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Driving is inherently interactive, and drivers must coordinate with other vehicles, cyclists,

and pedestrians to avoid collisions. Furthermore, drivers typically prefer some interaction

outcomes over others. People in a rush typically cut others off and drive aggressively, while

those on a leisurely outing tend to move slowly and behave more altruistically. Even as

passengers in autonomous vehicles, people may exhibit these preferences. Unfortunately,

autonomous vehicles do not share these preferences, instead sharing only minimal information

or operating in isolation. Existing coordination and management methods do not consider

these preferences when making decisions. They focus specifically on minimizing the trip

duration and maximizing throughput.

Cooperative driving automation is an emerging research field in which vehicles work

together to achieve individual goals. Standards organizations such as SAE International have

developed a taxonomy for various collaboration categories among connected autonomous

vehicles (CAVs) with varying automation capabilities. The Federal Highway Administration

is developing research platforms to facilitate cooperative driving algorithm development.

This research seeks to understand how sharing passenger preferences and other high-level

information affects vehicles’ coordination abilities and management performance. Specifi-

cally, we attempt to answer three main research questions. 1. Can CAVs achieve better in-

teraction outcomes by sharing high-level information, such as their passengers’ preferences?

2. Can CAVs solve challenging cooperative decision-making problems by sharing high-level

x



information, such as planned destinations? 3. How does optimizing for passenger preferences

in interactive scenarios affect other traditional performance metrics?

We explore two application areas under the cooperative driving automation theme. The

first scenario considers streams of autonomous vehicles simultaneously approaching an un-

managed intersection. Vehicle passengers have different preferences on how quickly they cross

and in which order. Vehicles convey this information to an auction-based intersection man-

agement system installed at the intersection. The management system then assigns crossing

durations and a crossing schedule to satisfy everyone’s preferences as best as possible.

The second scenario investigates vehicles moving in a spatially-constrained environment

such as an alleyway. In this work, we formulate a new type of finite multi-stage game

we call a deadlock game. Additionally, we propose a solution method that solves general

problem instances. This work provides the foundation for continued research into equilibria

refinement and satisfying passengers’ preferences on the outcomes.

xi



xii



Chapter 1

Introduction

Driving poses significant risks to humans. Of the 36,096 driving-related fatalities in 2019,

an estimated 3,142 involved distracted drivers. Drowsy driving contributed to 697 fatalities,

and 10,710 involved alcohol-impaired drivers [1]. In 2021, traffic congestion in large urban

areas delayed commuters by an estimated 31,065,000 hours and wasted 3,868,000 gallons of

gas, costing them $6 784 000 000 [2].

Autonomous vehicle (AV) proponents claim that AVs would operate safer and more

efficiently than humans, helping to reduce fatalities and congestion [3]. AVs—also known as

driving automation systems or Automated Driving Systems (ADS) [4]—have faster reaction

times, do not get drowsy, and do not get impaired, meaning safety thresholds (e.g., following

distances) can be relaxed.

While AVs can revolutionize driving, real-world experiences highlight several limitations.

The Insurance Institute for Highway Safety (IIHS) conducted a case study on human-driven

vehicle collisions [5]. They separated incident reports according to several driver-related fac-

tors: sensing and perception, prediction, planning and decision, execution and performance,

and incapacitation. The study concluded that while AVs can help reduce incidents stemming

from sensing-and-perception and incapacitation (accounting for 23% and 10% of incidents,

respectively), they may struggle to reduce those caused by other factors.
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Several high-profile crashes involving various AV manufacturers help support the IIHS’s

claims. The National Transportation Safety Board (NTSB) investigated several incidents

(some fatal) involving Tesla vehicles operating under the Autopilot driving automation sys-

tem. Reports describe the vehicles colliding with roadside infrastructure [6], semitrailers

[7, 8], and emergency vehicles responding to calls [9]. In these incidents, drivers were over-

reliant on Autopilot and responded inadequately to system failures.

Other vehicle manufacturers experienced similar incidents. Uber’s Advanced Technolo-

gies Group was testing one of their AVs at night when it collided with a pedestrian crossing

the street, killing her [10]. The investigation determined that the vehicle detected her pres-

ence but failed to classify and predict her movements, leading the system to make the wrong

decision. A Cruise vehicle collided with a motorcyclist while trying to re-center itself after

an aborted lane change [11]. The motorcyclist attempted to move into the gap previously

left by the car as the car simultaneously maneuvered back into it.

Not all incidents involved collisions. An article from The Verge reported that a Waymo

driverless taxi planned to turn right at an intersection, but construction cones blocked the

destination lane [12]. The vehicle attempted to complete the turn, but the motion planning

system could not determine a feasible route and stopped the car, blocking the entire road.

A Waymo response team eventually removed the vehicle.

These incidents emphasize the performance gap between human drivers and AVs. At-

tentive human drivers would have prevented the Tesla and Uber collisions. Human drivers

routinely navigate roads with lane closures, but the Waymo vehicle froze. Additionally, nu-

merous disengagement reports with the California Department of Motor Vehicles describe

times when safety drivers overrode the driving automation system because of unsafe deci-

sions or failures [13]. Some vehicle companies have already removed safety drivers from their

test vehicles (under restrictions) [14], but engineers need to close the performance gap before

this becomes widespread.

Perception and decision-making (planning) issues are common themes in the above anec-

2



dotes. Driving automation systems fail to recognize objects that humans can easily discern,

and in some cases, they falsely detect non-existent objects [15]. Unlike humans, AVs need

complicated motion models to predict road users’ behaviors. However, driving is an in-

teractive task, and these models fail to capture influencing factors among different agents.

Furthermore, human drivers commonly communicate directly through hand gestures or turn

signals and indirectly through slow, elaborate movements. Current commercial AVs operate

in isolation. They do not communicate with neighboring vehicles, which restricts them from

cooperating or collaborating.

AV companies heavily invest in perception and prediction research but neglect an easily-

accessible information source: inter-vehicle communication. Vehicular ad hoc networks

(VANETs) and more general mobile ad hoc networks provide mesh networks for vehicle-

to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication [16]. Connected AVs

(CAVs) can use these networks to exchange information with each other, supplementing

the data they obtain from their onboard systems. This communication enables CAVs to

create vehicle platoon [17] and coordinate their movements. These types of interactions are

collectively referred to as cooperative driving automation (CDA).

Government institutions and standards organizations recognize CDA’s potential and have

been formalizing system architectures, data formats, and protocols to facilitate adoption and

interoperability. Existing CDA research efforts generally share mundane information among

vehicles, such as system states and planned trajectories. However, continued improvements

to network technologies and increased capacity allow CAVs to share higher-level information,

such as preferences over different possible CDA maneuvers and interaction outcomes.

AVs continually interact with other road users, but their differing preferences and self-

interested nature creates conflicts in shared environments. They cannot all cross an inter-

section simultaneously, nor can two opposing vehicles traverse the same single-lane, two-way

road together. Intersection management systems regulate crossing orders using first-come,

first-served (FCFS) or fixed-policy methods, but AVs may prefer different schedules. Road-
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ways use rights-of-way to establish priority among vehicles, but alleys and parking lots lack

this structure, leaving drivers to figure out how to maneuver. Without explicit or implicit

communication, drivers cannot agree on any course of action, much less one they both favor.

In this dissertation, we seek answers to the following research questions:

• Can CAVs achieve better interaction outcomes by sharing high-level information,
such as their passengers’ preferences?

• Can CAVs solve challenging cooperative decision-making problems by sharing high-
level information, such as planned destinations?

• How does optimizing for passenger preferences in interactive scenarios affect other
traditional performance metrics?

The work we present in this dissertation provides the following contributions:

• Path-constrained, time-assigned, control-minimal trajectory optimizer

• Socially-optimal auction-based intersection management system (IMS) where agents
bid using cost functions instead of money

• Formalization of a highly-constrained interactive environment containing several
agents, which we term a deadlock game

• Novel cooperative algorithm that solves arbitrary deadlock game instances under
mild assumptions

This work explores two scenarios where vehicles’ preferences can influence the chosen

outcomes. In the first scenario, vehicles approach an intersection and express how quickly

they want to cross and how long they are willing to wait before crossing. We propose

an auction-based intersection management system that assigns a crossing duration to each

vehicle and schedules the crossing based on vehicles’ preferences.

The second scenario involves several vehicles moving around an extremely spatially-

constrained environment with regions that can accommodate only one vehicle at a time.

The vehicles need to coordinate their movements or they will reach a stalemate. Current so-

lutions commonly employ game-theoretic receding horizon planners or a data-driven policy.

However, these methods break down when vehicles mutually obstruct each others’ paths.
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We propose an algorithm that determines tactical movement plans to break the deadlock.

Contention is a common theme throughout this dissertation. All agents are self-interested

with their own preferences on the scenario’s outcome, which they express among themselves.

Existing decision systems eschew preferences, choosing instead to optimize exclusively for

metrics such as throughput. By exploiting these preferences, we seek solutions to CDA prob-

lems that are more favorable to the involved agents. The proposed methods leverage concepts

from auction-theoretic intersection management and game-theoretic motion planning.

1.1 Autonomous Vehicle Technology

The AV industry is rife with misleading marketing terms, and the academic community uses

overloaded and ambiguous ones. To help unify the two communities, SAE international and

other standards organizations developed taxonomy and definitions documents to help convey

the differences. This section provides an overview of those documents to provide context

and scope for the rest of the dissertation.

1.1.1 Vehicle Autonomy Levels

Autonomous driving is complicated, and AV manufacturers automate different aspects of

it to varying degrees. This variance hinders comparing and understanding each vehicle’s

capabilities (especially when referencing marking literature). To help remedy this, SAE

International drafted a recommended practice document (J3016) that presents an automated

driving taxonomy and describes and classifies the different levels of driving automation [4].

The document breaks down the notion of driving into six distinct tasks, collectively

referred to as the dynamic driving task (DDT):

• lateral motion control (e.g., maintaining a following distance)

• longitudinal motion control (e.g., staying within a lane)

• driving environment monitoring (e.g., observing neighboring vehicles)1
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• object and event response (e.g., stopping for a pedestrian)1

• maneuver planning (e.g., avoiding an obstacle)

• conspicuity enhancement (e.g., turning on headlights at night)

AVs can automate each DDT to some extent. For example, Tesla’s Autopilot system simulta-

neously performs lateral and longitudinal motion control while leaving the driver responsible

for the rest of the subtasks.

Driving automation systems function within certain operating constraints, such as specific

geographic locations or certain weather conditions. These constraints define the system’s

operational design domain (ODD), which partially determines when a driving automation

system can enable specific features. Waymo’s driving automation system, Waymo Driver,

performs the entire DDT, but only within a few geofenced areas.

The end goal for driving automation is to design a system that functions equivalent to

or better than humans. However, they sometimes fail, requiring someone or something to

take over control. The J3016 document defines two DDT fallback options for when the

automation system stops functioning for any reason: human fallback and system fallback.

In the former, a fallback-ready user assumes control and becomes the driver. With the latter,

a safety system takes over and places the vehicle in a safe state (which ironically could mean

stopping in the middle of the road [12]). The fallback method affects a driving automation

system’s automation level within the J3016 framework.

A driving automation system’s automated DDT subtasks, ODD, and fallback method

define its autonomy level. The J3016 document defines six levels, ranging from no automation

to full automation. Table 1.1 summarizes the differences between them. Notice the jump

in capabilities between levels 2 and 3; the driver performs OEDR in level 2, but the system

performs it in level 3. Automated Driving Systems (ADSs) operate at level 3 and above and

perform the entire DDT within an ODD.

Note that a driver is distinct from a fallback-ready user. By definition, a driver must

1Commonly combined and referred to collectively as object and event detection and response (OEDR).
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Table 1.1: SAE J3016 Driving Automation Levels1

Level
Lateral and

Longitudinal Control
OEDR2 Fallback ODD

0 Driver Driver N/A N/A
13 Driver & System Driver Driver Limited
2 System Driver Driver Limited
3 System System Fallback-Ready User Limited
4 System System System Limited
5 System System System Unlimited

1 Adapted from [4, Table 1].
2 OEDR combines driving environment monitoring and object and event
response.

3 Level 1 vehicles control either lateral or longitudinal movement, but not
both simultaneously.

perform OEDR; they must actively oversee the driving automation system. A fallback-ready

user, however, need not actively monitor the driving environment. If the ADS must relinquish

control of the vehicle (either through a failure or by leaving the ODD), the fallback-ready

user will assume the role of driver and perform the DDT.

1.1.2 Cooperative Driving Classes

AVs are typically self-interested and act using only the information they obtain themselves.

In some scenarios, however, cooperating with neighbors improves everyone’s performance.

Sharing perception data reduces blind spots, leading to more informed decisions [18]. Con-

structing vehicle platoons (road trains) reduces wind drag and thus reduces energy consump-

tion [19].

Like automation levels, vehicles equip varying cooperative driving technologies. A vehi-

cle’s sensing, communication, and automation abilities affect its cooperative driving capa-

bilities. SAE International developed a taxonomy to classify cooperative driving automation

(CDA) based on the information exchanged among agents [20]. Note that agents include

vehicles and roadside infrastructure. Within each class, vehicles’ automation levels deter-

mine the extent to which they can cooperate. Table 1.2 summarizes the relationship between
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Table 1.2: SAE J3216 CDA Classes and Cooperation Capabilities1

Automation Level2

Class Nature Description 1–2 3–5

A Status Sharing Current Status Limited Full
B Intent Sharing Future Plan Limited Full
C Agreement Seeking Work Together None Full
D Prescriptive Do as Directed None Full

1 Adapted from [20, Table 1].
2 Automation level 0 provides no CDA capabilities and is omitted.

CDA classes and automation levels. Each class defines a cooperation category, and a vehi-

cle’s autonomy level determines the extent to which it can cooperate within the category.

Driving automation systems operating at levels 1 and 2 delegate OEDR to the driver,

meaning the system observes only a limited amount of the environment; it cannot perceive

high-level indicators such as brake lights or turn signals. Limited perception hinders their

capabilities to contribute to class A and B CDA. It completely prevents them from performing

class C and D CDA. Meanwhile, ADSs perform the entire DDT, allowing them to fully

contribute towards all CDA classes while operating within their ODDs.

Vehicles and infrastructure must communicate through a common interface to realize

cooperative driving automation. However, standardization is troublesome because various

automakers and infrastructure manufacturers might develop proprietary interfaces specific

to their product lines. To promote widespread V2X adoption, SAE International published

a standardized message set [21]. The messages enable agents to easily share maps, vehicle

states, signal phase timing, and other information. The standard also describes how sys-

tem designers can extend messages to provide supplemental information specific to certain

vehicles or regions.
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1.1.3 Reference Autonomy Architecture

AVs comprise several components responsible for specific functions: global positioning, object

detection, throttle actuation, and more. Subsystems aggregate components based on their

purpose, and these collections partition the system into logical layers. No standard exists

yet that defines a canonical ADS architecture. SAE International is actively developing one

[22]; however, many AV manufacturers [23, 24, 25] and open-source autonomy stacks [26, 27]

architect their automation systems similar to the one described by Paden et al. in [28],

recreated in Fig. 1.1. That work decomposes AVs into four main layers: route planning,

behavior planning, motion planning, and feedback control. Other supporting subsystems

not mentioned in their architecture provide perception, localization, prediction, and V2X

capabilities.

Route planning involves generating a least-cost path in a map—represented as a weighted

directed graph—starting from a given source node and terminating at a given destination

node. Travel directions, speed limits, and other regulations usually determine the graph

edges and corresponding weights.

Downstream from the route planner, the behavior planner determines an appropriate

high-level task (e.g., stop, change lanes, and turn left) for the vehicle to accomplish.

This layer functions similarly to a finite state machine with transitions determined based on

the perceived environment. Surrounding vehicles, road conditions, traffic signals, and other

entities influence the selected behavior.

The motion planner translates the current behavior into the low-level path or trajectory

needed to accomplish the task. Several methods exist to generate paths or trajectories, but

the results must be feasible, comfortable, and safe.

As the lowest layer in the AV stack, the feedback controller generates actuator inputs

to drive the vehicle. The controller tracks the reference trajectory as closely as possible

and attempts to minimize modeling errors introduced by the higher layers. Designs for this

layer focus on robustness and stability. Note that the name for this layer is somewhat of a
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Figure 1.1: Reference autonomy architecture (adapted from [28, Fig. 1])
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misnomer. Open-loop controllers operating in a receding horizon scheme (as is the case for

model predictive control) offer an adequate alternative to feedback controllers [27].

