
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2022

SMART CITY MANAGEMENT USING MACHINE LEARNING SMART CITY MANAGEMENT USING MACHINE LEARNING

TECHNIQUES TECHNIQUES

Mostafa Zaman

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Artificial Intelligence and Robotics Commons, Controls and Control Theory Commons,

Other Electrical and Computer Engineering Commons, and the Power and Energy Commons

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/7170

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has
been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass.
For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F7170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarscompass.vcu.edu%2Fetd%2F7170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/269?utm_source=scholarscompass.vcu.edu%2Fetd%2F7170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/278?utm_source=scholarscompass.vcu.edu%2Fetd%2F7170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/274?utm_source=scholarscompass.vcu.edu%2Fetd%2F7170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/7170?utm_source=scholarscompass.vcu.edu%2Fetd%2F7170&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

©Mostafa Zaman, December 2022

All Rights Reserved.

SMART CITY MANAGEMENT USING MACHINE LEARNING TECHNIQUES

A Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Electrical & Computer Engineering in the Department of

Electrical & Computer Engineering at Virginia Commonwealth University.

by

MOSTAFA ZAMAN

Bachelor of Science, Bangladesh University of Engineering and Technology, 2015

Committee Chair : Dr. Sherif Abdelwahed,

Professor, Department of Electrical & Computer Engineering

Virginia Commonwewalth University

Richmond, Virginia

December, 2022

i

Committee Members

The following served on the Examining Committee for this thesis. The decision of

the Examining Committee is by majority vote.

Supervisor : Dr. Sherif Abdelwahed

Professor

Department of Electrical & Computer Engineering

Virginia Commonwealth University

Richmond, Virginia, USA.

Committee Member : Dr. Carl Elks

Associate Professor

Department of Electrical & Computer Engineering

Virginia Commonwealth University

Richmond, Virginia, USA.

Committee Member : Dr. Milos Manic

Professor

Department of Computer Science

Virginia Commonwealth University

Richmond, Virginia, USA.

ii

Acknowledgements

Before anything else, I want to thank my adviser, Dr. Sherif Abdelwahed, for his

help throughout my time in graduate school and beyond. I’ll never be able to repay

him for all the help he’s given me over the past four years. Thanks to his insight-

ful criticisms, enthusiastic support, patient mentoring, and extensive expertise, this

dissertation would not exist. Foremost. His suggestions immensely helped me while

researching and writing this thesis. There is no one I would have preferred to have as

my adviser and mentor during my MSc. studies or continuation of my Ph.D. studies.

A special thanks go out to Dr. Carl Elks and Dr. Milos Manic, two members of my

committee, for their thoughtful critiques and recommendations, expert suggestions.

My family members have been more instrumental in this process than anybody else.

I’m grateful to my beloved mother and father, whose unconditional support and wise

counsel have always been there for me. I also want to express my deepest gratitude

to my loving wife, Nishat Salsabil, and everyone who has shown me support through

their prayers and kindness. Finally, I would be remiss in not mentioning Sujay Saha,

whose suggestions, support, and love helped me during the difficult times of my life.

iii

Author’s Declaration

I certify that the work presented in this thesis is my original work and has

not been previously submitted for credit toward another degree. Almost all of the

work in the lab was done by myself, and everyone who helped was given credit.

Each piece of literature and resource used in support has been appropriately cited. I

certify that I am the author of this thesis, that I have the right to use the material

presented herein, that it has not been submitted for credit toward any other degree

or professional qualification, and that all attributions in the text are accurate. My

examiners have approved this authentic, final version of my thesis. I consent to my

thesis being made publicly available in electronic format.

Dedication

I want to thank my parents, the late Parveen Sultana Zaman and Md. Mokhle-

suzzaman, for the unconditional love they have shown me throughout my life and for

helping me get to where I am now, which is why I am dedicating my Thesis to them.

iv

TABLE OF CONTENTS

Chapter Page

Examining Committee . i

Acknowledgements . ii

Author’s Declaration . iii

Dedication . iv

Table of Contents . v

List of Tables . viii

List of Figures . ix

Abstract . xiii

1 Introduction . 1

1.1 Motivation . 3

1.2 Summary of Contributions . 4

1.2.1 Smart Energy Aspect . 5

1.2.2 Smart Transportation System Aspect 6

1.2.3 Smart Control in Water Distribution System Aspect 6

1.2.4 Smart Environment Aspect 7

1.3 Thesis Organization . 8

2 Literature Reviews and Related Works 9

2.1 Smart Energy : Photovoltaic (PV) Generation 9

2.2 Intelligent Transportation System (ITS) 10

2.3 Smart Environment (AQI Evaluation) 12

2.4 Smart Water Distribution System (WDS) 14

3 Theoretical Background . 16

3.1 Emergence of Artificial Intelligence (AI) 16

3.2 Introduction of Machine learning 17

v

3.2.1 Introduction of Deep Learning 20

3.2.1.1 Importance of Deep Learning 20

3.3 Convolutional Neural Network (CNN) 21

3.3.1 Benefits of Employing CNNs 22

3.3.2 General Architecture of Convolutional Neural Network 23

3.3.2.1 Convolutional Layer 23

3.3.2.2 Pooling Layer . 25

3.3.2.3 Activation Function (non-linear) 26

3.3.2.4 Binary Step Function 27

3.3.2.5 Linear Activation Function 27

3.3.2.6 Non-Linear Activation Function 28

3.3.2.7 Sigmoid Activation Function 29

3.3.2.8 Tanh Function (Hyperbolic Tangent) 30

3.3.2.9 Rectified Linear Unit (ReLU) Function 31

3.3.2.10 Softmax Activation Function 32

3.3.2.11Choosing the right Activation Function 32

3.3.2.12Fully Connected Layer 33

3.3.2.13 Loss Functions . 34

3.3.2.14 Introduction of Loss Function 35

3.3.2.15Mean Absolute Error (MAE) 35

3.3.2.16Mean Squared Error (MSE) 36

3.3.2.17Root Mean Squared Error (MSE) 36

3.3.2.18Huber Loss . 37

3.3.2.19Binary Cross-Entropy Loss 38

3.3.2.20Categorical Cross Entropy Loss 38

3.3.2.21Hinge Loss . 38

3.3.2.22Regularization to CNN 39

3.3.2.23Optimizer Selection 41

3.3.2.24 Improving performance of CNN 43

3.4 Long Short Term Memory . 43

3.4.1 General Architecture . 43

3.4.2 Cell State . 44

3.4.3 Deleting Information . 45

3.4.4 Adding New Information . 45

4 OpenCity Architecture . 48

5 A Deep Learning Model for Forecasting Photovoltaic Energy with

Uncertainties . 50

vi

5.1 Proposed Methodology . 50

5.1.1 Dataset Description . 52

6 Incorporation of Physiological Features in Drowsiness Detection Using

Deep Neural Network Approach . 54

6.1 Proposed Approach . 54

6.1.1 Dataset Description . 56

7 Air Quality Prediction using Distributed LSTM Approach for Smart

City Testbed . 59

7.1 Air Quality Index (AQI) . 59

7.2 Methodology . 60

7.2.1 Training . 62

7.2.1.1 Forcasting . 62

7.2.1.2 Classification . 63

8 Adaptive Control for Smart Water Distribution Systems 64

8.1 Testbed Design . 64

8.1.1 Instrumentation and Control Design 65

8.1.2 Safety System Design . 66

8.1.3 Embedded System and Communication Architecture 66

8.2 Control System Design . 67

8.2.1 Single-loop Feedback Control 67

8.2.2 Adaptive Feedback Control 68

8.2.3 Disturbances and User Consumption Modeling 68

9 SIMULATION RESULTS . 71

9.1 Performance Evaluation . 71

9.2 Smart Energy . 73

9.3 Smart Transportation System . 78

9.4 Smart Environment . 79

9.5 Smart Water Distribution System 80

9.5.1 Discussion . 83

10 Conclusions and Future Works . 87

10.1 Smart Energy . 87

10.2 Smart Transportation System . 88

10.3 Smart Environment . 88

10.4 Smart Water Distribution System 89

vii

Appendix A Abbreviations . 91

References . 92

Vita . 113

viii

LIST OF TABLES

Table Page

1 Selection of Appropriate Activation Function 33

2 Network Configuration for the proposed CNN-LSTM architecture 52

3 Network configuration for the proposed CNN architecture 58

4 Air Quality Index Categories [151] . 60

5 Pollutant-Specific Sub-indices for the Air Quality Index (AQI)[154] 60

6 Network Configuration for the proposed LSTM architecture 62

7 User profile and time intervals, represented by the parameter vector θ . . 70

8 Confusion Matrix . 72

9 Performance comparison of the proposed approach and the baseline . . . 78

10 Results for the proposed methodology . 79

11 Performance comparison of the proposed approach and the baseline . . . 85

12 Performance comparison of the proposed approach and the baseline . . . 85

ix

LIST OF FIGURES

Figure Page

1 An illustration of the position of deep learning (DL), comparing with

machine learning (ML) and artifcial intelligence (AI) [78, 79] 17

2 A map of Machine learning techniques [88] 19

3 Common Architecture of a Convolutional Neural Network [104] 22

4 Convolutional Layer . 24

5 Max pooling Layer . 25

6 Binary Step Function [113] . 27

7 Linear Activation Function [113] . 28

8 Sigmoid Activation Function [113] . 29

9 Tanh Activation Function [113] . 31

10 ReLU Activation Function [113] . 32

11 Softmax Activation Function [113] . 33

12 Fully Connected Layer . 34

13 Regularization in Convolutional neural networks [120] 39

14 Long Short Term Unit (First Step) . 44

15 Long Short Term Unit (Second Step) . 45

16 Long Short Term Unit (Third Step) . 46

17 Long Short Term Unit . 47

18 The OpenCity platform architecture . 49

x

19 Proposed CNN-LSTM framework . 51

20 Proposed Algorithm for Drowsiness Detection 55

21 Proposed Architecture of Drowsiness Detection 56

22 Camera and Sensors Architecture . 57

23 The Proposed Distributed LSTM Architecture 61

24 The Proposed flow chart of the Suggested method 61

25 A simplified process flow diagram for the water distribution system.

Details for the business and hospital buildings are the same as the

residential building and omitted to avoid cluttering the diagram. 64

26 MQTT (Message Queuing Telemetry Transport) communication for

the testbed . 66

27 Pressure control schemes for the water distribution system 67

28 A signal representation of user consumption 69

29 Prediction Comparison using CNN-LSTM over the whole learning period 73

30 Prediction Comparison using CNN-LSTM over the time sequence 9000-

10000 . 74

31 Prediction Comparison using CNN-LSTM over the time sequence 76000-

81000 . 74

32 Prediction Comparison using CNN-LSTM over the time sequence 99000-

100000 . 75

33 Training and testing data loss value using proposed method 75

34 Training and testing data loss values using baseline method 75

35 Prediction Comparison using LSTM over the whole learning period 76

36 Prediction Comparison using LSTM over the time sequence 9000-1000 . . 76

xi

37 Prediction Comparison using LSTM over the time sequence 76000-81000 . 77

38 Prediction Comparison using LSTM over the time sequence 99000-10000 . 77

39 Training and testing data accuracy using the proposed method 78

40 Training and testing data loss values using the proposed method 78

41 Confusion matrix of the proposed approach 79

42 Forecasting Result for CO . 80

43 Forecasting Result for NO2 . 80

44 Forecasting Result for Ozone . 81

45 Forecasting Result for PM2.5 . 81

46 Forecasting Result for PM10 . 82

47 Forecasting Result for SO2 . 82

48 Forecasting Result for Pb . 83

49 Pressure profile for the two experimental control schemes vs different

usage patterns. For the usage patterns, ”S” is for the Same floor, and

”O” is for the Opposite floor. The fixed pressure scheme utilizes one

pressure setpoint for all usage patterns, while the dynamic pressure

scheme varies the pressure set point according to the usage pattern. . . . 84

50 Flow rate variation for the two pressure control schemes for a fixed

user. For the dynamic pressure scheme, the flow rate for two different

users at two different floors is shown. ”U” stands for the Upper floor,

and ”L” for the Lower floor. 84

51 Power consumption per user for the two pressure control schemes. 86

xii

Abstract

SMART CITY MANAGEMENT USING MACHINE LEARNING TECHNIQUES

By Mostafa Zaman

A Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Electrical & Computer Engineering in the Department of

Electrical & Computer Engineering at Virginia Commonwealth University.

Virginia Commonwealth University, 2022.

Director: Dr. Sherif Abdelwahed,

Professor, Department of Electrical & Computer Engineering

In response to the growing urban population, ”smart cities” are designed to im-

prove people’s quality of life by implementing cutting-edge technologies. The concept

of a ”smart city” refers to an effort to enhance a city’s residents’ economic and en-

vironmental well-being via implementing a centralized management system. With

the use of sensors and actuators, smart cities can collect massive amounts of data,

which can improve people’s quality of life and design cities’ services. Although smart

cities contain vast amounts of data, only a percentage is used due to the noise and

variety of the data sources. Information and communication technology (ICT) and

the Internet of Things (IoT) play a far more prominent role in developing smart cities

when it comes to making choices, designing policies, and executing different meth-

ods. Smart city applications have made great strides thanks to recent advances in

artificial intelligence (AI), especially machine learning (ML) and deep learning (DL).

The applications of ML and DL have significantly increased the accuracy aspect of

xiii

decision-making in smart cities, especially in analyzing the captured data using IoT-

based devices and sensors. Smart cities employ algorithms that use unlabeled and

labeled data to manage resources and deliver individualized services effectively. It

has instantaneous practical use in many crucial areas, including smart health, smart

environment, smart transportation system, energy management, and smart water

distribution system in a smart city. Hence, ML and DL have become hot research

topics in AI techniques in recent years and are proving to be accurate optimiza-

tion techniques in smart cities. In addition, artificial intelligence algorithms enable

the processing massive datasets and identify patterns and characteristics that would

otherwise go unnoticed. Despite these advantages, researchers’ skepticism of AI’s

sometimes mysterious inner workings has prevented it from being widely used for

smart cities. This thesis’s primary intent is to explore the value of employing di-

verse AI and ML techniques in developing smart city-centric domains and investigate

the efficacy of these proposed approaches in four different aspects of the smart city

such as smart energy, smart transportation system, smart water distribution sys-

tem and smart environment. In addition, we use these machine learning approaches

to make a data analytics and visualization unit module for the smart city testbed.

Internet-of-Things-based machine learning approaches in diverse aspects have repeat-

edly demonstrated greater accuracy, sensitivity, cost-effectiveness, and productivity,

used in the built-in Virginia Commonwealth University’s real-time testbed.

Keywords: Machine Learning, Artificial Neural Network, Convolutional Neural

Network, Deep Learning, Smart City, Adaptive Control

xiv

CHAPTER 1

INTRODUCTION

Around 66% to 70% of the world’s population will live in cities by 2050 [1, 2]. This

rapid urbanization will have far-reaching consequences for city infrastructure, ecology,

and safety. Several governments have advocated the notion of smart cities to optimize

energy usage and manage the rapid rise in urbanization. Several countries (e.g.,

the United States, the European Union, Japan, etc.) have efficiently planned and

implemented smart city initiatives to meet these potential future issues. Successful

information and communication technologies (ICTs) [3, 4, 5] are necessary to manage

the data analysis, data communications, and effective implementation of complex

strategies required for a smart city’s safe and efficient running [6].

Many smart city applications rely heavily on the Internet of Things (IoT) to

produce massive data [7]. However, decisions based on extensive and intricate datasets

are tough to predict. Artificial intelligence (AI), machine learning (ML), and deep

reinforcement learning (DRL) are cutting-edge methods that may be used to analyze

vast data and provide the best feasible option [6, 8, 2]. Furthermore, increasing the

training data will boost the learning capacities of the methodologies above, leading

to greater accuracy and precision. This results from the benefits of computerized

decision-making [6, 9].

The success of the smart cities project relies on advancements in diverse areas

such as intelligent transportation, cyber-security, smart grids (SGs), and 5G net-

work architecture. In addition, the analytical and practical application of AI, ML,

and DRL-based methodologies to improve the efficiency and scalability of a smart

1

city project are all heavily influenced by big data. Moreover, artificial intelligence’s

influence on our regular lives is growing. For example, artificial intelligence (AI)

profoundly affects how people think about and interact with the world at work [6].

Many current plans for urban development suggest integrating cutting-edge opera-

tional technology into a city’s fundamental infrastructures, including its transporta-

tion network, government services, and power grid [6].

The concept of ”smart cities” is fast gaining traction as a viable option for

the growth of metropolitan areas, intending to improve their residents’ chances of

survival and living. They astound us with their ingenuity in finding ways to use

limited resources better, minimizing the adverse effects of our modern lifestyles on the

natural world. Machine Learning allows computers to learn by making correlations

between data. Moreover, by solving interconnected problems like optimizing urban

planning and integrating city services for individualized results concerning the use of

specific services by the inhabitants, machine learning can also encourage changes in

utility business models, bringing greater mobility and comfort to users [10].

For Machine Learning (ML) to be effective, it must be able to generalize and

resolve beyond the instances included in the training set. This is because it is highly

far-fetched that these particular cases would be observed again in the predicted time

frame, regardless of how much data is available for model training. As the predictions

would be no better than a random guess if the model is too general, the model needs to

be able to monitor input data and simulate the phenomena in a way that is reasonable

and reasonable. On the other hand, too much transparency indicates that the model

has been trained on adorned input data and cannot generalize to new data [10, 11,

12].

The motivation of this thesis is described in Section 1.1. Section. 1.2 provided

the summary of contributions of this thesis. Finally, The thesis’s architecture is laid

2

forth in section 1.3.

1.1 Motivation

Smart systems in healthcare, energy, transportation, water supply, power con-

sumption, the environment, and other related networks are made possible due to the

rapid development of AI, sensor technologies such as the Internet of Things (IoT),

and wireless communication. Smart cities are a new type of integrated entity made

possible by the interoperability of various smart systems and the gadgets used by

their inhabitants. Over the past decade, communication technologies have enabled

the interconnection of diverse heterogeneous networks, and autonomous agents that

make up the Internet of Things (IoT) [13, 14]. High-performance sensors and end-user

devices connected to the Internet of Things are the catalysts for using networks to

make cities more intelligent and sustainable. Smart cities aim to provide integrated

management systems with diverse, intelligent infrastructures to help traditional cities

face future difficulties [15].

It might be difficult to make judgments in smart cities because of the many direct

and indirect aspects and criteria involved. Our goal in writing this thesis was to zero

down on one of the four main features of ”smart cities,” namely, efficient energy use,

a well-developed public transportation system, and a healthy environment. It takes

time and effort to make the best possible decision across the many facets of smart

cities that use many devices and systems. Regularly collected data may help us make

optimal choices. This means there is room for development in how decision support

systems are trained [15, 16].

