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Abstract 

Therapeutic outcomes achieved in head and neck squamous cell carcinoma (HNSCC) 

patients by concurrent cisplatin-based chemoradiotherapy initially reflect both tumor 

regression and tumor stasis. However, local, and distant metastasis and disease relapse 

as well as cisplatin-induced resistance are common in HNSCC patients. In the current 

work, we demonstrate that cisplatin treatment induces senescence in both p53 wild- type 

HN30 and p53 mutant HN12 head and neck cancer models. We also show that tumor 

cells can escape from senescence both in vitro and in vivo. We further established a 

cisplatin-resistant cell line from HN30 parental cell line that underwent brief senescence 

after cisplatin treatment. In this study, we evaluated the effectiveness of ABT-263 

(Navitoclax) and ARV-825, in the elimination of senescent tumor cells after cisplatin 

treatment. Navitoclax increased apoptosis by 3.3-fold (p ≤ 0.05) at Day 7 compared to 

monotherapy by cisplatin in HN30 and HN12 cells, however, it did not sensitize HN30R 

cell line. Additionally, we show that ABT-263 interferes with the interaction between BCL-

XL and BAX, anti- and pro-apoptotic proteins, respectively, followed by BAX activation, 

suggesting that ABT-263 induced apoptotic cell death is mediated through BAX. ARV-

825 however, significantly induced apoptosis in both HN30 and HN30R cells. The 

mechanistic studies show that ARV-825 treatment in combination with cisplatin increased 

DNA double-strand breaks signals in-vitro and in-vivo. Our in vivo studies also confirm 

senescence induction in tumor cells by cisplatin, and the promotion of apoptosis coupled 

with a significant delay of tumor growth after sequential treatment with ABT-263 or ARV-

825. Sequential treatment with cisplatin followed by ABT-263 extended the humane 
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endpoint to ~130 days compared to cisplatin alone, where the mouse survived ~75 days. 

These results support the premise that secondary agents could be utilized to eliminate 

residual senescent tumor cells after chemotherapy and thereby potentially delay disease 

recurrence and resistance in head and neck cancer patients.  
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Chapter 1 : General Introduction 

1.1. Senescence nature and characteristics  

1.1.1. Cellular Senescence History 

The phenomenon of senescence was first discovered/identified in the 1960s by 

Leonard Hayflick, who described senescence as limited proliferative capacity in an in-

vitro model (1). He demonstrated that normal human diploid cells stop dividing after a 

certain number of passages. This was the first time that the longstanding paradigm of 

indefinite growth of vertebrate cells in culture was proven false; it took Hayflick years to 

come to the realization that this observation is a natural phenomenon and not an artifact 

of technical issues, culture medium preparation, and other possible problems (1). He 

designed co-culture experiments growing old male fibroblast with young female fibroblast 

cells. After multiple passages, he confirmed that male fibroblasts stopped dividing and 

the culture was composed entirely of female fibroblast cells, which proved that their 

observation was accurate and not an experimental error (2). This discovery was further 

investigated by other scientists, but it was not explained until James Watson identified the 

“end replication problem” where DNA polymerases stop replicating the lagging DNA 

strand, resulting in an accumulation of unreplicated nucleotides at the end of the DNA 

strand, and DNA strand shortening every time the cell completes one cycle. Later, they 

discovered that these sequences represent the telomeres that are lost in successive 

divisions, and that telomeres play a major role in cellular senescence(3).  
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1.1.2. Senescence is a complex phenomenon 

Historically, senescence was considered an irreversible phenotype, where the 

definition connected old or aging cells to their incapability to divide. However, an 

accumulating body of evidence has altered the senescence paradigm and shown that 

senescence can be promoted/induced by a number of external and internal stimuli. 

Senescence types are categorized based on the initial stimuli and are deemed to be one 

of the following forms: Replicative induced senescence (RIS), oncogene-induced (OIS), 

or stress-induced premature senescence (4,5). Replication-induced senescence is the 

first form of senescence that was described based on the findings by Hayflick. Telomere 

dynamics are one of the most important components of aging and senescence. Since 

human cells generally do not maintain telomerase activity, most dividing cells undergo 

telomere shortening. Upon each division, cells fail at replicating specific regions of 

telomeres, and after telomeres reach a critical length, DNA damage response (DDR) is 

activated and replicative senescence is induced (4,5). Oncogene-induced senescence 

also appears to be triggered by the abnormal proliferative signals of oncogenes causing 

hyperproliferation and DNA damage response (6,7). It has been shown that activation of 

oncogenes can stimulate cell proliferation, which is recognized as a tumor-promoting 

event and a necessary step in tumorigenesis in many cancer types, however, it may also 

act as a genetic stress and cause of growth arrest in cultured cells and tumor tissues 

(8,9). 
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Premature or Accelerated Senescence reflects the prolonged growth arrest that 

takes place after the cell is exposed to a stress-inducing stimulus. This phenotype is 

typically associated with a primary response from ATM/ATR kinase proteins that activate 

cell proliferation regulators such as p53, p21, and p16INK4A (Figure 1-1).  

 

Figure 1-1: Senescence stimulators and main pathways. Persistent DNA 

damage induced by diverse stimuli and abnormal oncogenic signal lead to senescence 

mainly by regulating pRb and p53/p21 pathways. This figure was created in Biorender.  

 

This phenotype was further linked to multiple features such as increased β-

galactosidase (SA-β-gal) activity, and decreased levels of Ki-67 protein. Other features 

were also connected to this phenotype such as increased levels of cell cycle regulators 

such as p53, p21, and p16ink4a, elevated secretion of pro-inflammatory chemokines and 
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cytokines such as IL-6, IL-8, IL-B, MMP3, Vascular endothelial growth factor (VEGF) 

which is identified as senescence-associated secretory phenotype (SASP)(10), and 

condensation of facultative heterochromatin regions due to increased levels of 

trimethylated histone H3 lysine 9 (H3K9me3) which is termed as senescence-associated 

heterochromatin foci (SAHF)(11–15).  

Senescence can be induced by different extrinsic and intrinsic stimuli. Depending 

on the origin of the cell and the intensity and nature of the stimulus, cells may activate 

different molecular pathways resulting in the development of a variety of characteristics 

However, studies have shown that even a combination of multiple positive markers 

cannot confirm the senescent phenotype with complete certainty since this phenotype 

shares some features with other cell cycle arrest modes such as quiescence and delayed 

cell death (16,17). Further investigations in characterizing the senescence phenotype 

against quiescence showed that continuous activity of the mTOR pathway in senescent 

models may be the most critical marker that helps researchers to distinguish this 

phenotype from quiescence (18–20). Additionally, cellular morphology has been reported 

unaltered in quiescent cells, however, senescence has been associated with dramatic 

morphological changes. During senescence, the cells become flattened, enlarged, and 

multinucleated. Moreover, proliferative recovery takes place shortly after quiescence 

induction, while senescent cells have been shown to have a longer growth arrest phase 

(21). However, there are more factors that play an important role in cell fate towards 

senescence or quiescence, such as pRB dephosphorylation in senescence (22), p27 

(CDK inhibitor) activation in quiescence (23), and “TP53-induced glycolysis and apoptosis 

regulator” (TIGAR) protein activation in senescence (24). 



5 

 

1.1.3. Senescence and quiescence 

Senescence has been a controversial topic over the past years. Many studies have 

been published in efforts to investigate the nature of this phenotype, distinguish it from 

quiescence, understand its durability when induced by chemotherapy or various stress 

stimulators, and finally, understand its role in aging and diseases (21). It has been shown 

that senescence and quiescence can both result from chemotherapy; however, 

senescence is perceived as a more durable growth arrest with the characteristics 

described in the previous section, whereas quiescence is associated with a transient 

growth arrest with much more rapid recovery (25). Unlike senescent cells, quiescent cells 

have been shown to respond to mitotic stimulation. The metabolic activity also has been 

shown to increase during senescence, while in quiescence mRNA transcription and 

protein synthesis are drastically repressed (26).  

1.1.4. Senescence, Development, and Aging 

It is well established that senescence plays an important role in aging-related 

diseases and embryonic development (27). Senescence in certain regions of the embryo 

develops independently of DNA damage and is critical for tissue remodeling. p21 has 

been shown to be the primary protein inducing growth arrest and senescence in murine 

embryos and p21 knock-out models were shown to develop abnormal morphologies in 

mice(28).  

Additionally, senescence has been associated with multiple age-related diseases 

such as Alzheimer’s disease, vascular atherosclerosis, pulmonary fibrosis, kidney 

disease, obesity, and osteoarthritis. It has been shown that telomere shortening results 
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in senescent cell accumulation and consequently contributes to age-related diseases 

(29–33).  

1.2. Senescence role in cancer  

1.2.1. Therapy-induced senescence or TIS 

A number of cancer therapeutics have been shown to induce senescence, at least 

in cell culture; these include DNA cross linking and alkylating agents such as cisplatin, 

carboplatin, and cyclophosphamide, topoisomerase II inhibitors such as etoposide and 

doxorubicin, CDK4/6 inhibitors such as Palbociclib (34), and radiation (35). TIS (therapy-

induced senescence) has been considered a desirable outcome in anticancer therapy in 

patients because it results in prolonged cancer cell growth arrest and tumor stasis (36). 

It has also been shown that the cytokines and chemokines associated with the SASP 

(senescence-associated secretory phenotype) contribute to halted tumor cell progression 

by inducing senescence in neighboring cells via the bystander effect (37–40). However, 

there is an accumulating body of evidence showing that senescence induction is a double 

edge sword with the ability to both inhibit or promote tumor progression at different stages 

of therapy (34,41). Below we will discuss the contribution of senescence to cancer cells 

survival and tumor progression. 

1.2.2. Tumor suppressor effect of senescence phenotype  

The therapy-induced senescent phenotype has been considered to have tumor 

suppressive effects as it theoretically contributes to halting replication and arresting cell 

cycle progression (42–44). Consistent with this role, cellular senescence has been shown 

to be controlled by several tumor suppressor genes including p53 and pRB which play 
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the most crucial roles in tumor-suppressor pathways. Depending on the stimuli, the 

interaction between tumor suppressor genes will determine the pathways that will be 

involved in senescence induction. For example, in therapy-induced senescence, DNA 

damage stress response results in ATM/ATR activation followed by p53 and p21 

phosphorylation and finally pRB activation and senescence induction. Moreover, SASP 

contributes to inflammation and immune cell activation. Consequently, the immune 

system can eliminate the senescent cells and hinder tumorigenesis in its early stages 

(45–47). This pathway has been reported as the most common pathway activated in 

therapy-induced senescence in tumor models, however, alternative pathways and 

oncogenes such as ras, raf, MEK, Akt, E2F1/3, mos, PTEN, NF1, Stat5, KLF-4, and Runx 

have also been shown to be involved in senescence induction. Additionally, studies 

indicated that reversal or escape from senescence contributes to tumor progression (48–

51). This mounting evidence of senescence pathways involving both tumor suppressors 

and oncogenes, and the fact that reemerging cells from senescence state contributes to 

tumorigenesis introduces senescence as a two-edge sword that can halt or promote 

tumor progression depending on the context (52).  

1.2.3. Therapy induces senescence is not a permanent growth arrest 

Due to the senescence phenotype’s complex nature, the durability of growth arrest 

in senescent cells has been a controversial topic without consensus over many years. 

The scientific community has long debated whether the senescence phenotype is 

irreversible or transient (45–47). In studies investigating aging mechanisms, the telomere 

hypothesis suggests that telomere shortening over time induces cellular senescence and 
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promote a cell cycle arrest with no proliferative recovery (53). However, in cancer 

research, therapy-induced senescence has been described as a transient phenotype 

from which cancer cells escape and recover their proliferative capacity (54,55). The 

duration of growth arrest varies in different cancer types and depends on the therapeutic 

regimens applied. However, many of the more recent studies investigating cancer cells' 

response to chemotherapeutics, including those from our own laboratory, have provided 

compelling evidence that almost all cancer models recover from the proliferative arrest 

after senescence induction (56–59). For example, Roberson et al. showed that H1299 

non-small lung cancer cells escaped senescence after chemotherapy (57). Additionally, 

it was shown that genotoxic chemotherapeutics or irradiation-exposed tumor cells can 

escape the growth arrest phase and lose their senescence characteristics such as SASP 

factors expression, beta-gal enzyme activity, and CDKI downregulation (60). Moreover, 

studies have shown that the existence of different subpopulations in a tumor or a cultured 

cell line can result in escape from senescence and the evolution of resistant cells (61–

63). While the mechanisms of drug resistance may vary between different cancer types 

and cell models, escape from senescence mostly contributes to the same outcomes 

including resistance to the primary chemotherapeutic agent, resistance to secondary 

compounds with senolytic or synergistic activity, the emergence of cancer stem cells with 

a more aggressive phenotype, metastasis, and secondary tumors (48,64,65).  

