecule, and the crude structure is subsequently refined, 

while being monitored for accuracy by an R-factor. While X-ray crystallography yields 
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the highest atomic resolution of protein structures, it has several drawbacks, including 

the need for a pure, stable, crystallizable protein in sufficient amounts. Larger proteins 

are even more difficult to express and crystallize, so target proteins larger than 250 kDa 

are difficult to solve using this common approach.19 According to Proteopedia, the 

median resolution attained with X-ray crystallography in the Protein Data Bank is 2.05 

Å,20 while the highest resolution achieved on record is 0.48 Å.21 

 

 1.1.3 Cryo-electron microscopy (Cryo-EM): Cryo-EM is a groundbreaking 

method that has the potential to revolutionize the study of biology.22 It is a decades-old 

technology for determining the form of flash-frozen objects by shooting electrons at the 

sample and capturing the pictures that arise. The two main kinds of electron microscopes 

(EM) are scanning and transmission. Transmission EM has better resolution than 

scanning electron microscopes, therefore it is favored for protein structure 

determination.23 The transmission electron microscope is comprised of three major 

systems, electron gun that generates the electron beam that is focused on the specimen 

sample via a condenser mechanism. An image producing system that consists of lenses 

to help focus the electrons, resulting in a magnified image. Finally, an image recording 

system, which is mostly made up of a fluorescent screen that aids in the production of 

an image that can be seen with the naked eye. As a result of technological and 

computational advancements in these technologies over the last decade, it is now 

possible to obtain higher resolution atomic structures. There are several steps that are 

essential in determining the structure of a targeted sample using Cryo-EM, including 

specimen optimization and grid preparation, image acquisition, and image processing. 
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Interestingly, Cryo-EM has already substituted X-ray crystallography for the study of 

membrane-proteins, i.e., a field of study that is fast growing. Many membrane-bound 

proteins are involved in illnesses and serve as therapeutic targets. As of 2020, most 

protein structures determined using cryo-EM are at a lower resolution of 3–4 Å,24 

nonetheless as the technique improves, more and more proteins are being solved at 

higher resolutions. 

 

 

1.2 Computational protein structure determination  

 Protein structures that cannot be determined experimentally or using previously 

stated techniques, frequently due to time/cost limitations or experimental challenges, 

may be modeled using a variety of computational methodologies. During the past few 

years, deep-learning (DL)-based approaches for protein structure prediction have 

received much attention and are fast becoming very useful tool in predicting protein 

structures with high accuracy. These algorithms use the accumulated information from 

50 years of experimental structures characterization deposited in the PDB database by 

combining numerous deep learning advances. Their results are enlightening, with best-

in-class performances made in the two most recent CASP (Critical Assessment of 

PRediction of Interactions) competitions.46 These approaches, e.g., AlphaFold156 and 

new versions of Rosetta (RoseTTAFold),157 certainly show amazing promise. In general, 

DL-based approaches are trained to extract rich structural information from evolutionary 

data to make structure predictions, rather than relying on individual amino acid 
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sequences. However, before the advent of AlphaFold and artificial intelligence based 

approaches, three main approaches for modeling "predicting" 3D structure of proteins 

were known, i.e., homology modeling (comparative modeling), protein threading (fold 

recognition), and ab initio (de novo) approaches. The essential idea behind these three 

approaches is depicted in Figure 1.1 and briefly described below. 

 

 

 

Figure 1.1 General scheme of model construction. 
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 1.2.1 Homology modeling: This approach is commonly used to predict protein 

structures and aids in the construction of comparative models of unknown protein 

structures based on resolved structures of related homologous proteins.25 This approach 

seeks one, or more, protein structures that are homologues to the target sequence 

(templates). The sequences can be aligned of both query and template proteins to fit 

them at its best. This method can also be used to predict unknown proteins using multiple 

templates for different parts of the query protein. The only necessity is that the query  

protein shares at least ~30% sequence identity with a template protein.26 Once query 

and template proteins are aligned, an initial model is constructed using insertion, 

deletion, and substitution from templates. MODELLER,153 YASARA,154 and SWISS-

MODEL155 are three of the most used tools for predicting protein structure using the 

homology modeling approach. 

 

 1.2.2 Protein threading: Protein threading is close to homology modeling, but 

there is no requirement for homologues sequencing. The hypothesis, probably clear, that 

number of unique folds is smaller than the number of proteins in nature.27 Protein 

domains, smaller subunits of protein, have independent folds from the protein. 

Parameters in this approach take into consideration not only the amino acids but also 

other properties such as secondary structure, solvent accessibility, and surrounding 

amino acids. I-TASSER28,29 (Iterative Threading ASSEmbly Refinement) and Phyre230 

are two commonly used tools for threading-based protein structure determination.  
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 1.2.3 Ab initio approach: This method varies from the previously described 

modeling and threading approaches. Rather than utilizing previously solved structure as 

a template, ab initio (de novo) methods seek to build three-dimensional structure model 

based on physical principles.31 The hypothesis is backed by many lines of evidence that 

the primary protein sequence comprises all the requires structural information for overall 

three-dimensional protein structure, i.e., almost all proteins fold into the structure with 

the lowest free energy state, which is dictated by the sequence of their amino acids. 

While a protein’s overall shape may be encoded in its primary amino acid sequence, its  

folding may depend on chaperons for assistance. These methods, however, require 

substantial computational resources, and therefore are used mostly for small proteins.  

 A designed energy function can be used to perform a conformational search, 

which produces possible conformations (decoy structures) from which the most feasible 

ones can be identified and selected.32 Ab initio methods generally rely on three key 

aspects: energy function design, which can be used to sort and select the generated 

decoy structures based on physics- and knowledge-based energy functions; a 

conformational search engine which enables low-energy state identification through 

conformational search using Monte Carol (MC) and molecular dynamic (MD) methods; 

and finally, model selection strategy, which allows for  selection of a near-native model 

from the structures created by the decoys. Despite the enormous computational hurdles, 

ongoing advances in computational sources have motivated the field of de novo protein 

structure prediction science.33 
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1.3 Protein-protein docking 

 As mentioned earlier, protein-protein interactions (PPIs) are involved in many 

biological processes and functions. Due to this, characterizing the complex nature of 

interacting proteins have become an important approach for understanding biological 

processes and pathways, as well as designing effective PPI-targeting modulators. Most 

proteins, especially protein-protein complexes, do not have corresponding structures in 

the Protein Dara Bank (PDB), raising the needs for precise and effective docking 

approaches for understanding and modulating their interactions. Identifying correct 

binding for protein-protein docked complexes is a difficult task due to the comparatively 

flat and large interfaces of protein-protein complexes.12 A variety of docking algorithms 

have been developed over the years, with the majority of them consisting of two stages, 

i.e., docking (sampling) and ranking stages.34,35,35–39 During the docking stage, a large 

number of structures are generated, and potential conformations are sampled from the 

generated structures. The sampled conformations in the first stage are sorted by different 

scoring functions in the ranking stage. The computational cost of search algorithms is 

high in protein-protein docking due to the large number of degrees of freedom. In the 

rigid docking process, a number of search algorithms can be used to optimize rotations 

and translations of the docked protein, as well as the dihedral angles of residues in the 

refinement step. Fast Fourier transformation, geometric hashing and Monte Carlo 

searching algorithm are the three predominant search algorithms employed by different 

rigid-docking calculations.40 Despite the difficulty of resolving structures of protein-
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protein complexes, several docking methods, including easy-to-use servers, are 

available for performing protein-protein docking.34–36,40,41 In general, docking 

methodologies are commonly evaluated38,42–46 using the CAPRI (Critical Assessment of 

PRediction of Interactions) evaluation, it is community-wide experiments which evaluate 

the ability of current protein-docking methods to predict protein-protein interactions.42–

45,47,48 Also, Weng’s group has developed protein-protein docking benchmarks which can 

be used to develop and assess protein-protein docking methods. 38,42,48,49 Cluspro 2.0, 

on the other hand, is one of the most successful Protein-Protein docking methods in the 

CAPRI last rounds.50,51 It uses a Fast Fourier Transform (FFT)-based docking with 

pairwise potential and low-energy clustering of top conformations. Table 1.1 lists several 

well-known protein-protein docking algorithms that have been developed and widely 

used over the years. 
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1.4 Molecular dynamics Simulation 

 Molecular dynamics (MD) simulation is on the verge of becoming a routine 

computational approach for deeper understanding of protein structure and function, as 

well as drug discovery and development efforts.53 MD takes structural flexibility and 

entropic effects into consideration. As increasingly complex algorithms and hardware 

designs are implemented, this allows for more realistic estimation of the thermodynamics 

and kinetics of protein-protein and protein-ligand interaction and binding. Classical MD 

applies Newton's physics to the study of atom and molecule interactions and motions. It 

employs force fields to calculate and measure the forces between the system's 

interacting atoms.54 Newton's laws are incorporated into MD simulations to generate 

successive configurations that provide trajectories for determining the position and 

velocity of particles over time. Many parameters, including  free energy, kinetics 

measures, and other macroscopic variables, may be derived from MD trajectories and 

correlated to experimental observables.55 The precision of the used physical model 

(force field) has a strong influence on the success of MD simulation performance. In 

general, simulations of biomolecules are performed using the CHARMM56,57, 

AMBER58,59, and GROMOS60 forcefields. 

 

1.5 Bioinformatics structural analysis of experimental protein 

structures 

  Our understanding of the structure and function of proteins continues to expand, 

assisted in large part by research that determines their three-dimensional structures.  
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These findings will continue to provide the groundwork for understanding how the 

structure of a protein influences its activity and for future drug discovery. The composition 

and character of each of the twenty amino acids is the determining factor in forming 

proteins, which contain a broad variety of forms and folds, and produce a phenomenal 

array of functions. This diverse collection of amino acid residues shares the same 

backbone, but each of the different sidechains vary in size, shape, polarity, and relative 

hydrophobicity. This variety in sidechain gives each unique roles and functional 

characteristics, with which they can participate in many different interactions that result 

in “proper” protein folding and function. Although amino acids were discovered in the 

early 1800s, and their roles and bonding to form proteins was revealed by Emil Fischer 

in the early 1900s,98 since the advent of X-ray crystallography, sidechain conformational 

analysis has been the subject of many reports for understanding the precise 

conformational propensities99–104 and folding104–108 of amino acids in proteins because it 

is a window into structure and function.  

 

 1.5.1 Aromatic amino acids: Three amino acids: phenylalanine (PHE), tyrosine 

(TYR), and tryptophan (TRP) are referred to as “aromatic amino acids” as they possess 

an aromatic moiety in their sidechains. Altogether, these amino acids represent 8.5% of 

those observed in proteins (PHE, 3.9%), (TYR, 3.3%), and (TRP, 1.3%).109  Their unique 

sidechain characters, with their conjugated planar rings, enable them to engage in 

multiple noncovalent hydrophobic and polar interactions, both as purely hydrophobic 
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moieties, but also in leveraging their aromatic character, such as π-π, π-CH, π-OH, π-

NH, π-SH, π-cation, π-anion interactions, etc.110,111 The increasing availability of detailed  

structural information on proteins and macromolecules have increased our 

understanding of the roles of inter- and intra-aromatic sidechain interactions in many 

biological processes, including early folding events and stability,111,112 protein-nucleic 

acid interactions,113,114 carbohydrate-aromatic interactions,115 and protein-ligand 

recognitions.116–119   Thus, while their frequency of observation is a little more than half 

of average, their unique interaction properties, and with them being present in both 

buried and surface positions, have made PHE, TYR and TRP the subject of numerous 

protein structure and function studies.112,120–122 In contrast to simple hydrophobic amino 

acids, alanine (ALA), isoleucine (ILE), leucine (LEU), and valine (VAL), aromatic 

sidechain residues are also capable of participating in polar interactions as well: the 

surrounding H-donor residues and/or water molecules can make π-polar interactions 

with aromatic sidechains. Cationic sidechains of arginine (ARG) and lysine (LYS) can 

also engage in a “quat-binding” association known as the π-cation interaction that can 

occur between the face of an aromatic sidechain (its π-electrons) and the positively 

charged –NH3
+ of LYS or the (three) charged –NHx

+ of ARG sidechains. The first and 

seminal observation of amine/aromatic interactions within proteins was made by 

Perutz,32 which was followed by Levitt and Perutz, where an H-bond phenomenon was 

suggested between the aromatic sidechains and charged amino groups and further 

structural analysis by Burley and Petsko.123 Later reports by Mitchell and Thornton,124 

however, indicated that this interaction is “remarkably rare” in protein structures. In this 
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sense, many published reports have been dedicated to a better understanding of the 

occurrence and magnitude of π-cation interactions in many aspects including protein 

structure,110,125,126 molecular recognition and catalysis.126–128 Modeling and dissecting  

the π-cation interaction in terms of its origin and strength was the core subject of 

numerous computational129–134 and experimental135–137 studies. The quantum 

mechanical calculations of π-cation interactions have been found to be correlated with 

experimental studies in the gas phase. The latter is important because the “real” 

biological environment of proteins is substantially different and more complex than the 

gas phase, so the translation of quantitative estimates of QM calculated energetics to 

proteins is challenging. Nevertheless, the existence of π-cation interactions in aqueous 

solutions have been computationally138–140 and experimentally125,126,141 acknowledged.  

In addition, peptide models used to examine the stabilizing forces of π-cation interactions 

concluded that they provided no substantial contribution to peptide stabilization and that 

stability was most likely due to hydrophobic effects.142,143 Clearly, however, the 

understanding of the structural and functional contributions and roles of 

hydrophobic/polar interactions for aromatic amino acid sidechains in biological systems 

remains a topic of interest.  Furthermore, in the current era of accelerating interest in de 

novo protein design and engineering that impacts multiple fields with, e.g., enzyme 

variants with improved catalytic activities, more accessible physiochemical attributes, 

altered substrate specificities and/or and stereoselectivities, it will be valuable to 

understand the underlying blueprint of all aspects of protein structure. 
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 1.5.2 3D hydropathic interaction maps for protein structure description: The 

diversity of amino acid sidechains provides each with distinct roles and functional 

features, allowing them to engage in a wide range of interactions that result in "proper" 

protein folding and function. One product of HINT (Hydropathic INTeraction) program144– 

151 that has been utilized is its "3D interaction map" feature. For each residue of interest, 

four general map types are calculated: favorable and unfavorable hydrophobic and polar. 

These maps can define the hydropathic environment surrounding each residue's 

sidechain and/or backbone in 3D space. These maps can be also contoured and 

displayed in 3D space to show the source, nature, and strength of interactions (see 

Figure 1.2).  

 

 

Figure 1.2 Hydropathic interaction map representing the Gaussian-weighted average 

sidechain environment for a PHE sidechain cluster in our dataset. The green and purple 
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contours represent favorable and unfavorable hydrophobic interactions, respectively. The blue and 

red contours, respectively, reflect favorable and unfavorable polar interactions. 

 

 In the first contribution, tyrosine was the focused case by Kellogg's lab, in which 

(~30000) TYR residue maps in the dataset were compressed into 262 backbone- 

dependent environments represented by composite maps146. Importantly, analysis 

describes residues by contextualizing the hydropathic environments of the surrounding 

atoms and environment. For instance, a properly oriented HOH, a residue or a ligand 

can provide the same ‘acidic’ character as a TYR –OH and serine (SER) –OH or even a 

LYS –NH3+ to satisfy its “hydropathic valence”. Thus, protein structure is not driven by 

sequence, but instead by the hydropathic interactions that each residue makes in terms 

of its sidechain and backbone conformations. 

 In the second article, the focus was on alanine and its structural and functional 

roles. For nearly 57,000 alanine residues in the dataset, backbone-to-environment and 

sidechain-to-environment 3D maps were calculated and analyzed separately.147 All ALA 

maps were compressed into backbone- and sidechain-dependent environments of 136 

and 150, respectively. Following that, aromatic amino acid residues,150 as described in 

this dissertation, cysteine and serine,148 and lastly aspartic acid, glutamic acid, and 

histidine,149 were studied and analyzed using this novel motif of protein structure 

description. 
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1.6 Vitamin B6 (B6 vitamers and metabolic pathway) 

 Vitamin B6, arguably the most important vitamin, is comprised of six forms (Figure 

1.3), including the primary forms pyridoxal (PL), pyridoxine (PN), and pyridoxamine (PM), 

and their phosphate derivatives PLP, PNP, and PMP, respectively. PLP serves as a 

cofactor for approximately 180 B6-dependent (PLP-dependent) enzymes involved in 

glucose, lipid and amino acid metabolism, as well as heme, DNA/RNA and 

neurotransmitter  syntheses.61  B6-dependent  enzymes  are  biosynthesized  as  apo-B6 

enzymes and then converted to the catalytically active holo-B6 enzymes, mostly by 

covalently binding to PLP as an aldimine. To synthesize PLP from the primary vitamers 

PNP and PMP, and/or recycle PLP during protein turnover, humans depend on a salvage 

pathway involving pyridoxal kinase (PLKase), pyridoxine 5'-phosphate oxidase (PNPO), 

and pyridoxal phosphatase (Figure 1.4).62–65 PLKase phosphorylates the primary B6, 

pyridoxine (PN), pyridoxamine (PM) and pyridoxal (PL), respectively, to PNP, PMP and 

PLP. PNPO converts PNP and PMP to the active PLP. During protein turnover, 

phosphatases convert PLP to PL. 
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Figure 1.3 Chemical structure of the B6 vitamers and derivatives. 

 

 

Figure 1.4 The PLP salvage pathway and forming the active holo-B6 enzyme. 

 

 1.6.1 PLP-dependent enzymes: PLP-dependent or B6-dependent enzymes are 

biosynthesized as apo-B6 enzymes and then converted to the catalytically active holo-

B6 enzymes, by covalently binding to PLP as an aldimine. PLP-dependent enzymes 

catalyze a variety of processes, including racemization, decarboxylation, and elimination 
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and substitution.66–68 These processes are responsible for neurotransmitter production, 

heme biosynthesis, one carbon unit transfer, and hence nucleic acid production, 

sphingomyelin synthesis, and glucose metabolism.61,64 Since the structure of the first 

PLP-dependent enzyme, aspartate aminotransferase (AAT) was determined, the 

structures of numerous other PLP-dependent enzymes have been characterized, as well 

as efforts to categorize these enzymes. Based on their fold, active site, and amino acid 

sequence similarity, PLP-dependent enzymes are classified into five distinct subtypes69, 

this categorization is shown in Table 1.2 and Figure 1.5. 

 

Table 1.2– Classification PLP-dependent enzymes with representative examples of each class. 

 Aspartate amino transferase (AAT) 

Fold type I Serine hydroxymethyltransferase   (SHMT) 

 Dopa decarboxylase (DDC) 

Fold type II Serine dehydratase 

 Cystathionine β-synthase 

Fold type III Alanine racemase 

 Ornithine decarboxylase 

Fold type IV Branched-chain amino-acid amino transferase 

Fold type V Glycogen phosphorylase 
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Figure 1.5 PLP-dependent enzymes superfamilies.70 Fold-type I: aspartate transaminase (PDB: 

5T4L); fold-type II: tryptophan synthase (PDB: 5CGQ); fold-type III: alanine racemase (PDB: 2VD8); 

fold-type IV: D-amino acid aminotransferase (PDB: 3LQS ); and fold-type V: glycogen 

phosphorylase  (PDB: 5OWY). 

 

 This categorization provides a good illustration of the variety of PLP-dependent 

enzymes and helps to explain and clarify the physiological relevance of these enzymes, 

as well as of PLP, a cofactor required for their functioning. Any change in PLP levels 

may have a detrimental effect on a variety of physiological processes through the failure 

of PLP-dependent enzymes functions.  

 

 1.6.2 PLP deficiency and neurological pathologies: Deficiency of cellular B6 

vitamers, or mutations in the B6-salvage enzymes or key B6-dependent enzymes, is 
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known or suspected to contribute to several pathologies, e.g., seizures, hallucination, 

headache, convulsions, autism, Down syndrome, schizophrenia, Neonatal Epileptic 

 Encephalopathy (NEE), Parkinson’s, Alzheimer’s, and learning disabilities.65,71–76 High 

intake of vitamin B6 is also linked to neurotoxic effects as a result of the PLP reactive 

aldehyde forming aldimines with free amino groups on non-B6 proteins, disrupting their 

function.63,64,77,78 To avoid toxicity, the cell maintains a very low concentration of free PLP 

(unbound) through dephosphorylation to PL by pyridoxal phosphatase, as well as PLP 

feed-back inhibition of PNPO and PLKase. PLP-dependent enzymes, e.g., serine 

hydroxymethyltransferase (SHMT), DOPA decarboxylase (DDC/AADC), glutamate 

decarboxylase, serine racemase, are examples of B6 enzymes involved in the synthesis 

of key neurotransmitters, e.g., D-serine, D-aspartate, glycine, GABA, serotonin, 

histamine, Dopamine, serotonin, norepinephrine (NE) and epinephrine. Low levels of 

GABA, dopamine and serotonin have been implicated in different neurological disorders 

as we already mentioned. Neonatal Epileptic Encephalopathy (NEE) is the most well-

documented neuropathology linked with impaired B6 activity.79–83 NEE patience does not 

respond to conventional anti-epileptic treatments, and without proper treatment 

eventually die as a result of progressive deterioration. NEE is caused by mutations in the 

human PNPO gene, in which there are currently 18 identified mutations (see Table 

1.3).81 NEE patients exhibit decreased PLP levels and/or activity of multiple B6 enzymes, 

resulting in a variety of clinical phenotypes, including seizures, fetal pain, stunted growth, 

hypoglycemia, anemia, asphyxia. PLP injection in large doses alleviate seizures and 

other,84 demonstrating the critical role PNPO and PLKase in the production of sufficient 

PLP to meet the requirements of apo-B6 enzymes. 



  

  

 

25 

 

Table 1.3– PNPO gene mutations affecting enzyme structure and function. 

 

 

 

 

 

 

 

 1.6.3 DDC and AADC deficiency: DOPA decarboxylase (DDC) or aromatic l-

amino acid decarboxylase (AADC) is a PLP-dependent enzyme that catalyzes the 

conversion of aromatic amino acids to their corresponding amines during the synthesis 

of a variety of essential neurotransmitters.85 DDC catalyzes the decarboxylation of L-

DOPA into Dopamine (DA), 5-HTP to serotonin, L-histidine to histamine, L-tyrosine to 

tyramine, and tryptophan to tryptamine (Figure 1.6). DDC is a major target for the 

research of Parkinson's disease, depression, and other neurological illnesses because 

of its essential involvement in neurotransmitter biosynthesis.86–91 One genetic disorder 

associated with DDC/AADC deficiency is called aromatic L-amino acid decarboxylase 

deficiency (AADCD) disorder, an inherited disorder affecting synthesis of 

neurotransmitters that results in serotonin and catecholamine deficiency.91,92 This 

disorder manifests in early childhood and results in significant developmental impairment 

as well as lifelong motor, behavioral, and autonomic symptoms such as oculogyric crises 

PNPO mutation Location PNPO 
mutation 

Location 

D33V N-term R141C -sheet 5 

E50K N-term R161C Loop9 

L83W -sheet 1 P213S -sheet 6 

R95C/H -sheet 2 R225C/L/H Loop12 

R116Q Helix 2 R229W/Q -sheet 7 

G118Q/R Helix 2 P150R Helix 3 

E120K Helix 2 X262Q  
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(OGC), sleep disorders, and mood disorders.91,93 So far, more than 20 mutations in the 

AADC gene have been characterized and identified.94 Clinical phenotypes of patients 

with AADCD are well established; nevertheless, enzymatic phenotypes of AADCD 

patients are mostly unknown and molecular mechanisms by which some of these 

mutation results in DDC deficiency remain unclear and ambiguous. Some of these 

mutations, i.e., S147R, G102S, F309L, and A275T, are located in the active site and 

most likely to impair the integrity of the active site, resulting in decreased PLP binding. 