It’s fascinating how major metropolitan areas gradually give up their urban chic

in favor of a more technologically advanced identity. Technology, especially AI, is

expanding the concept of ”smart cities” (AI). More and more people are choosing

3

to make their homes in urban areas, which increases the demand for a unified in-

frastructure that can efficiently and affordably accommodate this burgeoning urban

population. However, an increasing population poses difficulties for smart city plan-

ning and puts tremendous pressure on society to foster surroundings that are both

innovative and sustainable. Thus, modern developed cities call for integrated smart

policies and creative ways to improve monitoring functionality and promote urban liv-

ing. For this reason, implementing different machine-learning approaches in distinct

aspects of smart cities will help us to build a general machine-learning framework to

monitor, organize, plan and improve the quality of services [15, 17].

In this thesis, we explore using four distinct machine-learning techniques in the

context of smart city implementations. First, we use diverse ML strategies in smart

power, transportation, and ecology. Then, we attempt to implement adaptive control

in the smart water distribution system. Finally, to maximize the many facets of smart

cities, we propose combining all the modules into a comprehensive machine-learning

framework that includes data capture, analysis, and decision-making.

1.2 Summary of Contributions

The main contributions of this thesis are to implement different machine learning

approaches to various aspects of smart city applications and investigate the usefulness

of these approaches to increase the quality of the citizen’s life. These approaches may

be included as a module of a general machine-learning framework for the smart city.

Furthermore, these modules can be a lower-level specification of a decision support

system that will be utilized to handle uncertain aspects and events and tackle human

intervention during emergencies. The following sections provide the contributions of

each of the four elements of smart cities.

4

1.2.1 Smart Energy Aspect

This study suggests a hybrid CNN-LSTM model forecast PV output reliably.

The presented model uses a convolutional layer (CNN) that functions as a buffer by

extracting the data’s local characteristics and then passing them on to the subsequent

layers. The second layer (LSTM) extracts data from temporal and sequential features.

Predictions of PV generation at one-step ahead and multiple-step-ahead horizons are

made using the suggested approach [18] using a real dataset (DKASC, Alice Springs).

A single LSTM and a BiLSTM prediction model are used to evaluate the proposed

method’s efficacy. Our framework’s ability to learn temporal and local data aspects

allows for accurate prediction performance. In addition, the model works well over a

range of periods. The main contributions of this study include:

1. Presenting an uncertainty-aware deep learning algorithm for predicting PV gen-

eration profiles. Unlike prior studies in the field, which were typically developed

for indirect forecasting of PV production (based on predictions of climatic vari-

ables), our proposed model predicts PV outputs by directly learning from raw

data. Therefore, our model is robust against uncertain data (noisy, inaccurate,

and missing data).

2. Compared to the previous PV output forecasting methodologies presented in

the literature, our proposed algorithm uses a combination of CNN and LSTM;

CNN extracts the local features from data, and LSTM captures the tempo-

ral relationships. In particular, the advantages of above two technologies are

integrated to enhance the estimation accuracy and forecasting reliability.

3. The Performance of the proposed prediction model is evaluated on an actual

dataset (DKASC), and the results are analyzed and compared to that of a single

5

LSTM and a BiLSTM neural network. Besides, the efficiency of our proposed

model is validated for various prediction time horizons.

1.2.2 Smart Transportation System Aspect

This paper proposes a drowsiness detection method that integrates machine

learning and physiological approaches such as heart rate and blood oxygen level. We

have presented an efficient system to deal with real-time driver drowsiness detection

using a convolutional neural network and other human biological features, including

the blood oxygen level and cardiac rate.

The main contributions of this paper are:

1. Adding biological and physiological features in addition to neural network ap-

proaches to detect drowsiness,

2. Proposing a more accurate and robust detection method,

3. Integrating different neural networks and feature elements such as heart rate,

blood oxygen level as a single input node of the neural network.

1.2.3 Smart Control in Water Distribution System Aspect

Realizing the significance of water and energy consumption and the opportunities

offered by IoT technology, we took the initiative to build a water distribution system

testbed as part of an extensive smart city project at Virginia Commonwealth Univer-

sity. This paper presents the design of the testbed and simulation results, comparing

existing simple control approaches and an adaptive control approach that utilizes IoT

data.

1. Illustrating how a water distribution system variables (pressure, flow, and en-

6

ergy consumption) are coupled and how they change with different usage pro-

files,

2. Showing that simple adaptive control approaches that utilize IoT data outper-

form existing classical control techniques for smart buildings,

3. Proposing more complex control configurations using the insight gained from

simulation experiments.

1.2.4 Smart Environment Aspect

Despite the detrimental effects of air pollution, it is vital to have a reliable model

for predicting AQI levels to improve urban public health and foster sustained social

progress. Because of the direct influence on city administration and citizen health

that air pollution forecasts have in densely populated places, such knowledge is of

paramount relevance. Therefore, it is essential to use deep learning neural networks

like long short-term memory (LSTM) to assist in policymaking that prioritizes im-

proving air quality to create more sustainable cities. The suggested method may

predict future AQI values by studying existing data on NO2, CO, O3, SO2, PM2.5,

and PM10 concentrations. Results from the current study show that the distributed

LSTM technique outperforms standalone neural network predictors and regression

models in predicting the AQI. the sample size indicates only a small time frame (one

day). A more rigorous statistical analysis and more definitive conclusions might have

been achieved with an extended period of hourly data.

In this paper, our primary contributions are presented below.

1. Introducing different distributed LSTM network approach for different pollu-

tants to calculate AQI index values.

7

2. Utilizing distributed LSTM approach in a real-time constructed smart city

testbed [19] to demonstrate a real-world use case.

3. Providing an in-depth analysis of different attributes for calculating AQI values

for various pollutants based on sub-indices values.

1.3 Thesis Organization

The thesis is organized as follows. First,chapter 2 provides a detailed descrip-

tion of the Literature reviews and related works in all aspects. In chapter 3, all

the theoretical aspects of the proposed methodologies are provided in detail. Third,

chapter 4 provides a high-level description of our Open City Testbed. In chapter 5,

A Deep learning model for forecasting photovoltaic energy with uncertainties is ex-

plained. Implying machine learning techniques in ITS and physiological elements are

discussed in chapter 6. In chapter 7, Machine learning approaches for ensuring a smart

environment of a smart city testbed are discussed. chapter 8 explains an adaptive

control aspect of a smart water distribution system. chapter 9 provides the simu-

lation results of implementing machine learning approaches in four domains of the

smart city testbed. Finally, conclusions and future works are provided in chapter 10.

8

CHAPTER 2

LITERATURE REVIEWS AND RELATED WORKS

This chapter 2 provides the literature review for all four aspects of smart cities.

2.1 Smart Energy : Photovoltaic (PV) Generation

Authors in [20] proposed a short-term forecasting method based on support vec-

tor regression (SVR) models for PV output prediction. Their approach is then applied

to forecast the power generation of a PV installed at VTech, USA. In literature [21],

and [22], authors applied convolutional neural networks (CNN) to images/videos of

sky and clouds, and based on CNN outputs, they analyzed the effect of clouds on PV

generation. Authors in [23] presented a CNN-based prediction model for forecasting

solar irradiance. They used solar irradiance predictions to estimate PV outputs.

In the studies mentioned above, climatic variables (such as solar irradiance, cloud

position, and weather condition) are first predicted. Then, PV output predictions are

generated based on the weather condition forecasts. However, for better accuracy, PV

power generation is expected to be directly predicted from historical data samples

(from previous PV generations and their related meteorological data). Therefore,

deep learning approaches can be utilized to learn the features directly from the raw

data and discover valuable representations.

Literature [24] and [25] used the long short-term memory (LSTM) approach to

examine the impact of climatic conditions on estimating PV generation. Authors

in [26] proposed a day-ahead PV power forecasting model by combining the deep

learning modeling method with time correlation principles under a partial daily pat-

9

tern prediction (PDPP) framework. A hybrid deep learning technique for PV power

forecasting is presented in [27]. Finally, the authors combined CNN with the LSTM

approach for an end-to-end PV power prediction [28]. In [29], the authors applied a

gated recurrent unit (GRU) neural network for generating hourly estimations of PV

output.

The latest works demonstrate that deep neural networks outperform most PV

prediction methods. Nevertheless, two empirical holes exist as unresolved questions

in the literature. First, the estimation accuracy must still hit the realistic standard

for real-world industrial applications. Second, most existing studies (including the

above-mentioned deep learning methods) on PV output prediction only focus on one-

step ahead forecasting; they do not offer flexible prediction horizons. PV generation

can be predicted in a one-step or multiple-step horizon ahead. Short-term prediction

horizons are usually chosen for estimating significant power ramp rates, while long-

term forecasts help secure PV operations and enterprise participation. The accuracy

of a PV power prediction model depends on the prediction horizon.

2.2 Intelligent Transportation System (ITS)

Machine Learning (ML) and computer vision allow computers to learn essential

functions in the field of the smart transportation system. For example, the driver’s

sleepiness model should recognize whether the driver is tired, considering various situ-

ations and parameters. Based on deep learning techniques, researchers are constantly

trying to develop an efficient, robust, and real-time driver drowsiness framework vary-

ing light intensities, size of images, and tasks regarding sleepiness [30, 31, 32, 33].

Based on changes in steering, speed, wheel movement, and pedal acceleration, this

method attempts to gauge the driver’s level of fatigue. Another option is to use a

vision system that incorporates vehicle parameters, driving area, and lane-detecting

10

algorithms. Road conditions and driving ability are two of the many external ele-

ments affecting the outcome. This method uses the subjects’ facial expressions to

characterize tiredness. Based on the high association between drowsiness and the

brain signal, a second strategy is to use physiological measurements [33].

On the other hand, a person’s heart rate and oxygen level can give us the right

and accurate idea of that person’s physiological conditions. The pulse rate is the

same regardless of heart stress and vibration in the arteries. Like other essential

indicators such as blood pressure and breathing rate, the heartbeat varies with age

and is a cause of cardiac depolarization. In adults, the average heartbeat of children

is between 60 and 100 beats per minute [34, 35]. Approximately eighty beats per

minute of the heart’s rhythm are the ideal one while one achieves the desired state

of relaxation [36]. Blood oxygen level is one of the key ingredients that keep hu-

man beings alive. Therefore, a real-time assessment of saturated human tissue blood

oxygen (SpO2) is crucial for tiredness. Many experiments indicate that SpO2 in the

conductor’s body decreases as driving time and tiredness increase [37].

Autonomous systems that analyze driver fatigue and predict drowsiness may be

essential for an intelligent vehicle to avoid critical accidents. The researchers used

various machine learning and sensory procedures for detecting fatigue and exhaustion

of the vehicle driver in recent days [31, 32, 33, 34, 35, 36, 37, 38]. Some approaches

rely on tracking the driver’s physiological characteristics such as cardiac rhythm, pulse

rate, electroencephalography (EEG), electrooculography (EOG) signals [35, 38, 39].

Research has indicated that Alpha and Theta bands’ EEG strength is increasing as

the alertness level is declining [40], thereby offering signs of drowsiness. While some

physiological signals have greater identification accuracy, they are only sometimes

adopted because of their less practicality. The third set of strategies is focused on

computer vision systems that can detect face changes during sleepiness [41, 42].

11

2.3 Smart Environment (AQI Evaluation)

Recently, there has been a lot of discussion on how artificial neural networks

(ANNs) may be used to make accurate predictions about how much pollution will

be in the air in the future. In addition, greater demand is being put toward improv-

ing urban air quality since it has been linked to the development of chronic diseases

and the early deaths of people. Policymakers and metropolitan city planners aim

to provide quick air pollution mitigation strategies that make minimal sacrifices in

effectiveness [43]. Many applications for forecasting the near and far future have used

ANNs in recent years with great success [44] [45] [46]. Additionally, an increasing

number of doctors and artificial neural networks (ANNs) as a non-traditional data-

driven method strategy based on hard science or determination [47, 48]. The use of

ANNs, on the other hand, can be done without a thorough familiarity with the inter-

play between various factors and the concentration of air pollution. Finally, in recent

years, powerful and less complex computational tools have been more widely available

to the public to create and implement ANNs and their training algorithms [49].

While progress has been made in creating and understanding ANN models, their

findings still need caveats despite the widespread success. The proliferation of neural

networks and their application in generating massive amounts of data via the IoT

has led to an explosion of research in many fields. There are three types of neural

network models employed in these investigations: Multilayer Perceptron (MLP), Ra-

dial Basis Function (RBF), and Square Multilayer Perceptron (SMLP) for making

predictions [50] [51]. In addition, traditional machine learning and neural networks

demonstrate that various strategies incorporating meteorological and geographical

factors may increase the precision of regional PM2.5 predictions [52].

Environmental elements such as weather, the concentration of pollutants, the

12

closeness of receptors, and the area’s geography all have a role in the accuracy of

air quality forecasts. For example, the effects of the same contaminants on the en-

vironment change depending on the weather. On the same day, the concentration

of pollutants affects air quality. The concentration of ambient air pollutants is most

affected by meteorological conditions [53]. Traditional prediction approaches (such

as mathematical statistics, multi-variable linear regression model, time series, and

gray system) and machine learning methods (like artificial neural network (ANN)

and support vector machine (SVM)) are now employed for air quality prediction [53].

Authors used linear and non-linear modeling to predict air quality [54]. In [55],

the authors used SVM to predict air quality. At present, most studies use non-linear

models to forecast air quality. A previous study in [56] showed that non-linear models

(such as ANN) produce more accurate results than linear models because there are

more apparent non-linear patterns in air quality data. ANN is a powerful tool for

describing non-linear phenomena [57]. Therefore, ANN has been widely used in air

quality prediction to preserve the integrity of the environment [53].

The authors employed an ANN model to forecast PM10 levels and discovered

that pollution levels vary with seasons [58]. Second, Hourly PM2.5 concentration in

Santiago, Chile, was predicted using a feed-forward neural network developed by the

researchers [59]. Third, to forecast and examine PM10 and PM2.5 levels, authors

employed a recurrent neural network (RNN) model. Fourth, by integrating RNN

with data from natural sensors [44], Researchers enhanced their ability to forecast

PM2.5. Fifth, Pardo et al. merely employed a primary LSTM network to foretell air

quality [60]. Finally, for PM2.5 forecasting, a neural network is used for improvement

with genetic algorithms [61]. In 2017, ozone concentrations over Seoul, South Korea,

were predicted by Eslami et al. using a deep convolutional neural network (CNN) [62].

Finally, when developing their model for assessing air quality, Gu et al. relied on an

13

SVM model optimized with a hybrid of SAPSO and PSO [63].

2.4 Smart Water Distribution System (WDS)

The authors in [64] presented a water distribution testbed design (WADI). The

primary purpose of the testbed is to research the structure of secure cyber-physical

systems; hence the design architecture is not to facilitate system performance op-

timization. Furthermore, a Smart Water Distribution System (SWDS) architecture

that uses IoT and ICT cloud computing technology is introduced in [65]. Finally, an

IoT-based underwater water delivery grid architecture with water demand prediction

is explained in [66].

The authors in [67] suggest a smart water distribution network solution for smart

cities for the Indian scenario. An adaptive water demand forecast approach (WDF)

is presented in [68] to assist smart water distribution systems in real-time operational

management. A learning architecture for smart water distribution system control is

developed in [69]. Finally, the authors in [70] combine artificial intelligence, ICT, and

water conservation to solve water delivery problems and examine network optimiza-

tion for drinking water distribution and wastewater storage networks.

The authors in [71] propose an intelligent water management system that utilizes

IoT technology to coordinate business processes and support mechanisms for decision-

making. The study highlights the critical advantages of using IoT data in water

management. The work in [71] studies the use of IoT for water quality monitoring.

The authors in [72] propose an IoT system for continuous monitoring in intermittent

water distribution networks (IWDN). An IoT-Based Framework for Smart Water

Supply Systems Management has been presented in [73] to avoid unwanted water

accidents.

A control algorithm that considers the nonlinear relationship between pressure

14

and flows in distribution networks and utilizes discrete setpoints for pumps is de-

scribed in [74]. The control methods for water distribution networks with the most

frequent control goals, including duty pressure control, tank filling control, and en-

ergy output, are discussed in [75]. Modeling and regulation of a series of pumping

stations providing water via pipes to intermediate storage tanks are discussed in [76],

where the results are compared in real time with observed data. Finally, a flow control

algorithm based on linearization to reduce leakage in water distribution networks is

proposed in [77].

15

CHAPTER 3

THEORETICAL BACKGROUND

3.1 Emergence of Artificial Intelligence (AI)

This 3.1 talks about the connection among AI, ML and DL paradigms. Today,

it’s standard to use the phrases AI, ML, and DL interchangeably to refer to simi-

larly intelligent-acting computer systems or programs. Figure 1 shows that DL is

a subfield of ML and, by extension, artificial intelligence. Learning from data or

experience automates analytical model construction, whereas AI often incorporates

human behavior and intelligence into computers or systems [78, 79]. Deep learning

(DL) also stands for data-driven learning techniques where computation is performed

using multi-layer neural networks and processing. In creating a data-driven model,

the term ”Deep” in the deep learning approach refers to numerous layers or stages of

processing data. Furthermore, DL approaches may play a significant role in advanced

analytics and intelligent decision-making [80, 81], which is why the term ”data sci-

ence” is used to describe the complete process of discovering meaning or insights in

data in a specific issue area [82].

Artificial intelligence encompasses methods that do not rely on ”learning.” For

instance, symbolic artificial intelligence (AI) is concerned with hardcoding (i.e., ex-

plicitly defining) rules for every potential case in a particular domain of interest.

Humans create these regulations based on their a priori understanding of the topic

at hand and the desired outcome. While symbolic AI does well on tasks requiring

low-level pattern recognition, such as text-to-speech or image-to-category transla-

tion, it struggles when faced with more complex tasks requiring high-level pattern

16

Fig. 1. An illustration of the position of deep learning (DL), comparing with machine

learning (ML) and artifcial intelligence (AI) [78, 79]

identification. ML and DL techniques excel in these more challenging endeavors [83].

3.2 Introduction of Machine learning

In many contexts, the two terms ”machine learning” and ”Artificial Intelligence”

(AI) are used interchangeably or even confused with one another. The concept of

artificial intelligence has expanded to incorporate areas formerly considered separate,

such as computer vision, optimization, and data mining. One of the most critical

capabilities in the evolution of AI is machine learning, a subfield or branch of AI that

17

seeks to solve complex problems by analyzing and learning from large amounts of

data [84].

The term ”machine learning” (ML) refers to a group of methods used to infer

patterns in data and draw conclusions about the world. Algorithms are fed instead

of hand-coded rules of ”if” and ”otherwise” decisions to analyze data [85]. These

algorithms are built so that the program may learn from experience independently

and with minimum human input. The computer is given the challenge of determining

the best path from input to output, and it does so by repeatedly trying different

options. Machine learning is a subfield of both computer science and mathematics.

Probability theory, statistics, linear algebra, and calculus contribute to its theoretical

foundation, which is organized mainly as layered algorithms. These methods rely on

powerful computer hardware to analyze and discover patterns in massive datasets,

such as determining the slightest error through gradient descent [84].