The escape mechanism from TIS is still unknown and is likely dependent on the 

cancer type and the therapeutic approach. A number of different mechanisms have been 

suggested to contribute to escape from therapy-induced senescence which will be 

discussed in the section below. 
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1.2.4. Escape mechanisms 

Escape from therapy-induced senescence has been investigated for years, and 

studies have shown the various pathways and genes that may be involved in this process. 

Early studies showed that clinically relevant concentrations of doxorubicin induced 

senescence in p16INK4a null MCF7 breast cancer cells from which a subpopulation of cells 

overexpressed the cyclin-dependent kinase, cdc2 and was able to escape senescence 

(57,66). Additionally, Wu et.al. also showed an association between the over-expression 

of cdc2 and escape from senescence in p53 and p16INK4a deficient lung cancer cell lines. 

Other reports have identified a role for cdks such as cdk2 in bypassing senescence (57). 

ROS or reactive oxygen species quenching has also been shown to contribute to escape 

from senescence. In this pathway, an NFκB subunit, p65, was shown to be localized in 

the nucleus after glioblastoma cells were treated with ciprofloxacin (67,68). This 

localization was associated with escape from senescence, and interference with p65 

localization resulted in a “permanent” senescent arrest (67,69). 

Finally, some potential mechanisms of escape can contribute to resistance 

development such as acquiring an enhanced ability to repair chemotherapy-induced DNA 

damage. Other mechanisms such as the development of stem-like characteristics, 

downregulating of membrane transporters to decrease intracellular concentration of the 

drug, and over-expression of detoxifying proteins can contribute to senescence escape 

and resistance (70,71).  
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1.3. Clinical and laboratory benefits of secondary compounds 

1.3.1. Senescence targeting compounds 

To overcome the limitations of chemotherapeutic drugs used in the clinic, and to 

address the harmful effects of recovered senescent cells, development and improvement 

of secondary compounds and small molecules that might mitigate the deleterious effects 

of senescence have been of great interest. In this section, we will specifically discuss 

senescence targeting compounds.  

The senescence targeting compounds are mainly categorized as: i) senomorphics 

and ii)senolytics (72–74). Senomorphic compounds usually target SASP related 

pathways such as the NFκB signaling pathway. This pathway has been shown to be 

crucial in inflammation regulation and SASP development (75). Senomorphics interfere 

with this pathway and reduce the production of SASP factors such as IL-6, IL-8, IL-1B, 

and MMP3 (72). Intriguingly, these compounds do not interfere with senescence 

induction, but rather eliminate SASP and inflammation in tumors. Compounds with 

senomorphic characteristics include metformin (10,76) flavonoids such as apigenin and 

kaempferol (65), and glucocorticoids (77). An additional pathway targeted by 

senomorphics is the JAK/STAT3 pathway. Interfering with this pathway using ruxolitinib 

(125,126), or mTOR inhibitors such rapamycin can also reduce SASP induction and is 

attributed to the senomorphic abilities of these compounds (78,79).  

1.3.2. Senolytics  

Senolytics are one of the most interesting groups of senescence-targeting 

compounds. These agents have generated attention due to their ability to promote cell 
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death in senescent cells in a “two-hit” approach (74,80). Senolytics were primarily 

developed as siRNA molecules blocking a specific target after identifying pro-survival and 

anti-apoptotic pathways activation in senescent cells. PI3K, BCL-XL, PAI-2, and p21Cip1 

are among the targets that have been shown to increase after senescence induction as 

pro-survival mechanisms, and the development of siRNAs against these genes resulted 

in the elimination of senescence cells and not their proliferating counterparts (81). The 

exact mechanism of survival mediated by these genes are still under investigation, 

however, promoting cell cycle arrest and DNA repair mechanism are primary factors 

contributing to the pro-survival roles (82). Effective siRNAs were developed into small 

inhibitor or degrader molecules and screened in different models. After screening over 40 

compounds, the first effective combination was introduced as D+Q, or Dasatinib in 

combination with Quercetin(81). This combination resulted in the elimination of senescent 

cells in-vitro and in-vivo aging-related models as well as Alzheimer's disease (83,84), 

hepatic steatosis (85), and obesity-induced metabolic dysfunction (32). This approach is 

currently being tested in clinical trials in patients with chronic kidney problems, and 

Alzheimer’s disease [NCT02848131, NCT02874989, NCT04210986]. 

Another intriguing senolytic that has been utilized in preclinical and clinical trials is 

the BH3 mimetic, Navitoclax or ABT-263 (86). This compound was designed to target the 

senescent cells that develop a BCL-xL dependent pro-survival phenotype. It thereby 

mimics BH3 protein's interaction with the pro-survival proteins from BCL-2 family to 

activate pro-apoptotic proteins such as BAX and BAK. The effectiveness of this 

compound has been shown in various models such as head and neck cancer (59), lung 

fibrosis,aging-associated bone loss, lung emphysema (87), uterine leiomyoma (88), tau-
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dependent neurodegenerative disease (89), neurodegeneration (90), pulmonary 

hypertension (91), osteoarthritis (92,93), synthetic implant-mediated fibrosis (94), and 

DMD or Duchenne muscular dystrophy. Navitoclax promotes apoptosis by binding to pro-

survival/anti-apoptotic BCL-2 family proteins and dissociates them from binding to Bax or 

Bak, pro-apoptotic proteins after senescence induction. Moreover, additional senolytics 

that are broadly being investigated in pre-clinical and clinical studies include Fisetin 

(95,96), Curcumin/EF-24 (97,98), Panobinostat (99,100), 17-DMAG (101,102), 

Metformin(103), and Bromodomain and extra-terminal (BET) family protein 

inhibitors/degraders (104).  

The Bromodomain and extra-terminal (BET) family proteins represent a group of 

epigenetic readers and erasers that play critical roles in gene transcription, DNA repair, 

telomere elongation, and cellular proliferation and differentiation (105). BRD4 is one of 

the most important members of this family and has been shown to be involved in DNA 

machinery assembly at DNA breakpoints, recruiting the positive elongation factor (P-

TEFb) complex along with transcriptional co-activators JMJD6 and CHD4 to assist RNA 

polymerase II (RNAPII) elongation (106). In particular, BRD4 has been shown to be 

concentrated at super-enhancer regions upstream of the MYC promoter in oncogenic 

cells, making it an attractive target in multiple models of cancer (107). BRD4 

overexpression also has been reported to be an important factor in worse outcomes in 

cancer patients (108,109). Various small molecules and PROTAC compounds have been 

designed and utilized in anti-cancer therapy, including ARV-825 (105). This compound 

was designed to overcome the limitations of the first-generation BRD4 inhibitor JQ1 and 

improved the efficiency and effectiveness in BRD4 inhibition (110). ARV-825 has been 
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shown to specifically target and inhibit BRD4 by a selective intracellular proteolysis 

mechanism (111). Monotherapy using ARV-825 has shown promising outcomes in 

neuroblastoma, thyroid cancer, leukemia, breast cancer, lung carcinoma, and myeloma 

(112–116).  

Based on the prior evidence suggesting that the accumulation of senescent cells 

is detrimental to patient outcomes, we hypothesize that following cisplatin therapy, a 

population of tumor cells enter and persist in a senescent state. These cells contribute to 

disease outgrowth and recurrence either through cell-autonomous effects such as escape 

from the senescent growth arrest or through paracrine effects of the SASP. Therefore, 

we further hypothesize that the elimination of these cells via senolytic/secondary agents 

will enhance—and perhaps prolong—response to standard-of-care, senescence-

inducing anti-cancer therapies. 

1.3.3. Senolysis pathways  

Previous studies have shown that senolytics function via different pathways 

including apoptosis, autophagy, and ferroptosis (104,117,118).  

Apoptosis is canonically described as two intrinsic and extrinsic pathways (Figure 

1-2). Intracellular stimuli are mostly responsible for intrinsic apoptosis. During this 

pathway, pro-apoptotic BCL-2 family proteins are activated, which subsequently result in 

the inhibition of pro-survival BCL-2 members and activate the executioner proteins BAX 

and BAK (119). After activation, BAX and BAK oligomerize and localize at the 

mitochondrial outer membrane, and this results in the mitochondrial outer membrane 

permeabilization. Once permeabilization happens, cytochrome c releases into the 
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cytoplasm, and from this, a cascade of caspase activation takes place, and apoptosis 

begins. (120).  

On the other hand, during extrinsic apoptosis, ligands bind to death receptors 

leading to the activation of caspase 8, which consequently activates downstream effector 

caspases. Caspase 8 can also cleave the BH3-only protein BID into its active form, and 

in this way, the extrinsic and intrinsic apoptosis can converge (120). Markers of apoptosis 

include the characteristic “blebbing” to form apoptotic bodies, release of cytochrome c 

from the mitochondria into the cytoplasm, activation of the caspases, and the 

externalization of phosphatidylserine in the cellular membrane (121,122).  

 

Figure 1-2: Intrinsic and Extrinsic Apoptosis pathways: Apoptosis can be 

mediated by either the intrinsic (mitochondria-mediated) pathway or extrinsic (death-

receptor mediated) pathways. Both pathways converge upon executioner caspases 
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(Caspase-3 and 7) that induce apoptosis. Figure was modified from a template provided 

by Biorender. 

 

Autophagy in another pathways that has been reported to be induced by 

senolytics. For example, the BRD4 degrader ARV-825 has been shown to induce 

senolysis via inducing autophagy (123). Autophagy is the process of “self-eating” 

(124,125) during which a part of the endoplasmic reticulum forms a bilayer vesicle called 

a phagophore, which then elongates into the autophagosome.. The autophagosome then 

joins the lysosome, at which point, the cargo contained within the newly formed 

autolysosome is degraded and recycled. Markers of autophagy include an increase in 

acidic vesicles, increased lipidation of LC3B, and degradation of the cargo adaptor protein 

p62 (126,127).  

There are many functions attributed to autophagy in cells exposed to therapy, 

including cytoprotective, cytotoxic, and cytostatic, (124). In the protective form, autophagy 

maintains the metabolism of the cell in a way that chances of survival increase. In the 

cytotoxic form, autophagy plays a necessary role to promote drug-induced cell death. In 

the cytostatic form, autophagy mediates some form of growth arrest. As a senolytic, 

autophagy can mitigate the function of a senolytic and play a cytoprotective role, or it can 

mediate the effectiveness of the senolytic and play a cytotoxic role. (125–127).  
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Chapter 2: Materials and Methods  

2.1. Cell Culture and Treatments 

Investigations were carried out on two HPV-negative human HNSCC cell lines, 

HN30 (wild-type p53) and HN12(truncated non-functional p53), which were provided by 

Dr. Andrew Yeudall (Augusta University). HN30R was established in Dr. Harada’s 

laboratory, and SCC was provided by Dr. Jiong Li from the school of pharmacy at VCU. 

A549 cell line was purchased from ATCC (Manassas, VA, USA). Cells were cultured in 

DMEM (Thermo Fisher, 10569010) supplemented with 10% (v/v) fetal bovine serum 

(Gemini, 26140), 100 U/ml penicillin G sodium and 100 µg/ml streptomycin sulfate 

(Thermo Fisher, 15140148) at 37º C and 5% CO2. Cisplatin (Sigma-Aldrich, 15663-27-1, 

≥98% (HPLC) was dissolved in PBS, and ARV-825 (MedChem, HY-16954, 99.32%), was 

dissolved in DMSO and administered in the dark at the desired concentrations. Drugs are 

stable after preparation in multiple aliquots and were kept at -20ºC in the dark. 

2.2. Cell viability and Clonogenic survival assays  

Cell viability was determined by monitoring the number of viable cells over time 

using trypan blue dye exclusion staining before, during, and after drug treatment. Cells 

were treated with 5 µM cisplatin for 24 hours and were collected by trypsinization at 

specific time points, and stained with 0.4% trypan blue (Sigma, T8154) and counted using 

hemocytometer under light microscopy. For clonogenic survival assays, cells were 

seeded at a low density at 5 x 103/10 cm dish or 1,000/6-well plates, then treated 2 µM 

ABT-263, ABT-199, A-1155463 or vehicle for 24 hours. Colony formation was monitored 



17 

 

overtime, and at the experiment end point (at Day 14, when the vehicle-treated condition 

formed distinct colonies with more than 50 cells), colonies were fixed with 100% 

methanol, air-dried, stained with 0.05% crystal violet and counted using a colony counter 

(COLOCOUNT Discovery Technology Intl). 

