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Abstract 

Psychiatric disorders are often heterogenous in their manifestation and genome-wide association 

studies have identified many common risk variants involved in their polygenic architectures with 

varying degrees of pleiotropy. In recent years, large-scale biobanks have also begun sequencing 

the genome of their participants to elucidate the role of rare risk variation in the genetic 

architecture of complex phenotypes, including psychiatric traits. This dissertation sought to 

better understand the role of both common and rare risk variation in the genetic architecture of 

psychiatric disorders with a particular focus on schizophrenia and alcohol problems. In the first 

three analyses, we focused on characterizing the common risk variant architecture of multiplex 

schizophrenia families in terms of family history, cross-disorder risk, as well as symptom 

severity. In the fourth analysis, we compared and contrasted the polygenic architecture of 

schizophrenia with multiple sclerosis, an autoimmune, neurodegenerative disorder that also 

shows co-occurring neuropsychiatric symptoms, beyond genetic correlation. In the fifth analysis, 

we used the 200k exome release of the UK Biobank to investigate the rare variant genetic 

architecture of alcohol problems by combining machine learning phenotype prediction and 

empirical information to improve rare variant discovery. Together, these studies contribute to our 

understanding of the genetic architecture of schizophrenia and its pleiotropic relationship with 

other psychiatric and neurological disorders and provides new avenues for future studies of this 

disease in both family and sporadic samples. Additionally, we proposed a novel framework for 

rare variant analysis of complex disorders that improves discovery of rare variants in biobank 

datasets.  
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CHAPTER I  

 

Global Introduction 

 

1.1 Schizophrenia Relevant Background 

Schizophrenia is a common, highly heterogeneous psychiatric disorder with a population 

prevalence of ~1% (Saha et al., 2007). The age of onset for schizophrenia is in early adulthood to 

mid-twenties for males and late-twenties to mid-thirties for females and due to its onset in early 

adulthood, it requires long term care with significant cost to society (Delisi, 1992). As a 

psychiatric disorder, schizophrenia was first described by Emil Kraepelin as dementia praecox 

(Kendler, 2020), where he recognized the inherent differences between schizophrenia and 

bipolar disorder. Kraepelin observed that negative symptoms of schizophrenia such as 

anhedonia, blunted affect, and avolition were the symptoms that most clearly distinguished 

schizophrenia from mood disorders such as bipolar disorder. These negative symptoms reflect a 

loss of normal function, while positive symptoms such as delusions and hallucinations reflect a 

distortion in normal functioning of an individual or a gain of function. Based on the current 

recommendations by the Diagnostic and Statistical Manual of Mental Disorders (DSM)-V 

(Bhati, 2013), for a diagnosis of schizophrenia, in addition to the presence of negative symptoms 

and catatonia for six months, at least one positive symptom must also be present for a one-month 

period.  

In the landmark Danish Adoption Study of Schizophrenia (Kety et al., 1975), Kety and 

colleagues demonstrated that although some relatives of schizophrenia probands do not satisfy 
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the criteria for schizophrenia, they present with signs and symptoms that closely resemble those 

observed in their more overtly ill relatives which clearly differentiates them from the general 

population. This finding provided strong evidence in support of the spectrum model of 

schizophrenia (Kendler, 1984; Kety et al., 1994) by showing that relatives of schizophrenia 

probands are at an increased risk for developing schizophrenia as well as schizophrenia related 

disorders. Later, these signs and symptoms were combined to create the diagnosis of schizotypal 

personality disorder in the DSM-III and DSM-III revised (DSM-III-R) (Squires-Wheeler et al., 

1988). 

 While both genetic and environmental influences are thought to impact disease risk for 

schizophrenia, familial aggregation suggests that genetic predisposition is a major contributing 

factor to schizophrenia risk (Tsuang, 2000). Twin and family-based heritability of schizophrenia 

is estimated to be 0.7-0.8 (Hilker et al., 2018), making it one of the most highly heritable 

psychiatric disorders. However, despite significant progress in the past decade on the genetic 

basis of schizophrenia, heritability of schizophrenia using common single nucleotide variation 

(cSNV) from genome-wide association studies (GWAS) is currently estimated to be ~0.24 

(Trubetskoy et al., 2022), suggesting that a large component of the heritability of schizophrenia 

remains to be identified. Schizophrenia also shows strong genetic correlation (rG) with other 

major psychiatric disorders including bipolar disorder (rG =0.67) and major depressive disorder 

(rG =0.35), and a moderate genetic correlation with other psychiatric disorders such as autism 

spectrum disorder (rG =0.21), anorexia nervosa (rG =0.25), and attention deficit hyperactivity 

disorder (rG =0.12) (Demontis et al., 2019; Grove et al., 2019; Howard et al., 2019; Mullins et al., 

2021; Watson et al., 2019). 
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Despite strong evidence for genetic effects in the etiology of schizophrenia and high 

heritability estimates, the monozygotic (MZ) twin concordance rate for schizophrenia is around 

0.48, suggesting that in addition to strong genetic components, environmental factors also play 

an important role in the etiology of the disorder (Tsuang, 2000).  Environmental factors such as 

famine and war (St Clair, 2005), cannabis use (Hall & Degenhardt, 2008), living in an urban 

setting (J. McGrath & Scott, 2006), and season of birth (J. J. McGrath & Welham, 1999) have all 

been shown to contribute to the risk of schizophrenia. Additionally, infections with Herpes 

Simplex virus, Epstein-Barr virus and toxpoplasma gondii have been suggested to have some 

effect on the development of schizophrenia (Brown & Derkits, 2010; Dickerson et al., 2019; 

Khandaker et al., 2013). Taken together, these findings suggest that while genetic influences 

appear to have a stronger role in its etiology, schizophrenia is a complex disorder where both 

genetic and environmental influences act together to increase susceptibility. Therefore, genetic 

studies of schizophrenia should be contextualized in a frame that takes both genetic and 

environmental influences into account. 

1.2 Linkage Studies 

Due to the high familial aggregation and strong evidence for the role of genetic 

influences in the etiology of schizophrenia, large-scale molecular genetics efforts were designed 

and carried out to further understand the underlying genetic architecture of schizophrenia. Initial 

studies in pedigree and family samples using linkage strategies strongly suggested that there is 

no evidence for a single-locus Mendelian inheritance model of schizophrenia (Elston et al., 

1978). In addition, the substantial drop in the concordance rate of schizophrenia from MZ twins 

(0.48) to dizygotic (DZ) twins (0.11), and siblings (0.086), strongly suggested that the genetic 

architecture of schizophrenia is unlikely to be monogenic (Mendelian), rather, a combination of 
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multiple genes and risk alleles are more likely to be contributing to the risk of schizophrenia 

(Risch, 1990).  

As a result, in the mid to late 1990s and early 2000s, the single locus inheritance model 

of schizophrenia was scrapped in favor of a multi-locus model and a large number of linkage 

studies were carried out to investigate whether few loci of moderate to large effects could be 

responsible for the development of schizophrenia. While earlier studies identified no locus in 

linkage with schizophrenia (Kendler & Diehl, 1993), later studies were able to identify a number 

of loci with weak linkage across the genome, but with low agreement and replication across the 

studies (McGuffin et al., 2003; Riley, 2004). Some of the identified loci included catechol-O-

methyltransferase (COMT), dystrobrevin binding protein 1 (DTNBP1), neuregulin 1 (NRG1), and 

disrupted in schizophrenia (DISC1) (Straub et al., 2002; Chubb et al., 2008; Egan et al., 2001; 

Ishizuka et al., 2006). In addition to the lack of replication across these linkage studies, the 

estimated effect sizes for these loci were also relatively small and no significant variants were 

found in these loci for follow-up analyses (Kirov et al., 2005). The lack of any replicable loci 

with moderate to large impact on schizophrenia risk suggest that this multi-locus, moderate 

effect model is also unlikely to account for schizophrenia risk. In keeping with the field-wide 

shift in genetic models of other complex traits, a polygenic inheritance model postulating that 

many variants with small effect sizes contribute to schizophrenia risk emerged and started to gain 

traction (Owen et al., 2005). This remains the most widely held view of the genetic architecture 

of most complex traits, including schizophrenia, and is strongly supported by subsequent studies. 

1.3 Theoretical Candidate Genes 

In addition to the genes and loci identified from linkage studies, theoretical candidate 

genes such as the dopamine receptor 2 (DRD2) or metabotropic glutamate receptor 3 (GRM3) 
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genes, involved in biological systems that are thought to be perturbed in schizophrenia) have also 

been studied in detail. While previous studies that focused solely on theoretical candidate genes 

were largely unsuccessful, in recent years, the second and third phase of the Psychiatric 

Genomics Consortium Schizophrenia Working Group (PGC-SCZ) found robust associations in 

the DRD2 gene, encoding the target of many antipsychotic drugs, as well as genes involved in 

glutamatergic neurotransmission such as GRM3 (Ripke et al., 2014; Trubetskoy et al., 2022). 

Additionally, large-scale exome studies of schizophrenia conducted by the Schizophrenia Exome 

Meta-Analysis (SCHEMA) Consortium have also identified robust associations between rare 

variation in the glutamate ionotropic receptor subunit 3 (GRIA3) and N-methyl-D-aspartate 

(NMDA) receptor subunit 2A (GRIN2A) genes involved in glutamatergic neurotransmission, 

providing evidence in support of some candidate genes (Singh et al., 2022).  

1.4 Genome-Wide Association Studies 

Lack of success in identifying replicable genomic loci in linkage and candidate gene 

studies suggested that schizophrenia is likely to have a polygenic architecture with many variants 

of small effect sizes involved in its genetic architecture. As a result, in the late 2000s, researchers 

started to change their approach and use case-control designs to study schizophrenia using the 

genome-wide association study (GWAS) framework to identify common variants with minor 

allele frequency (MAF) of >5%. Early studies by the Wellcome Trust Case-Control Consortium 

(The Wellcome Trust Case Control Consortium, 2007), The International Schizophrenia 

Genomics Consortium (The International Schizophrenia Genomics Consortium, 2009), and 

Steffanson and colleagues (Stefansson et al., 2009) among others, showed robust, replicable 

associations between common variants in the Major Histocompatibility Complex (MHC), 

transcription factor 4 (TCF4), nerogranin (NRGN), zinc finger protein 804A (ZNF804A) and 
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other regions in the genome. These findings suggested that the genetic architecture of 

schizophrenia is indeed polygenic, meaning that many variants of small effect sizes are 

contributing to the genetic risk for this disorder. Later, it was further proposed that to capture the 

polygenicity of schizophrenia GWAS signals, a weighted score that sums up the log-transformed 

odds-ratio (OR) of the allele effect sizes can be used to aggregate the common risk variation 

burden of schizophrenia in cases versus controls (The International Schizophrenia Genomics 

Consortium, 2009). This widely used method which captures the aggregation of variants with 

small effect sizes is called a polygenic risk score (PRS). The PRS constructed for schizophrenia 

by Purcell and colleagues showed that while the combined effect sizes of these alleles can 

explain only a small portion of the variance for schizophrenia (~2%), the variants associated with 

schizophrenia risk were distributed throughout the genome in a uniform fashion. These findings 

suggested that if we can identify such aggregate effects in modestly sized samples (like the 

International Schizophrenia Consortium sample), increased sample size could lead to the 

discovery of many more loci.  

Since then, large, collaborative efforts by the PGC-SCZ have aimed to steadily increase 

the available sample for analysis of schizophrenia. Figure 1 taken from the third wave of PGC-

SCZ GWAS (Trubetskoy et al., 2022) demonstrates how increase in sample size across different 

waves of SCZ GWAS have increased statistical power for variant identification. The first wave 

of PGC-SCZ GWAS included 8,228 cases and 12,462 controls and identified eight loci 

significantly associated with schizophrenia, five of which were novel (Ripke et al., 2011). An 

interesting observation in the first wave of PGC-SCZ GWAS was that the vast majority of the 

single nucleotide polymorphisms (SNPs) identified in GWAS of schizophrenia were in 

intragenic regions, an observation that was further strengthened in subsequent waves of PGC-
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SCZ GWAS. In 2013, a follow-up study that combined the PGC1-SCZ results with a Swedish 

sample of 5,001 cases and 6,243 controls, identified 13 additional loci robustly associated with 

schizophrenia further showing that increase in effective sample size can boost GWAS discovery 

power for highly polygenic complex traits such as schizophrenia (Ripke et al., 2013).  

The second wave of schizophrenia GWAS (PGC2-SCZ) expanded the sample sizes to 

36,989 cases and 113,075 controls (Ripke et al., 2014). At the time of its publication in 2014, 

this study was the largest GWAS of any neuropsychiatric disorder and uncovered 108 distinct 

genomic loci robustly associated with 

schizophrenia, 83 of which were novel. Of 

importance, PGC2-SCZ found strong 

association between schizophrenia and the 

DRD2 gene for the first time. The DRD2 

receptor is the target of many antipsychotic 

drugs used to treat schizophrenia (Zhang et 

al., 2015). Additionally, the PGC2-SCZ 

GWAS also implicated genes involved in 

glutamatergic neurotransmission such as 

GRM3 and GRIN2A, providing the first 

evidence from large, well-powered samples 

for these prior candidate genes for 

schizophrenia.  

An important recent study showed 

that common risk variants from PGC2-SCZ are linked to cell-specific histone modifications in 

Figure 1: The relationship between sample-size and number of 
significant loci identified across different waves of PGC-SCZ 
GWAS studies. X-axis shows number of cases. Y-axis shows 
the number of independent loci identified in the discovery 
meta-analysis without replication data. Figure is reproduced 
from PGC3-SCZ publication. 
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the human frontal lobe (Girdhar et al., 2018). They used psychENCODE (Wang et al., 2018) and 

CommonMind (Hoffman et al., 2019) resources to generate maps from neuronal, neuron-

depleted, and bulk tissue chromatin for dorsolateral prefrontal cortex and anterior cingulate 

cortex using histone 3 lysine 4 trimethylation (H3K4me3) and histone 3 lysine 27 acetylation 

(H3K27ac), two histone marks associated with active promoters and enhancers. Their results 

indicated that common variants conferring risk to schizophrenia were significantly over-

represented in neuronal H3K4me3 and H3K27ac sites, highlighting the critical role of cell-type 

specific signatures in uncovering the role of GWAS hits in the pathobiology of schizophrenia.  

Most recently, the third wave of schizophrenia GWAS (PGC3-SCZ) increased the sample 

size to 76,755 cases and 243,649 controls, making it the largest GWAS of schizophrenia to date 

(Trubetskoy et al., 2022). The consortium reported the association between schizophrenia and 

287 independent genomic loci, many of them concentrated in genes that are uniquely expressed 

in neurons of the central nervous system (Figure 2). Additionally, associated loci were also 

shown to be enriched for genes associated with rare disruptive coding variants, providing strong 

evidence for the convergence of 

common and rare variant signals 

in the genetic architecture of 

schizophrenia. Using Linkage 

Disequilibrium (LD) Score 

Regression (LDSC) (Bulik-

Sullivan et al., 2015), heritability 

of schizophrenia from the 

PGC3-SCZ GWAS data is estimated to be ~0.24. Given that the twin-based heritability estimate 

Figure 2: Current genomics landscape of schizophrenia as of 2022. 
The X-axis represents chromosomal position, and the Y-axis 
represents the significance of association. The red line represents 
genome-wide significance level (5 x 10-8). Figure is reproduced from 
PGC3-SCZ publication. 
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of schizophrenia is estimated to be ~0.7-0.8, this suggests that at current sample sizes, only 

around one-third of schizophrenia heritability can be accounted for by common variant GWAS 

data. While it is expected that with increase in sample sizes, the portion of the heritability that is 

accounted for by common variant GWAS data will increase, there are other additional sources 

that could also contribute to schizophrenia heritability beyond common variation, such as rare 

variation and insertion/deletions (indels) identified through sequencing studies. For example, a 

recent study (Wainschtein et al., 2022) used Genome-wide Complex Trait Analysis (GCTA) 

Genome-based restricted maximum likelihood (GREML) method (Yang et al., 2016) to estimate 

the heritability of height and body mass index (BMI) by evaluating whole-genome sequencing 

(WGS) data. They assessed the contribution of both rare and common variants and estimated the 

heritability of height at 0.68 and BMI at 0.30, a number that is much closer to twin and pedigree 

estimates of the heritability of these two anthropometric phenotypes. These results show that 

most of the “missing heritability” of height and BMI that is not captured from common variant 

GWAS data likely resides in regions with moderate to MAF that are in low LD with each other. 

Using the same GREML-GCTA approach, another study (Halvorsen et al., 2020) were also able 

to show that in a sample of 1,162 schizophrenia cases and 936 ancestry matched controls with 

deep WGS data, ~0.56 of schizophrenia heritability can be accounted for when combined effects 

of both common and rare variants are included in the model, a number much closer to twin and 

pedigree estimate of the heritability of schizophrenia (~0.7-0.8). While the heritability estimates 

from this study had large standard errors (SE), likely due to sample size, these results 

nevertheless suggest that similar to other complex phenotypes such as anthropometric traits, a 

large portion of schizophrenia “missing heritability” may be captured through the analysis of 
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WGS data across different frequencies. As larger WGS sample of schizophrenia are collected, it 

remains to be seen whether the observation holds true with higher certainty in larger samples. 

1.5 Copy Number Variants 

The first evidence for the involvement of rare variants in the genetic architecture of 

schizophrenia was identified through copy number variation (CNV) studies (Rees et al., 2014; 

Walsh et al., 2008). The strongest CNV signal with impact on schizophrenia identified to date is 

the 22q11.2 deletion, identified as the cause of DiGeorge Syndrome (Bassett et al., 2008). This 

mutation is primarily de novo (in 90% of cases), meaning that in the majority of cases, it does not 

contribute to the heritability of schizophrenia. Other CNVs such as 2q15.3 deletion impacting 

NRXN1, 16p11.2, and 16p13.1 have also been shown to have significant impact on modulating 

the risk for schizophrenia (Ingason et al., 2011; Kirov et al., 2007; S. E. McCarthy et al., 2009).   

In the most comprehensive CNV study of schizophrenia to date, the CNV Working group 

of the PGC-SCZ used a sample of 21,094 schizophrenia cases and 20,227 controls and showed 

that after accounting for all the known CNVs impacting schizophrenia risk, a global enrichment 

of CNV burden is still observed in cases compared to controls (Marshall et al., 2017a). Further 

downstream analyses suggested that CNV burden is mostly enriched in genes associated with 

synaptic function and neurobehavioral phenotypes. In total, there are currently eight replicable 

genome-wide significant CNVs with strong evidence for schizophrenia risk. These eight loci are 

22q11.2, 15p11.2 proximal, 15p11.2 distal, neurexin 1 (NRXN1), 3q29, 7q11.2, 15q13.3, 2p16.3, 

and 1q21.1. An important distinction between CNVs and other genomic mutations implicated in 

schizophrenia is that loci identified from these studies are generally nonspecific to schizophrenia. 

In particular, they show pleiotropic association with epilepsy, mental retardation, and autism 

spectrum disorder, and it is now widely accepted that while CNVs are potent alleles with high 
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ORs, they are non-specific, with pleiotropic effects on multiple phenotypes (Rees & Kirov, 

2021).  

1.6 Sequencing Studies 

 Most of the sequencing studies of schizophrenia have been conducted using exome 

capturing strategies, with the initial studies focused on identifying de novo variants in trios. For 

example, analysis of 14 schizophrenia trios and identified an overall increased burden of de novo 

mutations in schizophrenia cases (Girard et al., 2011). In a similar study, analysis of a sample of 

53 schizophrenia trios and 22 control trios identified 40 de novo mutations with a strong 

association in the DiGeorge syndrome critical region gene 2 (DGCR2) gene located in the 

22q11.2 (DiGeorge) region (Xu et al., 2011). In a follow-up study, the same group increased the 

sample size to 231 schizophrenia trios and 34 control trios and were able to replicate previous 

findings and further show that there is an enrichment of de novo nonsynonymous mutations in 

genes with higher prenatal expression (Xu et al., 2012). In another trio design study, it was 

shown that there is also an increased burden of rare protein altering variation in genes involved 

in glutamatergic neurotransmission including glutamate metabotropic receptor 5 (GRM5) 

(Timms et al., 2013). In 2014, another study expanded the trio design to also include sporadic 

schizophrenia cases and were able to show that there is a 3.5-fold increase in de novo mutations 

in sporadic cases compared to familial cases of schizophrenia with excess rates of de novo 

mutations in genes with high estimated probability of haploinsufficiency, many of which showed 

pleiotropic association with autism and intellectual disability (McCarthy et al., 2014). A more 

comprehensive study expanded previous trio design studies and analyzed the exome data of 623 

schizophrenia trios and 731 controls and were able to show that there is an enrichment of 

nonsynonymous de novo mutations in gene-sets with purported dysregulation in schizophrenia 
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(Fromer et al., 2014). In agreement with previous studies, they also found evidence for 

enrichment of loss-of-function mutations in genes with pleiotropic association with autism and 

intellectual disability, further underpinning the non-specificity of these associations with 

schizophrenia. These results also highlighted that there is an increased burden of 

nonsynonymous and loss-of-function mutations in genes encoding components of the activity-

regulated cytoskeleton associated protein (ARC) complex, N-methyl-D-aspartate (NMDA) 

receptors, as well as the fragile X mental retardation protein (FMRP) gene, in agreement with a 

previous study (Kirov et al., 2012).  

In contrast to the studies with a focus on trio design, Purcell and colleagues opted to use a 

case-control design to analyze the exome data from 2,536 schizophrenia cases and 2,543 controls 

(Purcell et al., 2014). While this study failed to replicate the findings implicating the genes 

encoding NMDA receptors and FMRP, they were able to confirm the disruptive variant signals 

in genes encoding components of the ARC complex from the trio study conducted by Fromer 

and colleagues (Fromer et al., 2014). They were also able to show that singleton disruptive 

variants in schizophrenia cases are significantly enriched in voltage-gated calcium ion channel 

genes such as calcium voltage-gated channel subunit alpha1-C (CACNA1C), which also shows 

association with schizophrenia and pleiotropic association with bipolar disorder in common 

variant data (Ripke et al., 2011).  

An important limitation of early sequencing studies of schizophrenia is the relatively 

small size of the samples studied. To address this limitation, the SCHEMA Consortium was 

established in 2017 to aggregate existing exome data and generate the largest exome sequencing 

sample of schizophrenia to date. Singh and colleagues have recently published the report on the 

SCHEMA Consortium phase 1 project (Singh et al., 2022) which includes the exome data from 
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24,248 schizophrenia cases, 97,322 controls, and 3,402 trios. The sample includes individuals 

from diverse ancestries and shows that ultra-rare coding variants in 10 genes confer substantial 

risk to schizophrenia with ORs ranging from 3-50. The strongest signals were for protein 

truncating variants and missense variants in the SET domain containing 1A, histone lysine 

methyltransferase (SETD1A) gene. Previous studies have shown that deleterious variants are 

enriched in SETD1A in both schizophrenia and other neurodevelopmental disorders (Singh et al., 

2016). SETD1A encodes a methyltransferase that catalyzes the methylation of lysine residues in 

histone H3 and other loss of function variants in this gene are shown to result in dominant 

Mendelian disorders as well as neurodevelopmental disorders with severe intellectual disability 

such as Wiedemann-Steiner syndrome, Kleefstra syndrome, and Kabuki syndrome (Fahrner & 

Bjornsson, 2014).  

As shown in Figure 3, additional signals are identified by the SCHEMA Consortium in 

the trio Rho guanine nucleotide exchange factor (TRIO), Sp4 transcription factor (SP4), cullin 1 

(CUL1), exportin 7 (XPO7), RB1 inducible coiled-coil 1 (RB1CC1), HECT domain containing 

E3 ubiquitin protein ligase family member 1 (HERC1), GRIN2A, calcium voltage-gated channel 

subunit alpha1-G 

(CACNA1G), and GRIA3, 

while an additional 22 

genes were also identified 

at a false discovery rate 

(FDR) of <0.05.  The 

genes identified in this 

study show enriched 

Figure 1: Manhattan plot (a) and quantile-quantile plot (b) with -log10 
transformed p-values from SCHEMA Consortium. Light blue dashed lines 
indicate FDR <5%. Dark blue dashed lines indicate Bonferroni correction at 
P=2.14 x 10-6. Figure is reproduced from the SCHEMA Consortium 
publication.  
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expression in central nervous system neurons with diverse molecular function. Of interest, the 

association of GRIN2A and GRIA3, two receptor subunits involved in glutamatergic 

neurotransmission in the brain provide evidence for the involvement of glutamatergic signaling 

dysfunction in the pathogenesis of schizophrenia (McCutcheon et al., 2020). The analysis 

conducted by the SCHEMA Consortium, in combination with the PGC3-SCZ GWAS results 

described in the previous section above, strongly suggest that there is a convergence between 

common and rare genetic risk factors involved in pathogenesis of schizophrenia. Furthermore, 

SCHEMA showed that when the top genes identified were excluded from the analysis, 

schizophrenia cases still appeared to have a significantly increased burden of ultra-rare variants 

compared to controls, further suggesting that with increase in sample size over the coming years, 

more genes with increased rate of rare variation that confer risk to schizophrenia will be 

identified.  

While the SCHMEA Consortium provided a framework to conduct large-scale exome 

analysis of schizophrenia, these studies have focused on the coding regions of the genome. With 

the decrease in cost of sequencing, we can expect to see more WGS studies of schizophrenia in 

the coming years. In the largest WGS study of schizophrenia to date, Halvorsen and colleagues 

analyzed high-coverage WGS data of 1,162 schizophrenia cases and 936 ancestry-matched 

controls from the population of Sweden and showed that ultra-rare structural variants (SV) that 

are near topologically associated domains (TAD) significantly increase the risk for schizophrenia 

(Halvorsen et al., 2020). Previous studies show that deletion of elements in TADs are associated 

with clear phenotypic consequences in various human diseases and are depleted of deletions in 

human populations compared to the rest of the noncoding regions of the genome (Redin et al., 

2017). While this modestly sized WGS analysis of schizophrenia suggests that there is an excess 



15 
 

rate of ultra-rare SVs in TAD boundaries, the authors caution that pinpointing the exact impact 

of these SVs on gene expression and regulation is currently unclear and further work is needed to 

pinpoint their precise impact on schizophrenia risk.  

Together, rare variant studies of schizophrenia using CNV, exome and WGS designs 

suggest that genes associated with schizophrenia are involved in brain function, with specific 

impact on synaptic networks. These results further suggest that many rare variants associated 

with schizophrenia are pleiotropic in nature with overlap with bipolar disorder (Palmer et al., 

2022) and neurodevelopmental disorders. An important take-away from these studies is that 

while exome studies have significantly contributed to our understanding of the rare variant 

architecture of schizophrenia, WGS can provide us with a more comprehensive assessment of the 

impact of rare variation on schizophrenia risk. With continuing drop in sequencing cost over the 

coming years, it is expected that more study designs will focus on WGS analysis of 

schizophrenia instead of exome study designs. Therefore, with the increase in sample sizes for 

WGS studies of schizophrenia and the subsequent increase in statistical power for rare variant 

identification, we can expect to identify more variation in both coding and non-coding regions of 

the genome that confer risk to schizophrenia.  

1.7 Genetic overlap Between Schizophrenia and Other Disorders 

 Genetic correlation describes the relationship between two traits quantified as the 

correlation coefficient of additive genetic effects for them (van Rheenen et al., 2019). While 

methods such as GCTA can be used to estimate genetic correlation using raw genotypes (Yang et 

al., 2011), in recent years, newly developed methods such as LDSC (Bulik-Sullivan et al., 2015) 

and LDAK (Speed et al., 2012) can estimate genetic correlation using only GWAS summary 

statistics data. Although methods that utilize GWAS summary statistics data generally produce 
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larger confidence intervals (CI) compared to GCTA, they have provided a much faster and more 

efficient method for estimating genetic correlation across many complex traits (Zheng et al., 

2017). Using the GWAS summary statistics data, the Brainstorm Consortium analyzed the data 

from 265,218 patients with psychiatric, neurological, and behavioral disorders and 784,643 

controls to quantify the genetic correlation among 25 common brain disorders and 17 phenotypic 

traits related to the brain (The Brainstorm Consortium., 2018). They were able to demonstrate 

that there is a strong genetic correlation among many psychiatric disorders at common variation 

level. In contrast, with the exception of migraine which showed significant genetic correlation 

with major depressive disorder and attention deficit hyperactivity disorder, neurological 

disorders appear to be distinct from one another with no significant genetic correlation observed 

among them or with psychiatric disorders. Furthermore, the Brainstorm Consortium was able to 

demonstrate that neuroticism is also significantly correlated with almost every psychiatric 

disorder. The high degree of genetic correlation among psychiatric disorders (Table 1) suggests 

that the genetic basis of many psychiatric disorders is interconnected and categorization of these 

disorders into distinct entities may not adequately reflect the pathogenic processes among 

psychiatric disorders at the genetic level (McGrath et al., 2020).  

Table 1: Genetic correlation estimation between schizophrenia and other disorders analyzed in this dissertation. 