The multi-disciplinary field of machine learning has become ever more relevant

and received massive attention as computers have become increasingly powerful over

the years in companies with algorithmic advancements and the buildup of large

databases. Algorithms are used to optimize hardware, and this interrelated devel-

opment also enhances the collection and use of various data. Systems that only a few

years ago performed significantly poorer than humans can now outperform humans

on some specific tasks. For example, from a 72% accuracy in the image labeling con-

test, ’ImageNet’ in 2010 to 96% accuracy five years later, the machine surpassed the

human accuracy level of 95% in this specific contest [84, 86].

Many of these complex issues have generic ML algorithm solutions. These al-

gorithms may be constructed without needing any specific planning ahead of time.

However, an ML system must first train a model or set of rules using a labeled dataset

to accurately predict the labels of data points (e.g., photos) not in the dataset [87].

18

All the machine learning techniques employed in different aspects are provided in Fig-

ure 2

Fig. 2. A map of Machine learning techniques [88]

19

3.2.1 Introduction of Deep Learning

Deep learning aims to model data using elaborate structures that include several

non-linear transformations. Combining neural networks into deeper networks is the

fundamental building block of deep learning [84, 89]. Many different areas of study

have significantly benefited from the recent developments in deep learning architec-

tures, which have contributed considerably to the field of artificial intelligence [90, 91].

Face identification, audio recognition, computer vision, automatic language process-

ing, and text categorization are just a few areas that have significantly benefited from

these methods. Of course, different neural network architectures need clever stochas-

tic optimization algorithms, initialization, and a clever structure choice. Neverthe-

less, they lead to awe-inspiring results, although only a few theoretical foundations

are available till now [84, 91].

An area of machine learning called Deep Learning (DL) is influenced by how the

human brain processes data. Contrarily, DL can function without humans having

developed any rules; instead, it employs a significant quantity of data to map the

input to labels. Layered algorithms (ANNs) are used in developing DL, each offering

a unique interpretation of the input data [92, 89].

In contrast to traditional ML techniques, DL allows for the automated learning of

feature sets across several jobs [89]. Due to the explosive development of the big data

industry in recent years, DL has become a popular ML method [93, 30]. However, it

is still a work in progress regarding innovative performance on various ML tasks [92].

3.2.1.1 Importance of Deep Learning

Where people cannot provide explanations for judgments based on their knowl-

edge, deep learning can be helpful in cases such as image and object detection, medical

20

decisions, and speech recognition. Furthermore, it is necessary to use deep learning

when the solution to a problem evolves, when adaptability to particular circumstances

is required, or when the problem’s scale is so enormous that it overwhelms our limited

reasoning capacity, among other situations [92, 89, 91].

Several aspects of performance could account for deep learning’s meteoric rise

in popularity in recent years. First, due to its usefulness across various industries,

DL is sometimes referred to as ”universal learning.” In DL methods, it is optional

to have carefully developed features. The optimal characteristics are instead learned

automatically in a contextually relevant way to the job at hand. The same DL method

may be used across data types and even between applications, commonly referred to

as transfer learning (TL). In addition, it’s a helpful strategy for less data. Finally,

scalability is not an issue while working with DL [94].

3.3 Convolutional Neural Network (CNN)

The versatility of CNNs has led to their widespread adoption in many areas,

such as computer vision [95, 96, 97], audio processing [98, 99, 100], and face recogni-

tion [101, 102, 103], etc. CNNs, like traditional neural networks, are inspired by the

structure of neurons in the brains of humans and other animals. Three significant

advantages of CNN were outlined by [30]; they used similar representations, sparse

interactions, and shared parameters. First, CNN uses shared weights and local con-

nections to fully exploit 2D input-data structures like picture signals, as opposed to

the traditional approach of using a single, global set of weights for the whole net-

work. Fewer parameters are used in this procedure, making network training more

straightforward and faster. Third, these functions are identical to cells in the visual

cortex. These cells function as filters over the input, extracting the spatially-available

local correlation. A typical form of CNN is structured similarly to the multi-layer

21

perceptron (MLP), with many convolution layers followed by sub-sampling (pooling)

levels and finishing with FC layers. Figure 3 illustrates a typical CNN design.

Fig. 3. Common Architecture of a Convolutional Neural Network [104]

3.3.1 Benefits of Employing CNNs

These are only some of how convolutional neural networks (CNNs) excel in com-

puter vision above traditional neural networks, as described in this subsection 3.3.1.

Convolutional neural networks (CNNs) have an essential characteristic called weight

sharing [105], which allows them to be trained with fewer parameters, increasing gen-

eralization and decreasing overfitting. When feature extraction and classification [106,

107] are taught together, the resulting model output is organized and depends sig-

nificantly on the generated features. If the input (often an image) has local spatial

coherence, then the parameters of the network’s convolutions can be shared, allowing

22

the network to utilize fewer weights. Also, by using a technique in the form of convo-

lutions, they are ideally suited to extract helpful information at a low computational

cost [108]. CNN is easier to implement in a large-scale network than other types of

neural networks [92, 109].

3.3.2 General Architecture of Convolutional Neural Network

Convolutional neural networks (CNNs) are a deep learning technique to process

data organized in a grid structure. CNN’s are a form of deep learning method used

to analyze data with a spatial or temporal component. They employ a succession of

convolutional layers to increase their complexity, making them more challenging to

implement than conventional neural networks. For Convolutional Neural Networks

to function, convolutional layers must be present. subsection 3.3.2 discusses all the

modules of a general CNN architecture.

3.3.2.1 Convolutional Layer

The convolutional layer is the primary building block in CNN design. A group of

convolutional filters makes up the architecture. These filters are convolved with the

input picture (represented as N-dimensional metrics) to produce a feature map. The

kernel is defined as a grid of values or integers. The kernel weights are the individual

numbers. At the outset of CNN training, random numbers are assigned to serve as

the kernel’s weights. The weights can be set in a variety of ways to add complexity.

After each training round, the weights are fine-tuned, allowing the kernel to extract

meaningful characteristics eventually [92, 109, 108].

The conventional neural network takes data in a vector format, whereas the CNN

takes in data as a multi-channel picture. The grayscale picture format is an example

of a three-channeled image, while the RGB format is single-channeled. Let’s use a

23

4 × 4 grayscale picture and a 2 × 2 kernel with a random weight initialization to

illustrate the convolutional procedure. The kernel initially moves horizontally and

vertically over the whole image. Further, we calculate the dot product of the input

picture and the kernel. Their values are multiplied and added in real-time to provide a

single scalar. When additional sliding is no longer possible, the operation is repeated.

The computed dot product values represent the feature map of the output. The two

square kernels are shown in light green, while an input picture region of comparable

size is shown in light blue. The product values are then multiplied by the sum of the

input values, and the result is an entry value in the output feature map. However, in

the preceding example, no padding was applied to the input picture [92, 109, 108].

Fig. 4. Convolutional Layer

In contrast, the kernel is adjusted by applying a stride of 1 (where 1 represents

the chosen step size’s total vertical or horizontal positions). Padding is crucial in

establishing input picture border size information as a counterpoint. In contrast, the

characteristics on the border side are carried away at a breakneck pace. A larger

input picture and feature map result from padding [92, 109, 108].

Figure 4 shows the convolutional layer in a CNN. In a neural network, each

neuron in one layer is connected to every neuron in the layer below it. In contrast,

CNN’s have a limited number of weights accessible between layers. Since only a

24

limited number of weights or connections are needed, and since only a tiny amount of

memory is required to store these weights, this strategy is memory-effective. Further,

a matrix operation in CNN is significantly more expensive on the CPU than the dot

(.) operation [92, 109, 108].

3.3.2.2 Pooling Layer

Subsampling the feature maps is the primary responsibility of the pooling layer.

The convolutional operations are followed to produce these maps. This method re-

duces the size of existing feature maps to generate more manageable intermediate

maps. The majority of the most critical data (or characteristics) are preserved dur-

ing the whole pooling process. In the same way that the stride and the kernel are

given sizes before the convolutional procedure, the pooling operation does the same.

Several different pooling techniques may be used in a variety of pooling configura-

tions. These techniques range from tree pooling to gated pooling to average pooling to

min/max pooling to global average pooling (GAP) to global max pooling. Maximum,

minimum, and GAP pooling are the three most common and well-known approaches

to this problem.

Fig. 5. Max pooling Layer

Figure 5 shows the maxpooling layer of a CNN. Since the pooling layer aids

25

the CNN in determining whether or not a given feature is accessible in the particular

input picture but concentrates only on establishing the correct placement of that

feature, it can sometimes lead to a drop in the overall CNN performance [92, 109,

108].

3.3.2.3 Activation Function (non-linear)

The primary purpose of all activation functions in all neural networks is to map

the input to the output. The input value is calculated by adding the neuron’s bias

to the input data in a weighted fashion. In other words, the activation function

generates the relevant output and uses it to determine whether or not to release

a neuron based on the information. After all layers with weights (such as Fully

connected and convolutional layers), a non-linear activation layer is used in CNN

design. The mapping from input to output will be non-linear because of the activation

layers’ non-linear performance. The capabilities afforded by these layers allow CNN

to learn more complex tasks. For example, error back-propagation may be used to

train the network, but only if the activation function can discriminate, which is a

crucial characteristic. Different activation functions are typically utilized for CNN

and similar deep neural networks [92, 110, 111]. The Activation Function’s main job

is to convert the node’s weighted sum of inputs into a value that may be used as

output or passed on to the next hidden layer. An Activation Function’s job is to

take a node’s input values and produce an output value (or a layer). An activation

function is typically used to make a neural network less linear [92, 111]. Different

activation function characteristics are provided in from 3.3.2.4 to 3.3.2.10

26

3.3.2.4 Binary Step Function

The threshold value determines whether or not a neuron is triggered in a binary

step function. Neurons are engaged or deactivated depending on whether or not their

input is more significant than a certain threshold, which prevents their output from

being passed on to the next hidden layer. The use of binary step functions has certain

restrictions. For example, it is unsuitable for issues requiring multiple values, such as

multi-class classification, as it only produces single-valued results [112].

In mathematical notation, this looks like, and Figure 6 shows the graph of the

binary step function:

f(x) =

0, a < 0

1, a ≥ 0

(3.1)

Fig. 6. Binary Step Function [113]

3.3.2.5 Linear Activation Function

When the activation is directly proportional to the input, we get a linear activa-

tion function or identity function [112].

27

f(x) = x (3.2)

Figure 7 shows the graph of the Linear activation function. The function does

not modify the input weights, only returning the original value. However, there are

two fundamental drawbacks to using a linear activation function:

Fig. 7. Linear Activation Function [113]

When the derivative of a function is a constant and has no relationship to the

input x, backpropagation cannot be used. If a linear activation function is used,

all of the layers in a neural network will merge into a single one. This is because

every neural network’s output always has a linear relationship with its input at the

first layer. Therefore, the neural network is reduced to a single layer using a linear

activation function [112].

3.3.2.6 Non-Linear Activation Function

Because of its limited linear activation function processing capability, the model

cannot generate very complex mappings between the network’s inputs and outputs.

These connections make backpropagation feasible since the derivative function can

now be connected to the input. This allows a better understanding of which weights

28

in the input neurons may produce a more accurate prediction. Since the output

would then be a non-linear mixture of input after passing through numerous layers of

neurons, they make it possible to stack many layers of neurons. To a neural network,

any output is just another functional calculation [92].

3.3.2.7 Sigmoid Activation Function

One of the most popular activation functions is the sigmoid activation function.

This technique is frequently employed in modeling situations when a probability pre-

diction is required. For this reason, the sigmoid distribution is optimal, as all prob-

abilities lie between zero and one. This function’s smooth gradient means its output

values won’t suddenly spike [112]. Figure 8 provides the graph of a sigmoid function.

Fig. 8. Sigmoid Activation Function [113]

This function accepts a real number as input and returns a number between zero

and one. As can be seen below, the closer the input is to a positive number (more

significant), the closer the output is to a negative value (smaller), and the closer it is

to zero, the opposite of one [112]. Mathematically it can be represented as:

f(x) =
1

(1 + e−x)
(3.3)

29

The derivative of the function is

f ′(x) = sigmoid(x)× (1− sigmoid(x)) (3.4)

Networks that use sigmoid functions are susceptible to the Vanishing gradient

problem, in which learning stops when the gradient value approaches zero. In other

words, the logistic process does not produce symmetrical results near zero. So all the

neurons will provide an output with the same sign. Consequently, this complicates

and unstabilizes the neural network training process [112].

3.3.2.8 Tanh Function (Hyperbolic Tangent)

A Tanh function’s output can be anywhere from -1 to 1, just like the sig-

moid/logistic activation function, but the two are otherwise quite similar. So, Tanh

operates on the principle that a positive input will provide an output value closer to

1.0, whereas a negative input will yield an output value closer to -1 [112].

f(x) =
ex − e−x

ex + e−x
(3.5)

Since the tanh activation function’s output is centered at zero, we can simply

map it to the extremes of the positive, negative, and neutral ranges. This function

can be used typically in neural network hidden layers, whose values range from -1 to 0,

producing a smooth median. It facilitates information concentration and encourages

learning at a deeper level. It has the same issue as the sigmoid activation function

with diminishing gradients. Also, unlike the sigmoid function, the tanh function has

a steeper gradient [112]. Figure 9 provides the graph of a Tanh function.

30

Fig. 9. Tanh Activation Function [113]

3.3.2.9 Rectified Linear Unit (ReLU) Function

ReLU is an abbreviation for ”rectified linear unit.” Despite appearing to be a

linear function, ReLU plays a derivative role, supports backpropagation, and is com-

putationally efficient. The key idea is that the ReLU function only triggers simulta-

neous activity in some neurons. However, if the linear transformation’s output is less

than 0, the neurons will be turned off [112]. Figure 10 provides the graph of a ReLU

function. Mathematically it can be represented as:

f(x) = max(0, x) (3.6)

The ReLU function significantly outperforms the sigmoid and tanh functions in

terms of computing efficiency because it activates just a small subset of neurons. In

addition, because of its linear, non-saturating quality, ReLU hastens the convergence

of gradient descent towards the global minimum of the loss function [112].

There is no gradient since the graph is negative. For this reason, weights and

biases for some neurons are not changed during backpropagation. Due to this, some

neurons may die since they are never stimulated. So, the model’s capacity to effec-

tively fit or train from the data is diminished since all the negative input values are

31

Fig. 10. ReLU Activation Function [113]

instantly converted to zero [112].

3.3.2.10 Softmax Activation Function

The sigmoid function gave results between 0 and 1, which may be interpreted

as probabilities. In mathematical terms, the Softmax function may be considered a

sum of many sigmoids. Essentially, it does a calculation of the odds of particular

outcomes. The probabilities for each class are returned using the SoftMax function,

which is analogous to the sigmoid/logistic activation function. Multi-class classifi-

cation is often implemented as the activation function for the last layer of a neural

network [112]. Figure 11 presents the graph of a softmax function. Mathematically

it can be represented as:

softmax(zi) =
ezi∑i
j e

zj
(3.7)

3.3.2.11 Choosing the right Activation Function

For each problem, activation functions must be fine-tuned based on the projected

variable type [92]. Finally, here are a few rules for determining the activation function

32

Fig. 11. Softmax Activation Function [113]

for the output layer based on the type of prediction problem provided in Table 1

Table 1. Selection of Appropriate Activation Function

Problem Specification Types of Activation Function

Regression Sigmoid/Logistic

Binary Classification Sigmoid

Multiclass Classification Softmax

Multilabel Classification Sigmoid

Convolutional Neural Network (CNN) ReLU

Recurrent Neural Network (RNN) Tanh and/or Sigmoid

3.3.2.12 Fully Connected Layer

This layer is often the last in a convolutional neural network’s structure. In this

layer, every neuron communicates with every other neuron in the layer below it. CNN

uses it as its classifier. As a feed-forward artificial neural network, it is based on the

same fundamental principle as the more commonplace multilayer perceptron. The

FC layer takes information from the layer before the last convolutional pooling layer.

When the feature maps are fattened, they are used to construct a vector that serves

33

as the input. According to Figure 12, the final CNN output is the data produced by

the FC layer [84, 92].

CNN has a fully-connected architecture, meaning that each neuron in a layer

works with all of the pixels in the input matrix, and no weights are shared between

neurons in adjacent layers. Since learning new weights for each neuron is not essential,

training time and costs may be drastically reduced by learning a single set of weights

for the whole input [84, 92].

Fig. 12. Fully Connected Layer

3.3.2.13 Loss Functions

The final classification is achieved from the output layer, representing the CNN

architecture’s last layer. Finally, some loss functions are utilized in the output layer to

calculate the predicted error created across the training samples in the CNN model.

This error reveals the difference between the actual output and the predicted one.

34

Next, it will be optimized through the CNN learning process [92].

3.3.2.14 Introduction of Loss Function

The loss function provides information about the network’s overall performance;

a more considerable loss function indicates a less effective network. There are two

main loss functions: classification loss and Regression loss. An example of classifica-

tion loss is predicting an outcome from a set of category inputs. However, Regression

Loss is employed when the task at hand involves regression, such as when trying to

forecast continuous values [92]. The most widely used loss functions in Neural net-

works are explained in the following subsubsection 3.3.2.15 to - subsubsection 3.3.2.15

.

1. Mean Absolute Error (MAE)

2. Mean Squared Error (MSE)

3. Root Mean Absolute Error (RMSE)

4. Huber Loss

5. Cross-Entropy Loss

6. Hinge Loss

3.3.2.15 Mean Absolute Error (MAE)

Mean Absolute Error or L1 loss, is a loss function commonly used for regression

issues. Calculated by taking the absolute value of each data point’s deviation from

the mean, it shows the gap between the raw data and the computed results. When

given a set of cases with identical input feature values, MAE will find the median

target value to be the most accurate predictor. If we look at Mean Squared Error,

35

where the average represents the best forecast, we can see how this measure stacks

up. The magnitude of the gradient in MAE depends only on the sign of y — ŷ; thus,

it will be considerable even when the error is minimal, which might cause issues with

convergence [114, 115, 116]. We need to use mean absolute error in regression if we

don’t want outliers to skew your results. The knowledge that your distribution is

multimodal and that it is preferable to have forecasts at one of the modes rather than

at the mean can also be helpful [114, 115, 116]. The mathematical representation is

given below Equation 3.8)

MAE =
1

n

n∑
1

| y − ŷ | (3.8)

3.3.2.16 Mean Squared Error (MSE)

A standard regression loss function is the Mean Squared Error (MSE)(given

in Equation 3.9), often called L2 Loss. Specifically, the average difference between

the original and anticipated values is the square root. Given several samples with

the same input feature values, the ideal prediction is the mean target value due to

MSE’s sensitivity to outliers. By contrast, the best Mean Absolute Error forecast is

the midpoint. Since MSE penalizes outliers more severely, it is appropriate to apply

it if we expect our target data to follow a normal distribution given the input. Here,

the MSE loss function can be employed [114, 115, 116].

