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Abstract 
A METHOD FOR PREDICTING DOSE CHANGES FOR HN TREATMENT USING SURFACE IMAGING 
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Philosophy at Virginia Commonwealth University. 

Virginia Commonwealth University, 2022 

Director: Dr. Christopher Guy, Assistant Professor, Department of Radiation Oncology 

 

Head and neck cancer (HNC) is commonly treated with radiation therapy. A 

conventionally fractionated radiotherapy treatment course for HNC lasts six to seven weeks, 

and during this time, the patient’s anatomy may change substantially. The tumor and organs at 

risk may all reduce in volume, and patients often experience weight loss due to side effects of 

radiation such as xerostomia, dysphagia, and loss of taste. Anatomical changes lead to a 

reduction in treatment quality due to decreased setup reproducibility and altered dose 

deposition compared to the original plan. This may necessitate a mid-course resimulation and 

replan; however, few clinics have developed a standardized method for determining if patients 

need replanning, which may lead to overlooking patients who need it or wasting resources on 

patients who do not. This work investigates a new method for determining when to resimulate 

and replan HNC patients by utilizing their topographic anatomical changes to predict 

differences in planned versus delivered dose distributions.  

The first part of this work presents a method for deformable image registration of CT to 

CBCT, developed using 15 retrospectively selected HN patients, which addresses the challenges 

of inaccurate Hounsfield units and truncated field of view present in the CBCT. The registration 

method was validated on 10 additional HN patients using contour comparison, with average 
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DSC of 0.82, 0.74, 0.72, and 0.69 for the mandible, cord, and left and right parotid. This is 

comparable to previous results found in the literature. The registration method was then used 

to generate dose maps and surface contours for 47 patients for the second part of this work. 

The second part of this work involved the development of a U-Net which takes the 

original dose distribution, the original surface, and the treatment day surface as input and 

predicts the treatment day dose distribution as output. Each of the 47 patients had three 

deformed CTs evenly spread throughout the treatment course for the generation of treatment 

day surface and dose, resulting in 141 data sets for training and testing of the network. The 

network training was performed with 135 of these data sets, while the remaining 6 were used 

for testing. The average RMSE and MAE between the true and predicted dose distributions for 

the 6 test cases was 4.25 and 2.15. 

The deformable image registration method was successful at producing reasonable 

deformations between CT and CBCT for the purpose of dose-of-the-day calculation. This work 

proved feasibility of the dose prediction neural network and shows promise for future clinical 

applicability. 
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Chapter 1   Introduction 
The introductory chapter of this thesis presents the purpose of this work and 

background information relevant to it. 

As oncology advances, treatments are becoming more and more customized to 

individual patients, with the goal of minimizing side effects while effectively killing cancer cells. 

This is especially important in radiation oncology, where the lines between effective treatment 

and not eradicating the cancer or causing lethal toxicity can be razor thin. In the head and neck 

(HN) region, delivery of excessive dose to the organs at risk (OARs) can result in severely 

decreased quality of life (QOL) due to dry mouth, loss of taste, and difficulty swallowing, among 

other symptoms1–4. On the other hand, underdosing the tumor can leave the door open for 

failed treatment, metastasis, or recurrence. While more complex treatments such as intensity 

modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) have 

improved both outcomes and side effects, there is still progress to be made in the form of 

adaptive radiation therapy (ART). ART seeks to adapt treatments mid-course to account for 

anatomic changes which affect dose deposition. This thesis describes the exploration of neural 

networks as a tool for more efficient, data-guided ART, specifically for HN cases. The eventual 

goal of this work is to have a fully-fledged clinical tool which radiation oncologists could use to 

quickly and easily determine when a treatment adaptation is necessary. 

This work uses computed tomography (CT) and cone beam computed tomography 

(CBCT) images from pre-treatment and three mid-treatment time points to generate estimated 

dose distributions and external body surfaces. The neural network is trained, tested, and 
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validated on the generated data. This is the first work of its kind to use surface information via 

neural network as a means to predict dose distributions. 

1.1 Head and Neck Cancer 
 Head and neck cancer (HNC) was the seventh most common cancer globally and 

accounted for 3% of all cancer incidence and 1.5% of all cancer deaths in the US in 2018, with 

lip and oral cancer specifically contributing more deaths than any other HN site5,6. HNC 

encompasses a number of primary cancer sites within the region, often arising from the 

squamous cells of mucus membranes. They can be split into regions within HN: oral cavity, 

sinonasal cavity, pharynx, nasopharynx, and larynx. While in the past, tobacco and alcohol have 

been the leading cause of HNC, tied to 75% of cases at one point, human papillomavirus (HPV) 

has since become the leading cause, now accounting for over 70% of HNC7.  

In the tumor-node-metastasis (TNM) staging system, HNC tumors are staged by tumor 

size and/or location, lymph node involvement, and presence of metastases. Tumor 

characteristics are designated as Tis (for in situ), T1, T2, T3, T4a, and T4b, with some variation 

depending on disease site, and increasing numbers indicating increasing tumor size and spread; 

nodal involvement has similar designations and similar variations with disease site. Distant 

metastasis is indicated by M0 for no distant metastasis and M1 if distant metastasis is present. 

Each of the three scores contributes to determination of the overall stage of disease. For 

example, an oral cavity mass measured between 2 and 4 cm in its largest dimension, with 

involvement of a single same-sided lymph node, and no distant metastasis, would be 

designated as T2, N1, and M0, and diagnosed as Stage III. For oropharynx cases, HPV status 

must be determined as well. HPV-positive patients have a more favorable prognosis, as HPV-
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mediated cancers tend to have better treatment response and HPV-positive patients tend to be 

younger and fitter with fewer coexisting conditions than HPV-negative patients. Nodal 

involvement is the greatest predictor of patient prognosis in HNC, and there are six nodal 

groups commonly investigated by physicians: submental, upper, lower, and middle cervical, 

posterior triangle of the neck, and supraclavicular. Metastasis is usually not seen until the late 

stages of HNC, and generally occurs via the lymphatic system.  

The primary curative modalities are surgery and radiation, although chemotherapy is 

often used in conjunction. Radiation therapy may be used definitively or adjuvantly following 

surgery, with or without chemotherapy, depending on tumor staging and location. Surgery or 

radiotherapy alone are generally sufficient to cure Stage I and II disease, which accounts for 30-

40% of HNC patients. Surgical removal of lymph nodes or prophylactic radiation of the neck 

may be considered to reduce chances of recurrence or further spread. For the more than 60% 

of cases who present with Stage III or IV disease, multimodality treatment is used to increase 

chances of survival while attempting to preserve function and quality of life. Survival rates for 

locally advanced disease are less than 50% at five years. Survival rates for HNC are generally 

better than cancers of different anatomic origin, due to the tendency of tumors in this region to 

spread locally, as opposed to distantly. However, side effects of treatment are of great concern, 

especially as the population of HNC survivors trends younger.  

1.2 Current Practice of Head and Neck Radiotherapy 
 Radiation therapy (RT) of HNC is commonly used definitively, pre- or post-operatively, 

and/or in conjunction with chemotherapy. Treatment techniques have evolved over the years, 

from simple 2D or 3D conventional treatments to three-dimensional conformal radiotherapy 
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(3DCRT) to intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy 

(VMAT), made possible by improvements in imaging and beam delivery. Conventional 

treatments use relatively few beams shaped by jaws, often requiring decisions to be made 

about sacrificing normal tissue function. 3DCRT uses forward planning, where the number of 

beams and their parameters are chosen iteratively as planning goals are assessed after beams 

have been designed or adjusted, and multiple beams made by static multi-leaf collimators 

(MLC) shapes to conform to the target. IMRT uses inverse planning and beams modulated by 

MLCs to conform the dose to the target even further. In inverse planning, the TPS generates a 

fluence map to meet predefined planning goals, and then beam parameters and MLC positions 

are computed to achieve the desired fluence. The modulation may be achieved via a step-and-

shoot (static) delivery technique, where the field is divided into segments and the beam is off 

while the leaves move to form the different beam shapes, or a sliding window (dynamic) 

delivery technique, where radiation is delivered while the leaves migrate and the timing of the 

movements determine the intensity of the radiation. VMAT is an extension of IMRT where 

radiation is delivered while the gantry and the MLCs simultaneously move, with varying speeds 

and dose rates. 3DCRT, IMRT, and VMAT are markedly better than 2D conventional techniques 

due to the ability to shape the beams (3DCRT) or dose (IMRT and VMAT) to the target, thereby 

sparing the surrounding normal tissues. Studies and systematic reviews of literature have also 

demonstrated that IMRT and VMAT may further improve acute and late toxicities over 3DCRT, 

with equivalent or better tumor control and survival8–11. 

When RT is prescribed for a patient’s treatment using these advanced treatment 

techniques, they must first undergo a treatment simulation. During simulation, the patient is 
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oriented on the CT scanner table in the position planned for treatment, using the indicated 

immobilization devices. The planning CT (pCT) scan is taken at simulation with all devices in 

place. The primary immobilization device for HNC is a thermoplastic mask, which covers the 

head and may extend past the shoulders (Fig 1.1). This mesh-like mask is malleable while warm 

and molds to the patient’s anatomy. As it cools, the mask hardens. This same mask is used 

throughout the patient’s treatment course to reproduce the simulation position and minimize 

intra-fraction motion. Minimizing inter- and intra-fraction motion, enabled by properly fitted 

immobilization devices alongside proper inter- and intra-fraction imaging and monitoring, 

allows smaller PTV margins and accurate delivery of the planned dose distribution while 

avoiding potential geometric miss, which is critical to avoid underdosing of the target or 

overdosing of normal tissue. In the case of a mask which does not cover the shoulders, straps 

may be equipped to pull the patient’s shoulders down. 

 

Fig. 1.1   Thermoplastic mask used for immobilization for HNC radiotherapy. 
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A treatment plan is designed based on the pCT by a dosimetrist or physicist in 

conjunction with the physician; one to two weeks after simulation, the patient begins 

treatment. For HNC, it is common to use a simultaneous integrated boost (SIB) treatment plan 

for patients being treated definitively with radiation. An alternative method, sequential boost, 

involves delivering a “boost” to the tumor volume following delivery of a 3DCRT or IMRT 

treatment course; however, SIB has been found to achieve superior conformality, potentially 

significantly reducing doses to OARs12,13. SIB plans often consist of a high-risk target receiving 

70 Gy, an intermediate risk target receiving 60 Gy, and a low risk target receiving 54 Gy (Fig. 

1.2). Prescriptions for post-operative patients are lower, with the high-risk target receiving 60-

66 Gy14. When designing the patient’s treatment plan, the physician draws the gross target 

volume (GTV) contour around the bulky disease visible on imaging. An expansion is applied to 

account for microscopic spread of disease beyond what is visible on available imaging, resulting 

in the clinical target volume (CTV). A second expansion is utilized to account for random and 

systematic setup errors, resulting in the planning target volume (PTV), to which the physician 

prescribes dose. A typical prescription calls for 95% of the PTV to receive the prescription dose, 

while not exceeding a maximum dose of 115% of the prescription dose. As mentioned 

previously, in the case of SIB, each PTV in the set is designated as either high-, intermediate-, 

and low-risk. High-risk PTVs typically include the primary disease, intermediate PTVs include 

regional microscopic spread, and low-risk PTVs include the electively treated lymph nodes in 

the neck. In addition to being optimized on the targets, the treatment plan must spare OARs as 

much as possible and adhere to standardized dose constraints to avoid severe toxicities. For 
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HNC, critical OARs include the parotid glands, spinal cord, brainstem, and mandible, whose 

constraints are listed in Table 1.1. 

Table 1.1 Critical OARs in HNC 

Structure Constraint Endpoint 

Parotid gland Mean dose < 26 Gy Reduced salivary function 

Spinal Cord 
Max dose < 45 Gy  

(< 40 Gy if achievable) Myelopathy 

Spinal Cord +5mm Max dose < 50 Gy 

Brainstem Max dose < 54 Gy Neuropathy or necrosis 

Mandible Max dose < 70 Gy Osteoradionecrosis 

 

 

Fig. 1.2   Planning CT for SIB treatment with high-risk PTV indicated in red, intermediate-risk 

PTV indicated in magenta, and low-risk PTV indicated in lime. 
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This treatment scheme is generally delivered in 33 treatment sessions, called fractions, 

of 2.12/1.82/1.64 Gy each, 5 days per week for 7 weeks. At each fraction, kilovoltage (kV) 

orthogonal images or cone-beam computed tomography (CBCT) scans can be used to verify 

patient setup. One strategy for pre-treatment imaging for HNC patients is to image daily with 

orthogonal kV images and weekly with CBCT. The bony anatomy contained in kV orthogonal 

images is only a surrogate for the soft tissue position but sufficient for treatment alignment on 

a daily basis (Fig. 1.3). CBCT provides better soft tissue contrast for visualization of the external 

surface of the patient as well as the gross disease and can be used to monitor anatomical 

changes during the course of radiotherapy (Fig. 1.4). However, CBCT possesses its own unique 

set of flaws which limit its use to setup imaging. Unlike CT, the FOV is truncated and the HU 

values acquired by CBCT are inaccurate, making it challenging to use for dose calculation. These 

challenges will be expanded upon in Chapters 2 and 3. 

  

Fig. 1.3   Orthogonal kV images taken during HN RT. 

 
Throughout the course of treatment, the patient’s anatomy is known to change. Some 

change is intended, specifically tumor volume shrinkage; targets have been observed to shrink 
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by over 3%/week15–21. Other changes are undesirable side effects of normal tissue resulting 

from the radiation treatment. The parotid glands have been observed to shrink by up to 21.3% 

over the course of treatment, though these changes vary from patient to patient, and the 

ipsilateral parotid gland generally shrinks more than the contralateral22. Both target and parotid 

shrinkage are associated with cell death and vascular damage due to radiation. Additionally, 

patients may lose weight due to side effects such as xerostomia, dysphagia, and loss of taste. 

Anatomical changes significantly affect the delivered dose distribution to the targets and OARs, 

resulting in differences from the original treatment plan. 

Upon inspection of the pre-treatment volumetric imaging, the physician may decide that 

the patient’s anatomy differs significantly from the anatomy within the pCT. In such cases, the 

physician may order a new simulation and subsequent treatment plan to be used for the 

remaining treatment fractions. This may also occur if there is increased difficulty setting up the 

patient for treatment due to anatomical changes and ill-fitting immobilization devices often 

caused by patient weight loss. After ordering a resimulation, the physician may elect either to 

continue treatment with the original plan until the new plan is ready or to hold treatment until 

the new plan is ready. This means that while the new plan is being prepared, the patient is 

either receiving potentially suboptimal treatment or not receiving any treatment, both of which 

may negatively affect the patient’s outcomes and toxicities. Multiple studies have found that 

hot spots increased, while coverage of the PTV suffered, and the OARs received higher doses 

when patients lost significant weight during treatment and were not replanned16,23–27. 
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Fig. 1.4   CBCT images (green) taken over the course of HN RT registered with the pCT 

(magenta). 

 

1.3 Adaptive Therapy Strategies 
 Adaptive therapy is the practice of changing a patient’s treatment plan due to anatomic 

or biologic factors during the treatment course. This can occur in three different ways: offline 

adaptation, online adaptation, and intrafraction adaptation. Intrafraction adaptation seeks to 

address changes in the patient anatomy on the order of seconds, which may be a result of 

breathing motion or other bodily functions. Online adaptation and offline adaptation are similar 

to each other in that they both result in the generation of an entirely new treatment plan. 

However, online adaptation is done at the treatment machine with the patient on the table. 

This is commonly done on linacs with additional imaging capabilities, such as magnetic 

resonance imaging (MRI) or CT-on-rails, where high quality images of the patient can be 

captured each treatment day. However, some studies have sought to develop artificial 

intelligence methods for online adaptation using CBCT to generate new contours and plans, 

with demonstration of feasibility for the process28,29. Offline adaptation is done between 

treatment fractions and may include repeat simulation if onboard imaging is not sufficient for 

planning. Various adaptive planning methods have been explored for many anatomical sites, 
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including HN, lung, liver, and prostate30–33. Regardless of the site, it has been demonstrated 

that adaptive therapy, when executed on the right patients at the proper time, results in 

improved target coverage and reduced dose to the OARs. Any adaptive therapy method 

requires careful planning to avoid disruption to the clinic and establish an efficient workflow, 

given the resources required for adaptation. 

 The process of replanning is known to be time-consuming, taking multiple days to 

produce a new plan24,34,35. Though there is no current standard method for HNC ART, individual 

clinics have executed a variety of methods to standardize this process to only replan the 

patients who benefit most24. One study used a nomogram to predict parotid gland overdose, 

using the planning CT and a CT from the first treatment week to obtain the volume of the CTV 

planned to receive 70Gy, the difference between that volume in the pCT and the second CT, 

and the mean parotid gland dose difference between the pCT and the second CT; the 

nomogram correctly predicted patients who would have a >2.5 Gy overdose to the parotid 

glands, indicating they would benefit from weekly adaptive planning36. Another study 

developed a patient selection method based on multivariate linear regression which could 

theoretically predict, based solely on pre-treatment parameters, which patients would benefit 

most from adaptive therapy; a separate study used similar parameters to create a decision 

tree37,38. Brown et al. simply used pre-treatment nodal size to determine patients more likely to 

need a replan; in other work, the same authors determined more specifically that nasopharynx 

cancer (NPC) patients with large nodes may require replanning at week 3 of treatment, while 

oropharynx cancer (OPC) patients with large nodes may require replanning at week 4 of 

treatment39,40. Deformable image registration (DIR) between the planning CT and the daily 
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CBCT has also been used to recalculate the dose at each fraction, leading to fewer unnecessary 

replans and no missed cases, though this was a small study41. Other studies have indicated that 

adaptive planning is more effective in definitive treatments than in adjuvant treatments, which 

could help with patient selection42. Brown et al. also investigated virally mediated HNC (Epstein 

Barr positive or HPV positive), as these cancers are known to be highly responsive to 

radiotherapy, and found that those who presented with larger nodes were at a higher risk for 

needing replanning43. 

 Many studies use pretreatment indicators of risk for needing a replan, which can be less 

accurate and predictive than desired. Relying on daily DIR to assess dosimetric changes, while 

more accurate, is time-consuming and may not be feasible in the average clinic. However, 

multiple studies note significant benefit to patients who have been properly selected for 

adaptive therapy. Reduced dose to OARs, improved target coverage, reduced toxicities, and 

improved overall survival and locoregional control have all been seen in various studies16,27,44–

51. 

1.4 Surface Imaging in Radiotherapy 
 Surface imaging is a non-radiographic imaging technique used in RT to guide setup and 

treatment in much the same way as its radiographic counterparts, without the ionizing 

radiation. There are several different commercially available surface imaging systems, all 

operating with similar methodology. Systems compare a reference surface of the patient to a 

surface obtained in real time during treatment and report deviations in the form of error bars 

on 6 degrees of freedom (DOF). One surface imaging system is AlignRT (VisionRT, London, 

United Kingdom), with three camera and projector pods so the patient can be imaged 
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regardless of gantry angle (Fig. 1.5). The reference surface is either extracted from a user-

selected contour associated with the pCT (i.e. the body contour) or acquired in the treatment 

room by the system. Surfaces are described by vertices and triangular faces, and the density of 

points used for surface definition varies according to software settings. The comparison surface 

is the patient’s surface as they are immobilized on the treatment table. The projectors cast 

visible light that is colored red and in the form of a pseudo-random speckled pattern onto the 

patient’s body. Optical cameras use the observed textural pattern and triangulation to create a 

3D map of the patient surface52–55. The surface captured by the cameras may not include all of 

the anatomy in the reference surface, since the cameras only capture the anterior surface of 

the patient, if the patient is laying in a supine position on the treatment table. A rigid 

registration algorithm compares the two surfaces within the user-defined region of interest 

(ROI). Positioning uncertainty of AlignRT has been reported to be <1mm and <1°56. In a typical 

clinical workflow, therapists will position the patient on the table with the appropriate 

immobilization devices from simulation followed by the use of surface imaging to align the 

patient more accurately and precisely before exiting the room and performing radiographic 

imaging or starting treatment. Surface imaging may also be used to monitor the patient 

throughout treatment, as it does not impart ionizing radiation dose to the patient. 
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Fig. 1.5   Images demonstrating AlignRT System. A: Projection of red speckle pattern on 

phantom. B: Software display depicting alignment of reference surface and real-time surface 

along with error bars. C: Reference surface, generated from body contour. D: Real-time 

surface obtained using AlignRT cameras. 
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Surface imaging has a variety of applications in RT, including reducing margins for 

targets and OARs by improving setup, improving patient comfort via removal of immobilization 

devices, minimizing radiographic imaging dose, and allowing gating when breathing motion is 

relevant to treatment52,57,58. It is particularly useful in regions where the surface is a good 

surrogate for the treatment target, such as with the shallow targets seen in breast. Previously, 

it has been investigated for and found use in treatment sites such as breast,  accelerated partial 

breast irradiation, chest wall, abdominal and pelvic sites, extremities, intracranial stereotactic 

radiosurgery (SRS), and head and neck52,55. Of particular interest are SRS studies, where high 

precision in positioning is especially critical. Surface imaging studies in SRS have used surface 

imaging in place of the typical frame and mask system and found that with an open face mask 

or no mask at all, similar precision could be achieved, and greater patient comfort was 

possible58. Additionally, setup with surface imaging took significantly less time than the 

conventional frame-based approach. In HN studies, patients were outfitted with open face 

masks to reduce patient anxiety, and setup errors between closed and open face masks were 

found to be comparable56,59–61. Open face masks also allow for more flexibility in using bite 

blocks and may reduce the bolus effect that causes skin toxicity. All cited studies used the 

patient surface as a surrogate for internal anatomy and were able to detect intrafraction 

surface changes with reasonable accuracy, suggesting that surface imaging could be extended 

to detect interfraction surface changes with similar accuracy. 

1.5 Specific Aims 
 Given the known anatomic and dosimetric changes observed during a HNC patient’s 

treatment course and the difficulty in determining the need for adaptive planning, the overall 
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aim of this work was to develop a neural network to aid adaptive therapy decisions, using 

machine learning capabilities to detect the effect of anatomic changes on the planned dose 

distribution. In pursuit of that aim, it was necessary to develop a deformable image registration 

workflow to handle the CT-CBCT registration task, which would enable weekly dose calculation 

without altering the current clinical imaging strategy. 

 The hypothesis of this work is that changes in the patient’s surface can be used to 

predict changes in the radiation dose distribution and therefore determine and inform the 

treatment team of when re-simulation and re-planning should be considered to minimize 

differences between the expected and the delivered dose distributions. 