Trait 1 Trait 2 Genetic Correlation 

Schizophrenia 
Bipolar Disorder 0.68 

Major Depressive Disorder 0.35 
 

While genetic correlation estimates the correlation coefficient of additive genetic effects 

between two disorders with the same direction of effect, they fail to capture mixed direction of 

effects across genetic variants. For example, although there is no significant genetic correlation 

between schizophrenia and brain morphology, many genome-wide significant loci are shown to 
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be jointly associated between them (Cheng et al., 2021). Recently developed methods such as 

bivariate causal mixture modeling (MiXeR), or conditional/conjunctional FDR (condFDR) can 

quantify polygenic overlap between phenotypes with mixed direction of effects (Andreassen et 

al., 2013; Frei et al., 2019). For example, using the MiXeR framework, it was shown that despite 

no significant genetic correlation between schizophrenia and educational attainment, there is a 

substantial polygenic overlap between these two traits that is not captured by standard genetic 

correlation estimates (Frei et al., 2019). Taken together, these results suggest that while genetic 

correlation estimates can identify easily interpretable relationships between schizophrenia and 

other major psychiatric disorders, they fail to capture more complex pleiotropic relationships that 

exist among complex traits. However, newly developed methods such as MiXeR and condFDR 

can capture polygenic overlaps between complex traits beyond genetic correlation.  

1.8 Multiplex Schizophrenia Families 

Since the advent of GWAS, a tremendous amount of effort has gone into collecting and 

ascertaining case-control samples for GWAS analyses of schizophrenia, while interest in the use 

of multiplex families has waned. Although different waves of schizophrenia GWAS by the PGC 

have clearly demonstrated the utility of GWAS in identifying risk alleles associated with 

increased risk for schizophrenia (Ripke et al., 2014; Trubetskoy et al., 2022), family and trio 

samples have also shown their utility in identifying de novo mutations such as CNVs with larger 

effect sizes (Marshall et al., 2017b). In addition, decades of research using multiplex family 

samples suggests that schizophrenia and related disorders significantly aggregate in multiplex 

families (Kety et al., 1975, 1994), and epidemiological studies also suggest that multiplex 

families show a substantially higher recurrence risk of schizophrenia compared to sporadic cases 

(Käkelä et al., 2014). Furthermore, the high concordance rate of schizophrenia in MZ twins, in 
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combination with adoption studies showing that only biological relatives of schizophrenia are at 

an increased risk for developing schizophrenia (Kety et al., 1975), demonstrate that multiplex 

families are an important resource for understanding the underlying pathobiology of 

schizophrenia in parallel with case-control designs. Families also offer the chance to detect larger 

numbers of rare alleles than can be detected in unrelated case/control samples. 

Singleton cases are considered to be the norm for most complex disorders including 

schizophrenia (Yang et al., 2010). However, an interesting observation in the epidemiology of 

schizophrenia is that while family history (FH) appears to be the strongest risk factor for 

developing schizophrenia (Walder et al., 2014), most singleton cases ascertained from the 

general population report no FH of psychotic illnesses (Esterberg et al., 2010). To expand on 

this, a meta-analysis (Käkelä et al., 2014) revealed that ~2/3 of schizophrenia cases report no FH 

of psychotic illness while most subjects with a positive FH report only a single affected relative. 

In contrast, members of multiplex schizophrenia families represent the extreme tail of the 

distribution of schizophrenia recurrence risk with substantially higher rate of schizophrenia 

recurrence. This discrepancy in the rate of schizophrenia recurrence risk suggests that there may 

be important differences in the genetic architecture of familial and sporadic schizophrenia 

probands that requires further investigation.  

While familial samples can increase the number of putative risk alleles observed in a 

sample and thus, aid in rare variant identification, multiplex families may also prove to be useful 

for examining the role of environmental effects and assortative mating on the risk of 

schizophrenia, and suitable for understanding the underlying causes of schizophrenia beyond the 

genetic studies. Study designs that would lead to better understanding of the nature of multiplex 

schizophrenia families ideally require collection of large, well-ascertained samples with detailed 
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phenotypic information in geographical regions where large sibships or family samples with 

multiple affected relatives with schizophrenia can be found. While collecting such families may 

be more difficult than collecting case-control samples of schizophrenia, it is apparent that 

multiplex family samples open up new avenues for research by allowing us to explore questions 

that are not readily feasible to be assessed through case-control study designs. The Irish Study of 

High-Density Schizophrenia Families (ISHDSF) is one of the largest, well-ascertained multiplex 

schizophrenia family samples with genotype data (Kendler, O’Neill, et al., 1996) that can 

complement case-control studies of schizophrenia. It is a collaborative effort between Virginia 

Commonwealth University, Queen’s University Belfast, and the Irish Health Research Board. 

Subjects were recruited in the Republic of Ireland and Northern Ireland. The full sample consists 

of 1,425 individuals from 270 families ascertained on the basis of two or more members with 

DSM-III-R diagnosis of schizophrenia or poor-outcome schizoaffective disorder. Probands in the 

ISHDSF sample were ascertained through public psychiatric hospitals in the island of Ireland. 

Interviews for the ascertainment of the subjects were conducted between April 1987 and 

November 1992 by psychiatrists, psychiatric nurses, and social workers after obtaining informed 

consent. Diagnosis in the ISHDSF Sample was carried out using modified sections of the 

Structured Clinical Interview for DSM-III-R for Axis I disorders and all relevant diagnostic 

information for each of the individuals in the families was reviewed in detail blind to their 

pedigree assignment. In addition to detailed structured clinical interviews with family members 

in the ISHDSF sample, the Operational Criteria Checklist for Psychotic Disorders (OPCRIT) 

(McGuffin et al., 1991) and the Structured Interview for Schizotypy (Kendler et al., 1989) were 

used for detailed phenotypic assessment of psychotic and non-psychotic family members, 

respectively. In the subsequent chapters, we will use the ISHDSF sample in combination with an 
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ancestry-matched case-control sample from the Irish Schizophrenia Genomics Consortium 

(ISGC) to explore the genetic architecture of schizophrenia in multiplex families.  

1.9 Aims 

 Understanding the genetic basis of schizophrenia is still under active investigation. While 

tremendous progress has been made in recent years in identifying specific variants, loci, or genes 

that confer risk to schizophrenia, multiplex families have been largely overlooked in favor of 

case-control study designs. We hypothesized that by analyzing the available common variant 

array data of the ISHDSF sample, we can conduct a series of comprehensive analyses in 

multiplex schizophrenia families to fill gaps in the literature. Additionally, given that recently 

developed methods such as MiXeR and condFDR have demonstrated the presence of a polygenic 

overlap between complex traits in the absence of genetic correlation, we further sought to 

quantify the relationship between schizophrenia multiple sclerosis to further understand the 

shared genetic architecture of psychiatric and neurological disorders at common variation level.  

 In the second chapter, we investigate the role of common risk variation in the recurrence 

risk of schizophrenia in the ISHDSF sample. As reported in previous epidemiological studies 

referenced above, multiple schizophrenia families represent the upper bounds of the recurrence 

risk of schizophrenia in the population. This is particularly important, because sporadic cases are 

generally considered to be the norm for complex disorders such as schizophrenia (Yang et al., 

2010) and understanding the source of this increased recurrence risk could unravel potentially 

important differences between familial and sporadic schizophrenia cases, and also determine the 

relative focus on environmental exposures as well as common and rare genetic variation in 

family studies of schizophrenia. To test this hypothesis, we compared the PRS loading of 
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schizophrenia in members of the ISHDSF samples versus ancestry-matched cases from the ISGC 

sample.  

 In the third chapter, we investigated whether members of multiplex schizophrenia 

families also have an increased burden of common risk variation conferring risk to other major 

psychiatric disorders. In addition to high aggregation of psychotic disorders in relatives of 

schizophrenia probands, we also observe an increased aggregation of bipolar disorder and major 

depressive disorder in multiplex schizophrenia families compared to the rates expected in the 

general population. Furthermore, as demonstrated by various cross disorder studies of psychiatric 

disorders (Lee et al., 2021), schizophrenia shows strong genetic correlation with bipolar disorder 

(rG=0.67) and major depressive disorder (rG=0.35). We therefore hypothesized that due to the 

strong genetic correlation among these three major psychiatric disorders, members of multiplex 

schizophrenia families may also have an increased burden of common risk variation for other 

correlated psychiatric disorders, and we further sought to quantify the source of this increased 

risk.  

 In the fourth chapter, we utilized the available detailed phenotypic information in the 

ISHDSF sample to quantify the association between polygenic risks for major psychiatric 

disorders and symptom dimensions in members of multiplex schizophrenia families. 

Epidemiological studies in schizophrenia and their relatives suggest that there is a single 

continuum of liability for schizophrenia and schizotypy at the phenotypic level (Fanous et al., 

2001), but this relationship has not been fully established at the genetic level. While current 

symptom level analysis of schizophrenia has largely focused on case-control or non-clinical 

cohorts, we hypothesized that by using a well-ascertained sample of multiplex schizophrenia 

families with detailed phenotypic information, we may be able to provide empirical genetic 
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evidence in support of a continuum model of schizophrenia at symptom level. The concentric 

diagnostic approach in the ISHDSF sample reflecting narrow, intermediate and broad case 

definitions based on the idea of a spectrum of psychotic illness, coupled with detailed interview-

based symptom level information on all subjects in the families regardless of their diagnostic 

status, provided us with a unique opportunity to address this important gap in the literature of 

multiplex schizophrenia families.  

 In the fifth chapter, we moved beyond the analysis of multiplex families and disorders 

with significant correlation with schizophrenia. Instead, we investigated the relationship and 

shared genetic architecture of schizophrenia and multiple sclerosis. We hypothesized that prior 

genetic evidence implicating immune dysregulation in patients with schizophrenia, coupled with 

co-occurring neuropsychiatric symptoms observed in patients with progressive multiple 

sclerosis, suggest that there may be a polygenic overlap between these two disorders not 

captured by standard genetic correlation estimation that can be exploited for further downstream 

analyses. We used state-of-the-art statistical methods such as MiXeR and condFDR frameworks 

to quantify this polygenic overlap and identify shared genomic loci between these two disorders 

beyond genetic correlation.  

The analyses described in the sixth chapter are slightly different from the preceding 

chapters. Initially, these analyses were planned to be carried out on the WGS data of 

schizophrenia from the sequencing data of the ISHDSF and ISGC samples. However, due to 

various delays from our collaborators, we did not receive the WGS data in time for inclusion. As 

a result, we attempted to perform these analyses using the whole-exome sequencing (WES) data 

from the UK Biobank to test our analysis pipeline using another available dataset and to also 

provide training in the handling and analysis of sequence data. We note that we view the 
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analyses presented in this chapter as a stand-alone project, but we also emphasize that this rare 

variant framework can be extended to other phenotypes and sequencing datasets. Upon receiving 

the WGS data for the ISHDSF and ISGC samples, future lab members in the Riley Lab will use 

this pipeline for WGS analysis of schizophrenia.  

To expand on this, in this chapter we describe a pipeline to perform rare variant analysis 

of problematic alcohol use by incorporating empirical functional information as a priori weights 

for interval-based testing on sequence data. Alcohol use disorder is a moderately heritable 

psychiatric condition and GWAS have identified many common variants associated with alcohol 

use disorder. However, rare variant investigations of alcohol use disorder and related disorders 

have yet to achieve large enough sample sizes to have adequate power. Here, we sought to 

address this gap in the literature by conducting an interval-based rare variant (MAF < 0.01) 

analysis of the Alcohol Use Disorder Identification Test Problems subscale (AUDIT-P) using 

both machine learning (ML) phenotype prediction and empirical functional weights by utilizing 

the 200K release of the UK Biobank WES dataset. We hypothesized that through this analysis, 

we would be able to show that increase in effective sample size and inclusion of functional 

information through ML phenotype prediction and empirical functional weights can refine and 

increase statistical power for rare variant association testing. 
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CHAPTER II 

 

Evaluating the role of common risk variation in the recurrence risk of 

schizophrenia in multiplex schizophrenia families 

 

2.1 Abstract 

Multiplex families have higher recurrence risk of schizophrenia compared to the families of 

sporadic cases, but the source of this increased recurrence risk is unknown. We used 

schizophrenia genome-wide association study data (N=156,509) to construct PRS in 1,005 

individuals from 257 multiplex schizophrenia families, 2,114 ancestry-matched sporadic cases, 

and 2,205 population controls, to evaluate whether increased PRS can explain the higher 

recurrence risk of schizophrenia in multiplex families compared to ancestry-matched sporadic 

cases. Our results show that schizophrenia PRS in familial cases does not differ significantly 

from sporadic cases either with, or without FH of psychotic disorders (All sporadic cases p = 

0.90, FH+ cases p = 0.88, FH- cases p = 0.82), suggesting that increased schizophrenia PRS is 

unlikely to account for the higher recurrence risk of schizophrenia in multiplex families. In the 

absence of elevated PRS, segregation of rare risk variation or environmental influences unique to 

the families may explain the increased familial recurrence risk. These findings also further 

validate a genetically influenced psychosis spectrum, as shown by a continuous increase of 

common schizophrenia risk variation burden from unaffected relatives to schizophrenia cases in 

multiplex families.  
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2.2 Introduction 

Schizophrenia is a severe, clinically heterogeneous psychiatric disorder with a population 

prevalence of ~1% (Saha et al., 2007). Twin, family, and adoption studies consistently show a 

strong genetic component, with heritability estimates of around 0.75-0.80 (Cannon et al., 1998; 

Cardno & Gottesman, 2000; Heston, 1966; Kendler et al., 1985; Tienari et al., 2000), and FH 

remains the strongest risk factor for developing schizophrenia (Walder et al., 2014). Despite high 

heritability, ~2/3 of schizophrenia cases report no FH of psychotic illness, and most subjects with 

a positive FH (FH+) report only a single affected relative (Esterberg et al., 2010; Käkelä et al., 

2014), concordant with the rates of 31% FH+ and 69% family history negative (FH-) observed in 

the sample of sporadic schizophrenia cases analyzed in this study (Riley et al., 2010). 

The ISHDSF sample (Kendler, O’Neill, et al., 1996) consists of 257 multiplex schizophrenia 

families with genotype data, ascertained to have two or more first-degree relatives meeting the 

DSM-III-R criteria for schizophrenia or poor-outcome schizoaffective disorder. Such multiplex 

families display substantially higher recurrence risk of schizophrenia than reported in sporadic 

cases, and this discrepancy in recurrence risk suggests that there may be important differences in 

the genetic architecture between familial and sporadic schizophrenia cases that warrant further 

investigation.  

One explanation of this difference is that familial schizophrenia cases may carry a higher 

burden of common schizophrenia risk variation as measured by a higher schizophrenia PRS, than 

ancestry matched sporadic cases. Another explanation is that the increased recurrence risk in 

multiplex families may be attributable to segregation of rarer, higher risk variation, identifiable 

through WES or WGS likely in combination with common risk variation. Sequencing studies 

suggest that rare, deleterious variation in the genome is involved in the genetic etiology of 
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schizophrenia and other psychiatric disorders (Ament et al., 2015; Cruceanu et al., 2018; Goes et 

al., 2016; Homann et al., 2016; Okayama et al., 2018; Palmer et al., 2022; Singh et al., 2022; 

Toma et al., 2014), but the extent to which rare variation contributes to schizophrenia risk in 

multiplex families is currently unknown. A third hypothesis, not addressed here, is that familial 

cases may have increased exposure to environmental risks unique to the families that may 

explain the higher recurrence risk in multiplex families. 

Mega-analyses of schizophrenia GWAS data by the PGC-SCZ working group have 

identified 287 loci associated with schizophrenia (Ripke et al., 2011, 2014; Trubetskoy et al., 

2022). GWAS data from such studies are frequently used to construct PRS to index an 

individual’s common genetic variant risk for a disorder. Although current PRS currently lack 

power to predict schizophrenia in the general population, they have been shown to index 

meaningful differences in schizophrenia liability among individuals. For example, in the 

European PGC3-SCZ sample, the highest PRS centile has an OR of 44 (95% CI=31-63) for 

schizophrenia compared to the lowest centile of PRS, and OR of 7 (95% CI=5.8-8.3) when the 

top centile is compared with the remaining 99% of the individuals in the sample (Trubetskoy et 

al., 2022).  

Common risk variation analyses in multiplex family samples smaller than ISHDSF have 

been performed (Andlauer et al., 2021; de Jong et al., 2018; Szatkiewicz et al., 2019), and we 

have previously used the summary statistics from the first wave of PGC-SCZ mega-analysis 

(Ripke et al., 2011) to investigate whether the concept of the genetically influenced psychosis 

spectrum is supported by empirical data in multiplex schizophrenia families (Bigdeli et al., 

2014). Here, we extend our previous work by using PRS profiling in multiplex schizophrenia 

families, sporadic schizophrenia cases and population controls, all from the population of the 
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island of Ireland, to directly test whether common schizophrenia risk variation in the genome 

may explain the increased recurrence risk of schizophrenia in multiplex families. Identifying the 

source of the increased familial recurrence risk of schizophrenia is important for future research 

into the genetic etiology of familial schizophrenia, and potentially for both diagnosis and 

treatment of schizophrenia with different familial backgrounds, as it will determine the relative 

focus on environmental exposures, as well as common and rare genetic variation in case-control 

and family studies of schizophrenia.  

2.3 Methods 

Sample Description 

Irish Study of High-Density Schizophrenia Families (ISHDSF) 

Fieldwork for the ISHDSF sample was carried out between 1987 and 1992, with 

probands ascertained from public psychiatric hospitals in the Republic of Ireland and Northern 

Ireland, with approval from local ethics committees (Kendler, O’Neill, et al., 1996). Inclusion 

criteria were two or more first-degree relatives meeting DSM-III-R criteria for schizophrenia or 

poor-outcome schizoaffective disorder, with all four grandparents being born in Ireland or the 

United Kingdom. Relatives of probands suspected of having psychotic illness were interviewed 

by trained psychiatrists, and trained social workers interviewed other relatives. Hospital and out-

patient records were obtained and abstracted in > 98% of cases with schizophrenia or poor-

outcome schizoaffective disorder diagnoses. To avoid bias and detect possible mistakes in 

diagnosis, independent review of all diagnostic information such as interview, FH reports, and 

hospital information was made blind to family assignments by two trained psychiatrists, with 

each psychiatrist making up to 3 best estimate DSM-III-R diagnoses, with high agreement 

between the two psychiatrists (weighted k= 0.94 +- 0.05).   
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The concentric diagnostic schema of the ISHDSF shown in Table 2 includes 4 case definitions: 

narrow case definition (schizophrenia, poor-outcome schizoaffective disorder and simple 

schizophrenia), intermediate case definition (adding schizotypal personality disorder, 

schizophreniform disorder, and delusional disorder, psychosis not otherwise specified, and good-

outcome schizoaffective disorder), broad case definition (adding psychotic affective illness, 

paranoid, avoidant and schizoid personality disorders, and other disorders that significantly  

Table 2: List of the diagnoses present in the ISHDSF sample. 

aggregate in relatives of probands based on 

previous epidemiological work in Ireland 

(Kendler et al., 1993)) and very broad case 

definition (adding any other psychiatric 

illness in the families). The ISHDSF sample 

also includes unaffected family members with 

no diagnosis of any psychiatric illness. The 

ISHDSF diagnostic schema is described 

extensively elsewhere (Levinson et al., 2012).  

Irish Schizophrenia Genomics Consortium 

Case/Control Sample (ISGC) 

The ISGC sample was assembled for 

a GWAS of schizophrenia in Ireland. Details 

of recruitment, screening, and quality control 

(QC) methods used for the ISGC sample have 

been previously described in detail elsewhere 

(Irish Schizophrenia Genomics Consortium, 
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2012). Briefly, the case sample was recruited through community mental health service and 

inpatient units in the Republic of Ireland and Northern Ireland following protocols with local 

ethics approval. All participants were interviewed using a structured clinical interview for DSM-

III-R or DSM-IV, were over 18 years of age and reported all four grandparents born either in 

Ireland or the United Kingdom. Cases were screened to exclude substance-induced psychotic 

disorder or psychosis due to a general medical condition. A subset of sporadic cases sampled by 

Virginia Commonwealth University (N=745) have genotypic data and FH information available 

(Riley et al., 2010) from completion of the family history research diagnostic criteria interview 

(Andreasen et al., 1977). This includes 233 (~31%) FH+ cases and 512 (~69%) FH- cases, in 

close concordance with the other large meta-analyses (Esterberg et al., 2010; Käkelä et al., 

2014). Controls from the Irish Biobank used in ISGC were blood donors from the Irish Blood 

Transfusion Service recruited in the Republic of Ireland. Inclusion criteria were all four 

grandparents born in Ireland or the United Kingdom and no reported history of psychotic illness. 

Due to the relatively low lifetime prevalence of schizophrenia, misclassification of controls 

should have minimal impact on power (Colhoun et al., 2003).   

All subjects from the ISHDSF and ISGC provided informed consent to participate in the 

study procedures. All procedures contributing to the sample collection comply with the ethical 

standards of the relevant national and institutional committees on human experimentation and 

with the Helsinki Declaration of 1975, as revised in 2008. Procedures were approved by St. 

James Hospital / Adelaide and Meath Hospital – National Children’s Hospital Research Ethics 

Committee with approval number 2009/09/04, Scotland A Research Ethics Committee with 

approval number 11/SS/0041, and Virginia Commonwealth University Institutional Review 

Board with approval number HM12497. 



30 
 

Genotyping and QC 

Samples were genotyped using 3 different arrays (Table 3). 830 individuals representing 

237 families from the ISHDSF sample were genotyped on the Illumina 610-Quad Array. An 

additional 175 ISHDSF individuals from 52 families were later genotyped on the Infinium 

PsychArray V.1.13 Array. For the ISGC sample, 1,627 sporadic cases and 1,730 controls were 

successfully genotyped using the Affymetrix V.6.0 Array, either at the Broad Institute or by 

Affymetrix. An additional 487 sporadic cases and 475 controls were later genotyped on the 

PsychArray along with the additional ISHDSF individuals described above. The same QC 

protocols were applied to all three datasets and full details are described elsewhere for the 

ISHDSF (Levinson et al., 2012) and the case-control sample (Irish Schizophrenia Genomics 

Consortium, 2012). Exclusion criteria for samples were a call rate of <95%, more than one 

Mendelian error in the ISHDF sample, and difference between reported and genotypic sex. 

Exclusion criteria for SNPs were MAF <1%, call rate <98%, and p<0.0001 for deviation from 

Hardy-Weinberg expectation. The final ISHDSF sample included 1,005 individuals from 257 

pedigrees, and the final case-control sample included 4,319 individuals (2,114 sporadic cases and 

2,205 controls), whose SNP data passed all QC filters.  
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Table 3: Description of the genotyping arrays used in this dissertation. Number of individuals in each diagnostic 
category and pre/post imputation SNPs on each array are provided.  
Array ISGC ISHDSF N SNP’s pre-

imputation 
N SNPs post-
imputation 

Illumina 610-Quad 
- Narrow 
- Intermediate 
- Broad 
- Very Broad 
- Unaffected 

NA 
 

830 
- 430 
- 102 
- 50 
- 36 
- 211 

557,373 9,298,012 

Affymetrix V.60  
- Case 
- Control 

1,730 
- 1,50

9 
- 1,73

1 

NA 686,646 11,080,279 

Infinium psychArray v.1.13 
- Narrow 
- Intermediate 
- Broad 
- Very Broad 
- Unaffected 
- Case 
- Control 

1,296 
 
 
 
 
 
 

- 716 
- 580 

176 
- 39 
- 10 
- 1 
- 105 
- 21 

384,389 11,081,999 

 

Imputation 

Genotypes passing QC were phased using Eagle V.2.4 (Loh et al., 2016) and phased 

genotypes were then imputed to the Haplotype Reference Consortium (HRC) reference panel      

(McCarthy et al., 2016) on the Michigan Imputation Server using Minimac4 (Das et al., 2016). 

The HRC reference panel includes 64,975 samples from 20 different studies that are 

predominantly of European ancestry, making it suitable for imputation of the samples studied 

here. Each of the genotype sets were imputed and the imputed genotype probabilities were 

extracted and used for PRS construction and downstream analyses. As part of the post-

imputation QC, variants with MAF <1% and imputation quality score of <0.3 (Auton et al., 

2015) were excluded for the initial merging. After imputation and all QC steps, 9,298,012 SNPs 

in the Illumina Array, 11,080,279 SNPs in the Affymetrix Array, and 11,081,999 SNPs in the 
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PsychArray remained for analysis. In total, 9,008,825 SNPs were shared across all three arrays 

and were used for PRS construction and all downstream analyses. As shown in Figure 4 and 

Table 4, the mean imputation quality for the SNPs used for PRS construction and downstream 

analyses on each array was high (mean for all ≥ 0.96).  

Table 4: HapMap3 SNPs across the 3 arrays used for PRS construction. Mean imputation quality scores (SD) are 
provided on the 4th column for the imputed SNPs. 
Array Genotyped Imputed Mean Imputation r2 (SD) 
Affymetrix V.60  443,872 499,148 0.98 (0.041) 
Illumina 610-Quad 414,052 528,968 0.98 (0.035) 
Infinium PsychArray 338,265 604,755 0.96 (0.056) 
 

 

Figure 4: Comparison of imputation quality across the three arrays. Variants were binned according to their 
MAF and imputation R2 averaged across variants in each bin. Arrays were imputed to the HRC reference 
panel. X-axis shows MAF. Y-axis shows mean R2 based on the MAF bin. 

Construction of Polygenic Risk Scores  

The ISGC and the ISHDSF cohorts are part of the PGC3-SCZ GWAS. To avoid upward 

bias in PRS estimations, we acquired leave-N-out schizophrenia summary statistics from the 

PGC by excluding all cohorts containing any Irish subjects included in the current study. The 

leave-N-out GWAS summary statistics for PGC3-SCZ (N= 156,509) were first QC’d by 
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excluding variants with MAF < 1% and imputation quality score of < 0.9, as well as removing 

strand ambiguous variants and insertion deletion polymorphisms. We then constructed PRS for 

all subjects using a Bayesian regression framework by placing a continuous shrinkage prior on 

SNP effect sizes using PRS-CS with phi value of 1e-2 (Ge et al., 2019). PRS-CS uses LD 

information from 1000 Genomes European Phase 3 European sample (Clarke et al., 2017) to 

estimate the posterior effect sizes for each SNP. Although p-value thresholding methods have 

been previously used frequently, PRS-CS has shown substantial improvement in predictive 

power compared to those methods (Ni et al., 2021). Similar to LD Score regression (Bulik-

Sullivan et al., 2015), PRS-CS limits the SNPs for PRS construction to approximately 1.2 

million variants from HapMap3. By restricting the variants to HapMap3, the partitioning 

provides ~ 500 SNPs per LD block which substantially reduces memory and computational 

costs. The constructed PRS using the PRS-CS method were normalized against the score 

distribution in the population control for subsequent analyses. 

To show the specificity of the PRS constructed from PGC3-SCZ, an additional PRS for 

low density lipoprotein (LDL, N=87,048) from the ENGAGE Consortium (Surakka et al., 2015) 

was also constructed using the same protocols described above. Genetic correlation and 

Mendelian Randomization studies show that there is no genetic correlation or causal relationship 

between schizophrenia and LDL, making LDL an appropriate comparison phenotype in which 

no inflation of schizophrenia PRS would be expected (Bulik-Sullivan et al., 2015; Zheng et al., 

2017).  

Genomic Relationship Matrix, Principal Component and Statistical Analyses  

Statistical analyses were carried out using the mixed effects logistic regressions GMMAT 

package in R (Chen et al., 2016; R Core Team, 2020). To account for the high degree of 
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relatedness among individuals, we used the glmm.wald() function, fitted by maximum likelihood 

using Nelder-Mead optimization. Family structure was modeled as a random effect with genomic 

relationship matrix (GRM) calculated using LDAK (Speed et al., 2012) in all family members as 

well as sporadic cases and population controls. Principal component analysis (PCA) of the full 

sample is consistent with all individuals in the sample having European ancestry (Figures 5-7). 

However, to account for fine-scale structure within the Irish population (Figure 8), the top 10 

principal components (PC) were also included as covariates in the analyses. The decision to 

include the top 10 PCs as covariates was made because the variance explained by PCs  While 

none of the PCs showed association with genotype arrays or sites, to account for other possible 

batch effects due to genotyping carried out on different arrays or at different sites, we included 

platform and site as covariates in the model. The final regression models included GRM as a 

random effect covariate, with the top 10 PCs, genotyping platform, site, and sex as fixed effect 

covariates. The results were adjusted for multiple testing correction using the Holm method. 

While less stringent than Bonferroni, the family-wise error rate for the Holm method is similar to 

Bonferroni, making it suitable for multiple testing correction in modestly sized cohorts. 

  

Figure 5: Continental PCA plot for the samples genotyped on the Affymetrix array projected on the 1000 
Genomes Phase 3 data. X-axis PC1. Y-axis PC2. 
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Figure 6: Continental PCA plot for the samples genotyped on the Illumina array projected on the 1000 
Genomes Phase 3 data. X-axis PC1. Y-axis PC2. 

 

 
Figure 7: Continental PCA plot for the samples genotyped on the psychChip array projected on the 1000 
Genomes Phase 3 data. X-axis PC1. Y-axis PC2. 

 
Figure 8: Fine-scale PCA analysis of the Irish population. X-axis PC1. Y-axis PC2. 
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2.3 Results 

The mean schizophrenia PRS across the diagnostic categories for schizophrenia are 

displayed in Figure 8. No significant differences in LDL PRS were observed between any of the 

diagnostic categories compared to population controls, indicating the specificity of PGC3-SCZ 

PRS in this study. PGC3-SCZ PRS results 

(Figure 9) show that the Narrow case 

definition in the families, which includes 

familial cases of schizophrenia, had the highest 

mean PRS (Z=1.13, SE=0.09) followed by 

sporadic cases (Z=1.06, SE=0.09), 

intermediate case definition (Z=0.81, 

SE=0.10), broad case definition (Z=0.67, 

SE=0.11), very-broad case definition 

(Z=0.53, SE=0.098), unaffected family 

members (Z=0.36, SE=0.10) and population controls (Z=0.004, SE=0.07).  