Each layer is a distinct subfield within the robotics and automation communities, so

contributing to the entire AV stack is infeasible. This dissertation focuses on the behavior

planning and motion planning layers because they offer the most opportunities to incor-

porate inter-agent influences. Route planning layers generate high-level routes based on

macroscopic traffic patterns; they ignore influencing factors from individual vehicles. Feed-

back (or receding horizon) control layers track low-level trajectories generated by motion

planners. They ensure actuator inputs are safe and typically operate over short control

horizons, much smaller than path planning horizons [27].

1.2 Intersection Management

Intersections are common throughout road networks, but they cause congestion and led to

over 27% of fatalities in 2018 [29]. Of those fatalities, approximately 32.7% occurred at sig-

nalized intersections, and about 67.3% occurred at unsignalized ones. Traffic signals regulate

flow by iterating through phases : periods during which groups of nonconflicting movements

(e.g., left turn, right turn, straight) are allowed [30, Ch. 5]. Unsignalized intersections rely

on drivers to follow road signs and rights-of-way.

Existing signalized intersections suffer several inefficiencies. Timer-only signals follow

rigid schedules that ignore present traffic demands. Adaptive traffic signals need to be man-

ually tuned and retuned as traffic patterns shift. Signal safety thresholds can be overly

conservative, leading to delays and congestion. Additionally, phase schedules ignore pas-

senger preferences. Unsignalized intersections face similar challenges. Delays from constant

starting and stopping can accumulate. Crossing orders can be ambiguous, leading to colli-

sions or stalemates. They may also ignore passenger preferences.

With the recent influx of vehicle-to-infrastructure (V2I) communication, emerging intelli-
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Figure 1.2: Intersection management hierarchy (from [31, Fig. 2]).

gent transportation systems (ITS) began to improve or supplement conventional intersection

management methods. signalized intersection management (SIM) systems replace conven-

tional ones at signalized intersections. autonomous intersion management (AIM) systems

systems regulate unsignalized intersections [31]. This dissertation focuses on the latter as

they provide more opportunities for collaboration among AVs.

SIMs and AIMs establish a hierarchy on management methods [31], visualized in Fig. 1.2.

At the top, the corridor coordination layer deals with multiple intersections and optimizes

traffic flow across a transportation network. The intersection management (or trajectory

planning) layer operates on a single intersection; they sequence crossings based on vehicles’

planned trajectories. The vehicle control layer deals with individual agents, and systems in

this layer (e.g., trajectory planners) generate crossing trajectories. Note that layers overlap

at the borders. For example, an intersection management system may request that vehicles

adjust their trajectories to satisfy some intersection-level goal. This dissertation focuses only

on the lower two layers because those deal directly with AVs.

A key distinguishing factor among AIM systems is their mechanism for reserving intersec-

tion access [31], visualized in Fig. 1.3. Intersection-based methods allocate exclusive access

to individual vehicles for a period. Tile-based methods partition the intersection into smaller

regions and assign them to individual vehicles. Reservations are feasible when vehicles own

disjoint tile sets. Conflict-point-based methods schedule vehicles so that their trajectories do
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Figure 1.3: Intersection reservation types (from [31, Fig. 4]).

Table 1.3: Intersection Management Types

Method Coupling Crossing Schedule Crossing Duration

Direct Centralized IMS IMS
Scheduling Less Centralized IMS Vehicle
Auction Decentralized Vehicle Vehicle

IMS: determined by intersection management system
Vehicle: determined by vehicles

not overlap. Vehicle-based methods assign nonconflicting trajectories to each vehicle.

AIM systems can also differ in their scheduling policies. Common ones include first-come,

first-served (FCFS); system optimal ; and heuristic policies. FCFS policies schedule vehicles

in order of increasing arrival time. System-optimal policies generate schedules that optimize

some performance metric, for example, maximizing throughput. Heuristic policies include

other ways to inform the system better.

Management methods generally fall under three categories, summarized in Table 1.3.

Direct control methods generate velocity profiles for each vehicle to follow, ensuring that

they arrive staggered at the intersection. The system in [32, 33] used the unicycle kine-

matic motion model and vehicles’ shared velocity constraints to generate appropriate ve-

locity profiles. Vehicles crossed the intersection in an FCFS manner, and the system used

the tile-based reservation method to avoid collisions. Researchers in [34] proposed a decen-

tralized, game-theoretic method for generating velocity profiles. One vehicle determined a

cooperative–competitive equilibrium among all vehicles, yielding collision-free trajectories
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that balanced energy usage and time efficiency.

Unfortunately, direct methods tightly couple vehicles by assuming control objectives,

vehicle models, or private information. The AIM system in [32, 33] assumed a motion model

and that vehicles crossed the intersection at full speed. Such speed could be uncomfortable

for some passengers. The game-theoretic approach in [34] was limited to only two vehicles,

and it assumed that the determining vehicle knew the other’s objective function.

Scheduling-based methods provide increased privacy to individual vehicles and looser

coupling. They assign arrival times instead of velocity profiles and expect vehicles to generate

their velocity profiles. In [35], vehicles published their state and desired arrival time, and

the system scheduled crossings as close as possible to that time. The system formulated

the scheduling problem as a mixed-integer linear program (MILP) with constraints to avoid

collisions. However, the system still assumed some of the vehicles’ dynamics, and it had

parameters to balance between optimizing for time delay and vehicle preferences. Vehicles

expressed their preferences through a scalar arrival time value.

Auction-based management methods provide the loosest coupling and offer the most

expressivity [36, 37, 38]. Vehicles bid with money or tokens to win priority over the other

participants. This management method comprises several variations. Some allow all vehicles

within a lane to contribute toward a single, collective bid, while others restrict participants

to only the lead vehicles. Auction outcomes can choose a single vehicle to cross or specify a

crossing order for all participants in that round. The winner might pay the highest bid (a

first-price auction) or the second-highest bid (a second-price or Vickrey auction). The latter

option creates an incentive mechanism to keep bidders honest. In some cases, all bidders

pay regardless of which won. Each vehicle may also implement a different bidding strategy:

fixed, variable, or random amounts.

While auction mechanisms allow vehicles to convey their preferences explicitly, they have

drawbacks. They attempt to maximize profits over social welfare, so the winning vehicle has

the highest bid, not necessarily the greatest need. Consider two vehicles: one poor and one
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rich. The poor vehicle wants to cross the intersection as fast as possible and thus has a high

valuation Vpoor; however, they can place only a low bid Bpoor. In this case, their bid is smaller

than their valuation (Bpoor < Vpoor). The rich vehicle is indifferent to when they cross, but

they can afford a bid that matches their valuation (Brich = Vrich). Assuming Vpoor > Vrich and

Brich > Bpoor, the rich vehicle crosses first (maximizing profit) instead of the poor vehicle

(maximizing social welfare). As with real economies, transportation economies can suffer

from wealth inequality, contributing to unfair auctions. Therefore, many auction-based AIM

systems subsidize bids for those that cannot afford them.

To summarize, direct control methods suffer from scalability issues and tight coupling

among agents. Scheduling-based methods do not consider preferences on vehicle motion.

Both methods impose size limitations on the problems (e.g., excluding turn maneuvers).

Money-based auctions maximize profits and can lead to wealth inequality among partici-

pants. Most importantly, no existing method optimizes specifically for social welfare to the

best of our knowledge.

1.3 Motion Planning

Driving is complex, and static and dynamic obstacles litter roads. Drivers need to plan

collision-free maneuvers while also adhering as close as possible to road laws. Recent advances

in motion planning enable AVs to navigate safely around most static and simple dynamic

obstacles. However, AVs share the road with many intelligent agents: other vehicles, cyclists,

and pedestrians. They all influence each other; when one acts, others respond. These

influences challenge motion prediction and planning because AVs need to consider coupling

interactions when making decisions.
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Conventional Motion Planning

Motion planning involves mapping the perceived environment using sensors in the perception

layer to some behavior executed by controllers in the act layer. Planners share a common ob-

jective: generate a feasible, collision-free trajectory between an agent’s current configuration

and some goal configuration. Supplemental objectives include satisfying timing, comfort,

or other constraints. In unobstructed environments, this task is straightforward, and the

shortest path between configurations for AVs is typically a Dubins curve [39, Sec. 15.3.1].

The planning space in unstructured environments is expansive, but road networks impose

structures that restrict trajectories. Vehicles must obey speed limits and lane boundaries.

Additionally, they can make only certain maneuvers within their current lane. In some

(emergency) situations, vehicles need to violate these road laws to stay safe. This struc-

ture often removes unstructured shortest paths, but it helps reduce the search space for

determining other feasible paths.

Adding obstacles to the environment complicates planning. Problems become non-convex

in general, which requires nonlinear solvers and guarantees only local solutions. AV motion

planning methods fall into four main categories [28, 40]: variational, graph search, incremen-

tal search, and curve interpolation. Variational (trajectory optimization) methods formulate

the path as a parameterized objective function and use nonlinear solvers to converge to

locally-optimal solutions. They decompose further into two subclasses: direct (shooting,

collocation, or pseudo-spectral) methods and indirect methods. Collocation methods solve

differential equations by choosing points in the domain then selecting a candidate solution

that satisfies those points. Shooting methods solve boundary value problems by solving

the equations at sampled initial conditions and choosing the solution that satisfies desired

boundary condition.

Graph-search algorithms discretize the vehicle’s configuration space, forming a graph

that encodes vehicle states as nodes and inputs as edges. The planner then uses Dijkstra,

A*, D* [41], or another graph search algorithm to find a minimum cost path. Pregenerated
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lane graphs encode road geometry, lanes boundaries, and traffic regulations obtained from

high-resolution maps. While they suffice for normal operating conditions, planners must

use a more general solution if the vehicle needs to deviate from an established path—for

example, to avoid an obstacle. In these situations, geometric or sampling methods replace

the lane graph.

Incremental search methods sample the vehicle’s configuration space to form a reachabil-

ity graph or tree that expands until the planner finds a path. The Rapidly-Exploring Random

Trees (RRT) algorithm [42] and its variants are the most well-known implementations in this

category.

Finally, interpolating curve methods use lines and circles or clothoid, polynomial, or

Bézier curves to interpolate the path between a sequence of given reference points (called

knots). A route planner or some other component provides the motion planner with several

reference points, and the motion planner uses one of these smooth curves to connect those

points.

Planning around dynamic obstacles presents an increased challenge because planners

must now account for other agents’ movements. Generated trajectories are typically open-

loop, so planners must know or predict how objects move during the planning horizon [39, Ch.

7]. Motion prediction algorithms compose an entire research field; two general approaches

are to use either a mathematical model (e.g., the intelligent driver model [43]) or a data-

driven one (e.g., Waymo’s VectorNet [44]). The type of model determines its prediction

accuracy over short-, medium-, and long-term planning horizons [45].

If information about objects’ movements is unavailable, planners need to use a feedback

scheme to correct modeling errors. One technique is to run an open-loop planner in a

receding horizon fashion. This approach is commonly integrated with a controller to yield

model predictive control [28]. Obstacles are assumed to be stationary over the planning

horizon, and they constitute state-space constraints. The controller then generates a tracking

trajectory that best aligns with a reference one. When the planner executes in the future, the
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obstacles’ new positions are updated, and the process repeats. This method is reactionary

and works best if the obstacles move slowly relative to the planning frequency.

The motion prediction methods described above have a significant limitation: they as-

sume obstacles follow their trajectories independent of the ego vehicle’s movements. This

assumption is valid for a ball rolling in front of a car. However, it fails when dealing with

intelligent agents, e.g., a kid chasing after that ball. Planners need to incorporate others’

possible decisions to improve their predictions. These scenarios necessitate a theory capable

of modeling interactions among agents—game theory.

Game-Theoretic Motion Planning

Game theory models the interactions between two or more intelligent decision-makers, which

naturally aligns with motion planning problems. Roads are highly interactive shared envi-

ronments, and all road users possess some level of decision-making capabilities. Games are

a general concept that can be specified using several categories: cooperative vs. noncooper-

ative, simultaneous vs. sequential, and zero-sum vs. general-sum, among others.

When applied to motion planning problems, games take a dynamic form—they evolve

based players’ actions [46, Ch. 6]. Games with states that change over time are dynamic

games. Parallel to control theory, they form dynamical systems with players’ actions as the

inputs. Difference equations describe state changes when time is discrete. For each time

step (stage), agents play a simultaneous game generated by the state and actions from the

previous stage. Discrete-time dynamic games are therefore called multi-stage games. As

time tends toward a continuum, differential equations replace the difference equations, and

the game transforms into a differential game with continuous state updates.

Depending on the agents’ strategies, games are either cooperative or noncooperative.

Agents in a cooperative game work together to satisfy a common goal, and a single opti-

mization problem can determine a solution. Noncooperative games, however, feature self-

interested agents that optimize only their objectives. Usually, agents’ objectives conflict,
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meaning there is no unique optimum. The Pareto front is a set that contains all incompara-

ble but optimal outcomes that could suffice as a solution. Equilibrium is a common solution

concept class used to solve noncooperative games. The Nash equilibrium (NE) is the most

popular. It occurs when no agent has an incentive to unilaterally change their strategy,

assuming all other agents are playing their optimal strategies.

Furthermore, games can be purely competitive zero-sum games or more relaxed general-

sum games. Racing is commonly formulated as a zero-sum game because it establishes a

clear winner and loser: the sum of rewards among all players equals zero [47, 48]. However,

for everyday driving, agents do not necessarily compete. Equilibria can benefit multiple

agents without necessarily hurting others. Therefore, general-sum game formulations are

more appropriate for on-road driving [49]. This research focuses on dynamic noncooperative

general-sum games for everyday driving.

Computing Nash equilibria for normal form general-sum games is PPAD-hard [50, Ch.

4], meaning an efficient polynomial-time algorithm for solving general instances does not

exist (assuming P ̸= NP). Instead, numerical methods approximate a solution or refine

the problem to reduce complexity [51]. Researchers in [52, 53] approximate NE using an

augmented Lagrangian formulation that converts hard constraints into soft ones. Another

method, inspired by the iterative linear-quadratic regulator, linearizes the game’s dynamics

and assigns quadratic costs to each player [54, 55].

Games often admit several Nash equilibria, which presents another challenge [49]. Equi-

libria refinement techniques help prune NE by introducing additional optimality criteria

(e.g., stability, feasibility). Alternatively, mechanism design approaches modify the game’s

formulation to be better posed, thus reducing the number of admissible NE. For example,

urban driving games [56] are potential games formulated for everyday driving. They exhibit

an ordinal potential structure, which leads to a unique NE.

Game-theoretic motion planners commonly solve a copy of the problem locally: each

vehicle solves an instance of the same problem and plays on behalf of their opponents [47,
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52, 53]. However, independent game instances lead to vehicles occasionally converging to

different, possibly conflicting NE. Consider a highway merging scenario involving an on-ramp

car and an on-highway car. If the on-ramp car converges to an NE in which the on-highway

one moves, but the on-highway car believes the on-ramp car will yield, the two cars will

collide. While empirical results [53] suggest that solving the problem in a receding horizon

fashion reduces this probability, no formal guarantees exist to prevent this. The question

then becomes how to make all agents agree on the same or compatible NE.

Because game-theoretic motion planners compute the NE locally without communication,

they need notions of how other agents behave. Almost all solution methods assume complete

knowledge of their neighbors’ objective functions. However, this approach is not practical as

objectives vary among vehicles, and they may not be well-defined for human-driven vehicles.

Some works attempt to relax this assumption by learning parameterized cost functions from

observations. In particular, researchers in [57] use Stackelberg equilibria to estimate driver

aggressiveness during lane changes. Other works formulate inverse dynamic games to learn

more generic cost functions [58, 59].

Most game-theoretic motion planning literature focuses on three scenarios (visualized

in Fig. 1.4): ramp merging, lane changing, and intersection navigation. These types of

interactions lend themselves nicely to receding horizon control because vehicles can always

choose actions that progress them toward their goals; no other vehicle can completely block

them. Therefore, optimal paths within the planning horizon contribute toward the overall

path, meaning they will converge to a solution.

To help promote feasibility, collision avoidance and staying on the road are typically the

only hard constraints. Staying within lanes or obeying traffic laws is a soft constraint. Some

approaches, such as the urban driving games framework, soften all constraints, which com-

pletely avoids infeasibility—a principle called minimum violation planning. Reformulating

constraints might work for open roads where vehicles could temporarily drive in other lanes

or on the road’s shoulder, but in some scenarios, such as tight alleyways, violating position
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Figure 1.4: Common interaction scenarios. a Ramp merging (from [53, Fig. 1]. b Intersection
navigation (from [56, Fig. 1]). c Lane changing (from [60, Fig. 1]).

constraints would damage vehicles.