In addition, solving the crystal structure of apoDDC (open conformation) has shown that 

some of these mutations in Loop1, i.e., Y79C, H70T, H72Y, and T69M, required for 

proper conformational change during the PLP-induced apo-holo transition.95–97 This 

effect was further studied by Giardina et al. and shown that that the KD of PLP is 

significantly affected, i.e., 100 nM, 510 nM, 2145 nM, 487 nM, 1520 nM, 390 nM, for 

T69M, H70T, H72T, T79C, F80A and P81L, respectively, compared to the wild-type DDC 

(43 nM). Further mutations, L38P and A110Q, are in the dimer interface and likely to 

perturb the dimerization configuration process. Other mutations, on the other hand, are 

in locations that are neither engaged in dimerization nor in catalytic site, and some of 

them may be ascribed to affecting PLP transfer through physical binding with salvage 

enzymes. 
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Figure 1.6 The metabolic pathway involves DDC for the synthesis of dopamine and 

serotonin neurotransmitters. 
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1.7 Research plan 

 Our understanding of protein structure and interaction is constantly evolving and 

expanding. These findings will continue to serve as the basis for understanding how 

protein structures influence their functions, allowing us to develop better therapeutic 

interventions. Many proteins, are engaged in a complex network of protein-protein 

interactions (PPI) within cells,10 that are essential for the majority of cellular function and 

regulation.8,152 Many biologically relevant protein-protein interactions are difficult to solve 

experimentally due to their weak and transient nature.8 However, in silico protein 

structure and interaction prediction have accelerated in the last decade, with improved 

data processing and prediction efficiency, which would significantly contribute to the field 

and narrow this gap.51 In this dissertation, the overall objective can be divided into two 

goals; 1) utilizing computational approaches to explore the structural and functional roles 

of aromatic amino acid residues in protein structure; and 2) investigating the nature of 

the protein-protein interaction between the vitamin B6-salvage enzyme pyridoxine 5'-

phosphate oxidase (PNPO) and the vitamin B6-dependent enzyme dopa decarboxylase 

(DDC). The rational for these two projects are described below:  

 

Project 1. 3D Interaction Homology: Hydropathic Analyses of the “π–Cation” and 

“π–π” Interaction Motifs in Phenylalanine, Tyrosine, and Tryptophan Residues. 

Three-dimensional maps of the hydropathic environments of protein amino acid residues 

are rich in information regarding preferred conformations, interaction types and energies, 
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and solvent accessibility. Each residue's interactions are the major determinant of 

rotamer selection as well as secondary, tertiary, and even quaternary protein structure. 

One product of the HINT (Hydropathic INTeraction) program144,145 that has been 

implemented is its 3D interaction maps feature. These maps can be used to calculate 

and determine the environment around protein amino acid residues with respect to their 

hydrophobic and polar interactions.146,147 These maps can be also contoured and 

displayed to illustrate types, strength, and loci of these interactions in 3D space. In 

chapter 2, we focused on the structural roles of the aromatic residues' phenylalanine, 

tyrosine, and tryptophan. In the first part, we calculated and analyzed sidechain-to-

environment 3D maps for over 70,000 residues of these three types that reveal, with 

respect to hydrophobic and polar interactions, the environment around each. We also 

attempted to study the hydropathic interaction character of the space above and below 

the aromatic rings of these residues. This was followed by calculating and analyzing of 

key non-covalent interactions, i.e., π-cation and π- π types of interactions, and 

evaluating the strength and prevalence of these interactions throughout our relatively 

large data set. 

 

Project 2. Computational, biophysical, and kinetic approaches to elucidate 

interactions between PNPO and DDC. PLP serves as a cofactor for approximately 180 

B6-dependent (PLP-dependent) enzymes involved in glucose, lipid and amino acid 

metabolism, as well as heme, DNA/RNA and neurotransmitter syntheses.60,63 B6-

dependent enzymes are biosynthesized as apo- B6 enzymes and then converted to the 

catalytically active holo-B6 enzymes, by covalently binding to PLP as an aldimine. The 
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level of PLP in healthy people's plasma is reported to be low, around 40 nmol/L.8 High 

B6 intake has been associated to neuropathy, apparently due to the PLP reactive 

aldehyde forming aldimines with non-B6 proteins.1-2,6 To minimize toxicity, the cell keeps 

the content of free PLP (unbound) very low through dephosphorylation and PLP feed-

back inhibition of PNPO and PLKase. This raises the unanswered question of how a low 

concentration of free PLP converts dozens of competing apo-B6 enzymes to their active 

holo-forms. Our group was able to characterize the physical complex between the B6-

salvage enzymes, PNPO and PLKase, and several B6-depndent enzymes using a 

fluorescent polarization approach.78 However, our interest in atomic-level understanding 

of the complex structure continues. This current study explores the mechanism by which 

apoDDC are converted to their catalytically active holo-form in vitro. We tested the 

central hypothesis that the transfer of PLP from the salvage enzyme (PNPO) to apoDDC 

involves channeling, which appears to offer an efficient and protected means of delivery 

of the highly reactive PLP. Channeling requires that the donor and acceptor enzymes 

form a physical contact, and inability of such complex formation may lead to detrimental 

outcome. In Chapter 3.2, we reported the findings of molecular docking and dynamic 

simulation studies of the PNPO•holoDDC and PNPO•apoDDC complexes. The goal of 

the modeling study is to gain insight into how these two enzymes potentially recognize 

each other and provide directions for testable hypothesis through site-directed 

mutagenesis. So, what are the key residues that have a high energy contribution to the 

formation of the complex? Following, experimental explorations involving biophysical 

and PLP transfer kinetic experiments were conducted (Chapter 3.3). Summarily, these 

studies attempt to establish experimentally if transfer of PLP from PNPO to apoDDC 



  

  

 

31 

involves complex formation! In Chapter 3.4, site-directed mutagenesis studies were 

carried out on key residues, as predicted by our modeling studies, to evaluate their ability 

to influence the complex formation. 
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CHAPTER 2* 

3D Hydropathic Interaction Maps as a New Motif for 
Describing the Role of Aromatic Amino Acid Residues in 

Protein Structure 
*This chapter is adapted from "3D Interaction Homology: Hydropathic Analyses of the 
“π–Cation” and “π–π” Interaction Motifs in Phenylalanine, Tyrosine, and Tryptophan 

Residues" by AL Mughram M. H. et al., published in J. Chem. Inf. Model. 2021. 

 

 

2.1.1   Introduction 

 The composition and character of each of the twenty amino acids is the 

determining factor in forming proteins, which contain a broad variety of forms and folds, 

and produce a phenomenal array of functions.1,2 This diverse collection of amino acid 

residues shares the same backbone, but each of the different sidechains vary in size, 

shape, polarity, and relative hydrophobicity. This variety in sidechain gives each unique 

roles and functional characteristics, with which they can participate in many different 

interactions that result in “proper” protein folding and function.3–5 Three amino acids: 

phenylalanine (PHE), tyrosine (TYR), and tryptophan (TRP) are referred to as “aromatic 

amino acids” as they possess an aromatic moiety in their sidechains. Altogether, these 

amino acids represent 8.5% of those observed in proteins (PHE, 3.9%), (TYR, 3.3%), 

and (TRP, 1.3%).6 Their unique sidechain characters, with their conjugated planar rings, 

enable them to engage in multiple noncovalent hydrophobic and polar interactions, both 

as purely hydrophobic moieties, but also in leveraging their aromatic character, such as 

π-π, π-CH, π-OH, π-NH, π-SH, π-cation, π-anion interactions, etc.7,8 Thus, while their 
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frequency of observation is a little more than half of average, their unique interaction 

properties, and with them being present in both buried and surface positions, have made 

PHE, TYR and TRP the subject of numerous protein structure and functions studies.9–15 

In general, aromatic amino acids are hydrophobic in nature and tend to be more often 

buried in protein cores than exposed to solvent. This hydrophobic nature and their 

packing preferences have been shown to assist in early folding steps and support the 

stability of protein cores.16,17 Peptide models were also used to investigate aromatic 

sidechain contributions to protein stability and have afforded a better understanding of 

the fundamental driving forces of aromatic sidechain residues in protein folding, function 

and molecular recognition.10,15,18,19  

 Of particular interest, in contrast to simple hydrophobic amino acids, alanine 

(ALA), isoleucine (ILE), leucine (LEU), and valine (VAL), aromatic sidechain residues 

are also capable of participating in polar interactions as well: the surrounding H-donor 

residues and/or water molecules can make π-polar interactions with aromatic 

sidechains. In this sense, many published reports have been dedicated to a better 

understanding of the occurrence and magnitude of π-cation interactions in many aspects 

including protein structure,7,20,21 molecular recognition and catalysis.21–23 Modeling and 

dissecting the π-cation interaction in terms of its origin and strength was the core subject 

of numerous computational24–30 and experimental31–33 studies. The quantum mechanical 

calculations of π-cation interactions have been found to be correlated with experimental 

studies in the gas phase. The latter is important because the “real” biological 

environment of proteins is substantially different and more complex than the gas phase, 

so the translation of quantitative estimates of QM calculated energetics– i.e., largely 



  

  

 

45 

performed in the gas phase– to proteins is challenging. Nevertheless, the existence of 

π-cation interactions in aqueous solutions have been computationally34–36 and 

experimentally20,21,37 acknowledged. In addition, peptide models used to examine the 

stabilizing forces of π-cation interactions concluded that they provided no substantial 

contribution to peptide stabilization and that stability was most likely due to hydrophobic 

effects.38,39 Clearly, however, the understanding of the structural and functional 

contributions and roles of hydrophobic/polar interactions for aromatic amino acid 

sidechains in biological systems remains a topic of interest. Furthermore, in the current 

era of accelerating interest in de novo protein design and engineering that impacts 

multiple fields with, for example, enzyme variants with improved catalytic activities, more 

accessible physiochemical attributes, altered substrate specificities and/or and 

stereoselectivities, it will be valuable to understand the underlying blueprint of all aspects 

of protein structure. 

 The general roles and magnitudes of noncovalent interactions as they effect 

biomolecular assemblies and associations have been studied since the first structures 

of proteins were defined. While each amino acid residue in each protein is unique, and 

their inter-residue interactions determine the structure–from the sidechain rotamer to the 

protein’s fold–there are commonalties in terms of interaction types, loci and strengths. 

Recently, our group utilized 3D hydropathic interaction maps to probe the hydropathic 

environments surrounding amino acids within proteins.40–45 This approach relies on 

calculating the 3D “hydropathic interaction” maps of the residue of interest with respect 

to all other elements within structures. Perhaps obvious, our hypothesis is that unique 

constellations of interactions are comparatively few in number and conserved for each 
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residue type and secondary structure. Importantly, our analysis describes residues by 

contextualizing the hydropathic environments of the surrounding atoms and 

environment. For instance, a properly oriented HOH, a residue or a ligand can provide 

the same ‘acidic’ character as a TYR  –OH and serine (SER)  –OH or even a LYS  –NH3
+ 

to satisfy its “hydropathic valence”. Thus, protein structure is not driven by sequence, but 

instead by the hydropathic interactions that each residue makes in terms of its sidechain 

and backbone conformations. 

 

2.1.2   Hypotheses and research plan 

 In this chapter, we analyzed the hydropathic environments of the three aromatic 

residues derived from the same relatively large dataset of X-ray crystallographic protein 

structures. The local secondary structure for each of the extracted residue was assigned 

based on its backbone conformation (Figure 2.1). Furthermore, the buriedness was 

described using calculated solvent-accessible surface area for each of the extracted 

residues. In previous analyses, each cluster-derived set of extracted residues was 

shown to have a mostly uniform SASA, suggesting that buriedness is also an 

environmental factor defining hydropathic environments and conformation. The 

framework for our analysis in this work is hydropathic interactions, i.e., energetics based 

on the relative solubility of an “atom” with respect to water and 1-octanol. We have shown 

that this simple free energy-based thermodynamic parameter is very revealing of 

structure in the biological environment. In that regard, interactions are defined as four 

types: favorable polar (e.g., hydrogen bond or acid-base), unfavorable polar (acid-acid 
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or base-base), favorable hydrophobic (hydrophobic-hydrophobic) and unfavorable 

hydrophobic (hydrophobic-polar or desolvation). 

 One of our interests in this chapter is to determine if the hydropathic environment 

maps for the aromatic residues also encode the π-cation and π-π types of interactions 

and to assess the strength and prevalence of these over our fairly large data set. Since 

the amount of data analyzed during this work is so extensive, the discussion and 

presentation items within this article will concentrate on only a few chosen segments of 

the Ramachandran "chessboard" schema40,46 (Figure 2.1). To address the questions 

raised above, this chapter will primarily investigate the following: 

1-  3D similarity and clustering of the hydropathic environments of the three 

aromatic amino acid residues using a large dataset of experimental protein 

structures. 

2- Sampling non-covalent interactions above and below the sidechain ring space 

to evaluate the magnitude and occurrence of key non-covalent interactions 

such as π-cation, π-π interactions. 
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Figure 2.1 Ramachandran (φ versus ψ) plots with superimposed chess square schema 

in blue. A) For all residues (except glycine and proline); B) glycine; and C) proline. Two 

centroids of each plot with red dotted lines are illustrated, e.g., b4 (φ= -132.5, ψ=-47.5), g8 (φ= 

117.5, ψ= 147.5), and c4 (φ= -62.5, ψ= -32.5) for 1A, 1B, and 1C, respectively. The three 

aromatic residues involved in this chapter (PHE, TYR, and TRP) were investigated using 

Schema A. 

 

2.2     Methods 

 2.2.1   Dataset. Our dataset consists of 2703 randomly chosen proteins from the 

RCSB Protein Data Bank,47 each of which has no ligand or cofactor in their original 

structures. Our selection criteria were defined and described earlier.40 This protein 

structure collection was chosen to emphasize several simultaneous factors, e.g., 

population-based sampling of fold and chain identities (whether or not proteins with very 

similar or even identical sequences were included in the data set), and resolution-blind 

selection to ensure that unique structures are included – not just the easier to crystallize 

and analyze high-resolution structures. The dataset size should make sure that all or 
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nearly all possible environments of PHE, TYR, and TRP are represented. By assigning 

initial positions of hydrogen atoms to their heavy atoms, i.e., to which they are covalently 

bonded, with idealized geometry, all-atom models were created and optimized via 

conjugate gradient minimization. 

 

 2.2.2   Alignment calculations. We recast the standard Ramachandran ϕ vs ψ 

plot40,46 as 45° by 45° (π/4 by π/4) chess squares in the ϕ − ψ space. The boundaries 

for the squares in ϕ and ψ were shifted by −20 and −25°, respectively, so that the highest 

density regions would fall more squarely within matrix squares. These were labeled as 

a1 through h8 (see Figure 2.1). The ϕ, ψ, and ω torsion angles for each nonterminal 

PHE, TYR, and TRP residue within the proteins of the dataset were calculated, and every 

residue was then binned into the suitable chess square based on its ϕ and ψ. We then 

sub-binned (or “parsed”) each collection of residues in the chess square by their χ1 

(N−CA−CB−CG) angle, group A (0° ≤ χ1 < 120°), group B (120° ≤ χ1 < 240°), and group 

C (240° ≤ χ1 < 360°), which will be referred to as the “.60”, “.180”, and “.300” parses, 

respectively (Table 2.2).  Complete listings of all PHE, TYR, and TRP residues in the 

dataset, their ϕ, ψ, and ω torsions, and also the backbone atom numbers in their 

respective PDB files, are accessible as Supporting Information in the published 

version.42 Additionally, these data are key to identify specific PHE, TYR, and TRP 

residues in the dataset. For simplicity in notation, this work will commonly just allude to 

the PHE’s, TYR’s, and TRP’s sequence numbers within the chess square/parse.  

 A model residue (ALA) template was constructed at the centroid of each chess 
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square, such that it had ϕ and ψ angles for that centroid. In terms of orientation, CA was 

defined to be at the origin and CB was on the z-axis, and therefore, the CA−HA bond 

vector is in the −y, −z quadrant of the yz-plane. As each aromatic residue was 

transformed to align on the centroid template, the rotation and translation matrices were 

calculated by least squares fitting of the C−1, N, CA, CB, C, O, N+1, and CA+1 atoms to 

the template. In other words, the whole protein was frame-shifted such that these atoms 

of the aromatic residue superimposed onto the centroid template of its associated chess 

square. 

 

 2.2.3   HINT basis interaction maps. Interatomic interactions were evaluated 

using the HINT force field and score model48,49 that uses atom– centered parameters, ai 

and Si, the hydrophobic atom constant-derived from experimental determinations of log 

Po/w, the partition constant for 1-octanol and water  and the SASA, for atom i. Generally, 

ai > 0 for a hydrophobic atom and ai < 0 for a polar atom. Si is larger for solvent-exposed 

frontier atoms but near zero for atoms at the center of functional groups. The score 

between atoms i and j is 

bij= aiSiajSjTije-r + Lij , 

where r is the distance (Å) between atoms i and j, Tij has values of –1, 0 and 1 to account 

for the acid, base, etc. character of the interacting atoms and thus properly sign their 

interaction scores, and Lij is an implementation of the Lennard-Jones potential function.48 

By convention, bij > 0 indicates favorable interactions, e.g., hydrophobic-hydrophobic or 
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Lewis acid-Lewis base, and bij < 0 indicates unfavorable interactions, e.g., hydrophobic-

polar or Lewis acid-Lewis acid. 

 A three-dimensional box with an additional 5 Å buffer margin at all sides, with the 

CA atom at the origin, was constructed to explore and calculate a map. The overall box 

dimensions are: for PHE, –10.0 Å ≤ x ≤ 10.0 Å; –10.0 Å ≤ y ≤ 10.0 Å; –7.5 Å ≤ z ≤ 10.5 

Å, (62,197 points, 7200 Å
3
); for TYR, –11.0 Å ≤ x ≤ 11.0 Å; –11.0 Å ≤ y ≤ 11.0 Å; –7.5 

Å ≤ z ≤ 10.5 Å, (74,925 points, 8712 Å
3
); and for TRP, –11.0 Å ≤ x ≤ 11.0 Å; –11.0 Å ≤ 

y ≤ 11.0 Å; –7.5 Å ≤ z  ≤ 12.5 Å, (83,025 points, 9680 Å
3
); all with a point spacing of 0.5 

Å. The HINT basis interaction map formalism40 was used to calculate 3D interaction grids 

that represent the 3D interaction environment associated for a residue with respect to its 

environment. Briefly, the HINT pairwise  interaction list,48,49 i.e., bijs, were translated into 

a 3D map object encoding interaction type and strength and also the loci of those 

interactions in 3D space. We computed the value for every grid point within the map 

using:  

ρxyz = ∑ bij exp { –[(x – xij)
2 + (y – yij)

2 + (z – zij)
2
] / σ }, 

where ρxyz is the map value at a given grid point (x, y, z), xij, yij and zij are the midpoint 

coordinates of the vector between atoms i and j, and σ is the width of the Gaussian map 

peak, for which we are using 0.5.40 As indicated in the above equation, sums were 

computed for every grid point over all pairs of interactions; separate maps for PHE, TYR, 

and TRP sidechain atoms for each of the four general map-types (favorable and 

unfavorable, polar and hydrophobic) were calculated. 
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 2.2.4   Calculation of map-map correlation metrics. The grid maps, m and n, 

are 3D arrays of real-valued points. First, each raw map datum (Gt, where t is the index 

for map points) was transformed into log10 space while holding its sign with (Gt/|Gt|); each 

map point value was also standardized such that 1 was a predefined floor value. 

if |Gt|/F > 1.0, At = (Gt/|Gt|) log10 (|Gt|/F); else, At = 0. 

The similarity, D(m,n), between pairs of grid maps was quantitated with the previously 

described correlation coefficient-based metric,40 i.e., 

D(m,n) = ∑ { 1 – (|At(m) – At(n)|)2 / [(|At(m)| + |At(n)|) • (|A(m)|max + |A(n)|max )] }. 

 

In this case, At(m) and At(n) are values for the same points in map m and map n, 

respectively, and |A|max is the absolute value of the maximum for the map’s grid points. 

Overall, D(m,n) ranges  between 0 and 1, where two identical maps display a value of 1. 

Our map boxes are intended to encompass all possible environments and always include 

a large proportion (> 60%) of zero- valued points, which if taken into account would bias 

D(m,n) such that all map pairs would seem very similar. We thus only use points where 

|At(m)| ≥ 8 |A(m)stddev| or |At(n)| ≥ 8 |A(n)stddev| (Astddev is the standard deviation of the 

average value of all map points) in calculating D(m,n).56 Normally, a correlation metric 

such as D(m,n) should range from 0 and 1; however, pairs  of maps which are exact 

mirror images of each other, i.e., with exactly the same patterns and values but with the 

opposite sign, which would be required for D(m,n) = 0, clearly are not possible. Also, 

even if the two maps were completely nonoverlapping, D would be ~0.5. Therefore, the 
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minimum D is more on the order of 0.6. For maps encoding the four individual classes 

of interactions for the residue sidechain, map-map correlation scores were calculated 

separately. We calculated overall map-map correlations between two 

structures/environments by weighted averages of these four terms, 

D(m,n)all = { 4[D(m,n)hydro(+)] + 2[D(m,n)hydro(–)] + [D(m,n)polar(+)] + [D(m,n)polar(–)] } / 8. 

As we expected that hydrophobic contributions to be the most diverse and information-

rich, favorable and unfavorable hydrophobic contributions are scaled by 4 and 2, 

respectively.56 Map calculations and map-map correlation scores were computed on our 

GPU-based compute server with locally coded programs, including work-reduction 

algorithms such as a first-pass filter to expedite the calculation of matrix components 

when two maps are identical or  near identical. 

 

 2.2.5  Clustering and validation. For cluster analysis, we used the freely 

accessible R software programming language and environment.50 We operated on the 

pairwise Euclidean distances similarity matrices between vectors of the calculated map 

correlation coefficients as above using the k-means method40 with largely default values 

for all of the clustering method parameters. 

 Because the k-means clustering algorithm does not determine the optimum 

number of clusters for matrices of map D(m,n) values, this critical parameter is user-

specified. With experience gained through previous reports of our lab and further 

preliminary studies, we settled on a maximum number of cluster values that allowed for 

both significant map diversity and inter-chess square/inter-residue type comparisons. 

For the three residue types in this study, we set the maximum number of clusters to 12. 
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Most chess square/parses, however, because they are less populated, had fewer than 

12 clusters in their optimal solutions (Table 2.2). Another feature of k-means clustering 

is that it will not form singleton clusters, i.e., if a single member of the set is so unique 

that no other member will join it, that member is left out of the clustering solution. While 

this is fairly rare (~5%), such maps are potentially interesting, and our protocols recover 

them by reconstructing the cluster solutions with the missing singletons. Any chess 

square/parse with four or less maps was not clustered, but instead, averaged, to create 

what is, in effect, a 1 cluster case. Rarely, a set with five or more maps failed to cluster, 

in which case it was also treated as a 1 cluster case. 