2.3 SA-β-galactosidase Staining/Enrichment 

Histochemical staining of SA-β-gal was performed as previously described 

(14,128). Images were taken by a bright field inverted microscope (Olympus inverted 

microscope IX70, 20x objective, Q-Color3™ Camera; Olympus, Tokyo, Japan). The 

C12FDG flow cytometry was performed using the protocol described by Debacq-

Chainiaux et al (128). At the specific time points, cells were collected, washed with PBS, 

and analyzed by flow cytometry (using BD FACSCanto II and BD FACSDiva software at 

the Virginia Commonwealth University Flow Cytometry Core Facility). Similarly, for 

immunofluorescent staining of C12FDG, cells were exposed to 100 nM of bafilomycin A1 

(Sigma Aldrich, B1793, >90% HPLC) for one hour, and after increasing the lysosomal 

PH, cells were exposed to 100 µM C12FDG (Thermo Fisher, D2893) for 2 hours. After 

washing with PBS, nuclei were stained with Hoechst 33342 (Thermo Fisher, 33342) for 

20 minutes in complete media. Images were taken using the Olympus inverted 

microscope. To enrich the senescent population, cells were seeded at high density for 1-

2 x 106/150 mm dish and cultured overnight. The next day, cells were treated with 

cisplatin, and at the indicated time points, they underwent C12FDG staining as described 

above. Finally, cells were sorted by FACS. All the above experiments were performed at 

Day 5 after treatment with 5 µM cisplatin for 24 hours.  
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2.4. Total cell lysates, subcellular fractionation, and Western 

blotting 

Total cell lysates were prepared using the CHAPS buffer [20 mM Tris (pH 7.4), 

137 mM NaCl, 1 mM dithiothreitol (DTT), 1% CHAPS (3-[(3-Cholamidopropyl) 

dimethylammonio] 1-propanesulfonate)]. The mitochondria fraction was prepared with 

Qproteome Mitochondria Isolation Kit (Qiagen, 37612) according to the manufacture’s 

protocol. Western blotting was performed as described (129). Antibodies used in1:1000 

dilution: cleaved PARP (Cell Signaling, 5625), cleaved caspase 3 (Cell Signaling, 9664,), 

GAPDH (Cell Signaling, 5174), BCL-2 (Sigma, B3170), BCL-XL (Cell Signaling, 2764), 

BAX (Cell Signaling, 2772), BAK (Cell Signaling, 12105), p53 (Santa Cruz, 23959), p21 

(Cell Signaling, 2947), COX-IV (Cell Signaling, 4850), BRD4 (cell signaling, 13440). 

2.5. Co-immunoprecipitation 

BCL-XL (Cell Signaling, 2764) or BAX (Santa Cruz, 23959) primary antibodies 

(1:100 dilution) were added to equal amounts of total lysates extracted from treated and 

non-treated cells. After overnight incubation at 4ºC, Protein A/G beads (Thermo Fisher, 

53132) were added for 1-hour incubation at 4ºC to precipitate the protein-antibody 

complexes. Samples were centrifuged, washed, and resuspended in 50/50 CHAPS buffer 

and 2X SDS-loading buffer. After boiling the samples for 5 mins, they were subjected to 

SDS-PAGE followed by Western blotting as described above.  
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2.6. Cell cycle, Annexin-V/PI staining, and γ-H2AX analysis  

Cell cycle analysis was performed based on propidium iodide staining (Saleh et al. 

2019), and apoptosis quantification was done using AnnexinV-FITC apoptosis detection 

kit (556547, BD Biosciences, NJ, USA). Cells were seeded at the density of 4 x 104 cells 

per milliliter, treated with 5 µM cisplatin for 24 hours, and harvested at the indicated time 

points. After washing the samples with PBS, cells were resuspended in 100 µl of 1x 

Binding Buffer and incubated for 15 min in the dark at RT. Up to 500 µl of extra binding 

buffer was added to the final suspension and then the samples were analyzed by flow 

cytometry. Cell cycle analysis was performed at Day 5 after treatment with cisplatin, and 

apoptosis was assessed at Day 7. For γ-H2AX analysis, cells were seeded at a density 

of 4 x 104 cells per milliliter, treated with 5 µM cisplatin or vehicle for 24 hours. At Day 5, 

2 µM ABT-263 was added to the combination conditions for 48 hours and γ-H2AX 

induction was monitored by flow cytometry at Day 7. Cells were harvested, fixed with 

3.7% formaldehyde and permeabilized with cold methanol. After washing the pellets, cells 

were incubated with 1:250 dilution of γ-H2AX antibody conjugated to FITC (anti-H2AX 

(pS139), BD Biosciences, Cat. No. 560443) for 30 minutes.  

2.7. Live-cell imaging 

HN30 cells were plated (5 × 105 cells per milliliter) in 6-well plates and incubated 

overnight. After treatment with 5 µM cisplatin or vehicle for 24 hours, the plates were 

immediately placed on a CytoSMART digital microscopy system inside a humidified 

CO2 incubator at 37 °C. Live time lapse images were taken every 15 min for 48 hours on 
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Day 5 (growth arrested and control cells, respectively) and Day 10 (cells escaping from 

senescence and recovering their proliferative capacity). 

2.8. qRT-PCR 

Apoptosis by Annexin-V/PI (Fisher Scientific) and cell cycle by propidium iodide 

were performed as previously described (130,131). All flow cytometry quantification was 

performed on the BD FACSCantoII cytometer, and at least 10,000 events were analyzed 

per sample. 

2.9. Immunofluorescence Microscopy  

Cells were fixed in 3.7% paraformaldehyde, permeabilized with 0.1% TritonX-100, 

and then blocked with 5% BSA in PBS. Primary antibodies were applied at 1:200, 

overnight at 4ºC, followed by secondary antibody at 1:500 for 2 hours at room 

temperature. Cells were then counter-stained with DAPI and imaged at 100X (DNA 

probes) or 10X-20X on an Olympus inverted 132 microscope IX70, with a Q-Color3TM 

Camera), Primary antibodies: CTR1/SLC31A1 (Novus Biologicals, NB100-402SS), CD44 

Monoclonal Antibody (Thermofisher, 14-0441-82), ALDH (Cell signaling 36671), 

secondary antibodies: AlexaFluor 488- anti-rabbit (Thermo Fisher), and AlexaFluor566-

antirabbit (Thermo Fisher) 

2.10. Cellular ROS assessment  

DCFDA / H2DCFDA - Cellular ROS Assay Kit (ab113851) was used to assess ROS levels 

in cells before and after treatment. Cells were plated and treated with cisplatin and vehicle 
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followed by ARV-825 treatment, then incubated with DCFDA for 30 mins in 370C. Then 

trypsinized and analyzed using flowcytometry at 535 nm. 

2.11. In-vivo experiments 

2.11.1. ABT-263 project 

All animal studies were conducted in accordance with Virginia Commonwealth 

University IACUC guidelines. We first established the mouse oral squamous cell 

carcinoma (OSCC) cell line, 602, derived from the 4-nitroquinoline-1 oxide (4NQO)-

developed tumor on the tongue. Female C57BL/6 mice (5 weeks of age; Envigo) were 

treated with 50 µg/ml 4NQO-containing water for 16 weeks. Then the drinking water was 

reverted to regular water until Week 22. When a single lesion on the tongue became ~50 

mm3, a tumor was removed and digested, and cells were isolated to establish a cell line. 

To establish tumors, 1 x 106 of 602 OSCC cells were suspended in 50/50 PBS-Cultrex 

basement membrane matrix (Cultrex, 3632-005-02) and subcutaneously inoculated into 

the rear flanks of C57BL/6 female mice (Day 0). When tumor size approached ~100 mm3, 

mice were randomized in five groups (Day 13, N=6/group) and treated with cisplatin (5 

mg/kg) by intraperitoneal injections at Day 13, 16, 20 and 23, then with ABT-263 (80 

mg/kg) by oral gavage daily at Day 27-31 and Day 34-38. The second round of treatments 

was performed with cisplatin at Day 41, 44 and 48, followed with ABT-263 at Day 55-59 

and Day 62-66. Tumor volumes were taken by manual caliper measurements.  

2.11.2. ARV-825 project 

To establish tumors, 1 x 106 of HN30 cells were suspended in 50/50 PBS-Cultrex 

basement membrane matrix (Cultrex, 3632-005-02) and orthotopically inoculated into the 
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buccal area of NSG female mice. When tumors were formed, mice were randomized into 

four groups ( N=9/group) and treated with cisplatin (5 mg/kg) by intraperitoneal injections 

at day 0, and 8, then with ARV-825 (10 mg/kg) at days 15, 17, 20 and days 27, 29, and 

31. Tumor volumes were taken by manual caliper measurements.  

2.12. Immunohistochemistry 

For cleaved caspase-3 (Cell Signaling, 9664) and γ-H2AX (Cell Signaling, 9718), 

tumors were fixed in 10% formalin phosphate buffer and performed on BOND RX Fully 

Automated Research Stainer. Slides were stained overnight at 4°C with cleaved caspase-

3 (1:500) γ-H2AX (1:400), or BRD4 (1:500) primary antibodies then for 8 min at room 

temperature with the secondary antibody included in the BOND Polymer Refine Detection 

kit (Leica, DS9800). Slides were mounted with Dako CoverStainer (Agilent). Images were 

taken on Vectra Polaris Automated Quantitative Pathology Imaging System (Akoya 

Biosciences) at 20X at the VCU Cancer Mouse Models Core (CMMC). For X-Gal staining, 

tumors were frozen into OCT molds and cut into 10-micron sections by the VCU Tissue 

and Data Acquisition and Analysis Core (TDACC). 

2.13. Blood analysis and platelet/neutrophil counts 

Mice treated with vehicle, cisplatin, ABT-263, ARV-825 or a combination of 

cisplatin and ABT-263/ARV-825 were subjected to Complete Blood Count (CBC) analysis 

at the indicated time points (Figure 6E). Blood samples (∼0.2 ml) were collected by facial 

vein using EDTA coated syringes and immediately analyzed by hematology analyzer 

Hemavet 950FS (Drew Scientific, Miami Lakes, FL, USA) at the VCU CMMC.  
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2.14. Statistical Analysis  

Unless otherwise indicated, all quantitative data is shown as mean ± SD from at 

least three independent experiments (biological replicates), all of which were conducted 

in triplicates or duplicates (technical replicates). GraphPad Prism 6.0 software was used 

for statistical analysis. All data was analyzed using either a one- or two-way ANOVA, as 

appropriate, with Tukey or Sidak post hoc, with the exception of cell cycle, C12FDG data, 

and platelet counts which were analyzed with unpaired, student’s t-tests.
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Chapter 3: Senolytic-mediated elimination of head 

and neck tumor cells induced into senescence by 

cisplatin 

3.1. Introduction  

3.1.1. Head and Neck Cancer and treatment options  

Head and neck cancer is the sixth most common type of malignancy worldwide, 

with head and neck squamous cell carcinomas (HNSCCs) accounting for >90% of cases. 

HNSCC incidence largely correlates with tobacco and alcohol usage and is often 

diagnosed in advanced stages (132). There is also a rapidly increasing incidence of a 

human papillomavirus-related (HPV+) subtype of HNSCC, which arises in a younger 

patient demographic that includes many never-smokers (133).  

Head and neck cancer is generally treated with a combination of surgery, radiation, 

and chemotherapy, with cisplatin being a primary therapeutic modality (134,135). Locally 

advanced head and neck cancer, LA/HNSCC patients might be eligible to receive 5-FU, 

Carboplatin, or Paclitaxel. Recurrent and metastatic patients on the other hand receive 

immunotherapy compounds such as Cetuximab a monoclonal EGFR antibody, or 

Pembrolizumab, a PD-1 inhibitor (136–139). 

 Despite recent advances in cancer therapeutic approaches, 40% and 20% of 

patients with HPV-negative HNSCC experience locoregional and distant failure, 

respectively, after cisplatin-based chemoradiotherapy. While head and neck cancer is 
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generally responsive to initial therapy, the disease almost invariably recurs, often 

becoming refractive to further therapy (140,141). An accumulating body of evidence has 

shown that cancer relapse often occurs after both conventional and advanced therapeutic 

approaches, where the therapy results in an accumulation of non-proliferative residual 

cancer cells (142,143). The cross-talk between these tumor cells and their 

microenvironment can result in escape from the growth-arrested state via recovery of the 

cellular proliferative capacity, leading to disease recurrence (144,145).  