Specific Aim 1 

To develop a methodology for creating a synthetic CT and calculating delivered dose during a 

treatment course. 

Specific Aim 1.1 

To develop an approach for deformably registering a planning CT to a CBCT to address field of 

view and artifact issues. 

Specific Aim 1.2 

To evaluate the accuracy of the synthetic CT creation on 10 new HN cases. 

Specific Aim 1.3 

To calculate delivered dose and quantitatively compare planned dose distribution with 

delivered dose distribution in HN patients. 

Specific Aim 2 

To develop a tool that requires user input of patient surfaces and predicts changes in dose 

distribution. 
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Specific Aim 2.1 

To create a neural network which uses initial patient surface, initial dose distribution, treatment 

day surface, and treatment day dose distribution as training data. 

Specific Aim 2.2 

To evaluate the dose prediction network using dose statistics and a cohort of reserved cases. 
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Chapter 2   Introduction to Deformable Image Registration 
 This chapter reviews the fundamentals of image registration as it relates to the work 

presented in Chapter 3. 

2.1 Image Registration 
Image registration is the process of finding the geometric relationship between two 

images. The purpose of image registration in RT may be to guide treatment planning or patient 

setup or to simply provide additional information about a patient’s disease. Typical images used 

in RT include (but are not limited to) CT, CBCT, magnetic resonance imaging (MRI), positron 

emission tomography (PET), radiographs, and surface images. Apart from radiographs, which 

are two-dimensional, the modalities listed here all produce three-dimensional image sets. 

Image registration may be mono- or multi-modality. For instance, a patient being treated with 

RT a second time in the same anatomical region would need mono-modality image registration 

of the CTs from their first and second treatments to ensure appropriate sparing of OARs, while 

a patient whose tumor is not well-visualized on CT may need multi-modality registration of 

their CT with a PET or MRI for accurate target delineation. There are many aspects of image 

registration to consider when attempting to register two images, but the most important are 

the transformation model, the registration cost function, and the optimization procedure. 

2.1.1 Transformation Model 

Geometric transformations map points from one image space, X, to their corresponding 

points in a second image space, Y62. A transformation T acts on a point x in X to produce a 

transformed point x’ ϵ Y, 

x’ = T(x), 
(2.1) 
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where x and x’ are column vectors. A successful registration results in x’ and y being equal if 

point y in Y corresponds to x in X. A registration error is the existence of a displacement 

between y and x’. Transformations can be divided into rigid and nonrigid transformations. Rigid 

transformations preserve distances, straightness of lines, and angles, while deformable 

transformations may not preserve any of these features as the deformation is allowed to vary 

nonuniformly throughout the image volume. 

 Rigid transformations consist of translations and rotations, given by 

x’ = Rx + t, 
(2.2) 

where the rotation is given by R, a 3x3 orthogonal matrix, and the translation is given by t, a 

three-dimensional vector. In medical images, translations may occur in the superior-inferior, 

anterior-posterior, and lateral directions, and the rotations may occur around those axes. These 

transformations are useful when the object of interest is rigid anatomy, such as bones, or other 

anatomy which maintains rigidity between images. The degrees of freedom, or number of 

parameters, for the rigid transformation shown in equation 2.2 is 6, a rotation and translation 

in each physical dimension. 

 To model deformable transformations, a significantly larger number of degrees of 

freedom are necessary than for rigid transformations. At the extreme, an independent 

translation for each voxel of the fixed image can be calculated, equating to 3 x n voxels in 

degrees of freedom in a 3D image. Not only is such a transformation model computationally 

prohibitive, but also medical images deal with anatomy of patients which does not deform with 

enough complexity to require such a free-form transformation model. Instead, deformable 
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transformations are parameterized to a much smaller number of degrees of freedom. This not 

only speeds up the registration algorithm, but also enforces certain properties on the resulting 

deformation. 

 A common parametric approach to deformable transformation is B-splines. B-splines are 

a basis set of piecewise polynomials which define the space by dividing it into a set of 

hexahedrons, whose corners are called knots or control points. The control points are arranged 

on a regular grid over the fixed image, different from the voxel matrix of the image, and the 

transformation of a single point can be calculated from only a couple of surrounding control 

points. The equation for a B-spline transform is as follows: 

𝑇𝜇(𝑥) = 𝑥 +  ∑ 𝑝𝑘𝛽3 (
𝑥 − 𝑥𝑘

𝜎
)

𝑥𝑘∈𝑁𝑥

 

(2.3) 

where the control points are represented as xk, β3(x) represents the cubic B-spline polynomial, 

pk represents the B-spline coefficient vectors, σ is the control point spacing, and Nx is the set of 

all control points within the compact support of the B-spline. In this case, the degree of the B-

spline, m, is 3, a common choice in DIR. If pk are chosen well, the transformation will be degree 

m – 1 times continuously differentiable, ensuring the polynomials join smoothly across the 

interfaces of the rectangles. 

Importantly, the transformation maps points from the fixed (or target) image to the 

moving (or source) image. This is referred to as backward mapping, where pixel values of voxels 

in the deformed image are pulled from the moving image, and is preferred to forward mapping, 

where pixel values of voxels in the moving image are pushed to the deformed image. Forward 

mapping of deformable transformation results in needing to interpolate pixel values in the 
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deformed image, since voxels in the moving image will not be an exact match to voxels in the 

deformed image. 

2.1.2 Objective Function 

 The registration objective function, or cost function, defines the criteria by which images 

are matched. The objective function is often a linear combination of similarity metrics and 

penalty terms which quantify the goodness of match resulting from a given deformation field. 

The general form of this cost function is then: 

𝐶(𝑇) = −𝑆(𝑇) + 𝛾𝑃(𝑇), 
(2.4) 

where C is the overall cost, S is the similarity metric, P is a penalty term, and 𝛾 is a weight to 

control the effect of similarity versus regularity, all calculated on the transformation T. The two 

main types of similarity metrics are geometric-base and intensity-based, and these may be used 

in tandem as a hybrid cost function. 

 Geometric similarity metrics can take the form of point sets in each image; the aim of 

the registration in this case is to align corresponding markers between images. These markers 

may be drawn from the anatomy or may be implanted fiducials or some other extrinsic 

landmark. The transformation aligns the markers as closely as possible, minimizing the 

registration error between the points. However, the designation of the points is often not 

perfect and will carry its own error, called fiducial localization error (FLE). In a constrained 

problem such as rigid registration, aligning well-placed landmarks will result in minimal 

registration error for other points. Yet in deformable transformations, the selection of 

transformation model can greatly affect the accuracy of registration of non-landmark points. 
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 Intensity-based methods use the scalar values of pixels or voxels to inform 

transformation. Under these methods, a similarity measure calculated over the pixel or voxel 

values is optimized to determine the correct registration. The similarity measure should be 

carefully selected to account for the properties of the images being registered and the 

relationship between the intensity values found in the two images. An ideal similarity metric 

returns low values when the same tissue types are being compared and high values when 

differing tissue types are compared. With this in mind, similarity metrics can be divided based 

on whether the registration is a mono-modal or multi-modal problem. 

 Mono-modal image registration involves two images of the same modality, i.e. CT-to-CT 

registration. In this case, intensities from the same anatomical feature in both images are 

expected to be equivalent or exhibit a linear relationship. If the intensities are equivalent, sum 

of square differences or absolute differences (SSD or SAD) are acceptable similarity metrics. If a 

linear relationship between intensities exists, the appropriate similarity metric would be cross 

correlation or correlation coefficient. 

 In the case of multi-modality registration, images of different types are registered (i.e. 

MR-to-CT). Anatomically-corresponding tissues often have intensities that are no longer 

equivalent or even linearly related. To address this, information theoretic measures have been 

employed. Of these, mutual information (MI) may be the most well-known. MI seeks to 

minimize entropy between the resulting deformed image and the fixed image. One derivation 

of mutual information begins with the joint histogram of two images. With two aligned images 

A and B’, the joint histogram charts the intensities of each image. When the joint histogram is 

normalized, the probability distribution function is obtained: 
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𝑃𝐷𝐹[𝑗, 𝑘] =
𝐻𝐼𝑆𝑇[𝑗, 𝑘]

∑ 𝐻𝐼𝑆𝑇[𝑗, 𝑘]𝑗,𝑘
 

(2.5) 

where HIST is the joint histogram calculated for two images related by a transformation. Then, 

the joint entropy H can be calculated using the PDF: 

𝐻 =  − ∑ 𝑃𝐷𝐹[𝑗, 𝑘] log 𝑃𝐷𝐹[𝑗, 𝑘]

𝑗,𝑘

 

(2.6) 

MI, as opposed to entropy, takes into account the change in the histogram caused by 

transformation. To calculate MI, one must calculate the marginal entropies H(A) and H(B’) as 

well as the joint entropy H(A,B’): 

𝐻(𝐴) =  ∑(∑ 𝑃𝐷𝐹[𝑗, 𝑘] log ∑ 𝑃𝐷𝐹[𝑗, 𝑙]

𝑙𝑘

)

𝑗

 

(2.7) 

𝐻(𝐵′) =  ∑(∑ 𝑃𝐷𝐹[𝑖, 𝑘] log ∑ 𝑃𝐷𝐹[𝑗, 𝑘]

𝑙𝑖

)

𝑘

 

(2.8) 

The MI equation then follows: 

𝑀𝐼(𝐴, 𝐵′) = 𝐻(𝐴) + 𝐻(𝐵′) − 𝐻(𝐴, 𝐵′). 
(2.9) 

When the images are correctly aligned, entropy will be at its minimum and MI will be at its 

maximum. However, it may be possible for the images to get misaligned and still end up with a 

maximum in MI; therefore, MI is not overlap invariant. An extension of MI, called normalized 

mutual information (NMI), was developed to solve this problem: 

𝑁𝑀𝐼(𝐴, 𝐵′) =  
𝐻(𝐴) + 𝐻(𝐵′)

𝐻(𝐴, 𝐵′)
 

(2.10) 

However, it also has been demonstrated to not be overlap invariant. Other approaches have 

been explored, but each has its drawbacks. 
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 Penalty terms, used to regularize transformations, are often calculated using the first or 

second order spatial derivatives of the transformation and added to the cost function63. 

Weights can be applied to both the similarity metric and the penalty term to control the effect 

of one versus the other. Any penalty term can be used with any similarity metric, but bending 

energy is potentially the most common form. The equation for the bending energy penalty term 

in 2D is: 

Ƥ𝐵𝐸(𝜇) =  
1

𝑃
∑ ‖

𝜕2𝑇

𝜕𝑥𝜕𝑥𝑇
(𝑥̃𝑖)‖

𝐹

2

𝑥̃𝑖

 

(2.11) 

where 𝑥̃𝑖  are points over which the term is evaluated, and P is the number of these points. With 

this penalty term applied, the cost function will increase with sharp gradients of the 

transformation, such as high expansion abutting high compression, which reduces folding in the 

transformation. 

2.1.3 Optimization Methods 

 The goal of optimization is to find the optimal registration according to an objective 

function, which is generally composed of a similarity metric and a regularization term 

constraining the transformation. Optimization methods solve problems with variables that are 

either continuous or discrete. Continuous optimization methods take the form: 

𝜃𝑡+1 =  𝜃𝑡 +  𝛼𝑡𝑔𝑡(𝜃𝑡) 
(2.12) 

where θ is the vector of transformation parameters, t indicates the iteration number, αt is the 

step size, and g indicates the search direction. The search direction is determined using the 

entire objective function. A commonly used continuous optimization method is gradient 

descent, which follows the direction that decreases the cost function magnitude 
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𝑔 =  −∇𝜃(𝜃) 
(2.13) 

However, a drawback of gradient descent and other deterministic gradient methods is the 

computational demand of calculating derivative information due to the high dimensionality of 

the data and search space. Instead, stochastic gradient descent uses an update formula which 

approximates the gradient to reduce the computational demand. A specific application of 

stochastic gradient descent developed by Robbins and Monro (RM) decreases the step-size with 

time to decrease inaccuracy64. 

 Other optimization methods include the Quasi-Newton method, which uses second-

order information about the cost function to achieve better theoretical convergence than 

gradient descent65. Another type of approach includes conjugate gradients, which can be used 

to minimize quadratic or generally nonlinear cost functions, and can also achieve higher 

precision. However, both of these approaches are computationally expensive and take far 

longer to implement for minimal improvement in precision, which makes stochastic gradient 

descent the preferred approach for many DIR problems. 

2.2 Deformable Image Registration for CT-to-CBCT Registration 
 Deformable image registration is a valuable tool in radiotherapy, where its use ranges 

from calculating composite treatment plan doses to using multiple modalities to improve target 

and OAR delineation to automatic segmentation based on contour atlases. As outlined 

previously, different tasks require different choices in transformation, similarity metric, 

optimization method, and more. Each task also possesses its own unique challenges. CT-to-

CBCT registration has been explored for “dose of the day” calculation to assist in dose 

monitoring as well as adaptive therapy66–69. While dense deformation field methods such as the 
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viscous fluid method have been investigated, most studies use cubic B-splines and have found 

them to be sufficient for CT-to-CBCT registration66,68–71. Many studies have used hybrid 

similarity metrics, most commonly providing anatomical information in the form of contours 

alongside an intensity measure, with some authors using selectively applied rigidity penalties as 

well66,67. Commercial and open-source algorithms have both been tested, and target 

registration errors in the range of 2-3 mm were reported66,67. However, the issue of the 

reduced field of view of the CBCT has very rarely been addressed in DIR studies. 

2.3 Challenges of CT-CBCT Deformable Image Registration 
The first aim of this work seeks to address one of the principal problems in deforming a 

pCT to a CBCT, which is the reduced FOV of the dCT stemming from using a truncated CBCT as 

the fixed image. The pCT must be deformed to the CBCT to acquire both the correct HU and the 

anatomy of the day to produce an accurate dose calculation for neural network input. However, 

designating the pCT as the moving image and the CBCT as the fixed image in traditional DIR 

applications results in the pCT being truncated to the smaller FOV of the CBCT to produce a 

reasonable registration. The pCT has an array size of 512 x 512 and a typical voxel size of 1.17 x 

1.17 x 3 mm3 (FOV 60 x 60 cm2) (Philips Brilliance Big Bore, Koninklijke Philips N.V., Amsterdam, 

Netherlands). The CBCT array size is 512 x 512 with a typical voxel size of 0.511 x 0.511 x 1.99 

mm3 (FOV 26.17 x 26.17 cm2) (Varian Truebeam, Varian Medical Systems, Palo Alto, CA, USA). 

In HN cases, the reduced FOV results in missing anatomy superior and inferior of the CBCT as 

well as in the posterior and lateral directions (Fig. 2.1). Radiation often passes through anatomy 

not visible on the CBCT; replacing the missing information is crucial to an accurate dose of the 

day calculation.  
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Fig. 2.1   CBCT (left) and pCT (right) for an example patient, showcasing the reduced FOV and 

image quality of the CBCT as compared to pCT. Arrows indicate regions of highest noise. 

 

Choosing the correct similarity metric for DIR is imperative to obtaining accurate 

registrations. CT and CBCT differ in both their geometry and reconstruction methods, resulting 

in reduced image quality in CBCT (Fig. 2.1). While CT relies on a two-dimensional fan-beam 

geometry and a curved detector, meaning that rays on the edge of the detector have traveled 

approximately the same distance as rays at the center of the detector, CBCT uses a three-

dimensional cone-beam geometry and a flat detector. The cone-beam X-ray geometry and flat 

detector results in a longer path-length from source to detector for rays on the periphery 

compared to those in the center. Additionally, the Feldkamp algorithm (FDK) utilized for CBCT 

reconstruction, an extension of the filtered backprojection algorithm (FBP) used in CT, makes 

several approximations which limit its accuracy; however, the FDK algorithm does not require 

significant computational resources to produce short reconstruction times, ensuring its 

continued use. Most importantly, CBCT lacks the collimation of detectors present in CT to 

reduce scatter contamination, which cannot be corrected through reconstruction algorithms. 
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These differences between CT and CBCT result in reduced image quality and increased artifacts 

in CBCT. Additionally, the image quality and artifacts are spatially variant, with image quality 

degrading further from the central plane, similar to images produced with the FBP algorithm. 

Due to this spatially variant difference in intensity between CT and CBCT, previous studies have 

had limited success with intensity-based registration methods, unless an intensity correction 

step is taken iteratively. This suggests that a mutual information metric may be better suited for 

CT/CBCT DIR. This informed the development of the DIR method detailed in the next chapter.  
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Chapter 3   Development of a Deformable Image Registration Method 

for CT-CBCT Registration 
 This chapter summarizes the work performed to achieve specific aim 1 as outlined in 

Chapter 1.5. 

3.1 Initial Exploration 
 Initial work on the DIR method explored the use of a commercially available medical 

image software (MIM v6.7.9, MIM Software Inc, Beachwood, OH) with DIR capabilities. At the 

time, this DIR software possessed limited flexibility, allowing the user to choose between 

“image-based” and “normalized image-based” deformation. The transformations are intensity-

based, as the algorithm is designed for mono-modality registration. Both transformations were 

tested on multiple patients to determine which transformation performed better for this 

registration problem. The normalized deformation proved to be appropriate for CT-to-CBCT 

registration, but the DIR module provided no solution to the truncated FOV issue. However, 

MIM allows for the development of automated workflows with a wide range of capabilities, and 

a workflow was created which could stitch together the smaller dCT with the larger pCT. The 

workflow took the pCT and replaced all image data inside the FOV of the CBCT with the dCT 

image data. Unfortunately, the joining of the two image sets was anatomically unrealistic and 

left large gaps in the shoulders (Fig. 3.1A). These gaps could be manually masked out and filled 

with soft tissue-equivalent HU values for adequate dose calculation, and investigation was 

undertaken to streamline or automate that process. Ultimately, however, the inflexibilities of 

this method resulted in the pursuit of a more adaptable method. 
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Fig. 3.1   A: pCT-to-CBCT deformation and stitching as performed in MIM. B: The dCT 

produced using elastix for the same image set. 1: axial view at the superior edge of the CBCT 

FOV, 2: axial view near the inferior edge of the CBCT FOV, 3: coronal view. 

 

3.2 Development of elastix-based method 
The open-source DIR algorithm elastix was investigated as a potential solution 

considering the drawbacks found with using a commercially available software. elastix is a 

parametric registration software package which allows for maximum flexibility in choosing 

parameters to create the best possible set of transform parameters for a given dataset63. While 

investigating parameters for CT-to-CBCT registration, it was discovered that the FOV of the pCT 
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could be preserved in the dCT by expanding the array size of the CBCT prior to registration. The 

resulting dCTs were smooth, exhibiting none of the discontinuities or gaps of the image 

replacement method used in MIM (Fig. 3.1B).  

Fifteen HN patients with one pCT and three CBCTs each were retrospectively selected to 

develop the overall method and specific elastix parameters (Table 3.1). Patient selection was 

limited to those treated on Varian TrueBeam linacs (Varian Medical Systems, Palo Alto, CA), due 

to the superior image quality of the onboard imager (OBI) relative to other image guided 

radiotherapy (IGRT) systems available at our institution. Only patients with anatomic changes 

visible on CBCT were chosen for development of the method (as shown in Fig. 1.4). Parameter 

files were developed from an in-house registration parameter file and a previously published 

deformable registration parameter file72. 

Table 3.1 Patient Demographics for DIR Development 

Pt # Sex Age Disease Site Stage 

1 M 51 Larynx T2N3 

2 M 58 Oropharynx T2N1 

3 M 50 Oropharynx T2N1 

4 M 47 Oropharynx T1N3 

5 M 64 Oropharynx T2Nx 

6 M 63 Larynx T3N2b 

7 M 64 Neck T0N2c 

8 M 57 Oropharynx T2N1M0 

9 M 68 Nasopharynx T4N2M0 

10 M 71 Oropharynx T3N2 

11 M 57 Oral cavity T3N1 

12 M 62 Oropharynx T2N0M0 

13 M 54 Oropharynx T3N2 

14 F 47 Oropharynx T3N2c 

15 M 64 Oropharynx T4a 
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 The developed method used a combination of MATLAB (Mathworks, Natick, MA) and 

elastix, an open-source DIR algorithm. The pCT and CBCT were exported from MIM in mhd 

format. MATLAB scripts resampled and padded the CBCTs with air to the resolution and 

approximate size of the corresponding pCTs (Fig. 3.2). Padding was performed symmetrically in 

the anterior-posterior, left-right, and superior-inferior directions. Binary masks were also 

created corresponding to the FOV of the CBCT to ensure the algorithm only uses information 

inside the FOV for calculating the rigid and deformable registration. The mask was drawn slice-

by-slice, creating circles with radius equal to half the width of the image, which were then 

stacked to generate a cylindrical mask. The most superior and inferior 3 slices were omitted 

from the mask entirely to avoid the decreasing FOV at the scan edges. Each registration was 

completed in elastix which included a rigid transform followed by a B-spline transform. 

 

Fig. 3.2   A: Original CBCT. B: Resampled and padded CBCT showing the expanded array. C: 

Binary mask overlaid on resampled and padded CBCT. 1: Axial view. 2: Coronal view. 
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Deformable registration was performed using a B-spline transformation basis, defined 

by a uniform grid of control points overlaid on the fixed image (CBCT). Since a mask was used to 

indicate the CBCT FOV as the region of interest, the cost function was only calculated from 

sample points within the mask, and the deformation field smoothly decreased to zero across 

the boundary. This meant the anatomical information outside of the CBCT FOV in the dCT was 

not deformed but simply rigidly registered. The registration was performed with an anisotropic, 

multi-resolution image pyramid, such that in each of the 3 resolutions used, the superior-

inferior dimension had less downsampling to account for the larger spacing inherent to the 

images. The deformable portion of the registration algorithm used a combination of mutual 

information and a bending energy penalty term for the similarity metric and regularization 

term, respectively. The bending energy penalty term penalizes abrupt changes in the 

transformation, such as large compression abutting large expansion. This may prevent the 

deformation from becoming irregular or folding in on itself. Weights for the two metrics were 

optimized to improve performance on this dataset. During development, the registration 

quality was assessed using the Jacobian map of the deformation vector field and visual 

inspection. The determinant of the Jacobian can be used to determine whether a physically 

possible deformation has occurred, while visual inspection ensures that bony anatomy and 

patient surfaces are reasonably aligned. Negative values for the determinant of the Jacobian 

indicate the deformation has folded in on itself (invalid); values between 1 and 0 indicate 

reduction in volume, while values greater than one indicate expansion.  
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Investigation of the Jacobian map revealed that mutual information alone was not 

sufficient to generate acceptable deformations, as the resulting transformations exhibited 

inaccurate and excessive deformation, including folding. The final parameters are listed in table 

3.2. 