Receding horizon planning methods perform adequately for interactions in common driv-

ing scenarios, but they provide neither convergence nor optimality guarantees. In problems

that require longer planning horizons, vehicles may freeze because they cannot compute a

feasible solution.

1.4 Dissertation Structure

This section introduces the dissertation and provides general background information. Chap-

ter 2 presents a path-constrained, time-assigned, control-minimal trajectory optimizer that

is a base component to our intersection management system. Chapter 3 then presents an

auction-based intersection management system. Chapter 4 discusses cooperative motion

planning for spatially-constrained environments. Finally, Chapter 5 concludes the disserta-

tion and proposes future research directions.

Fig. 1.5 visualizes this dissertation’s contributions. We investigate two application areas
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Figure 1.5: The dissertation’s contributions.

under the cooperative driving automation context. The trajectory optimizer work provides

a key component in the higher-level socially-optimal intersection management system. The

deadlock game formulation and solution algorithm establishes the foundation for contin-

ued work on a higher-level socially-optimal conflict resolution system to resolve competing

solutions.
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Chapter 2

Trajectory Optimization

This chapter presents a path-constrained, time-assigned, control-minimal trajectory opti-

mization problem. The work in this chapter was motivated by the initial versions of the

work presented in Chapter 3 for the IMS. While chronologically, we are presenting the ma-

terial out of order, this structure make more sense compositionally.

Within the IMS framework, vehicles are assigned crossing durations that dictate how

long they need to take the crossing the intersection. This trajectory optimization problem is

a component within the vehicle’s planning stack to generate a reference trajectory that can

be tracked.

Road networks are generally well-defined structures where autonomous vehicles need to

follow two high-level rules: 1. avoid collisions; and 2. traverse the path (trip route) in minimal

time, with minimal control, or a combination of these goals. Some transportation applica-

tions benefit from predictable, but not necessarily minimal, timing. In particular, scheduled

transportation tasks with specific timing requirements may be the primary objective. Con-

sider a bus route comprising several stops, each with a pre-arranged departure time. If the

bus arrives too early, it wastes time and energy waiting at its stop. If it arrives too late, it

will cause disruptions in the schedule. In such a use case, the bus’s reference trajectory and

control signals should ensure the bus arrives as close to the specified arrival time as possible.
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One can generalize this scheduling concept by considering intersection management sys-

tems (IMS) that rely on accurate timing to predict vehicles’ traversal times and safely sched-

ule crossings [31]. In previous work, we developed an auction-based IMS in which vehicles bid

using their cost functions [61]. The vehicles’ motion planners generated reference trajectories

and control inputs to drive through the intersection in so-called crossing durations. They

also calculated a cost for each crossing duration and used those costs to define a crossing cost

function. The management system used these functions to assign final crossing durations to

each vehicle.

For each candidate crossing duration, vehicles solved a trajectory optimization problem.

Their objective functions comprised a crossing duration cost, a reference tracking cost, and

a control effort cost. This formulation sufficed for longer candidate crossing durations, but

it caused issues when evaluating shorter ones. Vehicles’ motion plans significantly deviated

from their reference paths in order to satisfy the crossing duration constraint, sacrificing

path tracking for a lower control cost. These reference tracking deviations often made the

vehicles move into dangerous situations, such as cutting over sidewalks. To ensure that the

IMS schedule assignments would truly be safe, we need vehicles to generate control inputs

that kept them on their reference paths while also satisfying the IMS time assignment.

The above challenge motivated the work presented in this chapter. The motion planners

still seek an effort-minimal reference trajectory to traverse the path. However, we reformulate

the path tracking goal to a hard constraint so that the planners consider only control inputs

that keep the vehicle on the path. We kept the crossing duration constraint, meaning vehicles

have a finite time to traverse their path. Using this new approach, control-minimal time-

assigned path-constrained trajectory optimization, the IMS may more accurately compare

crossing costs.
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2.1 Related Work

Solution categories for path-constrained trajectory planning include dynamic programming

[39, Sec. 14.6.3], numerical integration [39, Sec. 14.6.3], reachability analysis (RA) [62],

and convex optimization [63]. Numerical integration and convex optimization methods are

particularly useful when performing time- or energy-optimal planning for robotic arms [63],

biped robots [64], and mobile ground robots [65, 66].

Time-optimal trajectory planning [67, 68, 69] tries to minimize the path traversal time,

while energy-optimal planning typically disregards it. In contrast to those goals, we seek the

lowest control effort needed to move a robot along a path in a specific duration. Compared

to other problem formulations, the time-assigned variant has received minimal attention.

Researchers in [70] were one of the first to study time-assigned path-constrained trajec-

tory planning, and they solved the problem using nonlinear semi-infinite programming. More

recently, the authors of [62] extended their RA framework for robotic arms to find trajecto-

ries of specified duration.1 Their algorithm searched for a constraint-satisfying deformation

between the time-maximal and time-minimal trajectories. However, the final result may not

be control-minimal.

Another work developed a speed planner for a heavy vehicle crossing an intersection

[69]. To avoid collisions, the optimization problem imposed time window constraints. The

vehicle’s crossing duration had to be within one of these windows. Our proposed formulation,

in contrast, requires the vehicle to cross in a specific amount of time.

Compared to the other solution methods, convex optimization provides a framework that

allows for flexible customization of objectives and constraints. Additionally, several solvers

and front-ends exist that that ease its implementation.

1https://web.archive.org/web/20220421233339/https://hungpham2511.github.io/toppra/

python_api.html
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t T − t

Figure 2.1: The robot traverses the path (black) starting from the beginning (green) and
stopping at the end (red). Blue points are the robot’s planning history. The planner chooses
control inputs (orange arrow) to keep the robot on the path. The orange cone represents
possible control inputs. The robot traverses the path in T seconds.

2.2 Problem Formulation

Consider the problem visualized in Fig. 2.1. We want a mobile ground robot to traverse a

path close to a specific duration while minimizing its control effort. The robot must start

from the path’s beginning, stop at its end, and stay on this path while moving.

2.2.1 Robot Motion Model

We model the robot in Fig. 2.1 as a rigid body moving on a plane, making its configuration

space C equal to the special Euclidean group SE (2). The robot’s configuration q(t) ∈ C is

q(t) := (x(t), y(t), θ(t)), where x and y represent the robot’s position on the plane, and θ is

its heading with respect to the x-axis. The configuration and its components are functions

of time t ∈ R+, where R+ is the set of nonnegative real numbers. For clarity, we will drop

the explicit time dependence notation.

The robot moves according to a unicycle motion model under no-slip conditions. The

following system of equations defines the configuration transformation for a single-order
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kinematic unicycle [39, eq. (13.18)]:

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω,

(2.1)

where v is the robot’s scalar linear velocity (forward is positive), and ω is its scalar angular

velocity (counterclockwise is positive). Mark □̇ denotes the first time-derivative.

We could use the linear and angular scalar velocities of (2.1) as control inputs, but

the resulting system would be unrealistic as robots do not start and stop instantaneously.

Differentiating (2.1) with respect to time results in the second-order kinematic unicycle. The

following system of equations defines the new configuration transformation:

ẍ = ut,lin cos θ − θ̇ vq(q, q̇) sin θ

ÿ = ut,lin sin θ + θ̇ vq(q, q̇) cos θ

θ̈ = ut,ang,

(2.2)

where ut,lin is the scalar linear acceleration, ut,ang is the scalar angular acceleration, and □̈

denotes the second time-derivative. We choose the scalar linear and angular accelerations

as the system’s inputs ut := (ut,lin, ut,ang). Subscript □t indicates that the system controls

vary with time. Function vq : C ×R3 → R is the robot’s scalar linear velocity in terms of its

configuration and first time-derivative q̇. It is given by

vq(q, q̇) =
√
ẋ2 + ẏ2.

We use the □q subscript to denote functions of the robot’s configuration and its derivatives.

Equation (2.2) is control-affine and may be restructured as

q̈ = fq(q, q̇) +Gq(q)ut, (2.3)
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where

fq(q, q̇) =


−θ̇vq(q, q̇) sin θ

θ̇vq(q, q̇) cos θ

0

 ,

and

Gq(q) =


cos θ 0

sin θ 0

0 1

 .

2.2.2 Path-Constrained Motion

We define a path as a continuous, collision-free function τ : [0, 1] → Cfree that maps a point

s ∈ [0, 1] to a robot configuration. Set Cfree is the subset of the robot’s configuration space

that excludes obstacles. Point s, which we term the path-position, is the robot’s position

along the path. Value τ (s = 0) represents the path’s beginning, and τ (s = 1) is its end.

The path-position is an implicit function of time.

Suppose we constrain the robot’s motion to a dynamically-feasible path. We express its

configuration in terms of its path-position [39, Sec. 14.6.3]:

q = τ (s). (2.4)

We also relate the robot’s velocity q̇ to the path by differentiating (2.4) with respect to

time:

q̇ =
dτ

ds

ds

dt
= τ ′(s)ṡ, (2.5)

where □′ denotes the first derivative with respect to the path-position, and ṡ is the robot’s

path-velocity.

Furthermore, we express the robot’s path-constrained acceleration by differentiating (2.5)

with respect to time:

q̈ =
d2τ

ds2
ṡ2 +

dτ

ds
s̈ = τ ′′(s)ṡ2 + τ ′(s)s̈, (2.6)
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where □′′ denotes the second derivative with respect to the path-position, and s̈ is the robot’s

path-acceleration.

Now that we have the robot’s configuration expressed in terms of the path, we substitute

(2.4) and (2.5) into (2.3) to derive the path-constrained system dynamics:

q̈ = fq

(
τ (s), τ ′(s)ṡ

)
+Gq

(
τ (s)

)
ut

= fs(s, ṡ) +Gs(s)ut, (2.7)

where

fs(s, ṡ) =


−τ ′3(s) ṡ vs(s, ṡ) sin(τ3(s))

τ ′3(s)ṡvs(s, ṡ) cos(τ3(s))

0

 ,

Gs(s) =


cos(τ3(s)) 0

sin(τ3(s)) 0

0 1

 ,

and

vs(s, ṡ) =

√
[τ ′1(s)ṡ]

2 + [τ ′2(s)ṡ]
2. (2.8)

Subscript □s denotes functions of the robot’s path-position and its derivatives. Notation τ□i

denotes the ith component of the path or its derivative. Furthermore, we equate (2.6) and

(2.7) to express the path-constrained dynamics entirely in terms of the path-position, its

derivatives, and the system input:

τ ′′(s)ṡ2 + τ ′(s) s̈ = fs(s, ṡ) +Gs(s)ut. (2.9)

We now define the basic control-minimal, time-assigned, path-constrained trajectory op-
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timization problem:

minimize
s,ut

∫ T

0

∥ut(t)∥22 dt (2.10a)

subject to τ ′′(s)ṡ2 + τ ′(s)s̈ = fs(s, ṡ) +Gs(s)ut, (2.10b)

u ≤ ut ≤ u, (2.10c)

for t ∈ [0, T ],

s(0) = 0, (2.10d)

s(T ) = 1 (2.10e)

where u and u are the lower and upper actuator limits for ut, respectively. Constraint

(2.10b) restricts the robot’s motion to the path, (2.10c) bounds the control inputs, and

(2.10d)–(2.10e) define the boundary constraints. The traversal time T is a design parameter

that specifies how long the robot has to traverse the path.

We want to find an optimal path-position function s⋆, which defines a time scaling along

the path [39, Sec. 7.1.3], and an optimal control input function u⋆
t that achieves the time

scaling. In contrast to time-minimal or energy-minimal problem variants, we seek a time

scaling that causes the robot to finish traversing the path in exactly T seconds.

The resulting control signal could be fed into the system. Alternatively, the time scaling

could be composed with the path to form a reference trajectory that is passed into a tracking

controller.

2.2.3 Convex Reformulation

Optimization problem (2.10) is nonlinear in the path-position and its derivatives, but we

reformulate it into a convex problem using a nonlinear change of variables. We follow the

reformulation in [63], which presented a convex optimization solution for time-minimal, path-

constrained trajectory optimization with a robotic arm. Our work studies the time-assigned
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problem variant for a mobile robot.

Before introducing the nonlinear change of variables, we simplify the path-constrained

dynamics from (2.9). Function vs is linear in the path-velocity, so we extract ṡ from the

radical in (2.8) to form (with a slight abuse of notation) an alternate equation:

vs(s, ṡ) = ṡvs(s),

where

vs(s) =

√
[τ ′1(s)]

2 + [τ ′2(s)]
2. (2.11)

By substituting (2.11) into (2.9), we express the path-constrained system dynamics with

a more concise model:

hs(s)s̈ = fs(s)ṡ
2 +Gs(s)ut,

where

hs(s) = τ ′(s),

and

fs(s) =


−τ ′′1 (s)− τ ′3(s)vs(s) sin(τ3(s))

−τ ′′2 (s) + τ ′3(s)vs(s) cos(τ3(s))

−τ ′′3 (s)

 .

Next, we change the objective function’s integration variable from time (t) to the path-

position (s): ∫ T

0

∥ut(t)∥22 dt =
∫ s(T )

s(0)

∥ut(t)∥22
ds/dt

ds =

∫ 1

0

∥us(s)∥22
ṡ

ds .

As a consequence of changing the integration variable, we must also introduce a new control

input us : [0, 1] → R2 that is a function of the path-position instead of time. Propagating

the change of variables into the rest of the optimization problem, we treat s, ṡ, and s̈ as

decision variables.
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Finally, we introduce the nonlinear change of variables [63, eqs. (17) and (18)]:

z(s) := ṡ2

ν(s) := s̈.

In the resulting differential-algebraic system of equations (DAE), z is the differential state,

us is the algebraic state, and ν is the control input. As derived in [63], the system has linear

dynamics defined by [63, eq. (19)]

z′(s) = 2ν(s).

With the change of variables, we redefine problem (2.10) as a convex one:

minimize
z,us, ν

∫ 1

0

∥us(s)∥22√
z(s)

ds (2.12a)

subject to hs(s)ν(s) = fs(s)z(s) +Gs(s)us(s), (2.12b)

z′(s) = 2ν(s), (2.12c)

0 < z(s) ≤ z, (2.12d)

u ≤ us(s) ≤ u, (2.12e)

for s ∈ [0, 1],∫ 1

0

1√
z(s)

ds ≤ T (2.12f)

When reformulating problem (2.10), we lost the traversal time constraint T ; therefore, it

is reintroduced as (2.12f).

Intuitively, the solver minimizes the objective cost by reducing z and us; however, de-

creasing them too much will violate the traversal time constraint (2.12f).
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2.3 Solution Description

We solve problem (2.12) using trapezoidal collocation [63, 71]. First, we discretize s into a

grid of K+1 collocation points. Since the system’s dynamics are linear in s, we approximate

ν as a piecewise-constant function, z as a linear spline, and us as a nonlinear spline.

The objective functional (2.12a) is approximated as

∫ 1

0

∥us(s)∥22√
z(s)

ds ≈
K∑
k=0

[∥∥uk
s

∥∥2

2

∫ sk+1

sk

1√
z(s)

ds

]
, (2.13)

where sk is the value of s at grid point k, and uk
s is the value of us at collocation point sk.

The analytical integral for the second component of (2.13) is

∫ sk+1

sk

1√
z(s)

ds =
2
(
sk+1 − sk

)
√
zk+1 +

√
zk

,

where zk is the value of z at collocation point sk.

Given the above formulation, the trajectory optimization problem (2.12) is approximated
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as a convex program:

minimize
z0,...,zK

u0
s,...,u

K−1
s

ν0,...,νK−1

K−1∑
k=0

2
(
sk+1 − sk

) ∥∥uk
s

∥∥2

2√
zk+1 +

√
zk

(2.14a)

subject to hs(s
k)νk = fs(s

k)zk +Gs(s
k)uk

s , (2.14b)

zk+1 − zk = 2νk
(
sk+1 − sk

)
, (2.14c)

us ≤ uk
s ≤ us, (2.14d)

0 ≤ zk ≤ z, (2.14e)

for k = 0, 1, . . . , K − 1,

z0 = ṡ20, (2.14f)

zK = ṡ21, (2.14g)

K−1∑
k=0

2
(
sk+1 − sk

)
√
zk+1 +

√
zk
≤ T (2.14h)

2.3.1 Second-Order Cone Reformulation

We reduce program (2.14) into a more efficient, second-order cone program (SOCP) using

the reformulation method described in [63]. The reformulation also provides implementation

improvement. Convex program solvers that rely on disciplined convex programming, such

as CVXPY, may fail to verify the convexity of complicated expressions.2 The general SOCP

structure requires a linear objective function, affine equality constraints, and second-order

cone inequality constraints [72, Sec. 4.4.2].