3.1.2. Cisplatin and senescence induction 

cisplatin was accidentally discovered in 1965 by Dr. Barnett Rosenberg, a 

biophysics researcher at Michigan State University. Dr. Rosenburg and his colleagues 

applied electrical currents to a solution containing E. coli and observed morphological 

changes and growth arrest in bacterial cells. After two years of investigation, they 

discovered that the electrical current is not affecting the growth of the bacterial cells, but 

it’s the Platinum released into the solution from the electrodes (146). Studies in different 

cancer models such as leukemia and sarcoma finally resulted in an NCI-funded clinical 

trial in 1972 to assess Platinum's effectiveness in cancer patients. Primarily, studies were 

focused on cisplatin toxicity, especially nephrotoxicity and apoptosis mechanisms (147). 

Cisplatin-induced senescence was first reported in nasopharyngeal carcinoma cell (NPC) 

models by X Wang et.al in 1998 (148,149). They characterized senescent cells by 

studying proliferation arrest, enlarged and flattened cellular morphology, multinucleated 

and vacuolated cellular appearance, and SA-b-gal overexpression (149).  



26 

 

Eventually, Cisplatin-based chemotherapy became the standard treatment for 

bladder, head and neck, testicular, ovarian, and cervical cancers (150). DNA has been 

shown to be the major target for cisplatin, however, this compound can bind to a broad 

range of different cellular components such as RNAs, proteins, thiol-containing peptides, 

membrane phospholipids, and protein filaments in the cytoplasm (151). Cisplatin uptake 

in the cells takes place through passive or active diffusion, however many membrane 

transporters with differential distribution in various tissues have been shown to be 

involved in cisplatin uptake (152). Platinum agents undergo aquation and they are 

positively charged once they are in the cell. These reactive forms have the potential to 

bind to the imidazole ring of the purine’s guanosine and adenosine and form intra-and 

inter-strand crosslinks. Resulted crosslinks alter the DNA structure, followed by DNA 

damage response activation, apoptosis, and cell cycle arrest (153). Nucleotide excision 

repair (NER) pathway is the major DNA repair mechanism activated in response to 

cisplatin-induced DNA-adducts (154). Transcription-coupled repair (TCR) and global 

repair (GR) are two different NER pathways that remove the induced DNA-adducts from 

actively transcribed strands (TS) and non-transcribed strands (NTS), respectively (155). 

Here, in this study, we evaluated the effectiveness of cisplatin in head and neck cancer 

in-vitro and in-vivo models and investigated the efficacy of senolytic ABT-263 in 

eliminating senescent cells.  
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3.1.3. Objectives  

The objectives of this study were to determine i) whether ABT-263 is an effective 

senolytic in head and neck cancer models after therapy-induced senescent and ii) the 

ABT-263 mechanism of senolysis. 

3.2. Results 

3.2.1. Senescence induction in HN30 and HN12 cells after cisplatin 

treatment 

Pharmacokinetic studies have indicated that the highest plasma concentration of 

cisplatin achieved in patients is 12 µM at 5 minutes after injection, while the plasma 

concentration decreases to 5.9 µM after 2 hours. Up to 90% of total cisplatin is excreted 

(depending on the patient’s renal function) in 24 hours. Consequently, initial experiments 

to investigate the cellular response to cisplatin in head and neck cancer cells involved 

exposure to clinically relevant concentrations of cisplatin (2, 5 and 10 µM) for 24 hours 

(156–158). As expected, cisplatin induced a temporary growth arrest after 24 hours of 

treatment in both HN30 (p53 wild-type) and HN12 (p53-null) head and neck cancer cell 

lines. As we have reported in other tumor cell models (54,117), the cells ultimately 

escaped and recovered their proliferative capacity (Figure 3.1.A). Cell cycle analyses 

confirmed that both cell lines were arrested primarily at the G0/G1 phase (Figure 3.1.B).  
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Figure 3.1. Cisplatin induces a reversible growth arrest in both HN30 and 

HN12 cell lines. A) Cell viability was monitored over a period of 12 days by trypan blue 

exclusion in HN30 and HN12 cells after 24 hours of exposure to 2, 5, and 10 µM cisplatin. 

B) Cell cycle analysis of HN30 and HN12 cells on Day 5 after treatment with 5 µM cisplatin 

for 24 hours. Cell cycle distribution is shown in the bar graphs. * p ≤ 0.05, ** p ≤ 0.01, *** 

p ≤ 0.001, **** p ≤ 0.0001 indicate statistical significance of each condition compared to 

control as determined using Student's t‐test. 

 

The antitumor activity of cisplatin is generally ascribed to the induction of DNA 

single- and double-strand breaks subsequent to the cross-linking of DNA (159–161). 

Consistent with the fact that senescence has been suggested to be a primary response 

of tumor cells to chemotherapeutic agents and cellular stress conditions (162), we 

confirmed that cisplatin promotes senescence in our experimental models. This 

determination was based on a number of characteristics such as morphological changes, 

qualitative and quantitative measurement of SA-β-gal activity using X-gal staining 

(Figures 3.2A) and fluorescence-based labeling with C12FDG (Figures 3.2.B), and 

upregulation of the tumor suppressor p53 and the cyclin-dependent kinase inhibitor p21 

(Figure 3.2C). Additional senescence markers, specifically heterochromatic foci 

(H3K9Me3) formation (Figure 3.2A, lower panels) and increased expression of 
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Senescence-Associated Secretory Phenotype (SASP) components such as IL-6, IL-8, 

and IL-1β, (Figure 3.2D) further confirmed that cisplatin treatment can promote 

senescence in HNSCC cells regardless of the p53 status. 

 

Figure 3.2. Growth-arrested cells show senescence characteristics. A) Cells 

were analyzed for increased expression of SA-β-gal using X-gal (20x objective, scale bar: 

20 µm, bright field images) and increased SAHF formation by H3K9ME3 

immunofluorescence (100x objective, scale bar: 5 µm, fluorescent images). Blue 

fluorescence indicates nuclear staining with DAPI, and green fluorescence reflects 

H3K9Me3 immunostaining. Staining was performed 5 days after treatment with 5 µM 

cisplatin for 24 hours. B) C12FDG flow cytometry (bar graphs) and immunofluorescent 

images to quantify and confirm senescence. C) Western blotting for p53 and p21 in HN30 
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and HN12 cells at the indicated time points after cisplatin treatment. D) qRT-PCR for the 

SASP mRNAs IL-6, IL-8, and IL-1β. RNA was extracted at Day 5 following cisplatin 

exposure. All images are representative fields or blots from at least three independent 

experiments, and all quantitative graphs are mean ± SD from at least three independent 

experiments. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001 indicate statistical 

significance of each condition compared to control as determined using two‐way ANOVA 

with Sidak's post hoc test. All images are representative fields or blots from three 

independent experiments (n = 3). 

 

3.2.2. Proliferative recovery in cisplatin-treated HNSCC cells is 

associated with a decline in senescence markers 

Despite the long-held paradigm that therapy-induced senescence (TIS) is an 

irreversible and permanent form of growth arrest, which would be consistent with a 

favorable therapeutic outcome of senescence induction (163), our previous studies along 

with rigorous experiments by other investigators have firmly established that at least a 

subpopulation of cells can and will evade the senescent arrest and re-emerge with self-

renewal capacity (57,66,117,164–166). To interrogate whether this is also the case for 

head and neck cancer cells induced into senescence by cisplatin, we utilized multiple 

approaches to investigate the capacity for proliferative recovery from senescence in our 

experimental models. Live-cell imaging microscopy was utilized to monitor proliferative 

recovery from cisplatin-induced senescent HN30 cells (Videos S1A, B, and C). A 

comparison of the morphologic characteristics of cells at different time points established 

that the emerging population at Day 11 in Video S1C was indeed derived from the 

senescent population. Further confirmation of the involvement of senescence in recovery 
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was based on the observation that proliferative recovery in our models is associated with 

diminution of the senescence markers (Figure 3.3). Specifically, SA-β-gal activity showed 

a significant reduction after the cells recovered their proliferative capacity (Figure 3.3.A). 

Similarly, the decline in additional senescence markers such as components of the 

senescence-associated secretory phenotype (SASP) (Figure 3.3.B), further indicates 

that the cisplatin-induced senescent-like state is not sustained.  

It is possible that the recovered population originated from a subclone that was 

resistant to the primary effects of cisplatin de novo rather than via escape from 

chemotherapy-induced senescence (44,167). To confirm that cells can and do recover 

from chemotherapy-induced senescence, cisplatin-induced senescent cells were labeled 

with the fluorescent substrate of SA-β-gal, C12FDG, and enriched for the highest ~30% of 

the C12FDG-positive (SA-β-gal-positive) and morphologically enlarged population using 

fluorescence-activated cell sorting (FACS). This protocol ensures a highly specific and 

selective purification of senescent population from a heterogeneous mixture of tumor cells 

after treatment. The highly C12FDG-positive population was then re-plated and monitored 

for senescence markers such as proliferative arrest, and SA-β-gal activity. As shown in 

Figures 3.3.C and 3.3.D, the sorted population recovered proliferative capacity after 16 

days accompanied by the suppression of SA-β-gal activity.  
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Figure 3.3. Proliferative recovery from cisplatin treatment in HN30 and HN12 cells 

is associated with the reduction of senescence-associated features. A) 

Histochemical SA-β-gal staining (20x objective, scale bar: 20 µm, bright field images). 

Cells were treated with 5uM cisplatin for 24 hours and stained for SA-β-gal activity at days 

10 and 14. Note that the enzyme activity declines with cellular proliferative recovery. B) 

qRT-PCR for the SASP mRNAs IL-6, IL-8, and IL-1β. *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 

0.001 indicate statistical significance of each condition compared to control as determined 

using two‐way ANOVA with Sidak's post hoc test.C) Growth curve and D) SA-β-gal 

staining for high-C12FDG-positive HN30 and HN12 cells (enriched on Day 5 after cisplatin 

treatment). 
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3.2.3. ABT-263 selectively eliminates senescent tumor cells in vitro 

The proliferative recovery in tumor cells re-emerging from a therapy-induced 

senescent population has been shown to contribute not only to recurrence of a more 

aggressive form of the disease, but also to acquired resistance to chemotherapy or 

radiation (168,169). Consequently, in an effort to eliminate the cisplatin-induced 

senescent population, cisplatin-treated HN30 and HN12 cells were exposed to a single 

dose of ABT-263, an agent that has demonstrated senolytic properties (129,170) for 24-

hours. A significant decrease in the number of viable cells (Figure 3.4.A) strongly 

suggests that ABT-263 selectively eliminates cisplatin-treated senescent cells, while 

showing minimal effects on untreated cells. Clonogenic survival assays using increasing 

concentrations of ABT-263 on non-treated tumor cells confirmed that ABT-263 alone, 

even at higher concentrations, was ineffective in perturbing colony formation for non-

senescent tumor cells (Figure 3.4.B). This result was recapitulated with selective 

inhibitors of BCL-2 (ABT-199) and BCL-XL (A-1155463) (Figures 3.4.B). In addition, ABT-

263 treatment resulted in a significant decrease in the SA-β-gal positive (senescent) 

population (Figure 3.4.C), further confirming the selective activity of ABT-263 for the 

senescent population. As we have reported previously in models of non-small cell lung 

cancer and breast cancer (54,60), ABT-263 effectiveness diminishes over time as the 

treated cells escape senescence and recover their proliferative capacity (Figure 3.4.D, 

upper panel) in marked contrast to the effectiveness of ABT-263 after the second dose 

of cisplatin (Figure 3.4.D, lower panel). This observation reaffirms the selectivity of ABT-

263 for a senescent cell population. 
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Figure 3.4. ABT-263 has minimal cytotoxicity on non-senescent cells or 

proliferative recovering cells from senescence. A) Growth curves for cells treated with 

cisplatin followed by either vehicle or 2 µM ABT-263 for 24 hours. Arrows indicate the 

time of ABT-263 treatment. B) Clonogenic survival assay performed on control cells 

treated with different concentrations of ABT-263 for 24 hours. The number of colonies 

were counted and analyzed. C) X-gal staining after sequential treatment of HN30 cells 

with cisplatin and ABT-263; decreased population of SA-β-gal positive cells show that 

ABT-263 treatment eliminates senescent cells. D) ABT-263 effectiveness diminishes over 

time when HN30 cells recover their proliferative capacity. Blue arrows indicate the 

cisplatin treatment timepoint. Red arrows are ABT-263 treatment timepoints. Note that 

HN30 cells undergo cell death only when they are in senescence state (top), but not in 
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recovery stage (bottom). All quantitative graphs are mean ± SEM from at least three 

independent experiments. 