 

Following a successful registration, a MATLAB script converted the dCT from the mhd 

image format used by elastix to DICOM for importing back to the treatment planning system 

(TPS). 

3.3 Validation of the DIR Method 
Several methods were considered for validating the DIR method. Target registration 

error (TRE), which uses pre-defined point pairs on registered images to measure the distance 

between paired points after registration, is the gold standard for assessment of DIR. However, 

this process is time consuming and labor-intensive, requiring an expert to spend hours 

designating points which cover the entire registration volume. The next best option, which is 

widely used to assess DIR accuracy, is a quantitative comparison between contours drawn on 

Table 3.2   Rigid and Deformable Image Registration Parameters 

 Rigid Deformable 

Image Pyramid Gaussian Pyramid Gaussian Pyramid 

Sampler Random Random Coordinate 

Interpolator B-Spline B-Spline 

Optimizer 
Adaptive Stochastic Gradient 

Descent 

Adaptive Stochastic Gradient 

Descent 

Transform Euler Transform B-Spline 

Similarity Metric 
Normalized Correlation 

Coefficient 
Mutual Information 

Regularization Term  Bending Energy Penalty 
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the fixed image and the deformed moving contours. Metrics were selected based on a 

literature search to determine commonly used statistics, and Dice similarity coefficient (DSC), 

Jaccard index (JI), and Hausdorff distance (HD) were chosen for validation66,67,69,73–76.  

The most frequently used contour analysis statistic, DSC calculates the spatial overlap 

between two segmentations; if A is a contour drawn on CBCT and B is the corresponding 

deformed contour, then 

𝐷𝑆𝐶 =  
2(𝐴 ⋂ 𝐵)

𝐴 + 𝐵
 

(3.1) 

 where ∩ is the intersection. Perfect overlap results in a DSC of 1, and no overlap at all 

results in a DSC of 0. TG-132, a guidance document for the use of image registration in 

radiotherapy, detailed the current approaches to registration and recommended guidelines for 

quality assurance, including recommended DSC scores77. While TG-132 sets a goal of achieving 

DSC of 0.8-0.9 for validating image registration methods, this is not always achievable for every 

anatomical structure. Commercial algorithms have been found to fall short, specifically in HN, 

with an average DSC of 0.73 for HN OARs in one study directly assessing TG-132 

recommendations74. 

JI is a stricter measure of the spatial overlap of two segmentations, calculated by 

𝐽𝐼 =
|𝐴 ⋂ 𝐵|

|𝐴 ⋃ 𝐵 |
 

(3.2) 

where ꓴ is the union of A and B. JI also ranges from 0 to 1, and while DSC and JI are equivalent 

at 0 and 1, JI is always less than DSC between the two extremes. 
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HD calculates the greatest distance between a point in one set and the closest point in a 

second set. Given point a within A, the single-sided HD (HDS) is calculated as follows: 

𝐻𝐷𝑆𝑚𝑎𝑥(𝐴, 𝐵) =  𝑚𝑎𝑥𝑎 ∈𝐴 {𝑑𝑚𝑖𝑛(𝑎, 𝐵)} 

(3.3) 

where dmin(a, B) indicates the minimal distance between point a and any point in B. This can 

then be implemented to calculate symmetric HD as follows: 

𝐻𝐷𝑚𝑎𝑥(𝐴, 𝐵) = max {𝐻𝐷𝑆𝑚𝑎𝑥(𝐴, 𝐵), 𝐻𝐷𝑆𝑚𝑎𝑥(𝐵, 𝐴)} 

(3.4) 

A higher HD indicates dissimilarity between the two sets of points, while an HD of zero indicates 

that A and B are identical sets of points. Voxels within the contour take the place of points for 

HD when assessing segmentations. 

 Under the guidance of an expert physician, the mandible, cord, and parotids were 

selected for evaluation structures, due to their importance in treatment planning and outcomes 

for the patients of this work. Ten new HN cases were retrospectively chosen for validation 

(Table 3.3). Patient selection was again limited to patients treated on the TrueBeam, and 

patients with visible anatomic change were preferred. Structures were delineated by an expert 

physician on CBCT, and the corresponding pCT contours were deformed according to the 

transform parameters for the respective dCTs. MATLAB scripts then calculated DSC, JI, and HD 

for each pair of structures. 
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Table 3.3 Patient Demographics for DIR Validation 

Pt # Sex Age Disease Site Stage 

1 M 55 Oral cavity T4aN3b 

2 F 19 Nasopharynx T2N1 

3 M 49 Neck T0N2aM0 

4 M 68 Oropharynx T4aN0 

5 M 66 Larynx T3N0M0 (III) 

6 M 64 Larynx T3N2cM0 (IVA) 

7 M 57 Larynx IVA 

8 F 48 Nasal cavity T4N0M0 

9 M 49 Oropharynx T2N2b 

10 F 64 Oral cavity T3N0 

 

3.4 Results 

3.4.1 DIR Validation 

 Registrations appeared reasonable upon visual inspection. Quantitative results based on 

contours are summarized in Table 3.4. The mean DSC values were 0.78 and 0.71 for bony 

anatomy and soft tissue, respectively. The mean JI values were 0.65 and 0.56, respectively. The 

mean HD were 4.4mm and 3.6mm for bony anatomy and soft tissue, respectively. 

Table 3.4  Contour Evaluation Scores for Validation Patients 

 Mandible Cord Left Parotid Right Parotid 

 DSC JI HD DSC JI HD DSC JI HD DSC JI HD 

Pt1 0.70 0.55 5.1 0.83 0.71 2.4 0.71 0.56 4.1 N/A N/A N/A 

Pt2 0.85 0.73 5.8 0.71 0.55 3.9 0.62 0.45 3.1 0.50 0.33 3.3 

Pt3 0.82 0.69 7.5 0.69 0.53 2.9 0.78 0.64 3.3 0.81 0.67 3.5 

Pt4 0.78 0.65 4.9 0.75 0.59 2.4 0.67 0.50 3.5 0.39 0.24 4.1 

Pt5 0.87 0.77 6.1 0.74 0.59 2.6 0.77 0.63 3.1 0.82 0.69 3.7 

Pt6 0.88 0.78 4.4 0.73 0.57 4.6 0.75 0.60 3.9 0.77 0.63 3.5 

Pt7 0.90 0.82 4.1 0.71 0.56 2.6 0.79 0.66 2.6 0.80 0.66 3.7 

Pt8 0.86 0.76 6.1 0.77 0.62 3.1 0.83 0.72 3.7 0.78 0.64 3.7 

Pt9 0.80 0.67 7.3 0.67 0.51 2.9 0.68 0.51 3.5 0.72 0.56 4.3 

Pt10 0.75 0.61 6.9 0.81 0.68 2.6 0.55 0.38 3.1 0.65 0.48 4.1 

Mean 0.82 0.70 5.8 0.74 0.59 3.0 0.72 0.56 3.4 0.69 0.55 3.8 

Stdev 0.06 0.08 1.1 0.05 0.06 0.7 0.08 0.10 0.4 0.14 0.15 0.3 

Min 0.71 0.55 4.1 0.67 0.51 2.4 0.55 0.38 2.6 0.39 0.24 3.3 

Max 0.90 0.82 7.5 0.83 0.82 4.6 0.83 0.72 4.1 0.82 0.69 4.3 
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 The DSC and JI values for the mandible significantly outperformed that for the cord. 

Notably, the right parotid of Pt 4 had remarkably low DSC and JI values. This likely stems from 

the difficulty of contouring soft tissue on CBCT, as the other structures for Pt 4 perform 

reasonably well, and the artifacts and registration of the images do not differ significantly from 

the other validation patients. Fig 3.3A shows the difference between the original contours and 

the CBCT contours for Pt 4, which may explain the poor contour-based metrics. The SI extent of 

the right parotid structure in particular was much smaller in the CBCT than in the pCT. On the 

other hand, for Pt 7, the CBCT contours look much more similar to the original contours drawn 

on the pCT (Fig. 3.3B). This points to interobserver variability strongly affecting contour 

evaluation. 

 

Fig. 3.3   A: Patient 4. B: Patient 7. 1: pCT with original contours. 2: CBCT with expert-drawn 

contours for comparison to deformed contours. 3: dCT with deformed contours. 

Mandible in lime, parotids in blue, and cord in green. 
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 As previously stated, inaccurate HU values from CBCT images is a primary barrier to 

direct dose calculation. Therefore, HU values of the dCT were also evaluated. Histograms of the 

HU values for the whole body structure as well as all four evaluation structures were generated 

for the pCT, CBCT, and dCT (Fig. 3.4-5). Bin size was set to 10, and the histograms were overlaid 

for analysis. The desired outcome was for the pCT and dCT histograms to demonstrate 

reasonable agreement. This was generally achieved for all ten patients and all structures, apart 

from the mandible exhibiting a larger peak towards the lower end of the histogram. Visual 

inspection of the mandible contour revealed that the deformed structure included soft tissue 

outside of the mandible, which is likely what causes this peak (Fig. 3.6). The original pCT 

mandible contour included a small margin of soft tissue, and it expanded during deformation. 

The CBCT contour, however, stayed within the bone, another difference between observers. 

 

Fig 3.4  Histogram of HU values for the body structure for Pt 10. Bin size is 10 HU. 
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Fig 3.5  Histogram of HU values for (A) mandible, (B) spinal cord, (C) left parotid, and (D) right 

parotid for Pt 10. Bin size is 10 HU. 

 

 

Fig 3.6   A: pCT, B: CBCT, C: dCT, with respective mandible contours in orange. 
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3.4.2 Dose Calculation on dCTs 

 Following validation of the DIR method, the resulting dCTs were used for dose 

calculation. The original treatment plan was transferred to the dCT and recalculated in Eclipse. 

For the ten patients used for DIR validation, the pCT dose was compared to the dCT dose in 

terms of typical OAR constraints and OAR DVHs. 

 The parotid gland dose was inconsistent across the ten patients, but the spinal cord and 

mandible dose were likely to be higher on the dCT than the pCT (Fig. 3.7). For patients with 

minimal anatomic change, DVHs for OARs appeared similar between the pCT and dCT (Fig. 3.8). 

However, patients with larger anatomic change displayed a marked difference in their DVHs 

(Fig. 3.9). 
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Fig. 3.7   OAR doses on pCT and dCT for each of 10 HN patients. A, B: Parotid gland dose; 
planning constraint of Dmean < 26 Gy indicated by the green line. C: Cord dose; planning 
constraint of Dmax < 45 Gy (< 40 Gy if achievable) D: Mandible dose; planning constraint of 
Dmax < 70 Gy. 
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Fig. 3.8   DVH for a patient with little anatomic change. Solid lines are pCT, dashed is dCT. 

 

 
Fig. 3.9   DVH for a patient with significant anatomic change. Solid lines are pCT, dashed is 
dCT. 
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 Additionally, Dmax was calculated for the pCT and three dCTs from three time points 

during the treatment course for a larger cohort of 47 patients. A slight trend of increase in Dmax 

as treatment progressed was observed (Fig. 3.10). 

 
Fig. 3.10   Dmax relative to the prescription dose for a cohort of 47 patients, showing a slight 
increase over the treatment course. 

 

3.5 Discussion 
 The developed method for deformable registration of CT to CBCT solved several 

common issues encountered for this task, including limited FOV and inaccurate Hounsfield Unit 

values for dose calculation. The method was developed using fifteen HN patients who exhibited 

anatomic changes visible on CBCT and involved expanding the CBCT array to allow the resulting 

dCT to have a larger FOV. The registration method was validated using ten additional HN 

patients by assessing the DSC, JI, and HD between contours drawn on the CBCT and those 

deformed from the pCT. 



58 
 

 The results for all contours are comparable to previous publications. Zukauskaite et al 

evaluated DIR performance for registration of planning CT and recurrence CT images for HN 

patients78. Their open-source algorithm achieved DSCs of 0.83, 0.79, 0.74, and 0.72 for the 

mandible, spinal cord, and left and right parotid, respectively. Their study involved CT-CT 

registration, as opposed to CT-CBCT registration, and a single observer contouring both image 

sets. This may explain why their spinal cord value differs somewhat from ours, as they had no 

interobserver variation and a larger extent of spinal cord included in their images. CT-CBCT DIR 

was performed by Veiga for the purpose of dose of the day calculation69. Using an open-source 

algorithm, they achieved a DSC of 0.85 for bony anatomy and 0.79 for soft tissue, where bony 

anatomy included the C1, C4, and C7 vertebrae and soft tissue included the external body 

contour and the left and right sternocleidomastoid muscles. The use of vertebrae for contour 

comparison, though not a typical OAR structure, avoids the innate ambiguity of delineating the 

spinal cord. Additionally, the soft tissue structures used in their study are more easily visualized 

on CBCT than parotids, as well as being larger in volume, which makes higher DSCs more easily 

achievable. Jiang et al performed a HN CT-to-CBCT study to compare two DIR methods which 

achieved HD ranging from 2.00 to 5.19 mm over soft tissue and bony anatomy using an open-

source algorithm66.  

A study investigating interobserver variability on HN CT found average DSC values of 

0.90, 0.78, 0.82, and 0.83 for mandible, spinal cord, and left and right parotid, respectively, with 

a large majority of the observers following the same guidelines for all contours apart from the 

spinal cord. This indicates that our results are comparable to those of previous publications, 
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despite limitations of our study, including interobserver variability and difficulty delineating soft 

tissue structures on CBCT.  

 During validation, a limitation of our algorithm was identified, as the algorithm was 

unable to generate acceptable registrations when presented with extreme image artifacts 

caused by high density implants.  Seven of the original ten patients selected had dental 

implants, resulting in streaking and shadow artifacts on both the pCT and CBCT (Fig. 3.11). For 

four of those patients, the artifacts severely affected the deformable registration, with 

significant expansion of high intensity regions around the artifact. An attempt to mask out the 

artifact so the registration would ignore it was unsuccessful (Fig. 3.11). This may be due to the 

nature of the registration algorithm. The mask is applied to the reference image, but during 

transformation, data from within the related area on the secondary image (pCT) will still be 

visible and usable by the algorithm, and the pCT also exhibits artifacts. It may be possible to 

improve this issue using a metal artifact reduction reconstruction algorithm on the pCT in 

conjunction with masking out the CBCT artifact during registration. Since those four 

registrations were unsuccessful, four additional patients without artifacts were selected to 

replace them for the quantitative validation. 
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Fig. 3.11   A patient whose artifact caused severe deformation errors. A: pCT, B: CBCT, C: dCT, 

D: dCT with mask used to ignore artifact region. 

 

 A more minor CBCT artifact which affected the dCT quality was also detected. One 

patient’s CBCT exhibited significant shadows at the posterior and inferior extreme of the scan, 

which resulted in an indentation at that point in the back on the dCT (Fig. 3.12). The registration 

mask could be altered for similar cases to not include the shadowed area. However, that 

indentation is not expected to be significant enough to affect dose calculation negatively. 
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Fig. 3.12   A patient with shadowing at the inferior edge of the CBCT (A), causing an indent in 

the corresponding location in the dCT (B). 

 
 Due to the sensitivity of the registration method to artifacts, it did not perform as well 

on an older OBI system with inherently poorer imaging quality. However, further work could 

focus on making the method more robust to artifacts by testing different reconstruction 

algorithms and masking methods. 

3.6 Conclusion 
A CT-CBCT DIR method was developed for the purpose of performing dose of the day 

calculations. Using elastix, an open-source software package for image registration, the method 

was able to generate dCTs reflecting the anatomy of the CBCT, with the HU and FOV of the pCT. 

The method was validated on 10 HN patients, selected for anatomical change visible on CBCT, 
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using contour evaluation methods. The developed DIR method was found to be reasonably 

accurate for both bony anatomy and soft tissue. Since the external and bony anatomy are well-

matched in the dCT, it may be used for dose calculation, which is not very sensitive to small 

differences in tissue density. 
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Chapter 4   Development of Neural Network 
 This chapter summarizes the work performed to achieve specific aim 2 as outlined in 

Chapter 1.5. 

4.1 Machine Learning and Neural Networks 
 The field of machine learning is concerned with developing computational programs 

which can “learn” in a similar way to humans, through exposure to repeated examples, in order 

to improve performance in a specified task. This is in contrast to “hard-coding” programs to 

perform a specific task. For example, a classification program could either be implemented by 

making a database filled with examples of an object, or by feeding a machine learning algorithm 

labeled examples, through which it can determine the hallmarks of the object itself. A benefit of 

machine learning is that a computer program may find important attributes through this 

process that the average human observer may miss. 

 There are many different approaches to machine learning, including but not limited to 

linear regression, decision trees, and deep learning. Deep learning algorithms, or deep neural 

networks (DNN), are comprised of several layers of artificial neurons79. These artificial neurons 

are meant to emulate human neurons. Input data passes through weighted nodes, and the 

outputs of the nodes are then summed and passed through an activation function to generate 

the outputs of the layer. One layer feeds into another layer, and so on, until the output layer is 

reached. Layers between the input layer and the output layer are referred to as hidden layers, 

as they are unseen by the user, and DNNs can have many hidden layers. These layers perform 

feature extraction and transformation, abstracting the data in ways that humans cannot, to find 

patterns and structure. 
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 The training of a neural network may be supervised, unsupervised, or semi-supervised. 

In supervised learning, the input data has labels or targets, and the network will compare its 

prediction to the provided label. This comparison is performed via calculation of a loss function, 

the exact form chosen based on the type of task being performed. The result of the loss 

function is then propagated backwards through the network to update the weights of each 

node, using a backpropagation gradient algorithm. The most popular algorithm for this purpose 

is stochastic gradient descent. In unsupervised learning, there are no labels; the algorithm 

clusters data and discovers patterns on its own. Semi-supervised learning falls between the 

two. For the task of dose prediction outlined in this work, supervised learning was chosen, since 

there was a known target to predict. 

4.1.1 Convolutional Neural Networks 

 One of the most popular types of deep learning algorithms in radiotherapy specifically is 

convolutional neural networks (CNN). CNNs have found great popularity in image analysis tasks, 

as their architecture takes advantage of the spatial structure of image data, particularly in 

medical images80. Rather than having each node in one layer connected to every single node of 

the next layer, as in a standard DNN, which is computationally expensive, CNNs employ 

convolutional blocks to process the data, which preserves the spatial nature of the data. 

Convolutional filters (also known as kernels) take the place of the nodes, where the values of 

the filter are the weights, and the pixel values of the image take the place of the input data. A 

simplified example of an image being processed by a convolutional filter is presented in Fig. 4.1. 

In this case, the image is a 5x5 array of values which can take either -1, 0, or 1. The filter’s 

values have been arbitrarily assigned. The filter starts in the upper left corner of the image. 
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Each (x,y) pixel value is multiplied by the corresponding (x,y) pixel value in the filter, and the 

results are summed and then divided by the number of contributing pixels (in this case, 9). The 

output of this operation is entered into pixel (2,2) of the output array, referred to as a feature 

map. The filter then slides one column to the right, which is referred to as stride. Stride can take 

any value and indicates the number of columns or rows the filter shifts over between 

operations. Once the filter reaches the last column of the array, it moves one row down (for 

stride=1) and continues on the next row. A convolutional neural network consists of many 

convolutional filters with many weights, which are updated through backpropagation during 

training. 

 

Fig. 4.1   Convolution operation on an image. 

 A challenge when using convolutional layers is the size of feature maps produced by the 

convolutional layers, which can often be quite large and computationally expensive to carry 

through the whole network. To reduce this load, CNNs often feature pooling layers between 
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convolutional layers. Max pooling is a common approach: a filter (different from the 

convolutional filter) sweeps across the image in a similar fashion and, for each operation, keeps 

only the maximum pixel value (Fig. 4.2). Depending on the size of the filter and the stride 

chosen, this can greatly reduce the size of the feature map passed to the next layer. 

 
Fig. 4.2   Max pooling operation on an image. 

4.1.2 U-Net 

 A popular version of CNN architecture is the U-Net, originally developed by Ronneberger 

et. al in 2015 for segmentation tasks81. The U-Net gets its name from the trademark shape of 

the network architecture when illustrated, achieved by using a series of convolutional, pooling, 

and rectified linear unit (ReLU) layers followed by a series of deconvolutional layers (Fig. 4.3). 

ReLU is the standard activation function for many neural networks, including CNNs, and the 

output of the ReLU is the same as the input unless the input is negative, in which case the 

output is zero. Deconvolutional layers are transposed convolutional layers which upsample the 

image. The first half of the U is a contracting path, while the second half of the U is an 

expanding path bringing the image back to the original resolution. The initial contracting path 

decreases the resolution of the image while increasing extracted features, and the subsequent 

expanding path increases the resolution of the image while factoring in high-resolution features 

from the contracting path. Skipped connections, illustrated in Fig. 4.3 as “copy and crop” 
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arrows, allow for the propagation of features from earlier in the network to later layers, 

skipping layers along the way. This architecture allows the network to learn from global and 

local features of image sets, and it has been shown to work well with smaller image sets. It has 

since been used for dose prediction as well as image segmentation in the radiotherapy field, 

with many variations of it published in the literature82–84. One such variation added several 

convolutional layers to the end of the U-Net to achieve better precision in prediction of three-

dimensional dose maps82. Another variation by the same group combined characteristics of 

DenseNet, a network architecture valued for its efficiency in feature propagation and reusing 

parameters by connecting all layers directly to each other, with U-Net to create a more efficient 

network that would still be effective at capturing both local and global features83. Kearney et al 

used residual blocks to propagate information from earlier in the network to deeper portions of 

the network84. Each variation outperformed the original architectures in accuracy of the 

predicted dose maps and proved to be a potential tool for predicting 3D dose using just patient 

contours. Due to a limited dataset and the goal of predicting 3D dose distributions, the U-Net 

was chosen for this project. 
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Fig. 4.3   The original U-Net architecture, with blue boxes corresponding to multi-channel 
feature maps and arrows denoting the operations performed at each step81. 

 

4.2 Development of Neural Network 

4.2.1 Patient Data 

 Patients were retrospectively selected for this study from those treated for HNC on 

Varian TrueBeam linacs (Varian Medical Systems, Palo Alto, CA). The goal was to recruit 50 

patients, and 47 patients were ultimately chosen over a three year period (Table 4.1). Patients 

with noticeable anatomic change by the end of treatment were sought out, but many of the 

included patients exhibited little change. Patients with severe high density artifacts which 

affected deformation quality were excluded. Patient selection was not limited to a specific 

disease origin; the majority of patients were oropharynx (OPX) cases. For those patients whose 

weights were recorded (40), there was an average of 16 pounds (8.5%) lost over the course of 

treatment. 
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Table 4.1   Patient Demographics for Neural Network Development 

Sex Female 6  
Male 41 

Median age 59 (range 19-86) 

Median weight before treatment (lbs) 177 (range 113-295) 

Median weight after treatment (lbs) 163 (range 104-265) 

Disease site Oropharynx 20  
Larynx 11  
Nasal cavity 3  
Nasopharynx 2  
Oral cavity 5  
Hypopharynx 1  
Other 5 

 

 For each patient, one planning CT (pCT) and 3 cone-beam CTs (CBCT) were selected. 