Reformulating the convex program into an SOCP requires the introduction of additional

decision variables a0, a1, . . . , aK ; b0, b1, . . . , bK−1; and c0, c1, . . . , cK−1.

2https://web.archive.org/web/20211018022509/https://www.cvxpy.org/tutorial/dcp/index.

html
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We introduce constraints

ak ≤
√
zk for k = 0, 1, . . . , K. (2.15)

Then, we re-express objective function (2.14a) as

K−1∑
k=0

2
(
sk+1 − sk

)
bk

and introduce constraints

∥∥uk
s

∥∥2

2

ak+1 + ak
≤ bk for k = 0, 1, . . . , K − 1. (2.16)

Similarly, introducing constraints

1

ak+1 + ak
≤ ck for k = 0, 1, . . . , K − 1, (2.17)

allows us to express (2.14h) as

2
K−1∑
k=0

(
sk+1 − sk

)
ck ≤ T . (2.18)

Constraints (2.15) and (2.16)–(2.18) will become active as the program converges to a solu-

tion. When this happens, the inequalities will become equalities, and the SOCP will resemble

the convex program (2.14).

Constraint (2.15) is expressed in its conic form with

∥∥∥∥∥∥∥
2ak

zk − 1

∥∥∥∥∥∥∥
2

≤ zk + 1; (2.19)

35



constraint (2.16) becomes

∥∥∥∥∥∥∥∥∥∥
2uk

s,lin

2uk
s,ang

ak+1 + ak − bk

∥∥∥∥∥∥∥∥∥∥
2

≤ ak+1 + ak + bk; (2.20)

and (2.17) is ∥∥∥∥∥∥∥
2

ak+1 + ak − ck

∥∥∥∥∥∥∥
2

≤ ak+1 + ak + ck. (2.21)

The components in the left side of inequalities (2.19)–(2.21) form column vectors, and ∥ · ∥2

represents the Euclidean norm of those vectors.
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Finally, the SOCP reformulation of (2.14) is given as:

minimize
z0,...,zK

u0
s,...,u

K−1
s

ν0,...,νK−1

a0,...,aK

b0,...,bK−1

c0,...,cK−1

K−1∑
k=0

2
(
sk+1 − sk

)
bk (2.22a)

subject to hs(s
k)νk = fs(s

k)zk +Gs(s
k)uk

s , (2.22b)

us ≤ uk
s ≤ us, (2.22c)

0 ≤ zk ≤ z, (2.22d)∥∥∥∥∥∥∥
2ak

zk − 1

∥∥∥∥∥∥∥
2

≤ zk + 1, (2.22e)

for k = 0, 1, . . . , K,

zk+1 − zk = 2νk
(
sk+1 − sk

)
, (2.22f)∥∥∥∥∥∥∥∥∥∥

2uk
s,lin

2uk
s,ang

ak+1 + ak − bk

∥∥∥∥∥∥∥∥∥∥
2

≤ ak+1 + ak + bk, (2.22g)

∥∥∥∥∥∥∥
2

ak+1 + ak − ck

∥∥∥∥∥∥∥
2

≤ ak+1 + ak + ck, (2.22h)

for k = 0, 1, . . . , K − 1,

2
K−1∑
k=0

(
sk+1 − sk

)
ck ≤ T, (2.22i)

z0 = ṡ20, (2.22j)

zK = ṡ21 (2.22k)

Some combinations of reference path, traversal time, and control bounds may render

this problem infeasible. We assume the reference path is dynamically feasible and that

the planner implementation will report if the problem is infeasible. To reduce computation
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time, a practitioner may place a time-optimal module in front of our system to determine

the minimum feasible traversal time.

2.4 Experiments

We evaluated our solution against three different path types that vehicles commonly en-

counter at intersections: a left turn, a right turn, and a straight path. These paths are

represented as follows:

τleft(s) =


αleft cos(πs/2)− αleft

αleft sin(πs/2)

arctan
(
τ ′left,2(s)/τ

′
left,1(s)

)


τright(s) =


−αright cos(πs/2)

αright sin(πs/2)

arctan
(
τ ′right,2(s)/τ

′
right,1(s)

)


τstraight(s) =


1

αstraights

arctan
(
τ ′straight,2(s)/τ

′
straight,1(s)

)


Parameters αleft, αright, and αstraight represent the arc radius (for turns) and length (for

straight paths). Table 2.1 shows the path parameters, traversal time ranges, and actuator

limits used in our evaluations.

Our solution is implemented in Python using CasADi [73] to generate the path and its

derivatives and CVXPY [74] to model and solve the SOCP problem. The code for our

experiments is available in our lab’s GitHub repository.3

For the collocation implementation, we performed a hyper-parameter sweep over K ∈

[5, 200], the grid resolution, and found that K = 20 provided both reasonable approximation

3https://github.com/the-hive-lab/trajectory_optimization
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Table 2.1: Simulation Parameters

Parameter Min. Value Max. Value Step Unit

αleft and αright 5 15 1 m
αstraight 5 15 1 m

ut,lin and us,lin - 2.5 - m/s2

ut,lin and us,lin −2.5 - - m/s2

ut,ang and us,ang - 2.5 - rad/s2

ut,ang and us,ang −2.5 - - rad/s2

T 5 25 1 s

and solver stability.

We simulated the vehicle using a phase space variant of the second-order unicycle [39,

eq. (13.46)]. The model’s state vector ξ ∈ R5 is ξ := (x, y, θ, v, ω), and its state transition is

defined by

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

v̇ = ut,lin

ω̇ = ut,ang.

After solving SOCP problem (2.22), the system control is approximated with a third-order

spline using cubic interpolation. This interpolated control function is denoted ûs : [0, 1] →

R2. We also approximated the transformed differential state using the same interpolation

method and refer to the interpolant as ẑ : [0, 1]→ R.

The simulated robot was actuated using the control signal generated by the motion

planner. We created a grid over s using J +1 points and integrated the system over the grid

point intervals using Runge–Kutta fourth-order (RK4) integration. The control signal ûs is

held constant within each interval [sj, sj+1], for j = 0, 1, . . . , J − 1.
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Table 2.2: Traversal Time Error Metrics

Path Mean Error Standard Deviation Runs

τleft 6.7501× 10−8 8.6470× 10−8 231
τright 6.8975× 10−8 9.0152× 10−8 231
τstraight 1.1068× 10−7 1.0731× 10−7 231
All 8.2594× 10−8 9.7135× 10−8 693

Each run is a combination of specific α□ and T val-
ues.
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Figure 2.2: Simulated robot’s path trace. The dashed gold line represents a left-turn reference
path, and the solid blue line is the robot’s path.

2.4.1 Experimental Results

Table 2.2 shows the mean traversal time error and standard deviation for all three path types

over the different path parameters and traversal times. As shown in the table, the robot’s

traversal durations matched its assigned times and with minimal error.

Fig. 2.2 visualizes the simulated robot’s trace for one of the test paths. Fig. 2.3

visualizes the system trajectory and control inputs for the same test path. Due to space
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Figure 2.3: State trajectory from an example simulation. The dashed gold lines are the
reference components of the path. The solid blue lines are the system’s trace from the
simulation.

constraints, we omit the scalar linear and angular velocity plots. The first three plots show

a slight tracking error, which we believe is due to accumulated approximation errors in the

simulation.

The experiment computer was equipped with an Intel Core i5-8250U processor and 16GB
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of memory. The solver runtime across all runs averaged 27.44ms with a standard deviation

of 51.86ms, suggesting it could be performed in online.

2.5 Conclusion

In this chapter, we proposed a convex optimization solution to the control-minimal time-

assigned path-constrained trajectory optimization problem. Using a nonlinear change of

variables, the original problem formulation is converted into a convex problem then solved

using trapezoidal collocation. From the experimental results, we conclude that our proposed

method works as expected. The robot traversed the given paths in the specified time and

tracked it with minimal error.

One limitation to our approach is that it may not extend to other motion models. Ex-

pressing the robot’s dynamics in a form that was linear in the squared path-velocity and the

path-acceleration was critical to this approach, but other motion models may not have this

structure. Another limitation is that we assume a collision-free reference path. If an obstacle

blocks the path, a higher-level path planner will have to find a new one. Fortunately, our

runtime is low enough that this re-planning process could be performed online.

The trajectory optimizer is a key component in the intersection management system

(IMS) that we will introduce in Ch. 3. As we explain in the next chapter, the IMS as-

signs crossing durations to each vehicle wanting to cross an intersection. Vehicles move

along the centerline of an imaginary turn lane, which is their reference path, and they must

plan a trajectory that traverses the path in exactly (or sufficiently close to) their assigned

duration.
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Chapter 3

Intersection Management

When multiple vehicles arrive simultaneously at an unsignalized intersection, the crossing

order is ambiguous. This ambiguity causes a stalemate that persists until one driver de-

cides to cross. Several intersection management systems (IMSes) exist to determine crossing

orders based on a variety of policies. In auction-based IMSes, vehicles use monetary bids

to gain crossing priority over others. However, monetary auctions may disenfranchise those

that cannot afford to bid. We propose an alternative auction formulation where vehicles

bid with cost functions instead of money. Our resulting IMS allocates crossing durations

and determines crossing schedules based on passengers’ preferences and their vehicles’ ca-

pabilities. The IMS also allows system designers to impose constraints that alter duration

and schedule assignment. We evaluated our system in a simulated environment and against

several configuration variants. The results reveal an interesting trade-off between passenger

preferences and intersection throughput.

3.1 Introduction

Intersections often congest road networks and have been shown to contribute to over twenty-

eight percent of collisions in 2019 [75]. Unsignalized crossings can be particularly frustrating

as simultaneous arrivals lead to ambiguous crossing orders. This ambiguity creates an awk-
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ward standoff and delay until one driver signals their intent, e.g. slowly creeping their vehicle

into the intersection.

Traffic signals have long been the solution to managing intersections, but improvements

in vehicle-to-everything (V2X) communication technology have enabled researchers to de-

velop more sophisticated management methods. By communicating directly with individual

vehicles, new intersection management systems (IMSes) may use vehicle state information

to safely and efficiently assign crossing orders before cars arrive at the intersection.

Existing IMSes regulate traffic using multiple approaches, but they primarily optimize

for throughput or similar metrics [76], sometimes requiring vehicles to drive through the in-

tersection at full speed [77]. These methods do not typically include the inherent preferences

of drivers and passengers on different driving aspects. For example, drivers may prefer to

travel under the speed limit while others typically exceed it.

Drivers and passengers also exhibit different preferences on how quickly to cross and

intersection. They also sometimes demonstrate an awareness of improving social welfare by

choosing to yield to others at an intersection. Alternatively, there are other drivers who

behave aggressively by cutting other vehicles off to get through an intersection first.

In addition to these preferences, vehicle dynamics should be considered in IMSes. For

example, sports cars may cross an intersection quickly, but semi-trucks have limited acceler-

ation and require much more time. These limitations restrict passengers’ preferences to what

their vehicles are physically capable of achieving. Existing works typically assume vehicles

have identical dynamics.

Current research efforts into intersection management focus on intersections with sparse

traffic and vehicles traveling at speed. First come, first served scheduling algorithms work

well under these conditions because the arrivals are staggered. However, when traffic reaches

a critical density, it results in stop-and-go driving, and determining which vehicle arrived

“first” becomes more difficult or impossible. Consider a large number of cars converging on a

parking lot with one entrance or a road detour that ushers vehicles through a lower-capacity
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auxiliary road.

This chapter proposes an auction-based IMS that optimizes for passenger preferences

while also considering vehicle dynamics and other constraints. Vehicles submit, as their

bid, cost functions for how quickly they want to cross the intersection and how soon. The

IMS allocates a crossing duration interval to each vehicle. Each vehicle must cross the

intersection within the amount of time they are assigned. For example, if the IMS assigns

a five-second crossing duration, the vehicle must cross the intersection in five seconds. The

system also schedules vehicles according to their preferences on how soon they want to cross.

Vehicles’ cost functions abstract their dynamics, allowing for a loose coupling with the IMS

and promoting scalability.

Since our proposed system optimizes for passenger preferences, we expect there to be a

trade-off between throughput and satisfaction. We hypothesize that our system will produce

more favorable passenger outcomes (i.e., preferred crossing durations and orders) at the

expense of traffic throughput.

3.2 Related Work

Auction-based intersection management systems typically rely on real currency or virtual

tokens to determine a crossing order. Vehicles place bids to gain crossing priority over

others, and the auctioneer determines a winner based on the auction’s rules. In [36], vehicles

use real money in a sealed-bid, second-price auction to determine which vehicle crosses first;

participants in [37, 38] used virtual tokens instead. Vehicles in those works had only a finite

amount of currency, so the intersection management system subsidized bids for vehicles

with insufficient funds. Variations to auction-based management systems include different

payment systems: all pay, in which all participants pay their bid, and winner pays, in which

only the winner pays their bid. Crossing variations can include letting only the winner

cross (i.e. one crossing per auction) or letting all participants crossing in decreasing order of
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3
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Road-Side
Equipment

Figure 3.1: Four vehicles approach an intersection. The dotted lines indicate each vehicle’s
desired path, but they do not indicate when the vehicles will cross. Only one vehicle crosses
the intersection at a time.

bids. Compared to direct control and scheduling based approaches, vehicles in auction-based

systems cross the intersection in their preferred durations. However, a concern with monetary

auctions is that intersection crossings are determined by economic status rather than vehicles’

abilities. While there is no existing study on transportation economies, to the best of our

knowledge, we suspect this might lead to wealth imbalances that disadvantage poorer bidders.

Subsidies built into current management systems indicate that these imbalances are possible.

Existing IMSes typically use a variety of methods to optimize for efficiency metrics in-

cluding throughput, travel delay, congestion [76]. However, few systems consider passenger

preferences on when to cross the intersection. None, to the best of our knowledge, consider

preferences on how quickly to cross. While traffic may be optimal with respect to through-

put, it may be suboptimal with respect to passenger satisfaction. The bids in auction-based

methods serve as a proxy for passengers’ crossing order preferences. However, auction-based

IMSes do not consider crossing duration preferences. Our proposed system resolves this

shortcoming by including passenger preferences in the optimization process.
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Road-Side
Equipment

τ (0)

τ (1)

Figure 3.2: Imaginary intersection lane (bounded by orange dotted lines) and corresponding
centerline (denoted by a solid blue line) for a left turn. The path starts at the green dot
and ends at the red square. The blue lines beyond the red and green marks visualize other
lanes’ centerlines.

3.3 Problem Formulation

Our road network comprises M roads that lead to the same M -way, unsignalized intersection

with a stop sign at each entrance. Additionally, N autonomous vehicles drive on the network,

with disjoint subsets driving on each road. A management system installed at the intersection

regulates the traffic and determines the crossing order. Fig. 3.1 visualizes an example

scenario with a four-way intersection and four vehicles.

Vehicles approach the intersection simultaneously, or within some small finite time win-

dow ϵ ≥ 0, and the crossing order initially is undetermined. Like real-world intersections,

vehicles may be perceived to have arrived simultaneously even if their exact arrival times

differ. Let ti and tj be the arrival times of two different vehicles i and j, respectively. We

consider the two vehicles to have arrived simultaneously if |tj− ti| ≤ ϵ, where ϵ is determined

by the system designer.

All incoming vehicles must first stop at the intersection’s entrance before crossing. This
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allows pedestrians and other vulnerable road users time to cross the street. We define the

waiting duration as the elapsed duration between when the vehicle stops at the intersection

and when it begins crossing.

Definition 3.3.1 (Waiting Duration). The waiting duration ∆i
wait := tistart−tistop is the length

of time (in seconds) that vehicle i = 1, . . . , N waits at the intersection before crossing. The

vehicle stops at the intersection at time tistop and begins crossing at time tistart. We assume

both times are positive and that the start time is greater than or equal to the stop time. ■

3.3.1 Vehicle Motion

Each vehicle i = 1, 2, . . . , N moves according to a dynamics model f i : Rpi × Ci × U i → Rpi

defined by

q̈i(t) = f i
(
q̇i(t), qi(t),ui(t)

)
, (3.1)

where qi(t) ∈ Ci and ui(t) ∈ U i are the model’s configuration and control vectors, respec-

tively, at time t ∈ R≥0. Notations □̇ and □̈ indicate the first and second time derivatives,

respectively. Sets Ci and U i are the vehicle’s configuration and control spaces, respectively.