3.2.4. ABT-263 promotes senolysis by apoptotic cell death 

 Consistent with previously published studies on ABT-263 as an apoptosis 

inducing agent (171), there was a significant increase in Annexin-V/PI staining and the 

apoptosis marker, cleaved-caspase-3, in the combinatorial treatment group (cisplatin 

followed by ABT-263) compared to cisplatin or ABT-263 alone (Figures 3.5.A and B). 

Taken together, these observations strongly confirm that ABT-263 acts as a selective 

senolytic in vitro by significantly decreasing the number of cisplatin-induced senescent 

cells. 

Figure 3.5. ABT-263 induces apoptotic cell death in cisplatin-induced senescent 

cells. A) Annexin-V/PI quantification of apoptosis induced by 2 µM ABT-263 with 

overnight exposure 24 hours after drug removal (Day 7) in HN30 and HN12 cells after 

treatment with cisplatin. B) Western blots for cleaved-caspase 3 in HN30 and HN12 cells. 

Cells were treated with 5uM cisplatin followed by ABT-263 for 24 hours and harvested at 

day 7. All images are representative fields or blots from at least three independent 
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experiments, and all quantitative graphs are mean ± SD from at least three independent 

experiments. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001 indicate statistical 

significance of each condition compared to control as determined using two‐way ANOVA 

with Sidak's post hoc test. 

 

3.2.5. The BCL-XL/BAX axis is the primary target for cell death induced 

by ABT-263 in cisplatin-induced senescent HNSCC cells 

ABT-263 is known to specifically inhibit the function of the anti-apoptotic BCL-2 

and BCL-XL proteins to induce apoptotic cell death (171). In order to delineate the 

specificity of the inhibitory activity in head and neck cancer, we treated cisplatin-induced 

senescent HN30 cells with a BCL-2 specific inhibitor, ABT-199 and a BCL-XL specific 

inhibitor, A-1155463. These agents do not have an effect on non-senescent HN30 cells 

(Figures 3.6 A and B). 

 

Figure 3.6. BCL-XL is the primary target for ABT-263-induced senolysis. Clonogenic 

survival assay performed on A) HN30 and B) HN12 cells treated with vehicle or cisplatin 

followed by ABT-263, ABT-199, and A-1155463 (1uM for 24 hours).  
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However, A-1155463, but not ABT-199, eliminated senescent cells, suggesting 

that BCL-XL is the primary target in senescent HNSCC cells (Figures 3.7.A, and 3.6.A). 

We further confirmed that ABT-263 and A-1155463-mediated cell death was occurring 

primarily via apoptosis using Annexin-V staining (Figure 3.7.C). Similar specificity to BCL-

XL was also observed in p53-null HN12 cells (Figure 3.7.B, D, and 3.6.B) These results 

strongly suggest that BCL-XL is the primary target of ABT-263-induced senolytic cell 

death. 

 

Figure 3.7. BCL-XL is the primary target for ABT-263-induced senolysis. 

Growth curves for A) HN30 and B) HN12 cells treated with 5uM cisplatin followed by 

either vehicle, 2 µM A-1155463 (Left) or ABT-199 (Right) for 24 hours. Arrows indicate 

timepoints of A-1155463 or ABT-199 treatment. C) and D) Apoptotic cell death was 

determined in HN30 andHN12 cells, respectively, by Annexin-V/PI staining followed by 

FACS analysis. *** p ≤ 0.001, **** p ≤ 0.0001 indicate statistical significance of each 
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condition compared to indicated condition as determined using two‐way ANOVA with 

Sidak's post hoc test. 

In order to further support that the senolytic activity of ABT-263 in head and neck 

cancer cells was driven by inhibition of BCL-XL, we next determined the expression of 

major BCL-2 family proteins in cisplatin-induced senescence HN30 cells. The level of the 

anti-apoptotic protein, BCL-XL, gradually increased following cisplatin treatment (Figure 

3.8.A). Consistently, these increases were also observed in the HN12 cells (Figure 

3.8.B). Changes of other BCL-2 family proteins were inconsistent (Figures 3.8 A and B). 

ABT-263 inhibits the interaction of BCL-XL with BAX/BAK, thereby inducing 

apoptosis(117). To elucidate the involvement of these executioner pro-apoptotic proteins 

following ABT-263 treatment, we established stable HN30 cells with shRNA for BAX 

(shBAX), BAK (shBAK) or scrambled-control (shC) (Figure 3.8.C). Although these cell 

lines undergo similar induction of senescence following exposure to cisplatin (Figure 

3.8.D, bottom), cisplatin-treated shBAX-expressing cells, but not shBAK expressing 

cells, failed to undergo cell death following exposure to ABT-263 (Figure 3.8.D, top), 

indicating that BAX is essential to ABT-263-induced senolysis.  

The above results prompted us to investigate the subcellular localization of BAX and BCL-

XL, their interaction, and BAX conformational change/activation. The mitochondria-

enriched lysates revealed the accumulation of BAX in cisplatin-induced senescent and 

further in ABT-263-treated HN30 cells (Figure 3.8.E). In contrast, the amounts of BCL-XL 

and BAK at the mitochondria were only modestly perturbed (Figure 3.8.E). We then 

investigated the BCL-XL/BAX interaction by co-immunoprecipitation experiments. When 

BCL-XL was immunoprecipitated, BAX was present in both the control and cisplatin 
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treatment groups. However, when ABT-263 was introduced, the BCL-XL/BAX interaction 

was significantly decreased (Figure 3.8.F), suggesting that ABT-263 inhibits the BCL-

XL/BAX interaction and releases BAX from the complex. This result indicated that BAX 

became activated to allow apoptosis to occur. 

 

 

Figure 3.8. ABT-263 induces senolytic activity through modulation of the BAX/ 

BCL-XL interaction. A) HN30 cells were treated with cisplatin and harvested at the 

indicated times. B) HN12 cells were treated with 5uM cisplatin and harvested at Day 7. 

Total cell lysates were subjected to Western blotting with the indicated antibodies. C) 

HN30 shBAX, shBAK and shC (scrambled control) cells were treated with cisplatin (5 µM) 
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for 5 days. Total cell lysates were subjected to Western blotting with the indicated 

antibodies. D) Senescent cells in (C) were treated with ABT-263, ABT-199, and A-

1155463 (1 µM each) for 24 hours and stained with trypan blue and X-gal activity. (10x 

objective, scale bar: 10 µm, bright field images). E) BAX is recruited to the mitochondria 

membrane upon ABT-263 treatment. HN30 cells were treated with cisplatin (5 µM) for 5 

days followed by ABT-263 (1 µM) for 16 hours. The earlier time point allowed us to detect 

navitoclax effects on apoptosis regulatory proteins before apoptosis completion, which 

might have resulted in the degradation of select proteins. Mitochondria-enriched (heavy 

membrane) fractions were subjected to Western blotting with the indicated antibodies. F) 

ABT-263 disrupts the interactions of BCL-XL and BAX. HN30 cells were treated as in (E), 

and total cell lysates were immunoprecipitated with anti- BCL-XL antibodies followed by 

Western blotting with the indicated antibodies. All images are representative fields or blots 

from three independent experiments (n = 3), and all quantitative graphs are mean ± SD 

from three independent experiments (n = 3). 

 

3.2.6. ABT-263 selectively eliminates cisplatin-induced mouse oral 

squamous cell carcinoma cells in vitro and in vivo 

In order to test the senolytic activity of ABT-263 in vivo, we first established the 

mouse oral squamous cell carcinoma (OSCC) cell line (602) derived from the 4-

nitroquinoline-1 oxide (4NQO)-developed tumor on the tongue (see Materials and 

Methods). A crystal violet and senescence associated-β-galactosidase (SA-β-gal) stain 

revealed that cisplatin induced 602 cells into senescence and sensitized the cells to ABT-

263 (Figure 3.9.A). We then evaluated senolytic activity of ABT-263 in a syngeneic 

mouse model. Cisplatin treatment resulted in brief tumor stasis compared to the control 

and ABT-263 monotherapy (Figure 3.9.B). Sequential cisplatin and ABT-263 treatment 
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resulted in a distinct therapeutic benefit characterized by delayed tumor recurrence and 

longer survival (Figure 3.9.B and C). Furthermore, two rounds of cisplatin followed by 

ABT-263 treatment (combination B) outperformed all groups, including the single round 

of cisplatin followed by ABT-263 (combination A), in terms of delayed tumor recurrence 

and improved animal survival. 

We further extracted and analyzed the 602 tumors to evaluate markers of 

senescence and the senolytic activity of ABT-263. Cisplatin-induced senescence in 

tumors in vivo was clearly detected as X-gal staining with increased SA-β-gal activity, 

which was then decreased upon ABT-263 treatment (Figure 3.9.D, left panels). Cisplatin 

also induces DNA single- or double strand breaks (DSBs). The phosphorylated form of 

histone H2AX (γ-H2AX) marks sites of DNA DSB repair. Compared to the control, γ-H2AX 

was strongly stained in tumors exposed to cisplatin (Figure 3.9.D, middle panels). 

Extensive cleavage of caspase-3 (c-casp3), indicative of apoptosis, was evident in tumors 

treated with cisplatin followed by ABT-263 (Figure 3.9.D, right panels). These results 
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suggest that the benefit of sequential treatment is a result of apoptosis caused by ABT-

263 in cisplatin-induced senescent tumors. 

 

Figure 3.9. Sequential administration of ABT-263 following cisplatin delays tumor 

recurrence in a syngeneic mouse model of OSCC. A) ABT-263 eliminates cisplatin-

induced senescent mouse OSCC cells in vitro. Mouse OSCC 602 cells were treated with 

cisplatin (2.5 μM) for 5 days followed by exposure to ABT-263 (1 μM) for 24 hours. X-gal 

staining in SA-β-gal positive cells indicates senescence after cisplatin treatment. (10x 

objective, scale bar: 10 µm, bright field images). B) 602 cells were subcutaneously 

inoculated in C57BL/6 mice at the flank (Day 0). When tumors achieved a size of ~100 

mm3, mice were randomized into five groups (Day 13, N=6/group). Mice were treated 

with cisplatin (5 mg/kg) at Day 13, 16, 20 and 23, followed by ABT-263 (80 mg/kg) daily 
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at Day 27-31 and Day 34-38. The second round of treatments was performed with 

cisplatin at Day 41, 44 and 48, followed with ABT-263 at Day 55-59 and Day 62-66. Tumor 

volume (B) was determined by caliper measurements and survival (C) was monitored by 

Kaplan-Meier curves. D) Tumors were excised after treatment with vehicle (control), 

cisplatin, ABT-263 or cisplatin followed by ABT-263. SA-β-gal activity was monitored by 

staining with X-gal, and DNA double-strand breaks repair and apoptosis were monitored 

by immunohistochemical staining with antibodies against γ-H2AX and cleaved-caspase-

3, respectively (Original magnification = 20X). Graphs are represented as mean ± SEM. 

All tumor images are representative fields from four tumor slices (n = 3) taken from three 

mice per group (n = 3). 

 

Based on the previous preclinical data in animal models (172), ABT-263 treatment 

results in rapid and concentration-dependent thrombocytopenia that resolves after drug 

cessation (173,174). Here, we evaluated the safety of ABT-263 in our animal model by 

analyzing Complete Blood Counts (CBC), particularly by focusing on the dynamic of 

circulating platelets and neutrophils (Figures 3.10, and 3.11). The number of circulating 

platelets and neutrophils in different groups of mice shows that ABT-263 treatment alone 
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or in combination with cisplatin does not result in thrombocytopenia or neutropenia in our 

perimental model system. 

 

Figure 3.10. Platelet cell count (K/ µl) in mice treated with A) vehicle, B) cisplatin 

alone, C) ABT-263 alone or D and E) in combination with cisplatin over a period of 21 

days. All quantitative graphs are mean ± SD from at least three independent experiments. 