 

 2.2.6  Average map, RMSD and solvent-accessible surface area 

calculations. Calculation of average maps requires consideration of a variety of subtle 

variables. Importantly, to avoid what we call “brown mapping”,40 only maps that have 

shown strong similarity to each other should be merged. Average maps for cluster sets 

are constructed by Gaussian weighting of each map’s contribution with respect to its 

Euclidian distance from each cluster’s centroid to more favorably account for maps 

closer to the center of a cluster. We borrowed the term “exemplar” from affinity 

propagation clustering to describe the datum closest to the centroid of each cluster 

generated by the k-means algorithm For the PHE, TYR, and TRP structures, RMSDs 

(root-mean square distances) were calculated by first averaging, using the same 

weighting as above, the atomic positions of all residues within a cluster set to establish 

an average residue model for the set, followed by computing the RMSD from that 

average model for each atom (by name); the atomic values were then averaged to obtain 
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the reported residue RMSD for the set. With the GETAREA algorithm51 default settings, 

we calculated the solvent-accessible surface areas (SASAs) for all PHE, TYR, and TRP 

sidechains. The protein coordinates were used as originally reported in the PDB files and 

only the first conformation was used if the PDB file residue records reported more than 

one. 

 2.2.7   Ring hydropathic environment calculations. The map contents of 

cylinders above and below the rings of phenylalanine, tyrosine and tryptophan were 

collected to determine the types of interactions between the rings and their 

environments. First, the centroid of each ring system was constructed from CG, CD1, 

CD2, CE1, CE2, and CZ (for PHE and TYR) and CG, CD1, CD2, NE1, CE2, CE3, CZ2, 

CH2 and CZ3 (for TRP). Next, trigonal prisms were constructed perpendicular to 

triangles in the ring system as defined in Table 2.1, with heights of 4.0 Å (vide infra). 

These triangles extended to the protons attached to each ring carbon (except  for CG, 

where CB defined the corresponding triangle vertices). Also, to avoid the hydrogen 

bonding influence of tyrosine’s hydroxyl group, the two triangles and associated prisms 

involving that group were omitted. Lastly, the distances from the CA atom to the 

centroid’s two  normals (+4.0 Å and -4.0 Å) were calculated; the “side” of the ring with the 

longer distance was defined as “above” and the side with the shorter distance was 

defined as “below”. 
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Table 2.1–Construction of Cylinders for PHE, TYR and TRP. 

Residue Prism Atoms 

PHE 1 Centroid-CB-HD1 

 2 Centroid-HD1-HE1 

 3 Centroid-HE1-HZ 

 4 Centroid-HZ-HE2 

 5 Centroid-HE2-HD2 

 6 Centroid-HD2-CB 

TYR 1 Centroid-CB-HD1 

 2 Centroid-HD1-HE1 

 3 Centroid-HE2-HD2 

 4 Centroid-HD2-CB 

TRP 1 Centroid-CB-HD1 

 2 Centroid-HD1-HE1 

 3 Centroid-HE1-HZ2 

 4 Centroid-HZ2-HH2 

 5 Centroid-HH2-HZ3 

 6 Centroid-HZ3-HE3 

 7 Centroid-HE3-CB 
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2.3     Results and Discussion 

2.3.1   Dataset 

 We extracted 30,932 non-terminal phenylalanines, 28,886 non-terminal tyrosines 

and 11,573 non-terminal tryptophans using the dataset of 2703 protein structures from 

the RCSB Protein Data Bank documented and thoroughly described earlier.40,41 We 

overlaid a standard Ramachandran-type plot with an 8 by 8 chessboard (Figure 2.1) to 

control the effects on the structure of the φ and ψ angles of the protein backbone, where 

each chess square represents a 45° by 45° sample of φ – ψ space, with boundaries that 

have been slightly shifted to help focus the highest occupied regions inside rather than 

straddling individual squares. Furthermore, we parsed the residues in each chess 

square by their χ1 into angles three groups corresponding to those normally observed in 

rotamer libraries:52–55 a group around 60, a group around 180, and a group near 300. 

Our group showed previously that map-based clustering was able to identify this low 

level of detail nearly flawlessly, except in cases of high solvent-accessible surface area 

–presumably arising in surface exposed residues where there were few if any 

interactions.40,41 

 However, such failures were problematical in calculating averaged maps and 

residue coordinates. Furthermore, splitting the chess square members increased 

computational  efficiency. (Many calculations scale as n
2
: 3 x (n/3)

2
< n

2
). 

 The occupancies of the chess squares range from 0 to 6361 for PHE, 5376 for 

TYR and 2622 for TRP (Table 2.2). For PHE, a total of 32 (of 64) chess squares contain 

10 or more residues and 116  chess square/parses (of 192) are occupied at all (Table 
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2.3 and Figure 2.2); for TYR, a total of 32 chess squares contain 10  or more residues, 

and 117 chess square/parses are occupied at all (Table 2.3 and Figure 2.3); and for 

TRP, a total of 25 chess squares contain 10 or more residues and 100 chess 

square/parses are occupied at all (Table 2.3 and Figure 2.4). Throughout this work, 

chess square names, e.g., d4, will be given in bold italics.  The χ1 parses will be denoted 

by the suffixes .60, .180 and .300. Also, we are using a numerical scheme to simplify 

nomenclature of residues in this article, wherein the sequential number of that residue is 

its name in its particular chess square/parse. Thus, PHE 100 in chess square a1.60 is 

the 100th PHE listed for that chess square/parse in Supporting Information (Table S1) 

in the published version,42 within which its actual pdbid, chain and residue name can be 

found. 

 In the Ramachandran plot, four regions have been associated with secondary 

structure motifs. In our schema, fifteen chess squares (a1, a6, a7, a8, b1, b2, b7, b8, 

c1, c2, c6, c7, c8, d1 and d8) are within the β-pleat motif, seven chess squares (b4, b5, 

b6, c4, c5, d4 and d5) are within the α-helix motif, five chess squares (f5, f6, f7, g5 and 

g6) correspond to the left-hand α- helix motif, and lastly, a single chess square (f2) is in 

a small and isolated region that would correspond to a more common “loop” motif (Figure 

2.2 – 2.4). The other thirty-six chess squares include a handful that are probably mixed 

β-pleat motif and α-helix motifs. Although calculations have been made for all 

Ramachandran chess squares, in this dissertation we are concentrating the discussion 

on four here: three of the common secondary structure elements are being sampled –   
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β-pleat with b1, right-hand α-helix with c5 and d5 (comparing environmental sets within 

a secondary structure motif), and left-hand α-helix with f6.    

 Each residue was superimposed on a stub placed at the centroid of its respective 

chess square. The entire protein was oriented to superimpose the environments 

surrounding each residue in a common frame: the CA-CB vector for each is defined as 

the z-axis; hence the environmental features and variations of the sidechain would be a 

consequence of the residue’s interactions and not likely to be due to backbones 

misalignments. The average root-mean square distances (RMSDs) for the backbone 

atom sets are generally around 0.15 Å, indicating a very small error with this alignment 

scheme, and that the 45° by 45° binning is adequate to maintain common sets of residue 

secondary structures (Table 2.4).  
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Figure 2.2 Ramachandran chessboard displaying the chess square/parse population for 

PHE residue. The Ramachandran ϕ vs ψ plot is rendered into sixty-four 45° by 45° (π/4 by 

π/4) chess squares. The (χ1) parse populations are represented in the log10 scale with the 

colored bars. Their colors reflect the average weighted fraction outside or solvent-exposed, that 

is, “foutside” a measure of solvent accessibility (see text for definition). The ϕ vs ψ regions 

associated with β-pleat, α-helix, and left-hand α-helix secondary structure motifs are shaded in 

light purple, light green, and light orange, respectively. 

 

Figure 2.3 Ramachandran chessboard displaying the chess square/parse population for 

TYR residue. See caption for Figure 2.2. 
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Figure 2.4 Ramachandran chessboard displaying the chess square/parse population for 

TRP residue. See caption for Figure 2.2. 

 

Table 2.2– Residue populations of chess squares/parses for PHE, TYR, and TRP. 

 Number of phenylalanines in parses 60 / 180 /300 

 a b C D e f g H 

1 722/9/4 1217/27/905 76/23/624 7/5/31 0/0/0 0/0/1 0/0/0 1/0/0 

2 2/0/1 5/0/11 0/2/17 0/1/0 0/0/0 0/0/8 0/0/2 0/0/0 

3 0/4/0 0/22/20 1/18/13 0/20/7 5/4/2 0/1/2 0/0/0 0/0/1 

4 0/4/2 8/36/146 85/1695/1656 93/4680/1589 0/2/1 0/1/4 0/1/13 0/0/0 

5 2 /1/1 148/9/522 231/93/2085 83/50/143 0/0/0 1/0/80 0/1/63 0/0/0 

6 0/6/2 29/10/333 12/7/343 1/0/1 0/0/0 3/18/326 0/0/19 0/0/0 

7 0/28/3 4/222/518 0/212/564 0/14/4 0/0/0 0/5/7 0/1/0 0/1/0 

8 179/198/8 488/1273/3355 51/1191/3357 17/478/292 0/1/0 2/0/0 0/2/7 1/1/0 
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Table 2.3– Number of PHE, TYR and TRP clusters by chess square and χ1 parse. 

 Number of phenylalanine clusters in parses 60 / 180 /300 

 a B c D E F g H 

1 12/4/1 12/5/12 9/4/12 2/2/5 0/0/0 0/0/1 0/0/0 1/0/0 

2 1/0/1 2/0/2 0/1/5 0/1/0 0/0/0 0/0/1 0/0/1 0/0/0 

3 0/1/0 0/7/7 0/6/5 0/4/2 2/1/1 0/1/1 0/0/0 0/0/1 

 Number of tyrosines in parses 60 / 180 /300 

 a b C D e f g H 

1 606/23/1 1111/24/1105 144/26/543 12/2/32 0/0/0 0/0/3 0/1/4 0/0/0 

2 0/0/2 2/1/19 0/1/12 0/0/1 0/0/0 0/1/12 0/0/0 0/0/0 

3 0/1/0 0/13/11 0/12/24 0/28/3 0/2/0 0/3/4 0/1/5 0/0/0 

4 3/3/0 9/32/187 80/1425/1383 172/3949/1255 2/1/0 0/3/18 0/0/7 0/0/1 

5 3/1/1 101/3/596 305/64/2080 120/35/95 0/1/1 0/1/84 0/2/155 0/0/0 

6 5/2/6 21/6/318 17/7/208 0/0/0 0/0/1 0/14/399 0/1/25 0/0/0 

7 0/19/1 3/269/438 5/279/301 0/20/1 0/2/0 0/17/19 0/4/4 0/0/0 

8 136/190/6 483/1350/3468 81/1323/2601 26/567/261 0/0/0 0/0/4 0/1/3 0/0/0 

 Number of tryptophans in parses 60 / 180 /300 

 a b C D e f g H 

1 189/15/1 376/24/253 27/11/183 2/1/20 0/0/0 0/0/2 0/0/0 0/0/0 

2 1/1/0 3/1/1 6/0/3 0/0/0 0/0/0 0/0/13 0/0/0 0/0/0 

3 0/0/0 8/6/1 0/9/6 0/8/3 0/0/0 0/1/1 0/0/0 0/0/0 

4 1/4/0 6/12/123 95/646/765 246/1506/870 0/1/1 0/0/2 0/2/2 0/1/0 

5 1/2/0 54/1/99 351/22/627 112/14/71 0/0/0 0/0/13 0/1/19 0/0/0 

6 0/0/0 19/8/62 11/10/89 0/0/3 0/0/0 2/6/129 0/0/7 0/0/0 

7 0/8/0 0/114/74 1/108/191 0/4/5 0/1/0 0/0/1 0/1/0 0/0/0 

8 41/64/1 160/371/1124 19/501/1264 13/142/160 0/1/1 0/0/0 0/0/5 0/0/1 
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4 0/1/1 3/7/10 12/12/12 11/12/12 0/1/1 0/1/1 0/1/4 0/0/0 

5 1 /1/1 12/3/12 12/9/12 7/8/12 0/0/0 1/0/10 0/1/8 0/0/0 

6 0/2/1 6/3/12 4/2/12 1/0/1 0/0/0 1/5/12 0/0/5 0/0/0 

7 0/6/1 1/12/12 0/12/12 0/4/1 0/0/0 0/1/2 0/1/0 0/1/0 

8 11/11/3 12/12/12 5/12/12 5/12/11 0/1/0 1/0/0 0/1/2 1/1/0 

 Number of tyrosine clusters in parses 60 / 180 /300 

 a b c d E F g H 

1 12/4/1 12/5/12 9/5/12 3/1/7 0/0/0 0/0/1 0/1/1 0/0/0 

2 0/0/1 1/1/4 0/1/4 0/0/1 0/0/0 0/1/3 0/0/0 0/0/0 

3 0/1/0 0/4/3 0/3/5 0/5/1 0/1/0 0/1/1 0/1/2 0/0/0 

4 1/1/0 3/7/12 8/12/12 12/12/12 1/1/0 0/1/4 0/0/2 0/0/1 

5 1/1/1 12/1/12 12/9/12 11/7/9 0/1/1 0/1/10 0/1/8 0/0/0 

6 1/1/2 4/2/12 5/2/12 0/0/0 0/0/1 1/4/12 0/1/5 0/0/0 

7 0/5/1 1/12/12 2/12/12 0/6/1 0/1/0 0/3/5 0/1/1 0/0/0 

8 11/10/2 12/12/12 9/12/12 6/12/12 0/0/0 0/0/1 0/0/2 0/0/0 

 Number of tryptophan clusters in parses 60 / 180 /300 

 a b c d E F g H 

1 12/3/1 12/6/12 5/4/8 1/1/5 0/0/0 0/0/1 0/0/0 0/0/0 

2 1/1/0 1/1/1 1/0/1 0/0/0 0/0/0 0/0/3 0/0/0 0/0/0 

3 0/0/0 1/2/1 0/3/1 0/2/1 0/0/0 0/1/1 0/0/0 0/0/0 

4 1/1/0 2/5/12 8/12/12 12/12/12 1/0/1 0/0/1 0/1/1 0/1/0 

5 1/1/0 7/1/8 12/5/12 12/3/8 0/0/0 0/0/3 0/1/5 0/0/0 

6 0/0/0 5/2/9 3/3/12 0/0/1 0/0/0 1/1/10 0/0/2 0/0/0 

7 0/1/0 0/10/9 1/8/6 0/1/2 0/1/0 0/0/1 0/1/0 0/0/0 

8 7/8/1 9/12/12 4/12/12 3/9/9 0/0/1 0/0/0 0/0/1 0/0/1 
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Table 2.4– Summary of results for clustering of maps in chess square/parse b1.60 for PHE, 

TYR and TRP sidechains. 

 

 

Residue 

 

Cluster 

Seta,b 

 

Member 

Countc 

 

Composite 

Similarityd 

 

RMSD 

(Å)e 

 

 

 1f 

Average 

sidechain 

SASA (Å2)g 

 

foutside 

(fraction 

outside)h 

Fractional character in “cylinder”i 

Above ringj Below ringj 

+Hydrok +Polarl +Hydrok +Polarl 

PHE 88 35 0.82572 0.559 63 ± 10 74 ± 49 0.5429 0.1035 0.4099 0.3737 0.3229 

148 89 0.85690 0.552 64 ± 9 31 ± 28 0.1932 0.3014 0.3262 0.6085 0.2164 

516 118 0.90518 0.476 61 ± 8 8 ± 19 0.0424 0.9207 0.0452 0.8028 0.0978 

553 116 0.85948 0.474 62 ± 9 7 ± 11 0.0129 0.9175 0.0517 0.5340 0.2410 

650 28 0.84215 0.579 65 ± 15 81 ± 38 0.6607 0.5348 0.2310 0.2191 0.3535 

725 165 0.90332 0.472 65 ± 6 1 ± 4 0.0000 0.9811 0.0159 0.7597 0.1234 

761 73 0.86562 0.571 64 ± 15 16 ± 16 0.0634 0.7951 0.0871 0.2381 0.3733 

825 63 0.85881 0.584 62 ± 11 33± 32 0.2143 0.8195 0.0898 0.7436 0.1299 

872 195 0.90175 0.528 65 ± 7 4 ± 14 0.0205 0.9214 0.0491 0.6136 0.2277 

1027 92 0.87258 0.516 62 ± 7 11 ± 11 0.0109 0.7542 0.1257 0.7758 0.1048 

1082 98 0.84830 0.564 61 ± 12 29 ± 26 0.2010 0.4666 0.2788 0.619 0.1965 

1192 145 0.90421 0.540 62 ± 8 4 ± 7 0.0069 0.9852 0.0082 0.822 0.0910 

           

TYR 57 167 0.89272 0.227 68 ± 7 13 ± 13 0.0210 0.8424 0.0488 0.2903 0.3125 

166 9 0.88245 0.770 60 ± 23 119 ± 42 0.8333 0.3637 0.2183 0.3150 0.2767 

244 36 0.87764 0.328 52 ± 8 24 ± 23 0.1250 0.4656 0.2079 0.4754 0.2122 

392 79 0.85620 0.408 68 ± 12 37 ± 27 0.2278 0.7105 0.1157 0.3455 0.2894 

316 80 0.86962 0.337 54 ± 9 16 ± 18 0.0750 0.6554 0.1504 0.2707 0.3119 

337 78 0.87343 0.720 63 ± 7 25 ± 21 0.1346 0.8545 0.0462 0.2280 0.3526 

396 104 0.86374 0.284 64 ± 7 57 ± 29 0.4087 0.1477 0.3291 0.3310 0.2834 

403 47 0.85460 0.412 58 ± 11 88 ± 27 0.6915 0.3464 0.2500 0.4630 0.2479 

484 141 0.90495 0.262 60 ± 7 10 ± 14 0.0284 0.8303 0.0554 0.2943 0.3221 

581 151 0.88951 0.260 71 ± 7 15 ± 19 0.0662 0.7933 0.0678 0.2426 0.3042 

714 80 0.87024 0.312 66 ± 8 36. ± 21 0.2000 0.3844 0.2438 0.4082 0.2827 

914 139 0.90620 0.250 66 ± 6 21 ± 15 0.0540 0.5530 0.2190 0.4317 0.2816 
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TRP 23 54 0.91179 0.282 61 ± 7 21 ± 28 0.0833 0.6478 0.1748 0.2634 0.4213 

32 49 0.85943 0.617 54 ± 1 50 ± 45 0.2959 0.4833 0.2476 0.5628 0.2457 

41 30 0.91433 0.279 68 ± 6 51 ± 33 0.3333 0.1396 0.4619 0.6321 0.1834 

106 46 0.89061 0.419 62 ± 1 6 ± 10 0.0000 0.7974 0.0632 0.4796 0.2938 

193 15 0.95680 0.130 72 ±3 62 ± 9 0.5000 0.0696 0.4390 0.3181 0.4132 

224 52 0.92056 0.238 57 ± 5 26 ± 28 0.0962 0.7202 0.1334 0.1216 0.4682 

236 4 0.95663 0.185 67 ± 2 63 ± 5 0.5000 0.3047 0.3336 0.3238 0.3700 

259 28 0.92735 0.928 63 ± 4 43 ± 53 0.1786 0.4767 0.2568 0.3889 0.3180 

273 23 0.91954 0.463 73 ± 9 20 ± 22 0.0435 0.6690 0.1679 0.5624 0.2148 

292 38 0.90149 0.335 60 ± 6 7 ± 12 0.0000 0.7127 0.1143 0.5086 0.2447 

327 17 0.97374 0.879 60 ± 0 11 ± 13 0.0294 0.3879 0.3359 0.5159 0.2333 

348 20 0.94817 0.253 66 ±6 16 ± 30 0.0750 0.2362 0.3543 0.3004 0.3763 

a Cluster sets are simply named for the exemplar residue, which in turn is named for its sequential position in 

a list ordered by pdbid and residue number. (See Supporting Material, Table S1).42 b Detailed lists of the 

cluster set memberships are set out in Tables S2-S4.42 c Counts listed are for all maps. d Similarities are 

calculated as described in the text. Here, the average map of all members of the cluster set (including those 

in the associated similarity sets) is compared to each individual in the set and the averages of these similarities 

are reported. e RMSD for heavy (non-hydrogen) set members based on clustering of the sidechain interaction 

maps.  f average χ1 of the residues in the cluster confirms that the pre-analysis parsing was appropriate.  g 

Average solvent-accessible surface area for sidechain of atom set from GETAREA.h Fraction of residues 

outside (foutside) adapts the i/o criteria in GETAREA as follows: inside = 0.0, indeterminate = 0.5, outside = 

1.0 (see text). i Cylinders as defined in text were superimposed on the map quartet and the map values of 

each thus enclosed grid point were summed [Σ(−hydro), Σ(+hydro), Σ(−polar), and Σ(+polar)] and analyzed.  j 

Above the ring is defined as the face furthest from the residue’s CA carbon, while below is defined as the face 

closest.  k |Σvhydro(+)|/{|Σvhydro(−)| + |Σvhydro(+)| + |Σvpolar(−)| + |Σvpolar(+)|}. 
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 2.3.2 Clustering results in 3D maps. The results described in Table 2.4 

demonstrate that the cluster sets we generated for the b1.60 chess squares of PHE, 

TYR and TRP are fairly robust, mathematically. However, our intent is to ascertain 

whether these clusters encode information-rich sets of interaction environments that 

illuminate protein structure and can be exploited. 

 

 2.3.2.1 Sidechain maps of phenylalanine. The contour plots of the average 

maps for PHE sidechain clusters of b1, c5, d5, f6 for the .60, .180 and .300 parses are 

set out in Figures 2.5 – 2.14, respectively. Two views are shown for each map to help 

visualization: the left element of each pair is rotated such that the x-axis points to the 

right and the z-axis (the CA-CB bond) points up, while the second orientation (a rotation 

around the x-axis) brings the z-axis to the front. The maps are superimposed on the 

exemplar structure for the map. The contour levels chosen for all map pairs are identical 

to allow visual comparisons of relative interaction strengths: favorable polar (+12); 

unfavorable polar (–12); favorable hydrophobic (+3); and unfavorable hydrophobic (–6). 

In some maps, to illustrate the presence of weak polar interactions, translucent blue and 

red contours at +/–6 were also plotted. Noted on each map are the cluster name, the 

contribution of that cluster to the overall chess square/parse population and the average 

solvent accessible area (SASA, S) for that cluster. 
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Figure 2.5 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered PHE sidechain environments for the b1 chess square (χ1 = 60 parse). Two 

views are shown for each map: left) the CA-CB z-axis points up, right) the CA-CB axis points 

out of the page. The x-axis of both views point right, and the y-axis point back on the left and 

up on the right. The green contours represent favorable hydrophobic- hydrophobic interactions 

between the CB methyl, the sidechain, and the neighboring residues. Purple contours reflect 

unfavorable hydrophobic-polar interactions between the PHE sidechain and the neighboring 

residues. Translucent blue and red contours, when present, are plotted at one-half the map 

density of the solid corresponding contours 
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Figure 2.6 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered PHE sidechain environments for the b1 chess square (χ1 = 180 parse). 

 

Figure 2.7 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered PHE sidechain environments for the b1 chess square (χ1 = 300 parse). 

 

 



  

  

 

69 

 

Figure 2.8 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered PHE sidechain environments for the c5 chess square (χ1 = 60 parse). 

 

Figure 2.9 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered PHE sidechain environments for the c5 chess square (χ1 = 180 parse). 
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Figure 2.10 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered PHE sidechain environments for the c5 chess square (χ1 = 300 parse). 
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Figure 2.11 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered PHE sidechain environments for the d5 chess square (χ1 = 60 parse). 