CBCTs were selected as close to the tenth, twentieth, and thirtieth fraction as possible to have 

them evenly spread over the 30-33 fraction treatment course (Table 4.2). Deformed CTs (dCT) 

were generated for each pCT-CBCT pair according to the method outlined in Chapter 3. 

Table 4.2   Fraction numbers for each CBCT  
Median fraction number 

First CBCT 11 (range 7-16) 

Second CBCT 21 (range 16-23) 

Third CBCT 30 (range 24-33) 

 

 The dCTs were transferred back to the original TPS (Eclipse, Varian Medical Systems, 

Palo Alto, CA) and registered with the pCT (Fig. 4.4). The original plan was then copied onto 

each of the dCTs and the dose recalculated (Fig.4.5), using the Acuros calculation model with a 

calculation resolution of 2.5 mm and the heterogeneity correction enabled. Dose maps were 

exported in DICOM file type. The body contour for each pCT and dCT was refined and the 

posterior half of the structure was removed to mimic what the AlignRT surface imaging system 
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would see on the treatment table (Fig. 4.6). This “surface” structure was exported to the 

AlignRT system to generate the AlignRT surface file, which uses a 3D obj file type. The surface is 

composed of many triangles, and the obj file type stores this information through the 

coordinates of the vertices and faces of the triangles. 

 
Fig. 4.4   Flowchart depicting pre-processing steps for dose and surface data generation. 

 

 
Fig. 4.5   Original treatment plan calculated on the pCT and the first, second, and third dCT. 

PTV is contoured in red on the pCT. 
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Fig. 4.6   Surface structure for an example patient. A: dCT with body contour in tan and 

surface contour in green. B: AlignRT visualization of the same surface structure. 

 

 To generate image sets for the network, the exported surfaces and dose maps needed 

to be converted to the same file type, in simple three-dimensional array format. The dCT 

surface-dose map pairs also needed to be shifted to align with the original pCT surface-dose 

map pair. A python script was written which converted the list of vertex coordinates in the 

surface files to a three-dimensional binary array representing the surface, then shifted all arrays 

so they were aligned with the original pCT. All arrays were also resampled to 3 mm/pixel 

isotropically; the surfaces had varying resolutions but were generally 1 mm/pixel in all 

directions. Dose maps were generally 1.17 x 1.17 x 3 mm3. Arrays were then cropped to 

64x64x64 pixels to reduce computational expense while running the network. Since the field of 

view for each patient’s scan was not consistent both in terms of size and relative position of 
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patient anatomy, the crop window was manually chosen on the pCT dose map to extend 

approximately from the bottom of the neck to the tip of the nose in the superior-inferior 

direction and from the front of the face to the back of the head in the anterior-posterior 

direction. The crop extent in the lateral direction was centered on the array as the images were 

found to be centered laterally within the array. It was not always possible to include the entire 

anterior-posterior extent of the head in the crop window; in this case, the inclusion of the face 

was favored over the back of the head, as cheeks are known to exhibit some anatomic change 

(Fig. 4.7). 

 
Fig. 4.7   Example of cropping of dose array. A: Original dose distribution. B: Resampled and 
cropped dose array. C: Surface overlay on dose array. 

 

4.2.2 Network Architecture 

 The input to the network was a stack of volumes including the original pCT dose 

distribution, the original pCT surface, and the “surface of the day”, the surface from a given 

dCT. The target was the “dose of the day”, the dose from that same dCT calculated within the 

treatment planning system. Since each of the 47 patients in the study had 3 dCTs, this resulted 

in 141 input-target image sets. The original U-Net architecture was modified for three-

dimensional image sets and the size and shape of the input and target in this study. While 
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training the network, the bottleneck at the base of the U was also extended by two 

convolutional layers to improve performance (Fig. 4.8). The final convolutional layer originally 

used a 3x3x3 filter but was updated to a 1x1x1 filter after referencing the original U-Net and 

observing a slight improvement in performance with the 1x1x1 filter. The network was 

implemented using Keras, a high-level API for machine learning implementation, in Google 

Colab, a cloud-based Jupyter notebook with options for graphics processing unit (GPU) and 

tensor processing unit (TPU) allocation for faster computing. TPUs are hardware specifically 

developed for ML workload acceleration. 

 
Fig. 4.8  U-Net architecture used for this study, with sizes for various layers and arrows 
indicating different types of operations. 

 
The loss function for training was mean squared error (MSE) between the predicted and 

target dose distribution, 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − 𝑦′

𝑖
)2

𝑛

𝑖=1

 

(4.1) 
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which is the sum of squared differences between each pixel value in the target and the 

corresponding pixel value in the predicted dose distributions. This was chosen since the dose 

prediction task is a regression problem and after studying other dose prediction neural 

networks83–87. Root mean squared error (RMSE) and mean absolute error (MAE) were also used 

as metrics to evaluate model performance during and after training: 

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 
(4.2) 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − 𝑦′

𝑖
|2

𝑛

𝑖=1

 

(4.3) 

RMSE and MAE are useful metrics since they give error in the same units as the variable of 

interest, in this case dose. Both RMSE and MSE are more strongly affected by large outliers than 

MAE, so one poorly performing prediction out of many well-performing predictions is likely to 

result in a high MSE and RMSE but a lower MAE. Training with MAE as the loss metric was 

performed, and while it resulted in lower MAE for training and validation sets, the MSE and 

RMSE were higher. Given that the loss function is calculated over the whole array, including a 

large volume of air, where errors are frequently small, MSE and RMSE were favored over MAE, 

since MSE and RMSE would be less forgiving to larger deviations. Therefore, MSE was ultimately 

kept as the loss function for training. 

 The Adaptive Moment Estimation (Adam) gradient descent algorithm was selected as 

the optimizer after consulting literature84,86–89. Rather than having just one learning rate for 

updating all weights, Adam assigns independent learning rates to each network weight, which is 

beneficial for data where some features occur with very different frequencies than others and 

is preferred for computer vision problems. The default values for the parameters of Adam were 
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found to be suitable after training with other values and finding poor performance and a lack of 

convergence. 

 Typically, neural networks include normalization to ensure all input data is on the same 

scale and is therefore equally weighted. However, normalization becomes difficult when using 

dose maps as both an input and the prediction target. Initially, dose distributions were input to 

the network “as is”, in units of Gray (Gy). However, after seeing suboptimal performance, and 

RMSE and MAE for both validation and training sets on the order of tens of Gy, the magnitude 

of the input and target dose distributions was reduced. It was theorized that the network was 

not taking into account the surface information, which was presented in 0s and 1s, since dose 

values ranged between 0 and 70 Gy or more. The network was trained with the dose maps 

divided by 10 and by 100, and the largest improvement was seen with dose divided by 100 (Fig. 

4.9). This fits with expectation, as the dose divided by 100 was on the same scale as the surface 

data, with all values falling between 0 and 1. Further reducing the magnitude of the dose did 

not improve performance. 
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Fig. 4.9   Loss plots for training data with (A) no division of dose arrays, (B) division by 10, and 
(C) division by 100. 
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4.2.3 Network Training 

 Six datasets were set aside for testing, from six different patients. Each of these datasets 

included the pCT dose distribution, the pCT surface, the third dCT surface, and the third dCT 

dose distribution. Since the other datasets from these patients included additional input 

information and a different target, it was determined that it was permissible to have the other 

datasets from those patients in the training or validation sets. The six test patients were 

randomly selected from the ten patients used for DIR validation, with the goal of using the 

contours from those patients for network evaluation. This left 135 image sets for training. In 

the initial training and development phase, 119 sets were allotted to training and 16 to 

validation to ensure no overfitting. This is approximately a 90/10 split between training and 

validation and was manually executed by use of a random number generator. While 60/40 and 

80/20 splits are often seen in machine learning development, a 90/10 split was preferred for 

this project, given the small number of datasets. Image sets were randomly placed into either 

training or validation, and the image sets were shuffled for training. After testing with various 

batch sizes, a batch size of 7 was selected for the best performance. Fifty epochs were used for 

training, but the model weights were saved when the validation loss was lowest, which may be 

before reaching fifty epochs. It was found that training for more epochs resulted in overfitting 

to the training data (Fig. 4.10). 
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Fig. 4.10   Loss plot for 200 epochs using training data with dose values divided by 100. 

 
 K-fold cross-validation was also employed to assess the model, given the small number 

of samples. This is done by splitting the dataset k ways. For example, if there are 100 samples 

and 5-fold cross-validation is used, there will be 5 splits, each with 80 samples in the training 

set and 20 samples in the validation set. Each sample then gets a chance to be in the training 

and the validation sets. The model is then trained on each of the 5 splits, with new weights for 

each split. Performance metrics are then averaged over all the splits. Five and ten are common 

values for k, due to the computational expense of doing many splits; ten has been found to 

result in generally low bias and small variance in results. Nine was chosen for k for this dataset, 

as it divided evenly into the 135 image sets, meaning each split would have 120 training 

samples and 15 validation samples. A batch size of 5 was used for the cross-validation, and 
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training ran for 50 epochs. The best weights for each split were saved and evaluated on the test 

set as well. 

 After choosing the best model using k-fold cross-validation, the final model was trained 

using all 135 image sets, with a batch size of 5 and 45 epochs. The weights which achieved the 

lowest loss were saved to use for test set prediction. Training took 9 minutes on the standard 

GPU runtime available with Colab. Prediction of the test set of 6 samples took 1 second. 

4.3 Network Evaluation 
 The predicted dose maps were multiplied by 100 to return to units of Gy for evaluation. 

The true and predicted max and mean doses were calculated, as well as the RMSE and MAE for 

each pair. Additionally, dose volumes were generated. In the absence of target contours, these 

dose volumes were generated for the entire body. The true and predicted V100, V95, V90, V70, 

V50, V20, and V10 were created. For each of these dose volumes, the DSC between the true 

and predicted was calculated as a way to evaluate the similarity of the dose distributions. Dose 

volume histograms (DVHs) for dose volumes were also generated. The volumes of the true and 

predicted V100 and V90 were also calculated. 

 Table 4.3 shows the RMSE, MAE, difference in Dmax as a percentage of prescription dose, 

and difference in Dmean in Gy; a negative value indicates the prediction was lower than the true 

value. Overall, the predictions were “colder” than the true dose distributions. Of note is the 

large Dmax difference shown in Pt 1; the reason for this is unknown, although the true Dmax for Pt 

1 was much higher than that of other patients.  
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Table 4.3 Network performance on test set 
 

RMSE MAE True D
max (Gy) Pred D

max (Gy) D
max

 diff (%) D
mean

 diff (Gy) 

Pt 1 5.18 2.24 84.42 74.24  -14.6  -2.95 

Pt 2 3.21 1.41 69.16 67.06  -3.3  -3.14 

Pt 3 7.00 4.13 73.45 70.77  -4.1  0.20 

Pt 4 4.04 1.94 77.18 76.68  -0.72  -0.89 

Pt 5 3.06 1.57 79.38 75.41  -5.7  -0.04 

Pt 6 3.03 1.63 77.62 75.69  -2.8  -1.15 

 

When looking at the dose volumes, Pt. 3 predicts much larger dose volumes than the 

true volume, whereas the other patients exhibit the opposite phenomenon (Table 4.4). Pt 3 is 

also the only patient where the predicted Dmax did not fall within the true V100. The reason for 

this is unclear; however, Pt 3 did have a large dental implant resulting in artifacts on his scans, 

which may affect dose calculation and the behavior the model expected. 

Table 4.4 Differences in true and predicted isodose volumes as a percentage of true volume  
ΔV100(%) ΔV90(%) 

Pt 1 -31.23 -9.55 

Pt 2 -65.44 -19.72 

Pt 3 563.53 26.98 

Pt 4 -24.10 -7.27 

Pt 5 -34.32 -16.03 

Pt 6 -45.57 -13.41 

 

DSCs for isodose volumes were lowest at V100 and rapidly increased (Fig. 4.11). DVHs 

for dose volumes looked similar overall, albeit shifted towards lower doses from the true DVHs, 

as the predictions were colder overall (Fig. 4.12). Fig 4.13 shows the true and predicted dose 

distributions for Pt 4, the absolute difference map in Gy, and the true and predicted V100 and 

V90 overlaid on the true and predicted dose distributions, as an example of the average 

patient’s predicted dose. 
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Fig. 4.11   DSC for true versus predicted isodose volumes 

 

 
Fig. 4.12   Dose-volume histogram for true and predicted isodose volumes for Pt. 4. 
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Fig. 4.13   Example predictions for Pt. 4. A: Corresponding dCT slice, B: predicted minus true 
dose difference map (Gy), C: true and predicted V100 overlay, D: true and predicted V90 
overlay. 
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4.4 Discussion 

 A proof-of-concept neural network was developed which takes original dose 

distribution, original surface, and treatment surface as input and delivers the predicted 

treatment dose distribution as output. The model predictions prove that a neural network can 

predict 3D dose distributions based on inputs of two surfaces and one dose distribution, which 

has not been previously reported in the literature. Additionally, the prediction is carried out 

very quickly on a standard GPU runtime. The current predictions mimic real dose distributions 

quite closely. Interestingly, the edges are sharp where the network has surface data indicating 

the edges of the body; the posterior surface of the patient, where the network does not know 

the edge of the body, is fuzzy in the predictions. 

 However, the accuracy of the model predictions is inconsistent and indicates need for 

further improvement. It is of interest that the network generally predicts colder than the true 

values; investigating the cause of this is a priority. This could indicate that the network is 

starting with the original dose distribution and essentially weighting individual pixels to get to 

the treatment day dose distribution, since the treatment day dose distributions are observed to 

have higher max doses than the original. The network may not be altering the distribution 

enough due to limitations of the training. Two avenues for improvement have been identified: 

further patient accrual and a custom loss function. More data is needed to further train the 

network, and a custom loss function may improve training. The current loss function calculates 

over the entire volume, which includes a large volume of air, an area that is easy to predict and 

not of concern and therefore drives the loss down artificially. Finding a way to calculate the loss 

solely on the body, or part of the body, could more accurately represent model performance 
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while training and result in better learning. This could potentially be done by writing a custom 

MSE function with a threshold to ignore low dose pixels. Additionally, the model architecture 

could be modified to add different types of layers or additional inputs. For instance, a principal 

component analysis operation could be carried out on surface changes before input to the U-

Net, and features extracted from that could be added as inputs to the U-Net. Another common 

method for improving dose prediction models which could be explored is adding beam 

geometry as an input. 

The poorest performing patients, Pt 1 and Pt 3, may be outliers for this dataset, which 

may explain the poor prediction. Pt 1 had a prescription of 69.96 Gy, but the true max on the 

deformed CT was 84.42 Gy, which is higher than most of the patients included in this study. Pt 3 

had a major dental implant which may affect the behavior of dose accumulation (Fig. 4.14). 

While other patients with implants were included in the study, none were to the extent of Pt 3. 

After patient recruitment had been ongoing for some time, a decision to exclude patients with 

artifacts from dental implants was made due to the unreliability of the DIR method in handling 

artifacts. However, patients which already had produced good registrations even with artifacts 

were kept for training. There may simply not be enough patients with dental implants in the 

network for it to predict those patients accurately. These results may indicate that different 

models need to be trained for different dose levels or patients with artifacts. Predictions may 

also improve by training separate models for different disease sites. Stratifying the data this 

way would require a larger amount of data in order to train effectively. 
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Fig. 4.14   Pt 3 dCT displaying high density artifact from dental implant, along with the true 

and predicted dose for the same region. 

 

 Dose prediction neural networks have largely been developed for the purpose of 

automating treatment planning, rather than predicting changes to delivered dose. However, 

the metrics used to compare predicted dose distributions or DVHs to ground truth in 

automated planning studies are still relevant in this context. Dmax and Dmean are commonly 

reported, as well as DVHs and standard dose metrics for PTVs and OARs. Additionally, studies 

frequently report DSC between isodose volumes. Average errors in predicted Dmax have been 

reported as high as 10%, though more commonly in the range of 1-2%83,86. Errors in Dmean are 

commonly reported in the 1-5% range86,87. DSCs for isodose volumes are commonly reported to 

be greater than 0.9, though they have been reported in the 0.8-0.9 range for dose thresholds 

below 40% of the prescription dose. The range in error in Dmax for the small test set of this study 

was 0.7-14%, with 5 of the 6 patients having errors in excess of 2%, and DSCs for V90 to V100 

isodose ranges were commonly below 0.9. The networks reported for comparison here used a 

larger number of patients for their training and validation, while this study was limited in the 

number of patients it was able to acquire, which limits training performance. The results 
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indicate that there is great need for improvement in this model, which may be achieved 

through the methods described above. 

 For this study, retrospective data was utilized. A prospective use of the network would 

involve exporting the treatment plan dose to a workstation with the pre-processing scripts and 

network code after planning is complete; the body contour would be exported to AlignRT to 

generate a reference surface, and a surface capture would be obtained after setting up the 

patient but before placement of the thermoplastic mask at every fraction (Fig. 4.15). At regular 

intervals in the treatment course, both the reference surface and that day’s capture would then 

be exported from AlignRT and input to the pre-processing scripts alongside the treatment dose, 

and the pre-processing would feed directly into the network without manual intervention. The 

output would be a 3D dose distribution reflecting the treatment day delivered dose. 

 
Fig. 4.15   Flowchart depicting ideal workflow for clinical use of dose prediction network. 

 

4.5 Conclusion 
 This project was able to develop a neural network as proof-of-concept for predicting 3D 

dose of the day using the original dose distribution, the original surface, and the surface of the 

day as inputs. The model architecture was based on the original U-Net, with modifications for 

this dataset. The network was trained on 135 image sets and tested on 6 new image sets. The 

results presented here are promising indicators of the ability of this type of model to serve as a 

tool for making adaptive therapy decisions. However, further work is needed to improve the 

accuracy and consistency of the predictions for it to be clinically viable. 
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Chapter 5   Summary and Conclusions 
The final chapter of this thesis summarizes the work presented here and discusses limitations of 

the work and possible improvements. 

5.1 Summary 
 The work presented in this dissertation demonstrates the feasibility of using a neural 

network to predict changes to delivered dose in HN cases using surface data. This research 

sought to accomplish two specific aims, with the purpose of improving HN radiotherapy: the 

development and evaluation of a DIR method for CT-to-CBCT registration which delivered 

deformed CTs with the field of view of planning CTs and the development and initial evaluation 

of a neural network to predict changes in HN dose distributions based on surface data. 

 Fulfillment of the first specific aim was completed by the development and validation of 

the DIR method described in Chapter 3. Using a combination of MATLAB and elastix, an open-

source software package for image registration, a process was designed to register HN planning 

CTs to CBCTs. The method was specifically designed to result in dCTs with the FOV of pCTs for 

the purpose of more accurate dose calculation. Once validation of the DIR method was 

completed and the method was determined to be adequate for dose calculation, work on the 

second specific aim began. With the ability to generate dCTs for dose of the day calculation, 

patients were recruited for neural network training. Treatment plans were recalculated on dCTs 

and surfaces were generated, resulting in the data needed to train the network. Once pre-

processing was completed, the network was developed and trained. The network was tested on 

a small set of new patients to evaluate accuracy and verify proof-of-concept. The results 
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demonstrated that the concept was feasible, but that the network needed improvements and 

more training data. 

5.2 Limitations and Future Work 
 Several limitations of the work and methods described here were discovered. The major 

limitation of this study is the limited patient cohort. This stems partially from a limitation of the 

developed DIR method. While some high density artifacts did not affect the quality of 

registrations, the frequency of poor registrations due to high density artifacts caused by dental 

implants led to an exclusion of most patients with high density artifacts from the network 

training. This also restricted patient recruitment to only those treated on Varian TrueBeams 

(Varian Medical Systems, Palo Alto, CA), as the poorer image quality of the on-board imagers on 

other systems increased the severity and frequency of artifacts. Additionally, patients who had 

replans performed mid-course were excluded, as the aim was to collect CBCTs throughout the 

entire treatment course that would be registered with the original pCT. In the future, these 

patients could be used to validate the dose prediction with dose calculated on the repeat CT, 

provided the setup is consistent. On the other hand, recruitment was largely limited to patients 

who exhibited visible anatomic change on CBCT, as those would be most likely to exhibit 

significant dosimetric change. Recruitment was eventually extended to patients with little to no 

anatomic change due to the low patient numbers, but this composed only a small subset of the 

patient cohort. Further training with a larger dataset is necessary to improve the network 

performance and move towards viability for use as a clinical tool. A larger dataset would also 

permit stratification based on dose metrics or site, which could further improve model 

performance. 
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 There are several avenues to pursue for improving model performance. While a larger 

dataset will likely have the most impact, pre-processing is also critical to training. The current 

method for generating surface masks from the AlignRT files is known to have errors in certain 

sections of the array, most notably the superior-inferior transition from shoulders to neck. The 

method for drawing the polygons based on coordinates makes errors in determining where the 

interior of the polygon should be. The errors are restricted to a small section of the array and 

do not occur on all patients; however, the dose prediction is less accurate in that region due to 

the inaccuracy of the array. A solution for this has not yet been found but is an active point of 

focus. The network could be trained using the structure directly from the TPS, which would 

eliminate this error. However, the intent is for the network and pre-processing steps to use 

surfaces from AlignRT for prediction, since a surface structure would not be available in the TPS 

for each new fraction, so a solution must be found eventually. 

 The neural network may additionally benefit from alterations to the architecture, which 

may come in the form of additional convolutional layers, fully connected layers, residual blocks, 

or others. Benefits of these adaptations to the architecture could be seen more clearly with a 

larger dataset for training and a full set of patients for testing. One clear modification to the 

network would be a custom loss function. The current loss function calculates on the entire 

array, which includes a large volume of air, where small errors are frequent, and therefore the 

loss is artificially low. A custom loss function which calculates only on the body may improve 

learning drastically. This may require an additional input of the original body structure to the 

network. Attempts to create a custom loss function thus far have been unsuccessful. 
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Once the network is evaluated to be clinically viable, it will be necessary to determine 

and implement useful metrics which could be reported to physicians for the purposes of 

making clinical decisions about whether patients need resimulation and replanning. These 

metrics would need to be independent of contours and could include reporting the change in 

Dmax or isodose volumes. While contour-based metrics would be ideal, the process of obtaining 

those metrics independent of DIR or CBCT is not trivial. The simplest method would be to 

evaluate the dose distribution using the pCT contours; however, this ignores the effect of any 

anatomic change on the structures themselves. To generate DVHs or new contours 

independent of DIR or CBCT that accurately reflect the geometry of the contours at each 

treatment fraction would likely require the development of an additional neural network 

separate from the one presented here. After acceptable metrics are chosen, it would then be 

ideal to perform a prospective study with the clinical tool implemented. 