No significant difference between familial and sporadic cases of schizophrenia 

We observe no significant difference in PRS between familial schizophrenia cases and all 

sporadic schizophrenia cases, (p = 0.90), nor between familial schizophrenia cases and either 

FH+ (p = 0.88) or FH- (p = 0.82) sporadic schizophrenia cases. These results suggest that an 

increased burden of common schizophrenia risk variation is unlikely to account for the higher 

recurrence risk of schizophrenia in multiplex families (Figure 9). Additionally, we show that 

there is no significant difference in schizophrenia PRS between FH+ and FH- sporadic 

schizophrenia cases (p = 0.92), suggesting that the inclusion of all sporadic cases in the 

Figure 9: Mean Leave-N-Out PGC3-SCZ PRS for each of 
the diagnostic categories in the ISHDSF, sporadic 
cases, and ancestry-matched population controls. Bars 
represent standard errors. 
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comparison is unlikely to cause an upward bias in the mean PRS for the full cohort of sporadic 

cases, and further supporting the hypothesis that increased PRS is unlikely to account for FH of 

schizophrenia in the cohort studied here.  

All family members carry a high burden of common schizophrenia risk variants  

Familial and sporadic schizophrenia cases show a significantly higher mean 

schizophrenia PRS compared to all other diagnostic categories in the ISHDSF sample and 

ancestry-matched population controls (Figure 10, Table 5), underlining the important role of 

common risk variation in the genetic architecture of both familial and sporadic schizophrenia 

cases.  All other ISHDSF diagnostic categories also show a significantly higher schizophrenia 

PRS compared to the population controls. PRS comparison within the ISHDSF sample (Table 6) 

shows no significant difference between mean PRS for intermediate and broad categories, 

indicating that individuals in both categories have a similar burden of common schizophrenia 

risk variants despite the presence of a range of diagnoses on the psychosis spectrum such as 

atypical psychosis and delusional disorder in the intermediate category, and disorders such as 

major depressive disorder with psychotic features, and bipolar disorder in the broad category. 

We observed no significant difference in schizophrenia PRS loading between the broad category 

and the very-broad category, which includes any other psychiatric disorder in the ISHDSF 

sample. The mean schizophrenia PRS in the very broad category is not significantly different 

from the unaffected members of the families, indicating a similar burden of common 

schizophrenia risk variation in these two distinct diagnostic categories. Finally, we observe a 

significantly higher schizophrenia PRS in unaffected family members compared to the 

population controls (P = 4.13 x 10-3), indicating a high baseline risk for schizophrenia in all 

members of multiplex families compared to population controls, regardless of their diagnostic 
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status. This observation is consistent with schizophrenia transmission through some unaffected 

family members observed in the ISHDSF and other family samples. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5: PRS comparison between ISHDSF and sporadic cases versus population controls.  
Comparison Groups OR CI (95%) P-value Adjusted P-value 
Sporadic Cases vs Control 5.75 5.03-6.55 1.64E-48 3.78E-45 
Narrow vs Control 5.95 5.07-6.93 1.18E-39 2.61E-33 
Intermediate vs Control 4.17 3.33-5.11 1.54E-13 2.93E-11 
Broad vs Control 3.96 3.05-4.90 3.72E-08 5.94E-7 
Very Broad vs Control 3.38 2.46-4.38 6.12E-06 9.17E-5 
Unaffected vs Control 2.55 1.84-3.16 2.75E-4 4.13E-3 

 
 
 
 
 
 

 

Sporadic Cases

Narrow

Intermediate

Broad
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Unaffected
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Odds ratio

p = 3.78 x 10 -45

p = 2.61 x 10 -33

p = 2.93 x 10 -11

p = 5.94 x 10 -7

p = 9.17 x 10 -5

p = 4.13 x 10 -3

Figure 10: Comparison of PRS between ISHDSF diagnostic categories and sporadic 
cases, versus population controls. Odds ratios (OR) and confidence intervals (CI) are 
shown for each comparison. P-values are corrected for multiple testing comparison.    
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Table 6: Full PRS comparison results within the ISHDSF sample.  
Comparison Groups P-value Adjusted P-value 
Narrow vs Sporadic Cases 0.29 0.90 
Narrow vs FH+ Sporadic Cases 0.18 0.82 
Narrow vs FH- Sporadic Cases 0.23 0.88 
FH+ vs FH- Sporadic Cases 0.32 0.92 
Sporadic Cases vs Intermediate 6E-4 9.1E-3 
Sporadic Cases vs Broad 1.4E-5 5.9E-4 
Sporadic Cases vs Very Broad 2.71E-5 6.1E-4 
Sporadic Cases vs Unaffected 4.81E-15 7.61E-15 
Narrow vs Intermediate 4E-4 8E-3 
Narrow vs Broad 3.5E-5 4.1E-4 
Narrow vs Very Broad 1.87E-05 

 
3.17E-4 

Narrow vs Unaffected 5.73E-16 1.20E-14 
Intermediate vs Broad 0.41 1 
Intermediate vs Very Broad 1.1E-4 8.3E-3 
Intermediate vs Unaffected 3.5E-5 4.6E-4 
Broad vs Unaffected 9.1E-4 8.3E-3 
Broad vs Very Broad 0.45 1 
Very Broad vs Unaffected 0.46 1 

 

2.4 Discussion 

Multiplex schizophrenia families represent the upper bounds of the distribution of 

recurrence risk for schizophrenia, and this study aimed to investigate the source of this increased 

recurrence risk. Since sporadic cases are considered to be the norm for most complex diseases 

including schizophrenia (Yang et al., 2010), this makes sporadic schizophrenia cases a good 

comparison group to assess whether elevated schizophrenia PRS can account for the increase in 

recurrence risk in familial cases. We observed that familial schizophrenia cases do not have a 

significantly increased PRS compared to sporadic schizophrenia cases in our modestly sized 

sample. We further show that this observation holds true regardless of the FH status of sporadic 

cases. Therefore, our finding provides empirical evidence that increased recurrence risk of 
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schizophrenia in the ISHDSF sample is unlikely to be attributable to an increased burden of 

common schizophrenia risk variation as identified from genome-wide association studies. 

Therefore, the hypothesis that high familial recurrence risk of schizophrenia in multiplex 

families may be attributable to excess rare variation in the genome specific to schizophrenia, 

warrants further investigation. Furthermore, these results validate the concept of a genetically 

influenced psychosis spectrum in multiplex schizophrenia families as shown by a continuous 

increase of common schizophrenia risk variation burden across all members of the ISHDSF, 

from unaffected family members to narrow category in the ISHDSF sample.  

This analysis reveals potentially important differences in the genetic architecture of 

familial schizophrenia cases compared to familial bipolar disorder cases. An analysis conducted 

in bipolar multiplex families (Andlauer et al., 2021) has shown that unlike the familial 

schizophrenia cases studied here, familial bipolar cases have a significantly higher bipolar PRS 

compared to ancestry matched sporadic cases. There is also currently limited evidence for the 

involvement of rare risk variation in bipolar disorder (Palmer et al., 2022), and taken together, 

these results suggest greater importance of common risk variation in bipolar disorder, whereas 

studies of schizophrenia have demonstrated the importance of both common and rare risk 

variation (Fromer et al., 2014; Howrigan et al., 2020; Singh et al., 2022).  

Although sequencing studies are only now reaching sample sizes sufficiently powered to 

detect individual rare variants and rare variant enriched genes associated with schizophrenia 

(Singh et al., 2022), early sequencing and rare variation studies observe consistent enrichment of 

rare variation in certain gene-sets and functional categories related to schizophrenia (Fromer et 

al., 2014). In addition, SNP signals from PGC3-SCZ GWAS are shown to be highly enriched in 

non coding functional sequences in the genome (Trubetskoy et al., 2022), further underscoring 
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the importance of conducting large scale whole-genome sequencing to identify rare variation in 

non-coding regions of the genome linked to schizophrenia. Results from the 1000 Genomes 

Project demonstrates that rare functional variation is frequent in the genome (Auton et al., 2015) 

and shows strong population specificity (MacArthur et al., 2012). For example, using GWAS 

probe intensity data in the ISGC sample used in this study, we have previously detected a rare, 

novel 149kb duplication overlapping the protein activated kinase 7 (PAK7) gene only found in 

the Irish population (Morris et al., 2014). This duplication is associated with schizophrenia in the 

ISGC (p = 0.007), and a replication sample of Irish and UK case-controls with 22 carriers in 

11,707 cases and 10 carriers in 21,204 controls (p = 0.0004, OR=11.3). This duplication in the  

PAK7 gene is in strong LD with local haplotypes (p = 2.5 x 10-21), indicating a single ancestral 

event and inheritance identical by descent in carriers.  

We note that the liability that is captured by PRS constructed from PGC3-SCZ is 

currently insufficient for predicting a diagnosis of schizophrenia with area under the curve 

(AUC) = 0.71 (Trubetskoy et al., 2022), meaning that PRS alone cannot be used as a diagnostic 

tool. The results of our study further suggest that current PRS alone is unlikely to be predictive 

of schizophrenia recurrence risk in the families of index probands. To address both of these 

predictive limitations of schizophrenia PRS, additional components of genetic risk must be 

identified and included in order to improve both identification of future cases and recurrence risk 

prediction in the relatives of probands.   

The results presented in this chapter should be interpreted in the context of some 

limitations. First, current PGC3-SCZ PRS accounts for ~2.6% of the total variance in 

schizophrenia liability, and genetic risks from rare and structural variation are not represented in 

the PRS. As a result, some known genetic risk factors for schizophrenia such as the 22-q11 
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deletion (Marshall et al., 2017b) are not included in PRS construction, and such genetic risk 

factors are best measured through direct assessment of structural variation or whole genome 

sequencing studies. Despite these limitations, PRS provides the most reliable measurement of 

common risk variation in the genome and is suitable for indexing an individual’s risk for 

schizophrenia in this study. Second, the various diagnostic categories in the ISHDSF sample 

contain different numbers of subjects. For example, the lower number of individuals satisfying 

broad and very broad diagnostic schema in the families, means that the power of analysis in 

those subgroups is lower. However, the narrow category which includes familial schizophrenia 

cases in the ISHDSF sample, has the highest number of individuals across all the diagnostic 

categories in the ISHDSF, making the sample suitable for the main hypothesis being tested in 

this study. Third, FH information is only available for a subset of sporadic cases as described in 

the methods. However, the ratio of FH+ (~31%) and FH- (~69%) sporadic cases studied here is 

in close agreement with FH data from large meta-analyses samples referenced above, suggesting 

the subset of sporadic FH+ and FH- cases available are representative. Fourth, this analysis did 

not assess the common risk variant burden of each family separately, and the degree to which 

common risk variation may impact each family could vary between different families. Fifth, 

since the environmental factors unique to the families have also not been systematically assessed 

here, integrating rare genetic variation from whole sequencing studies with environmental 

influences in future analyses could further elucidate the role of rare variation and environmental 

influences on the recurrence risk of schizophrenia in multiplex families. Finally, as more samples 

from under-represented populations are collected, it is essential to replicate and show the 

generalizability of these findings in more diverse populations. 
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In conclusion, in this chapter, we showed that differences in common risk variation as 

indexed by current PRS, is unlikely to account for the increased recurrence risk of schizophrenia 

in our cohort of multiplex schizophrenia families and ancestry matched sporadic cases. 

Therefore, our results suggest that both common and rare schizophrenia risk variation needs to 

be indexed to potentially improve diagnostic and familial recurrence prediction of schizophrenia.  
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CHAPTER III 

 
Examining the source of increased bipolar disorder and major 

depressive disorder common risk variation burden in multiplex 

schizophrenia families  

3.1 Abstract 

Psychotic and affective disorders often aggregate in the relatives of probands with schizophrenia 

and genetic studies show substantial genetic correlation among schizophrenia, bipolar disorder, 

and major depressive disorder. In this chapter, we examined the polygenic risk burden of bipolar 

disorder and major depressive disorder in 257 multiplex schizophrenia families (N=1,005) from 

the ISHDSF sample versus 2,205 ancestry-matched controls. Our results indicate that members 

of multiplex schizophrenia families have an increased polygenic risk for bipolar disorder and 

major depressive disorder compared to population controls. However, this observation is largely 

attributable to part of the genetic risk that bipolar disorder or major depressive disorder share 

with schizophrenia due to genetic correlation, rather than the affective portion of the genetic risk 

unique to them. These findings suggest that a complete interpretation of cross-disorder polygenic 

risks in multiplex families requires assessment of the relative contribution of shared versus 

unique genetic factors to account for genetic correlations across psychiatric disorders. 
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3.2 Introduction 

Psychotic and affective disorders have long been viewed as two separate axes of mental 

illness, and early practitioners of psychiatry like Emil Kraepelin and Eugen Bleuler observed that 

relatives of patients with schizophrenia have an increased rate of psychiatric disorders ranging 

from atypical psychosis to schizophrenia spectrum personality disorders, many of which 

appeared to be milder versions of the symptoms observed in patients with schizophrenia 

(Kendler, 1985). Some of the first family studies of schizophrenia conducted in the early 20th 

century, confirmed that in addition to schizophrenia, a range of other psychiatric disorders on the 

psychosis spectrum also aggregate in the relatives of probands with schizophrenia. These 

findings were later solidified by the Danish Adoption Study of Schizophrenia, which showed that 

biological relatives of patients with schizophrenia were at an increased risk for schizophrenia as 

well as milder syndromes on the psychosis spectrum (Kety et al., 1975, 1994).   

Large-scale GWAS conducted by the PGC have shown that common risk variation in the 

genome (MAF ≥1%) can explain a modest portion of the heritability of major psychiatric 

disorders (Mullins et al., 2021; Trubetskoy et al., 2022; Wray et al., 2018). Additionally, the 

Cross-Disorder Group of the PGC have provided robust, replicable evidence for strong genetic 

correlation (rG) between schizophrenia and both bipolar disorder (rG = 0.68) and major 

depressive disorder (rG = 0.35) (Lee et al., 2019). Bipolar disorder and major depressive disorder 

also have a significant positive genetic correlation (rG = 0.44) (Mullins et al., 2021). Together, 

these results indicate that there is substantial genetic overlap among these three disorders with 

varying degrees of psychotic and affective features, suggesting widespread genetic pleiotropy in 

psychiatric disorders at common variation level (Lee et al., 2021). 
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As described in the previous chapter, the ISHDSF sample (Kendler, O’Neill, et al., 1996) 

consists of 257 multiplex schizophrenia families with genotype data, ascertained to have two or 

more first-degree relatives meeting the DSM-III-R criteria for schizophrenia or poor-outcome 

schizoaffective disorder. In line with previous epidemiological observations in the relatives of 

probands with schizophrenia (Asarnow et al., 2001; Baron et al., 1983; Kendler et al., 1995), in 

addition to a significant aggregation of psychotic disorders, other psychiatric diagnoses including 

affective, personality, and substance use disorders, are also present in the relatives of the 

ISHDSF probands. Furthermore, our previous PRS profiling in the ISHDSF sample described in 

the previous chapter showed that all ISHDSF family members, including the unaffected relatives, 

have an increased burden of common schizophrenia risk variation compared to population 

controls, consistent with the polygenic architecture of psychiatric disorders, and the observation 

of schizophrenia transmission through some non-psychotic, or unaffected family members in this 

sample (Ahangari, Gentry, et al., 2022; Bigdeli et al., 2014). 

The high baseline risk for schizophrenia observed across all case definitions of the 

ISHDSF sample, coupled with the evidence for strong genetic correlation among schizophrenia, 

bipolar disorder, and major depressive disorder, suggests that members of the ISHDSF may have 

an increased polygenic risk for bipolar disorder and major depressive disorder. In this chapter, 

we sought to test this hypothesis by constructing univariate bipolar disorder and major 

depressive disorder PRS in 1,005 subjects from 257 multiplex schizophrenia families and 2,205 

ancestry-matched population controls all from the population of the island of Ireland. Given that 

the strong genetic correlation among schizophrenia, bipolar disorder, and major depressive 

disorder makes standard univariate cross-disorder PRS profiling in members of multiplex 

families less informative, we also used GWAS-by-subtraction (Demange et al., 2021) as 
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implemented in the genomic structural equation modeling (genomicSEM) framework 

(Grotzinger et al., 2019), to disentangle bipolar disorder and major depressive disorder polygenic 

signals into underlying genetic factors. By doing so, we investigated whether the increased 

polygenic risk for bipolar disorder or major depressive disorder in multiplex schizophrenia 

families is attributable to the portion of the genetic risk that bipolar disorder or major depressive 

disorder share with schizophrenia due to their genetic correlation, or the affective portion of the 

genetic risk that is unique to them. To further investigate whether polygenic risks for bipolar 

disorder and major depressive disorder, and their unique and shared genetic factors are over-

transmitted from parents to probands in the families, we performed polygenic transmission 

disequilibrium tests (Weiner et al., 2016) in a subset of the ISHDSF sample with full parent-

offspring information. Based on epidemiological findings in multiplex schizophrenia families 

and the substantial genetic correlation among schizophrenia, bipolar disorder, and major 

depressive disorder, we hypothesized that increased burden of common risk variation burden for 

bipolar disorder or major depressive disorder in multiplex schizophrenia families is likely to be 

due to the portion of the genetic risk that these disorders share with schizophrenia due to genetic 

correlation, rather than the portion of the genetic risk unique to one or both affective disorders. 

Therefore, by addressing these questions in this chapter, we attempted to clarify the complexity 

of cross-disorder PRS analyses in multiplex families.  

3.3 Methods 

Sample Description 

Details about the sample collection and ascertainment for the ISHDSF sample and ISGC 

are provided in chapter 2.  

Genotyping and Imputation 
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 Details about genotyping and imputation are provided in chapter 2.  

GWAS-by-subtraction  

We performed GWAS-by-subtraction using the genomicSEM framework by analyzing 

summary statistics data for schizophrenia, bipolar disorder, and major depressive disorder. 

Briefly, summary statistics from leave-N-out schizophrenia GWAS excluding all Irish 

participants, (N=156,509) (Trubetskoy et al., 2022), bipolar disorder GWAS (N=413,466) 

(Mullins et al., 2021), and major depressive disorder GWAS (N=500,199) (Howard et al., 2019) 

were acquired and the genetic covariances between them were estimated using LDSC. SNPs 

were filtered for MAF < 0.01 and imputation quality < 0.8, and only SNPs that are present in 

both the schizophrenia and bipolar disorder datasets, or the schizophrenia and major depressive 

disorder datasets were used to generate GWAS-by-subtraction models. This left us with 

6,361,243 SNPs for bipolar disorder, and 6,599,052 SNPs for major depressive disorder. We 

then used the QC’d summary statistics by first regressing them on two latent factors, a SCZ 

factor and Affective factor underlying bipolar disorder or major depressive disorder. Therefore, 

SCZ factors in bipolar disorder or major depressive disorder capture part of the genetic risk that 

each of these two disorders share with schizophrenia due to their genetic correlation, whereas 

Affective factors in bipolar disorder or major depressive disorder capture the affective portion of 

the genetic risk that is unique to these two disorders and not shared with schizophrenia. We then 

regressed SCZ factor and Affective factor on each SNP from the summary statistics that passed 

QC measurements as described above, which allowed for two separate paths of association with 

bipolar disorder or major depressive disorder for each SNP: 1) a path that is fully mediated by 

SCZ factor, and 2) a path that is fully independent of SCZ factor, called Affective factor. The 

models assume that genetic effects on schizophrenia are also impacting bipolar disorder and 
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major depressive disorder to some degree given that both these disorders have a strong genetic 

correlation with schizophrenia. The path diagrams for the Cholesky decomposition used to 

disentangle the polygenic signals is provided in Figure 11.  In brief, the regression equations 

composing GWAS-by-subtraction model in this study are: 

Bipolar disorder: 

SCZ = λ1SCZ factor     BIP = λ2 SCZ factor + λ3Affective factor  

SCZ factor = 𝛃1SNP + 𝜇SCZ factor 

Affective factor= 𝛃2SNP + 𝜇Affective factor 

Major depressive disorder: 

SCZ = λ1SCZ factor     MDD = λ2SCZ factor + λ3Affective factor  

SCZ factor = 𝛃1SNP + 𝜇SCZ factor 

Affective factor= 𝛃2SNP + 𝜇Affective factor 

We used a method suggested by Mallard and colleagues (Mallard et al., 2019) to 

calculate the effective sample size. First, we restricted the study to SNPs with MAF between 

10% and 40% using the following script in R. This formula is prone to error for SNPs with low 

MAF. Therefore, it is suggested by Mallard and colleagues that we set a lower and upper MAF 

limit of approximately 10% and 40% when estimating the effective sample size: 

df <- subset(df, df$MAF <= 0.4 & df$MAF >= 0.1)  

Where df is the GWAS-by-subtraction file. Since we have performed a Cholesky model in the 

GWAS-by-subtraction models, we also needed to adjust the estimates ‘est’ by multiplying them 

by the residual heritability for each GWAS-by-subtraction model shown in Table 7. We then 

calculated the effective sample size using the following script in R: 

effective_n <- (mean((df$Z_Estimate/df$est*λ)^2/(2*df$MAF*(1-df$MAF)))) 
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Where Z_Estimate is the Z statistic from the GWAS and est is the path estimates and λ is the 

residual for each GWAS.  

Table 7: Model parameters for GWAS-by-subtraction analyses of bipolar disorder and major depressive disorder.  

 
 

 
Figure 11: The Cholesky model fitted using genomicSEM. Circles represent latent variables and squares 
represent observed variables. a. path diagram for bipolar disorder genomicSEM model. b. Path diagram for 
major depressive disorder genomicSEM model. 

Construction of Polygenic Risk Scores  

           Summary statistics for bipolar disorder (N=413,466), major depressive disorder 

(N=500,199), SCZ factor in bipolar disorder (Neff =146,420), Affective factor in bipolar disorder 

(Neff = 310,018), SCZ factor in major depressive disorder (Neff = 147,014), and Affective factor in 

major depressive disorder (Neff = 458,356) were first QC’d by excluding variants with MAF < 

1% or imputation quality score of < 0.9 and removing strand ambiguous and indel 

polymorphisms. We then constructed PRS using the same method described in the previous 

Unstandadrized_Estimate Unstandardized_SE STD_Genotype STD_Genotype_SE STD_All
Affective-BIP =~ BIP 0.2502653 0.007488661 0.7305109 0.021858999 0.7305109
Affective-BIP =~ Affective-BIP 1 1 1

SCZ-BIP =~ BIP 0.2339547 0.008028231 0.6829011 0.023433975 0.6829011
SCZ-BIP =~ SCZ-BIP 1 1 1

Affective-MDD =~ MDD 0.27151584 0.0060926 0.9455374 0.021217108 0.9455374
Affective-MDD =~ Affective-MDD 1 1 1

SCZ-MDD =~ MDD 0.09347285 0.006708394 0.3255135 0.023361575 0.3255135
SCZ-MDD =~ SCZ-MDD 1 1 1
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chapter by employing PRS-CS. Based on current recommendations (Ge et al., 2019) we used the 

phi value of 1e-2 for bipolar disorder and major depressive disorder due to their high 

polygenicity, whereas the “auto” function in PRS-CS was used to automatically learn the phi 

value for SNP weights for SCZ and Affective factors underlying bipolar disorder and major 

depressive disorder. 

Polygenic transmission disequilibrium test (pTDT) 

We used pTDT in a subset of the ISHDSF sample (41 families) with full parent-offspring 

data to test for over-transmission of polygenic risks for bipolar disorder, major depressive 

disorder, and their unique and shared (with schizophrenia) underlying genetic factors from 

parents to probands in the families. Additionally, to detect possible bias or systematic issues in 

the analyses, we also assessed the over-transmission of polygenic risks generated from 

schizophrenia and LDL as positive and negative controls, respectively with details of the PRS 

construction for schizophrenia and LDL described in more detail in the previous chapter. The 

pTDT deviation scores were generated for each multiplex family by subtracting the mean 

parental polygenic risks from the proband polygenic risks. The pTDT deviation scores were then 

standardized by dividing them by the cohort-specific mean parental polygenic risks standard 

deviations. To test whether the mean pTDT deviation was significantly greater than zero, 

representing an over-transmission of polygenic risks from parents to probands, a one-sided, one-

sample t-test was employed. 

Statistical Analyses  

Statistical analyses were carried out using a mixed-effects logistic regression and as 

described in chapter two.  
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Polygenic overlap analysis 

 We used the MiXeR framework (Frei et al., 2019) to quantify the polygenicity and the 

polygenic overlap of schizophrenia with bipolar disorder and major depressive disorder. MiXeR 

uses GWAS summary statistics to estimate the polygenicity of each phenotype and constructs a 

bivariate Gaussian mixture model to estimate the number of shared and unique variants that 

explains 90% of SNP heritability for each GWAS. We also estimated the heritability of the 

derived factors underlying bipolar disorder and major depressive disorder using LDSC as shown 

in Table 8.  

Table 8: Heritability estimates and LD score intercepts for GWAS-by-subtraction results. Note that heritability 
estimates are on the observed scale.  

 
 
3.4 Results 

 The diagnostic schema in the ISHDSF shown Table 1 and described in detail in the 

previous chapter follows a concentric pattern ranked by the degree to which they reflect narrow 

versus broad case definition within the psychosis spectrum. Below we also provide a visual 

representation of these case definitions in Figure 12.  

SNP h2 SNP h2 SE LDScore 
intercept Ratio

Affective factor in BIP 0.0478 0.0026 0.9967 < 0
SCZ factor in BIP 0.3261 0.0105 0.9901 < 0

Affective factor in MDD 0.0548 0.0022 0.997 < 0
SCZ factor MDD 0.317 0.0105 0.985 < 0
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Figure 12: Concentric diagnostic schema of the ISHDSF sample representing the narrow versus broad case 
definitions of the psychosis spectrum. 

 
Increased univariate bipolar disorder and major depressive disorder PRS in multiplex families.  

Figure 13 shows the results for the univariate bipolar disorder and major depressive 

disorder PRS analysis in multiplex schizophrenia families versus population controls. All case 

definitions in multiplex schizophrenia families show a significantly increased bipolar disorder 

PRS compared to population controls (Figure 13a). The highest OR was observed in the broad 

case definition (OR = 2.21, 95% CI = 1.62-3.03) which includes 17 of the 21 bipolar disorder 

cases in the ISHDSF sample with psychotic features, excluding bipolar disorder cases without 

psychotic features which are represented in the very broad case definition. Except for the 

unaffected relatives, all diagnostic case definitions in multiplex schizophrenia families also show 

a significantly increased major depressive disorder PRS compared to population controls (Figure 

13b). The highest OR was observed in the very broad case definition (OR = 1.45, 95% CI = 

Very Broad (N = 141). 
Any other psychiatric
disorders 

Broad (N = 52). 
Psychiatric disorders that 
significantly aggregate in the 
relatives of probands based 
on previous epidemiological 
work in Ireland.

Intermediate (N = 112). 
Schizotypal, schizophreniform, 
delusional disorders, atypical 
psychosis and good-outcome 
SAD 

Narrow (N = 469). 
Schizophrenia, poor-outcome 
SAD, and simple schizophrenia 
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1.20-1.76), which includes 80 of 102 major depressive disorder cases in the ISHDSF sample, 

excluding major depressive disorder cases with psychotic features that are represented in the 

broad case definition.  Full results for univariate bipolar disorder and major depressive disorder 

PRS are also provided in Tables 8 and 9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Narrow

Intermediate

Broad

Very Broad

Unaffected

1 2 3

Narrow

Intermediate

Broad

Very Broad

Unaffected

1 2 3
Odds ratio(95%CI)

p = 3.61 x 10-12

p = 2.34 x 10-7

p = 2.20 x 10-6

p = 1.12 x 10-4

p = 1.98 x 10-2

p = 7.23 x 10-6

p = 1.71 x 10-3

p = 4.28 x 10-2

p = 4.78 x 10-4

p = 0.23

a. Bipolar disorder PRS

b. Major depressive disorder PRS

Figure 13: OR plots with 95% CI for bipolar disorder and major depressive disorder PRS 
comapred to population controls. OR and CI are shown for each comparison. P-values are 
corrected for multiple testing comparison. Red dot represents significant and blue dot represent 
non-significant results. 
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Table 9: Full bipolar disorder PRS results for ISHDSF diagnostic categories versus population controls. p-values 
were adjusted using the holm method in R. 
Comparison Groups OR CI (95%) P-value Adjusted P-value 
Narrow vs Control 1.93 1.70-2.21 7.21E-23 3.61E-22 
Intermediate vs Control 1.83 1.48-2.29 5.85E-8 2.34E-7 
Broad vs Control 2.21 1.62-3.03 7.32E-7 2.2E-6 
Very Broad vs Control 1.50 1.23-1.83 6.60E-5 2.11E-5 
Unaffected vs Control 1.20 1.03-1.40 1.98-2 1.98E-2 

 
Table 10: Full major depressive disorder PRS results for ISHDSF diagnostic categories versus population controls. 
p-values were adjusted using the holm method in R. 
Comparison Groups OR CI (95%) P-value Adjusted P-value 
Narrow vs Control 1.35 1.19-1.53 1.45E-6 7.25E-6 
Intermediate vs Control 1.43 1.16-1.76 5.72E-4 1.71E-3 
Broad vs Control 1.41 1.05-1.90 2.14E-2 4.29E-2 
Very Broad vs Control 1.45 1.20-1.76 1.20E-4 4.79E-4 
Unaffected vs Control 1.09 0.94-1.27 0.23 0.38 

 

No increased Affective factor PRS in multiplex families 

Figure 14 shows the results for SCZ factor and Affective factor components derived from 

bipolar disorder and major depressive disorder polygenic risks in multiplex schizophrenia 

families versus population controls. The PRS results constructed for SCZ factor in bipolar 

disorder and SCZ factor in major depressive disorder (Figures 14a and 14c), representing the part 

of the polygenic risk that these two disorders share with schizophrenia due to genetic correlation, 

are significantly increased in all diagnostic case definitions of multiplex schizophrenia families 

compared to population controls. In contrast, the PRS constructed from the Affective factor in 

bipolar disorder, and the Affective factor in major depressive disorder (Figures 14b and 14d), 

representing the affective portion of the polygenic risk unique to these two disorders, show no 

significant increase in members of multiplex schizophrenia families compared to population 

controls. Full results are provided in the Table 11 below.  
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Table 11: GWAS-by-subtraction PRS results for each underlying factor. p-values were adjusted using the holm 
method in R.  