 

Figure 2.12 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered PHE sidechain environments for the d5 chess square (χ1 = 180 parse). 
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Figure 2.13 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered PHE sidechain environments for the d5 chess square (χ1 = 300 parse). 
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Figure 2.14 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered PHE sidechain environments for the f6 chess square (χ1 = 300 parse). 

 

 The b1 chess square represents a subset of the β-pleat conformation and 

contains 2149 maps of the overall PHEs in our dataset. The maps were binned into their 

.60, .180 and .300 parses, i.e., 1217, 27 and 905 PHE maps were then clustered into 12, 

5 and 12 unique cluster environment sets, respectively. At the most basic level, the PHE 

sidechain consists of the CB methylene and the aromatic phenyl ring. The former is in 

all cases interacting with polar backbone atoms (N, O) on adjacent residues, and thus 

demonstrates unfavorable hydrophobic interactions (purple contours) generally seen as 

spheroids, one on each side of the CB (Figures 2.5–2.7). Since these interaction 

contours are nearly always in the same place in this chess square, they must be 
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backbone angle dependent. Some favorable hydrophobic interactions with the CB are 

shown as small (or merged) green contours, most often in cases with low solvent 

accessible surface area (S), such as clusters 516, 553, 725, 872 and 1192 (b1.60, Figure 

2.5), 9 (b1.180, Figure 2.6) and 26, 29, 60, 122, 604, 605 and 870 (b1.300, Figure 2.7). 

Similarly, favorable hydrophobic interactions between the PHE ring and its environment 

are seen in the maps, but again, this is largely dependent on S: the more encompassing 

green contours, whether above the ring, below the ring or both, are found on the maps 

of low solvent accessibility. Correspondingly, maps 553 and 761 of b1.60 (Figure 2.5), 9, 

21 and 23 of b1.180 (Figure 2.6) and 60, 122 and 870 of b1.300 (Figure 2.7) have 

hydrophobic interactions mostly above the ring; maps 516 of b1.60 and 29 of b1.300 

have hydrophobic interactions mostly below the ring; and maps 725, 872, 1027 and 1192 

of b1.60 and 26, 453 and 605 of b1.300 have  hydrophobic interactions both above and 

below the ring. Several of these profiles are certainly suggestive of π-π stacking 

interactions. 

 Cluster maps with unfavorable hydrophobic (purple) interactions surrounding the 

ring were rarely seen, which means that, to the first order, aromatic rings are not found 

in polar environments. However, there some exceptions and caveats: 1) some PHEs are 

very solvent exposed, such as 88 and 650 (b1.60, Figure 2.5), 4 and 12 (b1.180, Figure 

2.6) and 644 (b1.300, Figure 2.7) and potentially available for interactions with water, 

etc.; and 2) the π-cation interaction (to first order) is a hydrophobic-polar interaction, but 

it is a special case, and a key topic of this work is the relationship between this so-called 

π-cation and solvent exposure. The HINT scoring rubric recognizes π systems as Lewis 

bases and thus scores their interactions with hydrogen bond donors as favorable polar. 
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There is evidence of this type of interaction (blue contours near the rings) in a few b1 

maps: cluster 12 of b1.180 (Figure 2.6) and clusters 453 and  579 of b1.300 (Figure 2.7). 

The “classic” π-cation scenario would also have the PHE sidechain mostly buried, which 

is the case for the above two clusters in b1.300. Examination of the maps for the three 

χ1 parses of the b1 chess squares shows our rationale for further dividing the data this 

way: 1) the sets of underlying molecular structures are clearly distinct from each other; 

and 2) high S cases where the phenyl ring shows few interactions would be difficult (or 

impossible)   to differentiate by purely map-based clustering. Our description of the three 

map sets for b1 above, will serve as guidelines for viewing and interpretation of the other 

map sets for c5, d5 and f6 which are shown in Figures 2.8-2.10 (for PHE c5.60, c5.180 

and c5.300, respectively), Figures 2.11-2.13 (for PHE d5.60, d5.180 and d5.300) and 

Figure 2.14 (for PHE f6.300). A few selected maps will be displayed and discussed here. 

Since the c5 and d5 chess squares are both within the Ramachandran plot’s α-helix 

region, we are interested in comparing their observed interaction profiles to both the b1 

chess square and to each other. In earlier report on ALA,41 similar map profiles were 

found in these two chess squares. However, here the situation is far more complex: first, 

there are three distinct χ1 rotamer groups, and second, there are many more potential 

interactions of diverse types between the PHE sidechain and its environment than those 

of the ALA’s methyl. To assess cluster map similarity, we performed the same type of 

calculation used in creating the cluster matrix by using the cluster averaged map 

quartets. High similarity, which in this case is ~0.9, suggests map sets representing the 

same or very compatible hydropathic environments. Three such cases are shown in 
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Figure 2.15: map 169 of c5.60 with map 19 of d5.60 (similarity = 0.8933, Figure 2.15A), 

map 1622 of c5.300 with map 61 of d5.300 (similarity = 0.8996, Figure 2.15B), and map 

1837 of c5.300 with map 16 of d5.300 (similarity = 0.8989, Figure 2.15C). For the f6 

chess square, which is within the left-hand α-helix region of the Ramachandran plot, we 

only plotted the f6.300 maps because the other two f6 χ1 rotamer groups are essentially 

unpopulated. This group somewhat surprisingly shows similar map profiles to the right 

hand α-helix chess squares, especially c5.300. For example, cluster 1859 of c5.300 and 

cluster 35 of f6.300 (Figure 2.15D) have a similarity of 0.9113. Also of note are two 

particularly good examples of the aromatic ring acting as a Lewis base are given by map 

168 of c5.60 (Figure 2.15E) and map 8 of c5.180 (Figure 2.15F). 
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Figure 2.15 Hydropathic interaction map comparisons and putative π-cation features for 

phenylalanine. A) Maps 169 of c5.60 and 19 of d5.60 have similarity = 0.8933; B) maps 1622 

of c5.300 and 61 of d5.300 have similarity = 0.8996; C) maps 1837 of c5.300 and 16 of d5.300 

have similarity = 0.8989; D) maps 1859 of c5.300 and 35 of f6.300 have a similarity of 0.9113; 

E) map 168 of c5.60 and F) map 8 of c5.180 clearly show what may be π-cation interactions 

(blue contours near phenyl ring). See also caption of Figure 2.5. 

 

 One rather obvious but interesting observation is the relationship between the 

map profiles and solvent-accessible surface area (S). There is a backstory as well: S 

also varies rather significantly with chess square and χ1 parse.  In b1, the average S 

values are 15 Å2, 39 Å2, 22 Å2, respectively for the .60, .180 and .300 parses (overall S 

= 18 Å2). The .180 parse itself is rare for PHE b1 (1.25%), which suggests a somewhat 

unusual structural role for these phenylalanines. 

 The average S for c5 is 31 Å2 (37 Å2, 44 Å2 and 30 Å2 for the three parses); for 

d5, S = 41 Å2 (50 Å2, 41 Å2, 36 Å2) and for f6, S = 49 Å2 (93 Å2, 60 Å2, 48 Å2). The 

relationship amongst protein secondary structure, solvent-accessible surface area and 

map characteristics, particularly hydrophobic enclosure and polar interactions of the 

phenyl ring, will be explored in a later section. 

 

 2.3.2.2 Sidechain maps of tyrosines. TYR maps in b1 were binned into their 

.60, .180 and .300 parses, i.e., 1111, 24 and 1105 maps (Figure 2.3), were then 

clustered into 12, 5 and 12 unique cluster environment sets, respectively. The contour 

levels chosen for all map pairs in both TYR and TRP are identical to allow visual 
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comparisons of relative interaction strengths: favorable polar (+18); unfavorable polar (-

18); favorable hydrophobic (+3); and unfavorable hydrophobic (-6). In some maps, to 

illustrate the presence of weak polar interactions, translucent blue and red contours at 

+/-6 were also plotted. 

 Our description will focus on the interaction profiles and contributions of b1.60 

maps (Figure 2.16), however, the remaining maps in TYR b1 and the other selected 

chess squares (c5, d5, and f6) are shown in Figures 2.17–2.18 (for TYR b1.60 and 

b1.180), Figures 2.19–2.21  (for TYR c5.60, c5.180, and c5.300, respectively), Figures 

2.22–2.24 (for TYR d5.60, d5.180, and d5.300, respectively), and Figure 2.25 (for TYR 

f6.300). In the first contribution,40 tyrosine hydroxyl was found to be essential in that all 

environment maps featured favorable polar interactions – hydrogen bonds – with the 

OH, likely as either/both a donor and acceptor. Simultaneously, the presence of the 

hydroxyl produced some unfavorable polar and unfavorable hydrophobic interactions. 

Although our calculation protocols have been somewhat refined since the first report of 

our group in 2015 (notably, calculating independent sidechain maps and parsing by χ1), 

the features seen in Figure 2.16 and Figures 2.17–2.26 are consistent. Favorable polar 

(blue) interactions between the phenolic –OH and its surroundings are observed, and as 

noted, tend to be ubiquitous in TYR map cluster sets. Excepting the hydroxyl, in general, 

the interaction profiles of tyrosines tend to be similar to those found above in 

phenylalanines, displaying the usual observed unfavorable (purple) and favorable 

(green) hydrophobic interactions between the CB methyl and the lower half of the TYR 

ring and their surrounding residues. 
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Figure 2.16 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered TYR sidechain environments for the b1 chess square (χ1 = 60 parse). 

 

 

Figure 2.17 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered TYR sidechain environments for the b1 chess square (χ1 = 180 parse). 
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Figure 2.18 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered TYR sidechain environments for the b1 chess square (χ1 = 300 parse). 



  

  

 

81 

 

Figure 2.19 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered TYR sidechain environments for the c5 chess square (χ1 = 60 parse). 

 

Figure 2.20 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered TYR sidechain environments for the c5 chess square (χ1 = 180 parse). 
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Figure 2.21 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered TYR sidechain environments for the c5 chess square (χ1 = 300 parse). 
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Figure 2.22 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered TYR sidechain environments for the d5 chess square (χ1 = 60 parse). 

 

 

Figure 2.23 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered TYR sidechain environments for the d5 chess square (χ1 = 180 parse). 
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Figure 2.24 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered TYR sidechain environments for the d5 chess square (χ1 = 300 parse). 

 

Figure 2.25 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered TYR sidechain environments for the f6 chess square (χ1 = 300 parse). 
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 In b1.60 (Figure 2.16), interaction patterns where the phenolic –OH is engaged in 

strong favorable polar (blue) interactions, and the aromatic ring is involved in favorable 

hydrophobic (green) interactions exclusively above the ring, are typified by maps 57, 

316, 337, 484, and 581, or below the ring by maps 396, 403, and 914. The remaining 

maps within the b1.60 chess square/parse reveal somewhat weaker favorable (blue) 

interactions surrounding the OH: maps 292, 337 and 714 have average to very sparse 

hydrophobic interactions around the ring. Cluster 166 is highly solvent exposed with 

comparatively very limited population; TYRs within this group tend to participate in 

unfavorable hydrophobic (around CB) and favorable polar (around OH) interactions. 

Identifying the “π- cation” interaction in these maps is complicated by the presence of 

the TYR hydroxyl. 

 As in PHE, there are similarities in map profiles between the c5 and d5 chess 

squares of TYR, rising from both chess squares possessing similar backbone 

conformations. Compare, for example, map 9 in c5.60 (Figure 2.19) and map 69 in d5.60 

(Figure 2.22) – similarity = 0.9163, map 108 of c5.60 (Figure 2.19) and map 24 of d5.60 

(Figure 2.22) – similarity = 0.8943, and map 471 of c5.300 (Figure 2.21) and map 1 of 

d5.300 (Figure 2.24) – similarity = 0.9054. Also, as in PHE, some maps in f6 have 

profiles similar to members of the c5 group: map 1498 of c5.300 (Figure 2.21) and map 

207 of f6.300 (Figure 2.25) – similarity = 0.9244, and map 1640 of c5.300 (Figure 2.21) 

and map 283 of f6.300 (Figure 2.25) – similarity = 0.9012. 

 Other than, or probably because of, the –OH of TYR, a key reason for differences 

between PHE and TYR is that, on average, TYR is more solvent exposed, but again, this 

is secondary structure-dependent. Thus, tyrosines are mostly found in partially polar 
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environments, i.e., where the phenolic OH is involved in an H-bond interaction with its 

surroundings, which would be more likely in a surface or near surface locus. In terms of 

the relation between map profiles and solvent accessibility, the average S value for b1 

is 27 Å
2
, 39 Å

2
, 30 Å

2
, respectively for the .60, .180 and .300 parses and overall S = 29 

Å2. c5 shows a S = 46 Å2 (48 Å
2
, 46 Å

2
, 45 Å

2
); for d5, S = 50 (60 Å

2
, 56 Å

2
, 37 Å

2
); and 

for f6, S = 57 Å
2 (16 Å

2
, 83 Å

2
, 57 Å

2
). These are about 10 Å

2
 larger than the analogous 

values for PHE. 

  

 2.3.2.3 Sidechain maps of tryptophanes. TRPs in the b1 region were binned 

into 376, 24, and 253 TRP maps (Figure 2.4) and separated into 12, 5, and 12 unique 

clustered environment sets according to their respective .60, .180, and .300 parses. As 

for TYR, we will focus on the unique interaction profiles of TRP maps in b1.60 (Figure 

2.26). However, the remaining maps in TRP b1 and other selected chess squares (c5, 

d5, and f6) are illustrated in Figures 2.27-2.28 (for TRP b1.300, and b1.180, 

respectively), Figures 2.29-2.31 (for TRP c5.60, c5.180, and c5.300), Figures 2.32-2.34 

(for TRP d5.60, d5.180, and d5.300), and Figure 2.35 (for TRP f6.300). In many respects, 

the interaction profiles of TRP are reminiscent of PHE and TYR. The fused indole 

aromatic ring system allows more extensive hydrophobic interactions, both above and 

below it, which is especially evident in maps 106 and 224 (Figure 2.26). Unfavorable 

hydrophobic contours attributable to the CB methylene are seen, again as in PHE and 

TYR. The new feature is the favorable (blue) polar interactions between the indolic HE1 

and  its neighbors seen on the NE1-HE1 vector in nearly all maps. 
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Figure 2.26 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered TRP sidechain environments for the b1 chess square (χ1 = 60 parse). 

 

 

Figure 2.27 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered TRP sidechain environments for the b1 chess square (χ1 = 180 parse). 
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Figure 2.28 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered TRP sidechain environments for the b1 chess square (χ1 = 300 parse). 
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Figure 2.29 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered TRP sidechain environments for the c5 chess square (χ1 = 60 parse). 

 

 

Figure 2.30 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered TRP sidechain environments for the c5 chess square (χ1 = 180 parse). 
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Figure 2.31 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered TRP sidechain environments for the c5 chess square (χ1 = 300 parse). 
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Figure 2.32 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered TRP sidechain environments for the d5 chess square (χ1 = 60 parse). 

 

Figure 2.33 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered TRP sidechain environments for the d5 chess square (χ1 = 180 parse). 
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. 

 

Figure 2.34 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered TRP sidechain environments for the d5 chess square (χ1 = 300 parse). 
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Figure 2.35 Hydropathic interaction maps illustrating the Gaussian-weighted average 

clustered TRP sidechain environments for the f6 chess square (χ1 = 300 parse). 

 

 We calculated intercluster similarities between maps in c5 and d5 to identify map 

pairs that share compatible hydropathic environments and S within the same secondary 

structure motif: map 616 of c5.300 (Figure 2.31) and map 64 of d5.300 (Figure 2.34)– 

similarity = 0.903 and map 331 of c5.300 (Figure 2.31) and map 30 of d5.300 (Figure 

2.34)– similarity = 0.876 are examples. While we expect that the f6.300 chess 

square/parse (Figure 2.35) would show similarity to members of c5.300, this is a rare 

motif for a rare residue type, so we do not have enough data to be confident in these 

comparisons. TRP has a similar accessibility to TYR: the average S value for b1 is, 
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overall, 27 Å
2 (28 Å

2
, 53 Å

2
, 23 Å

2
, respectively for the .60, .180 and .300 parses), c5 

has S = 53 Å
2 (69 Å

2
, 62 Å

2
, 43 Å

2
), for d5 has S = 44 (48 Å

2
, 47 Å

2
, 37 Å

2
), and for f6 

has S = 58 Å
2 (171 Å

2
, 9 Å

2
, 59 Å

2
). 

 

 2.3.3 Solvent-accessible surface areas for the aromatic residues. In the data 

above, we found that the solvent accessible surface areas for the three residues 

appeared to show some dependence on chess square and χ1 parse. This suggested to 

us that there might be a discernable pattern that could be revealing of structure, 

particularly within our chessboard schema, which was by design a rational system to 

organize structural data as a function of backbone angles. To explore this relationship, 

we used our foutside metric based on GETAREA51 as described above.  

 The foutside for each chess square/parse was calculated and illustrated in Figures 

2.2-2.4 with the colors of the bars (that represent parse populations by their lengths). 

Chess square/parses within the β-pleat region of the Ramachandran plot for 

phenylalanine (Figure 2.2), as expected, show the lowest foutside (more buried) relative to 

the right- and left-hand α-helix, i.e., averaged foutside of all PHE parses within the β-pleat 

ranges from 0.0-0.2 (red) to 0.2-0.4 (yellow), only two outliers, a6.180 and c6.180, 

displaying a higher (0.4–0.6) exposed fraction. Phenylalanines in the α-helix region are 

somewhat more solvent exposed, with foutside ranging between 0.0 to 0.6, and the left-

hand α-helix is still more exposed. The blueprint for PHE residues in protein structure 

seems to suggest that full burial is preferred, as is seen in its most populated chess 

squares/parses. Larger solvent exposure correlates with rarer (and often unusual) 
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backbone +χ1 conformations.  For example, the two β-pleat outliers in a6 and c6 are χ1  

= 180 parses, where the PHE sidechain does not interact with, or reinforce, other 

elements of the β-sheet.  Clearly because of its para hydroxyl, tyrosine is found in more 

solvent exposed loci. This is evident in Figure 2.3, where most chess squares/parses 

report foutside values in the 0.2-0.4 range. Some backbone +χ1 conformations in the β-

pleat region remain fully buried, which is consistent with the expected stabilization of β-

sheets via hydrophobic interactions. Tryptophan data (see Figure 2.4) are more similar 

to those of phenylalanine. As in PHE, both α-helix regions of both TYR and TRP are 

marginally more solvent accessible than in their β-pleat motif regions. In fact, foutside 

values are dependent on the relative hydrophobicities of the sidechains (PHE < TRP < 

TYR). Generally, PHE has the least exposed fractions: the average foutside for the β-pleat 

region is 0.12, for the α-helix foutside = 0.15, and for the left-hand α-helix foutside = 0.30; 

for TYR, the average foutside for the β-pleat region is 0.20, for the α-helix foutside = 0.26, 

and for the left-hand α-helix foutside = 0.38; and for TRP, the averaged foutside for the β-pleat 

region is 0.14, for the α-helix foutside = 0.21, and for the left-hand α-helix foutside = 0.32. 

 The foutside values for all three aromatic residues on a cluster-by-cluster basis have 

been published and made available (Supporting Information Tables S2-S4)42, and were 

sampled in Table 2.4 for the b1.60 parses of PHE, TYR and TRP. Clear from these data 

is that the aggregate averages are not the complete story: some clusters in b1.60 are > 

50% exposed even though the overall foutside for these residues suggests nearly complete 

burial.  
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 2.3.4 The special roles of aromatic residues. It is likely that no class of amino 

acid residues has received more attention than the three with aromatic sidechains. As 

noted,  two  interaction  motifs  of  special  interest  are  “π-cation”  and  “π- π”  between  

residues in the same protein, residues between interaction proteins and between 

proteins and small molecules. These interaction types are clearly intriguing and, even 

after decades, remain controversial. Even recent articles, e.g., by Dougherty9,21 and 

Vernon et al.,10 in continuing efforts to illuminate the functional contributions of aromatic 

amino acids in various biological processes, do not yield a fully satisfactory 

understanding of these interactions with respect to structure. 

 In contrast, our simple HINT model, upon which the present work is based, 

recognizes these interactions at their basic level: a) the π-cation interaction is the result 

of aromatic carbons being hydrogen bond acceptors, and b) π-π is a special case of the 

hydrophobic interaction. On an atom-atom pair basis neither of these terms are 

particularly noteworthy, but with idealized geometry and the energetics of, e.g., a lysine’s 

–NH3
+ perched over a phenylalanine ring, or a pair of neatly stacked phenylalanines, the 

effects of those atom-atom interactions could be significantly multiplied. The three-

dimensional hydropathic interaction maps we have calculated for the three aromatic 

residues thus should, in principle, encode these interactions. The π-cation interaction 

should be observed as favorable polar interactions more or less perpendicular to the ring 

and the π- π interactions should be observed as favorable hydrophobic  more or less 

parallel to the ring. Note that these are less rigid definitions of the two phenomena: a) 

we are allowing the possibility of a neutral hydrogen bond donor (even a water) to interact 
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with the ring, and b) any hydrophobic group, not just those that are aromatic, could 

interact with the ring. 

 2.3.5 Calculating interaction character near aromatic rings. In order to 

evaluate the character of interactions we sampled in “cylinders” perpendicular to the 

rings with a height of 4.0 Å (Figure 2.36). We defined two cases, above the ring and 

below the ring, to see if there were any differences. We presupposed that there would be 

a fairly limited effect from the somewhat more sterically constricted region on the CA side 

of the ring, i.e., “below the ring”. The raw interaction character is the sum of all grid point 

values enclosed within each cylinder for the four map types in the quartet, as described 

in the Methods. The resulting hydro(+) and polar(+) characters are reported for PHE, 

TYR and TRP for all clusters of b1.60 in Table 2.4, and in detail in Tables S2-S4 

(published version).42 

 

 

 

 

 

 

 

 

 

 

Figure 2.36 Definition of map cylinders for PHE, TYR and TRP. A) The 6 carbons of the 

phenyl ring are averaged to define its centroid. Seven normals passing through the centroid 
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and the indicated atoms are used to define six triangular prisms where regions above and 

below the ring can be differentiated. The sums of the six prisms defines the cylinders. B) The 

triangular prisms and cylinders for TRP are as indicated. C) To remove from consideration 

most interactions due to the phenol -OH of TYR, four trigonal prisms and the resulting cylinders 

are defined as shown. 

 

 

 2.3.6 Relationship between foutside and interaction character. For PHE, TYR, 

and TRP, Figures 2.37–2.39, respectively, set out plots of these interaction characters 

as functions of the SASA parameter foutside that we defined above, for each hydropathic 

interaction map cluster. We show both “above the ring” (top) and “below the ring” 

(bottom) cases. Each marker in the plots is color-coded by its interaction type and sized 

based on the population of that cluster. Further, weighted by 1+2log10(cluster 

population), least squares fit to the functional form ax
3 + bx

2 + cx + d = 0, are shown as 

the solid lines. We do not advocate that these fits provide any meaningful analytical data 

– indeed their statistical metrics are poor – but they are useful for visualization.  
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Figure 2.37 Hydropathic character for clusters in PHE cylinders. Top) interaction character 

for cylinders above the phenyl ring, i.e., on the side farthest from the CA atom; Bottom) 

interaction character for cylinders below the phenyl ring, i.e., on the side closest to the CA 

atom. The green markers and line represent favorable hydrophobic interactions, purple 

represents unfavorable hydrophobic, blue represents favorable polar and red represents 

unfavorable polar. Each data point plots interaction character (summed from grid points as 
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described in the text) as a function of foutside for a map environment cluster. The sizes of the 

markers are log10-scaled by the number of members of the cluster. The fit lines are the result of 

weighted least squares analyses as described in the text. 