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001 indicate statistical significance of 

each condition compared to indicated condition as determined using two-way ANOVA 

with Sidak's post hoc test. 
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Figure 3.11. Cisplatin and ABT-263 treatment alone or in combination did not 

result in significant Neutropenia. Blood samples were analyzed for neutrophil 

percentage at different time points in different groups of A) control, B) Cisplatin alone, C) 

ABT-263, D, and E) cisplatin in combination with ABT-263. Control vs ABT, cisplatin, 

Combination A or B: p > 0.05 All quantitative graphs are mean ± SEM from at least three 

independent experiments. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001 0001 

indicate the statistical significance of each condition compared to the indicated condition 

as determined using two‐way ANOVA with Sidak's post hoc test. 

 

3.3. Discussion  

Locoregional and distant recurrence is the most common cause of death in 

HNSCC patients, and it has been suggested that the morbidity and mortality is mediated 

by the progression from residual tumor cells that survive from the assault of 

chemotherapy or radiotherapy (175). Such contribution to recurrence from residual tumor 
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cells is also observed in breast, prostate, and lung cancer; more specifically, whereas the 

initial therapies result in both tumor regression and stasis, a residual cell population can 

proliferate at secondary local or distant sites with equal or more aggressiveness (176–

178). This residual and dormant cell population could potentially be linked to senescent 

and quiescent tumor cells as well as cancer stem cells (179–181). 

Despite the fact that therapy-induced senescence has been investigated for 

decades, the contribution of senescent tumor cells to disease recurrence is still obscure 

(182). The senescence phenotype was initially considered as a favorable outcome of 

cancer therapy, as it likely represents a primary response to chemotherapy or radiation 

and cells in this state manifest characteristics such as prolonged growth arrest, which 

may lead to tumor regression (183). However, as senescent cells are metabolically active 

and resistant to apoptosis(184,185), it is anticipated that the considerable heterogeneity 

of senescent tumor populations would allow for proliferative recovery of some tumor 

subpopulations from the state of growth arrest (185,186). Additionally, the ability of 

senescent cells to secrete pro-inflammatory cytokines and chemokines (SASP) 

contributes to chronic inflammation and adverse paracrine effects (187,188). Finally, the 

tumorigenic potential and more aggressive behavior of post-senescent cells, including 

frequent epithelium-to-mesenchymal transition (EMT) and genomic instability, argues for 

the central involvement of senescent cells in disease recurrence (189). To combat these 

potentially deleterious long-term effects of therapy-induced senescence, a new class of 

compounds, termed “senolytics” which selectively induce cell death in senescent cells, 

has been developed (189).  
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In the current work, we investigated the utility of a two-hit sequential treatment 

approach, first with chemotherapy followed by senolysis, in head and neck cancer. We 

chose p53 wild-type HN30 cell line derived from pharynx and p53-null HN12 cell line 

derived from lymph node metastasis (190), in consideration of the fact that p53 is most 

commonly mutated gene in head and neck cancer patients (132). Both cell lines showed 

a significant degree of senescence upon treatment with cisplatin by assessing multiple 

assays and markers (Figure 3-1). The delayed senescence in HN12 cell line likely reflects 

the p53-independent pathway (191). For example, it has been shown that p16 plays a 

critical role in senescence induction in p53-null models (191). We also confirmed 

senescence and tumor stasis induced by cisplatin treatment in a syngeneic mouse model 

(Figures 3-9B). Furthermore, the proliferative recovery from senescence was confirmed 

using fluorescence-activated cell sorting (FACS) and live cell imaging (Figure 3-3 and 

Videos) as well as in a mouse model (Figure 3-9). These results further support the 

recent paradigm shift that therapy-induced senescence is transient, but not permanent, 

growth arrest, which may contribute to tumor recurrence from dormancy(34).  

In order to overcome the survival mechanism which senescent cells maintain, our 

data indicates that a BCL-2/BCL-XL inhibitor, ABT-263 (navitoclax) efficiently induces 

apoptosis following cisplatin treatment in in vitro and in vivo head and neck cancer models 

(Figures 3-5 and 3-9D); these studies are consistent with previous reports showing 

effectiveness of ABT-263 in breast and lung tumors (81,86,192–194). We extensively 

investigated the selectivity of ABT-263, determining that this compound induces 

apoptosis only in the cisplatin-induced senescence population, but not in the proliferating 

population (Figures 3-4). Additionally, our growth curve data with multiple exposures to 
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cisplatin after proliferative recovery confirms that ABT-263 shows selectivity for the cells 

that are exposed to a second dose of cisplatin after recovery, but not the population 

recovered from the first cisplatin exposure (Figure 3-4 D). In mechanistic studies, we 

showed that (i) BCL-XL is the primary target for apoptosis induce by ABT-263 in senescent 

cells (Figure 3-7), and that (ii) the inhibition of BCL-XL/BAX interaction by ABT-263 

followed by BAX activation is critical for this apoptosis induction (Figure 3-8). We and 

others have shown that BCL-XL expression increases gradually after senescence 

induction (117,195,196) and the sensitization induced by ABT-263 is BCL-XL-dependent 

in breast and lung tumors (117). Our results indicate that BAX, but not BAK, is a critical 

pro-apoptotic protein for ABT-263-induced apoptosis in senescent cells in which the level 

of BCL-XL is induced and BAX is accumulated at the mitochondria. It has been shown 

that an increase of BCL-XL levels by overexpression leads to an increase of BAX at the 

mitochondria and sensitizes cells treated with ABT-737, a prototype BCL-2/BCL-XL 

inhibitor of ABT-263, to apoptosis(197). We speculate that the physiological levels of 

BCL-XL increased by senescence induction also led to BAX accumulation at the 

mitochondria, which shifts the dependency of ABT-263-induced apoptosis toward BAX. 

Consistently, studies have shown that BCL-XL is qualitatively and quantitively ten times 

more active than BCL-2 and is more effective in apoptosis inhibition (198,199). Moreover, 

the majority of head and neck cancer patient’s tumor biopsies have shown a significant 

up-regulation in BCL-XL and not BCL-2 protein levels. BCL-XL levels was shown to be 

directly associated with worse therapy outcomes, whereas BCL-2 positive tumors, even 

after locoregional metastasis, demonstrated better therapy outcomes (200). Carter et.al 

also showed that BCL-XL is significantly over-expressed in head and neck cancer patients 
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tumor samples, while BCL-2 levels doesn’t show any increase(201). These data suggest 

that BCL-XL would play a major role, particularly in head and neck cancer, for drug 

sensitivity and treatment outcome. However, more additional work is needed to define the 

precise role(s) of BCL-XL and BCL-2, since our findings in this report along with 

publications in this area clearly show that BCL-2 and BCL-XL are functionally different 

(117,199,202).  

Our data with a syngeneic mouse model (Figure 3-9) clearly indicate that two 

rounds of sequential cisplatin followed by ABT-263 treatment has a distinct therapeutic 

benefit with delayed tumor recurrence and longer survival. Cycling treatments with drugs 

and/or radiation are common procedure and often show clinical benefits. One concern 

regarding ABT-263 in the clinic is the thrombocytopenia that has been a predominant 

dose limiting toxicity as both a monotherapy and in combination. This has been managed 

successfully in several recent trials, allowing for tolerated and biologically active 

combinations with kinase inhibitors such as Osimertinib (203) and ruxolitinib(204). 

However, neutropenia has been reported as a dose limiting toxicity when navitoclax was 

administered with chemotherapy(205); this toxicity has been particularly limiting for these 

combinations, none of which have progressed beyond Phase 1. Our data indicate that 

sequential exposures to ABT-263 after cisplatin treatment can effectively reduce tumor 

burden, and therefore alleviate the need to dose both agents concomitantly. This 

sequential dosing approach thus has the potential to effectively treat head and neck 

cancer patients while circumventing the limiting hematological toxicity that would be 

anticipated by simultaneous dosing of the two agents. Next-generation BCL-2/BCL-XL 

inhibitors such as AZD0466 (206), APG-1252 (207), and DT2216 (BCL-XL-PROTAC) 
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(208) have been designed to mitigate thrombocytopenia and clinical trials have recently 

started with these agents. Thus, these compounds also need to be verified as senolytics 

to be combined with existing chemotherapy/targeting drugs in the future. It is also 

imperative to determine the senolytic efficacy following chemoradiation, which is 

commonly used as the first-line treatment for HNSCC patients. 

Taken together, our study provides a clear foundation upon which to develop 

therapeutic approaches for senescence clearance to potentially prevent or delay cancer 

relapse in HNSCC. Additionally, our in-vitro and in-vivo data show that sequential 

treatment of cisplatin and navitoclax can provide a potentially effective treatment strategy 

with mitigated toxicity for HNSCC patients. However, there are still key questions that 

need to be answered in future studies, such as the recovery mechanism in senescence 

cells, the interplay between navitoclax and immune system, and resistance to navitoclax 

in a subpopulation of cancer cells after acquiring cisplatin induced resistance. Our 

preliminary data (not published) shows that navitoclax is not effective in head and neck 

cancer resistant models. Resistance mechanism and a new strategy to eliminate the 

resistant population is of great importance to improve patients therapy outcome in the 

future.
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Chapter 4: Elimination of cisplatin-treated head and 

neck cancer cells to delay resistance to therapy 

4.1. Introduction  

4.1.1. Therapy options and outcomes in Head and Neck cancer patients 

Despite all multimodal treatment strategies that have been developed in recent 

years, treatment of locally advanced squamous cell carcinoma of the head and neck is 

still a challenge. After the introduction of alternative approaches such as 

immunotherapeutic and targeted therapy compounds, pembrolizumab and cetuximab, 

respectively, cisplatin remains the most cost-efficient and effective treatment for the 

majority of head and neck cancer patients (209,210). Most HNC patients initially respond 

to cisplatin therapy, but the fatal proliferation and chemoresistance are the limiting factors 

in the first-line therapy in these patients which consequently results in cancer recurrence 

and poor outcomes. Additionally, the local or distant relapse has been associated with 

higher morbidity, lower median survival, and an increase in financial burden in cancer 

care (136,211).  

4.1.2. Cisplatin-induced resistance 

Chemoresistance, especially cisplatin resistance, has been known as a manifold 

and complex phenomenon that is not yet fully understood. However, this complex and 

multilevel process has been potentially associated with alterations in drug import and 
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export, DNA repair response, and glutathione-dependent detoxification (153,212). It is 

also worth mentioning that the impact of pre-existing factors and high mutational loads 

that contribute to resistance to chemotherapeutic agents has been studied but are still not 

completely understood.  

Understanding the underlying mechanisms of resistance to chemotherapeutic 

agents such as cisplatin, has continued to represent a challenge in cancer research. 

Chemotherapy resistance takes place due to a variety of events in cancer cells that 

includes extrinsic factors (such as tumor microenvironment and immune system 

response) and intrinsic factors such as development and selection of a subpopulation of 

cells with stem-like features, alterations in drug transport and metabolism, enhanced DNA 

repair, improved capacity for drug detoxification, and epigenetic changes (212). 

Therefore, cisplatin treatment often selects for a subset cellular population that can 

escape senescence and apoptosis and emerge as a more aggressive sub-population 

(213). Additionally, since cisplatin has been recognized as the most efficient and cost-

effective first-line therapy for head and neck cancer patients, identifying a secondary 

compound to target the resistant sub-population in the primary tumor would likely 

represent a breakthrough approach for treating these patients. 

As was discussed in chapter one, senolytics are one of the most effective 

secondary compounds that eliminate senescent cells. However, senolytics are not the 

only secondary compounds that have been reported to be effective in cancer treatment. 

In 2015, Jing Lu et.al designed ARV-825, a hetero-bifunctional (Proteolysis Targeting 

Chimera) PROTAC, that recruits BRD4 to the E3 ubiquitin ligase cereblon, resulting in 

fast, efficient, and prolonged degradation of BRD4 in all Burkitt's lymphoma cell lines 
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(111). This compound was developed in order to overcome limitations associated with 

JQ1, the primary BRD4 inhibitor, which is lacking in selectivity and is associated with 

unacceptable toxicity (214). These compounds became attractive alternatives to JQ1 to 

inhibit or degrade BET family proteins.  

Bromodomain-containing proteins are known as essential components of 

epigenetic readers and erasers (215). An accumulating body of evidence has shown that 

ARV-825 has been effective as monotherapy in neuroblastoma, thyroid cancer, leukemia, 

lung carcinoma, and more models (110–112). The mechanism of action of ARV-825 

greatly varies between cell lines and the treatment strategy that is being applied. 

Moreover, the concentration of ARV-825 and whether it is being used in combination with 

a chemotherapeutic compound also influence the mechanism of action 

(112,113,115,216). In the current work, we established a cisplatin-resistant head and 

neck cancer model and studied ARV-825 effectiveness and mechanism of action as a 

secondary compound combined with cisplatin. 