 
 

 

Comparison Groups SE P -value Adjusted P -value
Narrow versus Control 0.0879127 6.53E-39 1.31E-32

Intermediate versus Control 0.0911982 7.63E-32 1.45E-27
Broad versus Control 0.0991201 6.16E-15 9.24E-12

VeryBroad versus Control 0.0812791 3.64E-11 5.10E-10
Unaffected versus Control 0.070181 1.36E-10 1.77E-06

Narrow versus Control 0.0712679 0.31210127 1
Intermediate versus Control 0.0728196 0.16120981 9.67E-01

Broad versus Control 0.0812717 0.08216128 0.19235886
VeryBroad versus Control 0.08768171 0.13182091 0.5849128
Unaffected versus Control 0.08168101 0.33091218 0.94502232

Narrow versus Control 0.0918278 9.40E-31 1.69E-28
Intermediate versus Control 0.0728918 7.50E-25 1.28E-23

Broad versus Control 0.0980198 4.49E-15 7.18E-14
VeryBroad versus Control 0.0849812 7.20E-09 7.92E-08
Unaffected versus Control 0.08812791 1.16E-09 1.39E-05

Narrow versus Control 0.0821791 0.37129817 1
Intermediate versus Control 0.0799821 0.11812779 0.94502232

Broad versus Control 0.0979102 0.091810281 0.826292529
VeryBroad versus Control 0.0817812 0.21012881 0.431928319
Unaffected versus Control 0.0819717 0.35210909 0.88712087

SCZ Factor in BIP

Affective Factor in BIP

SCZ Factor in MDD

Affective Factor in MDD

Figure 14: Density plots showing the distribution of SCZ factor and Affective factor PRS results. Each color 
represents one of the case definitions in the ISHDSF sample shown on the left side of the panel. The dashed line 
shows the mean PRS for population controls. P-values are corrected for multiple testing comparison.    
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To further assess the generalizability of these observations beyond multiplex 

schizophrenia families, we replicated the PRS analyses for SCZ and Affective factors underlying 

bipolar disorder and major depressive disorder in an independent cohort of ancestry matched 

sporadic schizophrenia cases from ISGC (N=2,225). As shown in Figure 15, the observed pattern 

of PRS enrichment in familial cases from multiplex schizophrenia families is similar to ancestry-

matched sporadic cases from ISGC, demonstrating the generalizability of these observations in 

an independent cohort of schizophrenia cases.  

 

 

Figure 15: Density plots showing the distribution of SCZ factor and Affective factor PRS results. The colors 
represent sporadic cases and controls from the ISGC sample shown on the left side of the panel. Dashed line 
represents the mean PRS for population controls. P-values are corrected for multiple testing comparison.    
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Polygenic transmission equilibrium test (pTDT) in multiplex families 

Figure 16 shows the pTDT results in multiplex schizophrenia families. In panel 15a we 

show that as expected, schizophrenia polygenic 

risks described in the previous 

chapter are significantly over-

transmitted from parents to 

probands, while LDL 

polygenic risks show no 

significant over-transmission 

from parents to probands, 

suggesting the absence of 

systematic biases in the results. 

We next show that univariate 

bipolar disorder and major 

depressive disorder polygenic 

risks are significantly over-

transmitted from parents to 

probands in multiplex schizophrenia families (Figure 16a). Polygenic risks for SCZ factors 

derived from bipolar disorder and major depressive disorder are also significantly over-

transmitted from parents to probands in the families. In contrast, no significant over-transmission 

of polygenic risks derived from Affective factors unique to these two disorders and not shared 

with schizophrenia were observed in the families (Figure 16b).  
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Figure 16: pTDT results presented as SD on the mid-parent distribution 
with 95% CI. to evaluate polygenic over-transmission in the families. 
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Polygenicity and polygenic overlap of underlying factors 

We used MiXeR to estimate the polygenicity, polygenic overlap, and the number of 

shared and unique causal variants between bipolar disorder, major depressive disorder, and their 

underlying latent genetic factors (Figure 17). In agreement with previous findings, the polygenic 

signals of schizophrenia substantially overlap with bipolar disorder and major depressive 

disorder (17a and 17b respectively), while schizophrenia is estimated to be more polygenic than 

bipolar disorder, but less polygenic than major depressive disorder. Similarly, we observe that 

polygenic signals from SCZ factors and Affective factors derived from bipolar disorder and major 

depressive disorder also substantially overlap (17c and 17d respectively). The SCZ factor 

underlying bipolar disorder is estimated to be more polygenic than the Affective factor 

underlying bipolar disorder, whereas the Affective factor underlying major depressive disorder is 

estimated to be more polygenic than the SCZ factor underlying major depressive disorder.  

 

 

Figure 17: MiXeR results for latent factors. Venn diagrams show the estimated portion of causal 
variants shared and unique to each of the phenotypes. The grey part represents the overlap, and the 
size of the circles represent the polygenicity. The polygenic overlap is measured as the Dice coefficient 
on a 0-100% scale.  
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3.5 Discussion 

Large-scale GWAS of schizophrenia, bipolar disorder, and major depressive disorder 

have shown that many common risk variants with small effect sizes contribute to disease risk in 

major psychiatric disorders. Additionally, cross-disorder analyses of psychiatric disorders have 

also provided consistent evidence that these three disorders share substantial genetic risk at 

common variation level (Lee et al., 2021). Based on these observations, we sought to investigate 

the source of increased common risk variation burden of bipolar disorder and major depressive 

disorder, two disorders with prominent affective features but also with strong genetic correlation 

with schizophrenia, in members of multiplex schizophrenia families. 

 Our results indicate that members of multiplex schizophrenia families, including the 

unaffected individuals, have an increased burden of common risk variation conferring risk to 

bipolar disorder compared to ancestry matched population controls. With the exception of 

unaffected relatives, we also observe that multiplex schizophrenia families have an increased 

burden of common risk variation conferring risk to major depressive disorder compared to 

ancestry matched population controls. We used GWAS-by-subtraction to disentangle bipolar 

disorder and major depressive disorder polygenic risks into two underlying genetic factors that 

they share with schizophrenia due to genetic correlation which we called SCZ factors, and 

genetic factors unique to them, which we called Affective factors, and our results suggest that 

increased polygenic risks for these two disorders in multiplex schizophrenia families is largely 

driven by part of the genetic liability that these two disorders share with schizophrenia due to 

genetic correlation. This observation is in agreement with previous epidemiological findings that 

show significant increase in the incidence of psychotic, but not affective disorders in relatives of 

patients with schizophrenia in multiplex families (Asarnow et al., 2001; Baron et al., 1983; 
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Kendler et al., 1985). While in addition to schizophrenia, non-schizophrenic psychotic disorders 

(Jablensky, 2001) also show significant familial aggregation in multiplex families (Kendler, 

McGuire, Gruenberg, Spellman, et al., 1993), affective or anxiety disorders are generally not 

considered to be on the same continuum as psychotic disorders (Kendler, McGuire, Gruenberg, 

O’Hare, et al., 1993b). Therefore, these results provide empirical genetic evidence in support of 

previous epidemiological findings in multiplex schizophrenia families by suggesting that 

although members of multiplex schizophrenia families have an increased polygenic risk burden 

for two disorders with prominent affective features, the source of this increased polygenic risk in 

a sample with high incidence of schizophrenia is largely due to strong genetic correlation 

between bipolar and/or major depressive disorder with schizophrenia. We also replicated these 

results in an independent sample of sporadic schizophrenia cases and showed that this 

observation is also generalizable to sporadic schizophrenia cases beyond multiplex families.  

 Using the MiXeR framework, we next quantified the polygenicity and polygenic overlap 

between the latent factors generated in this study. MiXeR has been used in recent years to 

quantify the polygenicity and the polygenic overlap between schizophrenia and other complex 

traits regardless of a genetic correlation (Ahangari, Everest, et al., 2022; W. Cheng et al., 2021; 

Smeland, Frei, Dale, et al., 2020). In agreement with previous findings (Frei et al., 2019), we 

first showed that schizophrenia shows substantial polygenic overlap with bipolar disorder and 

major depressive disorder at common variation level. Next, we showed that while SCZ and 

Affective factors underlying bipolar disorder and major depressive disorder have a substantial 

overlap, and SCZ factor appears to be more polygenic than Affective factor in bipolar disorder, 

while SCZ factor appears to be less polygenic than Affective factor in major depressive disorder. 

We note that this observation is expected, as previous findings show that while schizophrenia is 
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more polygenic than bipolar disorder, major depressive disorder is considered to be more 

polygenic than either bipolar disorder or schizophrenia (Holland et al., 2020). These results 

suggest that although both bipolar disorder and major depressive disorder have prominent 

affective features in their etiology, the polygenic signals conferring risk to affective features of 

major depressive disorder appear to be more polygenic than bipolar disorder.  

 We used an extension of standard TDT, called pTDT to investigate whether polygenic 

risks for bipolar disorder, major depressive disorder, and their shared and unique genetic factors 

are over-transmitted from parents to probands. Children are expected to inherit half of their 

parents’ risk alleles and the transmission disequilibrium test (Spielman et al., 1993) queries 

whether a genetic variant (or aggregate polygenic scores in case of pTDT) is significantly over-

transmitted from parents to probands. In addition to being robust against population 

stratification, pTDT is also robust to different sources of unmeasured biases such as 

socioeconomic status or environmental influences since matched, un-transmitted chromosomes 

in families are employed as controls. In agreement with expectation and prior family studies 

(Rees et al., 2020), polygenic liability to schizophrenia was over-transmitted from parents to 

probands in the ISHDSF sample, while we observed no over-transmission of polygenic liability 

to LDL which increases the risk to cardiovascular diseases with no direct correlation or causation 

to psychiatric disorders. Next, we showed that univariate bipolar disorder and major depressive 

disorder polygenic risks are also significantly over-transmitted from parents to probands in the 

ISHDSF sample, indicating that the proband’s polygenic risks for these two disorders were on 

average higher than that of their parents. Disentangling the polygenic risks using genomicSEM 

further showed that only the portion of the polygenic risk that bipolar disorder or major 

depressive disorder share with schizophrenia due to genetic correlation is over-transmitted from 
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parents to probands, while no over-transmission of the affective portion of the risk unique to 

them was observed. Members of multiplex schizophrenia families show higher incidence of 

psychotic, but not affective disorders compared to the general population, making these 

observations consistent with schizophrenia transmission through some non-psychotic or 

unaffected family members in the ISHDSF sample (Ahangari et al., 2022; Käkelä et al., 2014; 

Yang et al., 2010). 

Other family and pedigree studies of psychiatric disorders have also demonstrated the 

presence of an increased cross-disorder polygenic risk for psychiatric disorders. For example, 

Andlauer and colleagues (Andlauer et al., 2021) analyzed multiplex bipolar disorder families 

(N=395) consisting of 166 bipolar disorder and 78 major depressive disorder cases and showed 

that familial bipolar disorder cases and their unaffected relatives, had an increased PRS for 

bipolar disorder and schizophrenia compared to population controls. Another study that used a 

densely affected psychiatric pedigree (N=418) (Szatkiewicz et al., 2019) showed an increased 

schizophrenia PRS in affected members compared to unaffected members and population 

controls. De Jong and colleagues (de Jong et al., 2018) also used a dense pedigree (N=300) with 

bipolar disorder and major depressive disorder cases and showed nominally significant bipolar 

disorder and schizophrenia PRS in affected members compared to unaffected members and 

population controls. In contrast to the findings from families with multiple bipolar disorder, 

major depressive disorder, or schizophrenia cases, Halvorsen and colleagues (Halvorsen et al., 

2021) analyzed a densely affected pedigree (N=122) with Tourette syndrome, a 

neurodevelopmental disorder characterized by recurrent nonrhythmic tics that shows significant 

genetic correlation with obsessive-compulsive disorder and attention deficit hyperactivity 

disorder (Arnold et al., 2018; Demontis et al., 2019). While a significantly increased PRS for 
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Tourette syndrome were observed in cases compared to controls, they did not show a 

significantly increased cross-disorder PRS for obsessive compulsive disorder or attention deficit 

hyperactivity disorder in cases compared to controls. This apparent lack of cross-disorder PRS 

loading in families with Tourette syndrome cases could reflect the lower power of obsessive-

compulsive disorder and attention deficit hyperactivity disorder GWAS compared to bipolar 

disorder or major depressive disorder. Alternatively, there may be important differences in the 

genetic architecture of neurodevelopmental disorders such as Tourette syndrome that 

differentiates their polygenic profile from other major psychiatric disorders such as 

schizophrenia which warrants further investigation. Here, we show that similar to the studies 

noted above, members of multiplex schizophrenia families analyzed here (N=1,005) also have an 

increased cross-disorder polygenic risk for correlated psychiatric disorders. Furthermore, our 

PRS profiling in the full sample of multiplex schizophrenia families, in combination with pTDT 

results in a subset of families, provide empirical genetic evidence that the source of increased 

cross-disorder polygenic risk for bipolar disorder and major depressive disorder in multiplex 

schizophrenia families is largely attributable to the portion of the genetic risk that these two 

disorders share with schizophrenia. Despite distinct manifestations of psychotic and affective 

illnesses, these two separate axes of mental illness share significant genetic portions at common 

risk variation level and our results offer new insights into the nature of the elevated risk for 

affective disorders such as bipolar disorder and major depressive disorder in multiplex 

schizophrenia families. 

We note that although GWAS-by-subtraction can be extended from bivariate to 

multivariate models, we opted to use two separate bivariate models in this study. This is due to 

our specific hypothesis about bipolar disorder and major depressive disorder as two separate 



65 
 

disorders with varying degrees of affective and psychotic features in their symptomatology. 

Additionally, caution is warranted when including more phenotypes in a Cholesky 

decomposition due to the sample size and power limitations of current GWAS results in 

psychiatric disorders. For example, if we extended models from two bivariate models to a single 

multivariate model and subtracted out both bipolar disorder and major depressive disorder 

signals from schizophrenia in a single model, we may be left with inadequate signals for the 

affective portions of the risks since a large portion of signals would be subtracted out due to 

strong genetic correlation among these three disorders. As the sample size and power of GWAS 

for psychiatric disorders increases, future work could extend the bivariate models to multivariate 

models in order to empirically test for this.  

The analyses presented in this chapter should be interpreted in the context of some 

limitations. The predictive power of current PRS methods is mostly limited to individuals of 

European ancestry. As cross-ancestry PRS methods become more sophisticated and samples of 

multiplex families from more diverse populations become available, we could replicate these 

findings in ancestrally diverse multiplex families. Similarly, testing the predictive power of SCZ 

and Affective factors in independent schizophrenia, bipolar disorder, and major depressive 

disorder cohorts could provide further genetic evidence in support of the derived factors from 

genomicSEM models. While we did not have access to an independent bipolar disorder and 

major depressive disorder cohorts, we were able to show that SCZ factors underlying bipolar 

disorder and major depressive disorder can significantly distinguish between schizophrenia cases 

and controls from the ISGC cohort. Future work could also test the predictive power of SCZ and 

Affective factors in independent bipolar disorder and major depressive disorder cohorts. Some 

case definitions in the ISHDSF sample (e.g the broad case definition), have a lower number of 
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subjects, which may potentially bias some of the results due to lower power. We addressed this 

potential issue by repeating the PRS analyses by grouping the subjects in a concentric manner as 

described in the original ISHDSF publication (Kendler et al., 1996) The concentric comparison 

versus population controls shown in Table 12 suggests a similar patterns of PRS enrichment, 

indicating that lower numbers of subjects in some of the case definitions is unlikely to be a 

source of bias for the central findings of this study.  

Table 12: Concentric comparison of GWAS-by-subtraction and univariate bipolar and major depressive disorder 
PRS in the ISHDSF sample versus population controls. p-values were adjusted using the holm method in R. 

Narrow + Intermediate  
PRS P-value Adjusted P-value 
BIP 2.44E-24 2.68E-23 
SCZ factor in BIP 1.51E-59 2.27E-38 
Affective factor in BIP 0.749 1 
MDD 6.43E-08 4.50E-07 
SCZ factor in MDD 1.43E-55 1.86E-34 
Affective factor in MDD 0.0931 0.5586 

Narrow + Intermediate + Broad  
PRS P-value Adjusted P-value 
BIP 1.77E-25 2.12E-24 
SCZ factor in BIP 1.44E-67 2.30E-46 
Affective factor in BIP 0.475 1 
MDD 3.01E-08 2.41E-07 
SCZ factor in MDD 1.21E-58 1.69E-41 
Affective factor in MDD 0.219 0.876 

Narrow + Intermediate + Broad + Very Broad 
PRS P-value Adjusted P-value 
BIP 3.19E-24 3.19E-23 
SCZ factor in BIP 4.83E-73 8.69E-52 
Affective factor in BIP 0.572 1 
MDD 4.60E-09 4.14E-08 
SCZ factor in MDD 8.69E-69 1.48E-47 
Affective factor in MDD 0.148 0.74 
 

Given that environmental factors have not been assessed here, future analyses could 

integrate environmental influences unique to the families to further elucidate the role of 
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environmental factors on the elevated polygenic risk for bipolar disorder and major depressive 

disorder in multiplex schizophrenia families. Current PRS methods are limited to common risk 

variation in the genome and omit important genetic risk factors such as structural and copy 

number variation in the genome. Despite sparse evidence for the involvement of rare risk 

variation in the genetic architecture of major depressive disorder (Cheng et al., 2022) and bipolar 

disorder (Palmer et al., 2022) at current sample sizes, copy number variants in the genome often 

show strong pleiotropy among psychiatric disorders (Marshall et al., 2017b). Finally, due to the 

sample collection and genotyping strategies, not all the multiplex families have full parent-

offspring genotypic or phenotypic information available. Therefore, the pTDT analyses results 

presented here should be interpreted with the caveat that only 41 families out of the full sample 

of 257 had full parent-offspring and genotype information available. 

In conclusion, in this chapter we showed that in addition to increased burden of common 

risk variation conferring risk to schizophrenia (Ahangari, Gentry, et al., 2022), members of 

multiplex schizophrenia families studied here also have an increased polygenic vulnerability to 

bipolar disorder and major depressive disorder. However, we further show that this observation 

is likely to be largely attributable to part of the genetic risk that these two disorders share with 

schizophrenia due to their genetic correlation, rather than the affective portion of the genetic risk 

unique to these two disorders. Therefore, these results suggest that a complete interpretation of 

elevated cross-disorder PRS across correlated psychiatric disorders in multiplex families requires 

consideration of the relative contribution of the shared and unique genetic factors to account for 

the known genetic correlations across psychiatric disorders.   
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CHAPTER IV 

 
The relationship between polygenic risk scores and symptom dimensions 

of schizophrenia and schizotypy in multiplex schizophrenia families  

4.1 Abstract 

Psychotic disorders and schizotypal traits aggregate in the relatives of probands with 

schizophrenia. It is currently unclear how variability in symptom dimensions in schizophrenia 

probands and their relatives is associated with polygenic liability to psychiatric disorders. In this 

study, we investigated whether PRS can predict symptom dimensions in members of multiplex 

schizophrenia families. The largest GWAS datasets for schizophrenia, bipolar disorder, and 

major depressive disorder were used to construct PRS in 861 subjects from the ISHDSF sample. 

Symptom dimensions were derived using the OPCRIT in subjects with a history of a psychotic 

episode, and the SIS in subjects without a history of a psychotic episode. Mixed-effects linear 

regression models were used to assess the relationship between PRS and symptom dimensions 

across the psychosis spectrum. Our results indicate that schizophrenia PRS is significantly 

associated with negative/disorganized symptom dimension in psychotic (p = 2.31 × 10−4) and 

negative dimension in non-psychotic (p = 1.42 × 10−3) subjects. Bipolar disorder PRS is 

significantly associated with manic symptom dimension in psychotic subjects (p = 3.70 × 10−4). 

No association with major depressive disorder PRS was observed. These findings suggest that 

polygenic liability to schizophrenia is associated with higher negative/disorganized symptoms in 

psychotic and negative symptoms in non-psychotic subjects in multiplex schizophrenia families. 

These results provide genetic evidence in support of the spectrum model of schizophrenia and 

support the view that negative and disorganized symptoms may have greater genetic basis than 

positive symptoms, making them better indices of familial liability to schizophrenia. 
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4.2 Introduction 

Schizophrenia is a clinically heterogeneous psychiatric disorder with a population 

prevalence of ~ 1% (Saha et al., 2007). In the past decade, GWAS, copy number variation, and 

rare variant studies have significantly improved our understanding of the genetic basis of 

schizophrenia (Marshall et al., 2017; Singh et al., 2022; Trubetskoy et al., 2022). Due to the 

heterogenous manifestation of schizophrenia symptoms, studies have attempted to capture this 

clinical heterogeneity in terms of symptom dimensions derived from factor analyses. Although 

these derived dimensions vary across studies, they often result in positive, negative/disorganized, 

and affective dimensions (Wickham et al., 2001). 

In recent years, the relationship between aggregate common risk variation indexed by 

PRS and clinical dimensions of schizophrenia has garnered much attention. Early studies using 

the first wave of PGC-SCZ GWAS found no association between schizophrenia PRS and 

symptom dimensions, likely due to the smaller sample size and lower power of the first wave of 

PGC-SCZ GWAS (Derks et al., 2012). Recent analyses using the second wave of PGC-SCZ 

GWAS have found significant associations between schizophrenia PRS and negative and 

disorganized dimensions, suggesting that polygenic liability to schizophrenia can explain part of 

the variance in negative and disorganized symptoms (Bigdeli et al., 2017; Ruderfer et al., 2018). 

Most recently, a study in a sample of schizophrenia and schizoaffective cases (Smigielski et al., 

2021) showed that PGC3-SCZ PRS is also significantly associated with dimensions from the 

Positive and Negative Syndrome Scale. 

In addition to the heterogeneous manifestation of schizophrenia, some relatives of 

schizophrenia probands, though never psychotic, exhibit clinical features that closely resemble 

those observed in their ill relatives (Kendler, 1995). In the Danish Adoption Study of 
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schizophrenia, these symptoms and signs differentiated the relatives of schizophrenia probands 

from controls and were later combined into the classification of schizotypal personality disorder 

in the DSM-III (Kety et al., 1975). Since then, considerable evidence from family, adoption, and 

twin studies suggests that schizotypal traits aggregate in relatives of schizophrenia probands 

(Fanous et al., 2001). While earlier studies have linked specific genes to schizotypal traits 

(Meller et al., 2019), the relationship between schizophrenia PRS and schizotypal traits has not 

been fully established (Nenadić et al., 2020). Recently, subclinical phenotypes such as psychotic-

like experiences have been proposed to be used as proxies to capture subclinical liability to 

psychosis. For example, analysis of the UK Biobank cohort shows that psychotic-like 

experiences have pleiotropic association with polygenic liability to schizophrenia and other 

psychiatric and neurodevelopmental disorders (Legge et al., 2019). However, these findings 

indicate that unlike schizotypal traits which significantly aggregate in the relatives of 

schizophrenia probands, psychotic-like experiences are not specific to schizophrenia. This is 

further strengthened by studies showing that rates of psychotic-like experiences do not differ 

significantly between relatives and non-relatives of schizophrenia patients in clinically 

ascertained samples (Landin-Romero et al., 2016). 

Subjects ascertained from multiplex schizophrenia families represent the upper bounds of 

schizophrenia risk in the population, and a major question is the extent to which symptom 

severity in schizophrenia can be attributed to genetic differences among subjects. We have 

previously shown that members of the ISHDSF (Kendler et al., 1996) have an increased PRS for 

schizophrenia, bipolar disorder, and major depressive disorder compared to population controls 

(Ahangari et al., 2022). In this study, we sought to examine the differential relationship between 

PRS for these three major psychiatric disorders, and quantitative measurement of symptom 
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severity in the ISHDSF sample. We hypothesized that by using a well-ascertained sample of 

multiplex schizophrenia families, we will be able to identify associations between schizophrenia 

PRS and core schizophrenia symptom dimensions in psychotic subjects, while also maximizing 

power to uncover specific associations between schizophrenia PRS and schizotypal dimensions 

in non-psychotic subjects in the families. To the best of our knowledge, this study is the first that 

aims to establish a relationship between schizophrenia PRS and symptom dimensions in 

schizophrenia cases and their relatives across the extended psychosis spectrum. 

4.3 Methods 

Irish Study of High-Density Multiplex Schizophrenia Families (ISHDSF)  

Details about the sample collection and ascertainment for the ISHDSF sample is provided 

in chapter two.  

Symptom dimensions in subjects with a history of a psychotic episode 

For subjects with a lifetime occurrence of a psychotic episode (N=539), The OPCRIT 

(McGuffin et al., 1991) was completed based on the review of detailed hospital records and 

interviews to assess the symptom dimensions. A full description of the factor analysis of 

OPCRIT items in the ISHDSF sample is provided elsewhere (Fanous et al., 2005). Briefly, 55 of 

the 75 items of the OPCRIT were entered into the factor analysis. These items were selected 

because they represent signs and symptoms rather than the course of illness. Five factors were 

derived, and factor-derived scores were generated. These five factors were identified as 1) 

negative/disorganized, 2) hallucinations, 3) delusions, 4) manic symptoms, and 5) depressive 

symptoms. The full list of items and their loadings are provided in Table 13 below. 
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Table 13: 55 items used in the factor analysis of OPCRIT data. Factor loadings of OPCRIT items onto the 5 
dimensions. Items highlighted with an asterisk are the disorganized items.   

Factor Item Loading 

Negative/ 
Disorganized 

Dimension 

1. Bizarre behavior* 0.538 
2. Catatonia* 0.544 

3. Speech difficult to understand* 0.623 
4. Incoherent 0.842 

5. Positive formal thought disorder* 0.621 
6. Negative formal thought disorder 0.777 

7. Restricted affect 0.679 
8. Blunted affect 0.817 

9. Inappropriate affect* 0.6 
10. Rapport difficult 0.815 

11. Information not credible 0.813 
12. Deterioration from premorbid level of function 0.783 

Delusions 
Dimension 

13. Persecutory delusions 0.725 
14. Well-organized delusions 0.707 

15. Delusions of influence 0.709 
16. Bizarre delusions 0.86 

17. Widespread Delusions 0.806 
18. Delusions of passivity 0.944 

19. Thought insertion 0.898 
20. Thought withdrawal 0.707 
21. Thought broadcast 0.723 

Hallucinations 
Dimension 

22. Delusions and hallucinations > 1week 0.971 
23. Persecutory/jealous delusions with hallucinations 0.968 

24. Third person auditory hallucinations 0.734 
25. Running commentary voices 0.659 

26. Abusive/accusatory/persecutory voices 0.796 
27. Other nonaffective auditory hallucinations 0.568 
28. Nonaffective hallucination in any modality 0.986 

Manic 
Dimension 

29. Affective symptoms predominate 0.866 
30. Grandiose delusions 0.482 

31. Elevated mood 0.962 
32. Irritable mood 0.711 

33. Excessive activity 0.935 
34. Reckless activity 0.842 
35. Pressured speech 0.953 

36. Increased self-esteem 0.879 
37. Thoughts racing 0.94 
38. Distractibility 0.892 

39. Reduced need for sleep 0.886 

  
Depressive 
Dimension 

40. Schizophrenia symptoms at the same time as affective symptoms  0.934 
41. Dysphoria 0.968 

42. Agitated activity 0.615 
43. Slowed activity 0.759 

44. Loss of energy/tiredness 0.886 
45. Loss of pleasure 0.897 

46. Poor concentration 0.826 
47. Excessive self-reproach 0.865 

48. Suicidal ideation 0.724 
49. Initial insomnia 0.863 

50. Early morning waking 0.869 
51. Excessive sleep 0.523 
52. Poor appetite 0.904 
53. Weight loss 0.86 

54. Increased appetite 0.487 
55. Weight gain 0.489 
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Symptom dimensions in subjects without a history of a psychotic episode  

For subjects without a lifetime occurrence of a psychotic episode (N=322), the SIS 

(Kendler et al., 1989) was used to assess schizotypal signs and symptoms across the psychosis 

spectrum. The items used included the DSM-III-R major signs and symptoms of schizotypal 

personality disorder. The SIS was originally developed for family studies of schizophrenia in 

Ireland (Kendler et al., 1993a). It includes signs and symptoms that are specific to schizotypy, 

with a contextual assessment of the pathological nature of symptoms that can significantly 

discriminate the relatives of schizophrenia probands from that of controls. Based on our 

hypothesis that schizotypy captures a continuous measure of liability to schizophrenia in 

relatives of schizophrenia probands, SIS was also administered to unaffected relatives to capture 

the symptom dimensions on the extended psychosis spectrum. 