 

 The most significant interaction character, obviously, is the favorable hydrophobic 

interaction, prominent both above and below the PHE ring. These observations are in 

accord with the averaged 3D PHE maps (Figures 2.5-2.14) where most clusters with low 

S showed hydrophobic interactions in one or both of these regions. Strikingly, but probably 

be expected, the character of interactions above the ring in the low foutside range (0.0- 0.2) 

are 65-95% favorable hydrophobic. The below the ring case shows a less dramatic trend, 

probably due to steric effects of the backbone, and interactions between its polar atoms 

and the ring. With the more exposed map clusters, we see a decrease in favorable 

hydrophobic character coupled with increasing favorable polar interaction character within 

the cylinder space. The unfavorable hydrophobic interaction character tracks closely with 

that of the favorable polar, likely in part due to interactions between the same polar atoms 

and the nonpolar protons on the ring.   

 Clearly, at the higher foutside range, e.g., >0.50, polar interactions dominate, and 

the associated interaction profiles may even involve water molecules. Favorable and 

unfavorable polar interactions under these conditions are expected, as hydrophobic 

environments are by definition not solvent exposed. In contrast, favorable polar 

interactions at relatively low foutside, for 0.20 < foutside ≤ 0.50, are much more interesting, 

and account for ~20-25% of the overall interactions. These interactions would seem to 

fit the classic “π-cation” definition, but regardless  if they are true to that definition, they 
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contribute significantly to the stabilization and conformation preferences for PHE 

residues. 

 We also explored whether there are secondary structure-related differences in 

these relationships. Figure 2.38 illustrates these effects. We found interesting variations 

amongst the three secondary structure motifs, β-pleat, and right- and left hand- α-helix, 

with respect to interaction character. We already noted that the below the ring cases 

likely include polar interactions from the backbone, and that is evident here as well. The 

β-pleat case displays a rapid and mostly linear loss of favorable hydropathic character 

as solvent accessibility increases compared to the other two secondary structure motifs, 

which are surprisingly nearly identical to each other. These plots suggest that even at 

foutside ~0.75, there is a significant fraction of favorable hydrophobic interactions in the 

two α-helix motifs (~60%) compared to the β-pleat motif (~30%), but it is important to 

recall that overall, especially in the β-pleat region of the Ramachandran plot, most PHEs 

are buried (with foutside < 0.40, Figure 2.2). Thus, the high foutside cases are themselves 

less common – a point also evident in Figure 2.37 in that more large-sized markers are 

found on the left side of the plot.  
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Figure 2.38 Hydropathic interaction characters for clusters in PHE cylinder by 

Secondary Structure. Secondary structure-related differences for the four interaction 

characters within cylinders above (top row) and  below (bottom row) the phenyl ring. Fractions 

are based on the weighted least squares fits calculated as described in the text. Character 

fractions are colored as shown. 

 

 Figure 2.39 shows the relationship between interaction character and solvent 

accessibility within the 3D cylinders above and below the TYR ring. Like PHE, the 

favorable hydrophobic character seems to be more significant and SASA-dependent 

above the ring than below. In fact, the below the ring plot is monotonic with all four of the 

character type contributions varying little over the entire foutside range. These behaviors 

are likely due to two related factors: 1) TYR residues are, in general, more solvent 

exposed than PHE (Figure 2.3); and 2) the –OH produces interactions with other 

residues within the cylinders, despite our efforts to exclude them in our cylinder design 
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(Figure 2.36). Again, favorable polar interactions for 0.20 < foutside ≤ 0.50 account for ~20-

25% of the overall, suggesting the presence of π-cation interactions. We also explored 

whether there are secondary structure-related differences in the hydropathic interaction 

characters above and below TYR rings: Figure 2.40 shows these effects. Briefly: 1) for 

the β-pleat motif, the TYR behavior above the ring is very similar to that of PHE (Figure 

2.37); 2) for the two α-helix motifs, probably due to increased solvent exposure, the 

behavior above the ring is more similar to that of the β-pleat motif; and 3) similar to the 

overall result, the behavior below the ring for all three motifs is largely featureless.  
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Figure 2.39 Hydropathic character for clusters in TYR cylinders. Top) interaction character 

for cylinders above the tyrosine ring, i.e., on the side farthest from the CA atom; Bottom) 
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interaction character for cylinders below the tyrosine ring, i.e., on the side closest to the CA 

atom. See caption for Figure 2.37. 

 

 

 

Figure 2.40 Interaction types for modified volumes above and below phenol ring in TYR 

by secondary structure. Results from weighted least squares fits as described in text; colors 

as indicated. 

 

 The graph in Figure 2.41 illustrates the relationship between character and foutside 

in cylinders below and above the tryptophan ring. These plots are qualitatively similar to 

those of tyrosine (Figure 2.39), except that there is a somewhat larger favorable polar 

character above the ring for 0.20 < foutside ≤ 0.50, suggesting, as has been previously 
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suggested,9 that TRP is more effective for forming π-cation interactions. We also studied 

the secondary structure-related profiles for tryptophan (Figure 2.42) which are generally 

similar to those  of TYR. 
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Figure 2.41 Hydropathic character for clusters in TRP cylinders. Top) interaction character 

for cylinders above the tyrosine ring, i.e., on the side farthest from the CA atom; Bottom) 
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interaction character for cylinders below the tyrosine ring, i.e., on the side closest to the CA 

atom. See caption for Figure 2.37. 

 

 

 

 

Figure 2.42 Interaction types for modified volumes above and below phenol ring in TRP by 

secondary structure. Results from weighted least squares fits as described in text; colors as 

indicated. 

 

 

 2.3.7 Identifying “True” π-cation and π-π stacking interactions. In the results 

above, we broadly evaluated favorable polar and favorable hydrophobic interactions 

within the cylinder volumes above and below the aromatic rings. It is reasonable to 
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inquire what fraction of these interactions fit the “classic” π-cation and π-π definitions. 

Thus, we reanalyzed our data with a different approach: we surveyed the lists of 

interactions  used  for  map  generation  by:  1) filtering  for  those  interactions with  their  

midpoint within the cylinders, 2) filtered that set for interactions involving one of the 

aromatic atoms of the residue, and then, 3a) for the favorable polar interaction set, 

filtered for interactions with HZ1, HZ2 and HZ3 of a LYS or with HE, HH11, HH12, HH21 

and HH22 of an ARG (i.e., the cationic protons), or 3b) for the favorable hydrophobic 

interaction set, filtered for interactions with one of the aromatic atoms of another PHE, 

TYR or TRP. Table 2.5 tabulates this data in two ways: 1) by score, i.e., the fraction of 

the total favorable hydrophobic interactions attributable to “true” π- π interactions and 

the fraction of the total favorable polar interactions attributable to “true” π-cation 

interactions (both as defined above); and 2) by presence, i.e., whether interactions 

meeting those criteria were found in the cylinders above or below the ring. While π- π 

interactions are found in a large fraction (between one-third and more than one-half) of 

the cylinders for the three aromatic residues, energetically they contribute less than 5%. 

Similarly, the presence of π-cation interactions (~8-27% of the residue sidechain 

cylinders) is much larger than their ~1% contribution to score (i.e., energetics). As also 

reported by Gallivan and Dougherty,9 we found that TRP is the most likely residue to 

form π-cation interactions, i.e., 27% (Table 2.5) of total TRPs in our dataset seem to 

engage in this interaction while they report 26%. The very recent study by Vernon et al.10 

more than qualitatively agrees with our assessment of π-π interactions: our fractions by 

presence counted above and below the ring cylinders as separate occurrences – their 
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reported frequencies are thus about half of ours, 28%, 20% and 29%, for PHE, TYR and 

TRP, respectively. 

 

Table 2.5– Analysis of cylinder character for π- π and π-cation interactions. 

 

Residue 

Type 

Fraction in cylinder π-π Fraction in cylinder π-cation 

by score by presence by score by presence 

PHE 0.039 0.533 0.012 0.141 

TYR 0.043 0.341 0.005 0.083 

TRP 0.025 0.557 0.014 0.268 

 

2.4 Summary and Conclusion 

 In this chapter, we demonstrated that the hydropathic environment surrounding 

an amino acid residue within a structured protein, in terms of its interactions, could be 

mapped, and that these maps can be clustered and averaged into a fairly limited set. 

Underlying each average map is an average prototype residue structure. Thus, these 

data provide what is truly a backbone-dependent library of not only sidechain rotamers, 

but also 3D residue interaction preferences. In other words, the presence of a feature, 

such as a favorable polar interaction in one of these maps, e.g., a TYR in the b1.60 (β-

pleat) chess square parse cluster 581, where the –OH is acting as a hydrogen bond 

donor, should have a complementary acceptor on a neighboring residue. Accordingly, 

that residue’s map should have a similar feature  in its hydropathic interaction map, and 

the 3D alignment of these features–and others in a collection of residue-by-residue maps 
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–would be a hallmark of a well-organized hydropathic interaction network. Significantly, 

it is not only favorable interactions that compose the hydropathic network. Clearly, from  

the sampling of maps illustrated here, and in our other studies,40–45 unfavorable polar 

and especially unfavorable hydrophobic interactions are found in the maps  because 

these interactions are found in protein structure. Some of the latter are unavoidable: even 

the most polar atoms on sidechains are covalently bonded to hydrophobic atoms and 

“background noise” of unfavorable hydrophobic interactions quite often accompanies 

strong favorable polar interactions. However, there are many unfavorable hydrophobic 

interactions that are significant and functional contributors to structure, e.g., to add 

flexibility, sequester water or perform other roles.  

 We analyzed the interaction environments of about 70,000 aromatic, i.e., 

phenylalanine, tyrosine and tryptophan, amino acid residues in a diverse collection of 

protein structures. While there is not a tremendous variety in sidechain conformations 

for these residues – rotamer libraries show three preferred χ1s and two χ2s –there is 

tremendous diversity in interactions, solvent accessibility, and their structural roles.  

 In the previous report,41 it was stated that full understanding of the individual 

environment maps for alanine would first require completing the analysis for all residue 

types. This current work is a status update on that task – for PHE, TYR and TRP. The 

remaining residues have been completed43–45 or are in different stages of completion 

and analysis, and additional studies are estimated in the near future. As with alanine, 

our evaluation of interactions of the aromatic residues with three-dimensional maps 

supports our interaction homology paradigm as a tool for exploring and perhaps 
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predicting protein structure. In these cases, the hydropathic valence is much more 

complex, involving additional terms such as hydrophobic interactions with aromatic 

carbons  that  may  be  of  π-π  character  and  polar  interactions  that  include  hydrogen 

 bonding with the OH/HH of tyrosine and the NE1/HE1 of tryptophan and aromatic atoms 

acting as Lewis bases. Recording these effects as we have with 3D maps enables the 

second tenet of the interaction homology paradigm: it is the hydropathic “field” of the 

atoms surrounding a residue that directs its conformation or other properties, including 

secondary structure. This pattern defines a residue’s hydropathic valence, which when 

represented by a numerically limited set of maps, is a conserved structural property of 

amino acid residues in a protein. Lastly, biological structure is clearly a delicate balance 

of effects, and assembling this puzzle in the absence of high-quality structural data, e.g., 

by homology modeling56–58 or de novo structure prediction,59–61 involves many pieces 

and interactions; our maps and strategy inherently include the special features of the 

aromatic residues in the model. 
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CHAPTER 3 

Computational, Biophysical, and Kinetic Approaches to 
Elucidate Interactions Between Pyridoxine 5′-Phosphate 

Oxidase (PNPO) and Dopa Decarboxylase (DDC) 
 

 

3.1   Introduction 

 Unlike bacteria and plants, humans cannot synthesize pyridoxal 5'-phosphate 

(PLP) de novo and must rely on a salvage pathway for PLP synthesis involving pyridoxal 

kinase (PL kinase), pyridoxine 5′-phosphate oxidase (PNPO), and phosphatases to 

provide enough PLP as a co-factor to hundreds or PLP-dependent enzymes for their 

biological activities.1–3 Vitamin B6-dependent neonatal encephalopathy (NEE) and other 

vitamin B6-dependent disorders associated with a cellular PLP deficiency can be induced 

by mutations in the B6 salvage and/or PLP-dependent enzymes. Due to the fact that 

several apo-B6 enzymes compete for available PLP in the brain, it cannot be assumed 

that PLP is distributed evenly among them. Since PLP deficiency usually manifests first 

in DOPA decarboxylase and kynureninase, their activities have been used to monitor B6 

deficiency.4,5 Excessive B6 intake is linked to neurotoxic consequences as a result of the 

PLP reactive aldehyde forming aldimines (Schiff base) with amino groups on non-B6 

proteins; altering their function.1,6,7 PLP is found in plasma in healthy individuals at low 

concentrations, i.e., around 40 nmol/L.8 To prevent toxicity, the free PLP (unbound) 

content in cells is therefore maintained very low.1 Due to the need for PLP by hundreds 

of enzymes during protein turnover, an unanswered issue exists! How can dozens of 
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competing (apo) B6-enzymes be converted to their active holo-forms when only a low 

concentration of free PLP is available in the cell? Our hypothesis is that most of the PLP 

required by the PLP-dependent enzymes are made available directly from the salvage 

enzyme to the PLP-dependent enzyme, which may involve direct contact between the 

donor and acceptor enzymes.  In this context, this chapter aims to provide a better 

knowledge of the interaction between the B6-salvage enzyme PNPO, and the B6-

dependent enzyme, DDC, by employing computational and experimental approaches. 

Further evidence for our key premise that "direct channeling" is required for cellular 

activation of apo to holo B6-enzyme is also among our primary goals. 

 The traditional paradigm for PLP transfer to PLP-dependent enzymes is for PLP 

to be released from the salvage enzymes PLKase or PNPO into the bulk solvent and then 

acquired by PLP-dependent enzymes. However, this proposal lacks an explanation for 

why free PLP is always reported to be at low levels in vivo. Additionally, releasing free 

PLP into the bulk solvent allows it to be degraded by PLP phosphatase. Moreover, labile 

free PLP is known to be toxic. Therefore, a second possibility is that substrates are 

channeled between enzymes that synthesize PLP and enzymes that are PLP 

dependent.2,9 Numerous contributions from our group and collaborators6,10–14 have 

supported the second hypothesis where PLP are more likely to be transferred directly 

from B6-salvage enzymes to B6-dependent enzymes, to produce the active holo-B6 

enzymes. In the absence of structural evidence, in silico studies were carried out using 

molecular-based docking and dynamics simulation to predict the most likely near-native 

complex between the PNPO and DDC, in both apo- and holo-forms. 
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3.1.1 PNPO allosteric characteristics and PLP binding  

  PLP, the active form of vitamin B6, serves crucial physiological functions in all living 

organisms.1,15 PNPO is a flavin mononucleotide (FMN)-dependent enzyme that catalyzes 

the terminal step in the de novo biosynthesis of vitamin B6 and is involved in the salvage 

route in both Escherichia coli (E. coli) and mammalian cells.2,22 PLP, or active form of 

vitamin B6, is formed by PNPO oxidizing the 4'-hydroxyl group of PNP or the 4'-amino 

group of PMP at the active site (Figure 1.3). This catalytic process involves two electrons 

transfer to FMN, resulting in formation of FMNH2 (Figure 1.4). These electrons are finally 

transported to molecular oxygen, resulting in the formation of hydrogen peroxide and the 

regeneration of FMN.2,7,12  In addition to acting as catalysis, PLP has been revealed to 

fulfill other biological functions, such as reactive oxygen species scavenger in plants,16,17 

transcriptional regulator in Eubacteria,18 and virulence factor in Helicobacter pylori (H. 

pylori) and Mycobacterium tuberculosis (M. tuberculosis).19,20 PNPO is known to have a 

strong affinity for PLP at a secondary binding site (allosteric site) distinct from the active 

site.1,10,21 In vitro experiments revealed that this tightly bound PLP is solvent-protected 

and easily transferred to apo PLP-dependent enzymes.11,22 In addition, it has been proven 

that, at least in E. coli, the inhibition of PNPO is induced by PLP binding to the allosteric 

site.23 However, structural position for the PLP allosteric-bound site has eluded 

researchers for decades. That is until recently, when the Contestabile group at the 

University of Rome, Sapienza was able to characterize the allosteric PLP binding site of  

E. coli PNPO using site-directed mutagenesis and crystallographic studies (Figure 3.2).24 

A critical component of our investigation in this chapter is to test the hypothesis that PLP 
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transfer to apo B6-enzymes involves channeling from this recently characterized allosteric 

PLP binding site. 

 

 

3.1.2 Hypotheses and research plan 

  Dopa decarboxylase,25 which has been determined in both the apo26 and holo27 

forms, could be used as a starting point to obtain a better understanding of the activation 

of B6-enzymes. DDC is required for the biosynthesis of key neurotransmitters, i.e., 

dopamine, serotonin, norepinephrine, and epinephrine neurotransmitters. Our group has 

already demonstrated that B6-salvage enzymes form physical complexes , in both apo 

and holo forms, with several B6-depndent enzymes.11 Furthermore, using kinetic studies, 

the complex with SHMT was found to be involved in PLP transfer and activation of 

apoSHMT, a B6-depndent enzyme.11  In this work, we carried out several studies including 

molecular modeling, biophysical, PLP transfer studies, and site directed mutagenesis 

studies to investigate the interactions and PLP transfer between PNPO and DDC. The 

overall goal of this study was to provide a better and comprehensive understanding of 

how the B6-salvage enzyme (PNPO) interacts with the B6-dependent enzyme (DDC). 

Interactions between PNPO and DDC were investigated using molecular modeling, 

biophysical, and PLP kinetic transfer studies, as discussed in the subsequent sections 

and listed below: 
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3.2 Molecular docking and dynamics simulation studies to elucidate interactions 

between PNPO and DDC 

3.3 Biophysical and PLP transfer studies to probe interactions between PNPO and 

DDC 

3.4 Site-directed mutagenesis and biophysical studies to validate the PNPO•DDC 

complex model 
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3.2 Molecular Docking and Dynamics Simulations to 
Characterize the Interactions between PNPO with Apo-and 

Holo-DDC 
 

3.2.1   Introduction 

 Protein-protein interaction (PPI) complexes are key components of a wide range 

of biological events that need an atomic-level description to fully understand. Because of 

the nature of the formed interaction, characterizing the 3D structure of transitory and low 

affinity binding PPI complexes remains a difficult challenge.28–30 

 Both crystal structures of DDC in the apo- and holo-conformations, i.e., holoDDC 

(pig kidney DDC with 90% sequence similarity to human DDC; PDB: 1JS3)27 and human 

apoDDC crystal structures (PDB: 3RCH, 3RBF, and 3RBL)26 have been determined. PLP 

binding to the open conformation of apoDDC induces a substantial structural 

rearrangement, resulting in the closed (holo) conformation (Figure 3.1). In apoDDC, the 

active site is totally exposed to solvent, and the two large domains (residues 86-360) 

move by up to 20 Å compared to the closed (holo) conformation (Figure 3.1). With crystal 

structural knowledge of DDC in both conformations, this would provide more assistance 

in modeling the complex interaction between PNPO with DDC in both states, resulting in 

a better understanding of the nature of their association. 
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Figure 3.1 Dimeric crystal structures of apoDDC (open conformation) and holoDD 

(closed conformation). β-sheet is shown in magenta, α-helix in cyan, and loops in 

salmon. 

 

 The crystal structure of PNPO from  human, E. coli and yeast have been 

determined, and form a homodimer in which each subunit binds one FMN 

molecule/subunit (Figure 3.2A).  The human PNPO enzyme has been shown to have an 

allosteric PLP binding site, which is found to be important for the enzyme allosteric 

regulation and, as a result, for the regulation of vitamin B6 metabolism in humans. The 

PLP allosteric binding site (PLP tightly binding site) was recently identified 

crystallographically; Figure 3.2B), and  stoichiometry of PLP tight binding revealed to be 

two PLP molecules per human PNPO dimer.24,31 The crystal structures of PNPO from 

human, E. coli, and yeast lack density in the N-terminal region, missing the first 48 

residues due to disorder (Figure 3.2A). 
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Figure 3.2 Dimeric structure of PNPO. A) human PNPO structure (PDB: 1nrg); B) 

superposition of human PNPO (green and magenta) and E. coli PNPO (cyan and purple). 

Yellow shading indicates PLP binding to the tightly bound (allosteric) site of E. coli 

PNPO.24 
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 Our group and others have investigated the interaction and activation of B6-

dependent enzymes utilizing biophysical and kinetic approaches.10,11,32,33 Despite the 

proposition that the salvage and B6-deendent enzymes form complex for productive 

transfer of PLP from the former to the later, there is no report of the crystallographic 

complex  structure or even computationally predicted complex structure of the enzyme 

complex. Hence, we aimed to conduct molecular docking and dynamics simulation 

studies to elucidate the most likely interactions between PNPO and DDC. Further, these 

investigations will serve as a guide to identify key residues that can be mutated and tested 

experimentally. 

 

 

3.2.2     Methods 

 3.2.2A  Preparation of the crystal structures of PNPO, holoDDC, and apoDDC: 

All crystal structures were retrieved in pdb format from the Protein Data Bank (PDB).34 

MODELLER (MODELLER-II-Chimera GUI interface)35 and the AlphaFold protein 

database36 were utilized to model missing residues from the apo- and holo-DDC crystal 

structures, with final structures prepared in Sybylx.2.1.1 (Tripos International, USA).  

 Gaps due to missing electron density in both holoDDC (Leu328-Gly339) and 

apoDDC (Gly102-Ala107, Thr323-Arg355) were modeled using MODELLER and 

AlphaFold, respectively. For holoDDC, a total of 100 models were generated, and best 

models were inspected using DOPE (Discrete Optimized Protein Energy) and GA341 

scores, top 10 models were selected for further refinement using the GalaxyLoop 
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server,37 where modeled regions were specified for refinement. MolProbity was utilized 

to assess the quality of models. For apoDDC, AlphaFold36 prediction was found to 

generate the most reliable model for missing regions. Therefore, missing residues were 

extracted and inserted into the apoDDC crystal structure (3RCH), hydrogens were added, 

and final structure (3RCH-AF) was minimized in Sybylx.2.1.1 with the Tripos forcefield.   