5.3 General conclusions 
 This thesis investigated the development of a CT-to-CBCT DIR method and a 3D dose 

prediction neural network for HN patients treated with RT. This research was driven by two 

specific aims. 

 The first, to develop a CT-to-CBCT DIR method, was necessary due to the lack of 

commercially available DIR packages which preserve the field of view of the pCT when 

generating the dCT. Without an image with a full field of view and correct HU, accurate dose 

calculation is impossible. Therefore, an in-house method was developed which addressed these 

challenges and was validated on ten patients. Validation demonstrated that the method was 

comparable to published in-house and commercial algorithms. The increased FOV of the dCT 
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relative to commercially-generated dCTs allowed for accurate dose-of-the-day calculation and 

surface generation, necessary for the second aim. 

 The second aim included the development and evaluation of a proof-of-concept neural 

network in the pursuit of creating a clinical tool for informing clinical decisions about replanning 

during a HN patient’s treatment course. The developed neural network uses the original dose 

distribution and surface information to predict how the dose distribution has changed. The 

predictions for test patients indicate the need for improvement in accuracy, but they are 

promising indicators of feasibility. Given a larger patient cohort and the modifications to the 

pre-processing methods and network proposed above, it is expected that the model could be 

developed into a useful clinical tool. 

 Both the first and second specific aims were successfully achieved, and a novel method 

for predicting dose changes during HN RT was presented which shows promise for clinical use 

and improving adaptive therapy.  
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Appendix A   Additional Figures 
This appendix includes patient-specific figures for the DIR validation, dose calculation on the 

DIR validation patients, and neural network test set. 

A.1 HU Histograms 

 
Fig A.1   Histograms of HU values for pCT, CBCT, and dCT for Pt. 1. A: Body, B: Left parotid, C: 
Cord, D: Mandible. Note: Pt.1 did not have a right parotid. 
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Fig A.2   Histogram of HU values of the body for pCT, CBCT, and dCT for Pt. 2. 

 

 
Fig A.3   Histograms of HU values for pCT, CBCT, and dCT for Pt. 2. A: Left parotid, B: Right 
parotid, C: Cord, D: Mandible. 
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Fig A.4   Histogram of HU values of the body for pCT, CBCT, and dCT for Pt. 3. 

 

 
Fig A.5   Histograms of HU values for pCT, CBCT, and dCT for Pt. 3. A: Left parotid, B: Right 
parotid, C: Cord, D: Mandible. 
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Fig A.6   Histogram of HU values of the body for pCT, CBCT, and dCT for Pt. 4. 

 

 
Fig A.7   Histograms of HU values for pCT, CBCT, and dCT for Pt. 4. A: Left parotid, B: Right 
parotid, C: Cord, D: Mandible. 
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Fig A.8   Histogram of HU values of the body for pCT, CBCT, and dCT for Pt. 5. 

 

 
Fig A.9   Histograms of HU values for pCT, CBCT, and dCT for Pt. 5. A: Left parotid, B: Right 
parotid, C: Cord, D: Mandible. 
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Fig A.10   Histogram of HU values of the body for pCT, CBCT, and dCT for Pt. 6. 

 

 
Fig A.11   Histograms of HU values for pCT, CBCT, and dCT for Pt. 6. A: Left parotid, B: Right 
parotid, C: Cord, D: Mandible. 
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Fig A.12   Histogram of HU values of the body for pCT, CBCT, and dCT for Pt. 7. 

 

 
Fig A.13   Histograms of HU values for pCT, CBCT, and dCT for Pt. 7. A: Left parotid, B: Right 
parotid, C: Cord, D: Mandible. 



107 
 

 

 
Fig A.14   Histogram of HU values of the body for pCT, CBCT, and dCT for Pt. 8. 

 

 
Fig A.15   Histograms of HU values for pCT, CBCT, and dCT for Pt. 8. A: Left parotid, B: Right 
parotid, C: Cord, D: Mandible. 
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Fig A.16   Histogram of HU values of the body for pCT, CBCT, and dCT for Pt. 9. 

 

 
Fig A.17   Histograms of HU values for pCT, CBCT, and dCT for Pt. 9. A: Left parotid, B: Right 
parotid, C: Cord, D: Mandible. 
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A.2 OAR DVHs 

 
Fig A.18   DVHs for selected OARs for Pt. 1 comparing dose on pCT (solid) to dose on dCT 
(dashed). Note: Pt. 1 did not have a right parotid. 

 

 
Fig A.19   DVHs for selected OARs for Pt. 3 comparing dose on pCT (solid) to dose on dCT 
(dashed). 
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Fig A.20   DVHs for selected OARs for Pt. 4 comparing dose on pCT (solid) to dose on dCT 
(dashed). 

 

 
Fig A.21   DVHs for selected OARs for Pt. 5 comparing dose on pCT (solid) to dose on dCT 
(dashed). 
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Fig A.22   DVHs for selected OARs for Pt. 6 comparing dose on pCT (solid) to dose on dCT 
(dashed). 

 

 
Fig A.23   DVHs for selected OARs for Pt. 7 comparing dose on pCT (solid) to dose on dCT 
(dashed). 
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Fig A.24   DVHs for selected OARs for Pt. 8 comparing dose on pCT (solid) to dose on dCT 
(dashed). 

 

 
Fig A.25   DVHs for selected OARs for Pt. 9 comparing dose on pCT (solid) to dose on dCT 
(dashed). 
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A.3 Neural Network Predictions 

 
Fig. A.26   DVH for true and predicted isodose volumes for Pt. 1. 
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Fig. A.27   Example predictions for Pt. 1. A: Corresponding dCT slice, B: predicted minus true 
dose difference map (Gy), C: true and predicted V100 overlay, D: true and predicted V90 
overlay. 
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Fig. A.28   DVH for true and predicted isodose volumes for Pt. 2. 
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Fig. A.29   Example predictions for Pt. 2. A: Corresponding dCT slice, B: predicted minus true 
dose difference map (Gy), C: true and predicted V100 overlay, D: true and predicted V90 
overlay. 
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Fig. A.30   DVH for true and predicted isodose volumes for Pt. 3. 

 



118 
 

 
Fig. A.31   Example predictions for Pt. 3. A: Corresponding dCT slice, B: predicted minus true 
dose difference map (Gy), C: true and predicted V100 overlay, D: true and predicted V90 
overlay. 
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Fig. A.32   DVH for true and predicted isodose volumes for Pt. 5. 
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Fig. A.33   Example predictions for Pt. 5. A: Corresponding dCT slice, B: predicted minus true 
dose difference map (Gy), C: true and predicted V100 overlay, D: true and predicted V90 
overlay. 
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Fig. A.34   DVH for true and predicted isodose volumes for Pt. 6. 
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Fig. A.35   Example predictions for Pt. 6. A: Corresponding dCT slice, B: predicted minus true 
dose difference map (Gy), C: true and predicted V100 overlay, D: true and predicted V90 
overlay. 
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Appendix B   Code 
This appendix contains code written for this project. 

B.1 Image registration parameter files 
The following is the parameter file used for rigid registration: 

// Example parameter file for rotation registration 

// C-style comments: // 

 

// The internal pixel type, used for internal computations 

// Leave to float in general.  

// NB: this is not the type of the input images! The pixel  

// type of the input images is automatically read from the  

// images themselves. 

// This setting can be changed to "short" to save some memory 

// in case of very large 3D images. 

(FixedInternalImagePixelType "float") 

(MovingInternalImagePixelType "float") 

 

 

// Specify whether you want to take into account the so-called 

// direction cosines of the images. Recommended: true. 

// In some cases, the direction cosines of the image are corrupt, 

// due to image format conversions for example. In that case, you  

// may want to set this option to "false". 

(UseDirectionCosines "true") 

 

// **************** Main Components ************************** 

 

// The following components should usually be left as they are: 

(Registration "MultiResolutionRegistration") 

(Interpolator "BSplineInterpolator") 

(ResampleInterpolator "FinalBSplineInterpolator") 

(Resampler "DefaultResampler") 

 

// These may be changed to Fixed/MovingSmoothingImagePyramid. 

// See the manual. 

(FixedImagePyramid "FixedRecursiveImagePyramid") 

(MovingImagePyramid "MovingRecursiveImagePyramid") 

 

// The following components are most important: 

// The optimizer AdaptiveStochasticGradientDescent (ASGD) works 

// quite ok in general. The Transform and Metric are important 

// and need to be chosen careful for each application. See manual. 

(Optimizer "AdaptiveStochasticGradientDescent") 

(Transform "EulerTransform") 

(Metric "AdvancedNormalizedCorrelation") 

//(Metric "AdvancedMattesMutualInformation") 

 

//***********Mask********** 

(ErodeMask "true") 

 

// ******Similarity Measure********* 
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// Number of grey level bins in each resolution level, 

// for the mutual information. 16 or 32 usually works fine. 

// You could also employ a hierarchical strategy: 

//(NumberOfHistogramBins 16 32 32 64) 

(NumberOfHistogramBins 32) 

 

// ***************** Transformation ************************** 

 

// Scales the rotations compared to the translations, to make 

// sure they are in the same range. In general, it's best to   

// use automatic scales estimation: 

(AutomaticScalesEstimation "true") 

 

// Automatically guess an initial translation by aligning the 

// geometric centers of the fixed and moving. 

(AutomaticTransformInitialization "true") 

 

// Whether transforms are combined by composition or by addition. 

// In generally, Compose is the best option in most cases. 

// It does not influence the results very much. 

(HowToCombineTransforms "Compose") 

 

// ******************** Multiresolution ********************** 

 

// The number of resolutions. 1 Is only enough if the expected 

// deformations are small. 3 or 4 mostly works fine. For large 

// images and large deformations, 5 or 6 may even be useful. 

(NumberOfResolutions 4) 

 

// The downsampling/blurring factors for the image pyramids. 

// By default, the images are downsampled by a factor of 2 

// compared to the next resolution. 

// So, in 2D, with 4 resolutions, the following schedule is used: 

//(ImagePyramidSchedule 8 8  4 4  2 2  1 1 ) 

// And in 3D: 

//(ImagePyramidSchedule 8 8 8  4 4 4  2 2 2  1 1 1 ) 

// You can specify any schedule, for example: 

//(ImagePyramidSchedule 4 4  4 3  2 1  1 1 ) 

// Make sure that the number of elements equals the number 

// of resolutions times the image dimension. 

 

// ******************* Optimizer **************************** 

 

// Maximum number of iterations in each resolution level: 

// 200-500 works usually fine for rigid registration. 

// For more robustness, you may increase this to 1000-2000. 

(MaximumNumberOfIterations 300) 

 

// The step size of the optimizer, in mm. By default the voxel size is 

used. 

// which usually works well. In case of unusual high-resolution images 

// (eg histology) it is necessary to increase this value a bit, to the 

size 

// of the "smallest visible structure" in the image: 
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//(MaximumStepLength 1.0) 

 

// **************** Image sampling ********************** 

 

// Number of spatial samples used to compute the mutual 

// information (and its derivative) in each iteration. 

// With an AdaptiveStochasticGradientDescent optimizer, 

// in combination with the two options below, around 2000 

// samples may already suffice. 

(NumberOfSpatialSamples 3000) 

 

// Refresh these spatial samples in every iteration, and select 

// them randomly. See the manual for information on other sampling 

// strategies. 

(NewSamplesEveryIteration "true") 

(ImageSampler "RandomCoordinate") 

 

// ************* Interpolation and Resampling **************** 

 

// Order of B-Spline interpolation used during registration/optimisation. 

// It may improve accuracy if you set this to 3. Never use 0. 

// An order of 1 gives linear interpolation. This is in most  

// applications a good choice. 

(BSplineInterpolationOrder 1) 

 

// Order of B-Spline interpolation used for applying the final 

// deformation. 

// 3 gives good accuracy; recommended in most cases. 

// 1 gives worse accuracy (linear interpolation) 

// 0 gives worst accuracy, but is appropriate for binary images 

// (masks, segmentations); equivalent to nearest neighbor interpolation. 

(FinalBSplineInterpolationOrder 3) 

 

//Default pixel value for pixels that come from outside the picture: 

(DefaultPixelValue -1000) 

 

// Choose whether to generate the deformed moving image. 

// You can save some time by setting this to false, if you are 

// only interested in the final (nonrigidly) deformed moving image 

// for example. 

//(WriteResultImageAfterEachResolution "true") 

(WriteResultImage "true") 

//(ShowExactMetricValue "true") 

 

// The pixel type and format of the resulting deformed moving image 

(ResultImagePixelType "short") 

(ResultImageFormat "mhd") 
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The following is the parameter file used for deformable registration: 

(FixedInternalImagePixelType "float") 

(MovingInternalImagePixelType "float") 

(FixedImageDimension 3) 

(MovingImageDimension 3) 

(UseDirectionCosines "true") 

 

// **************** Main Components ************************** 

 

(Registration "MultiMetricMultiResolutionRegistration") 

//(Registration "MultiResolutionRegistration") 

(Interpolator "BSplineInterpolator") 

(ResampleInterpolator "FinalBSplineInterpolator") 

(Resampler "DefaultResampler") 

 

//(FixedImagePyramid "FixedSmoothingImagePyramid") 

//(MovingImagePyramid "MovingSmoothingImagePyramid") 

(FixedImagePyramid "FixedRecursiveImagePyramid") 

(MovingImagePyramid "MovingRecursiveImagePyramid") 

 

 

(Optimizer "AdaptiveStochasticGradientDescent") 

(Transform "BSplineTransform") 

(Metric "AdvancedMattesMutualInformation" "TransformBendingEnergyPenalty") 

//(Metric "AdvancedMattesMutualInformation") 

(Metric0Weight 1) 

(Metric1Weight 25) // OPTIMIZED BY QUANTITATIVE MEASURES 

 

//********Mask******* 

(ErodeMask "true") 

 

// ***************** Transformation ************************** 

 

//(GridSpacingSchedule 4 2 1) 

//(FinalGridSpacingInPhysicalUnits 15) 

(HowToCombineTransforms "Compose") 

 

// ******************* Similarity measure ********************* 

 

(NumberOfHistogramBins 32) // OPTIMIZED BY QUANTITATIVE MEASURES 

 

// ******************** Multiresolution ********************** 

 

(NumberOfResolutions 3) 

(ImagePyramidSchedule 8 8 2  4 4 1  1 1 1) // ACCOUNTING FOR ANISOTROPIC 

RESOLUTION 

 

// ******************* Optimizer **************************** 

 

(MaximumNumberOfIterations 2500) // COULD PROBABLY BE LOWERED, ESPECIALLY FOR 

THE FIRST LEVELS OF THE IMAGE PYRAMID 

(ASGDParameterEstimationMethod "DisplacementDistribution") 

 

// **************** Image sampling ********************** 
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(NumberOfSpatialSamples 3000) // COULD PROBABLY BE LOWERED, ESPECIALLY FOR 

THE FIRST LEVELS OF THE IMAGE PYRAMID 

(NewSamplesEveryIteration "true") 

(ImageSampler "RandomCoordinate") 

//(SampleRegionSize 40)  // OPTIMIZED BY QUANTITATIVE MEASURES 

//(UseRandomSampleRegion "true") 

//(MaximumNumberOfSamplingAttempts 5) 

//(RequiredRatioOfValidSamples 0.05) 

 

// ************* Interpolation and Resampling **************** 

 

(BSplineInterpolationOrder 1) 

(FinalBSplineInterpolationOrder 3) 

 

(ShowExactMetricValue "false")  

(WriteTransformParametersEachResolution "true") 

//(WriteResultImageAfterEachResolution "true") 

//(WritePyramidImagesAfterEachResolution "true") 

 

(DefaultPixelValue -1000) 

(WriteResultImage "true") 

(ResultImagePixelType "short") 

(ResultImageFormat "mhd") 

 

B.2 MATLAB Code 
The following are scripts used for processing the images before and after image registration, as 

well as the script for contour comparison. 

B.2.1 Preparing for registration 

This script creates the resampled and padded CBCT image and the mask based on the input 

CBCT and pCT. 

function[createImages] = createCBCTandMask(CBCTimage, Simimage, CBCTbkg, Maskbkg, 

ResampledName, MaskName, PadName, MaskPadName) 

 

RescaleMetaImage(CBCTimage, Simimage, ResampledName); 

 

[CBimg, CBhdr] = OpenMetaImageSH(strcat(ResampledName, '.mhd')); 

mask = CylinderMask(CBimg); 

WriteMetaImageSH(MaskName, mask, CBhdr); 

 

PadMetaImage(strcat(ResampledName, '.mhd'), Simimage, CBCTbkg, PadName); 

 

PadMetaImage(strcat(MaskName, '.mhd'), Simimage, Maskbkg, MaskPadName); 

 

end 
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This script resamples the CBCT to the same resolution as the pCT. 

function[resizedImg] = RescaleMetaImage(ImgPath, SimPath, ResizedImgName) 

 

[CBimg, CBhdr] = OpenMetaImageSH(ImgPath); 

[Simimg, Simhdr] = OpenMetaImageSH(SimPath); 

 

newx = round(size(CBimg,1)*CBhdr.x_pixdim/Simhdr.x_pixdim); 

newy = round(size(CBimg,2)*CBhdr.y_pixdim/Simhdr.y_pixdim); 

newz = round(size(CBimg,3)*CBhdr.z_pixdim/Simhdr.z_pixdim); 

 

resizedImg = imresize3(CBimg, [newx, newy, newz], 'linear'); 

 

CBhdr.x_pixdim = Simhdr.x_pixdim; 

CBhdr.y_pixdim = Simhdr.y_pixdim; 

CBhdr.z_pixdim = Simhdr.z_pixdim; 

 

CBhdr.x_dim = newx; 

CBhdr.y_dim = newy; 

CBhdr.z_dim = newz; 

 

WriteMetaImageSH( ResizedImgName, resizedImg, CBhdr); 

 

end 

 

This script pads the resampled CBCT to approximately the same array size as the pCT. 

function[paddedImg] = PadMetaImage(ImgPath, SimPath, BackgroundNumber, PaddedImgName) 

 

[CBimg, CBhdr] = OpenMetaImageSH(ImgPath); 

[Simimg, Simhdr] = OpenMetaImageSH(SimPath); 

 

paddedImg = BackgroundNumber*ones(size(Simimg)); 

 

CBx = size(CBimg, 1); 

CBy = size(CBimg, 2); 

CBz = size(CBimg, 3); 

 

xdiff = size(Simimg,1) - size(CBimg,1); 

ydiff = size(Simimg,2) - size(CBimg,2); 

zdiff = size(Simimg,3) - size(CBimg,3); 

 

if mod(xdiff, 2) == 1  %is odd 

    paddedImg = paddedImg(1:end-1,1:end-1,:); 

    xdiff = xdiff - 1; 

    ydiff = ydiff - 1;  %should separate out y from x in case of non-square array 

end 

 

if mod(zdiff, 2) == 1  %is odd 

    paddedImg = paddedImg(:,:,1:end-1); 

    zdiff = zdiff - 1; 

end 

 

paddedImg(xdiff/2+1:(CBx+xdiff/2), ydiff/2+1:(CBy+ydiff/2), zdiff/2+1:(CBz+zdiff/2)) = 

CBimg(:,:,:); 

 

CBhdr.x_dim = size(paddedImg,1); 

CBhdr.y_dim = size(paddedImg,2); 
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CBhdr.z_dim = size(paddedImg,3); 

 

WriteMetaImageSH( PaddedImgName, paddedImg, CBhdr); 

 

end 

 

This script creates the cylindrical mask for the FOV of the CBCT. 

function[mask] = CylinderMask(img) 

 

[x,y,z] =size(img); 

mask = zeros(x,y,z); 

for i = 4:(z-3);  %shortened mask on 05/11/20 from 2:(z-1) to avoid truncation effects 

    imshow(img(:,:,i)) 

%    if i == 1 | i == z 

%        r = (x-72)/2; 

%        circ = drawcircle('Center',[x/2,y/2],'Radius',r); 

%    else 

    circ = drawcircle('Center',[x/2,y/2],'Radius',x/2); 

%    end 

    mask(:,:,i) = createMask(circ); 

end 

 

end 

 

This script resamples the cylindrical mask to the resolution of the pCT. 

function[resizedImg] = RescaleMetaImage(ImgPath, SimPath, ResizedImgName) 

 

[CBimg, CBhdr] = OpenMetaImageSH(ImgPath); 

[Simimg, Simhdr] = OpenMetaImageSH(SimPath); 

 

newx = round(size(CBimg,1)*CBhdr.x_pixdim/Simhdr.x_pixdim); 

newy = round(size(CBimg,2)*CBhdr.y_pixdim/Simhdr.y_pixdim); 

newz = round(size(CBimg,3)*CBhdr.z_pixdim/Simhdr.z_pixdim); 

 

resizedImg = imresize3(CBimg, [newx, newy, newz], 'nearest'); 

 

CBhdr.x_pixdim = Simhdr.x_pixdim; 

CBhdr.y_pixdim = Simhdr.y_pixdim; 

CBhdr.z_pixdim = Simhdr.z_pixdim; 

 

CBhdr.x_dim = newx; 

CBhdr.y_dim = newy; 

CBhdr.z_dim = newz; 

 

WriteMetaImageSH( ResizedImgName, resizedImg, CBhdr); 

 

end 
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B.2.2 Additional MATLAB Scripts 

This script converts the dCT from mhd format to DICOM format for import to TPS, using info 

from the pCT DICOM tags. 

function[newDicom] = convertMHDtoDICOM(dCT, pCTdicom, CBCTdate, CBCTdateDec, 

dicomFolder, dicomName) 

 

%dCT 'filename.mhd' 

%pCTdicom 'pathname/slicename.dcm' 

%CBCTdate 'yyyymmdd' 

%CBCTdateDec 'mm.dd.yyyy' 

%dicomFolder - name of dicom folder to be created 

%ex:'ANON11111_CBCT#_DICOM' 

%dicomName - name of dicom slices ex:'ANON11111_mmddyyyy_CBCT_' 

 

[dCTimg, dCThdr] = OpenMetaImageSH(dCT); 

pCTinfo = dicominfo(pCTdicom); 