Factor analysis of SIS in non-psychotic subjects 

Exploratory (EFA) and confirmatory (CFA) factor analyses were conducted to determine 

and verify the least number of factors explaining the maximum amount of variance in the SIS 

data, using the R packages Psych (Revelle, 2021) and OpenMx (Neale et al., 2016). The 

maximum likelihood polychoric correlations were estimated using the R package polycor (Fox, 

2022) to obtain the eigenvalues and eigenvectors, using a minimum eigenvalue of one as the cut 

off. EFA with two and three factors were conducted using an oblique and orthogonal rotation. 

The minimum cutoff for each indicator factor loadings was set at ≥ 0.3, considering only the 

highest loading if one indicator loaded into more than one factor. Two independent fits of CFA 

with two and three factors were implemented to corroborate the factor structure, and factor 

scores were generated using the ML method. 

Genotyping and Imputation 
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Details about genotyping and imputation are provided in chapter two.  

Polygenic risk score construction 

Details about PRS construction are provided in chapters two and three.  

Statistical Analyses 

As described in chapter two, to account for the family structure in the sample, GRM was 

constructed using LDAK (Speed et al., 2012) and included in the mixed models as a random 

effect. Sex, genotyping platform, genotyping sites, age at interview, and the top 10 principal 

components were also included as additional covariates. More information on the principal 

component analysis, covariates and handling of possible batch and site effects are also provided 

in chapter two. 

Association analyses were carried out using a two-step approach. First, mixed-effects 

linear regression analyses were performed using lmekin in R (Therneau, 2015). Given that the 

floor effect in some of the symptom dimensions could violate the assumptions of a linear 

regression (Cook & Manning, 2013), we also conducted mixed-effects quantile-regression 

analyses on dimensions that showed significant association with PRS using the qrLMM package 

in R (Galarza et al., 2017). Quantile regression is an extension of linear regression that estimates 

the effects at different locations in the distribution without the need to have normality 

assumptions met. In situations where the assumption of normality of the data may be violated 

(e.g., with an abundance of zero responses in the symptom measurements being analyzed here), 

the quantile regression method provides a more accurate estimation of centrality of the data at 

different locations in the distribution of symptom scores. While the mean is used as the measure 

of centrality in linear regression, the means of a selected number of pre-defined quantiles are 

used as the measure of centrality in quantile regression. We used three tau (τ) values 
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(0.25,0.5,0.75) as the quantiles, representing the lowest 25% (Q1), the lowest 50% (Q2), and the 

lowest 75% (Q3) of symptom severity scores, respectively. The nominal significance for all 

analyses was set at p < 0.05 and the p-values were adjusted for multiple testing using the Holm 

method. 

4.4 Results 

Sample structure  

Figure 18 below provides a visual representation of the diagnostic schema of the ISHDSF 

sample with their symptom information. Subjects in the Narrow case definition represent 

schizophrenia and poor-outcome schizoaffective disorder cases. Subjects in the Intermediate 

case definition represent cases with diagnoses of 

other psychotic disorders in the families. 

Symptom severity in these two case 

definitions were measured using 

OPCRIT. The Broad case definition 

includes subjects with a diagnosis of a 

psychiatric disorder that significantly 

aggregate in the relatives of schizophrenia probands. 

Symptom severity for these subjects was measured using OPCRIT or SIS, 

depending on whether an individual 

had a history of a psychotic episode. 

The Very Broad case definition includes any other psychiatric disorder present in the families. 

Symptom severity for these subjects, and unaffected relatives was measured using SIS. The full 

list of the psychiatric diagnoses in each case definition is provided in Tables 13-14.  

 

Very Broad (N = 137). 
OPCRIT = 0 
SIS = 137  
Any other psychiatric 
disorders  

Broad (N = 27). 
OPCRIT = 14 
SIS = 13 
Psychiatric disorders that 
significantly aggregate in the 
relatives of probands based 
on previous epidemiology 
work  

Intermediate (N = 68). 
OPCRIT = 68 
SIS = 0  
Schizotypal, schizophreniform, 
delusional disorders, atypical 
psychosis and good-outcome 
SAD  

Narrow (N = 457).  
OPCRIT = 457 
SIS = 0 
Schizophrenia, poor-outcome 
SAD, and simple schizophrenia  

Unaffected relatives (N = 172).  
OPCRIT = 0 
SIS = 172 
Unaffected relatives in the 
families 

Figure 18: Concentric diagnostic schema of the ISHDSF sample 
with symptom information. SIS = Structured Interview for 
Schizotypy. OPCRIT = Operational Criteria Checklist for 
Psychotic and Affective Illness. 
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Table 14: List of the diagnoses in narrow, intermediate, and broad case definitions with OPCRIT information 
available. 

Subjects with Operational Criteria Checklist for Psychotic Disorders (OPCRIT) Assessment  

Narrow (N=457) 

Schizophrenia N=261 
Schizophrenia Paranoid-type N = 60 

Schizophrenia Disorganized-type N = 62 
Schizophrenia Catatonic-type N = 11 

Schizophrenia Simple-type N = 7 
Poor-outcome schizoaffective disorder N = 56 

    

Intermediate (N =68) 

Delusional disorder N = 4 
Psychotic disorder NOS N = 29 

Good-outcome schizoaffective disorder N = 28 
Schizophreniform N = 1  

Schizotypal personality disorder N = 6 
    

Broad (N=14) 
Bipolar disorder = 8 

Major depression with psychotic features N = 5 
Paranoid personality disorder = 1 

 

Table 15: List of the diagnoses in narrow, intermediate, and broad case definitions with OPCRIT information 
available. 

Subjects with Structured Interview for Schizotypy (SIS) Assessment  

Broad (N=13) 
Delusional disorder (N=2) 

Avoidant personality disorder (N=9) 
Schizoid personality disorder (N=2) 

    

Very Broad (N=137) 

Bipolar disorder (N =6) 
Generalized anxiety disorder (N=22) 

Major depressive disorder (N=77) 
alcohol abuse + alcohol dependence (N=25) 

Panic disorder (N=6) 
 

Factor analysis of schizotypy symptoms in non-psychotic subjects 

Factor analysis of SIS is shown in Figure 19. Two eigenvalues were above the minimum 

cut off value of one, suggesting the factor solution of retaining two factors (Figure 19A).  The 
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EFA two-factor model fit under an oblique rotation explained the same cumulative variance 

(0.49) as the two-

factor orthogonal 

rotation, with 

similar ranges for 

their factor loadings 

(0.5-0.8; Figure 

19B). An oblique 

rotation was selected to allow for 

correlation (0.51) between the two factors. The CFA models supported the two-factor solution 

(3-factor: -2lnL=4842.22, AIC=4920.22; 2-factor: -2lnL=4809.67, AIC=4883.67, Δχ2 (2) =-32.55, 

p=1). The two schizotypy dimensions were discernible as positive and negative dimensions of 

schizotypy (Figure 18B). The model fits is provided in Table 16.  

Table 16: Model fit comparisons for the CFA on SIS data. CFA=Confirmatory factor analysis. Ep= estimated 
parameters. LL=Log-likelihood. AIC=Akaike’s information criterion. 

Base Comparison Ep Minus2LL Df CFI RMSEA AIC diffLL Diffdf P 
CFA3 factors  39 4842.219 3066 0.82

3 
0.096 4920.219    

CFA 3 factors CFA 2 factors 37 4809.670 3068 0.90
3 

0.068 4883.670 -
32.548 

2 1 

 

Association of polygenic risks with symptom dimensions in psychotic subjects 

Figure 20A shows the results for the associations between PRS and OPCRIT symptom 

dimensions in psychotic subjects. The schizophrenia PRS was a significant predictor of the 

negative/disorganized symptom dimension (β = 0.198; 95% CI 0.099 - 0.305; P = 2.31 × 10−4). 

Bipolar disorder PRS was a significant predictor of the manic symptom dimension (β = 0.181; 

95% CI 0.061 - 0.241; P = 3.70 × 10−4). Both schizophrenia and major depressive disorder PRS 
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Figure 19: Factor analysis of SIS in the ISHDSF sample. A. Scree plot. 
B. Path diagram of the factor structure of SIS. Red line in panel A 
represents the eigenvalue of 1 used as the cut-off. 
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also showed suggestive associations with delusional and depressive symptoms respectively, but 

these did not survive multiple testing corrections. To narrow down the association between 

schizophrenia PRS and the negative/disorganized dimension, two additional mixed-effects linear 

regression analyses were carried out by separating the symptoms into two groups representing 

negative and disorganized symptoms separately. A significant association was observed for both 

negative only (β = 0.188; 95% CI 0.081 - 0.291; p = 9.10 x 10-3) and disorganized only 

(β = 0.199; 95% CI 0.091 - 0.312; p = 1.41 x 10-5) symptoms. More information is provided in 

Table 17. 

Association of polygenic risks with symptom dimensions in non-psychotic subjects 

Figure 20B shows the results for the association of polygenic risks with SIS dimensions 

in non-psychotic subjects. The schizophrenia PRS was found to be a significant predictor of 

negative symptom dimension (β = 0.186; 95% CI 0.080 - 0.0.289; P = 1.42 × 10−3), while no 

significant association was observed with positive symptom dimension. Additionally, bipolar 

disorder and major depressive disorder PRS showed no association with SIS dimensions. Full 

results are provided in Table 17.  
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Figure 20: Association of PRS with symptom dimensions in the ISHDSF sample. ** Significant after 
multiple testing correction. * Nominally significant. Error bars represent 95% CI of the β value. 
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Quantile regression analysis of the significant associations 

Figure 21 shows the follow-up mixed-effects quantile regression analyses for the three 

dimensions that showed significant association with the polygenic risks. The schizophrenia PRS 

is significantly associated with the negative/disorganized symptom dimension in psychotic 

subjects at first (t = 2.47, p = 8.16 × 10−3), second (t = 2.33 p = 1.14 × 10−2) and third (t = 2.55 p 

= 6.76 × 10−4) quantiles of symptom severity. In contrast, schizophrenia PRS is significantly 

associated with negative symptom dimension in non-psychotic subjects only at the third quantile 

(t = 3.29 p = 6.3 × 10−4), while a suggestive association was also observed at the second 

quantile. Similarly, bipolar disorder PRS is also significantly associated with manic symptoms in 

psychotic subjects only at the third quantile (t = 3.14 p = 5.0 × 10−3). Full quantile regression 

results are reported in Table 17.  
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Figure 21: Quantile regression analysis of symptom dimensions that show significant association with 
polygenic risks. Three quantiles were tested (Q1=0.25, Q2=0.5, Q3=0.75), corresponding to the first, second 
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Table 17: Mixed-effects linear regression results for association between PRSs and symptom dimensions. Adjusted 
p-values were generated using the Holm method in R. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PRS Symptom Dimensions β SE p -value Adjusted p -value

Negative symptoms 0.19753552 0.04987663 0.000011 2.31E-04
Delusional symptoms 0.1320749 0.04921818 0.0023 0.0937

Hallucinations 0.08097746 0.04971806 0.078 0.2932
Manic symptoms 0.03094654 0.05191875 0.53 1

Depressive symptoms 0.02324251 0.05186413 0.96 1

Negative symptoms 0.1857 0.0634 0.000084 1.42E-03
Positive symptoms 0.1123 0.0635 0.184 1

Negative symptoms 0.04565756 0.04832537 0.13 1
Delusional symptoms 0.0608749 0.04793015 0.17 1

Hallucinations -0.0066352 0.04791145 0.76 1
Manic symptoms 0.18113907 0.0480533 0.000015 3.70E-04

Depressive symptoms 0.08657643 0.04915946 0.15 1

Negative symptoms 0.0544 0.0564 0.023 1
Positive symptoms 0.0362 0.0574 0.064 1

Negative symptoms -0.095136 0.04868627 0.098 1
Delusional symptoms -0.0357596 0.04852334 0.72 1

Hallucinations -0.0253366 0.04843669 0.73 1
Manic symptoms 0.07828989 0.04985869 0.21 1

Depressive symptoms 0.1664895 0.04929699 0.0041 0.1138

Negative symptoms 0.04013 0.0601 0.091 1
Positive symptoms 0.0352 0.0605 0.36 1

Structured Interview for Schizotypy (SIS) symptom dimensions

Structured Interview for Schizotypy (SIS) symptom dimensions

SCZ PRS

BIP PRS

MDD PRS

Operational Criteria Checklist for Psychotic Illness (OPCRIT) Symptom dimensions

Structured Interview for Schizotypy (SIS) symptom dimensions

Operational Criteria Checklist for Psychotic Illness (OPCRIT) Symptom dimensions

Operational Criteria Checklist for Psychotic Illness (OPCRIT) Symptom dimensions
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Table 18: Mixed-effects quantile regression results for association between PRSs and symptom dimensions. 
Adjusted p-values were generated using the Holm method in R. 

 
 

 

PRS Symptom Dimensions Tau Coefficient SE t-value p -value Adjusted p -value

0.25 0.50898 0.20536 2.47844 1.36E-04 8.16E-03
0.5 0.49937 0.21341 2.33995 1.97E-03 1.14E-02
0.75 0.56876 0.2224 2.55743 1.09E-05 6.76E-04
0.25 0 0.2783 0 1.00E+00 1
0.5 0.48873 0.26779 1.82502 6.87E-02 1
0.75 0.6204 0.22939 2.70463 7.09E-03 0.050413
0.25 0.30245 0.15111 2.00146 0.4594 1
0.5 0.37412 0.13256 2.82229 0.498 1
0.75 0.30651 0.13095 0.34058 0.1968 1
0.25 0 0.15606 0 1 1
0.5 0 0.19144 0 1 1
0.75 -0.261 0.35465 -0.73593 0.46215 1
0.25 0 0.35992 0 1 1
0.5 0.27213 0.43388 0.6272 0.53084 1
0.75 0.38704 0.7228 0.53547 0.59258 1

0.25 0.07318 0.06327 1.15668 0.24822 1
0.5 0.14287 0.07212 1.98096 4.84E-02 1
0.75 0.31668 0.0715 3.29 1.00E-05 6.30E-04
0.25 0.05863 0.05922 0.99008 0.32284 1
0.5 0.1523 0.06831 2.37602 1.81E-02 0.95718
0.75 0.34591 0.07194 4.8048 8.24E-03 0.4532

0.25 0 0.19147 0 1 1
0.5 0 0.22117 0 1 1
0.75 0 0.22589 0 1 1
0.25 0 0.06725 0 1 1
0.5 0.15145 0.06985 2.16814 0.3066 1
0.75 0 0.0763 0 1 1
0.25 0 0.16538 0 1 1
0.5 0 0.13158 0 1 1
0.75 -0.19611 0.12863 -1.52465 0.12804 1
0.25 0 0.1678 0 1 1
0.5 0.47935 0.17955 2.6697 7.86E-03 0.44016
0.75 1.37394 0.22371 3.14172 8.20E-05 5.00E-03
0.25 0 0.32312 0 1 1
0.5 0.5109 0.3997 1.27823 0.20182 1
0.75 0.55366 0.66223 1.11996 0.26332 1

0.25 0.0252 0.04791 0.52605 0.5992 1
0.5 0.1686 0.05802 0.90572 0.391 1
0.75 0.35392 0.06083 0.81778 0.17827 1
0.25 0.05863 0.05922 0.99008 0.32284 1
0.5 0.1623 0.06831 0.37602 0.10806 1
0.75 0.34591 0.07194 0.80848 0.12871 1

0.25 0 0.19482 0 1 1
0.5 -0.39424 0.1994 -1.97712 0.4863 1
0.75 0 0.21209 0 1 1
0.25 -0.08083 0.07735 -1.04502 0.29657 1
0.5 0 0.08239 0 1 1
0.75 0 0.07445 0 1 1
0.25 0 0.17495 0 1 1
0.5 0 0.139 0 1 1
0.75 -0.26326 0.12139 -2.16866 0.3062 1
0.25 0 0.14832 0 1 1
0.5 0 0.17884 0 1 1
0.75 0.63826 0.25476 2.5039 1.26E-02 0.67932
0.25 0 0.36156 0 1 1
0.5 0.67795 0.43051 1.57476 0.11601 1
0.75 1.5665 0.64002 2.44759 1.48E-03 0.087084

0.25 0.03858 0.04753 0.81166 0.41756 1
0.5 0.09275 0.05877 0.57802 0.11549 1
0.75 0.14698 0.08375 0.75504 0.08016 1
0.25 0.05863 0.05922 0.99008 0.32284 1
0.5 0.1623 0.06831 0.37602 0.11806 1
0.75 0.34591 0.07194 0.80848 0.30824 1

MDD PRS

Depressive

Operational Criteria Checklist for Psychotic Illness (OPCRIT) Symptom dimensions

Negative 

SCZ PRS

BIP PRS

Delusional

Hallucinations

Manic 

Depressive

Operational Criteria Checklist for Psychotic Illness (OPCRIT) Symptom dimensions

Negative 

Delusional

Hallucinations

Manic 

Negative 

Positive

Structured Interview for Schizotypy (SIS) symptom dimensions

Structured Interview for Schizotypy (SIS) symptom dimensions

Negative 

Positive

Structured Interview for Schizotypy (SIS) symptom dimensions

Depressive

Negative 

Positive

Operational Criteria Checklist for Psychotic Illness (OPCRIT) Symptom dimensions

Negative 

Delusional

Hallucinations

Manic 
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4.5 Discussion 

In this study, we investigated the relationship between PRS for three major psychiatric 

disorders and symptom dimensions in multiplex schizophrenia families. Our results indicate that 

polygenic liability to schizophrenia is significantly associated with increased 

negative/disorganized symptoms in psychotic subjects, and negative symptoms in non-psychotic 

subjects. These findings suggest that polygenic liability to negative and disorganized symptoms 

appear to be specific to schizophrenia, as no significant association between these core 

schizophrenia symptoms and bipolar disorder or major depressive disorder PRS were observed. 

 Examination of the scree plot of schizotypy factor structure suggested that a 2-factor 

solution fit the data best. The symptoms and signs included in each dimension were consistent 

with the observation that schizotypal traits are generally divided into positive and negative 

dimensions (Siever & Gunderson, 1983). While the use of self-report questionnaires in 

combination with interview-based measures is likely to provide a more comprehensive 

assessment of schizotypy, previous work in another family sample from Ireland suggests that 

interview-based scales have significantly greater predictive power than self-report measures, in 

particular for negative symptoms (Kendler et al., 1996). Self-report measures of schizotypy may 

be inherently limited in their ability to assess certain signs and symptoms. For example, if an 

individual has little insight into their guardedness in answering the questions, asking them to 

describe this characteristic in a self-report questionnaire may be ineffective. We attribute our 

ability to detect a significant association between schizophrenia PRS and the negative dimension 

of schizotypy to the increased power of PGC3-SCZ derived PRS, and the use of interview-based 

measurement of schizotypy. It is also possible that our use of a family-based sample (with a high 

incidence of psychotic disorders, worse premorbid functioning (Peralta et al., 1991) and 
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potentially more severe symptoms (Fanous et al., 2001)), instead of a population-based cohort 

also contributed to our ability to detect a significant association. We further note that the 

association of schizophrenia PRS with only the negative dimension of schizotypy is in agreement 

with previous epidemiological findings that show familial predisposition to schizophrenia in 

non-psychotic relatives of probands is likely to be better indexed by negative symptoms 

(Kendler, 1995). 

Our findings on the association between PRS and symptom dimensions in multiplex 

schizophrenia families provide new insights into the relationship between polygenic liability to 

schizophrenia and symptom dimensions across the psychosis spectrum. Previous studies have 

addressed the existence of a single continuum of liability for schizophrenia and schizotypy at the 

phenotypic level by showing that negative symptoms in psychotic probands were correlated with 

negative schizotypy symptoms in their non-psychotic relatives (Fanous et al., 2001). Our results 

further show that polygenic liability to schizophrenia is also significantly associated with 

negative/disorganized symptom dimension in psychotic subjects, and negative symptom 

dimension in their non-psychotic relatives in multiplex families. Familial aggregation of negative 

symptoms has been reported in several studies including the Danish Adoption Study of 

Schizophrenia (Kety et al., 1975), the Roscommon Family Study of Schizophrenia (Kendler, 

McGuire, Gruenberg, O’Hare, et al., 1993a), and Maudsley Twin Studies of Schizophrenia 

(Cardno et al., 2001). These findings are further reinforced by PRS examinations that show 

strong polygenic associations with negative symptoms (Bigdeli et al., 2017; Ruderfer et al., 

2018), while other studies have also reported polygenic associations with disorganized symptoms 

in schizophrenia (Fanous et al., 2012). Thus, our findings provide genetic evidence in support of 

previous epidemiological findings that negative and disorganized symptoms are likely to have a 
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greater familial basis than positive symptoms (Vassos et al., 2008), making them better indices 

of the familial liability to schizophrenia across the psychosis spectrum. This is further supported 

by studies that suggest the correlation between negative schizophrenia and schizotypal symptoms 

appears higher than the correlation between positive schizophrenia and schizotypal symptoms 

(Kendler, 1995). 

We note that the factor structure of OPCRIT in our sample differs slightly from other 

factor analyses of schizophrenia (Wickham et al., 2001). While hallucinations and delusions 

often load on a single factor called positive symptoms, they loaded on two distinct factors in our 

study. However, these results are supported by neurological studies that show etiological 

discontinuities between hallucinations and delusions (Shergill et al., 2000). Perhaps more 

importantly, negative and disorganized symptoms loaded on the same factor in our study instead 

of forming two distinct factors. While we acknowledge this as a potential limitation in our study, 

we note that this factor structure is consistent with our previous factor analysis in this sample 

using the Major Symptoms of Schizophrenia Scale (Kendler et al., 1997), as well as factor 

structures in other studies (Bigdeli et al., 2017; Fanous et al., 2012). To address this further, we 

narrowed down the loadings from the negative/disorganized factor into “negative only” and 

“disorganized only” symptoms and showed that while both negative and disorganized symptoms 

were still independently associated with schizophrenia PRS, this association appears stronger 

with the disorganized symptoms. This result is in agreement with the observation in another 

study that suggests while both negative and disorganized symptoms show a strong familial basis, 

disorganized symptoms are likely to have a more direct association with polygenic liability to 

schizophrenia (Fanous et al., 2012). 
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Our results also provide genetic evidence in support of the spectrum model of 

schizophrenia at the symptom level. Previous studies on symptom dimensions of schizophrenia 

have focused on sporadic schizophrenia cases (Derks et al., 2012; Nenadić et al., 2020; 

Smigielski et al., 2021). In contrast, we utilized a well-ascertained schizophrenia family sample 

with detailed interview-based symptom information to provide a full assessment of the 

relationship between polygenic liability to major psychiatric disorders and symptom dimensions 

across the psychosis spectrum. While we observed a significant association between 

schizophrenia PRS and negative/disorganized dimension in psychotic subjects, and negative 

dimension in non-psychotic subjects, no significant association between bipolar disorder or 

major depressive disorder polygenic risks and these core schizophrenia symptom dimensions 

was observed. This result suggests that, unlike schizophrenia PRS which shows specific 

associations with negative symptoms in multiplex schizophrenia families, polygenic liability to 

bipolar disorder or major depressive disorder lack the specificity for core schizophrenia symptom 

dimensions. 

The long-term prognosis of schizophrenia depends on the severity of negative symptoms, 

and a major question about the clinical heterogeneity of schizophrenia is the extent to which 

these clinical differences are attributable to genetic differences. Our findings suggest that 

polygenic liability to schizophrenia is associated with increased negative/disorganized symptoms 

in psychotic and negative symptoms in non-psychotic subjects from multiplex schizophrenia 

families. We further showed that in agreement with previous work, polygenic liability to 

schizophrenia appears to be more strongly associated with disorganized symptoms, while the 

quantile regression analyses suggest that the association between schizophrenia PRS and 

negative schizotypy in non-psychotic subjects appears to be strongest at the highest level of 
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symptom severity. Together, these findings across the extended psychosis spectrum provide 

genetic evidence for the spectrum model of schizophrenia at symptom level and corroborates 

previous epidemiological findings that show negative and disorganized symptoms are likely to 

have a greater genetic basis than positive symptoms, resulting in better indices of familial 

liability to schizophrenia. 

The analyses presented here should be interpreted in the context of some limitations. 

First, the number of subjects in this sample is modest. Therefore, future studies should replicate 

these findings in larger family samples. However, to the best of our knowledge, this is the largest 

family study to date that establishes a link between schizophrenia PRS and negative/disorganized 

symptoms across the psychosis spectrum. Second, the factor structure of schizophrenia 

symptoms in our sample differs slightly from other studies. These differences could be 

attributable to instruments, sample ascertainment, phase of illness, or the rotation used for 

determining the factors. Third, given that no follow-up assessment on the ISHDSF sample was 

conducted, we cannot conclusively rule out the possibility that the association between 

schizophrenia PRS and negative schizotypy dimension could be driven by some unaffected 

relatives who may have developed schizophrenia later in life. However, we note that of the 172 

unaffected relatives, only 11 are in the risk age group for developing schizophrenia (3 males 

between 18 to 25 and 8 females between 25 to 35), suggesting that this is an unlikely source of 

bias. Fourth, negative and disorganized symptoms are associated with cognitive deficits in 

schizophrenia. Given that no cognitive measurements were available, we also cannot rule out the 

possibility that the association between schizophrenia PRS and negative/disorganized symptoms 

in psychotic subjects might be driven by cognitive deficits. Fifth, PRS predictions are currently 

constrained to individuals of European ancestry. Thus, as sophisticated cross-ancestry PRS 
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methods become available, these findings should be replicated in ethnically and geographically 

diverse backgrounds. Furthermore, as current PRS methods exclude rare and structural variants, 

some potentially relevant rare and structural variants were omitted. Finally, we did not consider 

the role of neuroleptics in ameliorating the symptom severity in the subjects. 
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CHAPTER V 

 
Genome-wide analysis of schizophrenia and multiple sclerosis identifies 

shared genomic loci with mixed direction of effects 

5.1 Abstract 

Common genetic variants identified in GWAS show varying degrees of genetic pleiotropy across 

complex human disorders. Clinical studies of schizophrenia suggest that in addition to 

neuropsychiatric symptoms, patients with schizophrenia also show variable immune 

dysregulation. Epidemiological studies of multiple sclerosis, an autoimmune, neurodegenerative 

disorder of the central nervous system, suggest that in addition to the manifestation of 

neuroinflammatory complications, patients with multiple sclerosis may also show co-occurring 

neuropsychiatric symptoms with disease progression. In this study, we analyzed the largest 

available GWAS datasets for schizophrenia (N=161,405) and multiple sclerosis (N=41,505) 

using MiXeR and condFDR frameworks to explore and quantify the shared genetic architecture 

of these two complex disorders at common variant level. Despite detecting only a negligible 

genetic correlation (rG=0.057), we observe polygenic overlap between schizophrenia and 

multiple sclerosis, and a substantial genetic enrichment in schizophrenia conditional on 

associations with multiple sclerosis, and vice versa. By leveraging this cross-disorder 

enrichment, we identified 36 loci jointly associated with schizophrenia and multiple sclerosis at 

conjunctional FDR <0.05 with mixed direction of effects. Follow-up functional analysis of the 

shared loci implicates candidate genes and biological processes involved in immune response 

and B-cell receptor signaling pathways. In conclusion, this study demonstrates the presence of 

polygenic overlap between schizophrenia and multiple sclerosis in the absence of a genetic 

correlation and provides new insights into the shared genetic architecture of these two disorders 

at the common variant level. 
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5.2 Introduction 

In the last decade, GWAS have identified a large number of common genetic risk 

variants associated with complex human phenotypes (Visscher et al., 2017). Many genetic 

variants identified by GWAS exhibit varying degrees of genetic pleiotropy (Solovieff et al., 

2013), and investigating the nature of these shared genetic risks is important for improving our 

understanding of the etiology and underlying genetic architecture of complex human disorders. 

A widely used method for assessing the genetic relationship between two disorders is to estimate 

genetic correlation defined as the correlation coefficient of additive genetic effects between two 

disorders (Bulik-Sullivan et al., 2015a; Bulik-Sullivan et al., 2015b). However, genetic 

correlation estimates do not capture mixtures of effect directions across shared genetic variants, 

limiting application and interpretation. For example, only a negligible genetic correlation is 

observed between schizophrenia and brain morphology, however, many genome-wide significant 

loci are shown to be jointly associated with schizophrenia and brain morphology with mixed 

direction of effects not captured by genetic correlation estimates (Cheng et al., 2021). Recently 

developed methods can quantify polygenic overlap between two phenotypes in the absence of a 

genetic correlation and detect mixed effect directions (Andreassen et al., 2013; Frei et al., 2019). 

Utilizing such methods to jointly analyze complex human disorders with no direct genetic 

correlation, but purported dysregulation in similar biological systems, can improve statistical 

power for locus discovery, reveal biological connections, and provide better understanding of 

their etiology and potential treatment strategies.  

Schizophrenia is a severe psychiatric disorder with a population prevalence of ~ 1% 

(Saha et al., 2007). Twin, family, and adoption studies consistently estimate the heritability of 

schizophrenia to be ~0.7-0.8 (Cannon et al., 1998; Cardno & Gottesman, 2000; Heston, 1966; 



90 
 

Tienari et al., 2000), and the largest GWAS of schizophrenia to date have identified 287 loci 

robustly associated with schizophrenia and account for common variant schizophrenia 

heritability of ~0.24 (Trubetskoy et al., 2022). Across different waves of schizophrenia GWAS 

mega-analyses, the MHC region on chromosome 6 involved in the adaptive immune system is 

shown to be strongly associated with schizophrenia. In addition, schizophrenia GWAS loci are 

enriched for enhancers that are active in tissues related to immune functions (Ripke et al., 2014). 