4.1.3. Objectives  

The objectives of this study were to i) Confirm cisplatin-induced resistance in head 

and neck cancer models, ii) Identify the mechanism by which resistance is acquired iii) 

assess ARV-825's effectiveness in eliminating both resistant and non-resistant cells, iv) 

investigate the mechanism by which ARV-825 eliminates cisplatin-treated cells. 
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4.2. Results  

4.2.1. Cisplatin treatment results in acquired resistance in head and 

neck cancer cell lines 

Based on the standard of care treatment regimen approved by the FDA, cisplatin 

is still the first-line chemotherapeutic agent being used in head and neck cancer patients. 

The concentration and administration of cisplatin are determined according to the stage 

and grade of the tumor, but in almost all patients, the regimen includes multiple cycles of 

cisplatin infusion. In the previous chapter, we showed that HN30 and HN12 cell lines 

underwent a temporary senescent state after cisplatin treatment, and sequential 

treatment with the senolytic, navitoclax significantly eradicated the senescent population. 

However, a small subpopulation of the HN30 cell line still survived and contributed to the 

proliferative recovery we observed at approximately day 12 after cisplatin treatment. 

Literature mining and data analysis on senescent cells and the phenomenon behind the 

recovery suggested the possibility in which exposure to cisplatin can lead to cisplatin-

induced resistance (217–219). To assess this possibility, we exposed our previously 

analyzed head and neck cancer cell line, HN30, to multiple cycles of cisplatin and 

analyzed their growth arrest and IC50 using MTS and trypan blue exclusion viability, and 

β-galactosidase (SA-β-gal) activity assays. (Figures 4-1). IC50 values increased from 3.7 

in parental cells compared to 10.48 in the resistant model (Figure 4-1 A). The newly 

generated cell line, HN30R, also showed lower growth rate with proliferative recovery at 

day 8 (Figure 4-1 B). Histological and FACS based β-galactosidase (SA-β-gal) activity 

assay in panel C also shows that different concentrations of cisplatin induce around 80% 
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senescence in HN30 cells, while in the resistant cell line the maximum amount of 

senescence quantified is 20%.  

 

Figure 4-1. Cisplatin treatment induces acquired resistance in HN30 cells. A) IC50 

was determined for both parental and resistant cell lines using MTS assay. IC50 

increased more than 3 fold in the resistant cell line after continuous cisplatin treatment. 

B) HN30R time course cell viability assay after treatment with 5, 10, and 20μM cisplatin 

indicates that the cisplatin effect is dose-dependent and 5μM concentration induces a 

temporary senescence associated growth arrest with a rapid recovery. C) beta-

galactosidase (SA-βgal) activity was assessed using X-gal staining and C12FDG assay 

in both parental and resistant cells at day 5. According to the morphological changes and 

SA-βgal signal, HN30R undergo a brief senescence state. 

 

4.2.2. Cisplatin-Resistant cells are resistant to Navitoclax 

ABT-263 or Navitoclax has been one of the most effective senolytics in cancer 

research and clinical trials investigating more efficient combination therapies to improve 
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therapy outcomes in patients (NCT01828476, NCT02591095, NCT00891605, 

NCT04041050) However, the heterogeneous nature of tumor cells can contribute to 

differential responses to therapy. In our previous study, we showed that almost 80% of 

HN30 cells undergo senescence after cisplatin treatment, with approximately 55% 

undergoing apoptosis after Navitoclax treatment. The difference between the percentage 

of cells that are in a state of senescence and the overall extent of apoptosis suggests that 

there is a subpopulation of senescent cells that either recover rapidly after cisplatin 

treatment and consequently fail to demonstrate sensitivity to navitoclax or that are 

intrinsically resistant to this compound. Understanding the origin of this subpopulation 

needs to be further investigated, however, to confirm that HN30R cell line does not 

respond to the combination treatment with cisplatin and navitoclax, we monitored the 

number of HN30R cells after treatment with 5 and 10 M cisplatin alone or in combination 

with 2 M navitoclax. Figure 4-2A shows that increasing the concentration of cisplatin 

does not increase the cellular response to navitoclax. 

We utilized a trypan blue exclusion/ cell viability assay and Annexin V/PI flow 

cytometry to analyze the number of viable cells and apoptosis, respectively, upon 

exposure of the HN30R cells to cisplatin followed by navitoclax. Figure 4-2-A and B 

indicate that, as shown in Figure 3, exposure to 5µM cisplatin slows HN30R cell growth 

but does not arrest the cells; furthermore, as would have been anticipated based on the 

senolytic properties of navitoclax, HN30R cells do not respond to navitoclax treatment as 

the cells continue to proliferate and there is no increase in apoptosis. 
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Figure 4-2. HN30R cells do not respond to cisplatin in combination with Navitoclax. 

A) Time course cell viability assay of HN30R cells treated with cisplatin 5 and 10 μM for 

24 hours, followed by 2 μM navitoclax for 48 hours does not show any significant cell 

death. Note that in the previous section, we showed that the parental cell line, HN30, 

dramatically underwent apoptosis after the combination treatment. B) Apoptosis using 

Annexin V/PI staining in HN30R cells treated with the same strategy. HN30R cells, unlike 

the parental cell line, do not show any sensitivity to the senolytic, navitoclax.  

 

4.2.3. Parental HN30 and resistant HN30 cell lines fail to exhibit CSC 

characteristics  

Cisplatin resistance can be a multifactorial phenomenon in which various 

molecular pathways are involved. Whether drug resistance is intrinsic or acquired, it is 

clinically relevant to identify strategies for overcoming the drug resistance phenotype, and 

characterizing and identifying cancer stem cells have been correlated with diagnosis, 

therapy, and prognosis (220).  
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One possibility that has received extensive attention in the literature is the Cancer 

Stem Cell hypothesis (CSC), which suggests the existence of a rare subpopulation with 

stem cell-like characteristics, particularly that of self-renewal that is essential for cancer 

initiation, progression, and survival after therapy (221–224). The CSC population 

characteristics have been broadly investigated and it has been shown that this 

subpopulation survives and thrives during therapy-induced stress conditions, thereby 

resulting in the expansion of the resistant subpopulation (225,226). As a result of many 

reports published on cancer stem cells, few characteristics have been identified including 

Slow proliferation, differentiation properties, distinguished surface markers, and 

resistance to conventional chemotherapy and radiotherapy. 

In order to test the cancer stem cell hypothesis in our models, we analyzed the 

expression of CD44 surface marker and ALDH enzyme in the parental and resistant HN30 

cells. UM1-SCC and A549 cells were previously shown to contain a subpopulation 

expressing CD44 surface marker and ALDH, respectively (70,212,227–230), and were 

used as positive markers (Figure 4-3). These markers have been shown to be 

significantly expressed in small subpopulations in head and neck cancer cells (231), 

however, in our models, Immunofluorescent microscopy and flow cytometry showed that 

HN30 and HN30R cells do not express CD44 and ALDH markers.  
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Figure 4-3. HN30 resistant cell line does not exhibit stemness characteristics. CD44 

surface marker was assessed using flow cytometry (left panels) and immunofluorescent 

microscopy (right panels) on A) HN30, B) HN30R, and C) SCC cell line as a positive 

control. Additionally, ALDH marker existence was also evaluated as an additional marker 

for cancer cell stemness in D) HN30R, E) HN30, and F) A549s as a positive control. All 

images are representative fields or blots from at least three independent experiments, 

and all quantitative graphs are mean ± SEM from at least three independent experiments. 
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4-2-4. Cisplatin transporter, CTR1/SLC22A2 role in resistance 

A decreased intracellular accumulation of cisplatin is also one of the mechanisms 

identified in cisplatin-resistant cell lines (232). Studies have described CTR1/SLC22A2 

as a significant uptake transporter in yeast and mammalian cells (233). The extracellular 

methionine cluster of this transporter activates cisplatin and overexpression, or blockade 

of this molecule has been associated with cisplatin sensitivity and resistance, respectively 

(230,233,234). Additionally, CTR1 expression profile was shown to be correlated with 

higher intracellular cisplatin (233). Here we performed immunofluorescence imaging on 

HN30 parental and resistant cell lines for the CTR1 surface marker. Figure 4-4 indicates 

the surface expression of CTR1 was not downregulated in the HN30R compared to HN30 

parental cells. This observation indicates that both cell lines express CTR1 and 

presumably are equaly efficient in cisplatin uptake. However, intracellular concentration 

of cisplatin needs to be analyzed in future experiments to confirm the equal uptake 

efficacy.  

 

Figure 4-4. CTR1/SLC22A2, as the cisplatin major influx transporter, is not 

differentially expressed on the surface of HN30R cells compared to HN30s. All 

images are representative fields from at least three independent experiments, and all 

quantitative graphs are mean ± SEM from at least three independent experiments. 
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4.2.5. BRD4 overexpression decreases disease-free and overall survival 

in Head and Neck cancer patients 

To further explore the characteristics of resistance in HN30R cells, we analyzed 

head and neck cancer patients' clinical gene expression data and observed a significant 

increase in BET family proteins in two data sets. BET family proteins, specifically BRD4, 

are bromodomain-containing proteins and epigenetic readers that play critical roles in 

transcription activation and various molecular pathways in cells, including tumorigenesis. 

Studies have shown a recurrent translocation of BRD4 in human squamous carcinomas 

(235). Such translocations result in the expression of the tandem N-terminal 

bromodomains of BRD4 as an in-frame chimera with the NUT (a nuclear protein. 

Functional studies in patient-derived cell lines have clarified the critical role of the BRD4-

NUT oncoprotein in maintaining the proliferation advantage and in this fatal malignancy 

(236). Additionally, BRD4 overexpression has been clinically associated with different 

types of human cancers (237–240). To explore the expression profile of BET family 

proteins in head and neck cancer patients' clinical data, we utilized GEPIA bioinformatics 

as a resource to analyze The Cancer Genome Atlas (TCGA portal) human datasets. 

According to two different datasets with a total of 701 patients with Head and Neck 

Squamous cell carcinoma (HNSC) and Esophageal carcinoma (ESCA), BRD4, BRD3, 

and BRD2 are overexpressed in HNSC and ESCA tumors as compared to their normal 

counterparts (P value< 0.05) (Figure 4-5A, B, and C).  
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Moreover, the role of BRD4 in survival (disease-free and overall) was analyzed in 

the same database. Figures 4-5D indicate that overexpression of BRD4 is associated 

with worse disease-free and overall survival in head and neck cancer patients.  

 

 

Figure 4-5. BET family proteins are over-expressed in head and neck cancer clinical 

data and contribute to worse outcomes in patients. mRNA expression of A) BRD4 B) 

BRD3, and C) BRD2 in two datasets from GEPIA and TCGA database. 182 tumors 

samples VS 44 normal tissues, p value <0.05. D) Disease-free and overall survival are 

significantly decreased in patients with higher BRD4 expression.  
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4-2-6. ARV-825, BRD4 PROTAC degrader sensitizes the parental and 

resistant cells to Cisplatin 

ARV-825 is a newly developed PROTAC compound that contains OTX015 (small 

molecule inhibitor of BRD4) with an E3 ligase cereblon. This compound has been shown 

to be effective in several cancer models alone and in combination with chemotherapeutic 

drugs (112,115,216). In order to evaluate the effectiveness of ARV-825 alone and in 

combination with cisplatin in head and neck cancer parental and resistant models, the 

number of viable cells was monitored using trypan blue exclusion after treatment with 

cisplatin, with and without ARV-825. Both cell lines were sequentially treated with 5 μM 

cisplatin for 24 hours, and ARV-825 100nM for 96 hours. Cisplatin induces senescence 

in HN30 parental cells, while in the resistant model, the cells begin to recover from the 

growth arrest by day 5. ARV-825 alone clearly has transient senescence-inducing 

properties, as cell growth is arrested for ~ 4 days with increased bet-gal staining, followed 

by proliferative recovery. However, the combination treatment induces a significant level 

of cell death in both cell lines, accompanied by a pronounced interference with 

proliferative recovery. (Figure 4-6 A and B).  
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Figure 4-6. ARV-825 effectively eliminates cisplatin-treated parental and resistant 

cells. Growth curves for both A) HN30 and B) HN30R cells left panels, show that cisplatin 

treatment (5μM for 24 hours) followed by ARV-825 (50nM for 96 hours) significantly 

induces cell death. Beta-gal staining after ARV-825 treatment 96 hours shows 

senescence induction in both cell lines (right panel). for *** p ≤ 0.001, **** p ≤ 0.0001 

indicate statistical significance of each condition compared to indicated condition as 

determined using two‐way ANOVA with Sidak's post hoc test. 