 

studyuid = dicomuid; 

seriesuid = dicomuid; 

instanceuid = dicomuid; 

refuid = dicomuid; 

 

origPos = pCTinfo.ImagePositionPatient; 

origSlice = origPos(3); 

 

pCTinfo.FileModDate = string(datetime('now')); 

pCTinfo.FileSize = ''; 

pCTinfo.Width = dCThdr.x_dim; 

pCTinfo.Height = dCThdr.y_dim; 

pCTinfo.MediaStorageSOPInstanceUID = instanceuid; 

pCTinfo.ImplementationVersionName = ''; 

pCTinfo.SpecificCharacterSet = ''; 

pCTinfo.InstanceCreationDate = ''; 

pCTinfo.InstanceCreationTime = ''; 

pCTinfo.SOPInstanceUID = instanceuid; 

pCTinfo.StudyDate = CBCTdate; 

pCTinfo.SeriesDate = CBCTdate; 

pCTinfo.AcquisitionDate = CBCTdate; 

pCTinfo.ContentDate = CBCTdate; 

pCTinfo.SeriesDescription = strcat('CT_HN.', CBCTdateDec); 

pCTinfo.StudyInstanceUID = studyuid; 

pCTinfo.SeriesInstanceUID = seriesuid; 

pCTinfo.StudyID = strcat('DIR ', CBCTdate); 

pCTinfo.SeriesNumber = []; 

pCTinfo.FrameOfReferenceUID = refuid; 

pCTinfo.Rows = dCThdr.x_dim; 

pCTinfo.Columns = dCThdr.y_dim; 

pCTinfo.RescaleIntercept = 0; 

pCTinfo.RescaleSlope = 1; 

 

mkdir(dicomFolder); 

 

for i = 1:size(dCTimg, 3) 

    filename = strcat(dicomName, sprintf('%04d', i)); 

    pCTinfo.Filename = filename; 

    pCTinfo.InstanceNumber = i; 

    pCTinfo.ImagePositionPatient = origPos - [0; 0; pCTinfo.SliceThickness*(i-1)]; 

    pCTinfo.SliceLocation = origSlice - pCTinfo.SliceThickness*(i-1); 

    dicomwrite(dCTimg(:,:,i), strcat(dicomFolder, '\', filename, '.dcm'), pCTinfo); 

end 
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end 

 

This script calculates DSC, JI, and HD between two contours. 

function[compareContours] = contourCompare(BQContourPath, simPath, 

resampleContourPath, padContourPath, defContourPath) 

 

%Rescale and pad CBCT contour 

RescaleMetaImage(BQContourPath, simPath, resampleContourPath); 

PadMetaImage(strcat(resampleContourPath, '.mhd'), simPath, 0, padContourPath); 

 

%Open both masks 

maskBQ = OpenMetaImageSH(strcat(padContourPath, '.mhd')); 

maskDef = OpenMetaImageSH(defContourPath); 

 

%Binarize both masks 

bmaskBQ = imbinarize(maskBQ); 

bmaskDef = logical(maskDef); 

 

%Find extent of CBCT mask 

slices = size(bmaskBQ, 3); 

ind_vector = zeros(slices); 

 

for i = 1:slices 

    slice = bmaskBQ(:,:,i); 

    if max(slice(:)) == 1 

        ind_vector(i) = 1; 

    end 

end 

 

index1 = find(ind_vector, 1); 

index2 = find(ind_vector, 1, 'last'); 

len = index2-index1 + 1; 

 

dsc = dice(bmaskBQ(:,:,index1:index2), bmaskDef(:,:,index1:index2)); 

hdarray = zeros(1,len); 

jac = jaccard(bmaskBQ(:,:,index1:index2), bmaskDef(:,:,index1:index2)); 

j = 1; 

for i = index1:index2 

    [hd D] = HausdorffDist(bmaskBQ(:,:,i), bmaskDef(:,:,i)); 

    hdarray(j) = hd; 

    j = j + 1; 

end 

 

hdavg = max(hdarray(:)); 

disp(['The DSC is ', num2str(dsc), '. The HD is ', num2str(hdavg), '. The Jaccard 

Index is ', num2str(jac), '.']) 

 

end 
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B.3   Python Code 
The following code includes programs to process data for input to the neural network, the 

neural network itself, and scripts for analysis of predictions. 

B.3.1 Pre-processing 

The following code performs conversion of surface obj files and dose files, resamples all arrays 

to isotropic resolution, and aligns and crops all arrays. 

def convertSurfandDose(ptid, ptnum): 

  surf0Path = '/content/drive/MyDrive/Colab/HNSI/Source/SimSurface/' + pti

d + '/Sim/capture.obj' 

  surf1Path = '/content/drive/MyDrive/Colab/HNSI/Source/CBCTSurface/' + pt

id + '/CBCT1/capture.obj' 

  surf2Path = '/content/drive/MyDrive/Colab/HNSI/Source/CBCTSurface/' + pt

id + '/CBCT2/capture.obj' 

  surf3Path = '/content/drive/MyDrive/Colab/HNSI/Source/CBCTSurface/' + pt

id + '/CBCT3/capture.obj' 

  dose0Path = '/content/drive/MyDrive/Colab/HNSI/Source/SimDose/' + ptid +

 '/Sim/RD.' + ptid + '.ANON.dcm' 

  dose1Path = '/content/drive/MyDrive/Colab/HNSI/Target/CBCTDose/' + ptid 

+ '/CBCT1/RD.' + ptid + '.CBCT1.dcm' 

  dose2Path = '/content/drive/MyDrive/Colab/HNSI/Target/CBCTDose/' + ptid 

+ '/CBCT2/RD.' + ptid + '.CBCT2.dcm' 

  dose3Path = '/content/drive/MyDrive/Colab/HNSI/Target/CBCTDose/' + ptid 

+ '/CBCT3/RD.' + ptid + '.CBCT3.dcm' 

  surf0nrrd = '/content/drive/MyDrive/Colab/HNSI/CenterCrop/Surface/0/' + 

ptnum + '.nrrd' 

  surf1nrrd = '/content/drive/MyDrive/Colab/HNSI/CenterCrop/Surface/1/' + 

ptnum + '.nrrd' 

  surf2nrrd = '/content/drive/MyDrive/Colab/HNSI/CenterCrop/Surface/2/' + 

ptnum + '.nrrd' 

  surf3nrrd = '/content/drive/MyDrive/Colab/HNSI/CenterCrop/Surface/3/' + 

ptnum + '.nrrd' 

  dose0nrrd = '/content/drive/MyDrive/Colab/HNSI/CenterCrop/Dose/0/' + ptn

um + '.nrrd' 

  dose1nrrd = '/content/drive/MyDrive/Colab/HNSI/CenterCrop/Dose/1/' + ptn

um + '.nrrd' 

  dose2nrrd = '/content/drive/MyDrive/Colab/HNSI/CenterCrop/Dose/2/' + ptn

um + '.nrrd' 

  dose3nrrd = '/content/drive/MyDrive/Colab/HNSI/CenterCrop/Dose/3/' + ptn

um + '.nrrd' 

  #convert all the surfaces to xarrays 

  surf0 = convertOBJ(surf0Path) 

  surf1 = convertOBJ(surf1Path) 

  surf2 = convertOBJ(surf2Path) 
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  surf3 = convertOBJ(surf3Path) 

  #import dose distributions and obtain xarray, numpy array, and coords 

  xdose0, d0, d0xcoords, d0ycoords, d0zcoords = importDose(dose0Path) 

  xdose1, d1, d1xcoords, d1ycoords, d1zcoords = importDose(dose1Path) 

  xdose2, d2, d2xcoords, d2ycoords, d2zcoords = importDose(dose2Path) 

  xdose3, d3, d3xcoords, d3ycoords, d3zcoords = importDose(dose3Path) 

 

  #separate numpy array from coords of surfaces 

  nsurf0, s0xcoords, s0ycoords, s0zcoords = xyz_and_numpy_from_xarray(surf

0) 

  nsurf1, s1xcoords, s1ycoords, s1zcoords = xyz_and_numpy_from_xarray(surf

1) 

  nsurf2, s2xcoords, s2ycoords, s2zcoords = xyz_and_numpy_from_xarray(surf

2) 

  nsurf3, s3xcoords, s3ycoords, s3zcoords = xyz_and_numpy_from_xarray(surf

3) 

 

  #get resolutions of surfaces and dose 

  s0xres, s0yres, s0zres = getxyzRes(s0xcoords, s0ycoords, s0zcoords) 

  s1xres, s1yres, s1zres = getxyzRes(s1xcoords, s1ycoords, s1zcoords) 

  s2xres, s2yres, s2zres = getxyzRes(s2xcoords, s2ycoords, s2zcoords) 

  s3xres, s3yres, s3zres = getxyzRes(s3xcoords, s3ycoords, s3zcoords) 

  d0xres, d0yres, d0zres = getxyzRes(d0xcoords, d0ycoords, d0zcoords) 

  d1xres, d1yres, d1zres = getxyzRes(d1xcoords, d1ycoords, d1zcoords) 

  d2xres, d2yres, d2zres = getxyzRes(d2xcoords, d2ycoords, d2zcoords) 

  d3xres, d3yres, d3zres = getxyzRes(d3xcoords, d3ycoords, d3zcoords) 

 

  #getting to the desired resolution (matching sim dose z res) 

  desres = 3.0 

  s0xdiff = round(desres/s0xres, 1) 

  s0ydiff = round(desres/s0yres, 1) 

  s0zdiff = round(desres/s0zres, 1) 

  s1xdiff = round(desres/s1xres, 1) 

  s1ydiff = round(desres/s1yres, 1) 

  s1zdiff = round(desres/s1zres, 1) 

  s2xdiff = round(desres/s2xres, 1) 

  s2ydiff = round(desres/s2yres, 1) 

  s2zdiff = round(desres/s2zres, 1) 

  s3xdiff = round(desres/s3xres, 1) 

  s3ydiff = round(desres/s3yres, 1) 

  s3zdiff = round(desres/s3zres, 1) 

 

  s0newx = int(round(len(s0xcoords)/(desres/s0xres), 0)) 

  s0newy = int(round(len(s0ycoords)/(desres/s0yres), 0)) 
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  s0newz = int(round(len(s0zcoords)/(desres/s0zres), 0)) 

  s1newx = int(round(len(s1xcoords)/(desres/s1xres), 0)) 

  s1newy = int(round(len(s1ycoords)/(desres/s1yres), 0)) 

  s1newz = int(round(len(s1zcoords)/(desres/s1zres), 0)) 

  s2newx = int(round(len(s2xcoords)/(desres/s2xres), 0)) 

  s2newy = int(round(len(s2ycoords)/(desres/s2yres), 0)) 

  s2newz = int(round(len(s2zcoords)/(desres/s2zres), 0)) 

  s3newx = int(round(len(s3xcoords)/(desres/s3xres), 0)) 

  s3newy = int(round(len(s3ycoords)/(desres/s3yres), 0)) 

  s3newz = int(round(len(s3zcoords)/(desres/s3zres), 0)) 

 

  #resampling surface and dose 

  s0res, s0resx, s0resy, s0resz = resampSurface(nsurf0, s0newx, s0newy, s0

newz, s0xcoords, s0ycoords, s0zcoords, desres) 

  s1res, s1resx, s1resy, s1resz = resampSurface(nsurf1, s1newx, s1newy, s1

newz, s1xcoords, s1ycoords, s1zcoords, desres) 

  s2res, s2resx, s2resy, s2resz = resampSurface(nsurf2, s2newx, s2newy, s2

newz, s2xcoords, s2ycoords, s2zcoords, desres) 

  s3res, s3resx, s3resy, s3resz = resampSurface(nsurf3, s3newx, s3newy, s3

newz, s3xcoords, s3ycoords, s3zcoords, desres) 

 

  d0res = zoom(d0, (d0xres/desres, d0yres/desres, d0zres/desres)) 

  d0resx = zoom(d0xcoords, d0xres/desres) 

  d0resy = zoom(d0ycoords, d0yres/desres) 

  d0resz = zoom(d0zcoords, d0zres/desres) 

  d1res = zoom(d1, (d1xres/desres, d1yres/desres, d1zres/desres)) 

  d1resx = zoom(d1xcoords, d1xres/desres) 

  d1resy = zoom(d1ycoords, d1yres/desres) 

  d1resz = zoom(d1zcoords, d1zres/desres) 

  d2res = zoom(d2, (d2xres/desres, d2yres/desres, d2zres/desres)) 

  d2resx = zoom(d2xcoords, d2xres/desres) 

  d2resy = zoom(d2ycoords, d2yres/desres) 

  d2resz = zoom(d2zcoords, d2zres/desres) 

  d3res = zoom(d3, (d3xres/desres, d3yres/desres, d3zres/desres)) 

  d3resx = zoom(d3xcoords, d3xres/desres) 

  d3resy = zoom(d3ycoords, d3yres/desres) 

  d3resz = zoom(d3zcoords, d3zres/desres) 

 

  #cut off last entry of resampled coordinates since it doesn't extend int

erpolation properly 

  d0resx = d0resx[0:-1] 

  d0resy = d0resy[0:-1] 

  d0resz = d0resz[0:-1] 

  d1resx = d1resx[0:-1] 

  d1resy = d1resy[0:-1] 
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  d1resz = d1resz[0:-1] 

  d2resx = d2resx[0:-1] 

  d2resy = d2resy[0:-1] 

  d2resz = d2resz[0:-1] 

  d3resx = d3resx[0:-1] 

  d3resy = d3resy[0:-1] 

  d3resz = d3resz[0:-1] 

   

  #shifting coordinates so 1,2,3 align with sim 

  thresh = 350 

  if np.count_nonzero(s1res[:,:,-4]) > thresh: 

    s1xcshifted, s1ycshifted, s1zcshifted, d1xcshifted, d1ycshifted, d1zcs

hifted = findScalp2(s0res, s1res, s0resx, s0resy, s0resz, s1resx, s1resy, 

s1resz, d1resx, d1resy, d1resz) 

  else: 

    s0x1, s0x2, s0y1, s0y2, s0z = findScalp(s0res, s0resx, s0resy, s0resz) 

    s1x1, s1x2, s1y1, s1y2, s1z = findScalp(s1res, s1resx, s1resy, s1resz) 

    s1xcshifted, s1ycshifted, s1zcshifted, d1xcshifted, d1ycshifted, d1zcs

hifted = shiftCoords(s0x1, s0x2, s0y1, s0y2, s0z, s1x1, s1x2, s1y1, s1y2, 

s1z, s1resx, s1resy, s1resz, d1resx, d1resy, d1resz) 

  if np.count_nonzero(s2res[:,:,-4]) > thresh: 

    s2xcshifted, s2ycshifted, s2zcshifted, d2xcshifted, d2ycshifted, d2zcs

hifted = findScalp2(s0res, s2res, s0resx, s0resy, s0resz, s2resx, s2resy, 

s2resz, d2resx, d2resy, d2resz) 

  else: 

    s0x1, s0x2, s0y1, s0y2, s0z = findScalp(s0res, s0resx, s0resy, s0resz) 

    s2x1, s2x2, s2y1, s2y2, s2z = findScalp(s2res, s2resx, s2resy, s2resz) 

    s2xcshifted, s2ycshifted, s2zcshifted, d2xcshifted, d2ycshifted, d2zcs

hifted = shiftCoords(s0x1, s0x2, s0y1, s0y2, s0z, s2x1, s2x2, s2y1, s2y2, 

s2z, s2resx, s2resy, s2resz, d2resx, d2resy, d2resz) 

  if np.count_nonzero(s3res[:,:,-4]) > thresh: 

    s3xcshifted, s3ycshifted, s3zcshifted, d3xcshifted, d3ycshifted, d3zcs

hifted = findScalp2(s0res, s3res, s0resx, s0resy, s0resz, s3resx, s3resy, 

s3resz, d3resx, d3resy, d3resz) 

  else: 

    s0x1, s0x2, s0y1, s0y2, s0z = findScalp(s0res, s0resx, s0resy, s0resz) 

    s3x1, s3x2, s3y1, s3y2, s3z = findScalp(s3res, s3resx, s3resy, s3resz) 

    s3xcshifted, s3ycshifted, s3zcshifted, d3xcshifted, d3ycshifted, d3zcs

hifted = shiftCoords(s0x1, s0x2, s0y1, s0y2, s0z, s3x1, s3x2, s3y1, s3y2, 

s3z, s3resx, s3resy, s3resz, d3resx, d3resy, d3resz) 

 

  midx = d0res.shape[0]//2 

  fig = px.imshow(d0res[midx,:,:]) 

  fig.show() 

  breakpoint() 
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  d0startx = midx-32 

  d0stopx = midx+32 

  y1 = input('starty index?') 

  y2 = input('stopy index?') 

  z1 = input('startz index?') 

  z2 = input('stopz index?') 

  d0starty = int(y1) 

  d0stopy = int(y2) 

  d0startz = int(z1) 

  d0stopz = int(z2) 

  d0startxcoord = d0resx[d0startx] 

  d0stopxcoord = d0resx[d0stopx] 

  d0startycoord = d0resy[d0starty] 

  d0stopycoord = d0resy[d0stopy] 

  d0startzcoord = d0resz[d0startz] 

  d0stopzcoord = d0resz[d0stopz] 

  d0xcrop = d0resx[d0startx:d0stopx] 

  d0ycrop = d0resy[d0starty:d0stopy] 

  d0zcrop = d0resz[d0startz:d0stopz] 

  d0crop = d0res[d0startx:d0stopx, d0starty:d0stopy, d0startz:d0stopz] 

 

  #crop surfaces and remaining dose maps based on coordinates from sim dos

e crop 

  s0crop = cropSurface(s0res, s0resx, s0resy, s0resz, d0startxcoord, d0sto

pxcoord, d0startycoord, d0stopycoord, d0startzcoord, d0stopzcoord, desres,

 'surface') 

  s1crop = cropSurface(s1res, s1xcshifted, s1ycshifted, s1zcshifted, d0sta

rtxcoord, d0stopxcoord, d0startycoord, d0stopycoord, d0startzcoord, d0stop

zcoord, desres, 'surface') 

  s2crop = cropSurface(s2res, s2xcshifted, s2ycshifted, s2zcshifted, d0sta

rtxcoord, d0stopxcoord, d0startycoord, d0stopycoord, d0startzcoord, d0stop

zcoord, desres, 'surface') 

  s3crop = cropSurface(s3res, s3xcshifted, s3ycshifted, s3zcshifted, d0sta

rtxcoord, d0stopxcoord, d0startycoord, d0stopycoord, d0startzcoord, d0stop

zcoord, desres, 'surface') 

   

 

  d1crop = cropSurface(d1res, d1xcshifted, d1ycshifted, d1zcshifted, d0sta

rtxcoord, d0stopxcoord, d0startycoord, d0stopycoord, d0startzcoord, d0stop

zcoord, desres, 'dose') 

  d2crop = cropSurface(d2res, d2xcshifted, d2ycshifted, d2zcshifted, d0sta

rtxcoord, d0stopxcoord, d0startycoord, d0stopycoord, d0startzcoord, d0stop

zcoord, desres, 'dose') 
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  d3crop = cropSurface(d3res, d3xcshifted, d3ycshifted, d3zcshifted, d0sta

rtxcoord, d0stopxcoord, d0startycoord, d0stopycoord, d0startzcoord, d0stop

zcoord, desres, 'dose') 

 

  #write to nrrd file 

  print(s0crop.shape, s1crop.shape, s2crop.shape, s3crop.shape) 

  print(d0crop.shape, d1crop.shape, d2crop.shape, d3crop.shape) 

  nrrd.write(surf0nrrd,s0crop) 

  nrrd.write(surf1nrrd,s1crop) 

  nrrd.write(surf2nrrd,s2crop) 

  nrrd.write(surf3nrrd,s3crop) 

 

  nrrd.write(dose0nrrd,d0crop) 

  nrrd.write(dose1nrrd,d1crop) 

  nrrd.write(dose2nrrd,d2crop) 

  nrrd.write(dose3nrrd,d3crop) 

 

  return 

 

The following code converts OBJ files to binary masks. 

def convertOBJ(surface): 

  #import surface 

  surf = pywavefront.Wavefront(surface) 

  #put vertices into a numpy array 

  v = np.array(surf.vertices) 

  #see xv below for explanation 

  zv = np.unique(v, axis = 0) 

  zv = zv[:, 0] 

  #print(np.unique(zv)) 

  diffz = np.round_(zv[1:]-zv[0:-1], decimals = 0) 

  diffz = max(diffz) 

 

  #switch x and y? 

  v[:,[2,0]] = v[:,[0,2]] 

  #do the same for y as below with x 

  yv = np.unique(v, axis = 0) 

  yv = yv[:,0] 

  yv = np.unique(yv, axis=0) 

  diffy = np.round_(yv[1:]-yv[0:-1], decimals = 0) 

  if max(diffy) == 0: 

    diffy = 1 

  else: 

    diffy = min(diffy[diffy != 0]) 
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  #switch axes again 

  v[:,[1,0]] = v[:,[0,1]] 

  #sorts v according to unique elements of x? 

  xv = np.unique(v, axis = 0) 

 

  #take just x elements for array/vector 

  xv = xv[:,0] 

  #round the difference between each element in x and the previous element

 in x 

  diffx = np.round_(xv[1:]-xv[0:-1], decimals = 0) 

  #find the minimum non-zero difference? 

  diffx = min(diffx[diffx != 0]) 

 

  #get max x, y, z, values 

  xmax = max(v[:,0]) 

  xmin = min(v[:,0]) 

  ymax = max(v[:,1]) 

  ymin = min(v[:,1]) 

  zmax = max(v[:,2]) 

  zmin = min(v[:,2]) 

  #get range of x,y,z values 

  xspan = (xmax-xmin)/diffx 

  xspan = xspan.astype(int) 

  yspan = (ymax-ymin)/diffy 

  yspan = yspan.astype(int) 

  zspan = (zmax-zmin)/diffz 

  zspan = zspan.astype(int) 

 

  #create regular coordinate grid 

  x_coords = np.arange(xmin, xmax, diffx) 

  y_coords = np.arange(ymin, ymax, diffy) 

  z_coords = np.arange(zmin, zmax+1, diffz) 

  pixel_data = np.ones((len(x_coords), len(y_coords), len(z_coords))) 

  coords = {'x': x_coords, 'y': y_coords, 'z': z_coords} 

  coordGrid = xr.DataArray(pixel_data, dims=('x','y','z'), coords = coords

) 

  #print(coords) 

 

  

  vlist = v.tolist() 

 

  #generate mask 

  vol = create_mask2(coordGrid, vlist); 
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  return vol 

 

The following code creates binary masks from a list of coordinates. 

def create_mask2(array, contour_list): 

    'Takes in an Array we want to mask, and a contour' 

    'coordinate nested list.' 