Although many of these immune-related signals can be traced to the MHC region, some of these 

enrichments remain significant even after exclusion of the MHC region, demonstrating that these 

findings are not solely driven by the MHC region in the genome (Corvin & Morris, 2014). 

Furthermore, clinical studies of schizophrenia also suggest cytokine abnormalities in patients 

with schizophrenia (Arias et al., 2012; Hope et al., 2009). 

 Multiple sclerosis is a chronic, neurodegenerative disease of the central nervous system 

with evidence for both genetic and environmental risk factors (Goodin et al., 2021). Multiple 

sclerosis has a strong genetic component (de Jager et al., 2009; Patsopoulos et al., 2019; Roger 

Bobowick et al., 1978; Sadovnick et al., 1993), and the largest GWAS of multiple sclerosis to 

date has identified 32 MHC and 200 non-MHC loci associated with multiple sclerosis and 

accounts for common variant heritability of ~0.48 (Patsopoulos et al., 2019). In addition to the 

manifestation of neurological complications, patients with multiple sclerosis sometimes present 

co-occurring neuropsychiatric symptoms with disease progression (Murphy et al., 2017). For 

example, the rate of psychosis-like symptoms in multiple sclerosis patients is reported to be ~2-

4%, approximately three times higher than in the general population (Patten et al., 2005). 

However, these symptoms often follow the multiple sclerosis diagnosis and thus, the 

pathogenesis of these co-occurring neuropsychiatric symptoms remains elusive. 
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 Despite only a negligible genetic correlation between schizophrenia and multiple 

sclerosis (The Brainstorm Consortium. 2018), both schizophrenia and multiple sclerosis patients 

show varying degrees of immune and brain dysfunction, suggesting possible shared mechanisms. 

Additionally, a joint analysis of schizophrenia and multiple sclerosis common risk variation in 

the MHC region shows that the same alleles are found to be associated with schizophrenia and 

multiple sclerosis with opposite direction of effects (Andreassen et al., 2015). In the current 

study, we used the largest available schizophrenia (N=161,405) and multiple sclerosis 

(N=41,505) GWAS datasets to explore the shared genetic architecture of these two complex 

disorders by employing two different approaches. First, we applied MiXeR (Frei et al., 2019) to 

explore and contrast the genetic architecture of these two complex disorders, and to estimate the 

polygenic overlap between them in the absence of a genetic correlation. Second, we applied 

condFDR (Andreassen et al., 2013) to leverage the pleiotropic enrichment between these two 

disorders to increase statistical power for genomic loci discovery and to also identify overlapping 

loci. By using these statistical approaches, we aim to characterize and contrast the polygenic 

architecture of schizophrenia and multiple sclerosis, and to enhance our understanding of the 

underlying genetic mechanisms shared between these two disorders at common variant level. 

5.3 Methods 

Participants and GWAS data acquisition 

The schizophrenia GWAS summary statistics used in this study consists of 67,390 cases 

and 94,015 controls from the PGC-SCZ. The multiple sclerosis GWAS summary statistics from 

the International Multiple Sclerosis Genetics Consortium (IMSGC), consists of 14,802 cases and 

26,703 controls. Individuals in both studies were predominantly of European ancestry, and 

detailed descriptions on sample recruitment and subsequent GWAS analyses are available in the 
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original publications for schizophrenia (Trubetskoy et al., 2022), and multiple sclerosis 

(Patsopoulos et al., 2019). 

Statistical analyses 

LDSC was used to estimate the SNP heritability (h2SNP) and genetic correlation between 

schizophrenia and multiple sclerosis using the default settings. We applied Gaussian mixture 

modeling using univariate MiXeR (Holland et al., 2020) to 1) estimate the polygenicity of 

schizophrenia and multiple sclerosis (defined as π, representing the proportion of causal variants 

in each disorder), which is expressed as the fraction of the SNPs in the reference panel that have 

a non-null, true effect on the disorder, 2) estimate the discoverability of these causal variants 

which is defined as σ, representing the average effect size of the causal variants that shows mean 

strength of association, representing the mean strength of association, and 3) estimate the 

distribution of non-null causal variants associated with schizophrenia and multiple sclerosis. 

Next, we extended the model to bivariate MiXeR (Frei et al., 2019) to estimate the number of 

trait-specific and shared causal variants associated with schizophrenia and multiple sclerosis. We 

used SNPs from the European subset of the 1000 Genomes Phase 3 data (Auton et al., 2015) to 

compute MiXeR parameters. Due to intricate LD patterns and based on current 

recommendations, variants in the MHC region [GRCh37 6:26000000-34000000] and 

chromosome 8 inversion [GRCh37 8:7200000-12500000], were excluded from MiXeR analyses 

(Frei et al., 2019). 

To provide a visual representation and assess cross-disorder polygenic enrichment 

between schizophrenia and multiple sclerosis, we constructed conditional quantile-quantile (QQ) 

plots. A standard QQ plot visualizes the statistical association of a polygenic disorder relative to 

the expectation under the null hypothesis. In contrast, a conditional QQ plot provides a visual 
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representation of the differential enrichment and overlap in associations between two disorders 

with successively smaller p-value thresholds (p ≤ 0.1, p ≤ 0.01, p ≤ 0.001) for association with 

the secondary disorder. The presence of a leftward deflection observed across more stringent p-

value thresholds for the secondary disorder in conditional QQ plots represents cross-disorder 

enrichment and polygenic overlap between the two disorders at the common variant level.  

The condFDR framework was then applied to schizophrenia and multiple sclerosis 

GWAS data to leverage the cross-disorder enrichment shown in conditional QQ plots, to 

improve statistical power for locus discovery in schizophrenia and multiple sclerosis, and to 

identify shared genomic loci between them (Andreassen et al., 2013). The condFDR framework 

has been successfully used in recent years to increase discovery power for loci identification and 

to reveal shared genomic loci among various polygenic traits or disorders, by leveraging the 

combined power of two GWAS regardless of the presence of a genetic correlation (Bahrami et 

al., 2021; Hindley et al., 2021; Rødevand et al., 2021; Smeland, Bahrami, et al., 2020; Smeland, 

Frei, Shadrin, et al., 2020). This framework is an extension of the standard FDR method that 

builds on an empirical Bayesian framework by employing all p-values from GWAS results of the 

two disorders, by re-ranking the test statistics for a primary disorder conditioned on a secondary 

disorder, while controlling for type 1 error by using Benjamini-Hochberg-like FDR correction. 

An extension of condFDR method called the conjunctional FDR method (conjFDR), was then 

employed to identify shared genomic loci associated with both disorders. conjFDR is defined as 

the maximum of the two condFDR values, providing a conservative estimate of the FDR for 

association. Based on the current recommendations (Smeland, Frei, Shadrin, et al., 2020), the 

significance threshold was set at condFDR < 0.01 and conjFDR < 0.05. Similar to the 

preparation for the MiXeR analysis described above, variants in the MHC region [GRCh37 



94 
 

6:26000000-34000000] and chromosome 8 inversion [GRCh37 8:7200000-12500000] were also 

excluded from the analyses because of the possible impact of intricate regional LD in these two 

intervals. To correct for variance inflation, all p-values were corrected using a genomic inflation 

control procedure, and random pruning of all SNPs across 100 iterations in QQ-plot 

constructions and condFDR analyses were also carried out. To achieve this, for each pruning 

iteration, only one random SNP was retained to represent each LD-independent block (r2 > 0.1), 

with the final result averaged across all iterations.  

Definition of genomic loci 

We defined independent genomic loci according to the Functional Mapping and 

Annotation (FUMA) protocol recommendations (Watanabe et al., 2017). First, independent 

significant SNPs were defined as SNPs that are independent from each other at r2 <0.6 with 

condFDR < 0.01 or conjFDR < 0.05. A subset of these independent SNPs with r2 <0.1 were then 

selected as lead SNPs. A distinct genomic locus was then defined by merging all loci that were 

less than 250kb apart and selecting the SNP with the most significant p-value as the lead SNP for 

the merged locus. In regions with complex LD and multiple overlapping signals, we used 1 

independent lead SNP to represent the signals. All the LD information was calculated using the 

European subset of the 1000 Genomes Project Phase 3 reference panel (Auton et al., 2015) and 

the direction of effects of the loci shared between schizophrenia and multiple sclerosis were 

evaluated by comparing their respective Z-scores. A locus was defined as novel using current 

recommendations (Smeland, Frei, Shadrin, et al., 2020) if: 1) it was not reported in the original 

GWAS and 2) the association was not previously reported in the NHGRI-EBI GWAS catalog 

(Buniello et al., 2019) (GWAS catalog last accessed on March 3, 2022).  

Functional annotation, gene mapping, and gene-set analyses 
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FUMA V.1.3.6a (Watanabe et al., 2017) was used to functionally annotate all the 

candidate SNPs with r2 > 0.6 with one of the independent significant SNPs in the genomic loci 

with condFDR <0.01 or conjFDR <0.05. These SNPs were annotated with ANNOVAR (Wang et 

al., 2010) and combined annotation-dependent depletion (CADD) scores (Rentzsch et al., 2019) 

to predict the deleteriousness of SNP effects on the structure and function of protein products, 

with the CADD scores of ≥ 12.37, signifying the most deleterious variants. In addition, we used 

RegulomeDB scores to predict the likelihood of regulatory function of the SNPs based on the 

overlap of existing functional data including annotation to cis-expression quantitative trait loci 

and transcription factor binding (Boyle et al., 2012). Furthermore, SNPs were annotated with 

their chromatin states using 15 categorical states as predicted by ChromHMM based on 5 

chromatin marks and 127 epigenomes to predict their transcription and regulatory effects (Enrst 

& Kellis, 2017). 

FUMA V.1.3.6a (Watanabe et al., 2017) was used to link SNPs from condFDR and 

conjFDR analyses to candidate genes using three gene mapping strategies according to FUMA 

recommendations: First, we mapped SNPs based on their physical proximity. Second, we used 

the expression quantitative trait loci (eQTL) mapping method to match cis-eQTL SNPs to genes 

whose expression is likely to be associated with variation at the SNP level. Third, we used 

chromatin interaction mapping to link SNPs to genes based on three-dimensional chromatin 

interactions between each SNP region and specific genes. 

Finally, we evaluated gene ontology (GO) (Carbon et al., 2021) gene-set enrichment for 

the candidate genes mapped to the shared loci using the hypergeometric gene-set analysis 

implemented in FUMA V 1.3.6a to test whether genes of interest mapped using our 3 gene-

mapping strategies were over-represented in any of the pre-defined gene-sets. Moreover, we used 
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genotype tissue expression (GTEx) data resource (Aguet et al., 2020) to assess gene expression 

and look at the eQTL functionality of likely regulatory SNPs in the shared loci. All reported p-

values were corrected for multiple testing using the Bonferroni method. 

5.4 Results 

Univariate MiXeR suggests that schizophrenia and multiple sclerosis are both polygenic 

disorders but with different common variant genetic architectures 

Our LDSC genetic correlation analysis of current GWAS data shows a negligible, non-

significant genetic correlation between schizophrenia and multiple sclerosis (rG=0.057, p=0.41), 

in agreement with results from the Brainstorm Consortium. Using univariate MiXeR, we found 

that schizophrenia (π = 3.14 x 10-3) is more polygenic than multiple sclerosis (π = 1.77 x 10-4). 

Furthermore, multiple sclerosis has an estimated 566 causal variants with discoverability 

estimate (causal effect size variance) of σ = 8.92 x 10-4, whereas schizophrenia has an estimated 

10,002 causal variants with discoverability estimate of σ = 3.87 x 10-5. Together, these results 

indicate that schizophrenia is ~20 times more polygenic, and its genetic determinants are 

approximately 23 times less discoverable, than multiple sclerosis with the current GWAS sample 

sizes. 

Bivariate MiXeR reveals polygenic overlap between schizophrenia and multiple sclerosis in the 

absence of a genetic correlation 

Bivariate MiXeR (Figure 22) indicates that of 10,002 schizophrenia and 566 multiple 

sclerosis causal variants, 327 (SD=77) causal variants are shared between these two disorders 

(Figure 22a), with the proportion of variants estimated to have concordant effect direction of 

0.63 (SD=0.04). Furthermore, as shown in the bivariate density plot (Figure 22b), the 

distribution of Z-scores for schizophrenia and multiple sclerosis show a mixed direction of 
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effects for variants, with the net result considered to be a negligible positive genetic correlation 

(rG=0.057). 

 

 

Conditional/conjunctional FDR analyses increase statistical power and identify shared genomic 

loci between schizophrenia and multiple sclerosis 

Figure 23 shows the conditional QQ plots for schizophrenia and multiple sclerosis. We 

observe strong enrichment for schizophrenia conditional on associations with multiple sclerosis 

and vice versa. As a comparison, we also provide conditional QQ plots for schizophrenia and 

multiple sclerosis conditioned on LDL, which shows no cross-disorder genetic enrichment, 

indicating the specificity of these enrichments between schizophrenia and multiple sclerosis 

(Figure 24).  

 

 

Figure 22: Polygenic overlap between schizophrenia and multiple sclerosis. Venn diagram showing the 
estimated number of causal variants shared between the disorders and unique to each one. Size of the 
circle represents polygenicity and the grey portion represents the overlap. Density plot shows the 
relationship between Z-scores for schizophrenia and multiple sclerosis GWAS visualized using 100 x 100 
grid bins with the color indicating log10(N) where N is the number of SNPs projected into each bin. 
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Figure 23: Q-Q plots for nominal versus empirical schizophrenia (A) and multiple sclerosis 
(B) -log10 p-values as a function of significant association with LDL. 

Figure 24: QQ plots for nominal versus empirical schizophrenia -log10 p-values as a function 
of significant association with multiple sclerosis (A) and vice versa (B) 
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Figure 23: QQ plots for nominal versus empirical schizophrenia -log10 p-values as a function 
of significant association with multiple sclerosis (A) and vice versa (B) 
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We leveraged this pleiotropic genetic enrichment between schizophrenia and multiple 

sclerosis to improve the statistical power for locus discovery through the condFDR framework. 

At a condFDR <0.01 

and identified 247 

loci associated with 

schizophrenia 

conditional on 

multiple sclerosis 

(Figure 25).  

Of these 247 loci, 232 loci had been identified in previous schizophrenia GWAS studies 

and 15 are novel (see Ahangari et al., 2022for the list of novel loci). Furthermore, by 

conditioning multiple sclerosis GWAS signals on schizophrenia, we identified 139 loci 

associated with 

multiple sclerosis at 

condFDR < 0.01 

(Figure 26). Of these 

139 loci, 119 loci had 

been identified in 

previous multiple 

sclerosis GWAS studies and 20 are novel (see Ahangari et al., 2022 for the full list of SNPs in 

the shared loci). We note that some of the significant results from the condFDR analyses, are 

driven by marginal signals in the second trait, while others show more stronger enrichments.  

Figure 25: Manhattan plot depicting the -log10 condFDR values for SNPs 
associated with schizophrenia conditional on multiple sclerosis. The dotted 
line represents the threshold for significant association set at condFDR < 0.01. 

Figure 26: Manhattan plot depicting the -log10 condFDR values for SNPs 
associated with multiple sclerosis conditional on schizophrenia. The dotted line 
represents the threshold for significant association set at condFDR < 0.01. 
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Figure 27 (and see Table 1 in Ahangari et al., 2022) show the results for the joint 

conjFDR analysis of schizophrenia and multiple sclerosis. We identified 36 genomic loci jointly 

associated with schizophrenia and multiple sclerosis at conjFDR < 0.05. Overall, only ~58% of 

the lead SNPs in shared loci show the same direction of effect in schizophrenia and multiple 

sclerosis. 

 

 

Figure 27: Manhattan plot depicting the -log10 conjFDR values for SNPs associated with multiple sclerosis 
conditional on schizophrenia. The dotted line represents the threshold for significant association set at 
condFDR < 0.05. 

Functional and gene-set analyses of the shared loci between schizophrenia and multiple sclerosis 

Functional annotation of all the SNPs in the jointly associated loci are shown in Figure 

28. Annotation of SNPs using ANNOVAR in the jointly associated loci revealed that the 

majority of the SNPs are in intronic regions of the genome with only 1.7% in exons. The 

distribution of minimum chromatin state shows that 84.3% of the SNPs in the jointly associated 

loci are in open chromatin state regions, making them more accessible to DNA regulatory 

elements. Additionally, we observe that 3 of the lead SNPs in the 36 shared loci (rs6065926, 

rs35866622, and rs16917546) have CADD scores above 12.37, the threshold suggested to 

signify high deleteriousness.  
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Figure 28: Annotation of the SNPs jointly associated with schizophrenia and multiple sclerosis at conjFDR < 
0.05. 

 GO gene-set analysis for the candidate genes mapped to the jointly associated loci 

reveals 9 gene-sets significantly associated with schizophrenia and multiple sclerosis (all p 

<0.001 after multiple testing correction). Of the 9 identified gene-sets, 4 are involved in immune 

regulation processes (B-cell receptor signaling pathway, immune response regulating cell surface 

receptor signaling pathway, antigen receptor mediated signaling pathway, and immune response 

regulating signaling pathway). The p-values for all gene-set analyses were corrected for multiple 

testing using the Bonferroni method (see supplementary tables in 

https://doi.org/10.1016/j.bbi.2022.06.007).  

5.5 Discussion 

In this chapter, we used the largest available GWAS datasets for schizophrenia and 

multiple sclerosis to characterize the polygenic architecture and overlap between these two 

complex disorders at common variation level. We first showed that despite the complex, 

polygenic nature of these two disorders, schizophrenia and multiple sclerosis has different 

genetic architectures at the common variant level as evident from varying levels of polygenicity, 

and discoverability of the causal variants associated with each disorder. Estimation of 

polygenicity and discoverability of the causal variants associated with each disorder, in 

combination with the estimation of the narrow-sense SNP heritability captured by common 
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SNPs, can provide us with empirical information to explain why disorders such as multiple 

sclerosis show higher power for SNP discovery (as explained by higher narrow-sense SNP 

heritability from current GWAS), than disorders such as schizophrenia. Our results suggest that 

lower polygenicity, and higher discoverability of causal variants associated with multiple 

sclerosis are likely to be contributing factors to the differences in the narrow-sense SNP-based 

heritability multiple sclerosis and schizophrenia at current sample sizes. Furthermore, these 

results indicate that at current sample sizes, only a fraction of the heritability for schizophrenia or 

multiple sclerosis can be accounted for by common, genome-wide significant SNPs (Figure 29). 

Therefore, a substantial 

increase in current sample 

sizes is required for both 

disorders, particularly for 

schizophrenia due to its 

higher polygenicity and 

lower causal variant 

discoverability, to detect 

the majority of the 

common risk variation 

at the genome-wide significance level.  

Genetic correlation estimates rely on globally consistent directions of effects between the 

two disorders. In contrast, by using MiXeR, we show that despite the negligible genetic 

correlation between schizophrenia and multiple sclerosis, we can observe a polygenic overlap 

between these two disorders that is not captured by genetic correlation estimates due to a mixed 

Figure 29: Estimation of the genetic variance explained by SNPs at genome-
wide significance level on the Y-axis as a function of sample size on the X-
axis (log10 scale) for schizophrenia and multiple sclerosis. 
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direction of effects. Other recent joint analyses of psychiatric and neurological disorders 

(Monereo-Sánchez et al., 2021; Smeland et al., 2021) also suggest that despite no genetic 

correlation between psychiatric and neurological disorders, we can observe a substantial 

polygenic overlap among them with mixed direction of effects. The Brainstorm Consortium have 

investigated the shared genetic architecture among various psychiatric and neurological disorders 

and found that neurological disorders do not have strong genetic correlations with 

neuropsychiatric disorders. In particular, they showed that multiple sclerosis shows only a 

negligible genetic correlation with other psychiatric and neurological disorders. Based on our 

univariate MiXeR analysis, we suggest that the very weak genetic correlation between multiple 

sclerosis and schizophrenia may be partly attribute to the relatively small number of causal 

variants associated with multiple sclerosis compared to schizophrenia, or the mixed direction of 

effects among the variants shared across these two disorders, or a combination of both. This is 

particularly true for genetic correlation estimations that are calculated using the LDSC method, 

as benchmarking shows that small sample sizes and low polygenicity (specially as evident with 

multiple sclerosis), can cause bias in LDSC genetic correlation estimation and make the results 

difficult to interpret (Bulik-Sullivan et al., 2015).  

Based on the observed polygenic overlap between schizophrenia and multiple sclerosis, 

we hypothesize that increased incidence of psychotic-like features in some multiple sclerosis 

patients, may be partially attributable to the genetic risk from loci shared between schizophrenia 

and multiple sclerosis with concordant direction of effects that is otherwise not captured through 

standard genetic correlation estimations. However, we caution that since these psychotic-like 

features tend to occur after the diagnosis of patients with multiple sclerosis, pinpointing their true 

cause is challenging. Thus, we should be careful not to conclude that genetic effects, or aberrant 
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neurological dysfunctions individually can be the cause of these psychotic-like features in 

patients with multiple sclerosis, rather, a combination of these concordant genetic effects and 

brain dysfunctions is likely to be a more complete explanation.  

By leveraging the cross-disorder enrichment between schizophrenia and multiple 

sclerosis through condFDR analyses, we identified 15 and 20 novel loci associated with 

schizophrenia and multiple sclerosis respectively. We note that some of the significant signals in 

the conditional analyses are driven by quite marginal signals in the second trait, while others are 

not. In general, we see that multiple sclerosis signals tend to be stronger in the condFDR analysis 

of schizophrenia, than schizophrenia signals are in the condFDR analysis of multiple sclerosis. 

This observation may reflect the higher discoverability and larger effect sizes of multiple 

sclerosis variants compared to schizophrenia. Here we discuss one locus of potential interest for 

each analysis. One of the identified novel multiple sclerosis loci is in the upstream region of a 

protein-coding gene hydroxysteroid 17-beta dehydrogenase 4 (HSD17B4) which encodes 

peroxisomal multifunctional enzyme type 2, and mutations in this gene are associated with 

autosomal-recessive Perrault syndrome and D-bifunctional protein deficiency, both of which 

show evidence of the involvement of the nervous system (Pierce et al., 2010; Suzuki et al., 

1997). A homozygous variant in HSD17B4 is proposed to be causative of middle-age onset, 

autosomal recessive spinocerebellar ataxia in two consanguineous families (Matsuda et al., 

2020). HSD17B4 is shown to be ubiquitously expressed in a wide variety of tissues including the 

brain and immune cells (Uhlén et al., 2015), and Hsd17b4 knock-out mice also show 

neurodegeneration and demyelination (Bult et al., 2019), both of which are characteristics of 

multiple sclerosis pathology, which further supports the notion that variation in the HSD17B4 

gene may modulate the risk of developing multiple sclerosis with low to intermediate effects. 
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Additionally, the TNF alpha induced protein 8 (TNFAIP8) gene that is preferentially expressed 

in human immune cell types also resides in the same locus (Sun et al., 2021), providing further 

evidence for the involvement of this locus in multiple sclerosis pathobiology. In contrast, one of 

the identified novel schizophrenia loci is in the upstream of the YWHAB gene that is part of the 

YWHA gene cluster, encoding 14-3-3 proteins, a family of conserved genes highly expressed in 

the brain (Aitken, 2006) that play an important role in synapse development and plasticity (Li et 

al., 2006; Toyo-Oka et al., 2003). Recently, dysregulation of peripheral expression of the 

YWHAB gene was shown to be associated with the onset of psychosis (Demars et al., 2020), 

while other members of the YWHA cluster of genes have also been implicated in schizophrenia 

(Navarette et al., 2022). This further supports the involvement of this locus in schizophrenia 

pathobiology. Together, these results indicate that condFDR analyses of schizophrenia and 

multiple sclerosis can boost statistical power for genetic discovery and identify novel loci with 

meaningful associations.  

We note that the majority of the SNPs identified in the shared loci between schizophrenia 

and multiple sclerosis through the conjFDR are in intronic regions that are likely to impact 

expression/regulation and are not predicted to be highly deleterious based on CADD scores. This 

observation is expected, as highly deleterious variants are typically predicted to be removed by 

selection rapidly in the population, and therefore are more likely to contribute to disorders that 

are rare and severe, rather than more common, polygenic disorders such as schizophrenia or 

multiple sclerosis (Dudley et al., 2012; Stover et al., 2022). Considering this expectation, we 

identified 3 SNPs (rs6065926, rs35866622, and rs16917546) with CADD scores above 12.37 in 

the conjFDR analysis, implying significant deleteriousness, yet with no fatal effects. One of 

these SNPs, rs6065926, also had RegulomeDB score of 1f, which indicates that it is likely to 
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affect binding sites and possibly linked to expression of a gene target with QTL + transcription 

factor (TF) binding/DNase peak evidence. We followed up this finding in the GTEx database 

and found that this SNP is a significant eQTL in different brain regions for the CD40 molecule 

(CD40) and solute carrier family 12 member 5 (SLC12A5) genes. The CD40 gene codes for 

CD40 protein found in antigen-presenting cells and is required for their activation, and its 

deficiency is linked to autoimmune diseases (Karnell et al., 2019). The product of SLC12A5 is a 

potassium-chloride cotransporter that maintains chloride homeostasis in neurons and is also 

involved in GABAergic signaling; variants within it are associated with neurodevelopmental and 

epileptic disorders (Saitsu et al., 2016). Additionally, one of the jointly associated loci between 

schizophrenia and multiple sclerosis is linked to the microtubule associated protein tau (MAPT) 

gene that codes for tau protein, which is differentially expressed in the nervous system (Caillet-

Boudin et al., 2015); mutations in this gene are linked to neurodegenerative diseases such as 

Alzheimer’s Disease and other forms of dementia. A homolog of the MAPT gene is found to be 

differentially phosphorylated in patients with schizophrenia (Grubisha et al., 2021), while 

abnormally phosphorylated tau protein is also shown to be associated with multiple sclerosis 

(Anderson et al., 2008). Furthermore, patients with early onset frontotemporal dementia caused 

by mutations in MAPT, sometimes show psychotic-like symptoms that resemble those seen in 

patients with schizophrenia (Momeni et al., 2010). This finding provides further preliminary 

genetic evidence in support of a possible role of tau protein in the pathobiology of both 

schizophrenia and multiple sclerosis at common variant level.  

Although genetic components play a substantial role in the etiology of schizophrenia and 

multiple sclerosis, we note that the role of environmental influences, in particular with multiple 

sclerosis, should not be omitted. A recently published longitudinal analysis conducted on a large 
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sample of United States Army recruits showed that a prior infection with Epstein-Barr virus 

increases the risk of multiple sclerosis by 32-fold, making it by far the most important risk factor 

for developing multiple sclerosis (Bjornevik et al., 2022). Additionally, patients with 

schizophrenia are also shown to have marked elevation in the levels of antibodies to Epstein-Barr 

virus compared to controls, suggesting that Epstein-Barr virus may also have a role in the 

etiology of schizophrenia (Dickerson et al., 2019).  

The results presented in this study should be interpreted in the context of some 

limitations. Current large-scale GWAS studies of complex disorders such schizophrenia and 

multiple sclerosis are largely conducted in individuals of European ancestry, which limits the 

generalizability of these findings to other ancestral groups. Additionally, current methods 

employed in this study rely on common variant data from published GWAS studies, therefore, 

only the common variant data for schizophrenia and multiple sclerosis were analyzed in this 

study. As a result, some rare and structural variations important to the genetic architecture of 

these two disorders were not taken into consideration. Furthermore, due to intricate LD patterns 

in the MHC region, and based on the current recommendations for both MiXeR and condFDR 

frameworks, variants in the MHC that play an important role in the genetic architecture of both 

schizophrenia and multiple sclerosis were excluded from the current study. However, we note 

that another study (Andreassen et al., 2015) which specifically focused on common MHC 

genetic variation, also observed a balance of mixed direction of effects for the variants shared 

between schizophrenia and multiple sclerosis in the MHC region, making the current study an 

extension of the prior findings in the MHC region at genome-wide level. Finally, with a recent 

study showing the strong effect of Epstein-Barr virus infection on the onset of multiple sclerosis, 

as well as some previous studies proposing a link between viral infections prior to the onset of 
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schizophrenia, future studies could also look at the effects of shared environmental factors 

between schizophrenia and multiple sclerosis.  

 In conclusion, this chapter provides new insights into the genetic relationship between 

schizophrenia and multiple sclerosis at the common variant level. To our knowledge, prior joint 

analyses of schizophrenia and multiple sclerosis have largely focused on either global genetic 

correlation measurements, or specifically on variants inside the MHC region. We hypothesized 

that because of prior evidence for immune dysregulation in schizophrenia patients, and co-

occurring neuropsychiatric symptoms in multiple sclerosis patients, we may observe polygenic 

overlap between these two disorders that can be exploited for further downstream analyses. In 

agreement with prior work, we detected no significant genetic correlation between schizophrenia 

and multiple sclerosis by LDSC analysis. This observation appears to be attributable to the 

balance of shared and opposite effect directions detected in both bivariate MiXeR and conjFDR 

analyses. Our results further suggest that the increased rate of psychotic-like features in some 

multiple sclerosis patients may be partially attributable to the genetic loci shared between 

schizophrenia and multiple sclerosis that have concordant direction of effects. Finally, our results 

suggest that despite substantial increase in GWAS sample sizes in recent years, a considerable 

growth in sample sizes are still required to increase our understanding of the shared genetic 

etiology among complex, polygenic disorders such as schizophrenia and multiple sclerosis at 

common variant level.  
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CHAPTER VI 
 
 

Improving the discovery of rare variants associated with alcohol 

problems by leveraging machine learning phenotype prediction and 

functional information 

6.1 Abstract 

Alcohol use disorder is moderately heritable with significant social and economic impact. 