 

To better understand the nature of cell death in this treatment strategy, using flow 

cytometry, we analyzed Annexin V/PI staining on day 9 after initial treatment. Figure 4-7 

suggests that apoptosis is the major mechanism of cell death in both models when they 

are sequentially treated with a combination of cisplatin and ARV-825. 
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Figure 4-7. Apoptosis induction after combination treatment in A) HN30R and B) 

HN30. Annexin-V/PI quantification of apoptosis induced by 50nM ARV-825 with 96 hours 

of exposure after 5μM cisplatin in HN30 and HN12 cells. All quantitative graphs are mean 

± SEM from at least three independent experiments. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, 

**** p ≤ 0.0001 indicate statistical significance of each condition compared to control as 

determined using two‐way ANOVA with Sidak's post hoc test. 

 

4.2.7. The DNA repair response in cells treated with cisplatin and ARV-

825  

One major role attributed to BRD4 is contributing to the DNA damage response at 

double/single-strand DNA break sites (241–243). Studies have shown that BRD4 binds 

to acetylated histones near breakpoints on DNA strands and initiates the assembly of 

DNA repair machinery. We hypothesized that ARV-825 treatment degrades the BRD4 

protein and thereby interferes with the DNA repair response in cisplatin-treated cells. 

Using western blot analysis, we first confirmed that 50nM of ARV-825 degrades the BRD4 

protein in both cell lines (Figure 4-8A). Consequently, immunofluorescent microscopy 
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and its quantification showed that sequential treatment with cisplatin and ARV-825 in both 

cell lines increases DNA double-strand breaks (Figure 4-8B ). DNA double-strand breaks 

peak at day 5 in both cell lines and resolve by day 9 after cisplatin treatment. However, 

after combination treatment, γ-H2AX foci signal significantly increased compared to 

cisplatin and ARV alone.  

 

Figure 4-8. BRD4 degradation results in increased γ-H2AX foci after cisplatin 

treatment. A) Western blot shows that BRD4 is degraded in a dose-dependent manner 

by ARV-825 at concentrations 50, 100, and 150nM after 96 hours. B) 

Immunofluorescence imaging and quantification of γ-H2AX in HN30 and at indicated time 

points and treatment conditions. All images are representative fields or blots from at least 

three independent experiments, and all quantitative graphs are mean ± SEM from at least 

three independent experiments. 
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4.2.8. ARV-825 is not acting as a senolytic 

To identify the mechanism of ARV-825-induced cell death in both models, we 

assessed the senolytic activity of this compound after cisplatin-mediated senescence 

induction. To perform this study, cisplatin treated HN30 and HN30R cells were sorted 

using our C12FDG sorting protocol by FACS into the highest 30% and lowest 20% 

senescent population. We confirmed the senescence state in sorted cells using an SA-

βgal staining assay and C12FDG FACS analysis (Figure 4-9A). We then exposed both 

populations to ARV-825 and monitored cell death using Annexin V/PI staining. Figure 4-

9 B show that both the senescence high and the senescence-low populations from both 

cell lines exhibit almost the same levels of sensitivity to ARV-825. The high senescence 

population in both cell lines does not show significant cell death before ARV-825 

treatment. However, after sequential treatment with ARV-825, both high and low-

senescence populations undergo apoptosis. This indicates that ARV-825, unlike ABT-

263 is not specifically targeting the senescent population. Hence this BRD4 

inhibitor/degrader has a greater potential to target a broad range of tumor cells, not 

necessarily limited to senescent cells.  

 

A 

B 

C 
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Figure 4.9. ARV-825 is not a senolytic. A) SA-βgal staining assay and C12FDG FACS 

analysis of sorted HN30R (Top panel) and HN30 (bottom panel) cells. Cells were treated 

with 5M cis and sorted on day 3 and stained with X-gal (Top panel) and C12FDG (right 

graphs) and analyzed via FACS. B) Cells were re-plated and treated with 50nM ARV-825 

for 96 hours and apoptosis was assessed using Annexin V/PI staining method and FACS 

analysis.  

 

the same levels of sensitivity to ARV-825. This indicates that ARV-825, unlike ABT-

263 is not specifically targeting the senescent population, hence it has a higher potential 

to target a broader range of cells not necessarily only senescent cells.  
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4.2.9. ARV-825 combination with cisplatin results in tumor regression 

in-vivo  

 To investigate ARV-825 effectiveness in-vivo, we established an orthotopic head 

and neck cancer mouse model using NSG mice and HN30 parental cell as a xenograft. 

Cisplatin treatment as monotherapy did not result in significant tumor stasis or regression; 

in dramatic contrast, the sequential addition of ARV-825 to the regimen resulted in a 

distinct and significant delay in tumor growth. As shown in Figure 4-10A, tumor 

regression and growth delay are detectable after the first round of ARV-825 injection. The 

endpoint tumor weight and volume also confirm the measurements collected throughout 

the experiment Figure 4-10 B and C. 

 

Figure 4.10. Sequential administration of ARV-825 following cisplatin delays tumor 

growth in an orthotopic mouse model of HN30 cells. A) NSG mice were treated with 

two doses of cisplatin 5 mg/kg/vehicle after tumor detection on days 0 and day 8, followed 

by two cycles of ARV-825 (10mg/kg)/vehicle injection containing three doses each, every 

other day. Caliper measurement of tumors shows that despite monotherapy groups, 
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tumors treated with the combination of cisplatin and ARV-825, enter a regression/stasis 

phase after the first round of ARV-825 injections. Endpoint B) tumor weight and C) tumor 

volume was also analyzed to confirm the previous observations. 

 

We further extracted and analyzed HN30 tumors to investigate the ARV-825 

mechanism of action. Figure 4-11A shows that cisplatin induces DNA single- or double-

strand breaks (DSBs). The phosphorylated form of histone H2AX (γ-H2AX) marks sites 

of DNA DSB repair. Compared to the control, γ-H2AX was strongly stained in tumors 

exposed to cisplatin. However, in tumors treated with a combination of cisplatin and ARV-

825, we observed even higher levels of γ-H2AX staining indicating that ARV-825 inhibits 

DNA repair pathways and consequently, induces apoptosis. The levels of cleaved-

caspase-3 (c-casp3), indicative of apoptosis, were markedly increased in tumors treated 

with cisplatin followed by ARV-825 (Figure 4-11 B). These results suggest that the benefit 

of sequential treatment is a result of apoptosis by ARV-825 in cisplatin-treated tumors. 

Additionally, we confirmed that ARV-825 at the indicated dose inhibits BRD4 

(Figure 4-11C).  
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Figure 4.11. Immunohistochemical staining and quantification of mouse tumor 

tissues indicate apoptosis, DNA damage, and BRD4 inhibition. Tumors were 

extracted at the endpoint of the study and fixed in formalin, and stained with antibodies 

against A) δH2AX, B) Cleave-Caspase 3, and C) BRD4. (Original magnification = 20X). 

All tumor images are representative fields from four tumor slices (n = 3) taken from three 

mice per group (n = 3). Signal quantification was done using Image j software. 

 

Finally, we evaluated the safety and potential toxicity of the combination of cisplatin 

and ARV-825 in this study by monitoring mouse body weight and analyzing Complete 

 

A 

B 

C 
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Blood Count (CBC) by focusing on platelet counts and neutrophil percentages in the blood 

collected from a cardiac puncture in mice at the endpoint of the experiment. We did not 

observe any significant effects of treatment on these parameters (Figure 4-12A, B, and 

C). 

 

 

Figure 4.12. ARV-825 in combination with cisplatin does not induce significant 

toxicity. A) Individual body weight of mice was monitored throughout the experiment. 

Mice treated with the combination regimen showed temporary and non-lethal weight loss, 

with instant recovery. Endpoint CBC analysis of B) Neutrophil and C) Platelet counts did 

not show any significant decrease in the combination group compared with the vehicle-

treated mice. All quantitative graphs are mean ± SEM from at least three independent 

experiments. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001 indicate statistical 

significance of each condition compared to indicated condition as determined using two-

way ANOVA with Sidak's post hoc test. 
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4.3. Discussion and future direction 

Response to cisplatin-based chemotherapy is critical for not only head and neck 

cancer patients, but also for other solid tumors such as ovarian, lung, and testicular 

cancer (244). However, cisplatin-induced resistance is one of the major obstacles to 

achieving desirable outcomes from cisplatin in cancer patients (245). The first-line 

chemotherapy regimen for head and neck cancer patients requires multiple rounds of 

cisplatin infusion after surgery, with or without radiotherapy, depending on the type and 

stage of the tumor (246–248). Both in-vivo and in-vitro studies, along with clinical data 

have shown that cisplatin treatment induces resistance in the tumor cell population, 

resulting in tumor recurrence and metastasis (249,250). Studies and clinical trials 

investigating alternative regimens as first-line therapy for head and neck cancer patients 

concluded that cisplatin based therapy is still superior to multiple chemotherapy drugs 

such as carboplatin, and docetaxel in the rate of objective response (251,252). Moreover, 

economic analysis of cisplatin has also shown that this chemotherapeutic agent, alone or 

in combination with a secondary compound, is the most cost-effective approach for 

patients (253,254). 

In the previous chapter, we investigated the effectiveness of navitoclax on head 

and neck cancer cells induced into senescence by cisplatin, showed that cisplatin does 

not induce a significant amount of cell death in either HN30 or HN12 cell lines, and 

observed high levels of senescence induction in both cell lines (Figure 3-1). Using a 

senolytic, navitoclax, we were able to induce tumor cell death in-vitro and in-vivo. 

However, the recovery of a small subpopulation of cells was unavoidable (Figures 3-4A 



74 

 

and D). Due to the heterogeneous nature of tumor cells, we hypothesized that there is a 

subpopulation in the HN30 cell line from which resistant cells develop after cisplatin 

treatment. Thus, we established HN30R cells from the HN30 cell line to investigate their 

sensitivity to cisplatin and senolytics or secondary compounds. Even though cisplatin was 

still able to induce a brief senescence-associated growth arrest peaking on day 5, we 

showed that HN30R cells did not show any sensitivity to navitoclax (Figure 4-2). Hence, 

we investigated the resistance mechanism in HN30R cells. Studies have shown that 

cisplatin resistance can result from one or multiple mechanisms resulting from epigenetic 

changes, downregulation of cisplatin transporters, cancer stem cell sub-population, and 

higher pace in DNA repair responses (70). Thus, we screened a number of secondary 

compounds such as Fisetin, Venetoclax, Curcumin, and BRD4 protein degrader to 

sensitize the resistant population from which only BRD4 degrader, ARV-825 showed 

effectiveness in both HN30 parental and resistant cell line. 

Our in-vitro and in-vivo data indicate that cisplatin induces double-strand breaks in 

HN30 and HN30R cells, with a peak on day 5 after cisplatin treatment (Figure 3-9, 4-8). 

Consistently, studies have shown that cisplatin as an alkylating agent, crosslinks with 

urine bases on the DNA and forms DNA adducts. By exploiting Nucleotide Excision Base 

repair, or NER, cells remove the adducts from DNA strands and leave DNA strand breaks 

behind (154). This illustrates the underlying reason for the observed DNA damage signals 

on day 5 after cisplatin treatment in our models. We then investigated the effectiveness 

of ARV-825 treatment at different time points in both HN30 and HN30R cells. The addition 

of ARV-825 concurrently with cisplatin, or on day 1 to day 4 after cisplatin treatment did 

not induce any form of cell death (data not shown). However, administration of ARV-825 
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on day 5 after cisplatin treatment, induced apoptotic cell death in both cell lines. By 

investigating the DNA double-strand markers, γH2AX, we showed that ARV-825 addition 

significantly increases the DNA double-strand breaks in both models. We confirmed our 

observations in-vivo in NSG mice bearing HN30 tumors. Our observations indicate that 

the primary mechanism of action of ARV-825 in combination with cisplatin is through 

inhibiting DNA repair mechanisms; however, the complex nature of BRD4 and its 

downstream target genes have been shown to play significant roles in ARV-825 

effectiveness. We conclude that ARV-825 halts the assembly of DNA repair machinery 

by degrading BRD4 as it was previously reported as a mechanism of action for ARV-825 

(104). Finally, this study provides primary insight into the effectiveness and mechanism 

of ARV-825 in combination with cisplatin in head and neck cancer models, and further 

investigations will be required in the future to clarify the role of downstream ARV-825 

target genes and involved molecular pathways.  
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