    #surf = pywavefront.Wavefront(obj) 

    #creates array of zeros with same size and shape as array 

    #mask_array = xr.zeros_like(array) 

    slice_dict = {} 

    mask_dict = {} 

    z = 0 

 

    #automatic iteration through contour_list. i is iterating value (0, 1,

 2...), coord is the value at that index? 

    #puts x,y coordinates into slice_dict (essentially reorganizes coordin

ates) 

    for i, coord in enumerate(contour_list): 

        'Each list inside contour_list is a list of (x,y,z)' 

        'coordinates defining the contour on each slice. For each' 

        'sequence, the z coord is constant. This for-loop builds' 

        'a numpy array for each series of (x,y) coordinates and' 

        'stores them in a dict where the corresponding key is the' 

        'z-coordinate.' 

        # 

        x_start = float(array.x[0].values) 

        y_start = float(array.y[0].values) 

        spacing = np.round_(float(array.x[1].values) - float(array.x[0].va

lues), decimals = 1) 

        resized = np.resize(coord, (int(np.size(coord) / 3), 3)) 

        #print(resized) 

        #print(resized[:,:2]) 

        rtstruct_pixelArray = (resized[:,:2] - [x_start, y_start]) / spaci

ng 

        rtstruct_pixelArray = np.rint(rtstruct_pixelArray) 

        #print(rtstruct_pixelArray[0]) 

        #print(coord[2]) 

        #print(type(rtstruct_pixelArray)) 

        #print(type(coord[2])) 

        if coord[2] != z: 

          slice_dict[coord[2]] = rtstruct_pixelArray 

          #print(z) 

        else: 
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          #print(slice_dict[coord[2]]) 

          prev = slice_dict[coord[2]] 

          #print(prev) 

          #print(rtstruct_pixelArray) 

          new = np.append(prev, rtstruct_pixelArray, axis = 0) 

          #print(new) 

          slice_dict[coord[2]] = new 

          #breakpoint() 

        #print(slice_dict) 

        z = coord[2] 

         

    #print(slice_dict.keys()) 

 

    for z_slc in slice_dict.keys(): 

        'For each z-slice, we need to draw a polygon defined by' 

        'the points we pulled above. We can do this with ImageDraw.' 

        polygon = slice_dict[z_slc].flatten().tolist() 

        #print(polygon) 

        img = Image.new('1', (array.shape[0], array.shape[1])) 

        #matplotlib.pyplot.imshow(img) 

        ImageDraw.Draw(img).polygon(polygon, outline=1, fill=1) 

        #matplotlib.pyplot.imshow(img) 

        #breakpoint() 

        mask = np.array(img) 

        #print(z_slc, np.sum(mask)) 

        mask_dict[z_slc] = mask 

 

    i = -1 

    mask_vol = xr.zeros_like(array) 

    mask_dict = dict(sorted(mask_dict.items())) 

    #print(mask_dict.keys()) 

    #breakpoint() 

    for z_slc in mask_dict.keys(): 

        'We can reassign values in mask_array with indexing.' 

        'We rely on sel to give us the slice we need. This works' 

        'because xarray does not copy the data with sel.' 

        i += 1 

        if i > mask_vol.shape[2]-1: 

          break 

        #print(i) 

        #mask_slice = mask_array.sel(z=z_slc, method=None) 

        #print(mask_slice) 

        #print(mask_dict) 

        a = np.swapaxes(mask_dict[z_slc], 0, 1) 

        #mask_slice[:,:] = mask_dict[z_slc] 
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        mask_slice = a 

        mask_vol[:,:,i] = mask_slice 

        #print(mask_slice) 

 

    #final = mask_vol[:,:,0:i] 

    #print(mask_vol.coords) 

    #print(mask_vol.shape) 

 

    return mask_vol 

 

The following code converts radiation dose files to numpy arrays. 

def importDose(dosePath): 

  #imports dose from rd file and returns xarray as xdose and separated num

py array of dose map and coordinates 

  ref = pydicom.read_file(dosePath) 

  coords, dose = pymedphys.dicom.zyx_and_dose_from_dataset(ref) 

  new_dose = np.swapaxes(dose, 0,2) 

 

  xcoords = np.around(np.asarray(coords[2]), decimals = 1) 

  ycoords = np.around(np.asarray(coords[1]), decimals = 1) 

  zcoords = np.around(np.asarray(coords[0]), decimals = 1) 

  dosecoords = {'x': xcoords, 'y': ycoords, 'z': zcoords} 

 

  xdose = xr.DataArray(new_dose, dims=('x','y','z'), coords = dosecoords) 

 

  return xdose, new_dose, xcoords, ycoords, zcoords 

 

The following code separates coordinates and data from Python data arrays. 

def xyz_and_numpy_from_xarray(xarray): 

  #separates numpy array and coordinates out of xarray 

  xcoord = xr.DataArray.to_numpy(xarray.coords['x']) 

  ycoord = xr.DataArray.to_numpy(xarray.coords['y']) 

  zcoord = xr.DataArray.to_numpy(xarray.coords['z']) 

  array = xr.DataArray.to_numpy(xarray) 

  return array, xcoord, ycoord, zcoord 

The following code obtains the resolution of coordinate lists. 

def getxyzRes(xcoord, ycoord, zcoord): 

  #gets resolution of x,y,z coordinates 

  xres = round((xcoord[-1] - xcoord[0])/len(xcoord), 1) 

  yres = round((ycoord[-1] - ycoord[0])/len(ycoord), 1) 

  zres = round((zcoord[-1] - zcoord[0])/len(zcoord), 0) 

  return xres, yres, zres 



142 
 

The following code resamples the binary surface mask. 

def resampSurface(surfArray, newx, newy, newz, xcoords, ycoords, zcoords, 

dzres): 

  #resamples the array and coordinates to dzres 

  resampsxyVol = np.zeros((newx, newy, len(zcoords))) 

  for z in range(surfArray.shape[2]): 

    resampsxyVol[:,:,z] = cv2.resize(surfArray[:,:,z], (newy, newx), inter

polation=cv2.INTER_NEAREST) 

  resampsVol = np.zeros((newx, newy, newz)) 

  if dzres ==3: 

    for z in range(surfArray.shape[2]): 

      resampsVol[:,:,2*z] = resampsxyVol[:,:,z] 

      resampsVol[:,:,2*z+1] = resampsxyVol[:,:,z] 

    rszcoords = np.around(np.arange(zcoords[0],zcoords[-

1]+2*dzres,dzres), decimals=1) 

  elif dzres ==2: 

    for z in range(surfArray.shape[2]): 

      resampsVol[:,:,3*z] = resampsxyVol[:,:,z] 

      resampsVol[:,:,3*z+1] = resampsxyVol[:,:,z] 

      resampsVol[:,:,3*z+2] = resampsxyVol[:,:,z] 

    rszcoords = np.around(np.arange(zcoords[0],zcoords[-

1]+3*dzres,dzres), decimals=1) 

  rsxcoords = np.around(np.arange(xcoords[0],xcoords[-

1]+dzres,dzres), decimals=1) 

  rsycoords = np.around(np.arange(ycoords[0],ycoords[-

1]+dzres,dzres), decimals=1) 

   

  return resampsVol, rsxcoords, rsycoords, rszcoords 

The following code finds the superior extent of the anatomy in a surface array, if the top of the 

skull is included in the array. 

def findScalp(array, xcoords, ycoords, zcoords): 

  #finds the scalp in a surface array if the top of the surface includes t

he scalp 

  for z in reversed(range(array.shape[2])): 

    if np.sum(array[:,:,z]) > 0: 

      nz = np.nonzero(array[:,:,z]) 

      x1 = min(nz[0]) 

      x2 = max(nz[0]) 

      y1 = min(nz[1]) 

      y2 = max(nz[1]) 

      zin = z 

      break 

  startx = xcoords[x1] 

  stopx = xcoords[x2] 
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  starty = ycoords[y1] 

  stopy = ycoords[y2] 

  zc = zcoords[zin] 

  return startx, stopx, starty, stopy, zc 

The following code matches two surface arrays if the top of the skull is not included in the 

surface array. 

def findScalp2(array0, array1, x0coords, y0coords, z0coords, sx1coords, sy

1coords, sz1coords, dx1coords, dy1coords, dz1coords): 

  #shifts coordinates for a given surface (1,2,3) to align with surface 0 

by trying to find slices where the size of the head matches 

  #print(np.count_nonzero(array1[:,:,-1])) 

  nz = np.nonzero(array1[:,:,-4]) 

  x1 = min(nz[0]) 

  x2 = max(nz[0]) 

  y1 = min(nz[1]) 

  y2 = max(nz[1]) 

  width1 = x2-x1 

  #print(width1) 

  startx1 = sx1coords[x1] 

  stopx1 = sx1coords[x2] 

  starty1 = sy1coords[y1] 

  stopy1 = sy1coords[y2] 

  zc1 = sz1coords[-1] 

  for z in reversed(range(array0.shape[2])): 

    nz0 = np.nonzero(array0[:,:,z]) 

    width0 = max(nz0[0])-min(nz0[0]) 

    if width0 > width1: 

      if z == array0.shape[2]-1: 

        zin = z 

        x01 = min(nz0[0]) 

        x02 = max(nz0[0]) 

        y01 = min(nz0[1]) 

        y02 = max(nz0[1]) 

      #print(np.nonzero(array0[:,:,z])) 

      #print(np.nonzero(array0[:,:,z+1])) 

      else: 

        nzprev = np.nonzero(array0[:,:,z+1]) 

        width0prev = max(nzprev[0])-min(nzprev[0]) 

        #print(z) 

        if min(abs(width0-width1), abs(width0prev-width1)) == abs(width0-

width1): 

          zin = z 

          x01 = min(nz0[0]) 

          x02 = max(nz0[0]) 
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          y01 = min(nz0[1]) 

          y02 = max(nz0[1]) 

        else: 

          zin = z+1 

          x01 = min(nzprev[0]) 

          x02 = max(nzprev[0]) 

          y01 = min(nzprev[1]) 

          y02 = max(nzprev[1]) 

      break 

  startx0 = x0coords[x01] 

  stopx0 = x0coords[x02] 

  starty0 = y0coords[y01] 

  stopy0 = y0coords[y02] 

  zc0 = z0coords[zin] 

  xshift = ((startx0-startx1)+(stopx0-stopx1))/2 

  yshift = ((starty0-starty1)+(stopy0-stopy1))/2 

  zshift = zc0-zc1 

  shifteddxc = dx1coords + xshift 

  shifteddyc = dy1coords + yshift 

  shifteddzc = dz1coords + zshift 

  shiftedsxc = sx1coords + xshift 

  shiftedsyc = sy1coords + yshift 

  shiftedszc = sz1coords + zshift 

 

  return shiftedsxc, shiftedsyc, shiftedszc, shifteddxc, shifteddyc, shift

eddzc, xshift, yshift, zshift 

The following code shifts surface and dose coordinates to ensure alignment. 

def shiftCoords(s0x1, s0x2, s0y1, s0y2, s0z, s1x1, s1x2, s1y1, s1y2, s1z, 

sxcoords, sycoords, szcoords, dxcoords, dycoords, dzcoords): 

  #shifts coordinates if the top of the head is included in the scan to al

ign the surface and dose with the sim 

  xshift = ((s0x1-s1x1)+(s0x2-s1x2))/2 

  yshift = ((s0y1-s1y1)+(s0y2-s1y2))/2 

  zshift = s0z-s1z 

  shifteddxc = dxcoords + xshift 

  shifteddyc = dycoords + yshift 

  shifteddzc = dzcoords + zshift 

  shiftedsxc = sxcoords + xshift 

  shiftedsyc = sycoords + yshift 

  shiftedszc = szcoords + zshift 

  return shiftedsxc, shiftedsyc, shiftedszc, shifteddxc, shifteddyc, shift

eddzc, xshift, yshift, zshift 
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The following code crops the surface and dose arrays 

def cropSurface(surfArray, xcoords, ycoords, zcoords, startxcoord, stopxco

ord, startycoord, stopycoord, startzcoord, stopzcoord, dzres, type): 

  #crops surface (or dose) based on matching coordinates to the dose crop 

  xstartdiff = np.absolute(xcoords-startxcoord) 

  surfxstartindex = xstartdiff.argmin() 

  xstopdiff = np.absolute(xcoords-stopxcoord) 

  surfxstopindex = xstopdiff.argmin() 

  ystartdiff = np.absolute(ycoords-startycoord) 

  surfystartindex = ystartdiff.argmin() 

  if stopycoord > ycoords[-1] +2.5: 

    ystopdiff = np.absolute(stopycoord-ycoords[-1]) 

    surfystopindex = int(round(ystopdiff/dzres, 0) + len(ycoords)-1) 

  else: 

    ystopdiff = np.absolute(ycoords - stopycoord) 

    surfystopindex = ystopdiff.argmin() 

  zstartdiff = np.absolute(zcoords-startzcoord) 

  surfzstartindex = zstartdiff.argmin() 

  zstopdiff = np.absolute(zcoords-stopzcoord) 

  surfzstopindex = zstopdiff.argmin() 

  #print(surfxstartindex, surfxstopindex, surfystartindex, surfystopindex,

 surfzstartindex, surfzstopindex) 

  if surfxstopindex - surfxstartindex < 64: 

    if surfxstopindex - surfxstartindex == 63: 

      if surfxstartindex == 0: 

        surfxstopindex += 1 

      elif abs(xcoords[surfxstartindex]-xcoords[surfxstartindex-

1]) < abs(xcoords[surfxstopindex]+xcoords[surfxstopindex+1]): 

        surfxstartindex = surfxstartindex - 1 

      elif abs(xcoords[surfxstartindex]-xcoords[surfxstartindex-

1]) > abs(xcoords[surfxstopindex]+xcoords[surfxstopindex+1]): 

        surfxstopindex += 1 

    elif surfxstopindex - surfxstartindex == 62 and surfxstartindex != 0: 

      surfxstartindex = surfxstartindex - 1 

      surfxstopindex = surfxstopindex + 1 

    elif surfxstopindex - surfxstartindex == 62 and surfxstartindex == 0: 

      surfxstopindex = surfxstopindex + 2 

  if surfxstopindex - surfxstartindex > 64: 

    if xstopdiff.argmin() > xstartdiff.argmin(): 

      surfxstartindex += 1 

    else: 

      surfxstopindex += -1 

 

  if surfystopindex - surfystartindex < 64: 
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    if surfystopindex - surfystartindex == 63: 

      if surfystopindex > len(ycoords)-1: 

        surfystopindex += 1 

      else: 

        if surfystartindex == 0: 

          surfystopindex += 1 

        elif abs(ycoords[surfystartindex]-ycoords[surfystartindex-

1]) < abs(ycoords[surfystopindex]+ycoords[surfystopindex+1]): 

          surfystartindex = surfystartindex - 1 

        elif abs(ycoords[surfystartindex]-ycoords[surfystartindex-

1]) > abs(ycoords[surfystopindex]+ycoords[surfystopindex+1]): 

          surfystopindex += 1 

    elif surfystopindex - surfystartindex == 62 and surfystartindex != 0: 

      surfystartindex = surfystartindex - 1 

      surfystopindex = surfystopindex + 1 

    elif surfystopindex - surfystartindex == 62 and surfystartindex == 0: 

      surfystopindex = surfystopindex + 2 

    elif surfystopindex - surfystartindex == 61 and surfystartindex != 0: 

      surfystartindex = surfystartindex - 1 

      surfystopindex = surfystopindex + 2 

    elif surfystopindex - surfystartindex == 61 and surfystartindex == 0: 

      surfystopindex = surfystopindex + 3 

  if surfystopindex - surfystartindex > 64: 

    if ystopdiff.argmin() > ystartdiff.argmin(): 

      surfystartindex += 1 

    else: 

      surfystopindex = surfystopindex - 1 

   

  if surfzstopindex - surfzstartindex < 64: 

    if surfzstopindex - surfzstartindex == 63: 

      if surfzstartindex == 0: 

        surfzstopindex += 1 

      elif abs(zcoords[surfzstartindex]-zcoords[surfzstartindex-

1]) < abs(zcoords[surfzstopindex]+zcoords[surfzstopindex+1]): 

        surfzstartindex = surfzstartindex - 1 

      elif abs(zcoords[surfzstartindex]-zcoords[surfzstartindex-

1]) > abs(zcoords[surfzstopindex]+zcoords[surfzstopindex+1]): 

        surfzstopindex += 1 

    elif surfzstopindex - surfzstartindex == 62 and surfzstartindex != 0: 

      surfzstartindex = surfzstartindex - 1 

      surfzstopindex = surfzstopindex + 1 

    elif surfzstopindex - surfzstartindex == 62 and surfzstartindex == 0: 

      surfzstopindex = surfzstopindex + 2 

  elif surfzstopindex - surfzstartindex > 64: 

    if zstopdiff.argmin() > zstartdiff.argmin(): 
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      surfzstartindex += 1 

    else: 

      surfzstopindex = surfzstopindex - 1 

 

  if type == 'surface': 

    surfcrop = np.zeros((surfxstopindex-surfxstartindex, surfystopindex-

surfystartindex, surfzstopindex-surfzstartindex)) 

    #print(surfArray.shape) 

    for y in range(surfArray.shape[1]-surfystartindex): 

      if y == surfcrop.shape[1]: 

        break 

      else: 

        surfcrop[:,y,:] = surfArray[surfxstartindex:surfxstopindex, surfys

tartindex+y, surfzstartindex:surfzstopindex] 

  else: 

    surfcrop = surfArray[surfxstartindex:surfxstopindex, surfystartindex:s

urfystopindex, surfzstartindex:surfzstopindex] 

   

  return surfcrop, surfxstartindex, surfystartindex, surfzstartindex 

 

B.3.2 Neural Network 

The following code prepares the data for input to the network. 

class surfaceDoseData(keras.utils.Sequence): 

  def __init__(self, batch_size, img_size, input_img_paths, target_img_pat

hs): 

    self.batch_size = batch_size 

    self.img_size = img_size 

    self.input_img_paths = input_img_paths 

    self.target_img_paths = target_img_paths 

   

  def __len__(self): 

    return len(self.target_img_paths) // self.batch_size 

 

  def __getitem__(self, idx): 

    i = idx * self.batch_size 

    batch_input_img_paths = self.input_img_paths[i:i+self.batch_size] 

    batch_target_img_paths = self.target_img_paths[i:i+self.batch_size] 

    x = np.zeros((self.batch_size, )+ self.img_size + (3,)) 

    for j, path in enumerate(batch_input_img_paths): 

      #print(path) 

      surface0, header = nrrd.read('/content/drive/MyDrive/Colab/HNSI/Cent

erCrop/Surface/' + '0/' + path.split('/')[1] + '.nrrd') 

      surfacex, header = nrrd.read('/content/drive/MyDrive/Colab/HNSI/Cent

erCrop/Surface/' + path + '.nrrd') 
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      dose0, header = nrrd.read('/content/drive/MyDrive/Colab/HNSI/CenterC

rop/Dose/' + '0/' + path.split('/')[1] + '.nrrd') 

 

      dose0norm = dose0/100 

       

 

      x[j] = np.stack((surface0, surfacex, dose0norm), axis=-1) 

    y = np.zeros((self.batch_size,) + self.img_size) 

    for j, path in enumerate(batch_target_img_paths): 

      dosex, header = nrrd.read('/content/drive/MyDrive/Colab/HNSI/CenterC

rop/Dose/' + path + '.nrrd') 

 

      dosexnorm = dosex/100 

       

 

      y[j] = dosexnorm 

     

    return x, y 

The following code is the network. 

def unetconv1(sz = (64, 64, 64, 3)): 

  x = tf.keras.Input(sz) 

  inputs = x 

  ### [First half of the network: downsampling inputs] ### 

  layers = [] 

  # Entry block 

  x = tf.keras.layers.Conv3D(16, (3, 3, 3), padding = 'same', activation='

relu', input_shape=(64, 64, 64, 3))(x) 

  x = tf.keras.layers.Conv3D(16, (3, 3, 3), padding = 'same', activation='

relu')(x) 

  layers.append(x) 

  #print(x.shape) 

  x = tf.keras.layers.MaxPooling3D()(x) 

   

 

  # Blocks 1, 2, 3 are identical apart from the feature depth. 

  for filters in [32, 64, 128]: 

    x = tf.keras.layers.Conv3D(filters, (3, 3, 3), padding = 'same', activ

ation='relu')(x) 

 

    x = tf.keras.layers.Conv3D(filters, (3, 3, 3), padding = 'same', activ

ation='relu')(x) 

 

    layers.append(x) 

    print(x.shape) 
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    x = tf.keras.layers.MaxPooling3D()(x) 

 

  j = len(layers) - 1 

  x = tf.keras.layers.Conv3D(256, (3, 3, 3), padding = 'same', activation=

'relu')(x) 

  x = tf.keras.layers.Conv3D(256, (3, 3, 3), padding = 'same', activation=

'relu')(x) 

  x = tf.keras.layers.Conv3D(256, (3, 3, 3), padding = 'same', activation=

'relu')(x) 

  x = tf.keras.layers.Conv3D(256, (3, 3, 3), padding = 'same', activation=

'relu')(x) 

  #print(x.shape) 

  x = tf.keras.layers.Conv3DTranspose(128, 2, strides = 2, activation='rel

u')(x) 

  #print(x.shape) 

  x = tf.keras.layers.Concatenate(axis=4)([x, layers[j]]) 

  #print('after 1 concat', x.shape) 

  j = j -1  

  ### [Second half of the network: upsampling inputs] ### 

 

  for filters in [128, 64, 32]: 

    x = tf.keras.layers.Conv3D(filters, (3, 3, 3), padding = 'same', activ

ation='relu')(x) 

    x = tf.keras.layers.Conv3D(filters, (3, 3, 3), padding = 'same', activ

ation='relu')(x) 

    x = tf.keras.layers.Conv3DTranspose(filters/2, 2, strides = 2, activat

ion='relu')(x) 

    #print(x.shape) 

    x = tf.keras.layers.Concatenate(axis=4)([x, layers[j]]) 

    #print(x.shape) 

    j = j-1 

   

  x = tf.keras.layers.Conv3D(16, (3, 3, 3), padding = 'same', activation='

relu')(x) 

  x = tf.keras.layers.Conv3D(16, (3, 3, 3), padding = 'same', activation='

relu')(x) 

  outputs = tf.keras.layers.Conv3D(1, (1,1,1), padding = 'same', activatio

n='relu')(x) 

  print(outputs.shape) 

 

  # Add a per-pixel classification layer 

  #outputs = layers.Conv2D(num_classes, 3, activation="softmax", padding="

same")(x) 

 

  # Define the model 
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  model = tf.keras.Model(inputs, outputs) 

   

  return model 

 

B.3.3 Dose Prediction Analysis 

The following script was used for evaluation of the network. 

truearray, headert = nrrd.read('/content/drive/MyDrive/Colab/HNSI/CenterCr

op/Dose/3/1.nrrd') 

predarray, headerp = nrrd.read('/content/drive/MyDrive/Colab/HNSI/AllTrain

Predictions/3-1/Pt1CBCT3Pred.nrrd') 

 

rx = 69.96 

predarray = predarray*100 

maxpred = np.amax(predarray) 

maxtrue = np.amax(truearray) 

print('True max is', maxtrue, 'Gy. Predicted max is', maxpred, 'Gy.') 

truearray001 = truearray*(truearray >= 0.001) 

predarray001 = predarray*(predarray >= 0.001) 

meanpred = np.sum(predarray)/np.count_nonzero(predarray) 

meantrue = np.sum(truearray001)/np.count_nonzero(truearray >= 0.001) 

#meanpred = np.mean(predarray) 

#meantrue = np.mean(truearray) 

print('True mean is', meantrue, 'Gy. Predicted mean is', meanpred, 'Gy.') 

rmse = np.sqrt(((predarray - truearray)**2).mean()) 

mae = np.mean(np.abs(truearray - predarray)) 

print('RMSE is', rmse, '. MAE is', mae) 

 

#V100 DSC 

v100true = np.copy(truearray) 

v100pred = np.copy(predarray) 

 

v100true[v100true < rx] = 0 

v100true[v100true >= rx] = 1 

v100pred[v100pred < rx] = 0 

v100pred[v100pred >= rx] = 1 

 

v100true.astype(bool) 

v100pred.astype(bool) 

intersection = np.logical_and(v100true, v100pred) 

dsc100 = 2. * intersection.sum() / (v100true.sum() + v100pred.sum()) 

print('The DSC between the true V100 and the predicted V100 is', dsc100) 

vol100true = np.count_nonzero(v100true)*27/1000 

vol100pred = np.count_nonzero(v100pred)*27/1000 
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print('The volume of the true V100 is', vol100true, 'cc. The volume of the

 predicted V100 is', vol100pred, 'cc.') 