   3.2.2B   Molecular docking: The molecular docking study was performed with 

ClusPro server38 that uses the PIPER docking algorithm to accomplish sampling. The 

receptor protein (apo- and holoDDC) is set at the coordinate system's origin, and the 

various rotational and translational positions of the ligand are assessed at the specified 

level of discretization. The interaction energy between two proteins is represented by 

PIPER using the expression E = w1Erep + w2Eattr + w3Eelec + w4EDARS, in which Erep and Eattr 

are the repulsive and attractive contributions to the van der Waals interaction energy, 

respectively, while Eelec is an electrostatic energy factor. EDARS is a pairwise structure-

based potential that is built using 'decoys as the reference state' (DARS). From previous 

step, 1000 rotation/translation combinations with the lowest scores are considered, which 

would be clustered with a C-alpha RMSD radius of 9 Å, resulting in 30 clusters for the 

1000 poses with the lowest energy. From the preceding stage, 1000 rotation/translation 

combinations with the lowest scores are considered, which are clustered using a C-alpha 

RMSD radius of 9 Å, resulting in 30 clusters for the 1000 poses with the lowest energy. 
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 3.2.2C Molecular dynamics simulations: The chosen complexes of 

PNPO•apoDDC and PNPO•holoDDC were refined using an all-atom Molecular Dynamics 

(MD) simulation. MD simulations were performed using the NAMD 2.9 package 

developed by the Theoretical and Computational Biophysics Group at the University of 

Illinois in Urbana-Beckman Champaign's Institute for Advanced Science and 

Technology.39 The force field used was CHARMM (Charmm-36).40 VMD 1.9.3 was used 

to prepare the system for MD simulations.41 Using the psfgen module, coordinate (.pdb) 

and connectivity (.psf) files were generated for the final complexes followed by solvation 

in a cubic box of TIP3P water molecules with a minimum spacing of 9 Å between the box 

boundaries and the nearest solute atoms. The solvated system was then ionized with 

0.15 M NaCl using the VMD autoionize plugin. All MD simulations were conducted in five 

sequential steps: i) water minimization, ii) entire system minimization, iii) heating stage, 

iv) NPT pre-production simulation, and v) production simulation. A 2000-step of conjugate 

gradient minimization was applied on solvent molecules to ensure that water molecules 

were distributed evenly throughout the complex's surface, which was then followed by 

20,000 steps of energy minimization of the entire system. Subsequently, gradual heating 

to 310 K was performed by over a duration of 100 ps. In the first two rounds of 

equilibration, harmonic restraints were applied using restraint force constants of (5 

kcal/(mol-Å)) under isothermal isobaric (NPT) ensemble for 1 ns, placed on proteins and 

the cofactor, in case of holoDDC, and all other parameters remaining unchanged. In the 

following stage, the harmonic constraint was released, and the whole system was 

equilibrated for a further 1 ns using the NPT ensemble. The final production run was 

performed under the NPT ensemble, which simulated the whole system for 20 ns. All 
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simulations were run on our GPU-based compute server, and molecular dynamic 

trajectories were analyzed using VMD, HINT score,42,43 Bio3D44, and MDAnalysis 

packages.45 All figures were generated using PyMOL (Version 2.0 Schrödinger, LLC). 

 

 

3.2.3     Results and Discussion 

3.2.3A   Molecular docking and scoring: Protein-Protein docking is a readily 

available method for predicting the most likely interaction between two proteins. In this 

work, we used a blind docking approach to sample the near-native complex between 

PNPO and DDC. As described in the Methods section (3.2.2B), docking solutions were 

clustered into distinct structures, with the assumption that large clusters would have 

near-native structures. In the case of apoDDC, the three available crystal structures were 

docked to PNPO and showed no noticeable differences amongst them; therefore, the 

structure with the best resolution, 3RCH (2.85 Å), was chosen for this study. Molecular 

docking of PNPO to DDC was conducted using the PDB structures of apo- and holo-

DDC as well as structures with the missing residues added. Figures 3.3 and 3.4 

represent the docking results of the PNPO•apoDDC complex with the structures 3RCH 

and 3RCH-AF, respectively. Importantly, our docking studies clearly suggested that 

there is no direct interaction between the active sites of the two proteins (Figure 3.3C), 

indicating that a direct transfer of PLP from the active site of PNPO is computationally 

unfeasible. Interestingly, both apo and holo formed a multimeric interface with PNPO at 

the PLP allosteric binding site, i.e., clusters 0 and 1 in case of PNPO•apoDDC (Site A), 
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and for PNPO•holoDDC, clusters 0, 1, 4, and 6 (PLP site A), as well as clusters 2, 3, 5, 

7, 8, and 9 (PLP site B). Importantly, PNPO was found to recognize just one site of the 

asymmetric dimeric structure of apoDDC (Figure 3.3D-E), whereas holoDDC (symmetric 

dimer) revealed a favorable binding for both PLP sites (Figure 3.6B). This observation 

can explain the partial activation of apo B6-enzymes (apoSHMT), as seen in previous 

work,10,11 and apoDDC in this work.  

   The modeling of missing residues in both holo- and apo-DDC was found to be 

necessary for the improvement of protein-protein interface sampling, as seen in Figure 

3.5C and 3.6). In the case of PNPO•holoDDC, cluster 0 and 1 account for 15.2% (of total 

generated solutions) after modeling missing residues (Figure 3.6F), compared to only 

11.3% when docking to the crystal structure (Figure 3.6E). Similarly, the HINT scores for 

cluster 0 and 1 were improved from 2222 and 2401 to 4746 and 4756, respectively, 

without affecting the generated interface (Figure 3.6). In the same manner, all crystal 

structures of apoDDC were missing a significant portion on loop3 (residues: Thr323-

Arg355). Several approaches were carried out to obtain a suitable model for the missing 

region., The AlphaFold36 structure from the AlphaFold protein structure database was 

found to be the most realistic model for this missing portion of the protein (Figure 3.4A). 

Therefore, missing residues were extracted from the AF model and inserted into 

the crystal structure of apoDDC to create the final structure (3RCH-AF), a model with an 

entire amino acid chain. Docking PNPO to the 3RCH-AF model revealed a significant 

improvement in the formed interface and shape complementarity, and consequently, an 

improvement in the HINT scores of complex interface residues, i.e., from 2032 to 8650 

for cluster 0 (Figures 3.4C). One of the objective of this study was to determine whether 
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this interaction would include PLP transfer from the active site of PNPO or the recently 

discovered PLP allosteric site.24 Our modeling studies strongly support the latter 

hypothesis, specifically when superimposing crystal structures of PNPO and holoDDC on 

the top candidate PNPO•holoDDC complex model, we observed a strong alignment of 

the co-crystallized phosphate molecules (at the surface) on both PNPO (at the PLP 

allosteric site) and holoDDC. This could be the first site of recognition for PLP transfer 

from the B6-salvage enzyme PNPO (Figure 3.7). At this stage, the best models for 

PNPO•holoDDC and PNPO•apoDDC complexes were chosen for further refinement and 

analysis using MD simulation 
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Figure 3.3 Cluspro2.0 docking results for PNPO and apoDDC complex. A) A dimeric crystal 

structure of apoDDC (PDB: 3RCH); B) A superposition of the two asymmetric monomers of apoDDC 

(RMSD= 1.16 Å); C) The top 10 cluster models of the PNPO•apoDDC complex are displayed; D) 

Top two clusters (most populated) of PNPO docked into apoDDC; E) The top model of PNPO-
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apoDDC complex of both posterior (top) and inferior (below) sides; F) Tabulated results for the top 

10 clusters using Cluspro2.0, along with calculated HINT scores. 

 

 

Figure 3.4 Cluspro2.0 docking findings for PNPO and apoDDC complex including missing 

residues modeled (3RCH-AF). A) Superimposition of the apoDDC structure with modeled missing 

residues (3RCH-AF) and the apoDDC crystal structure (PDB: 3RCH); B) Model for top 2 clusters 

(most populous) docked into 3RCH-AF model; and C) Table displaying top 10 clusters, cluster sizes, 

and HINT scores. 
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Figure 3.5 Electrostatic map comparison for the top cluster of PNPO•apoDDC complex. A) 

PNPO docked into the apoDDC crystal structure; B) PNPO docked into the apoDDC model with 

missing residues modeled; and C) Clustering and score comparison of the top two clusters before 

(above) and after (below) modeling missing residues. 
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Figure 3.6 Comparison of docking results for PNPO and holoDDC complex with the crystal 

structure (PDB: 1JS3) and missing residues modeled (PDB: 1JS3-model). A) A dimeric crystal 

structure of the holoDDC enzyme (PDB: 1JS3); B) The top 10 clusters and calculated HINT scores 

for the PNPO•holoDDC complex models; C) PNPO•holoDDC complex model for most populated 

clusters , i.e., clusters 0 (green) and 1 (orange); D) The top PNPO•holoDDC complex model of 



  

  

 

135 

both posterior (top) and inferior (below) sides; E-F) Tabulated results for top 10 clusters using 

Cluspro2.0, along with calculated HINT scores, for PNPO docked into holoDDC crystal structure 

(E) and holoDDC with missing residues modeled (F).  

 

 

Figure 3.7 Superposition of crystal structures (PNPO and holoDDC) and the PNPO•holoDDC 

complex model. Superposition of the crystal structures of PNPO (PDB: 6H00) and holoDDC (PDB: 

1JS3) on the molecular model of the PNPO•holoDDC complex reveals the alignment of the two co-

crystallized phosphate molecules. The box illustrates a close-up view of the interacting amino acids 

with the phosphate moiety. The amino acids ARG197, HIS348, and ARG347 (salmon) can be seen 

interacting with the phosphate moiety in holoDDC, whereas the corresponding amino acids in PNPO 

are ASP240, HIS248, and ARG249 (green). 

 

 

 3.2.3A   Molecular dynamics simulations: an All-atom Molecular Dynamics (MD) 

simulations were used to refine the selected PNPO•apoDDC and PNPO•holoDDC 

complexes. MD is a frequently used computational approach that integrates Newton's 

equations of motion. It can sample the conformational space of a molecular system 
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reliably, allowing time-dependent behavior and evolution studies. The ability to calculate 

thermodynamic and kinetic parameters of molecular systems is particularly useful for 

examining local motion and conformational changes in proteins, DNA, and other 

biological systems. Because biological systems are usually large, simulation time has 

usually been restricted to nanoseconds. All molecular modeling simulations were 

performed using NAMD 2.9 as previously described in the Methods section (3.2.2C). To 

measure the quality and convergence of the MD trajectories, backbone root mean square 

deviation (RMSD) and pairwise RMSD values relative to the initial structures were 

determined as shown in Figure 3.8. 

 

Figure 3.8 MD simulation of PNPO•holoDDC and PNPO•apoDDC complexes. A) Overview 

of MD simulation steps in this study; B) RMSD analysis (Å) for the PNPO•holoDDC (blue) and 

PNPO•apoDDC (orange) complexes during MD simulation; and C) heat maps representing 
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pairwise RMSD (Å) calculated for the PNPO•holoDDC (above) and PNPO•apoDDC (below) 

complexes. 

 

 Both complexes were shown to be well maintained over the duration of the 20 ns 

simulation, i.e., following an increase in RMSD within the first 2 ns, MD trajectories 

stabilized with average RMSD values of 1.96 ± 0.21 Å and 2.99 ± 0.48 Å for 

PNPO•apoDDC and PNPO•holoDDC, respectively (Figure 3.8). Hydrogen bonds 

and salt bridges at the protein-protein interface for both complexes were also 

computed and analyzed using VMD1.9.3 (Figure 3.9 and Figure 3.10). Stable salt 

bridges were observed during the stimulation between the residues PNPO–E114 and 

apoDDC–K207, PNPO–R88 and apoDDC–D442, as well as PNPO–R88 and 

apoDDC-E421, with distances ranging between 2–4 Å, 3–5 Å, and 3–6 Å, 

respectively (Figure 3.9). Compared to PNPO•apoDDC complex, the 

PNPO•holoDDC complex revealed less stable salt bridges, i.e., PNPO–Lys91 and 

holoDDC–E425, and PNPO–D253 and holoDDC–R347 (Figure 3.10).  
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Figure 3.9 Interaction profile analysis of hydrogen bonds and salt bridges at the domain 

interface for the PNPO•apoDDC complex model. A) Details of the observed salt bridges (Å) 

at the domain interface of PNPO and apoDDC during MD simulation; B) details of the 

probability of forming hydrogen bonds between residues at the domain interface of PNPO and 

apoDDC during the MD simulation. 

 

Figure 3.10 Interaction analysis of hydrogen bonds and salt bridges at the domain 

interface for the PNPO•holoDDC complex model. A) Details of the observed salt bridges 

(Å) at the domain interface of PNPO and holoDDC complex during MD simulation; B) details 

of the probability of forming hydrogen bonds between residues at the domain interface of 

PNPO and holoDDC complex during the MD simulation. 
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  MD trajectories of the last 10 ns (500 frames) of the PNPO•apoDDC complex were 

clustered into unique structural conformations (Figure 3.11A) using the RMSD 

dendrogram with clustering annotation (Bio3D package in R).44 This allows the energetic 

contributions of interfacial residues to be evaluated using the HINT score function (Figure 

3.11B), as well as in silico alanine mutagenesis studies to estimate the impact of 

interfacial residues alanine mutations on the binding free energy (ΔΔG) of the complex. 

Alanine-scanning mutagenesis is an effective and common approach for identifying 

hotspot residues: important contributions are made by key residues whose replacement 

with alanine results in a binding energy loss of ΔΔG ≥ 1 kcal mol-1.46,47 Figure 3.11 

revealed that E114 and R88 from PNPO seemed to have strong interactions with 

K207/R228 and E421/D442 from apoDDC, respectively. Also, in silico alanine scanning 

(Robetta server)47 showed that Arg88 and Glu114 would have the largest impact on 

stability of the complex (Figure 3.11C), i.e., the average ΔΔGcalc values were 2.35 ± 1.23 

kcal mol-1 and 1.1 ± 0.79 kcal mol-1 for PNPO–R88 and PNPO–E114, respectively. These 

residues are possible candidates for site-directed mutagenesis experimental testing 

Figure 3.12 displays the secondary structure of the PNPO•apoDDC complex model, 

including the putative salt bridges formed between PNPO–R88 and apoDDC–

E421/apoDDC–D442, and PNPO–E114 and apoDDC–R228 (initial structure). 

 



  

  

 

140 

 

Figure 3.11 Hierarchical cluster analysis of MD trajectories for the PNPO-apoDDC 

complex. A) Hierarchical clustering analysis for the last 10ns of trajectories (500 frames); B) 

energetic scoring (HINT score) of key residues at the interface domain of the 8 distinct 

structures obtained by clustering; and C) binding energy changes (ΔΔG = ΔGwild-type–ΔGALA) for 

interface residues of the 8 unique structures obtained by clustering, where negative ΔΔG values 

(kcal mol-1) indicate unfavorable replacement. 
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Figure 3.12 Key interactions between PNPO and apoDDC as predicted by our model.  Key 

salt bridges formed between PNPO and apoDDC, as indicated by HINT score and in silico alanine 

mutation scanning analysis.
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3.2.4     Conclusion 

 Our in silico studies showed that PNPO can form a favorable complex with both 

apo-and holo DDC.  Interestingly, the model showed that the binding of PNPO to apo- or 

holo-DDC does not involve the active site of PNPO at the complex interface, but rather 

involves the PNPO allosteric PLP tightly binding site of PLP, which was recently 

characterized.24 The HINT scores for the two complexes indicated that the 

PNPO•apoDDC complex had a stronger affinity than the PNPO•holoDDC complex, with 

values of 8650 (~16.8 kcal mol-1) vs 4746 (~9.21 kcal mol-1), respectively.48,49  The 

molecular docking investigations also suggested that PNPO predominantly recognizes 

one PLP site of the apoDDC dimeric structure (asymmetric dimeric), rather than both 

sites, as observed for the holoDDC dimeric structure (symmetric dimer). This might 

explain the consistent observation of partial activation (30-40%) of apo B6-dependent 

enzymes during PLP transfer experiments.11 Further analysis, including MD trajectories 

clustering, HINT scoring, and in silico alanine scanning mutagenesis analysis, proposed 

some key putative interacting residues, i.e., R88–PNPO and E421–apoDDC/D442–

apoDDC as well as E114–PNPO and R228–apoDDC/K207–apoDDC. These residues 

can be mutated to ALA and tested experimentally for their ability to affect the complex 

stability.  
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3.3 Biophysical and PLP Transfer Studies to Probe 
Interactions Between PNPO and DDC 

 

3.3.1   Introduction 

PLP transfer studies and biophysical techniques, including fluorescent polarization 

(FP) and microscale thermophoresis (MST), have been employed by our group to 

investigate mechanism of PLP transfer from PNPO or PLKase and B6-salvage 

enzymes.11 Apo serine hydroxymethyltransferase (apoSHMT) has been the standard B6-

dependent enzyme used for studying PLP transfer activity due to its stability and relatively 

simple and straightforward assay, in which the formation of holo-SHMT can be directly 

monitored by the formation of the abortive holo-SHMT•Gly•tetrahydrofolate complex at 

495 nm.1,10,11,32 In the previous chapter, in silico studies demonstrated that PNPO and 

DDC (apo- and holo-form) can form a favorable complex,  allowing us to predict key 

residues that may have significant contributions in the formation of the complex. This 

chapter, focuses on  experimental characterization of this complex interaction, as well as 

the ability of this biological association to activate  apoDDC into its holoDDC form. All 

proteins were expressed and purified recombinantly, as described in the Methods section. 
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3.3.2   Methods 

 3.3.2A   Subcloning, expression and purification of DDC: DDC was produced 

by subcloning the coding sequence of the human wild-type dopa decarboxylase (DDC-

OHu25359, GenScript) into the pET21d(+) plasmid between the NcoI and HindIII 

restriction sites. The construct was confirmed by sequence analysis. The plasmid was 

inserted into BL21(DE3)pLysS competent cells of E. coli. The recombinant cells were 

grown in LB broth with ampicillin (100 μg/mL) at 37 °C until the OD600 was around 0.6-

0.7, then induced with 100 µM isopropyl-β-D-thiogalactopyranoside (IPTG). The cells 

were grown at 30 °C for a further 14 hours before being harvested and resuspended in a 

lysis buffer containing 300 mM NaCl, 10 mM imidazole, 50 µM PLP, and 0.2 mM PMSF 

in 50 mM sodium phosphate pH 8. The clear lysate was diluted and loaded on a 5 mL 

Histrap column equilibrated with 10 column volume of Buffer A (50 mM potassium 

phosphate buffer pH 8, 300 mM NaCl, and 10 mM imidazole). Following, a linear gradient 

of buffer B (50 mM potassium phosphate buffer pH 8, 300 mM NaCl, and 1 M imidazole) 

was applied (0-100% in 500 ml). DDC eluted as a single peak from the Ni2+ resin with 

imidazole at concentrations ranging from 100 to 300 mM. The purified DDC was dialyzed 

against 150 mM NaCl and 100 µM PLP in 50 mM potassium phosphate pH 7.4 overnight. 

A second dialysis in the same buffer, without PLP, was performed for additional 5 hours. 

Purified DDC was concentrated using Amicon Ultra 10 concentrators (Millipore), and the 

concentration was determined using a εM of 1.3 × 105 M−1cm−1 at 280 nm.50 
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 3.3.2B   Expression and purification of PNPO: PNPO subcloning, expression 

and purification was carried out as previously described by our group.7 An overnight 

culture was used to inoculate 6 L of LB medium containing (40 μg/mL) of kanamycin. 

Cells were grown at 37 °C with rotary shaking until OD600 reached 0.6–0.7, then induced 

with 100 µM isopropyl-β-D-thiogalactopyranoside (IPTG). The cells were incubated at 18 

°C for a further 14 hours before being harvested and resuspended in a lysis buffer 

containing 300 mM NaCl, 10 mM imidazole, 10 µM FMN, and 0.2 mM PMSF in 50 mM 

sodium phosphate pH 8. The clear lysate was diluted and loaded on a 5 mL Histrap 

column equilibrated with 10 column volume of Buffer A (50 mM potassium phosphate 

buffer pH 8,300 mM NaCl, and 10 mM imidazole) after centrifugation. Following, a linear 

gradient of buffer B (50 mM potassium phosphate buffer pH 8, 300 mM NaCl, and 500 

mM imidazole) was applied (0-100% in 500 ml). PNPO eluted as a single peak (yellow 

fractions) from the Ni2+ resin with imidazole at concentrations ranging from 100 to 300 

mM. The purified PNPO was dialyzed against 150 mM NaCl and 10 µM FMN in 50 mM 

potassium phosphate pH 7.4 overnight. A second dialysis in the same buffer, without 

FMN, was performed for additional 5 hours. Purified PNPO was concentrated using 

Amicon Ultra 10 concentrators (Millipore), and the concentration was determined using 

the molar extinction coefficient of 76,760 M−1cm−1 at 280 nm for the holoform.7 

 

 3.3.2C   Preparation of apoDDC: The enzyme holoDDC was incubated at room 

temperature for 3 hours with 5 mM hydroxylamine in 0.5 M potassium phosphate buffer,  
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pH 6.9,26,53 followed by overnight dialyzing against 150 mM NaCl, 5% glycerol in 50 mM 

potassium phosphate buffer, pH 7.4. Dialyzes 2 was continued for an additional 5 hours 

in the same buffer without glycerol. The total conversion of holoDDC to apoDDC was 

validated using the DDC enzymatic activity assay (see 3.3.2D) in the presence and 

absence of the cofactor (PLP). 

 

 3.3.2D Activity assay of DDC: The enzymatic activity of dopa decarboxylase was 

determined as previously described by Sherald et al.,51 with some modifications by 

Charteris and John52, and recently reported by Voltattorni's group.26,53 The enzyme DDC 

(0.5 µM) was incubated with 2 mM L-Dopa and 10 µM PLP in a final volume of 250 µL, 

the reaction was stopped by heating to 100 °C for 1 minute. To enable extraction of the 

formed dopamine, 1 mL of 2,4,6-trinitrobenzenesulfonic acid (TNBSA) at 4.3 mM and 1.5 

mL of benzene were added to the reaction mixture to enable conjugation of the formed 

dopamine with TNBSA. The trinitrophenylamine derivative was extracted into the 

benzene layer with one hour of continuous shaking at 42 °C (275 RPM). The benzene 

layer was then collected, and the formed product measured at 340 nm.  

 

 3.3.2E   Fluorescence polarization (FP):  FP measurements have been utilized 

in analytical and clinical chemistry, as well as biomedical research to explore membrane 

mobility, protein domain motions, and interactions on molecular level. As previously 

described by our group,11 human PNPO was designated as the molecule to be labeled 

with the fluorescent tag fluorescein 5-maleimide (FMI) (Invitrogen), which demonstrated 
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no inhibitory activity for PNPO. FMI is a fluorescent molecule that interacts primarily with 

sulfyhdryls between pH 6.5 and 7.5, creating stable thioether linkages. 

50 μM PNPO was mixed with 1 mM FMI in 50 mM sodium HEPES pH 7.55 

containing 150 mM KCl and 0.01% Triton. The reaction was allowed to proceed overnight 

at 4 °C in the dark. After centrifuging the reaction mixture, the supernatant was dialyzed 

against the same buffer in the dark overnight to eliminate any excess dye. Equation 1 

was used to calculate the degree of labeling.  

 

,                  (1)
 

The wavelength of Amax is A495 nm, and ε' is the molar extinction coefficient of FMI, which 

is 68,000 M-1 cm-1. Vitamin B6 enzymes (DDC and PNPO) and a control (lysozyme) were 

dialyzed overnight at 4 °C against 50 mM sodium HEPES buffer, pH 7.55, containing 150 

mM KCl and 0.01 % Triton X-100. 

 The assay was carried out using a BMG Labtech CLARIOstar Microplate Reader. 

Excitation was set at 495 nm, and emission to 535 nm. DDC was prepared in a series of 

dilutions ranging from 500 μM to 0.021 μM and applied to the wells of a Corning Inc. 96-

well round bottom polystyrene opaque plate (Model #3792), followed by 0.25 μM FMI-

PNPO. The plate was incubated at room temperature, and measurements taken at 

various time points at a temperature of 25 °C. All the data provided here were obtained 

following a four-hour incubation period. Polarization data were collected using a Microsoft 

excel spreadsheet interfaced to the Calorimeter. The polarization values (mP) were 
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plotted versus DDC and lysozyme concentrations (Control).  Binding data was fitted and 

analyzed in Excel using the Solver algorithm. KD values were calculated using (equation 

3) on the basis that the observed polarization signal in mP is a weighted sum of the free 

ligand and bound ligand signals (equation 2). Binding curves of lysozyme, a non B6-

dependent enzyme, were also obtained as a control.  