MSE =
1

n

n∑
1

(y − ŷ)2 (3.9)

3.3.2.17 Root Mean Squared Error (MSE)

The root mean square error is a popular statistic used to evaluate the accuracy of

a forecast. Using Euclidean distance, it displays how far the predicted value deviates

36

from the measured value. The root-mean-square error (RMSE) is calculated by first

finding the residual (difference between prediction and truth) for each data point,

then adding the residual norm for each issue, then finding the mean of residuals, and

finally taking the square root of that mean. Since RMSE employs and requires exact

measurements at each projected data point, it finds widespread usage in supervised

learning applications. In addition, it is helpful to have a single metric in machine

learning to evaluate a model’s efficacy throughout all phases of its calculation (train-

ing, cross-validation, and monitoring after deployment) [117]. RMSE metric equation

is expressed in Equation 3.10, which measures the standard deviation of prediction

errors [114].

RMSE =

√√√√ 1

n

n∑
1

(y − ŷ) (3.10)

3.3.2.18 Huber Loss

Typically, Huber Loss is applied to regression issues. Since it only considers the

error to be squared within an interval, it is less affected by extreme values than the

MSE. Because it evaluates both the MSE and the MAE, the Huber Loss provides

a good compromise. Huber Loss is effectively the best of both L1 and L2 losses,

combining their respective strengths. For massive errors, it is linear, and for tiny

mistakes, it is quadratic [115, 116]. Huber loss equation is expressed in (3.11). We

can define this loss as follows:

Lδ =

1
2
(y − ŷ)2 if |(y − ŷ)| < δ

δ((y − ŷ)− 1
2
δ) otherwise

(3.11)

37

3.3.2.19 Binary Cross-Entropy Loss

This loss function is typically applied when dealing with multigroup (two) clas-

sification. Cross-entropy quantifies the degree of dissimilarity between two random

variables, whereas entropy characterizes the unpredictability of the processed infor-

mation. Increased cross-entropy loss indicates a more significant discrepancy between

the expected probability and the actual label [115, 116]. The loss equation is provided

in (3.12) where y is the actual label and p is the forecasted value post hypothesis.

J = −(y log(p) + (1− y) log(1− p)) (3.12)

3.3.2.20 Categorical Cross Entropy Loss

When applied to more than two categories, Binary Cross Entropy Loss transforms

into Categorical Cross Entropy Loss. Therefore, the labels should be one-hot encoded

when the categorical cross entropy loss function is employed. The vector will have

precisely one non-zero component in this approach, as all the other components will

be multiplied by zero [115, 116].

3.3.2.21 Hinge Loss

Hinge loss (provided in (3.13)) is another widespread option for loss functions

used in classification. Hinge loss was first created with SVM to determine the maxi-

mum distance that may be maintained between the hyperplane and the classes. False

predictions are punished by loss functions, whereas correct ones are not. Therefore,

the target label’s score should be (at least) one point higher than the total of all the

wrong labels [115, 116].

38

SVMLoss = max(0, 1− y · ŷ) (3.13)

3.3.2.22 Regularization to CNN

The main problem with getting good generalizations from CNN models is over-

fitting. In the second situation (Figure 13), the model is considered overfitted since

it performed extraordinarily well on training data but failed on test data (unseen

data). On the other hand, if the model needs to pick up more information from the

training data, it’s under-fitted. Finally, when the model performs satisfactorily on

the training and testing data, it is ”just fitted” [92, 118, 119, 120].

Fig. 13. Regularization in Convolutional neural networks [120]

1. Dropout: As a method of extrapolation, it is commonly employed. There

is a random pruning of neurons throughout each training iteration. This pruning

forces the model to learn a variety of independent characteristics, and it does so by

apportioning the feature selection power over the whole group of neurons. During

training, the lost neuron will not participate in back- or forward propagation. In

contrast, predictions are carried out by the full-scale network as it is tested [92, 119,

120].

2. Drop-Weights: This approach is quite similar to the dropout method. The

39

main distinction between drop-weights and dropout is that in the former, the weights

(connections) between neurons are removed rather than the neurons themselves [92,

119, 120].

3. Data Augmentation: A simple method to prevent over-fitting is to train the

model using a large sample of data. Data augmentation is needed for this purpose.

The size of the training dataset is artificially increased using several methods [92,

119, 120].

4. Batch Normalization: Batch normalization can be considered a pre-processing

activity at each network layer. It’s also used to lessen ”internal covariance shift” in

the activation layers. The internal covariance shift is defined by the differences in

activation distribution between layers. This variation gets exceptionally high owing

to constant weight updates throughout training. As a result, the model’s convergence

time and training time will rise. The CNN design has a layer for the batch normaliza-

tion process to address this problem [92, 119, 120, 121]. Using batch normalization

has these benefits:

1. It avoids the issue of the diminishing gradient. Second, it can mitigate the

effects of a weak weight setup.

2. It speeds up network convergence dramatically (for large-scale datasets, this

will be extremely useful).

3. It has difficulty reducing the training reliance between hyper-parameters.

4. It has little effect on regularization; therefore, the likelihood of over-fitting is

diminished [92, 119, 120, 121].

40

3.3.2.23 Optimizer Selection

The goal of all supervised learning algorithms is to minimize the error. Loss

functions are based on many different tunable parameters (such as biases, weights,

etc.). Gradient-based learning methods are the go-to for building a CNN network.

As many training iterations as possible, the network parameters should be updated

continuously. The network should seek the locally optimal solution during training

to reduce the error. Specifically, the amount of updates to the parameters is what is

used to determine the learning rate. The training epoch is a single iteration of the

parameter update over the whole training dataset. Even if it is a hyper-parameter, it

is essential to pick the learning rate carefully so that it does not have an insufficient

effect on the learning process [92, 122].

Gradient Descent algorithm: Every training period is a new opportunity for any

algorithm to tweak the network’s settings and get it closer to optimal performance.

To properly update the parameters, the objective function gradient (slope) must be

computed using the first-order derivative of the network parameters. The next step

in minimizing the error is to update the parameter counterclockwise for the gradient.

Finally, network back-propagation updates the parameters, with the gradient at each

neuron. This process may be expressed mathematically as 3.14.

Wij(t) = Wij(t)−∆Wij(t);∆Wij(t) = η
∂E

∂Wij

(3.14)

The final weight in the training epoch is denoted by Wij(t), while the weight in

the preceding (t-1) training epoch is denoted Wij(t). The learning rate is η, and the

prediction error is E [92].

Batch Gradient Descent: This method’s [123] implementation requires only a

single lag update to the network settings across all training datasets. The parameters

41

are updated based on the calculated gradient of the entire training set. BGD helps

the CNN model converge quickly for a short dataset while producing a more stable

gradient. However, it takes time and effort because the settings are only adjusted

once every training cycle [92].

Stochastic Gradient Descent: This approach [124] revises the settings with each

new training sample. Every training epoch should begin with a selected subset of

the training data. In addition to being quicker than BGD, this method also requires

significantly less memory for large training datasets. However, the frequent updates

make very noisy steps toward the solution, leading to volatile convergence behav-

ior [92].

Mini-batch Gradient Descent: Mini-batch Gradient Descent is a method in which

the training data are broken into several smaller batches. Each mini-batch is essen-

tially a tiny, nonoverlapping sample set [125]. When a new mini-batch of data has

been generated, the next step is to update the parameters based on the latest data.

Combining the benefits of BGD with SGD gives this approach its edge. This al-

gorithm converges reliably, uses less memory, and performs more computations per

second [92].

Adaptive Moment Estimation (Adam): It’s just another popular method of op-

timization. Recent developments in deep learning optimization are exemplified by

Adam [126]. The Hessian matrix, which uses a second-order derivative, symbolizes

this. Adam is a specialized learning method for developing deep neural networks.

Adam’s benefits include higher memory efficiency and lower computing requirements.

Adam works by determining the adaptive LR value for each model parameter. It com-

bines the best features of Momentum and RMSprop. Then, analogous to momentum,

it takes a moving average of the gradient and uses the square of the gradient to scale

the learning rate [127].

42

3.3.2.24 Improving performance of CNN

According to various deep learning applications [128, 129, 130], the most popular

ways to boost CNN performance using data augmentation techniques or transfer

learning for extensive data set, Expanding the training period, Changing the model

architecture, adding regularization, and fine-tuning hyperparameters.[131].

3.4 Long Short Term Memory

3.4 provides the description of a Long short term memory units. In [132],

Authors presented the artificial neural network (ANN) known as Long Short-Term

Memory (LSTM). As time has passed, it has risen to prominence as a leading RNN.

It is frequently used for issues involving sequential steps, such as writing recogni-

tion [133, 134, 135], Load forecasting [136, 137, 138], traffic forecasting [139, 140,

141], etc. In a recent study, researchers at Google propose the LSTM as a powerful

and flexible framework for a range of machine learning applications. As a result of its

resistance to explosions and, more specifically, the vanishing gradient problem, this

solution has gained a lot of attention [92].

3.4.1 General Architecture

The LSTM’s architecture is explained in 3.4.1. The LSTM architecture is un-

furled in the diagram below. The leftmost cell represents the state of the LSTM at

the previous time step, and the rightmost cell represents the state of the LSTM at

the next time step. The present instant of time is roughly in the middle of the range.

There are three incoming wires. First, the input Xt and the initial timestep’s output

are read at the bottom left corner, known as hidden state ht−1. The next step is to

join the input Xtwith the secret state ht−1 and then send that combined signal via the

43

four gates shown in the diagram’s yellow boxes. Finally, a straight arrow represents

the third input from the primary cell, which enters the cell at its top. As a result of

using this cell state, the LSTM can recall long-term dependencies with a far lower risk

of disappearing and expanding gradient issues that plague conventional RNNs [84,

142, 143].

3.4.2 Cell State

The cell state, which is mathematically nothing more than a vector, can be

envisioned as a superhighway for information that links all the nodes in a chain. It’s

a vital part of the LSTM since it helps the network remember past input dependencies

over extended periods. Furthermore, it can read from, write to, and delete data from

this internal storage. This additional information is added to the current state of

the cell rather than multiplied by it, which is the key to avoiding the vanishing

gradient problem. In addition, make sure gradients are distributed equitably, and

that backpropagation doesn’t use the chain rule. The LSTM cell has four distinct

layers of a neural network, each performing a specific task. The three-layer sigmoid

function is internally nested, and its output matrices have values between one and

zero [84, 144].

Fig. 14. Long Short Term Unit (First Step)

44

Figure 14 shows the first step of the LSTM operation. All the equations used

in a LSTM operation are provided from Equation 3.15 to Equation 3.19.

3.4.3 Deleting Information

Forget gate assumes the current inputs Xt and the prior output ht−1. When a

neural layer’s output is a matrix, the sigmoid function compresses the product of the

current input and the weights into a matrix with values between one and zero. The

forget gate is used to multiply by an essential factor, the cell state of the primary

cell. The forget gate may be considered a reduction filter applied on the initial cell

state to remove or downgrade values [84, 144]. Figure 15 shows the second step of

the LSTM operation.

f(t) = σ(Wi × [ht−1, xt] + bf) (3.15)

Fig. 15. Long Short Term Unit (Second Step)

3.4.4 Adding New Information

The sigmoid and tanh gates, the first and second input gates, are the following

building blocks. The input gate filters the tanh layer in the same way as the for-

get gate. In addition, it determines how much data it will store from zero to one.

45

Figure 16 and Figure 17 provides the third and final step of the LSTM operation.

Fig. 16. Long Short Term Unit (Third Step)

it = σ(Wi × [ht−1, xt] + bif) (3.16)

In contrast, the tanh activation function of the opposite gate generates potential

new cell state values. The hyperbolic tangent, which lies between -1 and 1, is used.

There appears to be some addition and subtraction of data when new candidate

values are introduced to the cell state. The equation for the new values C
′
t is provided

below [84, 144].

C
′

t = tanh(Wi × [ht−1, xt] + bc) (3.17)

Ci
t = C

′

t × it (3.18)

Our computations have calculated many neural networks using the same inputs.

We have used a sigmoid filter to select which memory data to store and which to

discard (the initial state of the cell). Then we may update the cell state Ct by

combining the previously updated form via the forget gate, element by element, with

the newly proposed values Ci
t [84, 144].

46

Fig. 17. Long Short Term Unit

In total the modifications to the cell state is:

Ct = ft × Ct−1 + it × C
′

t (3.19)

The last step is to determine the cell’s output. The currently hidden state inputs

are fed into a regular neural layer. This output is preceded by a sigmoid activation,

which is pointwise multiplied by the squashed cell state in a Tanh layer to provide a

scalar value between -1 and 1. Here, the output is filtered based on the cellular state.

Therefore, the most crucial factors are the previous and present inputs. However, the

cell state may alter the outcome by multiplying it with either positive or negative

values [84, 144].

47

CHAPTER 4

OPENCITY ARCHITECTURE

This new testbed tackles the issues of plug-and-play, scalability, and interoperability

through IoT-based communication technologies, autonomous systems, software de-

velopment, and database administration. The team working on this project will also

create a suite of distributed management control algorithms to aid in making smart

city management decisions. Researchers will be able to work together and exchange

data on the proposed platform, and a community of smart city aficionados will arise,

all of whom will help to develop cutting-edge smart city apps [19].

Our work on the OpenCity platform is primarily concerned with diverse smart

city applications, houses and buildings, transportation systems, water distribution

systems, and the environment. Researchers will use data to create a management

framework that can run any advanced infrastructure fully or partially independently.

The suggested management structure would teach researchers to factor in various

human elements. This testbed facilitates collaboration between government and in-

dustry partners to better comprehend analytics and smart technologies and quickly

translate academic findings into practical applications. This smart city paradigm pre-

supposes that all entities have some intelligent node that either conducts local sensing

and control or uses control signals sent by edge or cloud management systems. [19].

The goal of this testbed is to provide a smart city experimental environment that

includes [19]

1. Data collection, processing, and analytics,

2. An IoT communication network,

48

3. Real-time data visualization,

4. A Configurable and extendable management system

An example of a ”block” in OpenCity, seen in Fig. 18, consists of four buildings

arranged in a two-by-two grid and bordered by roadways. The area is centered on a

four-way crossroads with many sets of traffic lights. It’s possible to build a city grid

out of these interlocking modules. The ’textitOpenCity’ neighborhood has four struc-

tures: a) homes, b) offices, c) a healthcare facility, and d) a water distribution system.

Automated cars, road sensors, and traffic lights will all be part of the transportation

network, and they may share data with the textitOpenCity system [19].

Fig. 18. The OpenCity platform architecture

49

CHAPTER 5

A DEEP LEARNING MODEL FOR FORECASTING

PHOTOVOLTAIC ENERGY WITH UNCERTAINTIES

5.1 Proposed Methodology

Figure 19 shows the proposed diagram of our proposed hybrid CNN-LSTM

framework. We implemented the hybrid network for the PV power prediction prob-

lem. The CNN feature extraction functionality comprises a single 2D layer of con-

volution. The convolutional operation adds many convolutional layers sequentially,

enabling the initial layers to learn features of low levels in the implemented input.

The feature map that is the output of the convolutional layers has a boundary, which

shows the input characteristics’ exact position. This feature map implies that small

moves at the input position would result in a separate characteristic map. A pooling

layer is generally introduced to mitigate the feature map’s invariance limit after the

CNN layer. In contrast, the activated function improves the models’ capacity to learn

complex structures. Our proposed model passed the input data through a CNN layer

that extracts the features for each time step.

We took 300 recent observations as a sample. Therefore, the output from the

CNN layer had 300 different characteristics. This result was input into a Stacked

LSTM model, which predicted future values. In our sequence learning module, we

deployed many LSTM layers, each with n neurons. The network’s whole hidden state

sequence is generated by calculating the return sequence for the two LSTM layers; the

last LSTM layer is fake, revealing the hidden state at the conclusion. Before the fully

linked layer, we utilized the drop-out layer to avert overrun. As a result, the fully

50

Fig. 19. Proposed CNN-LSTM framework

connected layer has n total neurons. In our experiment, we manipulate the number

of neurons in the output layer to gauge how far into the future the network can

project [145]. Our suggested hybrid CNN-LSTM model’s network design is detailed

in Table 2.

The dropout layer is a great tool to solve the overlapping issue when developing

a deep learning model. We placed a dropout layer between the CNN extraction block

and the LSTM sequence to stop overfitting. Dropout and fully integrated layers are

connected to the sequence learning block output to produce the results. To facilitate

evaluation, we split the original convolutional layer into two and added a MaxPooling

and Dropout layer. We combined a single CNN layer with a stacked LSTM model to

improve the prediction performance.

51

Table 2. Network Configuration for the proposed CNN-LSTM architecture

Layer Output Shape Parameter

conv2d 3 (Conv2D) (None, 300, 1, 1) 16

flatten 1 (Flatten) (None, 300) 0

reshape 1 (Reshape) (None, 300, 1) 0

lstm 3 (LSTM) (None, 300, 50) 10400

lstm 4 (LSTM) (None, 300, 50) 20200

lstm 5 (LSTM) (None, 50) 20200

dense 1 (Dense) (None, 1) 51

5.1.1 Dataset Description

DKASC, an Alice Springs dataset from Australia’s Northern Territory, was used

for this research [18]. DKASC is a solar technology demonstration facility that has

been operational for over ten years in the dry climate of Alice Springs, central Aus-

tralia. We used ”combined output of all arrays” information from March 1, 2018,

through February 28, 2019, and meteorological records from the same time frame.

PV power generation is susceptible to solar irradiance levels. Additional environ-

mental factors can affect PV power estimates, such as the surrounding temperature,

the module’s temperature, the speed and direction of the wind, and the amount of

humidity in the air.

Historical time-series data from PV production and its accompanying climatic

factors form the basis of the PV power generation forecasting model. The data is

separated into training and testing sets. Between training and testing, the dataset

was divided from 75% to 25%. While training, we also validated our results against

the testing set. However, we did the prediction procedure on both the training and

testing sets for the final comparison.

52

Multiple data types from the above source were fed into our CNN network. No

dedicated GPU is involved; the CPU processes the predictions. In a Google Colab

setting, 104520 data is used to make test and training sets predictions. Our proposed

system used around 13 GB of RAM and a Tesla T4 with approximately 15 GB of

VRAM.

53

CHAPTER 6

INCORPORATION OF PHYSIOLOGICAL FEATURES IN

DROWSINESS DETECTION USING DEEP NEURAL NETWORK

APPROACH

6.1 Proposed Approach

Figs. 20 and 22 provide the proposed algorithm and architecture for drowsiness

detection, respectively. The first stage is feeding video or image as an input which

involves breaking down video frames from a fixed camera or a smartphone into a se-

quence of pictures. The driver’s face is the main focal point in the video frames. The

next is face detection which detects the face in the picture frames. In this case, we only

noticed some part of the face. Instead, we only detected the eyes and mouth, as they

are the main parameters for detecting drowsiness. One of the most used methods for

detecting the driver’s face in an image is Viola and Jones [146]. However, the entire

picture is usually fed into the CNN with many filters, and features are extracted au-

tomatically. CNN integrates the images of eyes and mouth and pulls the feature. Eye

and yawn posture is collected for feeding in CNN from these features. Attributes are

often retrieved using methods like landmark localization [147], Histogram of Oriented

Gradients (HOG) [148], and Local Binary Patterns (LBP) [149] in the face detection

stage. The next step is feature analysis. Once features have been extracted, they

can be further processed with Percentage of Eye Closure (PERCLOS) [150] or EAR

for eye analysis or mouth-based algorithms for yawning detection. The final step is a

classification that classifies the drowsiness level of a driver. If the weighted parameters

identify tiredness, an alarm will sound, indicating that the driver should rest.