GWAS have identified common variants associated with alcohol use disorder, however, rare 

variant investigations have yet to achieve well-powered sample sizes. In this study, we 

conducted an interval-based exome-wide analysis of the AUDIT-P using ML predicted risk and 

empirical functional weights. Filtering the UK Biobank 200k exome release to unrelated 

individuals of European ancestry resulted in 147,386 individuals with 51,357 observed and 

96,029 unmeasured but predicted AUDIT-P. Sequence Kernel Association Test (SKAT) was 

used for rare variant (MAF < 0.01) interval analyses using default and empirical weights. 

Empirical weights were constructed using annotations found significant by stratified LDSC 

analysis of predicted AUDIT-P GWAS. Samples with observed AUDIT-P yielded no 

significantly associated intervals, but alcohol dehydrogenase 1C (ADH1C) and thyroid hormone 

receptor alpha (THRA) genes were significant (FDR q<0.05) using default and empirical weights 

in the predicted AUDIT-P sample. These findings provide evidence for rare variant association 

of ADH1C and THRA with AUDIT-P and highlight the successful leveraging of ML to increase 

effective sample size and prior empirical functional weights based on common variant GWAS 

data to refine and increase the statistical significance in underpowered phenotypes.  
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6.2 Introduction 

Alcohol use disorder and problematic alcohol use are moderately heritable conditions 

with significant social and economic impact (Griswold et al., 2018; Verhulst et al., 2015). Large-

scale GWAS have been successful in identifying many common variants associated with alcohol 

consumption and alcohol use disorders. Together, common risk variants can account for up to 7-

12% of the variance in alcohol use disorder and related disorders (Sanchez-Roige et al., 2019; 

Walters et al., 2018; Zhou et al., 2020). Due to the heterogeneous manifestation of alcohol use 

disorder, assembling large, meticulously diagnosed cohorts is challenging. When clinical 

diagnoses using DSM or International Classification of Disease (ICD) are not feasible or 

available, screening instruments such as the AUDIT can be used (Saunders et al., 1993). The 

AUDIT is a screening questionnaire designed to identify hazardous alcohol use that consists of 

10 items that produce a total quantitative measurement from 0-40 (AUDIT-T) composed of two 

subscales of alcohol consumption (AUDIT-C) and problematic use (AUDIT-P). Previous work 

has demonstrated that AUDIT-C shows strong genetic correlation with other consumption 

phenotypes such as drinks per week (Kranzler et al., 2019; Liu et al., 2019), but only a moderate 

genetic correlation with DSM diagnosis of alcohol use disorder, suggesting that alcohol 

consumption measurements such as AUDIT-C are not on the same phenotypic continuum as 

alcohol use disorder. In contrast, there is a strong genetic correlation between AUDIT-P and 

DSM diagnosis of alcohol use disorder, as well as other major psychiatric disorders such as 

schizophrenia and major depressive disorder, suggesting that AUDIT-P is useful for studies of 

alcohol related psychopathology when alcohol use disorder diagnosis is unavailable because its 

use can increase both sample size and statistical power for discovery of common variants with 

meaningful biological functions (Sanchez-Roige et al., 2019). 
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Although pinpointing the biological effects of variants identified from GWAS of 

complex disorders are challenging (Visscher et al., 2017), some of the results from studies of 

alcohol-related disorders represent an exception to this general pattern. Across different studies, 

variants in genes in the alcohol dehydrogenase (ADH) cluster, which are central to ethanol 

metabolism in the body, are shown to be significantly associated with alcohol use disorders 

(Walters et al., 2018; Zhou et al., 2020) or AUDIT-P (Sanchez-Roige et al., 2019). 

While the use of screening questionnaires such as the AUDIT has allowed researchers to 

increase the effective sample size and the discovery power for identifying common variants 

associated with AUDIT, rare variant investigations have yet to achieve sample sizes similar to 

well-powered GWAS. With the decrease in sequencing costs, large-scale biobank samples such 

as the UK Biobank cohort have begun performing large-scale WES and WGS on the participants 

to facilitate the study of the rare variant architecture of complex traits and disorders in parallel 

with common variant GWAS studies (Szustakowski et al., 2021). Despite these large-scale 

sequencing efforts, biobanks do not necessarily have consistent measurements for all variables 

across all subjects and may show extensive non-random block-wise missingness in their 

phenotypic and survey data which limits the effective sample size for genetic association studies 

(Gentry et al., 2022). This problem becomes more apparent for rare variant studies as large 

effective sample sizes are required to identify rare variants with low MAF in the population. For 

example, a recent exome-wide analysis of the AUDIT using the 200k exome release of the UK 

Biobank failed to identify any significant genes or variants associated with heavy drinking or 

problem drinking (Curtis, 2022). This observation could be attributed to inadequate power for 
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rare variant association testing in this study (N=~50k), because of the full 500k UK Biobank 

participants, only ~30% have completed the AUDIT questionnaire, and of those, only ~50k have 

exome data in the 200k release of the UK Biobank exome data. 

One way to address the issue of inadequate power and effective sample sizes for rare 

variant studies is to utilize the available information through ML to predict the phenotype of 

interest in subjects for whom it is missing. We have previously developed an application of the 

Group Least Absolute Shrinkage and Selection Operator (LASSO) called the Missingness 

Adapted Group-wise Informed Clustered LASSO (MAGIC-LASSO) which predicts unmeasured 

quantitative outcomes such as AUDIT with high phenotypic and genotypic accuracy in the full 

UK Biobank sample (Gentry et al., 2022). Another way to potentially increase the statistical 

power for rare variant identification is to incorporate functional genomics information as a priori 

weights.  

Previous work also shows that incorporating functional information can increase 

predictive power in variant identification in GWAS studies (Gusev et al., 2014; Pickrell, 2014; 

Weissbrod et al., 2020). There is strong evidence across complex traits that functional 

annotations show enrichment, and the specific annotations and magnitude of enrichment vary 

across disorders. Genomic regions conserved in mammals show strong enrichment across many 

complex traits ranging from psychiatric and immunological disorders to anthropometric traits. In 

contrast, some annotation classes show enrichment patterns that are unique to specific traits or 

diseases. For example, Functional Annotation of the Mouse/Mammalian Genome (FANTOM)-5 

enhancers (Andersson et al., 2014) show strong enrichment for immunological disorders such as 

Crohn’s Disease or Ulcerative Colitis, while H3K4me3 annotations (marking active promoters) 
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from neuronal cells are significantly enriched for psychiatric disorders such as schizophrenia 

(Tansley & Hill. 2018). Furthermore, complex disorders show convergence between common 

and rare variant signals, suggesting that incorporating information from GWAS and functional 

genomics could refine and increase discovery power for rare variant testing (Johansen et al., 

2010; Rivas et al., 2011; Trubetskoy et al., 2022). 

In this chapter, we analyzed unrelated European subjects within the 200k exome release 

of the UK Biobank to conduct an interval-based rare variant analysis on AUDIT-P. SKAT-O 

analyses were performed using subjects for whom AUDIT-P is directly measured (N=51,357) 

and all predicted subjects (N=147,376) irrespective of whether AUDIT was measured or 

unmeasured. The two analyses were compared to evaluate whether the increase in effective 

sample size can improve discovery power for rare variant association testing in AUDIT-P. 

Additionally, we evaluated the impact of including disease-specific functional information as a 

priori weights to investigate whether inclusion of functional information can improve statistical 

power for rare variant association testing compared to default SKAT weights.  

To our knowledge, this is the largest available rare variant study of AUDIT-P to date.  

We hypothesize that by increasing the effective sample size and including disease-specific 

functional information as a priori weights for the interval testing, we may be able to uncover rare 

variant signals associated with AUDIT-P that would be missed using only directly measured 

subjects and default SKAT variants weights that only consider allele frequency. These results are 

expected to complement the growing literature on common variant studies on alcohol related-

phenotypes and the methods described in this chapter can be extended to rare variant analysis of 

other traits including schizophrenia. 
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6.3 Methods 

UK Biobank Cohort 

The analysis described in this chapter has been conducted using the UK Biobank dataset 

(application 30782). The UK Biobank dataset is a large, population-based sample that includes 

more than 500,000 participants aged between 40 and 69 years (Sudlow et al., 2015). A wide 

range of phenotypic measurements and biological samples have been assessed and collected for 

these participants at different centers located in the UK. The UK Biobank has obtained ethics 

approval from the Northwest Multi-Center Research Ethics Committee, as well as informed 

consent from all the participants. In addition to the exome sequencing described in more detail 

below, individuals in the UK Biobank were also genotyped using the Affymetrix UK BiLEVE or 

Affymetrix UK Biobank Axiom arrays and the genotypes were imputed to the Haplotype 

Reference Consortium reference panel using IMPUTE2 (Loh et al., 2016) with full details 

provided elsewhere (Bycroft et al., 2018).  

 
Phenotypic description and imputation of AUDIT using MAGIC-LASSO: 

The AUDIT is a ten-item, screening questionnaire instrument for alcohol consumption 

and problems containing three questions that survey consumption (AUDIT-C), and seven that 

survey problematic alcohol use (AUDIT-P). The survey was completed as part of the Mental 

Health Questionnaire battery of questionnaires in a subset of 157,162 out of the full 500k UK 

Biobank participants.  

The MAGIC-LASSO procedure, described previously (Gentry et al., 2022), was applied 

to predict AUDIT scores in participants for whom the AUDIT questionnaire was not directly 

administered in the UK Biobank. In brief, the MAGIC-LASSO procedure is an adaptation of the 
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Group-LASSO ML method for penalized regression that can predict variables in the presence of 

non-random, block-wise missingness. The procedure represents a new implementation of 

established ML algorithms and employs a regression-based solution that is suited for the 

penalization of categorical predictors which are prevalent in the UK Biobank. MAGIC-LASSO 

procedure involves 1) characterizing missingness, 2) filtering variables for general missingness 

and balance across training and target sets, 3) variable clustering based on missingness, 4) 

iterative Group-LASSO and variable selection within clusters, and 5) cross-cluster model 

building with variables prioritized by informativeness. The phenotypic correlation between 

measured and predicted scores was 0.69, while genetic correlations between observed AUDIT-P 

in measured subjects and predicted AUDIT-P in unmeasured subjects (who are completely 

independent) was 0.91, demonstrating the method has significant accuracy and utility (Figure 

30). 

Figure 30: Prediction of AUDIT in the UK Biobank using the MAGIC-LASSO framework. the figure is 
reproduced from Gentry et al 2022. Panel A shows the distribution of AUDIT scores. Panel B shows the 
genetic correlation estimates of predicted and observed AUDIT scores. 
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 Importantly, these correlations indicate that the MAGIC-LASSO predictions effectively 

recapture unmeasured phenotypic information and likely lie closely along the same genetic 

continuum as observed AUDIT-P. More information is provided elsewhere in the original 

publication (Gentry et al., 2022). 

Whole exome-sequencing in the UK Biobank: 

The 200k exome release of the UK Biobank dataset was used in this analysis. The 

exomes were downloaded for 200,643 subjects who had undergone exome sequencing. Exomes 

were captured using the IDT xGen Exome Research Panel v.1.0 with an average coverage of 

20X at 95.6% of sites. The Original Quality Functional Equivalent (OQFE) Pipeline was used to 

map raw FASTQ files with BWA-MEM to the GRCh38 reference genome while retaining all 

other alignments. The OQFE CRAMs were then called using DeepVariant to generate per-

sample gVCFs that were jointly called using GLnexus. The OQFE version of the Plink formatted 

exome files was then downloaded and utilized for all the analyses described in this study (field 

23155). Samples were initially filtered to retain only unrelated subjects of British ancestry 

(N=359,980) as in previous analyses (Gillespie et al., 2022). This yielded 147,376 participants 

with exome data from the 200k exome release of whom 51,357 had AUDIT directly measured.  

Empirical functional weights from predicted AUDIT-P GWAS: 

 GWAS of common variants associated with predicted AUDIT-P was used as the basis 

for empirical functional weights for downstream rare variant testing. As described previously 

(Gillespie et al., 2022), GWAS was conducted using the BGENIE software (Bycroft et al., 2018, 

version 1.3). Briefly, pre-GWAS filtering excluded markers with MAF <0.5%, imputation 

quality < 0.8, and p-value < 10-6 for deviations from the Hardy Weinberg expectation. 
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Association analyses included age, sex, and the first 20 PCs as covariates. After filtering, the 

sample of independent European subjects used for GWAS was 359,980 with 117,559 and 

242,421 subjects in the measured and unmeasured AUDIT sets, respectively. 

Stratified LDSC (Finucane et al., 2015) was used to partition the heritability of predicted 

AUDIT-P GWAS described above (unpublished work) into functional annotation classes while 

accounting for the overlap between different functional classes using the overlap-annot flag. In 

addition to the baseline functional annotation classes from LDSC version 2.2., four custom brain-

specific functional annotation classes acquired from the psychENCODE Consortium (Wang et 

al., 2018) were also used for stratified LDSC analysis which resulted in 87 annotation classes in 

total. The four custom annotations classes from the psychENCODE Consortium included 1) 

psychENCODE Enhancers, 2) h3k27ac markers in the prefrontal cortex, 3) h3k27ac markers in 

the temporal cortex, and 4) h3k27ac markers in the cerebellum. These datasets are publicly 

available and can be downloaded as part of the derived datasets from 

www.resource.psychencode.org  

Empirical weights based on functional annotations were constructed as follows: 1) each 

observed exome variant (in the vcf) was annotated for the presence or absence for each 

functional annotation class, 2) annotations were retained if significant by Akaike information 

criterion (AIC) in the stratified LDSC analysis, 3) the enrichment scores for significant 

annotation classes, which represents the fold enrichment of that annotation class derived from 

stratified LDSC, were added up for each position in the exome. In cases where a variant did not 

fall within any of the significantly enriched annotation classes, the variant would not get up-

weighted for the analysis and receive a weight of zero.  
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Interval definitions: 

GENCODE V.39 was used as the basis for defining intervals to include the most 

comprehensive list of possible intervals in this analysis (Frankish et al., 2021). In addition to 

protein-coding genes, GENCODE includes gene models from multiple classes of noncoding 

RNA genes and other locus types, allowing for a more comprehensive examination of variation 

in expressed sequences. A comprehensive set of intervals across the genome including those 

between transcripts (e.g. intergenic intervals) was constructed. Due to overlapping protein coding 

transcripts, nested small RNAs, and long non-coding RNAs, constructed intervals were not 

necessarily independent. Although the current study used exome data, some intergenic intervals 

were observed to contain variants possibly due to off-target capture or annotation errors. All 

intervals regardless 

of class (protein 

coding, intergenic, 

or others) were 

included in the 

analysis if they 

contained observed 

rare variation. 

Figure 31 shows 

the distribution of 

interval classes tested in our analyses. Of the 53,171 defined intervals, association testing was 

limited to intervals with at least 2 rare (MAF<0.01) exome variants. In total, 21,105 intervals 

were tested with most (N=17,968) being protein-coding genes, as expected. An additional 490 

protein_coding
misc_RNA

miRNA
TEC

snoRNA
processed_pseudogene

snRNA
transcribed_unprocessed_pseudogene

unprocessed_pseudogene
transcribed_processed_pseudogene

transcribed_unitary_pseudogene
polymorphic_pseudogene

unitary_pseudogene
rRNA

0 5000 10000 15000

GENCODE V.39 Interval Types − 200k UKB Exome Freeze

Figure 31: Distribution of the intervals tested in AUDIT-P rare variant analysis 
based on GENCODE V.39 definition of genic and non-genic intervals. In total 
21,105 intervals were tested across the exomes. 
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intervals were not tested due to insufficient variants. While not informative for the current 

exome-based study, these may be important and informative for future WGS based studies. 

Rare-variant interval-based association testing: 

Interval-based rare variant aggregate testing was performed using the SKAT package in 

R (Ionita-Laza et al., 2013). False discovery rate (FDR) analysis was performed, and Q-values 

were generated for each test using the qvalue package in R (Storey J, 2015). In addition to FDR, 

we also report corrected p-values using the conservative Bonferroni correction method.   

Four sets of SKAT-O interval tests were carried out varying two conditions. First, SKAT-

O tests were performed using default weights, which are based on allele frequency, versus 

empirical functional weights constructed based on significant annotation classes from stratified 

LDSC analysis in subjects for whom AUDIT-P scores were directly measured (N=51,357). The 

goal was to evaluate whether a priori information from the enrichment of common variant 

GWAS data in combination with functional annotation information can improve statistical power 

for rare variant testing. Second, SKAT-O tests using the default versus empirical weights were 

performed in the full sample of 147,376 unrelated subjects with predicted AUDIT-P. The goal 

here was to investigate whether increase in effective sample size can increase our statistical 

power for rare variant testing. We hypothesized that using both a) empirical functional weights 

based on a priori functional annotation enrichments and b) increased effective sample size using 

predicted AUDIT-P would improve detection of intervals containing rare variants influencing the 

trait.   

We opted to use SKAT-O for interval testing in this study. Burden tests are powerful 

when most variants in the interval are causal, with the effects in the same direction. Conversely, 
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SKAT is more powerful when a fraction of the variants are noncausal, or have causal variant 

effects with mixed direction of effects. The SKAT-O approach maximizes power by adaptively 

using the data to combine burden and SKAT tests while maintaining the power for rare variant 

testing, making it an appropriate method when the direction of effects for causal variants are not 

known a priori. 

6.4 Results 

Empirical functional weights for AUDIT-P  

Using LDSC, we estimated the heritability of the predicted AUDIT-P (N=359,980) to be 

h2SNP = 0.0647 (SE=0.0034), in close agreement with measured AUDIT-P (N=121,604) in the 

UK Biobank (Sanchez-Roige et al., 2019). Partitioning the heritability of predicted AUDIT-P 

GWAS into functional categories resulted in 12 significant annotations after multiple testing 

corrections (Figure 32). Of these annotation classes, three were specific to the brain from the 

psychENCODE consortium (Table 19), demonstrating the utility of using annotations beyond the 

available baseline set.  

Table 19: Significant annotation classes enriched in the heritability of predicted AUDIT-P after multiple testing 
correction. Grey categories are custom classes. 

Annotation Category  S-LDSC-Enrichment LDSC-Enrichment p-value 
Nucleotide Diversity 0.8288 3.22E-12 
Background Selection 1.1871 1.23E-06 
Conserved Primate phastCons46Way 1.856 3.99E-05 
CpG Content 1.0937 2.43E-05 
psychENCODE Enhancers 6.4294 1.72E-04 
Conserved Lindblad-Toh 7.6886 2.43E-04 
psychENCODE Cerebellum H3K27ac 8.6998 3.09E-04 
Bivalent Chromatin State 6.28 9.03E-03 
Human Promoter Villar 5.0106 3.92E-03 
Human Enhancer Villar 3.8983 4.44E-03 
Introns UCSC 6.2072 1.77E-02 
psychENCODE Temporal Cortex H3K27ac 5.39 2.85E-02 
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Figure 32: Partitioning the heritability of predicted AUDIT-P into functional categories using stratified LDSC. 
X-axis represents the functional categories. Y-axis represents the enrichment value for each category. 
Asterisks represent significant intervals after multiple testing correction. 

 Comparing the partitioned heritability results of predicted AUDIT-P with other complex 

traits revealed potentially important insights. For example, heritability of height GWAS (Yengo 

et al., 2018) is significantly enriched in 36 functional classes. However, none of the brain-

specific annotation classes from the psychENCODE consortium showed significant enrichment 

for heritability of height. In contrast, heritability of schizophrenia GWAS (Trubetskoy et al., 

2022) is significantly enriched in 21 annotation classes, which includes all four brain-specific 

annotation classes from the psychENCODE consortium. Finally, heritability of drinks per week 

GWAS (Liu et al., 2019) is significantly enriched in 10 functional classes, none of which are 

specific to the brain. While both schizophrenia and drinks per week show genetic correlation 

with predicted AUDIT-P, the pattern and magnitude of enriched annotations are different. 

Together, these results suggest that while there are important differences in heritability 

enrichment of these complex traits, inclusion of brain-specific annotation classes for psychiatric 
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traits such as schizophrenia or AUDIT-P can improve partitioning heritability analyses and 

provide better disorder-specific empirical functional weights for rare variant testing.  

Empirical functional weights for AUDIT-P  

The majority of the variants (63.4% of 17,549,750 variants) did not fall into any 

significant annotation. Therefore, these variants were not informative for empirical weights 

construction and received a weight of zero regardless of frequency. This is in contrast to the 

default weighting of SKAT which assigns weights based on MAF regardless of functional 

information. However, 36.6% of variants fell into at least one of the annotation classes. The 

resulting quantitative score based on combining the 12 significantly enriched annotations ranged 

from 0 to 71.23. Figure 33 shows the distribution of the empirical functional weights generated 

for all observed variants by allele frequency bin. Default SKAT weights are based on MAF, and 

therefore rare variants have higher weights by design. While MAF information is not 

incorporated in empirical functional 

weights, we still observe an 

enrichment of low frequency 

variants with higher weights. This 

observation is in agreement with the 

expectation that coding variation in 

the genome is rare, recent, and 

deleterious (Zuk et al., 2014). 

 

Figure 33: Distribution of empirical functional weights across the UK Biobank exome dataset. The majority of 
the variants (63.4%) received the weight of zero. the quantitative weights ranged from 0 to 71.23. 
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Interval-based tests 

Post filtering, interval-based analyses were performed using 17,549,650 qualifying 

variants that mapped onto 21,105 intervals. Figures 34 and 35 show SKAT-O interval-based 

results using subjects with directly measured (N=51,357) and predicted (measured and 

unmeasured, N=147,376) AUDIT-P, respectively. No interval was significantly associated with 

measured AUDIT-P using the default (Figure 34A) or the empirical functional weights (Figure 

34B). However, as shown in the QQ-plot (34C), empirical functional weights provide an 

improvement in statistical significance compared to default weights with no evidence of inflation 

when using empirical versus default weights. SKAT results for measured AUDIT-P are provided 

in the Extended Figure 1. 

 In contrast to using directly measured AUDIT-P, we observed significant associations 

with ADH1C and THRA genes when using both default (Figure 35A) and empirical functional 

weights (Figure 35B). A two-fold increase in statistical significance was observed when using 

empirical functional weights compared to default weights (Figure 35C), with the most significant 

association found with predicted AUDIT-P and empirical weights in the ADH1C gene after a 

conservative Bonferroni correction (SKAT-O P Default= 1.06 x 10-9 and P Empirical weight = 6.25 x 10-

11). SKAT results for predicted AUDIT-P are provided in the Extended Figure 2.  The ADH1C 

gene interval which encodes class I alcohol dehydrogenase gamma subunit has been previously 

implicated in alcohol-related phenotypes. Of the 670 markers in the ADH1C, 43 had MAF < 0.01 

and were tested in the analysis. In contrast, the THRA gene interval encodes for one of the 

receptors for thyroid hormone and mutations in this gene are associated with intellectual 

disability and reduction in brain size (Krieger et al., 2019). Of the 1,245 markers in THRA, 54 

had MAF <0.01 and were tested in the analysis.  
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 Figure 34: SKAT-O analysis on observed AUDIT-P using default (A) and empirical (B) weights. QQ plots for 
default and empirical weights are shown in panel (C). Red line represents Bonferroni and blue line represents 
FDR threshold of 5%. 

 

Figure 35: SKAT-O analysis on predicted AUDIT-P using default (A) and empirical (B) weights. QQ plots for 
default and empirical weights are shown in panel C. Red line represents Bonferroni and blue line represents 
FDR threshold of 5%.  
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6.5 Discussion 

In this chapter, we sought to perform an exome-wide rare variant analysis on potential 

alcohol problems using the AUDIT-P subscale in the UK Biobank sample. While common 

variant GWAS of alcohol consumption have successfully identified many common variant loci, 

studies of problematic alcohol use and alcohol use disorder have been less successful (Sanchez-

Roige et al., 2019; Zhou et al., 2020), and large-scale rare variant analyses have yet to identify 

robustly associated variants, genes, or intervals (Curtis, 2022). To address this, we used ML 

phenotype prediction in the UK Biobank to increase the effective sample size for AUDIT-P for 

rare variant association testing to perform the largest exome-wide analysis of AUDIT-P to date. 

Additionally, while default SKAT weights are based on the frequency of the variants and thus 

not disorder specific, we incorporated evidence from common variant GWAS data and 

functional information as a priori weights to provide disorder specific weights for rare variant 

interval testing. Our findings show that in addition to common risk variation (Zhou et al., 2020), 

rare risk variation in the ADH1C gene is also associated with AUDIT-P in the UK Biobank 

exome dataset, thus providing evidence for the involvement of rare risk variation in the genetic 

architecture of AUDIT-P at the population level. 

   In our first-pass analysis, we used the subset of the UK Biobank cohort with measured 

AUDIT-P (N=51,357) and found no significant association with rare variation using default or 

empirical functional weights. While we were able to demonstrate that including disorder-specific 

empirical functional weights appears to increase the statistical power, we note that these a priori 

weights were insufficient to rescue an underpowered phenotype for rare variant association 

testing. Thus, larger sample sizes are required to adequately increase statistical power for rare 

variant identification in AUDIT-P. Conversely, by leveraging ML phenotype prediction to 
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increase the effective sample size for rare variant association testing, we show that ADH1C and 

THRA genes are robustly associated with AUDIT-P in the UK Biobank at rare variation level. 

Furthermore, we were able to demonstrate that inclusion of disorder-specific empirical functional 

weights generated from common variant GWAS data and functional genomics information, can 

also refine, and increase the statistical significance for rare variation testing. These findings 

highlight the successful leveraging of ML to substantially increase effective sample size to 

improve statistical power, and disorder-specific empirical functional weights to refine and 

increase the statistical significance in interval-based rare variant testing. 

The ADH1C gene plays an important role in the hepatic and gastrointestinal catabolism 

of ethanol (Edenberg & McClintick, 2018) and variants in this gene are shown to be robustly 

associated with both alcohol use disorder diagnosis and AUDIT at common variation level 

(Gelernter et al., 2014; Shen et al., 1997; Walters et al., 2018, Biernacka et al., 2013; Kranzler et 

al., 2019; Sanchez-Roige et alk., 2019). Therefore, our finding builds on previous common 

variant evidence for the involvement of the ADH1C gene in the genetic architecture of alcohol-

related phenotypes by demonstrating that rare variation in ADH1C is also associated with alcohol 

problems at rare variation level. Similar to other psychiatric disorders such as schizophrenia 

(Singh et al., 2022), these results also suggest that there is a convergence between common and 

rare variant signals in the genetic architecture of AUDIT-P, and as sample sizes continue to 

increase, we can expect to identify more rare variant signals in previously implicated genes from 

common variant studies of alcohol-related phenotypes. In contrast to ADH1C, the THRA gene, 

which encodes the thyroid hormone receptor alpha, has not been previously implicated in 

alcohol-related phenotypes. Thyroid hormone deficiency during pregnancy is a common cause of 

intellectual disability (Bath et al., 2013) as well as neurocognitive deficits and reduction in 



127 
 

cerebellar volume and decreased white matter density in adults (Krieger et al., 2019). A recent 

study conducted in the UK Biobank has also demonstrated that increase in alcohol consumption 

is associated with decrease in global brain volume measurements as well as white matter 

microstructure (Daviet et al., 2022). Therefore, our finding suggests that rare variation in thyroid 

hormone receptors encoded by the THRA gene could be involved in the development of potential 

alcohol problems. 

Applying the MAGIC-LASSO to predict unmeasured AUDIT-P outcomes increased the 

sample size from 51,357 to 147,376, representing a 129% increase in effective sample size, after 

accounting for the phenotypic correlation between the observed and predicted AUDIT-P scores. 

Importantly, these represent AUDIT-P scores for 96,019 independent subjects with exome 

variant data who could otherwise not have been included in this analysis without ML predicted 

scores. While ML-predicted outcomes are not without error, we have demonstrated an approach 

for efficiently and reliably predicting missing outcomes to maximally leverage measured exome 

data for rare variant study of a phenotype such as AUDIT-P in the UK Biobank. 

Predicting the likely functional impact of variation in the genome is challenging, as it 

requires taking appropriate account of the different kinds and levels of prior evidence of the 

likely function for every position. Previous analyses (Gusev et al., 2014; Pickrell, 2014) have 

shown that joint modeling of available functional information can improve power to detect 

putative causal variants in common variant studies across complex traits. In this analysis, we 

hypothesized that based on the evidence for the convergence of common and rare variant signals 

in the genetic architecture of complex psychiatric traits, similar approaches can be utilized to 

also improve signal detection in rare variant studies of complex psychiatric traits.  
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To achieve this, we first analyzed predicted AUDIT-P GWAS data by partitioning its 

heritability into functional sequence classes using stratified LDSC which accounts for the 

overlap among different functional classes. Enrichment values from statistically significant 

classes were then used to determine the overall variant weight at each position in the exome, by 

simultaneously accounting for the SNP-based heritability of common variant signals conferring 

risk to AUDIT-P, as well variant membership in each of the significantly enriched functional 

classes. We hypothesized that these disorder-specific weights would outperform default SKAT 

weights which assigns the weights to the variants based on the MAF without taking a priori 

functional information into consideration.  

Our findings show that by leveraging common variant GWAS results specific to the 

phenotype to be used in a rare variant investigation as well as functional information, we can 

refine and increase the statistical significance. In this case, the application resulted in discovering 

two independent gene intervals containing rare variants influencing alcohol problems as 

measured by AUDIT-P. Additionally, of the four custom annotation sources acquired from the 

psychENCODE Consortium, three were significantly enriched for the heritability of AUDIT-P. 