 

#V95 DSC 

v95true = np.copy(truearray) 

v95pred = np.copy(predarray) 

thresh = 0.95*rx 

 

v95true[v95true < thresh] = 0 

v95true[v95true >= thresh] = 1 

v95pred[v95pred < thresh] = 0 

v95pred[v95pred >= thresh] = 1 

 

v95true.astype(bool) 

v95pred.astype(bool) 

intersection = np.logical_and(v95true, v95pred) 

dsc95 = 2. * intersection.sum() / (v95true.sum() + v95pred.sum()) 

print('The DSC between the true V95 and the predicted V95 is', dsc95) 

 

#V90 DSC 

v90true = np.copy(truearray) 

v90pred = np.copy(predarray) 

thresh = 0.90*rx 

 

v90true[v90true < thresh] = 0 

v90true[v90true >= thresh] = 1 

v90pred[v90pred < thresh] = 0 

v90pred[v90pred >= thresh] = 1 

 

v90true.astype(bool) 

v90pred.astype(bool) 

intersection = np.logical_and(v90true, v90pred) 

dsc90 = 2. * intersection.sum() / (v90true.sum() + v90pred.sum()) 

print('The DSC between the true V90 and the predicted V90 is', dsc90) 

vol90true = np.count_nonzero(v90true)*27/1000 

vol90pred = np.count_nonzero(v90pred)*27/1000 

print('The volume of the true V90 is', vol90true, 'cc. The volume of the p

redicted V90 is', vol90pred, 'cc.') 

 

#V70 DSC 

v70true = np.copy(truearray) 

v70pred = np.copy(predarray) 

thresh = 0.70*rx 

 

v70true[v70true < thresh] = 0 
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v70true[v70true >= thresh] = 1 

v70pred[v70pred < thresh] = 0 

v70pred[v70pred >= thresh] = 1 

 

v70true.astype(bool) 

v70pred.astype(bool) 

intersection = np.logical_and(v70true, v70pred) 

dsc70 = 2. * intersection.sum() / (v70true.sum() + v70pred.sum()) 

print('The DSC between the true V70 and the predicted V70 is', dsc70) 

 

#V50 DSC 

v50true = np.copy(truearray) 

v50pred = np.copy(predarray) 

thresh = 0.50*rx 

 

v50true[v50true < thresh] = 0 

v50true[v50true >= thresh] = 1 

v50pred[v50pred < thresh] = 0 

v50pred[v50pred >= thresh] = 1 

 

v50true.astype(bool) 

v50pred.astype(bool) 

intersection = np.logical_and(v50true, v50pred) 

dsc50 = 2. * intersection.sum() / (v50true.sum() + v50pred.sum()) 

print('The DSC between the true V50 and the predicted V50 is', dsc50) 

 

#V20 DSC 

v20true = np.copy(truearray) 

v20pred = np.copy(predarray) 

thresh = 0.20*rx 

 

v20true[v20true < thresh] = 0 

v20true[v20true >= thresh] = 1 

v20pred[v20pred < thresh] = 0 

v20pred[v20pred >= thresh] = 1 

 

v20true.astype(bool) 

v20pred.astype(bool) 

intersection = np.logical_and(v20true, v20pred) 

dsc20 = 2. * intersection.sum() / (v20true.sum() + v20pred.sum()) 

print('The DSC between the true V20 and the predicted V20 is', dsc20) 

 

#V10 DSC 

v10true = np.copy(truearray) 

v10pred = np.copy(predarray) 
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thresh = 0.10*rx 

 

v10true[v10true < thresh] = 0 

v10true[v10true >= thresh] = 1 

v10pred[v10pred < thresh] = 0 

v10pred[v10pred >= thresh] = 1 

 

v10true.astype(bool) 

v10pred.astype(bool) 

intersection = np.logical_and(v10true, v10pred) 

dsc10 = 2. * intersection.sum() / (v10true.sum() + v10pred.sum()) 

print('The DSC between the true V10 and the predicted V10 is', dsc10) 

 

#True V100 overlaid on predicted dose map: mean and is the max inside 

v100td = v100true*truearray 

v100pd = v100true*predarray 

v100tnonzero = np.count_nonzero(v100td) 

v100pnonzero = np.count_nonzero(v100pd) 

v100tmean = np.sum(v100td)/v100tnonzero 

v100pmean = np.sum(v100pd)/v100pnonzero 

print('The mean of the true V100 is', v100tmean, 'Gy. The mean of the pred

icted V100 is', v100pmean, 'Gy.') 

print('The predicted max is within the true V100 volume:', np.amax(v100pd)

 == maxpred) 

 

#True V95 overlaid on predicted dose map: mean 

v95td = v95true*truearray 

v95pd = v95true*predarray 

v95tnonzero = np.count_nonzero(v95td) 

v95pnonzero = np.count_nonzero(v95pd) 

v95tmean = np.sum(v95td)/v95tnonzero 

v95pmean = np.sum(v95pd)/v95pnonzero 

print('The mean of the true V95 is', v95tmean, 'Gy. The mean of the predic

ted V95 is', v95pmean, 'Gy.') 

 

#True V90 overlaid on predicted dose map: mean 

v90td = v90true*truearray 

v90pd = v90true*predarray 

v90tnonzero = np.count_nonzero(v90td) 

v90pnonzero = np.count_nonzero(v90pd) 

v90tmean = np.sum(v90td)/v90tnonzero 

v90pmean = np.sum(v90pd)/v90pnonzero 

print('The mean of the true V90 is', v90tmean, 'Gy. The mean of the predic

ted V90 is', v90pmean, 'Gy.') 
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#True V70 overlaid on predicted dose map: mean 

v70td = v70true*truearray 

v70pd = v70true*predarray 

v70tnonzero = np.count_nonzero(v70td) 

v70pnonzero = np.count_nonzero(v70pd) 

v70tmean = np.sum(v70td)/v70tnonzero 

v70pmean = np.sum(v70pd)/v70pnonzero 

print('The mean of the true V70 is', v70tmean, 'Gy. The mean of the predic

ted V70 is', v70pmean, 'Gy.') 

 

bins = range(1, math.ceil(maxtrue)) 

truehist100 = np.zeros(math.ceil(maxtrue)) 

predhist100 = np.zeros(math.ceil(maxtrue)) 

truehist95 = np.zeros(math.ceil(maxtrue)) 

predhist95 = np.zeros(math.ceil(maxtrue)) 

truehist90 = np.zeros(math.ceil(maxtrue)) 

predhist90 = np.zeros(math.ceil(maxtrue)) 

truehist70 = np.zeros(math.ceil(maxtrue)) 

predhist70 = np.zeros(math.ceil(maxtrue)) 

for i in bins: 

  truehist100[i] = np.count_nonzero(v100td >= i)/np.count_nonzero(v100td) 

  predhist100[i] = np.count_nonzero(v100pd >= i)/np.count_nonzero(v100pd) 

  truehist95[i] = np.count_nonzero(v95td >= i)/np.count_nonzero(v95td) 

  predhist95[i] = np.count_nonzero(v95pd >= i)/np.count_nonzero(v95pd) 

  truehist90[i] = np.count_nonzero(v90td >= i)/np.count_nonzero(v90td) 

  predhist90[i] = np.count_nonzero(v90pd >= i)/np.count_nonzero(v90pd) 

  truehist70[i] = np.count_nonzero(v70td >= i)/np.count_nonzero(v70td) 

  predhist70[i] = np.count_nonzero(v70pd >= i)/np.count_nonzero(v70pd) 

 

plt.plot(truehist100, color = 'darkred', label = 'True V100') 

plt.plot(predhist100, color = 'red', linestyle = 'dashed', label = 'Predic

ted V100') 

plt.plot(truehist95, color = 'darkgoldenrod', label = 'True V95') 

plt.plot(predhist95, color = 'gold', linestyle = 'dashed', label = 'Predic

ted V95') 

plt.plot(truehist90, color = 'darkgreen', label = 'True V90') 

plt.plot(predhist90, color = 'lime', linestyle = 'dashed', label = 'Predic

ted V90') 

plt.plot(truehist70, color = 'navy', label = 'True V70') 

plt.plot(predhist70, color = 'cornflowerblue', linestyle = 'dashed', label

 = 'Predicted V70') 

 

plt.xlim(60, 85) 

plt.title('DVH for Various Dose-Volumes') 
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plt.xlabel('Absolute Dose (Gy)') 

plt.ylabel('Volume (%)') 

plt.legend(loc = 'best') 

plt.savefig('/content/drive/MyDrive/Colab/HNSI/AllTrainPredictions/3-

1/DoseVolDVHTail.png', dpi = 300, format = 'png') 

#plt.show() 

#plt.imshow(predarray[:,:,30], cmap = 'jet', vmin=0, vmax=78) 

#plt.colorbar() 

#plt.imshow(v90pred[:,:,40], cmap = 'gray') 

#plt.savefig('/content/drive/MyDrive/Colab/HNSI/AllTrainPredictions/3-

46/PredDoseMap.png', dpi = 300, format = 'png') 

#plt.imshow(predarray[:,:,30]-truearray[:,:,30], cmap = 'bwr', vmin = -

25, vmax = 25) 

#plt.colorbar() 

#plt.savefig('/content/drive/MyDrive/Colab/HNSI/AllTrainPredictions/3-

46/DoseDiff.png', dpi = 300, format = 'png') 
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Appendix C   MIM Workflow for DIR 
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Abstract 

 

Background: Growing in popularity, adaptive radiotherapy therapy (ART) has the potential to 

improve outcomes and reduce side effects for patients. However, determining if/when a patient 

may benefit from ART remains difficult. Deformable image registration (DIR) between the 

planning CT and daily CBCT images can enable estimation of delivered dose and aid in this 

decision-making process. Yet, this task is complicated by inaccurate Hounsfield Units (HUs) and 

limited field-of-view (FOV) of CBCT. 

Purpose: This work developed and validated an open-source DIR algorithm for CT-to-CBCT 

registration which addressed the primary challenges facing this registration problem. 

Methods: Twenty-five retrospectively selected head and neck (HN) patients, exhibiting various 

levels of weight loss during their treatment course, were chosen for the study. Several important 

CBCT preprocessing steps aided in overcoming the key challenges for the registration. Fifteen 

patients were used to develop the algorithm based on the open-source software Elastix. 

Parameterization of the algorithm relied on qualitative inspection of registrations. The remaining 

ten patients were used for validation of the algorithm which was based on Dice similarity 

coefficient (DSC), Jaccard index (JI), and Hausdorff distance (HD) for mandible, spinal cord, 

and parotids. 

Results: Across all ten validation patients, the DSC was 0.78 and 0.71 for bony anatomy and 

soft tissue, respectively. The JI was 0.65 and 0.56, and the HD was 4.4mm and 3.6mm, for bony 

anatomy and soft tissue, respectively.  

Conclusions: The developed method resulted in sufficient accuracy for the task of delivered 

dose calculation to inform ART decision making. 
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Introduction 

Image guidance is a key tool in radiotherapy, improving geometric accuracy and allowing 

for advanced treatment techniques, such as adaptive radiotherapy (ART).  

In head and neck (HN) treatments in particular, ART has been explored to address the 

significant anatomic changes commonly encountered over the course of treatment. Apart from 

intended tumor volume shrinkage, studies have reported marked reduction in parotid glands 

size1,2, and overall weight loss from side effects like xerostomia, dysphagia, and loss of taste3. 

These anatomic changes have been linked to differences between delivered and planned doses, 

including increased hot spots, reduced target coverage, and increased dose to organs at risk 

(OARs)4–7. This has prompted research to determine what patients benefit most from ART. Some 

studies have used pretreatment indicators as predictors, with some success8–11. One study used 

deformable image registration (DIR) between the pCT and the CBCT to recalculate the dose at 

each fraction, which led to no missed necessary replans and fewer unnecessary ones12.  Using 

DIR to deform the pCT to the CBCT is complicated, amongst other factors, by the limited CBCT 

FOV. In this study, we developed and validated a method for deforming a pCT to a CBCT 

without sacrificing the pCT field of view using an open-source DIR algorithm.  

Methods 

Patient Data 

 Fifteen HN patients with one pCT and three CBCTs each were retrospectively selected to 

develop the registration method. Patients were treated on a Truebeam Linac (Varian Medical 

Systems, Palo Alto, CA).  Only patients with anatomic changes visible on CBCT were chosen.  

 Ten additional HN patients with the same criteria were retrospectively chosen to evaluate 

the registration method. A single CBCT from each patient with a large anatomic change relative 

to their pCT was chosen. 

DIR Method 

 The developed method was implemented using a combination of MATLAB 

(Mathworks, Natick, MA) and elastix, an open-source DIR algorithm13. The pCT and CBCT 

were exported from MIM in mhd format. MATLAB scripts resampled and padded the CBCTs 

with air to the resolution and approximate size of the corresponding pCTs. Binary masks 

corresponding to the FOV of the CBCT were created to ensure the algorithm only used 



160 
 

information inside the FOV for calculating the rigid and deformable registration. Each 

registration (rigid transform followed by a B-spline transform) was completed in elastix.  

Registration parameters are shown in Table 1 and were based on those used in another 

study14. Deformable registration was performed using a B-spline transformation basis, defined 

by a uniform grid of control points overlaid on the fixed image (CBCT). Since a mask is 

equipped to indicate the CBCT FOV as the region of interest, the B-spline grid extends just 

outside of the mask, where the calculated transformation quickly goes to zero. Thus the 

anatomical information outside of the CBCT FOV in the dCT is not deformed but rigidly 

registered. The registration was performed with an anisotropic, multi-resolution image pyramid, 

such that in each of the three resolutions used, the superior-inferior dimension had less 

downsampling to account for the larger spacing inherent to the images. The deformable portion 

of the registration algorithm used a combination of local mutual information (similarity metric) 

and a bending energy penalty (regularization) term. The bending energy penalty term penalizes 

abrupt changes in the transformation to prevent the deformation from becoming irregular or 

folding in on itself. Weights for the two metrics were updated to improve performance on this 

dataset, and it was concluded that the two metrics in combination were superior to mutual 

information alone, after investigations with a single parameter resulted in inaccurate and 

excessive deformation. 

 Rigid Deformable 

Image Pyramid Gaussian Pyramid Gaussian Pyramid 

Sampler Random Random Coordinate 

Interpolator B-Spline B-Spline 

Optimizer Adaptive Stochastic Gradient Descent Adaptive Stochastic Gradient Descent 

Transform Euler Transform B-Spline 

Similarity Metric Normalized Correlation Coefficient Mutual Information 

Regularization Term  Bending Energy Penalty 

Table 1   Parameters used for rigid and deformable registration in elastix. The weights 

assigned to the mutual information metric and bending energy penalty were 1 and 25, 

respectively. 
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Fig 1: DIR flowchart 

During development, the registration quality was assessed using the Jacobian map of the 

deformation vector field and visual inspection. Following a successful registration, a MATLAB 

script converted the dCT from the mhd image format used by elastix to DICOM for importing 

back to the treatment planning system (TPS). 

Validating the DIR Method 

 The deformation method was evaluated through contour analysis. Contours were drawn 

on the CBCT by expert physicians. Parotids, mandible, and spinal cord were chosen due to their 

importance in treatment planning and outcomes. Planning CT contours were deformed according 

to their respective dCT transform parameters. Dice similarity coefficient (DSC), Jaccard Index 

(JI), and Hausdorff distance (HD) were used to quantitatively compare the deformed contours to 

the CBCT contours. 



162 
 

 

Fig 2: Axial, coronal, and sagittal views of the pCT, CBCT,  dCT, rigid registration of the pCT 

to the CBCT, and rigid registration of the dCT to the CBCT. 

 

Results 

 Upon visual inspection, the registrations and resultant dCTs appeared reasonable (see 

Figure 2). The DSC, JI, and HD results are summarized in Table 2.  

The DSC values are 0.78 and 0.71 for bony anatomy and soft tissue, respectively. The JI 

values are 0.65 and 0.56, respectively. The DSC and JI for the mandible significantly (p=0.002, 

Student’s t-test) outperformed that for the cord. The HD are 4.4mm and 3.6mm for bony 

anatomy and soft tissue, respectively.   

 

 



163 
 

 Mandible Cord Left Parotid Right Parotid 

 DSC JI HD DSC JI HD DSC JI HD DSC JI HD 

Pt1 0.70 0.55 5.1 0.83 0.71 2.4 0.71 0.56 4.1 N/A N/A N/A 

Pt2 0.85 0.73 5.8 0.71 0.55 3.9 0.62 0.45 3.1 0.50 0.33 3.3 

Pt3 0.82 0.69 7.5 0.69 0.53 2.9 0.78 0.64 3.3 0.81 0.67 3.5 

Pt4 0.78 0.65 4.9 0.75 0.59 2.4 0.67 0.50 3.5 0.39 0.24 4.1 

Pt5 0.87 0.77 6.1 0.74 0.59 2.6 0.77 0.63 3.1 0.82 0.69 3.7 

Pt6 0.88 0.78 4.4 0.73 0.57 4.6 0.75 0.60 3.9 0.77 0.63 3.5 

Pt7 0.90 0.82 4.1 0.71 0.56 2.6 0.79 0.66 2.6 0.80 0.66 3.7 

Pt8 0.86 0.76 6.1 0.77 0.62 3.1 0.83 0.72 3.7 0.78 0.64 3.7 

Pt9 0.80 0.67 7.3 0.67 0.51 2.9 0.68 0.51 3.5 0.72 0.56 4.3 

Pt10 0.75 0.61 6.9 0.81 0.68 2.6 0.55 0.38 3.1 0.65 0.48 4.1 

Mean 0.82 0.70 5.8 0.74 0.59 3.0 0.72 0.56 3.4 0.69 0.55 3.8 

Stdev 0.06 0.08 1.1 0.05 0.06 0.7 0.08 0.10 0.4 0.14 0.15 0.3 

Min 0.71 0.55 4.1 0.67 0.51 2.4 0.55 0.38 2.6 0.39 0.24 3.3 

Max 0.90 0.82 7.5 0.83 0.82 4.6 0.83 0.72 4.1 0.82 0.69 4.3 

Table 2  Dice similarity coefficient (DSC), Jaccard index (JI), and Hausdorff distance (HD) 

resultsfor CBCT and deformed contours from the pCT for 10 patients. HD is reported in mm. 

 

Discussion 

 We developed a deformable registration method to register a pCT to a CBCT which 

solved several common issues encountered for this task, including limited FOV and inaccurate 

Hounsfield Unit values.  

 The results for all contours are comparable to previous publications. While TG-132 sets a 

goal of achieving DSC of 0.8-0.9 for validating image registration methods, this is not 

achievable for all structures. Commercial algorithms have been found to fall short, specifically in 

HN, with an average DSC of 0.73 for HN OARs in one study directly assessing TG-132 

recommendations15. In-house algorithms have achieved similar results, with reported DSC values 

of 0.85 for bony anatomy and 0.79 for soft tissue, or 0.83, 0.79, 0.74, and 0.72 for the mandible, 

spinal cord, and left and right parotid, specifically, and reported HD values ranging from 2.00 to 

5.19 mm over soft tissue and bony anatomy16–18. However, these studies had crucial differences 

from this study including imaging modality, number of observers, and contour selection.  A 

study investigating interobserver variability on HN CT found average DSC values of 0.90, 0.78, 

0.82, and 0.83 for mandible, spinal cord, and left and right parotid, respectively, with a large 

majority of the observers following the same guidelines for all contours apart from the spinal 
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cord19. This indicates that our results are comparable to previous publications, despite limitations 

such as interobserver variability and difficulty delineating soft tissue structures on CBCT.  

 During validation, a limitation of our algorithm was identified, as the algorithm was 

unable to generate acceptable registrations when presented with extreme image artifacts caused 

by high density implants.  An attempt to mask out the artifact so the registration would ignore it 

was unsuccessful. This may be due to the nature of the registration algorithm. Further work 

could focus on making the method more robust to artifacts by testing different reconstruction 

algorithms and masking methods. In its current state, the registration method is a viable option 

for dose calculation mid-treatment course to inform resimulating and replanning decisions. 

Patient with artifacts were excluded from this study. 

Conclusions 

DIR can be a useful tool for ART and related research. However, commercially available 

DIR software is expensive and may not offer the flexibility needed for specific tasks. This study 

used an open-source algorithm to address problems deforming pCTs to CBCTs. The resulting 

deformations are useful for dose calculation at multiple timepoints over the course of a patient’s 

treatment.   
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