 

 
, 

                      
(2)

 

Where Pobs is the observed polarization value; PFMI-PNPO is the polarization value of tagged 

PNPO; PFMI-PNPO-E is the polarization value of tagged PNPO with DDC when all the PNPO 

was complexed; and [FMI-PNPO] and [FMI-PNPO-E] are the concentrations of 

uncomplexed and complexed tagged PNPO, respectively.  

 

  
,
                               

(3)
 

Where Pobs is the observed polarization value; P0 is the polarization value in the absence 

of DDC; Pmax is the maximum polarization value in presence of DDC; KD is the dissociation 

constant of the interaction between the proteins and [E] is the concentration of DDC in 

the sample. 

 3.3.2F   Surface plasmon resonance (SPR):  SPR is a biophysical technique 

used for studying molecular interactions including protein-protein interactions (PPIs).54 
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For this purpose, Biacore T200, at the Biacore Molecular Interaction Shared Resource 

BMISR (Georgetown University, USA), was utilized to conduct binding experiments of 

PNPO and DDC. Three enzymes, apoDDC, holoDDC, and holoSHMT (rabbit), were 

employed as ligands to be immobilized on the CM5 chip surface using standard amine 

coupling chemistry. Samples were placed in flow cells (FCs) 2 to 4, with FC1 serving as 

a reference for FC2-4, and analyses were carried at 25 °C. The proteins to be immobilized 

were diluted (1:50 dilution, 0.02 mg/mL diluted concentration) in 10 mM sodium acetate 

buffer at pH 5.5 and immobilized onto flow cell 2 (FC2) to a level of ~12800 RU, flow cell 

3 (FC3) to a level of ~10100 RU, and flow cell 4 (FC4) to a level of ~9800 RU for apoDDC, 

holoDDC, and holoSHMT, respectively. PBS-P (10 mM phosphate buffer, pH 7.4, 140 

mM NaCl, 3 mM KCl, 0.05% v/v surfactant P20) was used as the immobilization running 

buffer. Based on the ligand immobilized response value, theoretical Rmax values were 

calculated and presented in Table 3.1. The Rmax values assume 1:1 interaction 

mechanism. Overnight kinetics were performed for analytes (PNPO and albumin) in the 

presence of PBS-P. One 15 s pulse of 1 M NaCl was injected for the surface regeneration 

and flow rate of all analytes were maintained at 50 μL/min. The contact and dissociation 

times used for all analytes were 60 s and 300 s, respectively. The concentrations of the 

analytes used ranged from 100 μM to 1.5625 μM (two-fold dilutions), and each analyte 

was injected in triplicate. 
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Table 3.1– Theoretical max response (Rmax) values for analytes binding using 
SPR. 

 

 

  

 3.3.2G   Isothermal Calorimetry (ITC): Isothermal titration calorimetry (ITC) is a 

biophysical technique that can be used to determine the thermodynamic properties of 

solution interactions. ITC provides quantitative information on the binding affinity (Ka), 

enthalpy changes (ΔH), and stoichiometry (n) of the interaction between two or more 

molecules in solution.55,56 The Gibbs free energy changes (ΔG) and entropy changes (ΔS) 

may be estimated from these initial observations using the following equation:  

ΔG = RTlnKD = ΔH-TΔS 

 All ITC studies were conducted using a MICROCAL PEAQ-ITC automated system 

housed at the Institute for Structural Biology, Drug Discovery and Development (ISB3D) 

at VCU. Both cell and titrant samples were prepared in identical solutions to avoid large 

heat of dilution. Samples were co-dialyzed in 50 mM potassium phosphate (pH 7.4) 

 

Ligand 

 

FC 

 

Analyte 

Ligand 

Binding 

(RU) 

 

MWL 

(Da) 

 

MWA(Da) 

 

Stoichiometry 

 

Rmax 

apoDDC 2 PNPO  

12800 

 

110000 

51000  

1:1 

5934.5 

 Albumin 67000 7796.4 

holoDDC 3 PNPO  

10100 

 

110000 

51000  

1:1 

4682.7 

 Albumin 67000 6151.8 

rSHMT 

 

4 PNPO  

9800 

 

 

205000 

51000  

1:1 

 

2438 

Albumin 67000 3202.9 
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containing 150 mM NaCl. For PNPO titration to apoDDC, apoDDC prepared as described 

in section 3.3.2D was dialyzed in 50 mM potassium phosphate solution (pH 7.4) 

containing 150 mM NaCl and 5% glycerol for 12 hours, followed by a second dialysis for 

4 hours in the same buffer without glycerol. Table 3.2 illustrates the ITC parameters for 

this experiment. 

 

Table 3.2 – Optimization of ITC parameters for PNPO•DDC titration 

ITC parameters Description 

Total no. of injection 19 

Cell Temperature °C 25 

Reference power 

(µcal/s) 

5 

Stir speed 750 

Volume (µL) 2 

Duration (s) 4 

Spacing (s) 150 

  

  

 3.3.2H   PNPO-PLP Complex Preparation: In this experiment, the PNPO enzyme 

and PLP (Sigma-Aldrich, St. Louis, MO, USA) were incubated for 30 min. at 30 °C. The 

PNPO/PLP ratio was always maintained at 1:5 when preparing the complex. After 

incubation, the mixture was loaded onto a Sephadex G50 (0.6 X 45 cm) gel filtration 

column that had been pre-equilibrated with a 100 mM potassium phosphate buffer pH 7.4 

solution containing 5 mM 2-mercaptoethanol, and the column rinsed with equilibration 
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buffer to elute any unbound PLP from the complex. The mixture was dialyzed overnight 

at 4 °C in the same buffer, with two buffer changes. The concentration of PNPO was 

determined by measuring the UV absorbance at 280 nm. 

 

 3.3.2I    PNPO-PLP is able to transfer the tightly bound PLP to activate 

apoDDC:  PLP transfer from PNPO-PLP to activate apoDDC into the active holoDDC 

was studied using a spectrophotometric assay. Free PLP was studied as a positive 

control. First, in 100 mM potassium phosphate (pH 7.4) at 25 °C, an equal amount of free 

PLP (50 µM) or PNPO•PLP (50 µM) was mixed with apoDDC (50 µM) at various times 

(2.5, 5,10, 30, 60, and 90 min). Subsequently, the mixture was diluted (100-fold dilution) 

into the same solution containing 2 mM of L-Dopa (substrate) to a final volume of 1 mL, 

then 250 µL aliquots were collected at different time intervals (0, 2, 6, and 10 min) and 

resuspended in 0.1M perchloric acid solution (10% v/v) to stop the reaction. Formed 

dopamine (product) was determined by extracting and measuring the absorbance at 340 

nm, as previously described in section 3.3.2D. All experiments were run in at least 

triplicate. 
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3.3.3   Results and Discussion 

 3.3.3A Fluorescence polarization (FP): Following the computational 

investigation of a potential physical complex between PNPO and DDC (Chapter 3.2), we 

conducted several biophysical studies to quantify the binding affinity between the putative 

interacting proteins. One of the techniques used for the study was fluorescence 

polarization (FP). FP is a biophysical approach that enables fast and quantitative 

investigations of a variety of molecular interactions and enzyme activity. It is based on the 

change in polarization of emitted light when a fluorescent molecule is excited by plane-

polarized light. If one of the two proteins is small and fluorescent, as detailed in the 

Methods, this approach may be used to quantify the binding and dissociation of two 

molecules (Section 3.3.2E). Thus, binding of the fluorescently labeled small protein (FMI-

PNPO) to the relatively large protein (DDC) can be monitored and measured through a 

change in polarization and an increase in the FP signal.11 Degree of FMI tagging of PNPO 

were determined to be 1.1 moles per mole of protein using the equation 1. Our lab has 

previously studied the enzyme activity of human PNPO, and PNPO labeling had no effect 

on the catalytic activity of PNPO.11 The saturation binding curves of tagged PNPO with 

holoDDC clearly suggested a physical interaction between the two proteins, as shown by 

a rise in polarization value (FP) with increasing DDC concentrations (Figure 3.13). 

Lysozyme, used a negative control showed no significant changes in the polarization of 

tagged human PNPO at increasing lysozyme concentrations, i.e., showed no binding to 

PNPO as expected. Figure 3.13 shows the FP result of PNPO and holoDDC, which 

yielded a KD of 57.4 ± 0.32 μM. 
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Figure 3.13 Fluorescence polarization saturation binding curves. Titration of FMI-tagged 

PNPO with increasing concentrations of holoDDC (black) and lysozyme (orange). 

 

 

 3.3.3B   Surface plasmon resonance (SPR): Surface plasmon resonance was 

also used to characterize the dissociation constant of the PNPO•DDC complex. A control 

experiment involving PNPO-SHMT complex was also conducted. SPR experiments 

consist of molecules immobilized to the biosensor surface, i.e., ligand sample, and 

another in solution, i.e., analyte sample. The enzymes DDC and PNPO were expressed 

and purified as described in sections 3.2.2A-B, and SPR experiments were carried out 

as described in section 3.3.2F. Because the refractive index in SPR is sensitive to the 

composition of the chip surface, binding or dissociation of PNPO is expected to cause a 
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change in the refractory index, which is defined as a "response unit". A typical SPR 

sensorgram involves three stages: an associative phase in which PNPO binds to the 

immobilized protein, e.g., DDC; a steady state phase in which the rate of association is 

offset by dissociation; and a dissociative phase that occurs at the end of the injection 

when a PNPO-free buffer passes over the chip and bound PNPO dissociates from the 

chip surface. The binding of PNPO to holoDDC and holoSHMT was determined to be 3.7 

μM and 15.4 μM, respectively, using seven concentrations of PNPO, as shown in Figure 

3.14A-B. SPR was incapable of determining the binding affinity of PNPO to apoDDC. 

While the signals from the control flow cell (without protein) were normal, the signals from 

the flow cell where apoDDC immobilized were rapidly declined. This observation is likely 

due to the fact that apoDDC underwent a significant structural rearrangement after 

binding to PNPO, leading to PLP transfer to apoDDC with a significant conformational 

change to the holo-form (open-closed transition). The negative control analyte, albumin, 

showed no influence, i.e., no binding, on the generated response unit (see Figure 3.14C-

D).  

 



  

  

 

156 

 

 

Figure 3.14 SPR binding results. A) Binding of PNPO to holoDDC; B) Binding of PNPO to 

holoSHMT (positive control); and C-D) Binding of Lysozyme to holoDDC and holoSHMT 

(negative control), respectively. Flow rate of all analytes were maintained at 50 μL/min, and 

injections of 100 µM to 1.5625 µM (from top to bottom). The contact and dissociation times used 

for all analytes were 60s and 300s, respectively. One 15s pulse of 1 M NaCl was injected for 

surface regeneration. All analytes were injected in triplicate. RU= Resonance Unit. 

 

 The FP and SPR studies of PNPO and holoDDC showed KD of 57.4 μM and 3.7 

μM , respectively, which compare with earlier studies for B6 salvage and B6 enzymes 
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with KD values ranging from 0.3 to 12.3 μM. As a result, a third biophysical binding 

techniques ITC was used to determine the most reliable KD for this complex.              

  

 3.3.3C  Isothermal Calorimetry (ITC): ITC is a technique for measuring the 

amount of heat released or absorbed during a chemical reaction. It can be used to 

evaluate the nature of any chemical process involving spontaneous changes in 

temperature, without requiring any modification or tagging of the proteins being 

evaluated.55,56 Thermodynamic parameters such as free energy (ΔG), dissociation 

constant (KD), change in enthalpy (ΔH), and stoichiometry (N) of the interaction between 

two or more molecules in solution can be determined. ITC binding titration for the purified 

recombinant PNPO and holoDDC enzymes were prepared and carried out as detailed in 

the Methods section (see 3.3.2G). Also, the apoDDC enzyme was prepared as described 

in section 3.3.2C. We found that the majority of holoDDC was converted to apoDDC 

(≥97%) during the preparation process (Figure 3.15). Both PNPO•holoDDC and 

PNPO•apoDDC complexes were satisfactorily characterized by ITC in terms of binding 

interactions (Figure 3.16A and 3.16B, respectively). The dissociation constants (KD) and 

other parameters for the binding were determined using the equation (ΔG = RTlnKD = 

ΔH–TΔS) shown below (Figure 3.16C). The thermodynamical parameters ΔG, ΔH, and 

ΔS for the interaction between PNPO and holoDDC were -7.62 ± 0.08, -2.33 ± 0.10, and 

-5.21 ± 0.05, respectively, -8.22 ± 0.06, -3.03 ± 0.10, and -5.19 ± 0.11 for PNPO and 

apoDDC, respectively.  
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Figure 3.15 Enzymatic activity of recombinant human DDC in both apo and holo forms. 

Activity assay performed using 0.5 μM of holoDDC (blue) and apoDDC (orange and grey) in the 

presence (orange) and absence (grey) of the cofactor PLP. 
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Figure 3.16 ITC thermodynamic analysis of PNPO•holoDDC and PNPO•apoDDC 

complexes binding. Injection heats for titration of PNPO into (A) holoDDC and (B) apoDDC. C) 

Averaged thermodynamic data of PNPO•holoDDC and PNPO•apoDDC bindings. All titrations 

were run in at least triplicate. 

 

Both titration studies provided an exothermic binding isotherm, with the enthalpy 

change being more negative for apoDDC than for holoDDC; likely due to the larger 

protein-protein interface in the case of apoDDC. Furthermore, PNPO displayed more 

affinity toward apoDDC than holoDDC, i.e., 0.92 ± 0.07 μM versus 2.59 ± 0.11 μM. This 

compares to 57.4 μM and 3.7 μM for the PNPO•holoDDC complex using FP and SPR, 

respectively. The PNPO•holoDDC complex showed a stoichiometry close to 1 (0.94 ± 

0.04), i.e., one PNPO to one DDC, whereas the PNPO•apoDDC complex revealed a 
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stoichiometry of 0.5 (0.52 ± 0.01), i.e., one monomer of PNPO to a dimeric DDC. These 

observations are consistent with the modeling/docking studies described above that 

showed only one molecule of PNPO is capable of binding to the asymmetric apoDDC 

dimer structure, while two molecules of PNPO demonstrated an equivalent recognition of 

both sites of the symmetric dimer of the holoDDC.  

 Importantly, we were able to show that ITC can reliably characterize the binding of 

PNPO and DDC in both apo and holo forms, which was not with SPR and FP. Based on 

the computational and binding studies, site-directed mutagenesis studies were performed 

to validate the model.  

  

 3.3.3D   PLP transfer from PNPO-PLP to activate apoDDC: Our group has 

focused on studying PLP transfer kinetics using a well-established assay with PNPO and 

PL kinase as a PLP source, and E. coli or rabbit serine hydroxyethyltransferase 

(apoSHMT) as a PLP acceptor.10,11 Our key premise is that channeling will provide a safe 

and efficient pathway for the transfer of cellular PLP from B6-salvage enzymes to activate 

apo-B6 enzymes. In this work, our computational and biophysical investigations showed 

that PNPO and DDC (both apo-and holo-forms) can form a physical complex. Our 

hypothesis is that this complex has a biological function that involves the transfer of PLP 

for productive activation of B6-dependent enzymes. Therefore, a PLP transfer assay was 

developed and used to study the capability of PLP transfer from PNPO to activate 

apoDDC to its holoDDC form. The apoDDC preparation and PNPO saturation with PLP 

were prepared as described in the Methods section (3.3.2C and 3.3.2H, respectively). 
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The transfer assay is a spectrophotometric assay that monitors formation/activation of 

holoDDC indirectly by measuring product (dopamine) formation, as described in the 

Methods section (see 3.3.2I) and illustrated in Figure 3.17. Briefly, two steps are required 

for the assay. First, PLP binding, in which the enzyme apoDDC (50 µM) was mixed with 

equivalent amount of free PLP (50 µM) or PNPO●PLP (50 µM) and incubated at 25 °C 

(dry bath incubator) for 0, 2.5, 5, 10, 30, 60, and 90 min. This step allows the formation 

of the enzymatic active holoDDC. Second, aliquots of these mixtures were diluted (100-

fold) in a solution containing 2 mM L-Dopa in 100 mM KPO4, pH 7.4 (substrate mixture). 

The L-Dopa is converted to dopamine by holoDDC, and the formed dopamine was 

extracted and measured at 2, 6, and 10 minute intervals, as described in the Methods 

section (see 3.3.2I). 
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Figure 3.17 Schematic representation of the PLP transfer from PNPO•PLP to apoDDC. A) 

Enzyme kinetics for the cofactor (PLP) activation of apoDDC, substrate binding (L-DOPA) and 

conversion (dopamine). B) PLP transfer assay diagram for assessing apoDDC activation. 

 Dopamine formation at different time intervals for both free PLP and PNPO•PLP 

was fitted into a linear equation, as shown in Figure 3.18B-C, respectively, with R2 

ranging from 0.993 to 0.9997 for free PLP and 0.9878 to 0.9979 for PNPO•PLP complex. 

The final PLP transfer plot revealed that in the presence of PNPO•PLP complex, holoDDC 

activity reached ~30% of its activity when compared to equal amount of free PLP (Figure 

3.18D). Importantly, we further demonstrated that the observed interaction between 

PNPO and apoDDC results in cofactor transfer and enzyme activation.  

 

 

Figure 3.18 PLP transfer rate from PNPO•PLP to apoDDC. 50 μM PNPO was 1:1 mixed with 

PLP or PNPO•PLP in 100 mM potassium phosphate buffer (pH 7.4) at 25 °C. PLP activation of 
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apoDDC was determined at different time intervals (2.5, 5, 10, 30, 60, and 90 min). At each time 

point, each sample was diluted in a solution containing 2 mM L-DOPA, and dopamine formation 

(A340) was determined at three-time points (2, 6, and 10 min). A) Calibration curve of extracted 

dopamine at concentrations ranging from 0 to 800 μM (r= 0.9957); B-C) Activation of apoDDC 

after 2.5, 5, 10, 30, 60, and 90 min incubation with free PLP or PNPO•PLP, respectively; D) 

Final plot displaying dopamine formation at different activation time points, data were fitted and 

analyzed using prism GraphPad software. The PLP transfer rate with free PLP, PNPO•PLP, or 

no PLP source is depicted by the blue, red, and green lines of fitted data, respectively. 
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3.3.4   Conclusion  

 Our previous reported studies,11 show that the B6 salvage enzymes PNPO or 

PLKase and the B6-dependent enzyme SHMT are capable of forming a complex with 

each other with subsequent transfer of PLP from the former to activate the latter. The 

study in this chapter using computational, FP, SPR, and ITC techniques also 

demonstrated that PNPO forms a physical complex with both apo- and holoDDC. Both 

SPR and ITC yielded a similar KD value for the PNPO•holoDDC complex, with KD of 3.7 

µM and 2.59 µM, respectively, but different from the KD of 57.4 µM from FP. The different 

KD value by FP can be attributed to the labeled protein (PNPO-FMI), where labeling may 

have interfered with the native complex of PNPO and holoDDC.  SPR and ITC, on the 

other hand, are label-free methods that would yield the most reliable affinity data.  

 Characterization of PNPO•apoDDC complex binding was only achievable with 

ITC, where the binding affinity was about 3-fold stronger than that of PNPO•holoDDC 

(0.93 µM  vs 3.7 µM). Interestingly, while the PNPO•holoDDC complex showed a 

stoichiometry close to 1, (i.e., one PNPO to one DDC), PNPO•apoDDC complex had a 

stoichiometry of 0.5, (i.e., one PNPO monomer to each DDC dimer). The 1:1 

stoichiometric ratio of PNPO•holoDDC complex implies that the PNPO binds to both 

symmetric sites in the dimeric holoDDC, which is consistent with previous findings 

(REF). An observed stoichiometric ratio of 1:0.5 for apoDDC•PNPO complex implies that 

the PNPO binds to only one of the asymmetric sites in the dimeric apoDDC, which is 

corroborated by the computational docking of PNPO into the apoDDC. Although there are 

very few structures for apo B6-enzymes to examine, the crystal structures of apo tyrosine 
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decarboxylase from Papaver somniferum (PDB: 6LIU) and apo glycine decarboxylase 

from Thermus thermophilus (PDB: 1WYT) have been solved as asymmetric structures. 

Furthermore, glutamate-1-semialdehyde aminomutase, a PLP dependent enzyme, was 

previously investigated for its asymmetry in structure and active site reactivity.63 

 An assay for monitoring and characterizing PLP transfers from B6-salvage 

enzyme, i.e., PNPO, to the DDC enzyme was successfully developed and optimized. PLP 

transfer studies indicated that ~30% of the tightly bound PLP from PNPO•PLP is 

transferred to activate apoDDC into the holo-form. In contrast, we observed 100% 

activation of apoDDC with  equal amounts of free PLP. Similar observations have been 

reported for apoSHMT, where ~25-40% of the tightly bound PLP is transferred when 

equal concentrations of PNPO or PLKase (PLP donor) and apoSHMT (PLP acceptor) are 

present.10,11 Partial PNPO binding to one site of the asymmetric apo B6 enzymes helps 

explain why apo B6 enzymes are only partially activated.  These findings, as well as the 

results of PLP transfer experiments, indicate that cellular PLP channeling from PNPO to 

DDC, or presumably other B6-dependent enzymes, is likely to be physiologically relevant.  
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3.4 Site directed mutagenesis studies to probe interactions 
between PNPO and DDC 

 

3.4.1 Introduction 

 In protein engineering, site-directed mutagenesis studies are a common approach 

that can be used to generate cloned DNAs with altered sequences in order to investigate 

the significance of certain amino acid residues on protein structure and function.57 In the 

context of protein–protein interactions, "hot spot" residues refer to a residue or cluster of 

residues that contributes significantly to the binding free energy.58 Computationally, a 

combination of machine learning, structure- and energy-based approaches has been 

developed to predict hot spot residues at protein-protein interfaces.47,59–62 In silico 

alanine-scanning mutagenesis is an effective approach for finding hotspot residues: 

important contributions are made by residues whose replacement with alanine results in 

a binding energy loss of ΔΔG ≥ 1 kcal mol-1.46,47 Our computational study has identified a 

potential complex formed between PNPO and DDC (both apo- and holo-forms). 

Moreover, dynamics simulation studies on the putative complex model suggests several 

putative strong and stable salt-bridges, including R88–D442, E114–K207, and R88–

E421, could form between PNPO and DDC, respectively. HINT scoring and in silico ALA 

scanning mutagenesis investigations suggested that R88–PNPO and E114–PNPO are 

candidate "hotspot" residues for site mutations studies. The site-mutations experiment 

was expected to abrogate interactions between the two enzymes and prevent activation 
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of apoDDC, and thus validating our computational model and, more importantly, our 

hypothesis. 

 

3.4.2 Methods 

 3.4.2A Subcloning, expression and purification of PNPO mutants (R88A, 

E114A, R88A/E114A): Mutations of the PNPO coding region were carried out by 

Genscript (NJ, USA), using the NM_018129_pET-28b(+) construct as a template. 

Constructed plasmids (R88A_NM_018129_pET-28b(+), E114A_NM_018129_pET-

28b(+), and R88A/E114A_NM_018129_pET-28b(+)) were confirmed by DNA sequence 

analysis followed by transformation into E. coli HMS174 (λDE3) pLysS competent cells. 

Transformants were cultured on LB-agar medium containing kanamycin (40 μg/mL) at 37 

°C. Protein expressions and purifications were carried out as previously described for 

wild-type PNPO (section 3.3.2B).  