54

Images were given names according to their timestamps after being extracted

from the sensor’s data. To train our model, we employed a dataset of 500 pictures

labeled in a separate CSV file with the image file’s name, oxygen data, and heart rate

data. Only 78 of the 500 photos represented sleepiness, whereas the remainder did

not.

Fig. 20. Proposed Algorithm for Drowsiness Detection

We have used facial landmarks to pull out the images’ left and right eyes and

mouths. These modified versions of the original photos were stored in three directories

with the same name as the original file. Afterward, the images were used to train the

network. First, the pictures of the left eye, right eye, and mouth were each scaled

down to 48 × 48 pixels and provided their own CNN layer. Next, the photos were

processed using several parallel CNN, which resulted in the flattening of the max

pool layers. Then, the normalized data on oxygen consumption and heart rate was

appended to the characteristics that we had flattened. Finally, after being fed through

dense and dropout layers, the concatenated pieces were sent to the output layer. The

network configuration in our proposed CNN model is illustrated in Table 3.

55

Fig. 21. Proposed Architecture of Drowsiness Detection

6.1.1 Dataset Description

Our data allows us to evaluate the proposed system’s effectiveness and thoroughly

analyze its alternatives. The dataset was captured with a Raspberry Pi 4 IR-CUT

night vision camera, which yielded images with a resolution of 1280×720 pixels. The

camera also has infrared LEDs, so it can record the driver even if it’s nighttime. This

camera has a 5MP sensor, a 3.6mm focal length that can be adjusted, and two LED

lamps. With a frame rate of 30 fps, the video is relatively smooth. The purpose of

this dataset is to model conditions that automobile drivers could face in the actual

world. The dataset is composed of the training set and the validation set. In addition,

sensors are installed in the car to simulate actual driving conditions. Figure 22 shows

the architecture of our proposed method.

The sensor also measures heart rate in addition to pulse oximetry. This sensor has

56

low-noise circuitry with ambient light rejection in addition to LEDs, photodetectors,

optical components, etc. The sensor provides an end-to-end system solution that

simplifies the design process for portable and wearable gadgets. The sensor’s LEDs

run on 3.3V in addition to the 1.8V utilized by the rest of the device. Transmission

takes place over an I2C-compatible interface, a standard in electronic hardware. When

the program shuts down the module, it draws no standby current; therefore, the power

rails can be on at all times.

Fig. 22. Camera and Sensors Architecture

57

Table 3. Network configuration for the proposed CNN architecture

Layer Output Shape Parameter Connected to

el input [(None, 48, 48, 1)] 0 []

er input [(None, 48, 48, 1)] 0 []

m input [(None, 48, 48, 1)] 0 []

conv2d (None, 48, 48, 8) 40 [‘el input[0][0]’]

conv2d 1 (None, 48, 48, 8) 40 [‘er input[0][0]’]’

conv2d 2 (None, 48, 48, 8) 40 [‘m input[0][0]’]

max pooling2d (None, 24, 24, 8) 0 [‘conv2d[0][0]’]

max pooling2d 1 (None, 24, 24, 8) 0 [‘conv2d 1[0][0]’]

max pooling2d 2 (None, 24, 24, 8) 0 [‘conv2d 2[0][0]’]

conv2d 3 (None, 12, 12, 16) 1168 [‘max pooling2d[0][0]’]

conv2d 4 (None, 12, 12, 16) 1168 [‘max pooling2d 1[0][0]’]

conv2d 5 (None, 12, 12, 16) 1168 [‘max pooling2d 2[0][0]’]

max pooling2d 3 (None, 6, 6, 16) 0 [‘conv2d 3[0][0]’]

max pooling2d 4 (None, 6, 6, 16) 0 [‘conv2d 4[0][0]’]

max pooling2d 5 (None, 6, 6, 16) 0 [‘conv2d 5[0][0]’]

flatten (None, 576) 0 [‘max pooling2d 3[0][0]’]

flatten 1 (None, 576) 0 [‘max pooling2d 4[0][0]’]

flatten 2 (None, 576) 0 [‘max pooling2d 5[0][0]’]

oxygen (None, 1) 0 []

heart (None, 1) 0 []

Concatenate (None, 1730) 0 [‘flatten[0][0]’, ‘flatten 1[0][0]’,’flatten 2[0][0]’,‘oxygen[0][0]’,‘heart[0][0]’]

dense (None, 128) 221568 [‘concatenate[0][0]’]

dense 1 (None, 32) 4128 [‘dense[0][0]’]

Output (None, 1) 33 [‘dense 1[0][0]’]

58

CHAPTER 7

AIR QUALITY PREDICTION USING DISTRIBUTED LSTM

APPROACH FOR SMART CITY TESTBED

7.1 Air Quality Index (AQI)

The purpose of the air quality index is to serve as a forecasting tool, educating

the public on the dangers of poor air quality and how to take precautions against

them [151]. Five primary air pollutants were chosen for this purpose (CO, SO2,

PM10, O3, and NO2); their concentrations were then categorized into six groups

according to concentration breakpoints, and phrases defining the air quality were

given to each group. For the AQI, the pollutant with the greatest concentration (or

highest AQI value) is deemed the ”responsible pollutant.” It’s essential to remember

that the kind of people more vulnerable to pollution might vary widely. The most

susceptible populations to air pollution depend on the pollutant in question; for

example, those with lung problems, as well as youngsters and older individuals who

are active outdoors, are more susceptible to the effects of ozone than others with

heart disease [152] [153]. To quickly get the AQI for any given pollutant, we can

use Equation 7.1:

Ip& =
IHi − ILo

BPHi −BPLo

(Cp −BPLo) + ILo (7.1)

In this equation, Ip is the pollutant index p, Cp is the rounded concentration

of pollutant p, BPHi is the breakpoint that is greater than or equal to Cp, BPLo is

the breakpoint that is greater than or equal to Cp, IHi is the AQI value associated

59

with BPHi, and ILo is the AQI value corresponding to BPLo [151] [152] [153]. The

Air Quality index values is provided in Table Table 4 and the Pollutant-Specific Sub-

indices for the Air Quality Index is provided in Table 5.

Table 4. Air Quality Index Categories [151]

AQI Values Description Color

0 to 50 Good Green

51 to 100 Moderate Yellow

101 to 150 Unhealthy for Sensitive Groups Orange

151 to 200 Unhealthy Red

201 to 250 Very Unhealthy Purple

251 to 300 Hazardous Maroon

Table 5. Pollutant-Specific Sub-indices for the Air Quality Index (AQI)[154]

Ozone (ppm) Particulate Matter (µg/m3)
AQI Categories

[8-hour] [1-hour] [8-hour] [1-hour]
Carbon Monoxide (ppm) Sulfur Dioxide (ppb) Nitrogen Dioxide (ppb)

Good 0 - 0.054 - 0 – 12.0 0 - 54 0 – 4.4 0 - 35 0 - 53

Moderate 0.055 - 0.070 - 12.1 – 35.4 55 – 154 4.5 – 9.4 36 - 75 54 - 100

Unhealthy (SGroup) 0.071 - 0.085 0.125 - 0.164 35.5 – 55.4 155 – 254 9.5 – 12.4 76 - 185 101 - 360

Unhealthy 0.086 - 0.105 0.165 - 0.204 55.5 – 150.4 255 – 354 12.5 – 15.4 186 – 304 361 - 649

Very Unhealthy 0.106 - 0.200 0.205 - 0.404 150.5 – 250.4 355 – 424 15.5 – 30.4 305 – 604 650 - 1249

Hazardous - 0.405 - 0.604 250.5 – 500.4 425 – 604 30.5 – 50.4 605 – 1004 1250 - 2049

7.2 Methodology

The complete process of our research is divided into two major parts - Training

and Inference. As we had a pre-processed dataset, we didn’t have to create or process

the dataset. Instead, the dataset was divided into seven parts for different elements

in the air. Then, we trained the model and made the inference using those data.

Figure 23 provides the proposed architecture of our LSTM approach for predicting

AQI for a smart city.

60

Figure 24 shows the working principle of this proposed approach. At first, we

concatenated all our data into one dataset for seven elements. Then we preprocessed

our data a little by deleting all the nan and null values. After that, we tried to

encode our input dataset and divided the dataset into train and test parts. Finally,

we normalized our dataset and trained it using our proposed model. After that, we

classified our dataset based on the table and efficiently predicted the air quality index.

Fig. 23. The Proposed Distributed LSTM Architecture

Fig. 24. The Proposed flow chart of the Suggested method

61

7.2.1 Training

We used an LSTM model built using 4 LSTM layers to train the dataset. Instead

of making different models, the main goal was to create a single model architecture

that would work with all seven different datasets for individual elements. But, after

training the model with other datasets, the model was saved as seven additional files

for all the features.

Table 6. Network Configuration for the proposed LSTM architecture

Layer Output Shape Parameter

lstm (None, 300, 1, 1) 40800

lstm 1 (None, 300) 80400

lstm 2 (None, 300, 1) 80400

lstm 3 (None, 300, 50) 80400

dense (None, 300, 50) 101

The model architecture for one LSTM module in our proposed LSTM model

is provided in Table 6. Each dataset was trained for 25 epochs, as this produced

the optimum results. After training, the saved models for each dataset were used to

predict the value for both training and testing sets.

7.2.1.1 Forcasting

Using the inference process, we can visualize that the model can forcasting the

future values for all the elements. To measure our model’s performance, we have

calculated the value of different performance metrics - MSE, MAE, and RMSE. This

forecasting was later provided in the classification model to predict future air quality.

62

7.2.1.2 Classification

The mathematical data representation does not help us understand the air quality

at a glance. To make the data more understandable and soothing, we classified the

data into six different segments that show the air quality. This classification was

based on Table 4 and Table 5. This helps us understand the predicted air quality

more easily.

63

CHAPTER 8

ADAPTIVE CONTROL FOR SMART WATER DISTRIBUTION

SYSTEMS

8.1 Testbed Design

Figure 25 depicts the water distribution system’s simplified process flow. Each

building has its water storage tank and variable frequency drive (VFD) pump to

deliver water to each unit. One control valve is assigned to each floor, and each floor

has two users.

Fig. 25. A simplified process flow diagram for the water distribution system. Details

for the business and hospital buildings are the same as the residential building

and omitted to avoid cluttering the diagram.

The recycled water is collected in a tank that supplies all three structures. Each

structure has a recycle pump to move water from the return tank to the storage tank.

64

When the reservoir level rises over a predetermined level or when the level in one or

more supply tanks falls below a certain level, the reservoir pump activates and begins

pumping water into the system.

8.1.1 Instrumentation and Control Design

The system pressure is regulated using a VFD pump. The recycle on/off pump

controls the water level in the return and supply tank. Both pumps have an angular

velocity sensor, a torque sensor, a temperature sensor, and an overpressure sensor.

Water flow for each consumer is regulated using an automatic control valve repre-

senting user consumption. The control valves are equipped with position sensors to

report the valve opening percentage. Each supply tank is fitted with an inlet on/off

valve that closes when the water level exceeds a particular threshold value.

The water levels in the supply and return tanks are monitored using smart-level

sensors. The flow on each floor is measured using a smart volumetric flow rate sensor.

The total water consumption could be calculated either from the rate of change of

supply tank level or by flow totalization of the flow sensors, assuming no system

leakage. The discharge pressure of each pump is measured using a smart pressure

sensor.

The general control philosophy is to regulate the system pressure or flow by

adjusting the pump’s angular velocity. The recycle pump starts when the return

tank level is high and stops when the level is low. The inlet valve of each supply

tank closes when the tank level is high. The water consumption represents a system

disturbance and is simulated by developing a probabilistic model for the usage pattern

and simulating the model to drive the consumption control valves.

65

8.1.2 Safety System Design

When the pressure at the pump’s discharge reaches a certain threshold, the VFD

pump shuts off. For this, we employ a dedicated pressure sensor. In addition, if the

tank’s water level drops too low, the pump will automatically shut off to prevent

damage to the suction pump. The recycling pump’s security is maintained similarly.

8.1.3 Embedded System and Communication Architecture

The testbed uses a decentralized design in which smart sensors and actuators

may have two-way communications without needing a central processing unit. Every

actuator, like the variable frequency drive (VFD) pump, has its integrated system

with algorithms for monitoring, control, and troubleshooting. The IEEE 802.11ac

wireless standard exchanges data between sensors and actuators [155].

Fig. 26. MQTT (Message Queuing Telemetry Transport) communication for the

testbed

The smart city infrastructure is communicated via MQTT (Message Queuing

Telemetry Transport) [156]. MQTT has been selected to connect to various heteroge-

neous blocks in the more extensive smart city testbed at VCU. MQTT is a protocol

developed especially for the ”Machine-to-Machine” correspondence. The MQTT pro-

tocol operates over TCP (Transmission Control Protocol)/ IP (Internet Protocol),

which can transmit data for different formats using a publisher/subscribers model

instead of a client/server model. MQTT collects data from data publishers and

66

Fig. 27. Pressure control schemes for the water distribution system

transfers it to subscribers using a data broker [156]. The water distribution testbed

sensors and actuators are connected to the broker via MQTT client software running

on their respective Raspberry pi embedded boards. Figure 26 illustrates the MQTT

communication architecture for the testbed.

8.2 Control System Design

Figure 27 illustrates in a single diagram the two control schemes proposed in

the paper, and explained briefly in this section.

8.2.1 Single-loop Feedback Control

Single-loop pressure control, often known as the ”classical” method, employs

a proportional-integral-derivative (PID) controller to maintain constant pressure in

the system. Due to its ease of use and little data needs, this control technique has

widespread use. Based on the current pressure reading, the PID controller adjusts the

VFD pump’s voltage (or angular velocity in ideal drive versions). However, for most

non-smart buildings already in existence, the user consumption profile—that is, the

number of people using the system at once and the demand (system disturbance)—is

unknown; therefore, the control strategy does not account for it.

67

8.2.2 Adaptive Feedback Control

By constantly adjusting the proportional, integral, and derivate (PID) controller,

the pressure in a system is maintained at a predetermined value in the traditional

single-loop pressure control technique. Because of its ease of use and low data re-

quirements, this control method is widely implemented. The PID controller uses the

current pressure reading to adjust the voltage provided to the VFD pump (or the an-

gular velocity for perfect drive versions). Unfortunately, this control approach does

not consider the user consumption profile, i.e., the number of concurrent users and

the demand (system disturbance), as this data is often unavailable for conventional

buildings. In this paper, the ”Setpoint Calculation” in Figure 27 is only a lookup

table correlating the number of active users with the desired temperature.

8.2.3 Disturbances and User Consumption Modeling

Since the user’s engagement with the system might be seen as an external sys-

tem disturbance, modeling the user’s consumption profile is crucial for testing the

resilience of any proposed control method. However, modeling the user’s consum-

ing behavior may be challenging due to the interdependency of timed user activities.

Therefore, this study introduces a user-consumer model that abstracts away from

complex interactions. Efforts to create more complex probabilistic models are con-

stantly being investigated.

Figure 28’s signal might represent actual user intake. The sign goes from low

to high when the water tap is opened. The openness of a valve is indicated by its

signal amplitude. The signal duration represents how long a user keeps the water

faucet open. Finally, successive uses are captured by the time gap between two sig-

nal transitions. All the signal properties I’ve listed above could be more predictable,

68

Fig. 28. A signal representation of user consumption

making predicting user usage challenging. Furthermore, these features are interde-

pendent. To recapitulate, we require a sophisticated probabilistic model to capture

user behaviors.

We represent three different probability distributions to define the signal in Fig-

ure 28, parameterized by θ = [A E D I]. The random variable representing the

starting time of user consumption is modeled as a Poisson distribution with an arrival

rate λ(θ). The random variable representing the duration of usage is modeled by a

Gaussian distribution with parameters N ∼ (µd(θ), σd(θ)). Similarly, the random

variable representing the percentage opening of the faucet is modeled by a Gaussian

distribution with parameters N ∼ (µx(θ), σx(θ)). The three probability distributions

and the user profile fully represent the user consumption behavior.

One of the key questions is how to estimate the model parameters λ, µd, σd, µx, σx

for each value of the parameter θ. The availability of a labeled user consumption

dataset would enable us to verify the modeling assumption and estimate the param-

eter values. However, to our knowledge, there is no such detailed dataset. So in the

meantime, we rely on our knowledge of common human practices for each user profile.

The model described here relies on two simplifications; one is that there is no

dependence between usage distributions within and across time, and another is that

69

Table 7. User profile and time intervals, represented by the parameter vector θ

Attribute Symbol Possible Values

Age A Child, Adult, Elderly

Employment E No, Yes, Telework

Day D 7 Days of the week

Time Interval I [6-9], [9-5], [5-9], [9-6]

There is no correlation between the times of arrival. Our probabilistic model takes into

account user demographics as well as calendar and epoch variables. For example, a

person’s age and employment position are two defining characteristics of their profile.

In addition, the day is divided into four segments that correspond to the most common

times of day when people utilize water. Table 7 summarizes the profile attributes and

the possible values.

70

CHAPTER 9

SIMULATION RESULTS

9.1 Performance Evaluation

The Mean Absolute Error (MAE) measures how far off actual results are from

projections. Like the RMSE metric equation, which quantifies the standard deviation

of prediction errors, the MSE metric calculates the average square of the difference

between the predicted and actual values. we can calculate MAE, MSE, RMSE using

(3.8),(3.9),(3.10) respectively. [114].

MAE =
1

n

n∑
1

| y − ŷ | (9.1)

MSE =
1

n

n∑
1

(y − ŷ)2 (9.2)

RMSE =

√√√√ 1

n

n∑
1

(y − ŷ) (9.3)

In all above equations, y and ŷ denote the actual value and predicted value of PV

generation, respectively.

Some mathematical variables are needed to understand the model’s performance.

Performance matrices are a common term for this type of metric. Being accurate is

defined as the state of being precise or correct. Specificity refers to the ability to rule

out false positives in detecting sleepiness in the driver, while sensitivity refers to the

degree to which drowsiness is detected. In this study, the sensitivity, specificity, and

accuracy are calculated by:

71

Sensitivity =
TP

(TP + FN)
(9.4)

Specificity =
TN

(TN + FP)
(9.5)

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(9.6)

Precision =
(TP)

(TP + FP)
(9.7)

Recall =
(TP)

(TP + FN)
(9.8)

where TP is the true positive detected conditions, TN is the true negative de-

tected conditions, FP is the false positive detected conditions and FN is the false

negative detected conditions.

The Precision of a system is defined as the fraction of relevant items among all

items in a set. Thus, precision is a metric for evaluating the efficiency with which

irrelevant samples are filtered out of the retrieved collection. Similar to the value

placed on strong recall, high precision is ideally suited. An ideal classifier will have a

precision and recall value of 1 [157, 158].