We represent the set of nonnegative real numbers with R≥0. The particular motion model

may differ among vehicles, but we assume all models are time invariant. The configurations

and controls are functions of time, but we drop the explicit notation in the rest of the paper

to preserve clarity.

A vehicle can cross the intersection within different time durations based on the its

dynamics. For example, sports cars may cross quickly, but semi-trucks with fully loaded

trailers would require significantly more time. We define a crossing duration as the length

of time a vehicle takes to cross the intersection. A crossing duration interval contains a

vehicle’s feasible crossing durations.

Definition 3.3.2 (Crossing Duration). The crossing duration ∆i
cross ∈ Di

cross is the length

of time (in seconds) that vehicle i = 1, . . . , N takes to cross the intersection. Interval
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Di
cross := [∆i

cross,∆
i
cross] ⊆ R>0 contains the dynamically feasible crossing durations for vehicle

i, where ∆i
cross and ∆i

cross are the lower and upper bounds, respectively. Set R>0 contains

the positive reals. We assume ∆i
cross is positive and less than or equal to ∆i

cross. ■

When crossing the intersection, each vehicle follows a continuous reference path τ i : [0, 1]→

Ci beginning at τ (0) and ending at τ (1). On road networks, imaginary lanes within the each

intersection connect entrances to exits and those lanes’ centerlines serve as the reference

paths. Fig. 3.2 illustrates the reference path for a left turn. The orange dotted lines visual-

ize the imaginary lane’s boundaries, and the blue solid line is the lane’s centerline. The path

begins at the green dot and ends at the red square. Road lane graphs generated from road

maps contain these desired driving paths [28]. In real-world applications, driving automation

systems use mapping libraries, such as lanelet2 [78], to access a lane’s centerline.

Using a reference path, vehicles’ motion planners determine the lower crossing duration

bound by solving a time-optimal path parameterization problem [62]. Alternatively, the

motion planners could conduct a binary search for a lower crossing duration using trajectory

optimization method described in Ch. 2. The upper crossing duration is based on the

vehicle’s speed when it is in gear without input into the accelerator. For practical purposes,

we assume the upper duration bound is lower than this “coasting duration” because no

reasonable driver would coast in-gear through an intersection.

3.3.2 Passenger Preferences

Each vehicle’s passengers want to cross the intersection in a specific crossing duration, ∆i
cross.

We represent passengers’ preferences over crossing durations with a crossing cost function.

Fig. 3.3a plots a quadratic crossing cost where five seconds is the desired crossing duration.

As illustrated in the figure, the vehicle may physically be able to cross the intersection slower

or faster, but those times are less desirable. For example, some passengers get motion sick

if the car moves too quickly. However, they do not want to spend an unreasonable amount

of time crossing because that would unnecessarily delay their overall trip. Individuals may
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Figure 3.3: a An example crossing cost function with a quadratic structure. b An example
waiting cost function with a nonlinear increasing structure. For both functions, a dot indi-
cates the desired duration.

have different preferences, but we assume each vehicle’s crossing cost function aggregates its

passengers’ preferences (i.e., one crossing cost function per vehicle).

Definition 3.3.3 (Crossing Cost). The crossing cost J i
cross : Di

cross → R for vehicle i =

1, 2, . . . , N is the cost associated with crossing the intersection in ∆i
cross ∈ Di

cross seconds. ■

Passengers also have a collective preference over different waiting durations. We represent

this preference with a waiting cost function. Fig. 3.3b plots a nonlinear increasing waiting

cost function where zero seconds is the preferred waiting duration.

Definition 3.3.4 (Waiting Cost). The waiting cost J i
wait : R≥0 → R for vehicle i = 1, 2, . . . , N

is the cost associated with waiting at the intersection for ∆i
wait ∈ R≥0 seconds before starting

to cross. ■
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3.3.3 Crossing Order

Vehicles cross the intersection in a sequence specified by a crossing order. Let N :=

{1, 2, . . . , N} be the set of vehicles on the road network. Let L := {1, 2, . . . , L} ⊆ N denote

the set of lead vehicles stopped at the intersection. Permutation π ∈ ΠL over the set of lead

vehicles represents a possible order. We define π : L → L using Cauchy’s two-line notation

 1 2 · · · L

π(1) π(2) · · · π(L)

 , (3.2)

where π(i) is the ith vehicle to cross the intersection under the permutation. Set ΠL contains

all permutations over the set of lead vehicles.

Given the problem formulation, we seek crossing durations and a crossing order that

minimize vehicles’ crossing and waiting costs. We refer to such a cost-minimal vector of

crossing durations and associated crossing order as a socially-optimal outcome.

3.4 Socially-Optimal IMS Framework

We propose an auction-based intersection management system (IMS) to solve the problem

defined in Section 3.3. The roadside equipment (RSE), shown in Fig. 3.1, serves as the

auctioneer. It receives bids and assigns crossing durations and schedules to all participating

vehicles. Our current work assumes that the intersection has fixed roadside infrastructure;

however, the participating vehicles alternatively could elect one of themselves to serve as the

auctioneer. We defer this election process to future research.

As opposed to other auction-based IMSes, vehicles in our system bid using cost functions

instead of money or tokens. Each vehicle submits a crossing cost function representing their

willingness to cross the intersection in specific durations. They also submit a waiting cost

function representing their willingness to wait at the intersection for specific durations before

crossing.
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Figure 3.4: a Vehicles transmit their bids as they near the intersection. b The IMS transmits
each vehicle’s optimal starting time and crossing duration.

We assume only one vehicle crosses the intersection at a time, and only the lead vehicles

for each road participate in the auction. Fig. 3.4 visualizes the dataflow between vehicles

and the IMS.

Our goal is to determine a crossing duration for each vehicle and a crossing order that

maximizes the social welfare for all vehicles crossing the intersection. We use a utilitarian

social cost function, which is the summed cost (negative utility) for each vehicle. A utilitarian

social cost function sums the (possibly weighted) costs of all agents, meaning changes the
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one agent’s cost will affect the overall cost. Minimizing this social cost function given any

constraints on crossing durations or the order produces a socially-optimal solution [79, Sec.

22.C].

3.4.1 Auction Mechanism

We based our solution on a concept from economics and game theory called mechanism

design [79, Ch. 23]. A mechanism is a collection of strategy sets and an outcome function.

Auctions are one well known type of mechanism. The auctioneer allocates goods to vehicles

based on its outcome function, and vehicles place bids from their strategy sets to win those

goods.

As opposed to other auction-based IMSs, where agents bid using money, the vehicles

in our system bid using crossing and waiting cost functions. Vehicles calculate their cost

curves for different crossing and waiting durations then submit them as their bids. We define

vehicle i’s bid ϕi by the tuple

ϕi := ⟨J i
cross, J

i
wait⟩. (3.3)

The IMS uses this information to determine an appropriate crossing duration for each vehicle

and a crossing schedule. Algorithm 3.1 provides an overview of the algorithms used by the

IMS and vehicles.
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Algorithm 3.1 IMS overview

1: for all i ∈ L do ▷ Vehicle i
2: ∆i

cross ← solve minimum duration problem

3: Di
cross ← [∆i

cross,∆
i
cross]

4: ϕi ← ⟨Jcross, Jwait⟩
5: Submit ϕi as bid
6: Wait for ⟨tπ

⋆(i)
start ,∆

⋆π⋆(i)
cross ⟩

7: σ⋆ ← solve (3.14)
8: Track τ i ◦ σ⋆

9: end for
10:

11: Wait for all ϕi, i = 1, 2, . . . , L ▷ Auctioneer
12: ∆⋆

cross ← solve (3.5)
13:

14: π⋆ ← solve (3.7) ▷ Scheduler

15: t
π⋆(0)
start ← 0

16: ∆
⋆π⋆(0)
cross ← 0

17: for all i = 1, . . . , L do
18: t

π⋆(i)
start ← t

π⋆(i−1)
start +∆

⋆π⋆(i−1)
cross

19: Transmit ⟨tπ
⋆(i)

start ,∆
⋆π⋆(i)
cross ⟩ to vehicle i

20: end for

We want the auction to be ex post (or Pareto) efficient, meaning its outcome is Pareto

optimal (efficient) given the agents’ utility functions. An outcome is Pareto optimal if no

agent’s utility can be improved without reducing another agent’s utility.

Vehicles’ bids represent and abstract private information that only they can observe,

meaning auctions can be susceptible to strategic agents. To avoid this, auctions can be

designed to incentivize agents to bid truthfully, a property call incentive compatibility. A

sealed-bid, second-price auction (or Vickrey auction) is an example of an incentive compatible

mechanism. For this work, we assume agents bid truthfully. Future work will analyze our

auction formulation for incentive compatibility and modify it if necessary.

To demonstrate that our auction formulation is ex post efficient, we need to show that the

crossing duration allocations and crossing schedule are Pareto optimal. As briefly mentioned

earlier, optimizing a utilitarian social welfare (cost) function results in a Pareto optimal

outcome.
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Authors in [80] proposed a framework for comparing different market-based coordina-

tion methods for distributed energy systems. We use the same comparison framework to

summarize our system:

• Agent preference: Vehicle preferences (objectives) are defined by Definitions 3.3.3

and 3.3.4, and auctioneer preferences (objectives) are defined by (3.4).

• Control decision: For vehicle i, a trajectory (x⋆i,u⋆i) that minimizes J i
cross for a

given ∆i
cross. For the IMS, a vector of optimal crossing durations ∆⋆

cross and an optimal

crossing schedule π⋆.

• Information structure: Type independence among agents; Decision dependence

from auctioneer to vehicles.

• Solution concept: Auction-based optimization problem.

3.4.2 Auctioneer

The auctioneer seeks to maximize social utility by assigning crossing durations that best

satisfy everyone’s preferences. After receiving vehicles’ bids, the auctioneer assigns crossing

durations according to vehicles’ crossing cost functions. The auctioneer may consider other

constraints or costs that affect crossing duration assignment. For example, we could impose

an upper limit on the intersection clearing time (the time it takes for all lead vehicles to

cross) to ensure all vehicles cross in a timely manner. We formalize the auctioneer’s objective

with the auction cost function:

Jauction(∆cross) :=
L∑
i=1

J i
cross(∆

i
cross) + Jother(∆cross), (3.4)

where vector ∆cross := (∆1
cross,∆

2
cross, . . . ,∆

L
cross) contains each vehicle’s crossing duration.

The auctioneer assigns crossing durations by solving the following optimization problem:
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minimize
∆cross

Jauction(∆cross) (3.5a)

subject to ∆i
cross ∈ Di

cross i = 1, . . . , L, (3.5b)

g(∆cross) = 0, (3.5c)

h(∆cross) ≤ 0 (3.5d)

Function Jother : D1
cross × D2

cross × · · · × DL
cross → R represents other objectives or soft

constraints that a system designer may want to impose. If there are none, Jcross equals

zero. Constraints (3.5c) and (3.5d) are hard constraints that a system designer may want to

impose, such as an upper bound on the intersection clearing time. It is the system designer’s

responsibility to ensure the additional constraints do not make the problem infeasible.

The auctioneer determines a crossing duration allocation ∆⋆
cross ∈ D1

cross ×D2
cross × · · · ×

DL
cross that minimizes the utilitarian social cost function subject to any constraints, thus

producing a Pareto optimal outcome. If the outcome was not Pareto optimal, there would

exist another allocation benefiting all agents and further reducing the auction cost, thus

creating a contradiction. Note that because (3.5) is a nonlinear optimization problem, our

approach guarantees a local Pareto efficiency.

3.4.3 Scheduler

After the auctioneer assigns optimal crossing durations to each vehicle, the scheduler deter-

mines the crossing order. We schedule vehicles in an order that maximizes social welfare

with respect to each vehicle’s waiting cost function, i.e., it minimizes them. We call this a

socially-optimal scheduling algorithm.

A socially-optimal crossing order (permutation) π⋆ ∈ ΠL minimizes the vehicles’ summed

waiting costs, which we term the schedule cost. The schedule cost is a functional Jschedule : ΠL →
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R that we define by

Jschedule(π) :=
L∑
i=1

J
π(i)
wait

(
t
π(i)
start

)
(3.6)

The scheduler solves the following optimization problem to determine the crossing sched-

ule:

min
π ∈ ΠL

Jschedule(π) (3.7a)

s.t. t
π(i)
start = t

π(i−1)
start +∆⋆π(i−1)

cross i = 1, . . . , L, (3.7b)

t
π(0)
start = 0, (3.7c)

∆⋆π(0)
cross = 0 (3.7d)

Algorithm 3.2 describes an implementation of the socially-optimal scheduling algorithm.

The implementation is globally Pareto optimal because it exhaustively searches the set of

permutations. If the set contains several schedules with equal cost, the algorithm will return

the first on it encountered.

While Algorithm 3.2 has a runtime complexity of O(LL!), the number of vehicles per

auction and scheduling iteration realistically is low enough to maintain tractability. Addi-

tionally, a parallelized implementation could evaluate permutations concurrently to reduce

computation time.
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Algorithm 3.2 Socially optimal scheduling

1: J⋆
schedule ←∞

2: π⋆ ← undefined
3: for all π ∈ ΠL do
4: t

π(0)
start ← 0

5: t
π(0)
cross ← 0

6: for all i = 1, . . . , L do
7: t

π(i)
start ← t

π(i−1)
start +∆

π(i−1)
cross

8: end for
9: Jschedule ←

∑L
i=1 c

π(i)
wait

(
t
π(i)
start

)
10: if Jschedule < J⋆

schedule then
11: J⋆

schedule ← Jschedule
12: π⋆ ← π
13: end if
14: end for
15: return π⋆

After generating an optimal crossing schedule π⋆, the scheduler assigns a start time t
π⋆(i)
start

to each vehicle. The start time for vehicle π⋆(i) is the sum of the previous vehicle’s start time

and crossing duration:

t
π⋆(i)
start =


t
π⋆(i−1)
start +∆

π⋆(i−1)
cross i = 2, . . . , L

0 i = 1

. (3.8)

The IMS then transmits to each vehicle their assigned start time and crossing duration as

illustrated in Fig. 3.4b.

3.4.4 Combined Auctioneer and Scheduler

The proposed IMS design imposes an implicit hierarchy on the crossing and waiting cost

functions. In other words, the system prioritizes minimizing crossing costs over waiting

costs. As we show in the experimental results, this can cause high average waiting costs

and thus high average total costs. Vehicles that prefer to cross the intersection slowly

will contribute toward longer waiting durations. Longer waiting durations can be costly
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depending on vehicle’s waiting cost functions.

We therefore propose an alternative system design that combines the auctioneer and

scheduler into a single entity. The resulting optimization problem determines crossing du-

rations and start times simultaneously, minimizing the summed crossing and waiting costs.

We combine problems (3.5) and (3.7) to form the combined problem

min
∆cross, π

Jauction(∆cross) + Jschedule(π) (3.9a)

s.t. ∆i
cross ∈ Di

cross i = 1, . . . , L, (3.9b)

g(∆cross) = 0, (3.9c)

h(∆cross) ≤ 0, (3.9d)

t
π(i)
start = t

π(i−1)
start +∆π(i−1)

cross i = 1, . . . , L, (3.9e)

t
π(0)
start = 0, (3.9f)

∆π(0)
cross = 0 (3.9g)

Constraints (3.9b)–(3.9d) are equivalent to those in problem (3.5), and constraints (3.9e)–

(3.9g) are equivalent to those in problem (3.7).

Algorithm 3.3 implements problem (3.9). For each permutation (crossing order), the

algorithm assigns cost-minimal crossing durations. The algorithm returns the lowest-cost

permutation and associated crossing durations. Note that the combined auctioneer and

scheduler can provide only local Pareto optimality.
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Algorithm 3.3 Combined System

1: J⋆
schedule ←∞

2: π⋆ ← undefined
3: ∆cross ← undefined
4: for all π ∈ ΠL do
5: Jschedule, π,∆cross ← solve (3.9)
6: if Jschedule < J⋆

schedule then
7: J⋆

schedule ← Jschedule
8: π⋆ ← π
9: ∆⋆

cross ←∆cross

10: end if
11: end for
12: return π⋆,∆⋆

cross

3.5 Trajectory Optimization

Once vehicles receive their assigned crossing duration and start time, they need to plan their

motion. Initially, we used a multi-objective optimization approach where vehicles tried to

minimize both reference tracking deviations and control effort. This structure resembled

model predictive control (MPC) with a planning horizon equal to the crossing duration.

As we discuss in the next section, this approach is susceptible to large tracking errors

when the IMS assigns short crossing durations. In the subsequent section, we recapitulate

the path-constrained trajectory optimizer from Ch. 2, which performed significantly better

than our original method. While the MPC-style approach generated undesirable motion

plans, we discuss it here because the work was a key motivator for trajectory optimizer.