 

 3.4.2B Thermal Stability of PNPO variants and DDC: The PNPO mutants 

(R88A, E114A, and R88A/E114A) were obtained using site directed mutagenesis as 

described earlier. Thermal stability study was conducted to evaluate the overall stability 

of PNPO mutants using the Prometheus NT.48 NanoDSF instrument (NanoTemper 

Technologies). The instrument, which uses Differential Scanning Fluorimetry (DSF) 

technology, detects the smallest changes in the fluorescence of intrinsic tryptophan and 

tyrosine found in all proteins (free label). All PNPO mutants were prepared in a 50 mM 

potassium phosphate buffer (pH 7.4) containing 150 mM NaCl at 1 mg/mL. Each sample 



  

  

 

168 

was measured in triplicate. During heating on a linear thermal ramp (2 °C/min, 25-95 °C), 

unfolding was detected with low detector sensitivity and 10% excitation power.  The ratio 

of tryptophan emission at 330 and 350 nm (350/330 nm ratio), which depicts the shift in 

tryptophan emission upon unfolding, was used to determine the unfolding transition 

points. Thermal stability of DDC in both holo- and apo-forms was also determined at the 

same concentration (1 mg/mL). 

 

 3.4.2C Binding analysis of PNPO variants to apo- and holo-DDC by ITC: 

Isothermal titration calorimetric measurements of the binding of PNPO mutants to the 

wild-type holo- and apo-DDC were performed. All samples were prepared and carried out 

as previously described for the ITC titration of wild-type PNPO and DDC (under section 

3.3.2G). PNPO variants were titrated to holoDDC at a molar ratio of 1:10, i.e., 750 µM to 

75 µM, whereas PNPO variants were titrated to apoDDC at a molar ratio of 1:5, i.e., 375 

µM to 75 µM. 

 

 

3.4.3 Results and Discussion 

 3.4.3A Thermal Stability of PNPO variants and DDC:  Wild-type PNPO and 

PNPO mutants (R88A, E114A, and R88A/E114) were expressed and purified 

recombinantly as previously described in sections 3.3.2B and 3.4.2A, respectively. 

Thermal stability is such a useful tool for assessing the overall stability of proteins. 

Therefore, thermal stability of PNPO mutants was evaluated and compared to that of wild-
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type PNPO. The experiment was carried out using the Prometheus NT.48 NanoDSF 

instrument, as described in the Methods section (3.4.2B). As seen in Figure 3.19, PNPO 

mutants exhibited a lower melting temperature (Tm) than wild-type PNPO, making them 

relatively less stable. Values of Tm obtained for R88A, E114A, R88A/E114A were 61.29 

± 0.10 °C, 61.09 ± 0.06 °C, and 57.95 ± 0.08 °C, respectively, compared to 62.67 ± 0.15 

°C for wild-type PNPO. (Figure 3.19). The Prometheus DSF experiment proved the 

structural integrity of the PNPO mutants by demonstrating that the melting temperatures 

(Tm) of PNPO mutants did not vary considerably. As a result, their binding affinities to the 

DDC enzyme can be measured. 

 

 

Figure 3.19 Differential scanning fluorimetry measurements of PNPO wild-type and 

mutants. A) The fluorescence change (above) and the first derivative of fluorescence emission 

(below) are shown in green, orange, cyan, and purple for wild-type PNPO, R88A, E114A, and 

R88A/E114A PNPO mutants, respectively. B) Tabulated obtained DSF measurements for 
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melting temperatures (Tm) and unfolding onsets for both the wild-type PNPO and PNPO 

mutants. 

 

 

 3.4.3B ITC titration analysis of PNPO variants and DDC: Isothermal titration 

calorimetric measurements of PNPO mutant binding to wild type holo- and apo-DDC were 

carried out using the parameters and conditions previously described (3.3.2G) and the 

results shown in Table 3.3. For titration of PNPO mutants to holoDDC, the dissociation 

constants (KD) of R88A–PNPO, E114A–PNPO, and R88A/E114A–PNPO were found to 

be 4.59 ± 0.57 μM, 2.21 ± 0.02 μM, and 2.28 ± 0.04 μM, respectively, as compared to 

2.59 ± 0.11 μM for wild-type PNPO (Figure 3.20). For titration of PNPO mutants to 

apoDDC, the KD values for R88A–PNPO, E114A–PNPO, and R88A/E114A–PNPO were 

1.52 ± 0.27 μM, 0.82 ± 0.14 μM, and 1.03 ± 0.08 μM, respectively, compared to 0.93 ± 

0.07 μM for wild-type PNPO (Figure 3.21). The thermodynamical parameters ΔG, ΔH, 

and ΔS for binding of PNPO to DDC (both holo- and apo-forms) are summarized in Table 

3.3 and illustrated in Figure 3.22. For holoDDC, free energy changes (ΔG) shown to be 

-7.62 ± 0.08 kcal mol-1, -7.29 ± 0.06 kcal mol-1, -7.72 ± 0.01 kcal mol-1, and -7.71 ± 0.04 

kcal mol-1, for wild-type PNPO, R88A–PNPO, E114A–PNPO, and R88A/E114A–PNPO, 

respectively. The enthalpy change (ΔH) found to be -2.33 ± 0.10 kcal mol-1, -2.11 ± 0.05 

kcal mol-1, -2.58 ± 0.02 kcal mol-1, and -2.85 ± 0.05 Kcal mol-1, this is associated with an 

entropy change of -5.21 ± 0.05 kcal mol-1, -5.15 ± 0.05 kcal mol-1, -5.13 ± 0.04 kcal mol-

1, and -4.86 ± 0.04 kcal mol-1, for wild-type PNPO, R88A–PNPO, E114A–PNPO, and 

R88A/E114A–PNPO, respectively (see Figures 3.20 and 3.22).  Clearly, PNPO mutants 
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showed no significant changes in their ability to bind to the holoDDC when compared to 

the wild-type PNPO, except perhaps R88A-PNPO that showed 2-fold less affinity than 

WT-PNPO (4.59 μM vs 2.59 μM, respectively). In contrast E114A–PNPO (2.21 μM)  and 

R88A/E114A–PNPO (2.28 μM) show similar binding affinity as the WT-PNPO (2.59 uM). 

However, these mutants were proposed on the basis of the apoDDC structure, thus we 

were interested in evaluating their binding affinities to the apoDDC, as described below. 
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Figure 3.20A Isothermal titration calorimetry (ITC) characterization of R88A-PNPO mutant 

with holoDDC. A) ITC binding isotherm of R88A-PNPO with holoDDC; B) ITC thermogram 

obtained from four independent measurements. 
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Figure 3.20B Isothermal titration calorimetry (ITC) characterization of E114A-PNPO 

mutant with holoDDC. A) ITC binding isotherm of E114A-PNPO with holoDDC; B) ITC 

thermogram obtained from duplicate measurements. 
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Figure 3.20C Isothermal titration calorimetry (ITC) characterization of R88A/E114A-PNPO 

mutant with holoDDC. A) ITC binding isotherm of R88A/E114A-PNPO with holoDDC; B) ITC 

thermogram obtained from triplicate measurements. 
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As previously demonstrated, apoDDC exhibited more affinity for wild-type and 

PNPO mutants than holoDDC (Figure 3.16; Table 3.3). Free energy changes (ΔG) were 

-8.22 ± 0.06 kcal mol-1, -7.95 ± 0.11 kcal mol-1, -8.31 ± 0.11 kcal mol-1, and -8.17 ± 0.05 

kcal mol-1, for wild-type PNPO, R88A, E114A, and R88A/E114A, respectively. The 

enthalpy change (ΔH) shown to be -3.03 ± 0.10 kcal mol-1, -2.81 ± 0.17 kcal mol-1, -3.17 

± 0.14 kcal mol-1, and   -3.47 ± 0.07 kcal mol-1, this is associated with an entropy change 

of -5.19 ± 0.11 kcal mol-1, -5.01 ± 0.21 kcal mol-1, -5.20 ± 0.16 kcal mol-1, and -4.70 ± 0.11 

kcal mol-1, for wild-type PNPO, R88A, E114A, and R88A/E114A, respectively (see 

Figures 3.21 and 3.22 ; Table 3.3).  
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Figure 3.21A Isothermal titration calorimetry (ITC) characterization of R88A-PNPO mutant 

with apoDDC. A) ITC binding isotherm of R88A-PNPO with apoDDC; B) ITC thermogram 

obtained from triplicate measurements. 
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Figure 3.21B Isothermal titration calorimetry (ITC) characterization of E114A-PNPO 

mutant with apoDDC. A) ITC binding isotherm of E114A-PNPO with apoDDC; B) ITC 

thermogram obtained from triplicate measurements. 
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Figure 3.21C Isothermal titration calorimetry (ITC) characterization of R88A/E114A-PNPO 

mutant with apoDDC. A) ITC binding isotherm of R88A/E114A-PNPO with apoDDC; B) ITC 

thermogram obtained from triplicate measurements. 
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Apparently, the PNPO mutants proposed by our modeling studies had almost no 

effect on the formation of PNPO•apoDDC and PNPO•holoDDC complexes. For the 

mutant R88A-PNPO, the enthalpy change was slightly affected and was 0.23 ± 0.06 and 

0.22 ± 0.18 kcal mol-1 less favorable than the wild-type values for holoDDC and apoDDC, 

respectively (Figure 3.22; Table 3.3). As a result, the dissociation rate constant for the 

single mutant R88A-PNPO was approximately two-fold weaker than that of the wild type, 

with values of 4.59 and 1.52 μM compared to 2.50 and 0.92 μM for holoDDC and 

apoDDC, respectively. The single mutant E114A–PNPO and the double mutant 

R88A/E114A–PNPO, on the other hand, displayed unexpectedly more favorable 

enthalpic contribution. Both E114A and R88A/E114A mutants showed more favorable 

enthalpy changes of -0.25 ± 0.05 kcal mol-1 and -0.52 ± 0.06 kcal mol-1, respectively, 

when bound to holoDDC (Figure 3.22; Table 3.3). The mutants E114A and R88A/E114A, 

on the other hand, demonstrated similar behavior when titrated to apoDDC, with enthalpy 

changes of -0.14 ± 0.13 kcal mol-1 and -0.44 ± 0.06 kcal mol-1, respectively (Figure 3.22; 

Table 3.3). Overall, the PNPO mutants provided by our modeling investigations had no 

significant effects on preventing the formation of the complex, and possible explanations 

for this observation is provided below, which suggest additional site-directed mutagenesis 

investigations may be necessary to locate other key residues to validate the proposed 

model of the complex. 
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Figure 3.22 ITC thermodynamic binding data of PNPO mutants bound to apo- and 

holoDDC. A) The dissociation constants (KD) of wild-type and mutant PNPO bound to apoDDC 

(left) and holoDDC (right); (B) ITC parameters for free energy change (ΔG), enthalpy change 

(ΔH), and entropy change (-TΔS) are represented by bars and shaded in light yellow, light blue, 

and light green, respectively. 
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Table 3.3 ITC measured thermodynamic parameters between PNPO mutants and 

DDC in both holo (left) and apo (right) forms. 

 

  

 Based on our model, the residue E114–PNPO of one chain of the dimer suggested 

a stable salt bridge formation with K207–DDC, ranging between 2–4Å over simulation 

time; hence, the slight increase in hydrophilic interaction was unexpected. However, the 

residue E114 on the other chain of the PNPO dimer is stabilized by intramolecular contact 

with K119, which appears to be involved in forming a salt bridge with E180 at the DDC 

C-terminus (see Figure 3.23). One explanation is that the loss of negatively charged side 

chain of E114 may allow a better electrostatic interaction between K119–PNPO and 

E480–DDC (Figure 3.23). Therefore, K119–PNPO is a candidate for further site-mutation 

studies (K119A) to determine its affect in abrogating the PNPO•DDC complex formation.  

 

 

 

holoDDC apoDDC

KD

(µM)
ΔG

(kcal mol-1)

ΔH
(kcal mol-1)

-TΔS
(kcal mol-1)

KD

(µM)
ΔG

(kcal mol-1)

ΔH
(kcal mol-1)

-TΔS
(kcal mol-1)

wt-PNPO 2.59 ± 0.11 -7.62 ± 0.08 -2.33 ± 0.10 -5.21 ± 0.05 0.93 ± 0.07 -8.22 ± 0.06 -3.03 ± 0.10 -5.19 ± 0.11 

R88A-PNPO 4.59 ± 0.57 -7.29 ± 0.06 -2.11 ± 0.05 -5.15 ± 0.05 1.52 ± 0.27 -7.95 ± 0.11 -2.81 ± 0.17 -5.01 ± 0.21 

E114A-PNPO 2.21 ± 0.02 -7.72 ± 0.01 -2.58 ± 0.02 -5.13 ± 0.04 0.82 ± 0.14 -8.31 ± 0.11 -3.17 ± 0.14 -5.20 ± 0.16 

R88A/E114A-
PNPO

2.28 ± 0.04 -7.71 ± 0.04 -2.85 ± 0.05 -4.86 ± 0.04 1.03 ± 0.08 -8.17 ± 0.05 -3.47 ± 0.07 -4.7 ± 0.11 
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Figure 3.23 Predicted PNPO•apoDDC complex showing the proposed key residue (PNPO-

E114) interaction at the protein-protein interface. 
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3.4.4   Conclusion 

 Our computational and biophysical investigations revealed that PNPO is capable 

of forming a complex with DDC, in both its apo- and holo-forms. On the basis of our 

computational model, we proposed key residues that are amenable to mutation and 

experimental testing for their potential to affect the formation of the complex. Three PNPO 

mutants, R88A, E114A, and R88A/E114A, were successfully subcloned, expressed, and 

purified. The thermal stability of the three mutants was then assessed, with Tm values of 

61.29 ± 0.10 °C, 61.09 ± 0.06 °C, and 57.95 ± 0.08 °C for R88A, E114A, and 

R88A/E114A, respectively, compared to 62.67 ± 0.15 °C for the wild-type PNPO. The 

melting temperature (Tm) of the PNPO mutants did not vary significantly, therefore their 

binding affinities towards the DDC enzyme were assessed. ITC measurements were 

carried out on PNPO mutants and DDC (in both holo- and apo-forms).  ITC binding studies 

showed no substantial impact of PNPO mutants on the stability of the complex formation. 

Because of this, additional molecular modeling and site-directed mutagenesis 

investigations are necessary to gain a comprehensive understanding of the near-native 

complex.   
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CHAPTER 4 

Conclusions 

 

 The various types of proteins in cells carry out a wide variety of complicated 

molecular functions due to their highly precise three-dimensional structures, which are 

determined by their genetically encoded sequences of amino acids.1 A thorough 

knowledge of protein structures and interactions at the atomic level enables researchers 

to get a deep foundational understanding of the potential functions and enzymatic 

processes required for cells, resulting in more effective therapeutic interventions. Two 

main projects were the focus of this dissertation, both of which aimed to make use of 

structural data obtained from determined protein structures. 

 In the first project, we adopt a new motif known as "3D hydropathic interaction 

maps" motif for describing protein structure and interaction.2,3 Many therapeutic research 

endeavors, such as protein structure-function analyses and structure-based drug 

discovery, require atomic-resolution protein structural models. Unfortunately, atomic-

resolution data for some of the most therapeutically relevant proteins is frequently 

unavailable. As a result, accurate structural model construction (particularly from less-

than-ideal experimental data) is required. 3D hydropathic maps are information-rich 

descriptors of preferred conformations, interaction types and energetics, and solvent 

accessibility. These calculated maps can be utilized to define and characterize the 

hydropathic environment around protein amino acid residues with respect to their 

hydrophobic and polar interactions. It can also be  contoured and displayed to illustrate 

the types, strengths, and loci of these interactions in 3D space. In this project, we focused 
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on the structural roles of phenylalanine (PHE), tyrosine (TYR), and tryptophan (TRP) 

residues.4 These residues are referred to as “aromatic amino acids” as they possess an 

aromatic moiety in their sidechains. Their unique sidechain characters, with their 

conjugated planar rings, enable them to engage in multiple noncovalent hydrophobic and 

polar interactions. Here, we calculated and analyzed sidechain-to-environment 3D maps 

for over 70,000 residues of these three types that reveal, with respect to hydrophobic and 

polar interactions, the environment around each. Calculated maps were clustered using 

the k-means algorithm based on map-map pair similarities. As a result, the ~31,000 

phenylalanines, ~29,000 tyrosines and ~12,000 tryptophans in the data set were 

clustered, respectively, into 607, 609, and 457 unique sidechain-dependent 

environments. A common map motif of unfavorable hydrophobic-hydrophobic interaction 

along the CA-CB axis was found to be shared by the three aromatic residues. The 

phenylalanines showed a common motif of a favorable hydrophobic-hydrophobic 

interaction surrounding the aromatic ring, which is more ubiquitous in the β-pleat region 

than in the left-hand and right-hand α-helix regions. A common motif in the tyrosines 

showed a favorable hydrophobic-hydrophobic interaction of tyrosine rings and a favorable 

polar-polar interaction of phenolic hydroxyls with their surrounding environments. The 

latter motif was also observed to be common in tryptophans, where hydrophobic-

hydrophobic interactions of the indole ring and  favorable-favorable interactions of the 

indole NH with their surroundings were consistently observed. Furthermore, interactions 

 above and below the space of the sidechain rings were sampled to evaluate the 

magnitude/occurrence of key noncovalent interactions ,i.e., π-cation, π-π stacking, or 

other classes of interactions. Around half of the residues studied showed evidence of π-
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π interactions (PHE: 53%, TYR: 34%, TRP: 56%); however, this accounted for only 4% 

of the total energy contribution. Evidence for π-cation interactions was seen in 14% of 

PHE, 8% of TYR and 27% of TRP residues, but this contributed only ~1% of the total 

energy between the residue and environment. In this project, we showed that these 3D 

maps are able to assemble the protein structure as combinations of backbone-oriented 

3D maps selected from the clustered set by optimizing the overlaps of interaction 

features. We also demonstrated that these maps encode not only traditional hydrogen 

bonding and hydrophobic interactions, but also noncovalent interactions such as π-cation 

hydrogen bonding and π-π stacking. The recognition of even these subtle interactions in 

the 3D hydropathic environment maps is key support for our interaction homology 

paradigm of protein structure elucidation and possibly prediction. Other residues, such as 

ALA,3 SER/CYS5 and ASP/GLU/HIS,6 were defined and characterized using our 

described motif. Furthermore, studies comparing membrane-based vs soluble-based 

residues have been carried out,7 with additional contributions expected in the near future. 

 

 The goal of the second project was to investigate interactions between pyridoxine-

5' phosphate oxidase (PNPO), a vitamin B6-salvage enzyme, and dopa decarboxylase 

(DDC), a vitamin B6-dependent enzyme, using different approaches. Deficiency of 

cellular  B6  vitamers,  or  mutations  in  the  B6-salvage  enzymes  or  key  B6-dependent 

 enzymes, is known or suspected to contribute to several pathologies, such as seizures,8,9 

hallucination,10 convulsions,11 autism,12 Down syndrome,13,14 schizophrenia,15 Neonatal 

Epileptic Encephalopathy (NEE),16–20 Parkinson’s,21,22 Alzheimer’s,23–25 and learning 

disabilities.26,27 High intake of vitamin B6 is also linked to neurotoxic effects because of 
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the PLP reactive aldehyde forming aldimines with free amino groups on non-B6 proteins, 

disrupting their function. To avoid toxicity, the cell maintains a very low concentration of 

free PLP.28 This raises the unresolved question of how a low cellular concentration of free 

PLP converts hundreds of competing apo-B6 enzymes to their active holo-forms? In fact, 

as we learn about the health problems involving vitamin B6 deficiency, it is also clear that 

we have an inadequate knowledge of how this important vitamin is made available to  

newly synthesized apo-B6 salvage enzymes. Therefore, this project explored the 

mechanism by which apoDDC are converted to their catalytically active holo-form. We 

tested the hypothesis that the transfer of PLP from the PNPO salvage enzyme to apoDDC 

involves channeling, which appears to offer an efficient and protected means of delivery 

of the highly reactive PLP. Channeling requires that the donor and acceptor enzymes 

form physical contact, and the inability of such complex formation may lead to detrimental 

outcome.29,30 Due to the lack of a crystallographic structure for the PNPO•DDC complex 

or any other B6-salvage enzyme/B6-dependent enzyme complex, several approaches 

were employed, including molecular modeling, biophysical, PLP transfer kinetics, and 

site-directed mutagenesis studies. With the known 3D structures of hPNPO31 and DDC 

(in  both  apo-and  holo-forms)32,33,  protein-protein  docking  and  molecular  dynamics 

simulation studies were carried out to predict the most likely near-native structure of the 

complex. We showed that PNPO can form a favorable complex with apo-and holo-DDC. 

Moreover, HINT scoring demonstrated that PNPO has a more favorable binding to 

apoDDC than holoDDC (8650 vs. 4746). Furthermore, this modeling studies supported 

the fact that B6-activation would involve PLP transfer from the allosteric binding site of 

PNPO, with no potential recognition of the PNPO active site (catalytic site) at the interface 
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of the complex was observed. The final models for PNPO•apoDDC and PNPO•holoDDC 

complexes were subjected to an all-atom MD simulation for further refinement. The 

energetics and binding mode analyses suggested that R88 and E114 of PNPO may play 

significant roles (large energy contributions) in this association. Later, these residues 

were mutated and evaluated experimentally. Following that, physical binding studies were 

carried out using FP, SPR, and ITC techniques. The dissociation constant (KD) between 

PNPO and DDC was determined in the low micromolar range, with SPR and ITC yielding 

similar KD values for the PNPO•holoDDC complex, 3.7 µM and 2.59 µM, respectively. 

This is within the range of KD values reported by our groups for PNPO with several B6-

dependent enzymes, ranging from 0.3 to 12.3 µM.29,30 The ITC was used to characterize 

interactions between PNPO and apoDDC, which were shown to be about three times 

stronger than interactions between PNPO and holoDDC, with KD values of 0.92 ± 0.07 

µM and 2.59 ± 0.11 µM, respectively. To the best of our knowledge, no binding studies 

have been published between any of the apo-B6 enzymes and the B6-salvage enzymes. 

A PLP  transfer  kinetic  study  was  also  accomplished  in  this  study. The  goal  was  to  

demonstrate that PNPO forms a physical complex with apoDDC for the productive 

transfer of the bound PLP. We showed that ~30% of the tightly-bound PLP was 

transferred to apoDDC to form the catalytically active holo-form. Similar findings have 

previously been reported by our lab, in which 30–50% of the tightly bound PLP is 

transferred when equal amounts of PNPO or PLKase (PLP donor) and apoSHMT (PLP 

acceptor) are present.29,30 Site mutation investigations of key residues identified by 

modeling studies, R88A–PNPO, E114A–PNPO, and R88A/E114A–PNPO, were carried 

out but showed no significant effects on the complex formation. When compared to the 
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wild-type PNPO, PNPO mutants showed comparable binding to apo-and holo-DDC. 

Therefore, further site-mutation studies are required. In this dissertation, we proposed 

K119–PNPO as a promising candidate for further site-directed mutagenesis study.  

 Overall, this multidisciplinary work aimed to integrate computational and 

experimental methodologies—from describing the role of aromatic residues in protein 

structures using 3D maps to exploring interactions between the two B6-related enzymes, 

PNPO and DDC. The findings of this research will contribute to a better understanding of 

the structural and functional roles of aromatic amino acid residues in protein structures, 

as well as a step forward in revealing the mechanism of apo-B6 activation. 
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