Table 8. Confusion Matrix

Actual Class

True Positive (TP) False Positive (FP)
Predicted Class

False Negative (FN) True Negative (TN)

A confusion matrix is a metric for evaluating the efficacy of machine learning

solutions to classification problems with multi-class outcomes. It’s a table showing

four distinct permutations of expected and actual numbers. It calculates Area Under

the Curve (AUC) and other ROC measures [159]. Table 8 provides the concept of a

72

confusion matrix.

9.2 Smart Energy

Figure 29 shows the results of predicting PV generation using our proposed

approach over the whole simulation period. Three trajectories, actual, training, and

testing data, are illustrated; i.e., the dataset is divided into training and testing

datasets (75% training data and 25% testing data). Besides, for a clear illustration,

prediction outputs of the proposed method are shown in three different time sequence

ranges; 9000− 10000, 76000− 81000, and 99000− 100000 , in Figure 30, Figure 31,

and Figure 32, respectively. According to the graphs, the prediction performance of

the proposed method is satisfying; the actual values and predicted data converge in

shorter periods.

Fig. 29. Prediction Comparison using CNN-LSTM over the whole learning period

The results of learning PV power production through the LSTM approach (base-

line) are presented in Figure 35. For the sake of clarity, Figure 36, Figure 37, and

Figure 38 show the forecasting results in three different time periods, 9000 − 10000,

73

Fig. 30. Prediction Comparison using CNN-LSTM over the time sequence 9000-10000

Fig. 31. Prediction Comparison using CNN-LSTM over the time sequence 76000-81000

76000− 81000, and 99000− 100000, respectively.

Comparing the results from the two approaches, predictions using the hybrid

approach are slightly closer to the actual data; however, the results of the baseline

approach are still reliable. The RMSE, MAE, and MSE error values and the compu-

tational overhead for the two methods (hybrid CNN-LSTM and LSTM models) are

provided in Table 9. According to the error values, the accuracy of our proposed net-

work (through both training and testing data) is significantly better than the baseline

74

method (single LSTM model).

Fig. 32. Prediction Comparison using CNN-LSTM over the time sequence

99000-100000

Fig. 33. Training and testing data loss value

using proposed method

Fig. 34. Training and testing data loss val-

ues using baseline method

However, the system memory usage and execution time are significantly higher in

our proposed prediction method compared to the baseline. The higher computational

overhead in the proposed method is expected, considering that 13 different types of

input datasets are used in the CNN-LSTM model to carry out the predictions. In

contrast, only one input data is used in the LSTM model. Besides, the CNN-LSTM

model has to perform complex calculations of the CNN layer. All the 104520 data

points (with a 5-minute sampling time) are being analyzed simultaneously. The la-

75

Fig. 35. Prediction Comparison using LSTM over the whole learning period

Fig. 36. Prediction Comparison using LSTM over the time sequence 9000-1000

tency and computation complexity of CNN-LSTM is slightly higher than a single

LSTM approach. For instance, the average time to train each epoch in LSTM was

60-80ms/step, whereas this value was measured at 220-250ms/step for CNN-LSTM.

However, any modern computer can handle the computation complexity of our pro-

posed hybrid model, and it is not considered a critical issue.

Figure 33 and Figure 34 present the loss value minimization for the hybrid

CNN-LSTM and baseline architectures, respectively. Comparing the two figures, it

76

Fig. 37. Prediction Comparison using LSTM over the time sequence 76000-81000

Fig. 38. Prediction Comparison using LSTM over the time sequence 99000-10000

can be observed that both models’ fitting happens roughly simultaneously. According

to the curves in Figure 33, overfitting or underfitting did not occur in the network,

and the model functions with sufficient accuracy within 20 epochs. However, the

baseline model (single LSTM) shows overfitting; since the training loss trajectory

continues to decrease with experience, and the test data loss drops to a point and

begins increasing again.

77

Table 9. Performance comparison of the proposed approach and the baseline

MSE MAE RMSE
Prediction Method

Train Test Train Test Train Test
System Memory Usage (%) GPU Memory Usage (%) Time (s)

LSTM 0.0022 0.0037 0.0320 0.0392 0.0477 0.0610 16.1 4.18 75

CNN-LSTM 0.0017 0.0031 0.0254 0.0351 0.0420 0.0564 54.7 4.09 253

BiLSTM 0.395 0.0604 0.1684 0.1845 0.1987 0.1987 15.4 6.44 393

9.3 Smart Transportation System

80% of the training validation set is used for training purposes. In contrast, the

remaining 20% is used for validation purposes. Figure 39, and Figure 40 present the

model accuracy and loss of the proposed CNN architectures, respectively. Training

loss is lesser than the testing loss in Figure 40. Figure 39 shows that the training and

testing accuracy are around 1 and 0.6. The reason for getting lesser testing accuracy

is the random shuffling of the same types of images. Testing data had more drowsy

images, which incurred lesser accuracy.

Fig. 39. Training and testing data accuracy

using the proposed method

Fig. 40. Training and testing data loss val-

ues using the proposed method

Figure 40 shows that the testing loss is close to zero, and training loss has

erratic values. This happens because of our sensor’s sensitivity in our experiment.

The sensor is too much sensitive to use. We try to replicate the images with data

78

while driving, which may cause a higher loss in training. That is why the loss is

slightly higher than the standard value. Figure 41 shows the confusion matrix for

our proposed approach.

Fig. 41. Confusion matrix of the proposed approach

Table 10. Results for the proposed methodology

Performance Metrics Value (%)

Accuracy 94

Misclassification Rate 6

Precision 72.92

Sensitivity 75

Specificity 98.51

9.4 Smart Environment

From Figure 42 to Figure 47 shows the result for CO, SO2, PM10, O3, and NO2

accordingly. The graphs show the inference result for both the training and testing

dataset. The low MSE, MAE, and RMSE values help us conclude that the model

79

designed for all the datasets is efficient and works well to predict the future air quality

for a given area.

Fig. 42. Forecasting Result for CO

Fig. 43. Forecasting Result for NO2

9.5 Smart Water Distribution System

We simulated the system for six different usage patterns; one active user (1), two

users on the same floor (2-S), two users on opposite floors (2-O), three users with the

80

Fig. 44. Forecasting Result for Ozone

Fig. 45. Forecasting Result for PM2.5

additional two users on the same floor (3-S), three users with the other two users on

alternative floors (3-O), and all users (4). For this experiment, the performance is

measured by the deviation from a reference flow rate (user convenience) and power

consumption.

Figure 49 illustrates the pressure profile for the two control schemes. The fixed

control scheme maintained the system pressure at the desired setpoint as expected.

The dynamic pressure shows the required pressure setpoint for each usage pattern.

81

Fig. 46. Forecasting Result for PM10

Fig. 47. Forecasting Result for SO2

The PID controller kept the setpoint needed, so the setpoint and actual pressure

measurement were the same.

Figure 50 shows the flow rate for the pivot user (the user is always on in all

usage patterns). The fixed pressure control scheme results in a wide variation of the

flow rate, hence a negative user experience. For a single user, the pressure head is

so high that it doubles the required flow rate. For the other usage patterns, the flow

rate oscillates based on other users’ locations. Reducing the pressure setpoint will

82

Fig. 48. Forecasting Result for Pb

shift the whole curve down, resulting in an underflow for the user when other users

are online instead of an overflow condition. The adaptive control scheme reduces

the variation in the flow rate, although not perfectly. The figure also shows that a

lower-floor user will always have a higher flow rate regardless of the usage pattern.

This is not surprising since the pressure loss will be higher on higher floors. The

figure shows a fundamental limitation of the current control scheme, where we only

have one degree of freedom. We can control only the pump speed, so theoretically, it

is impossible to maintain the flow for all users with a single manipulated variable.

Figure 51 shows the power consumption per user. The power consumption is

reduced significantly using the adaptive control scheme. The main reason is that

fixed pressure control results in over-pressure for most scenarios that are not needed

to achieve the desired flow rate; hence excessive power is unnecessarily spent.

9.5.1 Discussion

From the experimental results, we conclude that adaptive feedback control uti-

lizing IoT data results in less flow rate variability (user convenience) and less power

83

Fig. 49. Pressure profile for the two experimental control schemes vs different usage

patterns. For the usage patterns, ”S” is for the Same floor, and ”O” is for

the Opposite floor. The fixed pressure scheme utilizes one pressure setpoint

for all usage patterns, while the dynamic pressure scheme varies the pressure

set point according to the usage pattern.

Fig. 50. Flow rate variation for the two pressure control schemes for a fixed user. For

the dynamic pressure scheme, the flow rate for two different users at two

different floors is shown. ”U” stands for the Upper floor, and ”L” for the

Lower floor.

84

Table 11. Performance comparison of the proposed approach and the baseline

MSE MAE RMSE
LSTM

Train Test Train Test Train Test
System Memory Usage (%)

CO 0.003 0.002 0.0431 0.0343 0.0552 0.0474 18.9

PM2.5 2.340 2.034 1.111 1.033 1.529 1.426 20.7

PM10 19.605 16.807 3.225 3.187 4.427 4.099 19.1

NO2 6.434 11.935 1.953 2.676 2.536 3.454 19.1

SO2 0.044 0.055 0.148 0.134 0.210 0.235 16.5

O3 2.354 2.540 0.003 0.003 0.004 0.005 18.8

Pb 3.830 3.027 0.0004 0.0004 0.0006 0.0005 18.8

Table 12. Performance comparison of the proposed approach and the baseline

Train Test
Elements

Precision Recall Precision Recall

CO 1 1 1 1

PM2.5 0.98 0.97 0.99 0.97

PM10 1 1 1 1

NO2 1 1 1 1

SO2 1 1 0.98 0.98

O3 1 0.99 1 0.99

Pb 1 1 1 1

consumption (cost-effective operation). However, tight system control for a more

efficient process is impossible with a single manipulated variable.

This work aims to highlight the power of utilizing the data provided by the IoT

echo system, even with very limited system controllability. However, IoT provides

opportunities for optimal system operation beyond what we showed here and without

the need for additional investment. As an example, for smart valves that could be

regulated remotely, the user could specify the required flow rate using a simple digital

85

Fig. 51. Power consumption per user for the two pressure control schemes.

display, possibly from among preset values, and this information represents the desired

setpoint for the controller. The controller then could adjust multiple inputs, including

pump speed, user valve percentage opening, and other system components, to achieve

the desired user setpoint. Although it may seem counter-intuitive for the first time

that the user valve is adjusted by a controller and not by the user, as we used to,

what we do at home or the office is that we change the valve opening to achieve the

flow rate we need. Therefore, a manual adjustment could be eliminated or kept to a

minimum in a smart building setup. Furthermore, this higher degree of control would

allow us to design more sophisticated optimal control schemes that minimize energy

usage and water consumption while maintaining minimum user convenience.

86

CHAPTER 10

CONCLUSIONS AND FUTURE WORKS

The notion of a ”Smart City” was inspired by the necessity of finding practical solu-

tions to widespread urban issues. It seeks to do so by enhancing the quality of life in

existing settlements through the strategic deployment of hardware and software [160].

Energy, transportation, water, public safety, and other vital service sectors within the

smart city are controlled in such a way as to assure they are correct operation, with

consideration given to the upkeep of a clean, inexpensive, and secure environment in

which inhabitants may live comfortably [161]. Its energy infrastructure stands out

as an absolute need, considering a city’s dependence on its other critical infrastruc-

ture [162].

10.1 Smart Energy

An uncertainty-aware prediction model based on deep learning is proposed for

the PV generation forecasting problem. First, a convolutional neural network (CNN)

is developed to capture local features from the data. In the next step, LSTM neural

network extracts temporal relationships and generates PV output forecasts depend-

ing on the dataset’s features. We obtained a highly accurate and flexible prediction

model by integrating these two techniques. The proposed approach is applied to a

real dataset (DKASC), and its performance is validated for various forecasting hori-

zons. The performance of our proposed deep learning model is compared to that

of a single LSTM and a BiLSTM model (which are known to be robust, efficient,

and accurate learning approaches). Simulation results proved that the proposed hy-

87

brid CNN-LSTM model outperforms the baseline approach regarding accuracy and

training/testing fitting.

10.2 Smart Transportation System

This paper proposes an algorithm for driver drowsiness detection using a convolu-

tional neural network and physiological approaches. A new perspective towards driver

drowsiness detection is presented by integrating deep neural network approaches and

the heart rate and blood oxygen level to detect, analyze, and monitor a driver’s

drowsiness while driving. Previous methods could only make decisions based on fea-

tures such as eye blinks, eye closure, forehead strain marks, or even eyebrow shapes.

Other modern approaches were based on carefully hand-engineered features detect-

ing driver drowsiness based on human facial expressions. The convolutional neural

networks-based representation feature learning approach provides an automated and

efficient set of features that can accurately classify the driver as drowsy or non-

drowsy. Integration between those aspects is a new concept to make the proposed

techniques more robust, valuable, and efficient. The proposed approach is used for

an actual dataset made by ourselves, and its performance is validated and calculated

by different performance matrices. Simulation results provided different horizons for

integrating various physiological features with the proposed CNN model. As a future

work, We will use this module as part of experiments in our smart city platform [19].

10.3 Smart Environment

Despite the detrimental effects of air pollution, it is vital to have a reliable model

for predicting AQI levels to improve urban public health and foster sustained social

progress. Because of the direct influence on city administration and citizen health

that air pollution forecasts have in densely populated places, such knowledge is of

88

paramount relevance. It is essential to use deep learning neural networks like the long

short-term memory (LSTM) to assist in policy making that prioritizes improving air

quality To create more sustainable cities. The suggested method may predict future

AQI values by studying existing data on CO, SO2, PM10, O3, and NO2 concentrations.

Richmond, Virginia, USA, is the location for this data set’s creation. Results from

the current study show that the distributed LSTM technique outperforms standalone

neural network predictors and regression models in predicting the AQI. the sample

size indicates only a small time frame (one day). A more rigorous statistical analysis

and more definitive conclusions might have been achieved with an extended period

of hourly data. The capacity of any model to predict the future may vary depending

on the length of time spent anticipating or the size of the steps used to advance the

prediction. Second, additional aspects, such as the city’s economy and traffic flow,

might be considered in future studies if they haven’t already been. This research

presented a practical approach to determining the concentration values of various

contaminants contributing to pollution and combining them to generate AQI values

for that period. Multiple weather stations and user apps can utilize the proposed

model to provide instantaneous predictions of the pollution level.

10.4 Smart Water Distribution System

We presented the design of a laboratory testbed for a water distribution system

that is part of a larger smart city project. We built a simulator for the physical

system hydraulics to use it for model-based design of the plant control system. We

showed by numerical simulations that utilizing the information provided by the IoT

infrastructure results in a convenient energy-efficient operation for the system without

additional cost. This is a work in progress and several extension are currently ongoing.

We will be building a state space model for the complete water distribution system

89

for model-based control design. We are in the process of building the real testbed

and will utilize it to collect real time data and adjust the mathematical model using

system identification techniques. Both the testbed and the simulator will have an

expanded number of buildings and users to mimic real situations. More complex

control algorithms that leverage IoT data are currently under study, including optimal

flow control by varying individual user valves under water and energy consumption as

well as user convenience constraints. We have faced the main challenges in this work:

scalability and adaptability because every system has its parameters and variables.

To sync with those parameters and variables, we have to execute the whole control

method, simulation, and the proposed testbed properly. Finally, more realistic user

consumption profiles will be used in system analysis and design.

90

Appendix A

ABBREVIATIONS

ICT Information and Communication Technology

IoT Internet of Things

AI Artificial Intelligence

ML Machine Learning

DL Deep Learning

ANN Artificial Neural Network

PV Photovolatic Energy

ITS Intelligent Transportation Sytem

MLP Multilayer Perceptron

RBF Radial Basis Function

SMLP Square Multilayer Perceptron

WDS Smart Water Distribution System

TL Transfer Learning

CNN Convolutional Neural Network

GAP Global Average Pooling

LSTM Long Short Term Unit

ReLU Rectified Linear Unit

SVM Support Vector Machine

BGD Batch Gradient Descent

SGD Stochastic Gradient Descent

AQI Air Quality Index

91

REFERENCES

[1] Edward O’Dwyer et al. “Smart energy systems for sustainable smart cities:

Current developments, trends and future directions”. In: Applied energy 237

(2019), pp. 581–597.

[2] Yi Liu et al. “Intelligent edge computing for IoT-based energy management

in smart cities”. In: IEEE network 33.2 (2019), pp. 111–117.

[3] Riccardo Petrolo, Valeria Loscri, and Nathalie Mitton. “Towards a smart city

based on cloud of things, a survey on the smart city vision and paradigms”.

In: Transactions on emerging telecommunications technologies 28.1 (2017),

e2931.

[4] Unai Aguilera et al. “Citizen-centric data services for smarter cities”. In:

Future Generation Computer Systems 76 (2017), pp. 234–247.

[5] Paolo Neirotti et al. “Current trends in Smart City initiatives: Some stylised

facts”. In: Cities 38 (2014), pp. 25–36.

[6] Zaib Ullah et al. “Applications of artificial intelligence and machine learning

in smart cities”. In: Computer Communications 154 (2020), pp. 313–323.

[7] Fadi Al-Turjman. “Information-centric framework for the Internet of Things

(IoT): Traffic modeling & optimization”. In: Future Generation Computer

Systems 80 (2018), pp. 63–75.

[8] Zaheer Allam and Zaynah A Dhunny. “On big data, artificial intelligence and

smart cities”. In: Cities 89 (2019), pp. 80–91.

92

[9] Hongjia Li et al. “Deep reinforcement learning: Framework, applications, and

embedded implementations”. In: 2017 IEEE/ACM International Conference

on Computer-Aided Design (ICCAD). IEEE. 2017, pp. 847–854.

[10] Reinaldo Padilha França et al. “An overview of the machine learning applied

in smart cities”. In: Smart cities: A data analytics perspective (2021), pp. 91–

111.

[11] Ethem Alpaydin. Introduction to machine learning. MIT press, 2020.

[12] Sendhil Mullainathan and Jann Spiess. “Machine learning: an applied econo-

metric approach”. In: Journal of Economic Perspectives 31.2 (2017), pp. 87–

106.

[13] M Hadi Amini, Javad Mohammadi, and Soummya Kar. “Promises of fully dis-

tributed optimization for iot-based smart city infrastructures”. In: Optimiza-

tion, Learning, and Control for Interdependent Complex Networks. Springer,

2020, pp. 15–35.

[14] Federico Montori, Luca Bedogni, and Luciano Bononi. “A collaborative in-

ternet of things architecture for smart cities and environmental monitoring”.

In: IEEE Internet of Things Journal 5.2 (2017), pp. 592–605.

[15] Farid Ghareh Mohammadi et al. “Data analytics for smart cities: Challenges

and promises”. In: Cyberphysical Smart Cities Infrastructures: Optimal Op-

eration and Intelligent Decision Making (2022), pp. 13–27.

[16] Farid Ghareh Mohammadi, M Hadi Amini, and Hamid R Arabnia. “An intro-

duction to advanced machine learning: meta-learning algorithms, applications,

and promises”. In: Optimization, Learning, and Control for Interdependent

Complex Networks. Springer, 2020, pp. 129–144.