3.5.1 Multi-Objective Optimization

Given the assigned crossing duration ∆i
cross, we discretize the planning horizon into a sequence

of stages k = 0, 1, . . . , N(∆i
cross), where function N : Di

cross → Z>0 is defined as

N(∆i
cross) ≜

⌈
∆i

cross

δi

⌉
.
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Parameter δi ∈ R>0 controls the discretization sampling period. The intuition is that the

planning horizon becomes longer as the vehicle has more time to cross the intersection (i.e.,

a larger ∆i
cross).

We define the discretized vehicle dynamics as

xi
k+1 = f i

d(x
i
k,u

i
k) for k = 0, 1, . . . , N(∆i

cross),

where xi
k and ui

k are the system’s state and input vectors, respectively, at stage k.

Each vehicle tracks a reference path τ , such as a turning arc or straight line, as they

drive through the intersection. The reference path is the lane’s center line, which is provided

to the planner (e.g., through a perception system). Let ri : R≥0 → X i be a time-varying

reference function (trajectory) defined as

ri(t) ≜ τ i

(
t

∆i
cross

)
.

We denote the discretized version as

ri
k ≜ ri(kδi) for k = 0, 1, . . . , N(∆i

cross).

The motion planning problem is then defined as

minimize
x1,...,xN(∆i

cross)

u1,...,uN(∆i
cross)

N(∆i
cross)∑

k=1

(
∥xi

k − ri
k∥Q + ∥ui

k∥R
)

subject to xi
k+1 = f i

d

(
xi
k,u

i
k

)
,

xi
k ≤ xi

k ≤ xi
k,

ui
k ≤ ui

k ≤ ui
k

where matrices Q and R weight the reference tracking and control effort objectives, respec-
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tively.

One issue with this approach, and multi-objective optimization in general, is the trade-off

between objectives. Prioritizing the control effort cost will cause the vehicle to significantly

deviate from the reference path, opting to travel in a straight line. Focusing on path tracking

can lead to unnecessarily large control inputs. Finding the proper balance between objectives

is difficult, and different crossing durations require different weightings.

The other issue is the implicit time scaling for the reference trajectory. It assumes the

vehicle makes uniform progress along the reference path. However, this is unrealistic as the

vehicle will make little progress at the path’s beginning and end. Vehicles need time to

accelerate and decelerate.

Ideally, we want the minimum control effort required to track the reference path. There-

fore, we need the path-constrained trajectory optimizer presented in Ch. 2, which we briefly

review in the next section.

3.5.2 Path-Constrained Motion Planning

This task follows the same idea as the time optimal path parameterization problem mentioned

earlier, but now we want the vehicle to traverse the path in a specific amount of time. We

summarize the work presented in Ch. 2, modifying the notation slightly to fit within the

intersection management context.

Given an assigned duration ∆⋆i
cross, we want the vehicle’s configuration to be τ (0) when

it begins crossing the intersection. We want its configuration at the end of its traversal

(tistart +∆⋆i
cross) to be τ (1).

The reference path is a purely geometric concept, as it does not convey any time-related

information. Therefore, we need a time scaling σi : [0,∆⋆i
cross] → [0, 1] that maps times

tcross ∈ [0,∆⋆i
cross] to path-positions s ∈ [0, 1]. The time scaling describes how the vehicle

moves along the path as a function of time. We require σi(tistart) = 0 and σi(tistart+∆⋆i
cross) = 1

because we want the vehicle to start and stop at the path’s boundaries. As with (3.1) (the
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vehicle’s dynamics model), we use the short-hand notation σi := σi(t) to preserve clarity.

To plan the vehicle’s motion, we consider only configurations that lie along this path.

We express each vehicle’s configuration in terms of its path-position [39, Sec. 14.6.3]:

qi := τ i(σi). (3.10)

We also relate the vehicle’s velocity q̇i to the path by differentiating (3.10) with respect

to time:

q̇i :=
dτ i

dσi

dσi

dt
= τ ′i(σi)σ̇i, (3.11)

where □′ denotes the first derivative with respect to the path-position, and σ̇i is the vehicle’s

path-velocity.

Furthermore, we express the vehicle’s path-constrained acceleration by differentiating

(3.11) with respect to time:

q̈i :=
d2τ i

dσi2

[
σ̇i
]2

+
dτ i

dσi
σ̈i = τ ′′i(σi)

[
σ̇i
]2

+ τ ′i(σi)σ̈i, (3.12)

where □′′ denotes the second derivative with respect to the path-position, and σ̈i is the

vehicle’s path-acceleration.

Substituting (3.10)–(3.12) into (3.1) , yields the path-constrained dynamics for vehicle i:

τ ′′i(σi)
[
σ̇i
]2

+ τ ′i(σi)σ̈i = f i
(
τ i(σi), τ ′i(σi)σ̇i,ui

)
(3.13)

We assume that motion planners minimize control effort while satisfying the assigned
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crossing duration, which informs the following optimization problem:

min
σ,u

∫ tistart+∆⋆i
cross

tistart

∥u∥22 dt (3.14a)

s.t. τ ′′i(σ)σ̇2 + τ ′i(σ)σ̈ = f i
(
τ i(σ), τ ′i(σ)σ̇,u

)
, (3.14b)

ui ≤ u ≤ ui, (3.14c)

σ(tistart) = 0, (3.14d)

σ(tistart +∆⋆i
cross) = 1 (3.14e)

where ∥ · ∥2 is the Euclidean norm, and ui and ui are the lower and upper vehicle control

bounds, respectively, that depend on the vehicle’s dynamics. In problem (3.14), the motion

planner seeks a dynamically feasible time scaling σ⋆ and control signal u⋆ that minimize the

control effort. A system integrator could pass the resulting control signals directly to the

vehicle. They could alternatively compose the path and time scaling to create a reference

input for a trajectory tracking controller.

As in Ch. 2, we employed direct collocation and a nonlinear change of variables to

convert problem (3.14) into a second-order cone program (SOCP). From there, we solved

the program using a conventional SOCP solver.

3.6 Experiments

We conducted two types of experiments. In the initial version of this work, we did a numerical

test to ensure our proposed IMS assigned desirable crossing durations and a crossing schedule.

The expanded test evaluated our system against a continuous stream of vehicles with different

dynamics and passenger preferences.
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Figure 3.5: Crossing costs for each vehicle. Black circles are assigned durations without
intersection constraints. Black squares are assigned durations with intersection constraint
T = 50.

3.6.1 Numerical Experiments

As an initial test, we evaluated our IMS on the scenario shown in Fig. 3.1. We chose crossing

cost functions that exemplify three passenger types: slow, average, and fast.

Fig. 3.5 plots the crossing costs for each vehicles’ passengers, and it shows assigned

crossing durations. Passengers in vehicles 1 (blue) and 2 (orange) were average while those

in vehicle 3 (green) were slow. Vehicle 4’s (red) passengers wanted to cross quickly. The

black circles represent each vehicle’s assigned traversal durations without any intersection-

level constraints. We can see that in this case, all vehicles received their preferred durations.

When we impose a clearing time constraint of 50 seconds to ensure all vehicles cross in a

timely manner, the IMS assigns slightly faster durations, which increases vehicles’ costs.

Fig. 3.6 visualizes the schedule costs for the vehicles when given random waiting cost

functions. We choose a random crossing schedule as a baseline to imitate how vehicles non-

deterministically break stalemates at the intersection. From the figure, we can see that
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Figure 3.6: Schedule costs for random and socially-optimal schedules.

the socially-optimal (SO) scheduling algorithm assigns more preferable (or equivalently-

preferable) crossing schedules in all instances.

3.6.2 Simulation Experiments

We evaluated our auction-based IMS on the four-way intersection shown in Fig. 3.7 that has

lane width of 3.2 meters and an intersection width of 14.4 meters. Our system was devel-

oped in Python using CVXPY [74, 81] to solve the path-constrained trajectory optimization

problems. We used CasADi [73] to represent the paths and their derivatives as well as to

solve the auction problems. Our code is publicly available in our lab’s GitHub repository1.

We simulated the intersection environment using Eclipse Simulation of Urban MObility

(SUMO) [82] and integrated it with our system using the SUMO Traffic Control Interface

(TraCI). To better adhere to Python development best practices, we created a thin wrapper2

around TraCI that provides a “Pythonic” interface.

During the simulation, SUMO added vehicles to the road network at a constant rate.

1https://github.com/the-hive-lab/intersection_auctions
2https://github.com/the-hive-lab/pythonic_traci

66

https://github.com/the-hive-lab/intersection_auctions
https://github.com/the-hive-lab/pythonic_traci


14.4m

3.2m

Figure 3.7: Screenshot of the intersection used in SUMO for the simulations.

Each vehicle had a randomly-determined type (slow, average, fast) with its own control

bounds. Our software randomly selected crossing and waiting cost functions and turning

directions from pre-specified lists.

Each vehicle stopped at the intersection, submitted its bid to the auctioneer, then waited

for the auction results. Once the auctioneer received bids from all participants, it determined

the best crossing durations and start times. Then it sent the results to each participating

vehicle. Vehicles continued along their chosen route in their assigned order, crossing the

intersection in their assigned duration. The stop-auction-move process repeated until all

vehicles crossed the intersection. We simulated with ten vehicles on each lane (forty in

total).
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Table 3.1: Vehicle Control Bounds

Vehicle Type Linear Acceleration Angular Acceleration

Slow 3 10
Average 5 10
Fast 15 10

3.6.3 Setup

Each vehicle moved according to second-order unicycle dynamics. To derive this model, we

started with the conventional single-order (or kinematic) unicycle [39, Eq. (3.18)]

ẋi(t) = vi(t) cos
(
θi(t)

)
(3.15a)

ẏi(t) = vi(t) sin
(
θi(t)

)
(3.15b)

θ̇i(t) = ωi(t). (3.15c)

For the rest of the derivation, we drop the explicit dependence on time in (3.15). The

configuration vector qi := (xi, yi, θi) ∈ Cunicycle includes the vehicle’s position (xi and yi)

and heading θi. Set Cunicycle is the vehicle’s configuration space. The system control vector

u := (vi, ωi) ∈ R2 comprises the scalar linear velocity vi and scalar angular velocity ωi.

Equation (3.1) is a second-order motion model, but system (3.15) describes a first-order

one. We differentiate (3.15) to obtain the second-order kinematic unicycle

ẍi = ui
linear cos

(
θi
)
− θ̇i sin

(
θi
)√

(ẋi)2 + (ẏi)2 (3.16a)

ÿi = ui
linear sin

(
θi
)
+ θ̇i cos

(
θi
)√

(ẋi)2 + (ẏi)2 (3.16b)

θ̈i = ui
angular, (3.16c)

where ui
linear and ui

angular are the scalar linear and angular accelerations, respectively.

We defined three different vehicle types: slow (e.g., a semi-trailer truck), average, and

fast (e.g., a sports car). Each vehicle type had its own control bounds, shown in Table 3.1.
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Vehicles entering the intersection could turn left, turn right, or go straight. All reference

paths comprised a straight segment followed by either a turning segment or another straight

segment. This ensured the rear axle was coincident with the intersection’s start; otherwise,

the vehicle would clip the sidewalk when turning. We represented the second segment for

each reference path with a function τ{left,right,straight} : [0, 1]→ Cunicycle defined by

τleft(s) =


8.8 cos

(
π
2
s+ 3π

2

)
8.8 sin

(
π
2
s+ 3π

2

)
+ 8.8

arctan
(
τ ′left,2(s)/τ

′
left,1(s)

)
 (3.17)

τright(s) =


5.6 cos

(
π
2
s+ 3π

2

)
−5.6 sin

(
π
2
s+ 3π

2

)
− 5.6

arctan
(
τ ′right,2(s)/τ

′
right,1(s)

)
 (3.18)

τstraight(s) =


14.4s

0

arctan
(
τ ′straight,2(s)/τ

′
straight,1(s)

)
 . (3.19)

Notations τ ′
□,1 and τ ′

□,2 denote the first and second components of the path’s s-derivative.

These paths were implemented as offsets from the vehicle’s starting orientation. This

allowed us to use a single reference path implementation and then align it to individual

vehicles’ orientations when stopped. We approximated solutions to problem (3.14) with a

direct collocation scheme and second-order cone program as described in Ch. 2 [83].

We chose crossing cost functions to model three types of (idealized) passengers: cautious,

average, and aggressive. Cautious passengers preferred to cross the intersection slowly, so

their cost decreased as the crossing duration increased. Average passengers avoided crossing

too quickly or too slowly. Their function was a quadratic. Aggressive passengers preferred

crossing as quickly as possible, preferring shorter durations. We chose these driver types for

exposition, but other passenger types and functions could be used instead.

Like the crossing cost functions, we modeled three types of passengers: impatient, av-

69



erage, and patient. Impatient passengers preferred to start crossing as soon as possible.

These are passengers that are in a hurry. Patient passengers wanted to start crossing at a

later time. A real-world equivalent would be passengers that let others cross before them.

Intuitively, this could be someone who is ahead of schedule, so they want to pad their trip

with extra time. Average passengers wanted to cross somewhere in between. They do not

mind waiting, but they do not want to wait too long.

3.6.4 IMS Configurations

We evaluated our IMS against different auctioneer and scheduler configurations to better

understand how the two components individually affected performance. Our nominal system,

denoted PO, assigned preferred crossing durations and socially optimal crossing schedules.

Table 3.2 contains all configurations we used in the evaluations.

To simulate vehicles interacting at an unmanaged intersection, we set the auctioneer to

assign preferred durations and set the scheduler to assign random orders. This provides

a realistic baseline because, without external forces, vehicles will cross the intersection in

however long they want. They will also break stalemates nondeterministically. Another

configuration assigned preferred crossing durations and a fixed-order crossing schedule. This

was equivalent to the right-most-first rule starting from a common reference point.

These two configurations served as baselines because they best represented how real

vehicles would interact. Other configurations included assigning time-minimum crossing

durations with random, fixed, and socially optimal schedules. Another imposed a clearing

time constraint on the auctioneer. The final configuration replaced the individual auctioneer

and scheduler subsystems with the combined one from Section 3.4.4

3.6.5 Constrained Auctioneer

To demonstrate our system’s performance under intersection-level constraints, we imposed

an upper bound on the intersection clearing time. The clearing time is the sum of crossing
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durations. This ensured that all vehicles crossed the intersection in a timely manner, sac-

rificing passenger preferences for traffic throughput. We used this auction problem for the

constrained, optimal (CO) IMS configuration.

In this configuration, we required all vehicles within an auction round to collectively cross

the intersection within T = 15 seconds. Note that we could have use other values for T . The

modified optimization problem for the auctioneer was

minimize
∆cross

L∑
i=1

J i
cross(∆

i
cross) + γα (3.20a)

subject to ∆i
cross ∈ Di

cross i = 1, . . . , L, (3.20b)

L∑
i=1

∆i
cross ≤ T + α, (3.20c)

α ≥ 0 (3.20d)

To ensure the optimization problem was feasible, we used a slack variable α to make the

clearing time (summed crossing durations) a soft constraint. We also added a positive penalty

parameter γ to encourage the numerical solver to strictly adhere to the desired upper limit.

In our experiments, we set γ equal to 100.

3.6.6 Evaluation Metrics

We compared the different configurations using average trip duration, average crossing cost,

average waiting cost, and average total cost. The averages were over all vehicles in the

simulation. The average trip duration indicated each configuration’s ability to manage traffic

flow. The average total cost summed the average crossing and waiting costs, providing

insight on much passengers preferred their assigned outcomes. Using the average crossing

and waiting costs individually, we could better understand how each subsystem influenced

the overall costs.
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3.6.7 Discussion

Our experiments revealed that the system’s performance depends on passenger preferences.

As shown in Fig. 3.8, assigning time-minimal crossing durations with the MR, MF, and MO

configurations increased passengers’ crossing costs. However, assigning preferred durations

contributed to larger waiting costs (Fig. 3.9) and in turn higher total costs (Fig. 3.10). This

makes sense as not all vehicles’ passengers wanted to cross as quickly as possible.

When fixing the crossing duration assignment method and varying the schedule assign-

ments, we saw that assigning socially optimal schedules produced the most favorable (least

costly) outcomes. See Fig. 3.9 for a visual comparison and Table 3.2 for the numerical

values. This suggests that the socially optimal scheduling method is globally beneficial.

These results highlight our previous discussion on how the system design creates an

implicit cost function hierarchy. We see in Fig. 3.10 that the crossing costs were optimized

for PR, PF, and PO, but the waiting costs were not. When we used the combined auctioneer

and scheduler configuration, the resulting average waiting cost reduced drastically with only

a minuscule crossing cost increase.