This finding demonstrates that by going beyond default annotation classes from LDSC and 

including custom annotation classes such as enhancer and acetylation marks from the 

psychENCODE Consortium, we can provide more specific weights that can further increase 

detection power. While these findings can be seen as a proof of principle for the utility of 

including functional information as a priori weights in rare variant testing, given that most of the 

functional variation in the genome lies outside of the coding regions of the genome (Auton et al., 

2015), future work could use whole-genome sequencing data to further explore the utility and 
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feasibility of using empirical functional weights in non-coding regions of the genome. 

Furthermore, while AUDIT-P is moderately heritable, empirical functional weights derived from 

more heritable disorders such as schizophrenia (Trubetskoy et al., 2022) may show better 

predictive power for rare variant identification than AUDIT-P. Therefore, we could also explore 

the utility of empirical functional weights in more heritable disorders.  

The analyses presented in this chapter should be interpreted in the context of some 

limitations. First, there are currently no large-scale samples for rare variant studies of alcohol-

related phenotypes which motivated us to use ML to predict AUDIT-P in the full 200k exome 

release of the UK Biobank for rare variant analysis. While we note that our predicted AUDIT-P 

shows strong genetic correlation with measured AUDIT-P in the UK Biobank (rG=0.91), 

replication of the results presented in this study in other adequately powered cohorts is 

important. Second, due to sample size and power limitations, the current analysis utilized 

interval-based rare variant testing and thus, we did not conduct single marker tests. As larger 

sample sizes become available, it is important to extend these analyses to also perform single 

marker tests on AUDIT-P. Third, while our empirical functional weighting scheme shows 

improvement over the default SKAT weights, we note that future work could focus on refining 

the weights and applying it to WGS data and other phenotypes with higher heritability. Fourth, 

the current analysis was limited to the European subset of the UK Biobank exome data release. 

As larger, more ancestrally diverse samples with adequate power for rare variant testing become 

available, future studies should conduct rare variant testing on AUDIT-P in under-represented 

and diverse populations. 

In conclusion, in this study, we show that rare variation in the ADH1C and THRA genes 

are significantly associated with AUDIT-P in the UK Biobank. These results suggest that 
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leveraging ML phenotype prediction and empirical functional weights can help increase effective 

sample size and subsequent discovery power for rare variant association testing in underpowered 

phenotypes such as AUDIT-P in large-scale Biobank samples. As sample sizes continue to 

increase, future directions of this work include improvement of the empirical functional weights 

and conducting these analyses in the non-coding regions of the genome using WGS data.  
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CHAPTER VII 

Global Discussion 
7.1 Summary 

 The preceding chapters presented in this dissertation describe a series of analyses at 

common variant level on schizophrenia, while the final chapter focused on a stand-alone rare 

variant analysis of AUDIT-P in the UK Biobank. Although not comprehensive, we highlighted 

several important gaps in the current literature and described our attempts to address them. In the 

first chapter, we provided an overview of the current genomics landscape of schizophrenia as of 

2022. In second, third, and fourth chapters, we described three different analyses conducted in 

members of multiplex schizophrenia families. First, we showed that common risk variation as 

indexed by current PRS from PGC3-SCZ cannot account for the higher recurrence risk of 

schizophrenia in members of multiplex schizophrenia families. Next, we showed that while 

members of multiplex schizophrenia families appear to have a significantly increased PRS for 

bipolar disorder and major depressive disorder, two psychiatric disorders displaying high genetic 

correlation with schizophrenia, the source of this increased polygenic risk appears to be due to 

part of the polygenic risk that bipolar disorder and major depressive disorder share with 

schizophrenia due to their strong genetic correlation. Finally, we took this observation further 

and explored the shared genetic architecture of these three highly correlated psychiatric disorders 

at symptom level in multiplex schizophrenia families and showed that negative and disorganized 

symptoms in psychotic, and negative symptoms in non-psychotic members of multiplex 

schizophrenia are specifically associated with schizophrenia PRS, while no association was 

observed with PRS constructed using bipolar disorder or major depressive disorder GWAS. 

 In the fifth chapter, we went beyond multiplex families and used the summary statistics 

data from PGC3-SCZ and IMSGC-MS to compare and contrast the common variant genetic 
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architecture of schizophrenia and multiple sclerosis. We showed that while there is no significant 

genetic correlation between these two disorders, there is a substantial polygenic overlap between 

them that can be used for downstream analyses. By leveraging this overlap, we identified 16 

novel schizophrenia and 20 novel multiple sclerosis loci, while an additional 36 genomic loci 

were also identified to be jointly associated with both.      

Finally, in the sixth chapter, we performed a stand-alone rare variant analysis on AUDIT-

P using the whole-exome data from the 200k release of the UK Biobank dataset and showed that 

by using ML phenotype prediction and empirical functional weights, we can increase the 

effective sample size and refine the statistical significance of rare variant association testing in 

AUDIT-P and showed that the ADH1C gene is significantly associated with AUDIT-P in the UK 

Biobank at rare variation level. 

In the subsequent sections below, we frame these analyses in a unified context by first 

describing their implications, followed by the limitation and future directions on how to further 

explore these questions in more detail.  

7.2 Common variant analysis of multiplex schizophrenia families 

 In the first three chapters, we performed extensive common variant analysis of multiplex 

schizophrenia families to answer three key questions. While sporadic cases are generally 

considered to be the norm for complex traits, including schizophrenia (Yang et al., 2010), 

familial cases represent an interesting exception. Individuals ascertained from multiplex families 

such as the ISHDSF sample are distinct because they represent the upper bounds of the 

recurrence risk of schizophrenia in the population. Although FH remains the strongest risk factor 

for developing schizophrenia (Walder et al., 2014), only ~1/3 of sporadic schizophrenia cases 

have a positive FH of a psychotic disorder (Käkelä et al., 2014). We showed that unlike familial 
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bipolar disorder cases (Andlauer et al., 2021), familial schizophrenia cases do not appear to have 

a significantly increased PRS for schizophrenia compared to ancestry-matched sporadic cases 

from the population. While this finding did not tell us what the source of increased recurrence 

risk of schizophrenia in multiplex families is, it suggests that the higher recurrence risk of 

schizophrenia in multiplex families is unlikely to be due to an increased burden of common risk 

variation as indexed by current PRS (PGC3-SCZ in 2022). Additionally, we were able to show 

that all members of our multiplex schizophrenia families, including the unaffected relatives in 

the families, have an increased PRS for schizophrenia compared to ancestry-matched population 

controls. This finding also further validated the hypothesis of a genetically influenced psychosis 

spectrum by showing the continuous increase of schizophrenia PRS from unaffected relatives in 

the families to the familial cases which includes our core schizophrenia and poor-outcome 

schizoaffective cases. 

Next, we extended our PRS profiling in the ISHDSF sample to investigate whether 

members of our multiplex schizophrenia families also have an increased PRS for bipolar disorder 

and major depressive disorder. The main motivation behind this work was two important 

observations. First, epidemiological studies consistently suggest that there is a high aggregation 

of disorders on the psychosis spectrum (besides schizophrenia) in multiplex schizophrenia 

families (Kendler et al., 1993). Second, cross-disorder analyses of psychiatric disorders such as 

the ones conducted by the PGC (Lee et al., 2021), show that there is a strong genetic correlation 

between schizophrenia and bipolar disorder (rG=0.67), and schizophrenia and major depressive 

disorder (rG=0.35). While cross-disorder PRS profiling across correlated psychiatric disorders 

have been performed in other samples, most of these analyses have been conducted in case-

control samples and the source of these increased cross-disorder PRS across psychiatric disorders 
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remains unclear. To address this gap in the literature, we used our multiplex schizophrenia 

family sample (N=1,005 with genotype data) in combination with state-of-the-art statistical 

methods such as genomicSEM (Demange et al., 2021; Grotzinger et al., 2019) and pTDT 

(Weiner et al., 2016) to identify the source of increased cross-disorder PRS in the ISHDSF 

sample. First, we showed that similar to schizophrenia PRS, members of multiplex schizophrenia 

families also have an increased PRS for bipolar disorder and major depressive disorder, with the 

highest PRS loadings observed in the broad case definition, and very-broad case definition, 

respectively. The bulk of our bipolar disorder cases in the ISHDSF are in the broad case 

definition, while all of our major depressive disorder cases are in the very-broad case definition. 

Therefore, these results show that as expected, the highest loadings of bipolar disorder and major 

depressive disorder polygenic risks in our sample are observed in case definitions that have the 

highest number of bipolar disorder and major depressive disorder cases, respectively. Our 

univariate PRS profiling the ISHDSF sample was further supported through our pTDT analyses 

where we showed that PRS for schizophrenia, bipolar disorder, and major depressive disorder 

are significantly over-transmitted from parents to probands in the families, suggesting that 

offspring in multiplex schizophrenia families have, on average, higher polygenic risks for these 

three correlated psychiatric disorders compared to their parents which signifies over-transmission 

of risk for these disorders in the ISHDSF, while no over-transmission of LDL PRS was 

observed. 

However, while interpretation of increased schizophrenia PRS in a sample with high 

incidence of schizophrenia is straightforward, interpretation of cross-disorder PRS, particularly 

in multiplex families, is challenging. Due to the pervasive genetic pleiotropy that exists in the 

genome, it is difficult to determine whether the increased polygenic risk we observe for these 
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two correlated disorders is due to the portion of the polygenic risk that these two disorders share 

with schizophrenia due to genetic correlation, or the “affective” portion of the polygenic risk that 

is unique to them and not shared with schizophrenia. To answer this question, we used 

genomicSEM to parse out the signals from univariate bipolar disorder and major depressive 

disorder into underlying latent genetic factors that 1) capture the portion of the polygenic risk 

that these two disorders share with schizophrenia due to genetic correlation, and 2) the affective 

portion of the genetic risk that is unique to them. After validating the newly generated polygenic 

signals from genomicSEM using downstream analyses, we were able to show that the source of 

this increased cross-disorder polygenic risk in members of our multiplex schizophrenia families 

is due to part of the polygenic risk that bipolar disorder or major depressive disorder share with 

schizophrenia due to genetic correlation. While this observation agreed with our initial 

hypothesis, we note that this is the first empirical evidence supporting this observation. These 

findings suggest that given the pervasive pleiotropy across the genome, it is important to pay 

close attention to the relative contribution of the shared and unique genetic components of 

polygenic risks across correlated psychiatric disorders for a complete interpretation of cross-

disorder PRS profiling. We further replicated these findings in a sample of independent sporadic 

schizophrenia from the ISGC sample and showed that these findings can be extended to samples 

beyond multiplex families. 

The ISHDSF sample has detailed symptom level information available across all case 

definitions on the extended psychosis spectrum, including the unaffected relatives. Upon 

establishing that members of multiplex schizophrenia families have an increased polygenic risk 

for schizophrenia, bipolar disorder, and major depressive disorder, we sought to examine the 

association of the polygenic liability to these three disorders and symptom dimensions across the 
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ISHDSF sample. While previous symptom level analyses of schizophrenia have mostly focused 

on case-control designs (Derks et al., 2012; Smigielski et al., 2021), we used our multiplex 

schizophrenia family sample to investigate these associations in a more detailed manner. What 

made our analysis stand out from previous case-control designs, is the availability of symptom 

measurements not only in psychotic subjects in the families, but even in family members without 

a diagnosis of a psychotic disorder. While subjects with a diagnosis of a psychotic disorder 

(narrow and intermediate case definitions in the ISHDSF sample) were given the OPCRIT, a 

strength of our analysis was that subjects without a diagnosis of a psychotic disorder (broad, very 

broad, and unaffected relatives in the ISHDSF sample) were given the SIS to assess their 

symptoms on the extended psychosis spectrum.  

A major question about the clinical heterogeneity that we observe in schizophrenia is the 

extent to which clinical features and differences observed in cases are attributable to genetic 

differences. Through this analysis, we showed that similar to previous reports (Bigdeli et al., 

2017; Fanous et al., 2012), polygenic liability to schizophrenia is associated with increased 

negative/disorganized symptoms in subjects with a diagnosis of a psychotic disorder. 

Additionally, we showed that polygenic liability to schizophrenia is also associated with negative 

symptoms in non-psychotic subjects in the families. Together, these findings across the extended 

psychosis spectrum provided genetic evidence for the spectrum model of schizophrenia at 

symptom level and corroborated previous epidemiological findings that show negative and 

disorganized symptoms are likely to have a greater genetic basis than positive symptoms, making 

them better indices of familial liability to schizophrenia.  

 

 



137 
 

7.3 Polygenic overlap between schizophrenia and multiple sclerosis 

While in the third and fourth chapters we investigated the shared genetic architecture of 

schizophrenia with two correlated psychiatric disorders (bipolar disorder and major depressive 

disorder), we took a different approach in the fifth chapter. Most of the cross-disorder analyses 

of complex disorders have largely focused on disorders with observed genetic correlation. As 

discussed in the first chapter, newly developed methods such as MiXeR and condFDR 

(Andreassen et al., 2013; Frei et al., 2019) methods provide a framework to extend cross-disorder 

analysis of complex disorders beyond those with significant genetic correlation. In this chapter, 

we extended our cross-disorder analyses of schizophrenia by examining the polygenic overlap 

between schizophrenia and multiple sclerosis beyond genetic correlation. Prior joint analyses of 

schizophrenia and multiple sclerosis have largely focused on either global genetic correlation 

measurements, or specifically on variants inside the MHC region. Here, we hypothesized that 

because of prior evidence for immune dysregulation in schizophrenia patients and co-occurring 

neuropsychiatric symptoms in multiple sclerosis patients, we may observe polygenic overlap 

between these two disorders that can be exploited for further downstream analyses. In agreement 

with prior work, we detected no significant genetic correlation between schizophrenia and 

multiple sclerosis by LDSC analysis and showed that this observation appears to be attributable 

to the balance of shared and opposite effect directions detected in both bivariate MiXeR and 

conjFDR analyses. Our results further suggested that the increased rate of psychotic-like features 

in some multiple sclerosis patients may be partially attributable to the genetic loci shared 

between schizophrenia and multiple sclerosis that have concordant direction of effects. Finally, 

our results suggest that despite substantial increase in GWAS sample sizes in recent years, a 

considerable growth in sample sizes are still required to increase our understanding of the shared 
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genetic etiology among complex, polygenic disorders such as schizophrenia and multiple 

sclerosis at common variant level. As shown in the preceding chapters, although genetic 

correlation estimates and PRS profiling are the dominant methods for cross-disorder analysis of 

complex disorders, state-of-the-art methods used in this chapter showed that complex disorders 

with no direct genetic correlation but purported biological dysfunction provides new avenues for 

analyzing the shared genetic architecture of schizophrenia with other disorders. Therefore, we 

can expect to see an increase in cross-disorder analyses of complex psychiatric disorders beyond 

PRS profiling or genetic correlation studies.   

7.4 Rare variation in the genetic architecture of complex traits 

  The analyses described in the second to fifth chapters focused on common variation in 

the genome while rare variants were omitted. In the sixth chapter, we expanded our work to also 

investigate the rare variant architecture of complex disorders. The analysis described in the fifth 

chapter were initially planned to be carried out on schizophrenia using the WGS data of ISHDSF 

and ISGC samples. However, due to various delays with our collaborators, we have not yet 

received the WGS data to conduct these analyses. As a result, instead we opted to use the 

available UK Biobank data to investigate the rare variant architecture of AUDIT-P. While the 

analysis described in the sixth chapter may seem disjointed from the preceding chapters, we note 

that the pipeline we described there is applicable to schizophrenia as well. First, we will discuss 

the implications of the results in this chapter, and we will follow that by a discussion on how 

these results could be applied to WGS data for schizophrenia.  

 We described the largest rare variant study of AUDIT-P in the UK Biobank as of 2022. 

We used ML phenotype prediction and empirical functional weights to increase the sample size 

and statistical power for rare variant interval testing and showed that while current sample sizes 
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are insufficient for rare variant study of AUDIT-P in the UK Biobank, we can use ML phenotype 

prediction to improve effective sample size for rare variant discovery with meaningful 

associations. Additionally, we showed that by including disorder specific functional information 

as a priori weights in interval testing, we can refine and increase the statistical significance of 

rare variant testing for AUDIT-P. While genes in the ADH cluster (such as ADH1C) have been 

robustly associated with alcohol phenotypes at common variation level across different studies, 

this study provide evidence for the first time that rare variation in the ADH1C gene is associated 

with AUDIT-P in the UK Biobank. While most of the improvement in discovery power came 

from increased effective sample size, here we will focus on the impact of including empirical 

functional weights in rare variant analysis of AUDIT-P. This is because the portion of the work 

related to ML phenotype prediction was carried out by Dr. Gentry (Assistant Professor of 

Psychiatry at VCU), while the construction of empirical functional weights was specifically 

developed and implemented into the pipeline by me as part of this dissertation.  

Important studies have shown that inclusion of functional information can improve 

discovery power for common variants associated with complex traits (Gusev et al., 2014; 

Pickrell, 2014). Here, we hypothesized that the same framework can be applied to rare variant 

discovery for complex traits. This hypothesis relied on two important observations: Recent 

studies suggest that there is a convergence between common and rare variant signals in the 

genetic architecture of complex psychiatric disorders. Recent sequencing study of schizophrenia 

from the SCHEMA Consortium (Singh et al., 2022) showed that genes identified to be robustly 

associated with schizophrenia using WES data were enriched for common variant signals from 

PGC3-SCZ (Trubetskoy et al., 2022). An interesting pair of examples from schizophrenia studies 

are the GRIN2A and SP4 genes. GRIN2A encodes one of the secondary subunits of the 
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glutamatergic NDMA receptor, while the SP4 gene is a transcription factor that is highly 

expressed, and regulated by NMDA transmission and NMDA receptor abundance, in the brain. 

Common variant signals in these two genes have been previously associated with schizophrenia. 

The SCHEMA Consortium provided evidence for the first time that rare variation in this gene is 

also involved in the genetic architecture of schizophrenia. Another important observation from 

common variant studies of complex traits is that many identified signals lie in functional regions 

of the genome that impact gene regulation and expression. This observation has led to the 

development of fine-mapping methods such as PolyFun (Weissbrod et al., 2020) which performs 

functionally informed fine-mapping that uses functional information as a-priori evidence for 

detecting the likely causal variants through fine-mapping with better accuracy. We hypothesized 

that by combining information from common variant GWAS data and functional information 

from various sources such as ENCDOE (Encode Consortium., 2012) and psychENCODE 

(Akbarian et al., 2015), we may be able to increase our statistical power for rare variant 

identification. While this framework is likely to work more robustly for identification of rare 

variant in non-coding regions of the genome, using empirical functional weights as a-priori 

evidence in our rare variant analysis of AUDIT-P in the UK Biobank, we were able to increase 

the statistical significance for our interval-based testing by around 2-fold. 

The initial plan was to apply this framework to rare variant study of schizophrenia. While 

we did not get access to our schizophrenia sequence data in time to conduct that analysis, here 

we provide our preliminary stratified LDSC analysis results applied to PGC3-SCZ GWAS data 

(Figure 35). Our analysis indicated that 27 functional categories were significantly enriched for 

the heritability of schizophrenia. 
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As shown in Table 20, many cell-

specific and tissue-specific 

functional classes acquired from 

psychENCODE were shown to be 

significantly enriched for 

schizophrenia heritability. This 

suggests that our framework for 

functional annotation and 

empirical weighting of variants 

using common variant GWAS 

results is likely to improve the 

power of rare variant studies of 

schizophrenia. Furthermore, 

functional studies of schizophrenia 

are much more comprehensive 

compared to AUDIT-P, which will 

allow us to use a more 

comprehensive set of functional information to provide more accurate weights for a well-studied 

disorder like schizophrenia. We anticipate that upon receiving the WGS data for ISHDSF and 

ISGC samples, our lab will test the utility of this framework using our schizophrenia WGS data. 

 

Figure 36: Partitioning the heritability of PGC3 schizophrenia GWAS into functional categories. Asterisk 
represents significant categories after multiple testing correction. 
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Table 20: Significant annotation classes enriched in the heritability of PGC3 schizophrenia after multiple testing 
correction. Grey categories are custom classes. 

Annotation Category  
S-LDSC-
Enrichment LDSC-Enrichment p-value 

Girdhar H3K27ac NeuN+ 2.87 3.11E-24 
Girdhar H3K27ac NeuN- 2.13 1.81E-22 
Girdhar H3K4me3 NeuN+ 11.07 3.37E-14 
Conserved Primate phastCons46Way 11.71 3.67E-09 
Conserved LindBlad-Toh 8.99 2.33E-08 
CpG Content 1.11 1.17E-07 
Conserved Vertebrate PhastCons46Way 7.29 2.64E-07 
H3K27ac Hnisz 1.27 1.45E-05 
Human promoter Villar 16.21 5.28E-05 
Ancient Sequence Age Human Enhancer 12.4 5.51E-05 
H3K4me3 Trynka 2.11 1.20E-04 
GTEx eQTL MaxCPP 4.87 1.40E-04 
Conserved Primate phastCons46Way flanking 2.21 2.40E-04 
UTR 5 UCSC flanking 3.95 1.90E-03 
Fetal DHS Trynka 3.04 2.40E-03 
H3K27ac PGC2 1.41 2.70E-03 
UTR 3 UCSC 4.55 3.40E-03 
DGF ENCODE 2.24 7.30E-03 
Coding UCSC 3.91 8.40E-03 
psychENCODE Temporal Cortex H3K27ac 4.15 9.00E-03 
H3K4me1 peaks Trynka 1.82 9.30E-03 
psychENCODE Enhancers 3.57 1.10E-02 
psychENCODE Cerebellum H3K27ac 4.6 1.40E-01 
Blueprint h3k27acQTL MaxCPP 2.65 1.70E-02 
TFBS ENCODE 1.81 2.60E-02 
Girdhar H3K4me3 NeuN-  3.65 3.30E-02 
H3K4me3 peaks Trynka 2.76 3.80E-02 

 

7.5 Limitations 

 The results presented in each of the preceding chapters must be interpreted in the context 

of several limitations. While the analyses in each chapter can be seen as stand-alone work and a 

more comprehensive description of the limitation of each analysis is provided separately at the 

end of each chapter, here we attempt to describe some of the major limitations of complex traits 
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genetics studies that require careful attention. We used PRS profiling method to index common 

variation burden of complex disorders in the ISHDSF and ISGC samples. While PRS is widely 

used for this purpose, there are several limitations that are inherent in current PRS construction 

methods, and these results in this dissertation should be interpreted in that context. For example, 

while schizophrenia GWAS is currently the strongest GWAS of any psychiatric disorder, current 

PRS of schizophrenia using PGC3-SCZ GWAS (as of 2022) can account for only ~2.6% of the 

variance in schizophrenia, suggesting that PRS predictive power is still very limited. 

Additionally, some known genetic risk factors for schizophrenia, such as indels or rare variation, 

are not captured by current PRS methods. While it is reasonable to predict that PRS methods will 

become more sophisticated in the coming years, most of the complex psychiatric disorders also 

have strong environmental influences that are not going to be captured by polygenic indexing. 

Furthermore, although more sophisticated methods such as PRS-CSx (Ruan et al., 2022) have 

been developed that allows for application of PRS profiling in diverse populations, most of the 

well-powered GWAS of complex traits are conducted in individuals of predominantly European 

ancestry. With recent efforts to increase both the continental diversity of GWAS samples and, as 

a result, the generalizability of association signals and PRS to other ancestral backgrounds, it is 

also reasonable to expect that well-powered GWAS in diverse ancestries will become available. 

But as of 2022, this is still a major limitation of current common variant studies of complex 

traits.  

Another important limitation in the current complex trait genetics landscape is the lack of 

cross-disorder analysis frameworks at rare variation level. In one of the analyses described in this 

dissertation, we used state-of-the-art methods to conduct a cross-disorder analysis of 

schizophrenia and multiple sclerosis, but that analysis was limited to common variation in the 
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genome. While study of rare variation in the genome is inherently more difficult than common 

variation due to weaker LD among rare variants, we can expect that as the cost of sequencing 

continues to drop, sequencing the whole genome for rare variant analysis is going to become 

more feasible. Therefore, another reasonable expectation is that in the coming years, it is likely 

that we will see more integration of common and rare variant studies that will pave the way for 

the development of more sophisticated cross-disorder methods that allow for lower frequency 

variants that are captured through sequencing studies to be used in cross-disorder analyses. For 

example, the recently developed Burden Heritability Regression (BHR) method extends 

heritability and genetic correlation estimates from common variant GWAS data to rare variation 

in the genome (Weiner et al., 2022). Applying the BHR method to 400,000 UK Biobank exomes 

shows that rare coding variation in the exome can only explain ~1.3% of the phenotypic variance 

of complex traits on average, which is a much less estimate than the contribution of common 

variants from GWAS data. It was further shown that burden heritability (MAF < 0.01) of 

complex traits is also strongly concentrated in constrained genes. It was further shown that 

burden genetic correlations computed using BHR generally conform to common variant genetic 

correlation estimates from LDSC. Taken together, these results suggest that while both common 

and rare variation in the genome are convergent and have correlated effects across complex 

traits, rare coding variants in the genome contribute modestly to the missing heritability of 

complex traits. 

7.6 Future Directions 

 While each of the preceding chapters can be seen as stand-alone analyses and their future 

directions are specific to them, here we attempt to provide an overview of the general themes 

discussed through a unified lens and describe possible future directions for complex traits 
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genetics. In the past decade, Genome-wide association and sequencing studies have shown that 

many variants with a range of effect sizes are involved in the genetic architecture of complex 

traits. An important takeaway from these studies is that in order to increase the efficacy and 

statistical power for identification of both common and rare variants, a large boost in sample 

sizes needs to be achieved. As a result, major genotyping, and sequencing efforts in large-scale, 

nationwide biobanks such as UK Biobank (Bycroft et al., 2018; Szustakowski et al., 2021), 

Biobank Japan (Nagai et al., 2017), and All of Us (“The ‘All of Us’ Research Program,” 2019) 

are actively working to address the need to increase effective sample sizes for genetic studies. 

While increase in sample sizes will undoubtedly improve our statistical power for variant 

identification, a limitation of biobanks is that many phenotypes are lightly screened, which limits 

their interpretation. Another major open question moving forward is the missing heritability 

problem in complex traits. Recent studies show that many complex traits in humans involve a 

large number of variants which suggest that the heritability of complex traits may be explained 

by a joint consideration of both common and rare signals. While thousands of SNPs have been 

shown to be robustly associated with complex traits through GWAS studies, a consistent theme 

across all these studies is that individual effects of these SNPs are quite small and common 

variant GWAS analyses is unlikely to be able to capture the heritability of complex traits with 

current sample sizes. Different hypotheses such as epigenetics, epistatic, and gene-environment 

interactions have been proposed as possible sources of the missing heritability problem and 

recent findings suggest that rare variants with moderate to low frequency that are in weak LD 

with common variant signals may be a major contributor to the heritability of complex traits. For 

example, Wainschtein and colleagues were able to capture most of the twin-based heritability 

estimate of height and BMI by jointly modeling both common and rare variant signals using 
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WGS data (Wainschtein et al., 2022). In another study, a similar approach was used to capture 

the heritability of schizophrenia across different MAF bins, and it was shown that a large portion 

of twin-based heritability of schizophrenia can be captured when variants with low and 

intermediate frequencies are also included in heritability estimation (Halvorsen et al., 2020). Of 

note, a recently published paper (Yengo et al., 2022) used 5.4 million individuals from diverse 

ancestries and showed that they were able to account for the majority of the phenotypic variance 

(heritability) of height in this highly powered GWAS. This work suggests that it remains to be 

seen if large-scale sequencing efforts to identify rare variation in the genome, or extremely well-

powered GWAS studies with very large sample sizes, will provide better solutions to the missing 

heritability across all complex traits. 

 An important point to consider is that conducting large-scale GWAS results using array 

data may not be a feasible strategy in the long term. Given that genotyping arrays have limited 

utility for future studies, with the decrease in sequencing cost, it may be reasonable to assume 

that future studies will likely opt for sequencing strategies instead of array genotyping. There are 

two reasons for this. First, sequencing provides an agnostic overview of the genetic makeup of 

an individual while genotyping arrays only tag a set of pre-defined SNPs which are usually 

population specific. Thus, genetic data generated from sequencing studies will have longevity 

and future use beyond genotyping arrays. Second, sequencing platforms will probe the whole 

genome which in turn allows researchers to conduct rare variant studies of complex traits to 

complement the existing common variant literature. However, although sequencing can identify 

rare variation in the genome, an important bottleneck in rare variant studies are the challenges in 

parsing out putative causal signals from normal variation in the genome. We proposed a 

framework to combine evidence from common variant GWAS data with functional information 
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to improve rare variant discovery in complex traits and tested our proposed framework using the 

UK Biobank exome data on AUDIT-P which showed that inclusion of common variant GWAS 

data signals and functional information as a-priori evidence can increase and refine statistical 

significance for rare variant identification. We can also expect to see more sophisticated methods 

that combine common and rare variant data to improve rare variant discovery from sequence 

data. We also note that a major setback in our rare variant analysis of AUDIT-P was the use of 

exome data instead of whole-genome data. As described extensively in chapter seven, most of 

the GWAS signals and functional elements in the genome lie outside the coding regions of the 

genome and one of our main directions moving forward is to test the effectiveness of this 

framework for rare variant identification in non-coding regions of the genome.  
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Extended Figures 
 
 
 

 
Extended Figure 1: SKAT analysis of observed AUDIT-P using the UK Biobank exome data 

with default (A) and empirical (B) weights. 
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Extended Figure 2: SKAT analysis of predicted AUDIT-P using the UK Biobank exome data 

with default (A) and empirical (B) weights. 
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