93

[17] Fátima Trindade Neves, Miguel de Castro Neto, and Manuela Aparicio. “The

impacts of open data initiatives on smart cities: A framework for evaluation

and monitoring”. In: Cities 106 (2020), p. 102860.

[18] “Desert Knowledge Precinct in Central Australia”. In: (). url: http : / /

dkasolarcentre.com.au/download?location=alice-spring.

[19] Nasibeh Zohrabi et al. “OpenCity: An Open Architecture Testbed for Smart

Cities”. In: 2021 IEEE International Smart Cities Conference (ISC2). 2021,

pp. 1–7. doi: 10.1109/ISC253183.2021.9562813.

[20] M. Alrashidi et al. “Short-Term PV Output Forecasts with Support Vec-

tor Regression Optimized by Cuckoo Search and Differential Evolution Algo-

rithms”. In: 2018 IEEE International Smart Cities Conference (ISC2). 2018,

pp. 1–8. doi: 10.1109/ISC2.2018.8656685.

[21] Yuchi Sun, Vignesh Venugopal, and Adam R. Brandt. “Short-term solar power

forecast with deep learning: Exploring optimal input and output configu-

ration”. In: Solar Energy 188 (2019), pp. 730–741. issn: 0038-092X. doi:

https : / / doi . org / 10 . 1016 / j . solener . 2019 . 06 . 041. url: https :

//www.sciencedirect.com/science/article/pii/S0038092X19306164.

[22] A. Ryu et al. “Preliminary Analysis of Short-term Solar Irradiance Forecasting

by using Total-sky Imager and Convolutional Neural Network”. In: 2019 IEEE

PES GTD Grand International Conference and Exposition Asia (GTD Asia).

2019, pp. 627–631. doi: 10.1109/GTDAsia.2019.8715984.

[23] Na Dong et al. “A novel convolutional neural network framework based solar

irradiance prediction method”. In: International Journal of Electrical Power

& Energy Systems 114 (2020), p. 105411. issn: 0142-0615. doi: https://doi.

94

http://dkasolarcentre.com.au/download?location=alice-spring
http://dkasolarcentre.com.au/download?location=alice-spring
https://doi.org/10.1109/ISC253183.2021.9562813
https://doi.org/10.1109/ISC2.2018.8656685
https://doi.org/https://doi.org/10.1016/j.solener.2019.06.041
https://www.sciencedirect.com/science/article/pii/S0038092X19306164
https://www.sciencedirect.com/science/article/pii/S0038092X19306164
https://doi.org/10.1109/GTDAsia.2019.8715984
https://doi.org/https://doi.org/10.1016/j.ijepes.2019.105411
https://doi.org/https://doi.org/10.1016/j.ijepes.2019.105411

org/10.1016/j.ijepes.2019.105411. url: https://www.sciencedirect.

com/science/article/pii/S0142061518332915.

[24] Biaowei Chen et al. “Very-short-term power prediction for PV power plants

using a simple and effective RCC-LSTM model based on short term multi-

variate historical datasets”. In: Electronics 9.2 (2020), p. 289.

[25] Donghun Lee and Kwanho Kim. “Recurrent Neural Network-Based Hourly

Prediction of Photovoltaic Power Output Using Meteorological Information”.

In: Energies 12.2 (2019). issn: 1996-1073. doi: 10.3390/en12020215. url:

https://www.mdpi.com/1996-1073/12/2/215.

[26] Fei Wang et al. “A day-ahead PV power forecasting method based on LSTM-

RNN model and time correlation modification under partial daily pattern

prediction framework”. In: Energy Conversion and Management 212 (2020),

p. 112766.

[27] Gangqiang Li et al. “Photovoltaic power forecasting with a hybrid deep learn-

ing approach”. In: IEEE Access 8 (2020), pp. 175871–175880.

[28] Elizaveta Kharlova, Daniel May, and Petr Musilek. “Forecasting photovoltaic

power production using a deep learning sequence to sequence model with at-

tention”. In: 2020 International Joint Conference on Neural Networks (IJCNN).

IEEE. 2020, pp. 1–7.

[29] Yusen Wang, Wenlong Liao, and Yuqing Chang. “Gated Recurrent Unit

Network-Based Short-Term Photovoltaic Forecasting”. In: Energies 11.8 (2018).

issn: 1996-1073. doi: 10.3390/en11082163. url: https://www.mdpi.com/

1996-1073/11/8/2163.

95

https://doi.org/https://doi.org/10.1016/j.ijepes.2019.105411
https://doi.org/https://doi.org/10.1016/j.ijepes.2019.105411
https://doi.org/https://doi.org/10.1016/j.ijepes.2019.105411
https://www.sciencedirect.com/science/article/pii/S0142061518332915
https://www.sciencedirect.com/science/article/pii/S0142061518332915
https://doi.org/10.3390/en12020215
https://www.mdpi.com/1996-1073/12/2/215
https://doi.org/10.3390/en11082163
https://www.mdpi.com/1996-1073/11/8/2163
https://www.mdpi.com/1996-1073/11/8/2163

[30] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT

press, 2016.

[31] Maryam Hashemi, Alireza Mirrashid, and Aliasghar Beheshti Shirazi. “Driver

safety development: Real-time driver drowsiness detection system based on

convolutional neural network”. In: SN Computer Science 1.5 (2020), pp. 1–

10.

[32] Mohit Dua et al. “Deep CNN models-based ensemble approach to driver

drowsiness detection”. In: Neural Computing and Applications 33.8 (2021),

pp. 3155–3168.

[33] Jing-Ming Guo and Herleeyandi Markoni. “Driver drowsiness detection us-

ing hybrid convolutional neural network and long short-term memory”. In:

Multimedia tools and applications 78.20 (2019), pp. 29059–29087.

[34] Prima Dewi Purnamasari and Aziz Zul Hazmi. “Heart beat based drowsiness

detection system for driver”. In: 2018 International Seminar on Application

for Technology of Information and Communication. IEEE. 2018, pp. 585–590.

[35] Lee Boon Leng, Lee Boon Giin, and Wan-Young Chung. “Wearable driver

drowsiness detection system based on biomedical and motion sensors”. In:

2015 IEEE SENSORS. IEEE. 2015, pp. 1–4.

[36] Miriam R Waldeck and Michael I Lambert. “Heart rate during sleep: implica-

tions for monitoring training status”. In: Journal of sports science & medicine

2.4 (2003), p. 133.

[37] Difei Jing, Shuwei Zhang, and Zhongyin Guo. “Fatigue driving detection

method for low-voltage and Hypoxia Plateau Area: a physiological character-

96

istic analysis approach”. In: International journal of transportation science

and technology 9.2 (2020), pp. 148–158.

[38] Xuemin Zhu et al. “EOG-based drowsiness detection using convolutional neu-

ral networks”. In: 2014 International Joint Conference on Neural Networks

(IJCNN). IEEE. 2014, pp. 128–134.

[39] Günther Deuschl. “Recommendations for the practice of clinical neurophysi-

ology”. In: guidelines of the International Federation of Clinical Neurophysi-

ology (1999).

[40] Hong J Eoh, Min K Chung, and Seong-Han Kim. “Electroencephalographic

study of drowsiness in simulated driving with sleep deprivation”. In: Interna-

tional Journal of Industrial Ergonomics 35.4 (2005), pp. 307–320.

[41] Claudio A Perez et al. “Face and eye tracking algorithm based on digital

image processing”. In: 2001 IEEE International Conference on Systems, Man

and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.

No. 01CH37236). Vol. 2. IEEE. 2001, pp. 1178–1183.

[42] Sarbjit Singh and Nikolaos P Papanikolopoulos. “Monitoring driver fatigue

using facial analysis techniques”. In: Proceedings 199 IEEE/IEEJ/JSAI Inter-

national Conference on Intelligent Transportation Systems (Cat. No. 99TH8383).

IEEE. 1999, pp. 314–318.

[43] Konstantinos P Moustris, Ioannis C Ziomas, and Athanasios G Paliatsos. “3-

Day-ahead forecasting of regional pollution index for the pollutants NO2, CO,

SO2, and O3 using artificial neural networks in Athens, Greece”. In: Water,

Air, & Soil Pollution 209.1 (2010), pp. 29–43.

97

[44] Fabio Biancofiore et al. “Recursive neural network model for analysis and

forecast of PM10 and PM2.5”. In: Atmospheric Pollution Research 8.4 (2017),

pp. 652–659.

[45] Sheen Mclean S Cabaneros, John Kaiser S Calautit, and Ben Richard Hughes.

“Hybrid artificial neural network models for effective prediction and miti-

gation of urban roadside NO2 pollution”. In: Energy Procedia 142 (2017),

pp. 3524–3530.

[46] Samuel D Lightstone, Fred Moshary, and Barry Gross. “Comparing CMAQ

forecasts with a neural network forecast model for PM2.5 in New York”. In:

Atmosphere 8.9 (2017), p. 161.

[47] Ming-Tung Chuang, Yang Zhang, and Daiwen Kang. “Application of WRF/Chem-

MADRID for real-time air quality forecasting over the Southeastern United

States”. In: Atmospheric environment 45.34 (2011), pp. 6241–6250.

[48] Stephen F Mueller and Jonathan W Mallard. “Contributions of natural emis-

sions to ozone and PM2. 5 as simulated by the community multiscale air qual-

ity (CMAQ) model”. In: Environmental science & technology 45.11 (2011),

pp. 4817–4823.

[49] Sheen Mclean Cabaneros, John Kaiser Calautit, and Ben Richard Hughes.

“A review of artificial neural network models for ambient air pollution pre-

diction”. In: Environmental Modelling & Software 119 (2019), pp. 285–304.

[50] Xiao Feng et al. “Artificial neural networks forecasting of PM2. 5 pollution us-

ing air mass trajectory based geographic model and wavelet transformation”.

In: Atmospheric Environment 107 (2015), pp. 118–128.

98

[51] Fang Zhao and Weide Li. “A combined model based on feature selection and

WOA for PM 2.5 concentration forecasting”. In: Atmosphere 10.4 (2019),

p. 223.

[52] Yue-Shan Chang et al. “An LSTM-based aggregated model for air pollution

forecasting”. In: Atmospheric Pollution Research 11.8 (2020), pp. 1451–1463.

[53] Jingyang Wang et al. “Air quality prediction using CT-LSTM”. In: Neural

Computing and Applications 33.10 (2021), pp. 4779–4792.

[54] Kunwar P Singh et al. “Linear and nonlinear modeling approaches for ur-

ban air quality prediction”. In: Science of the Total Environment 426 (2012),

pp. 244–255.

[55] Wenjian Wang, Changqian Men, and Weizhen Lu. “Online prediction model

based on support vector machine”. In: Neurocomputing 71.4-6 (2008), pp. 550–

558.

[56] Victor R Prybutok, Junsub Yi, and David Mitchell. “Comparison of neural

network models with ARIMA and regression models for prediction of Hous-

ton’s daily maximum ozone concentrations”. In: European Journal of Opera-

tional Research 122.1 (2000), pp. 31–40.

[57] Lele Qin, Naiwen Yu, and Donghui Zhao. “Applying the convolutional neural

network deep learning technology to behavioural recognition in intelligent

video”. In: Tehnički vjesnik 25.2 (2018), pp. 528–535.

[58] Fatih Taşpınar. “Improving artificial neural network model predictions of

daily average PM10 concentrations by applying principle component anal-

ysis and implementing seasonal models”. In: Journal of the Air & Waste

Management Association 65.7 (2015), pp. 800–809.

99

[59] Bun Theang Ong, Komei Sugiura, and Koji Zettsu. “Dynamically pre-trained

deep recurrent neural networks using environmental monitoring data for pre-

dicting PM2. 5”. In:Neural Computing and Applications 27.6 (2016), pp. 1553–

1566.

[60] Esteban Pardo and Norberto Malpica. “Air quality forecasting in Madrid

using long short-term memory networks”. In: International Work-Conference

on the Interplay Between Natural and Artificial Computation. Springer. 2017,

pp. 232–239.

[61] Xianghong Wang and Baozhen Wang. “Research on prediction of environ-

mental aerosol and PM2. 5 based on artificial neural network”. In: Neural

Computing and Applications 31.12 (2019), pp. 8217–8227.

[62] Ebrahim Eslami et al. “A real-time hourly ozone prediction system using deep

convolutional neural network”. In: Neural Computing and Applications 32.13

(2020), pp. 8783–8797.

[63] Kuiying Gu et al. “Prediction of air quality in Shenzhen based on neural

network algorithm”. In: Neural Computing and Applications 32.7 (2020),

pp. 1879–1892.

[64] Chuadhry Mujeeb Ahmed, Venkata Reddy Palleti, and Aditya P Mathur.

“WADI: a water distribution testbed for research in the design of secure cyber

physical systems”. In: Proceedings of the 3rd international workshop on cyber-

physical systems for smart water networks. 2017, pp. 25–28.

[65] Sawsan Khaleel Alshattnawi. “Smart water distribution management system

architecture based on internet of things and cloud computing”. In: 2017 Inter-

national Conference on New Trends in Computing Sciences (ICTCS). IEEE.

2017, pp. 289–294.

100

[66] Lakshmi Kanthan Narayanan and Suresh Sankaranarayanan. “IoT-based wa-

ter demand forecasting and distribution design for smart city”. In: Journal of

Water and Climate Change 11.4 (2020), pp. 1411–1428.

[67] SV Mohanasundaram et al. “Smart water distribution network solution for

smart cities: Indian scenario”. In: 2018 Global Internet of Things Summit

(GIoTS). IEEE. 2018, pp. 1–6.

[68] Michele Romano and Zoran Kapelan. “Adaptive water demand forecasting

for near real-time management of smart water distribution systems”. In: En-

vironmental Modelling & Software 60 (2014), pp. 265–276.

[69] Alexandru Predescu et al. “An advanced learning-based multiple model con-

trol supervisor for pumping stations in a smart water distribution system”.

In: Mathematics 8.6 (2020), p. 887.

[70] Wanqing Zhao, Thomas H Beach, and Yacine Rezgui. “Optimization of potable

water distribution and wastewater collection networks: A systematic review

and future research directions”. In: IEEE Transactions on Systems, Man, and

Cybernetics: Systems 46.5 (2015), pp. 659–681.

[71] Tomas Robles et al. “An IoT based reference architecture for smart water

management processes.” In: J. Wirel. Mob. Networks Ubiquitous Comput.

Dependable Appl. 6.1 (2015), pp. 4–23.

[72] Mohamed Afifi, Mohamed F Abdelkader, and Atef Ghoneim. “An IoT system

for continuous monitoring and burst detection in intermittent water distri-

bution networks”. In: 2018 International Conference on Innovative Trends in

Computer Engineering (ITCE). IEEE. 2018, pp. 240–247.

101

[73] Rosiberto Gonçalves, Jesse JM Soares, and Ricardo MF Lima. “An IoT-based

framework for smart water supply systems management”. In: Future Internet

12.7 (2020), p. 114.

[74] Gabriela Cembrano et al. “Optimal control of a water distribution network in

a supervisory control system”. In: Control engineering practice 8.10 (2000),

pp. 1177–1188.

[75] E Creaco et al. “Real time control of water distribution networks: A state-of-

the-art review”. In: Water research 161 (2019), pp. 517–530.

[76] Ilyas Eker and Tolgay Kara. “Operation and control of a water supply sys-

tem”. In: ISA transactions 42.3 (2003), pp. 461–473.

[77] Paul W Jowitt and Chengchao Xu. “Optimal valve control in water-distribution

networks”. In: Journal of Water Resources Planning and Management 116.4

(1990), pp. 455–472.

[78] Nehemiah Musa et al. “A systematic review and Meta-data analysis on the

applications of Deep Learning in Electrocardiogram”. In: Journal of ambient

intelligence and humanized computing (2022), pp. 1–74.

[79] Adel Mellit et al. “Advanced methods for photovoltaic output power forecast-

ing: A review”. In: Applied Sciences 10.2 (2020), p. 487.

[80] Mei Yang et al. “Deep learning algorithms and multicriteria decision-making

used in big data: a systematic literature review”. In: Complexity 2020 (2020).

[81] Nhi NY Vo et al. “Deep learning for decision making and the optimization of

socially responsible investments and portfolio”. In: Decision Support Systems

124 (2019), p. 113097.

102

[82] Iqbal H Sarker. “Deep learning: a comprehensive overview on techniques,

taxonomy, applications and research directions”. In: SN Computer Science

2.6 (2021), pp. 1–20.

[83] Rene Y Choi et al. “Introduction to machine learning, neural networks, and

deep learning”. In: Translational Vision Science & Technology 9.2 (2020),

pp. 14–14.

[84] Vetle Øyri. “Long Short-term Memory (LSTM) recurrent neural networks for

urban hydrological modelling”. MA thesis. 2020.

[85] Jafar Alzubi, Anand Nayyar, and Akshi Kumar. “Machine learning from the-

ory to algorithms: an overview”. In: Journal of physics: conference series.

Vol. 1142. 1. IOP Publishing. 2018, p. 012012.

[86] Dmytro Mishkin, Nikolay Sergievskiy, and Jiri Matas. “Systematic evaluation

of convolution neural network advances on the imagenet”. In: Computer vision

and image understanding 161 (2017), pp. 11–19.

[87] Gopinath Rebala, Ajay Ravi, and Sanjay Churiwala. An introduction to ma-

chine learning. Springer, 2019.

[88] Oleksii Trekhleb.machine-learning-map.png. https://github.com/trekhleb/

homemade-machine-learning/blob/master/images/machine-learning-

map.png. [Online; accessed 12-October-2022]. 2018.

[89] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: na-

ture 521.7553 (2015), pp. 436–444.

[90] Rocio Vargas, Amir Mosavi, and Ramon Ruiz. “Deep learning: a review”. In:

(2017).

103

https://github.com/trekhleb/homemade-machine-learning/blob/master/images/machine-learning-map.png
https://github.com/trekhleb/homemade-machine-learning/blob/master/images/machine-learning-map.png
https://github.com/trekhleb/homemade-machine-learning/blob/master/images/machine-learning-map.png

[91] Rong Zhang, Weiping Li, and Tong Mo. “Review of deep learning”. In: arXiv

preprint arXiv:1804.01653 (2018).

[92] Laith Alzubaidi et al. “Review of deep learning: Concepts, CNN architectures,

challenges, applications, future directions”. In: Journal of big Data 8.1 (2021),

pp. 1–74.

[93] Maryam M Najafabadi et al. “Deep learning applications and challenges in

big data analytics”. In: Journal of big data 2.1 (2015), pp. 1–21.

[94] Kaiming He et al. “Deep residual learning for image recognition”. In: Pro-

ceedings of the IEEE conference on computer vision and pattern recognition.

2016, pp. 770–778.

[95] Salman Khan et al. “A guide to convolutional neural networks for computer

vision”. In: Synthesis lectures on computer vision 8.1 (2018), pp. 1–207.

[96] Weili Fang et al. “Computer vision for behaviour-based safety in construction:

A review and future directions”. In: Advanced Engineering Informatics 43

(2020), p. 100980.