It is important to emphasize how vehicles’ cost functions influenced the results. In the

best case scenario, vehicles’ crossing cost functions resemble their waiting cost functions. If

all vehicles preferred to cross faster, then the resulting starting times would be sooner. This

would be most beneficial to impatient drivers (those who prefer to cross sooner). In the

worse case scenario, the functions are opposites.

The experimental results and above discussion help establish two configuration extremes.

At one extreme, the system assigns minimal crossing durations, optimizing traffic throughput

at the expense of passenger preferences. At the other end, the system assigns preferred du-

rations, which maximizes preferences but contributes to longer average trip durations. Figs.

3.10 and 3.11 show this inverse relation between passenger satisfaction and trip duration.

Fortunately, our system allows a designer to impose intersection-level constraints to slide

between the two extremes. In this paper, we set a fixed upper bound on clearing time.
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Figure 3.8: Average crossing costs for each IMS configuration.

A future iteration of our system could integrate traffic flow or congestion monitors and

dynamically adjust the clearing time constraint. As traffic flow decreases, the clearing time

bound could be lowered to alleviate congestion. The bound would then increase as traffic

flow increases. Other intersection-level objective adjustments could include prioritizing more

congested lanes.

3.7 Conclusion

In this chapter, we proposed an auction-theoretic intersection management system (IMS)

that used cost functions instead of money as bids. Vehicle passengers have preferences on

how quickly they cross an intersection, their crossing cost, and how long they wait before

crossing, their waiting cost. As vehicles simultaneously approach an intersection, they share

with the IMS their crossing and waiting cost functions. The auctioneer inside the IMS

assigns socially-optimal (i.e., cost-minimal) crossing durations. The scheduler subsystem

then assigns a socially-optimal (i.e., cost-minimal) crossing schedule.
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Figure 3.9: Average waiting costs for each IMS configuration. Note that the PR and PF
values are clipped because they are much larger than the other values. See Table 3.2 for the
values.
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Figure 3.11: Average trip durations for each IMS configuration.

We evaluated our proposed system on a four-way intersection against several IMS configu-

rations. Our results show that the system’s performance depends on vehicles’ cost functions.

Results also show a trade-off between intersection throughput and passenger satisfaction.

System designers can balance this by imposing constraints, such an upper bound on in-

tersection clearing time. Experimental results demonstrated that a modest clearing time

constraint can significantly improve intersection throughput with only a small decrease in

satisfaction (cost increase).

This work provides several directions for future research. The current implementation

assumes the intersection has fixed infrastructure to facilitate the auction, but vehicles could

instead elect one of themselves to hold the auction. Additionally, we could integrate a traffic

flow sensor and dynamically adjust the clearing time bound, assigning preferable crossing

durations in light traffic and time-minimal durations in heavy traffic. Finally, we can analyze

the auction mechanism for incentive compatibility and adapt it if necessary. Our current

system design assumes vehicles report their preferences truthfully, which strategic agents

may exploit this and bid untruthfully to gain unfair advantages over others.
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Chapter 4

Game-Theoretic Motion Planning

4.1 Introduction

Compared to rural or suburban roads, urban environments are significantly more cramped.

When driving through narrow alleyways, other vehicles regularly and suddenly pull in off

main roads, blocking the exits. This forces both drivers to somehow maneuver their cars so

that they can pass each other. Human drivers easily and routinely resolve this conflict, but

the problem is under explored for autonomous vehicles.

Common interaction scenarios that autonomous vehicles face include ramp merging, in-

tersection crossing, and lane changing. Fig. 1.4 visualizes these. All of these scenarios

provide sufficient room for each vehicle to maneuver, meaning their motion planners need

to only determine a time scaling along their original reference path. However, when vehicles

interact with each other in spatially-constrained environments such as parking lots, narrow

side streets, or alleyways, vehicles need to make tactical decision and re-plan their paths and

trajectories.

This chapter investigates complex vehicle interactions where self-interested vehicles mu-

tually block each other from reaching their destinations, resulting in a deadlock—we term

the resulting game a deadlock game.1 Agents can resolve the deadlock only by coordinating

1The term deadlock game is slightly overloaded in the game theory literature, but other uses come from
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a

b

Figure 4.1: Deadlock interaction scenarios. a Depicts two vehicles trying to cross the same
one-lane, two-way road. b Depicts two vehicles driving down an alley from different direc-
tions.

their movements. Fig. 4.1 illustrates two example scenarios. In Fig. 4.1a, the red vehicle

wants to drive to the right end of the road while the blue vehicle’s goal is to move to the

left end. Neither one can to back up off the road because that would mean backing up into

oncoming traffic. The only solution is for one of the vehicles to maneuver into the open space

and allow the other to pass. Fig. 4.1b presents a similar situation for a narrow alleyway.

Essentially, one vehicle needs to act locally suboptimal to achieve their globally optimal

objective—they sacrifice their original optimal solution for the “greater good.”

This chapter presents our preliminary research into solving deadlock games. We begin by

formalizing the world representation, the agent movement models, and the game components.

Then, we present a tactical decision making algorithm to solve general problem instances

under a mild assumption. Finally, we compare our algorithm’s performance against a data-

driven policy synthesized using reinforcement learning. This work provides a foundation for

continued expansions including equilibrium refinement and more complex scenarios.

areas outside of motion planning.
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4.2 Related Work

Game-theoretic motion planning literature studies mainly ramp merging, lane changing, and

intersection navigation. However, vehicles often interact in other ways: tight alleyways; one-

lane, two-way roads; and small parking lots. During these interactions, drivers commonly

need to work against their objective (e.g., one vehicle needs to back up to let the other

through). When optimizing over a short, fixed time horizon as in [47, 53, 55, 56, 84], not

moving may be an optimal trajectory. Alternatively, the equilibria over the entire scenario

could be for the vehicles to oscillate back and forth between game instances without actually

making progress. Instead, an optimal long-term plan is to back into a parking spot then

drive toward the original goal once the other car passes. Because existing motion planners

do not consider long-term (mission-level) paths or planning horizons, they converge only to

local optima.

Cooperative driving in spatially-constrained environment is an under-researched prob-

lem in the autonomous driving community; however, computational theorists and theoreti-

cal computer scientists have spent decades studying similar problems under the context of

puzzles and games.

Rush Hour is a children’s game that closely resembles the problem we present in this

chapter. The game board is a 6 × 6 grid with different length cars arranged vertically or

horizontally. Vehicles can move only left-to-right or up-and-down and cannot cross over

each other. The goal is to arrange the cars so that a specially-designated car can escape

the board through an opening on the perimeter. Figure 4.2a shows a picture of the game.

Sliding-block puzzles are a similar game that generalizes Rush Hour planning problem. The

puzzle consists of several rectangles that can move vertically or horizontally, and the player

attempts to arrange the pieces in a specific sequence. Figure 4.2b shows an example sliding-

block puzzle.

Rush Hour and sliding-block puzzles are both PSPACE-complete, meaning a polynomial

time algorithm does not exist to find a solution (assuming P ̸= NP) [86, 87]. One of the first
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a b

Figure 4.2: a Image of the Rush Hour game. b Example sliding-block puzzle (from [85]).

solutions to the Rush Hour game problem involved creating a graph of game configurations

where each node represented a different configuration [88]. A path from the game’s initial

configuration to its terminal configuration would reveal the solution strategy. Unfortunately,

this approach scales combinatorially in time with game size and traffic density, meaning

slightly increasing the game size would render the problem intractable.

Piece density significantly contributes to making Rush Hour and sliding-block puzzles

challenging. Increasing game pieces increases the number of individual tactical moves the

player must make. Fortunately, deadlock game scenarios, such as alleyways and narrow side

streets, have few vehicles. Additionally, these environments offer slightly more space, for

vehicles to maneuver. We exploit this structure in our algorithm.

We conjecture that general deadlock game instances are easier to solve than Rush Hour or

sliding puzzle games because there is more free space available. Intuitively, sliding puzzles are

challenging because the playing surface is densely populated with pieces. Moving one piece

requires first moving a sequence of other pieces. In contrast, deadlock games have sparsely-

populated driving areas, meaning most vehicles can freely move to unoccupied areas. Some

movements require moving other vehicles first, but the movement sequences are shorter than

in Rush Hour or sliding puzzles.

In the autonomous vehicle and robotics communities, machine learning and data-driven

methods for creating motion planners abound. A recent work focusing specifically on
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spatially-constrained environments developed a motion planner using reinforcement learning

(RL) [89, 90]. The researchers trained a Deep Q-Network to generate conflict resolution

policies for several vehicles in a parking lot. While the approach worked well for the trained

scenarios, failed to transfer to similar ones, as we demonstrate in the experiment section.

Additionally, it requires a lengthy training period. Our algorithm, however, easily transfers

to various constrained environments and does not require training.

4.3 Problem Formulation

We make the following assumption: the ego agent will have a feasible path without moving

once all vehicles move off the path. Breaking this assumption significantly increases the

problem’s complexity because it more closely resembles Rush Hour and sliding block puzzles

mentioned in the previous section.

We consider driving interactions in extremely spatially-constrained roadways. Consider

the alleyway depicted in Fig. 4.3a. The red car wants to drive to the red circle, while the

blue car wants to drive to the blue circle. However, they cannot share the road; one vehicle

must yield to the other.

4.3.1 World Representation

We represent the environment as a grid world W ⊆ N0×N0 where each grid cell is a square

with side lengths equal the car’s width. Fig. 4.3 visualizes a continuous world and its

grid world equivalent. Note that the grid world contains only cells representing the road

surface; we exclude walls and other non-drivable areas because they serve no purpose in the

discretized world.

81



a

98
F B B F

F
B

B F

0 1
0
1
2
3
4

2 3 4 5 6 7 10

b

Figure 4.3: a Example extremely spatially-constrained environment. b Grid world represen-
tation of the environment. Note that only gray cells (and the red and blue cells) are part of
the grid world. Letters F and B represent the vehicle’s front and back, respectively. Colored
squares represent vehicles, and colored letters represent each vehicle’s destination.

4.3.2 Vehicle Representation

We model each vehicle as a rigid body moving on the grid world, and we assume all vehicles

are homogeneous. Each vehicle’s configuration space C is a discrete subset of the special

Euclidean group SE (2):

C := Z× Z× Ŝ1,

where

Ŝ1 :=

{
0,

π

4
,
π

2
,
3π

4
, π,

5π

4
,
3π

2
,
7π

4
, 2π

}
/ ∼, 0 ∼ 2π.

The identification symbol ∼ indicates that 0 and 2π are equivalent (i.e., the set “wraps

around”). Vehicle i’s configuration vector qi ∈ C is qi := (xi, yi, θi), where xi ∈ Z and yi ∈ Z

represent its position on the plane, and θi ∈ Ŝ1 is its heading with respect to the x-axis.

We set the vehicle’s position reference to its rear axle, which is the back (B) cell in the grid

world representation. The control vector ui ∈ U is ui := (vi, ωi), where vi is the scalar linear

velocity, and ωi is the scalar angular velocity. The discrete control space U is defined as

U :=
{(
−1,−π

4

)
, (−1, 0),

(
−1, π

4

)
, (0, 0),

(
1,−π

4

)
, (1, 0),

(
1,

π

4

)}
.
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Each vehicle moves according to the motion model

∆xi =


sgn

(
vi cos θi

)
vi ≥ 0 ∨ (vi < 0 ∧ ωi = 0)

sgn
(
vi cos(θi + ωi)

)
otherwise

∆yi =


sgn

(
vi sin θi

)
vi ≥ 0 ∨ (vi < 0 ∧ ωi = 0)

sgn
(
vi sin(θi + ωi)

)
otherwise

∆θi = ωi,

(4.1)

where sgn(·) is the sign function. Given the configuration and control spaces, each vehicle’s

movement under motion model (4.1) is equivalent to a discretized variant of the continuous

kinematic bicycle model. We assume vehicles move slow enough that we can neglect friction

and slipping.

Vehicles have a multi-cell footprint, meaning some parts may protrude beyond the grid

world’s edge even though the vehicle’s configuration is valid. To restrict vehicles to in-world

configurations, we first define a projection that maps a vehicle’s configuration to its footprint

in the grid world. Using notation similar to LaValle’s in [39, Sec. 3.2], let Ai(qi) be vehicle

i’s footprint parameterized by its current configuration qi ∈ C:

Ai(qi) :=
{(

xi, yi
)
,
(
xi + sgn(cos θi), yi + sgn(sin θi)

)}
.

We slightly abuse notation to keep the mathematical text concise, so we take a moment

to explain the subtleties. Set Ai represents agent i’s footprint at their current configuration,

implicitly assumed to be qi ∈ C. We express this footprint using the short-hand notation

Ai := Ai(qi).

We represent the collection of all N agents in the grid world with the overloaded set symbol
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A (no superscript):

A := {A1,A2, . . . ,AN}.

Because all agents have identical footprints, we represent an arbitrary agent’s footprint under

a specific configuration q ∈ C as A(q).

We define the in-world configuration space CW as the set of all configurations such that the

vehicle is fully contained in the world (i.e., no parts protrude beyond the world’s boundaries):

CW := {q ∈ C | A(q) ⊆ W} ⊆ C.

We restrict all vehicles’ configuration space to be CW .

Now that we defined the configuration and control spaces for each agent, we define a

deadlock game using the definition framework from from Başar and Olsder [91, Def. 5.1].

Definition 4.3.1 (Deadlock game). A deadlock game is a type of N -person discrete-time

deterministic finite dynamic game of prespecified fixed duration involving:

1. index set N = {1, . . . , N} called the players’ set, where N is the number of players

2. index set K = {1, . . . , K} denoting game stages, where K is the maximum number of

moves a player is allowed to make in the game

3. finite set X := C1W × C2W × · · · × CNW called the game’s state space

4. finite set U i
k ⊆ U called agent Ai’s control space at stage k

5. function fk : X × U1
k × · · · × UN

k → X called the state equation and defined for each

k ∈ K as

xk+1 = fk(xk,u
1
k,u

2
k, . . . ,u

N
k ),

where x1 ∈ X is the game’s initial state

6. finite set ηik ∈ Hi
k called the information structure and defined for each k ∈ K and

i ∈ N as

ηik := {x1,x2, . . . ,xk;u
1
1,u

1
2, . . . ,u

1
k−1;u

2
1,u

2
2, . . . ,u

2
k−1; . . . ;u

N
1 ,u

N
2 , . . . ,u

N
k−1},
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which establishes closed-loop perfect state information for agent Ai

7. set Hi
k defined for each k ∈ K and i ∈ N as

Hi
k := {(X 1

1×· · ·×X 1
k )×· · ·×(XN

1 ×· · ·×XN
k )×(U1

1×· · ·×U1
k−1)×· · ·×(UN

1 ×· · ·×UN
k−1)},

which is agent Ai’s information space at stage k

8. class Γi
k of mappings γi

k : Hi
k → U i

k called agent Ai’s permissible strategies at stage k

9. functional Li : Hi
k → R called agent Ai’s cost functional

■

We exclude the definitions for the observation space and state measurement equations

from Def. 4.3.1 because agents can observe each others’ full states. Therefore, the observation

space is the game’s state space, and the measurement model is the identity function.

4.4 Solution Description

We solve the deadlock game problem using a movement hierarchy and a recursive algorithm.

Before presenting our solution, we introduce some key terms.

Definition 4.4.1 (Ego Agent). The ego agent is the vehicle currently planning their move-

ment. ■

Definition 4.4.2 (Immovable Agent). An immovable agent is an agent that cannot be forced

to move. Immovable agents are above the ego agent in the movement hierarchy. ■

Definition 4.4.3 (Movable Agent). A movable agent is an agent that can be forced to move

if they (partially) cover the ego agent’s planned path. Movable agents are below the ego

agent in the movement hierarchy. ■

Definition 4.4.4 (Blocking Agent). A blocking agent is a movable agent that (partially)

covers the ego agent’s planned path. ■

85



Our solution imposes a mild assumption on the game instances. We assume each ego

agent can find a clear path to their target configuration without moving from their current

position, assuming all movable agents are free from the path. Violating this assumption

significantly increases the game’s difficulty as the problem more closely resembles Rush Hour

or a sliding-block puzzle.

4.4.1 Algorithm Entry

The algorithm begins by arbitrarily designating one vehicle as the ego agent Aego, which

has movement priority over all agents that have not yet reached their destinations. The

immovable agents set Aimmovable initially contains all agents that started at their destinations:

Aimmovable := {Ai ∈ A | qi = qi
dest} for i = 1, . . . , N .