[97] Ruoyu Yang et al. “CNN-LSTM deep learning architecture for computer

vision-based modal frequency detection”. In: Mechanical Systems and signal

processing 144 (2020), p. 106885.

[98] Ashutosh Pandey and DeLiang Wang. “A new framework for CNN-based

speech enhancement in the time domain”. In: IEEE/ACM Transactions on

Audio, Speech, and Language Processing 27.7 (2019), pp. 1179–1188.

[99] Dimitri Palaz, Mathew Magimai-Doss, and Ronan Collobert. “End-to-end

acoustic modeling using convolutional neural networks for HMM-based au-

104

tomatic speech recognition”. In: Speech Communication 108 (2019), pp. 15–

32.

[100] Dimitri Palaz, Ronan Collobert, et al. Analysis of CNN-based speech recogni-

tion system using raw speech as input. Tech. rep. Idiap, 2015.

[101] Samil Karahan et al. “How image degradations affect deep CNN-based face

recognition?” In: 2016 international conference of the biometrics special in-

terest group (BIOSIG). IEEE. 2016, pp. 1–5.

[102] Hsiao-Chi Li, Zong-Yue Deng, and Hsin-Han Chiang. “Lightweight and resource-

constrained learning network for face recognition with performance optimiza-

tion”. In: Sensors 20.21 (2020), p. 6114.

[103] Jie Wang and Zihao Li. “Research on face recognition based on CNN”. In:

IOP Conference Series: Earth and Environmental Science. Vol. 170. 3. IOP

Publishing. 2018, p. 032110.

[104] Ajitesh Kumar. Different Types of CNN Architectures Explained: Examples.

https://vitalflux.com/wp-content/uploads/2021/11/VGG16-CNN-

Architecture.png. [Online; accessed 19-October-2022]. 2022.

[105] Etienne Dupuis et al. “CNN weight sharing based on a fast accuracy estima-

tion metric”. In: Microelectronics Reliability 122 (2021), p. 114148.

[106] Peng Wang, Xiaomin Zhang, and Yan Hao. “A method combining CNN and

ELM for feature extraction and classification of SAR image”. In: Journal of

Sensors 2019 (2019).

[107] Mengmeng Zhang et al. “Feature extraction for classification of hyperspec-

tral and LiDAR data using patch-to-patch CNN”. In: IEEE transactions on

cybernetics 50.1 (2018), pp. 100–111.

105

https://vitalflux.com/wp-content/uploads/2021/11/VGG16-CNN-Architecture.png
https://vitalflux.com/wp-content/uploads/2021/11/VGG16-CNN-Architecture.png

[108] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. “Understanding of

a convolutional neural network”. In: 2017 international conference on engi-

neering and technology (ICET). Ieee. 2017, pp. 1–6.

[109] Keiron O’Shea and Ryan Nash. “An introduction to convolutional neural

networks”. In: arXiv preprint arXiv:1511.08458 (2015).

[110] Sagar Sharma, Simone Sharma, and Anidhya Athaiya. “Activation functions

in neural networks”. In: towards data science 6.12 (2017), pp. 310–316.

[111] Forest Agostinelli et al. “Learning activation functions to improve deep neural

networks”. In: arXiv preprint arXiv:1412.6830 (2014).

[112] Pragati Baheti. Activation Functions in Neural Networks [12 Types & Use

Cases]. https://www.v7labs.com/blog/neural-networks-activation-

functions. [Online; accessed 14-October-2022]. 2022.

[113] NBSHARE NOTEBOOKS. Activation Functions In Python. https://www.

nbshare.io/notebook/751082217/Activation-Functions-In-Python/.

[Online; accessed 16-October-2022]. 2022.

[114] Javier Antonanzas et al. “Review of photovoltaic power forecasting”. In: Solar

Energy 136 (2016), pp. 78–111.

[115] Nagesh Singh Chauhan. Loss Functions in Neural Networks. https://www.

theaidream.com/post/loss-functions-in-neural-networks. [Online;

accessed 12-October-2022]. 2021.

[116] Prashanth Saravanan. Understanding Loss Functions in Machine Learning.

https : / / www . section . io / engineering - education / understanding -

loss- functions- in- machine- learning/. [Online; accessed 16-October-

2022]. 2022.

106

https://www.v7labs.com/blog/neural-networks-activation-functions
https://www.v7labs.com/blog/neural-networks-activation-functions
https://www.nbshare.io/notebook/751082217/Activation-Functions-In-Python/
https://www.nbshare.io/notebook/751082217/Activation-Functions-In-Python/
https://www.theaidream.com/post/loss-functions-in-neural-networks
https://www.theaidream.com/post/loss-functions-in-neural-networks
https://www.section.io/engineering-education/understanding-loss-functions-in-machine-learning/
https://www.section.io/engineering-education/understanding-loss-functions-in-machine-learning/

[117] C3.ai. Root Mean Square Error (RMSE). https://c3.ai/glossary/data-

science/root-mean-square-error-rmse/#:~:text=What%20is%20Root%

20Mean%20Square,true%20values%20using%20Euclidean%20distance..

[Online; accessed 17-October-2022]. 2022.

[118] Shubham Jain. An Overview of Regularization Techniques in Deep Learning

(with Python code). https://www.analyticsvidhya.com/blog/2018/04/

fundamentals - deep - learning - regularization - techniques/. [Online;

accessed 12-October-2022]. 2018.

[119] Federico Girosi, Michael Jones, and Tomaso Poggio. “Regularization the-

ory and neural networks architectures”. In: Neural computation 7.2 (1995),

pp. 219–269.

[120] Editorial Team. Improving Artificial Neural Network with Regularization and

Optimization. https://towardsai.net/p/machine-learning/improving-

artificial-neural-network-with-regularization-and-optimization.

[Online; accessed 12-October-2022]. 2020.

[121] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep

network training by reducing internal covariate shift”. In: International con-

ference on machine learning. PMLR. 2015, pp. 448–456.

[122] Muhammad Yaqub et al. “State-of-the-art CNN optimizer for brain tumor

segmentation in magnetic resonance images”. In: Brain Sciences 10.7 (2020),

p. 427.

[123] Sebastian Ruder. “An overview of gradient descent optimization algorithms”.

In: arXiv preprint arXiv:1609.04747 (2016).

107

https://c3.ai/glossary/data-science/root-mean-square-error-rmse/#:~:text=What%20is%20Root%20Mean%20Square,true%20values%20using%20Euclidean%20distance.
https://c3.ai/glossary/data-science/root-mean-square-error-rmse/#:~:text=What%20is%20Root%20Mean%20Square,true%20values%20using%20Euclidean%20distance.
https://c3.ai/glossary/data-science/root-mean-square-error-rmse/#:~:text=What%20is%20Root%20Mean%20Square,true%20values%20using%20Euclidean%20distance.
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://towardsai.net/p/machine-learning/improving-artificial-neural-network-with-regularization-and-optimization
https://towardsai.net/p/machine-learning/improving-artificial-neural-network-with-regularization-and-optimization

[124] Léon Bottou. “Large-scale machine learning with stochastic gradient descent”.

In: Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–186.

[125] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. “Neural networks

for machine learning lecture 6a overview of mini-batch gradient descent”. In:

Cited on 14.8 (2012), p. 2.

[126] Zijun Zhang. “Improved adam optimizer for deep neural networks”. In: 2018

IEEE/ACM 26th International Symposium on Quality of Service (IWQoS).

Ieee. 2018, pp. 1–2.

[127] Ange Tato and Roger Nkambou. “Improving adam optimizer”. In: (2018).

[128] Laith Alzubaidi et al. “Optimizing the performance of breast cancer classi-

fication by employing the same domain transfer learning from hybrid deep

convolutional neural network model”. In: Electronics 9.3 (2020), p. 445.

[129] Evangelos Bousias Alexakis and Costas Armenakis. “Performance Improve-

ment of Encoder/Decoder-Based CNN Architectures for Change Detection

from Very High-Resolution Satellite Imagery”. In: Canadian Journal of Re-

mote Sensing 47.2 (2021), pp. 309–336.

[130] Parul Sharma, Yash Paul Singh Berwal, and Wiqas Ghai. “Performance anal-

ysis of deep learning CNN models for disease detection in plants using image

segmentation”. In: Information Processing in Agriculture 7.4 (2020), pp. 566–

574.

[131] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classifi-

cation with deep convolutional neural networks”. In: Communications of the

ACM 60.6 (2017), pp. 84–90.

108

[132] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In:

Neural computation 9.8 (1997), pp. 1735–1780.

[133] Alex Graves et al. “A novel connectionist system for unconstrained hand-

writing recognition”. In: IEEE transactions on pattern analysis and machine

intelligence 31.5 (2008), pp. 855–868.

[134] Victor Carbune et al. “Fast multi-language LSTM-based online handwriting

recognition”. In: International Journal on Document Analysis and Recognition

(IJDAR) 23.2 (2020), pp. 89–102.

[135] Curtis Wigington et al. “Data augmentation for recognition of handwritten

words and lines using a CNN-LSTM network”. In: 2017 14th IAPR inter-

national conference on document analysis and recognition (ICDAR). Vol. 1.

IEEE. 2017, pp. 639–645.

[136] Weicong Kong et al. “Short-term residential load forecasting based on LSTM

recurrent neural network”. In: IEEE Transactions on Smart Grid 10.1 (2017),

pp. 841–851.

[137] Huiting Zheng, Jiabin Yuan, and Long Chen. “Short-term load forecasting

using EMD-LSTM neural networks with a Xgboost algorithm for feature im-

portance evaluation”. In: Energies 10.8 (2017), p. 1168.

[138] Bo-Sung Kwon, Rae-Jun Park, and Kyung-Bin Song. “Short-term load fore-

casting based on deep neural networks using LSTM layer”. In: Journal of

Electrical Engineering & Technology 15.4 (2020), pp. 1501–1509.

[139] Zheng Zhao et al. “LSTM network: a deep learning approach for short-term

traffic forecast”. In: IET Intelligent Transport Systems 11.2 (2017), pp. 68–75.

109

[140] Toon Bogaerts et al. “A graph CNN-LSTM neural network for short and long-

term traffic forecasting based on trajectory data”. In: Transportation Research

Part C: Emerging Technologies 112 (2020), pp. 62–77.

[141] Rusul L Abduljabbar et al. “Short-term traffic forecasting: an LSTM network

for spatial-temporal speed prediction”. In: Future Transportation 1.1 (2021),

pp. 21–37.

[142] Yong Yu et al. “A review of recurrent neural networks: LSTM cells and net-

work architectures”. In: Neural computation 31.7 (2019), pp. 1235–1270.

[143] Klaus Greff et al. “LSTM: A search space odyssey”. In: IEEE transactions

on neural networks and learning systems 28.10 (2016), pp. 2222–2232.

[144] Christopher Olah. Understanding LSTM Networks. https://colah.github.

io/posts/2015\protect\discretionary{\char\hyphenchar\font}{}{}08\

protect\discretionary{\char\hyphenchar\font}{}{}Understanding-

LSTMs/. [Online; accessed 17-October-2022]. 2015.

[145] Mostafa Zaman et al. “A Deep Learning Model for Forecasting Photovoltaic

Energy with Uncertainties”. In: 2021 IEEE Green Energy and Smart Systems

Conference (IGESSC). IEEE. 2021, pp. 1–6.

[146] P Viola and M Jones. “Face detection”. In: IJCV 57 (2004), p. 2.

[147] Kevan Yuen and Mohan M Trivedi. “An occluded stacked hourglass approach

to facial landmark localization and occlusion estimation”. In: IEEE Transac-

tions on Intelligent Vehicles 2.4 (2017), pp. 321–331.

[148] Mostafa Zaman, Nasibeh Zohrabi, and Sherif Abdelwahed. “A CNN-based

Path Trajectory Prediction Approach with Safety Constraints”. In: 2020 IEEE

110

https://colah.github.io/posts/2015\protect \discretionary {\char \hyphenchar \font }{}{}08\protect \discretionary {\char \hyphenchar \font }{}{}Understanding-LSTMs/
https://colah.github.io/posts/2015\protect \discretionary {\char \hyphenchar \font }{}{}08\protect \discretionary {\char \hyphenchar \font }{}{}Understanding-LSTMs/
https://colah.github.io/posts/2015\protect \discretionary {\char \hyphenchar \font }{}{}08\protect \discretionary {\char \hyphenchar \font }{}{}Understanding-LSTMs/
https://colah.github.io/posts/2015\protect \discretionary {\char \hyphenchar \font }{}{}08\protect \discretionary {\char \hyphenchar \font }{}{}Understanding-LSTMs/

Transportation Electrification Conference & Expo (ITEC). IEEE. 2020, pp. 267–

272.

[149] Yan Zhang and Caijian Hua. “Driver fatigue recognition based on facial

expression analysis using local binary patterns”. In: Optik 126.23 (2015),

pp. 4501–4505.

[150] Jun-Juh Yan et al. “Real-time driver drowsiness detection system based on

PERCLOS and grayscale image processing”. In: 2016 International Sympo-

sium on Computer, Consumer and Control (IS3C). IEEE. 2016, pp. 243–246.

[151] USEPA 2012. Technical assistance document for the reporting of Daily Air

Quality. https://www.airnow.gov/publications/air-quality-index/

technical-assistance-document-for-reporting-the-daily-aqi/. [On-

line; accessed 20-September-2022]. 2018.

[152] Anikender Kumar and Piyush Goyal. “Forecasting of air quality index in Delhi

using neural network based on principal component analysis”. In: Pure and

Applied Geophysics 170.4 (2013), pp. 711–722.

[153] Jose Antonio Moscoso-López et al. “Hourly air quality index (AQI) forecast-

ing using machine learning methods”. In: International Workshop on Soft

Computing Models in Industrial and Environmental Applications. Springer.

2020, pp. 123–132.

[154] USEPA. Air Data: Air Quality Data Collected at Outdoor Monitors Across

the US. https://www.epa.gov/outdoor- air- quality- data. [Online;

accessed 19-September-2022]. 2018.

111

https://www.airnow.gov/publications/air-quality-index/technical-assistance-document-for-reporting-the-daily-aqi/
https://www.airnow.gov/publications/air-quality-index/technical-assistance-document-for-reporting-the-daily-aqi/
https://www.epa.gov/outdoor-air-quality-data

[155] Eng Hwee Ong et al. “IEEE 802.11 ac: Enhancements for very high through-

put WLANs”. In: 2011 IEEE 22nd International Symposium on Personal,

Indoor and Mobile Radio Communications. IEEE. 2011, pp. 849–853.

[156] RA Atmoko, R Riantini, and MK Hasin. “IoT real time data acquisition using

MQTT protocol”. In: Journal of Physics: Conference Series. Vol. 853. 1. IOP

Publishing. 2017, p. 012003.

[157] Michael Buckland and Fredric Gey. “The relationship between recall and

precision”. In: Journal of the American society for information science 45.1

(1994), pp. 12–19.

[158] Jiaju Miao and Wei Zhu. “Precision–recall curve (PRC) classification trees”.

In: Evolutionary intelligence 15.3 (2022), pp. 1545–1569.

[159] Sofia Visa et al. “Confusion matrix-based feature selection”. In: MAICS 710.1

(2011), pp. 120–127.

[160] Y Arafah and H Winarso. “Redefining smart city concept with resilience ap-

proach”. In: IOP conference series: earth and environmental science. Vol. 70.

1. IOP Publishing. 2017, p. 012065.

[161] Mircea Eremia, Lucian Toma, and Mihai Sanduleac. “The smart city concept

in the 21st century”. In: Procedia Engineering 181 (2017), pp. 12–19.

[162] Irina Picioroaga et al. “Resilient operation of distributed resources and elec-

trical networks in a smart city context”. In: UPB Sci. Bull., Series C 82.3

(2020), pp. 267–278.

112

VITA

Mostafa Zaman’s graduate work has focused mainly on incorporating a machine learn-

ing method to deal with uncertainty in various areas of a smart city. He has also aided

in teaching undergraduate and graduate students in his graduate studies, such as dig-

ital logic design, industrial automation, C and C++ programming, digital systems,

introduction to the cyber-physical system, etc. His principal research focuses on

building an uncertainty-aware decision support system in different aspects of smart

cities and analyzing analytical data applications using python. He also focused on

constructing Smart Building and Smart Water distribution systems on the OpenCy-

berCity testbed and performing data analytics.

113

	SMART CITY MANAGEMENT USING MACHINE LEARNING TECHNIQUES
	Downloaded from

	Examining Committee
	Acknowledgements
	Author's Declaration
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	 Introduction
	Motivation
	Summary of Contributions
	Smart Energy Aspect
	Smart Transportation System Aspect
	Smart Control in Water Distribution System Aspect
	Smart Environment Aspect

	Thesis Organization

	 Literature Reviews and Related Works
	Smart Energy : Photovoltaic (PV) Generation
	Intelligent Transportation System (ITS)
	Smart Environment (AQI Evaluation)
	Smart Water Distribution System (WDS)

	 Theoretical Background
	Emergence of Artificial Intelligence (AI)
	Introduction of Machine learning
	Introduction of Deep Learning
	Importance of Deep Learning

	Convolutional Neural Network (CNN)
	Benefits of Employing CNNs
	General Architecture of Convolutional Neural Network
	Convolutional Layer
	Pooling Layer
	Activation Function (non-linear)
	Binary Step Function
	Linear Activation Function
	Non-Linear Activation Function
	Sigmoid Activation Function
	Tanh Function (Hyperbolic Tangent)
	Rectified Linear Unit (ReLU) Function
	Softmax Activation Function
	Choosing the right Activation Function
	Fully Connected Layer
	Loss Functions
	Introduction of Loss Function
	Mean Absolute Error (MAE)
	Mean Squared Error (MSE)
	Root Mean Squared Error (MSE)
	Huber Loss
	Binary Cross-Entropy Loss
	Categorical Cross Entropy Loss
	Hinge Loss
	Regularization to CNN
	Optimizer Selection
	Improving performance of CNN

	Long Short Term Memory
	General Architecture
	Cell State
	Deleting Information
	Adding New Information

	 OpenCity Architecture
	 A Deep Learning Model for Forecasting Photovoltaic Energy with Uncertainties
	Proposed Methodology
	Dataset Description

	 Incorporation of Physiological Features in Drowsiness Detection Using Deep Neural Network Approach
	Proposed Approach
	Dataset Description

	 Air Quality Prediction using Distributed LSTM Approach for Smart City Testbed
	Air Quality Index (AQI)
	Methodology
	Training
	Forcasting
	Classification

	 Adaptive Control for Smart Water Distribution Systems
	Testbed Design
	Instrumentation and Control Design
	Safety System Design
	Embedded System and Communication Architecture

	Control System Design
	Single-loop Feedback Control
	Adaptive Feedback Control
	Disturbances and User Consumption Modeling

	 SIMULATION RESULTS
	Performance Evaluation
	Smart Energy
	Smart Transportation System
	Smart Environment
	Smart Water Distribution System
	Discussion

	 Conclusions and Future Works
	Smart Energy
	Smart Transportation System
	Smart Environment
	Smart Water Distribution System

	Appendix Abbreviations
	References
	Vita