Configuration qi ∈ CW is agent i’s current configuration. For any realistic deadlock game

instance, the immovable agents set initially would be equal to the empty set, but we initialize

it this way for completeness. We initialize the movable agents setAmovable to include all agents

that are not in the immovable agents set:

Amovable := A \ {Aego} \ Aimmovable

Later in the algorithm’s progression, the immovable agents set will expand as we move down

the movement hierarchy. Similarly, the movable agents set will shrink as we move down the

movement hierarchy. Algorithm 4.1 shows the pseudocode for the algorithm’s entry point.

The CurrentConfig function returns agent Ai’s current configuration, which is qi.
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Algorithm 4.1 Deadlock Game Algorithm Entry Point

1: function SolveProblem(W , A1, . . . , AN)
2: N ← {1, . . . , N}
3: for i ∈ N do
4: Aimmovable ← {Aj | CurrentConfig(Aj) = qj

dest}, for j ∈ N
5: Amovable ← {Aj | Aj ̸= Ai ∧ Aj /∈ Aimmovable}, for j ∈ N

6: if ¬AttemptMove(W ,Ai,Amovable,Aimmovable) then
7: return False
8: end if
9: end for

10: return True
11: end function

After initialization, the algorithm calls theAttemptMove function, shown in Algorithm

4.2. In the function, the ego agent plans a path Pego := {qego, . . . , qego
dest} from its current

configuration to its destination configuration qego
dest ∈ CW while assuming no movable agents

exist in the world. The ego agent must navigate around immovable agents. The algorithm

generates a set of blocking agents Ablocking that (partially) cover the ego agent’s planned

path:

Ablocking := {Ai ∈ Amovable | ∃q ∈ Pego s.t. Ai ∩ A(q) ̸= ∅}, for i = 1, . . . , |Amovable|.

All blocking agents must move off the ego agent’s planned path. The algorithm iterates

through the set of blocking agents, and recursively calls the AttemptMove function for

each one. In the recursive step, the set of immovable agents expands to the include the ego

agent:

Aimmovable ← Aimmovable ∪ {Aego}. (4.2)

Additionally, the movable agents set shrinks to exclude the currently-indexed blocking agent:

Amovable ← Amovable \ {Ai
blocking} for i = 1, . . . , |Ablocking|. (4.3)
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Then the currently-index blocking agent becomes the ego agent:

Aego ← Ai
blocking for i = 1, . . . , |Ablocking|. (4.4)

Algorithm 4.2 Attempt to Move Ego Agent

1: function AttemptMove(W , Aego, Amovable, Aimmovable)
2: if CurrentConfig(Aego) = qego

dest then ▷ Ego agent already at destination
3: return True
4: end if

5: P ,Ablocking ← FindPath(W ,Aego,Amovable,Aimmovable)

6: if P = ∅ then ▷ Ego agent cannot move
7: return False
8: end if

9: if Ablocking = ∅ then ▷ No blocking agents
10: MoveTo(Aego,End(P))
11: PlannedPath(Aego)← {End(P)}
12: return True
13: end if

14: for i = 1, . . . , |Ablocking| do ▷ All blocking agents need to move
15: PlannedPath(Aego)← P
16: Amovable ← Amovable \ {Ai

blocking}
17: Aimmovable ← Aimmovable ∪ {Aego}
18: if ¬AttempMove(W , Ai, Amovable, Aimmovable) then
19: return False
20: end if
21: end for

22: MoveTo(Aego,End(P))
23: PlannedPath(Aego)← {End(P)}
24: return True
25: end function

4.4.2 Recursive Steps

Each recursive step traverses down the movement hierarchy. Within the step, the ego agent

must move off all immovable agents’ planned paths. The algorithm generates a set of con-
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figurations that (partially) overlap any immovable agent’s planned path:

Cavoid := {q ∈ CW | ∃qpath ∈ P i s.t. A(q) ∩ A(qpath) ̸= ∅} for i = 1, . . . , |Aimmovable|.

From this set of “avoid” configurations, the algorithm generates a set of configurations

in which the ego agent will not overlap with any paths, which we call open configurations :

Copen := CW \ Cavoid.

Next, the algorithm generates a set of reachable configurations:

Creachable := {q ∈ Copen | HasPath(CW ′ , qego, q)},

where CW ′ is the set of in-world configurations excluding the immovable agents’ configura-

tions. Intuitively, the ego agent can cross over any path on their way to an open configuration,

but they cannot touch any of them after they finish moving.

Finally, the ego agent can plan their path. If the reachable set contains the ego agent’s

destination configuration qego
dest, they plan a path to it. Otherwise, the agent plans a path

to one of the open configurations. If the reachable set is empty, the algorithm reports a

planning failure.

The algorithm searches for blocking agents on the ego agent’s path and recursively calls

AttemptMove on all discovered ones. Before taking the recursive step, the algorithm

updates the agent sets and ego agent using (4.2)–(4.4). Once the recursive calls propagates

back up to the current ego vehicle, the algorithm will check the reported results from lower-

level agents. If all agents moved off the path, the ego agent moves to their destination;

otherwise, the algorithm returns a planning failure.

Fig. 4.4 visualizes the algorithm steps for a constrained environment involving two op-

posing vehicles.
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Algorithm 4.3 Find Path to Destination Configuration or Open Configuration

1: function FindPath(W , Aego, Amovable, Aimmovable)
2: Cavoid ← ∅
3: for i = 1, . . . , |Aimmovable| do
4: for qi ∈ PlannedPath(Ai) do
5: Ctouch ← {q ∈ CW | A(q) ∩ A(qi) ̸= ∅}
6: Cavoid ← Cavoid ∪ Ctouch
7: end for
8: end for

9: Copen ← CW \ Cavoid
10: CW ′ ← CW \ {qi

immovable} for i = 1, . . . , |Aimmovable|
11: qego ← CurrentConfig(Aego)
12: Creachable ← {q ∈ Copen | HasPath(CW ′ , qego, q)}

13: P ← ∅
14: if qego

dest ∈ Creachable then
15: P ← ShortestPath(CW ′ , qego, qego

dest)
16: else if Creachable ̸= ∅ then
17: qreach ∈ Creachable
18: P ← ShortestPath(CW ′ , qego, qreach)
19: end if

20: Ablocking ← ∅
21: for q ∈ P do
22: Ablocking ← Ablocking∪{Ai

movable | Ai
movable∩A(q) ̸= ∅} for i = 1, . . . , |Amovable|

23: end for

24: return P ,Ablocking

25: end function
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Figure 4.4: Deadlock game algorithm visualization
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4.4.3 Infeasible Orderings

Some deadlock game instances do not admit a feasible solution for all movement orderings.

For example, the scenario in Fig. 4.3 is infeasible if the blue car attempts to move first. In

that ordering, the blue car would completely block the red car from moving off the planned

path. The problem has only one solution: give priority to the red car.

To resolve the infeasible orderings issue, we can iterate through all order permutations and

return an ordering that admits a solution. Note that this process increases the algorithm’s

time complexity, but each permutation is independent. Therefore, we can evaluate them in

parallel.

4.5 Experiments

4.5.1 Setup

We implemented our algorithm in Python 3 using the NetworkX library [92]. We represented

the grid world and configuration spaces as unweighted undirected graphs. For the grid world

graph, each node represented a cell denoted by position coordinates (x, y). Configuration

graphs represented configurations from the configuration space, and configuration vectors

(x, y, θ) identified individual nodes. The configuration graph contained edges between two

nodes if there was a feasible transition based on the vehicle’s motion model. Each vehicle

had their own configuration graph. Vehicles planned their paths using Dijkstra’s shortest

path algorithm.

Fig. 4.5 visualizes the grid world graph and its agents. Each node displays its coordinates

in the 2D plane. Node colors indicate an agent’s current position (projected from their

current configuration). Node border colors denote a vehicle’s planned destination. For both

node and border colors, light shades are the vehicles’ fronts, and dark ones are their backs.

We evaluated our algorithm on several grid world environments with varying vehicle

92



Figure 4.5: Undirected graph representation for a deadlock game instance.

configurations. Fig. 4.6 shows the different environments we used during our experiments.

The reinforcement learning (RL) based policy from [89, 90] served as a baseline comparison.

Fig. 4.6a visualizes the environment they used for testing and evaluation, which we recreated

so that we could evaluate our algorithm on it. We trained the RL policy on the environment

the authors gave and according to their instructions. We then applied the same policy,

without modification, to our new test environments.

4.5.2 Results and Discussion

Table 4.1 summarizes our experimental results. In our experiments, the RL trained policy

solved the problem it used for training, but it failed to generalize to other environments. It

failed even for subjectively simpler environments, such as the one in Fig. 4.6f. Our algorithm,

however, solved all of the scenarios without needing any type of training.

We want to emphasize a limitation of our comparison against the RL based policy. It

is not definitive proof that machine learning based policies in general fail to transfer to

arbitrary environments. We trained the policy only on one example world, so it likely would

have transferred better if it was trained with more examples. However, we believe the
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Figure 4.6: Grid worlds used during our experiments.

Table 4.1: Deadlock Games Experimental Results

Scenario RL Policy Our Algorithm

4.6a ✓ ✓
4.6b ✓
4.6c ✓
4.6d ✓
4.6e ✓
4.6f ✓
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results suggest that machine learning based policies can struggle to solve a priori unknown

environments whereas a more engineered approach does not. The performance results in

scenario 1 (Fig. 4.6a) versus scenario 6 (Fig. 4.6f) showcase this struggle. The latter

scenario used the same environment structure but had fewer agents, hypothetically making

it an easier problem to solve.

4.6 Conclusion

Driving interactions sometimes occur in spatially-constrained environments, such as narrow

roads or alleyways. In these cases, drivers (or autonomous vehicles) need to coordinate

their movements so they can maneuver around each other. Otherwise, they will be left in a

deadlock, unable to move.

This chapter presented the notion of a deadlock game as a type of discrete dynamic

game. We then proposed an algorithm that exploited the problem structure to solve arbitrary

deadlock game instances under a mild assumption. Our experiments evaluated the algorithm

on several challenging driving environments and compared its performance to a recently-

proposed RL based policy. The results indicate that machine learning based policies struggle

to solve previously unseen environments whereas our solution solved all challenges. Our

solution also does not need a training period.

The work we presented in this chapter is a foundational component to a higher-level

conflict resolution system. Because deadlock games are a type of game, they admit several

(possible incomparable) solutions. Following this dissertation’s theme, we need a higher-level

system to refine the Pareto optimal set of equilibria by choosing a single solution that best

satisfies all agent’s preferences. We leave this continued investigation for future work.

Another extension to this work includes relaxing the clear-path assumption imposed in

our problem formulation. For example, consider the scenario in Fig. 4.6e. By reversing each

agent’s target configuration, we drastically increase the problem’s difficulty. This subtle
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change now requires the ego agent to move to an intermediate configuration so that movable

agents can maneuver around them.
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Chapter 5

Conclusion

5.1 Conclusion

In this dissertation, we developed an auction-based intersection management that assigned

crossing durations and crossing schedules that optimize vehicles’ passengers’ preferences.

This work begins a push toward decision making that focuses more on social welfare than

traditional performance metrics. We also formulated the notion of a deadlock game and

presented an algorithm to solve general instances. The deadlock game work forms the foun-

dation for a higher-level socially-optimal conflict resolution system that we leave for future

work. This dissertation’s main contributions are:

• Path-constrained, time-assigned, control-minimal trajectory optimizer. We

developed a trajectory optimizer that determines a feasible time scaling mapping time

values to path-positions. Composing the time scaling with the associated reference

path yields a reference trajectory that, when tracked, traverses the path in a specific

duration. This contribution is a core component to the later-proposed intersection

management system.

• Auction-based intersection management system. We developed an intersection

management system where connected vehicles big using cost functions. As vehicles ap-
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proach the intersection, the send their cost functions to the auctioneer. The auctioneer

assigned crossing durations and a schedule based on the functions. To the best of our

knowledge, our proposed system is the first of its kind. In our extensive testing, we

show that they system successfully optimizes for social welfare at the expense of traffic

flow. Furthermore, we proposed an intersection-level constraint that allows system

designers to balance between passenger satisfaction and intersection throughput.

• Deadlock games and solution algorithm. We explored contention in spatially-

constrained environments where self-interested agents mutually block each other from

reaching their destinations. Under the definition framework of dynamic games, we

formatted the concept of a deadlock game as a type of discrete-time finite game. Ad-

ditionally, we developed an algorithm to solve arbitrary instances and evaluated it

against several challenging example scenarios. Our experimental results demonstrate

our algorithm’s superior performance against state-of-the-art solutions that use ma-

chine learning to train a control policy.

The following publications support the dissertation’s technical contributions: [61, 83, 93].

5.2 Future Directions

The work we presented in this dissertation serves as a starting point for a transition into social

welfare focused optimization and decision making. While we presented several significant

and novel contributions throughout the dissertation, each chapter leaves avenues for further

improvements and continued research.

We designed the trajectory optimizer in Chapter 2 specifically for the second order uni-

cycle motion model. One extension to this framework include applying it to other motion

models, such as the second-order bicycle model. An application-oriented extension involves

implementing the optimizer into ROS 2, simulating it in Gazebo, and deploying it on a

physical robot.
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The IMS we developed in Chapter 3 assumes the intersection has fixed infrastructure

to facilitate the auction, but vehicles could instead elect one of their themselves to hold

the auction. Additionally, we could integrate a traffic flow sensor to dynamically adjust the

clearing time bound, assigning preferable crossing durations in light traffic and time-minimal

durations in heavy traffic. Finally, we can analyze the auction mechanism for incentive

compatibility and adapt it if necessary. Our current system design assumes vehicles report

their preferences truthfully, which strategic agents may exploit and bid untruthfully to gain

unfair advantages over others.

The deadlock game solution algorithm we presented in 4 imposes an assumption on

game instances’ starting configurations. Vehicles must start in a configuration where all

movable agents can move off the ego agent’s planned path without the ego agent moving.

Violating this assumption dramatically increases the game’s complexity because it more

closely resembled Rush Hour and sliding-block puzzle instances. Instead of moving directly to

their planned destinations, ego vehicles would have to move to an intermediate configuration

so that movable agents could continue moving off the planned paths. Another future direction

includes using the deadlock games formulation as a foundation for a socially-optimal conflict

resolution system. The current algorithm searches for a feasible solution, but the game

admits several possible solutions, some better than others. Under this dissertation’s theme,

a conflict resolution system would incorporate vehicles’ costs over the outcome and settle on

one that satisfies everyone’s preference as best as possible.
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management system incorporates learning techniques and model-based predictive control

approaches to take into account the current and future information of uncertain parameters

as well as the subjective data (e.g., user-related data) in the design. The OpenCity man-

agement structure enables real-time control and monitoring of complex components in the

testbed [94].

A Review of Non-Lane Road Marking Detection and Recognition

Authors. Adam Morrissett, Sherif Abdelwahed

Conference. 2020 IEEE 23rd International Conference on Intelligent Transportation Sys-

tems (ITSC)

Abstract. Environment perception is a critical function used by driving automation sys-

tems, or self-driving cars, for detecting objects such as obstacles, lane markings, and road

signs. In order to replace human drivers, self-driving cars will need to safely operate in

parking lots, private roads, underground, or any other environment with poor GPS signals

or uncharted infrastructure. While much attention has been spent on recognizing lane mark-
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ings, non-lane road markings have received considerably less attention. Current perception

systems can recognize only a small subset of markings and often only under favorable weather

conditions. This limitation is exacerbated by the current quality of scene segmentation data

sets. Only a select few of existing data sets have annotations for non-lane road markings,

and the ones that do only have them for a small number of marking types. Additionally most

of the data sets were generated under one type of driving condition. Finally, it is difficult

to determine if current recognition systems can satisfy real-time requirements. This paper

investigates the current limitations and challenges for non-lane road marking detection and

recognition including recognition capabilities, data set quality, and inference times [95].

A Physical Testbed for Intelligent Transportation Systems

Authors. Adam Morrissett, Roja Eini, Mostafa Zaman, Nasibeh Zohrabi, Sherif Abdel-

wahed

Conference. 2019 12th International Conference on Human System Interaction (HSI)

Abstract. Intelligent transportation systems (ITSs) and other smart-city technologies are

increasingly advancing in capability and complexity. While simulation environments continue

to improve, their fidelity and ease of use can quickly degrade as newer systems become

increasingly complex. To remedy this, we propose a hardware- and software-based traffic

management system testbed as part of a larger smart-city testbed. It comprises a network

of connected vehicles, a network of intersection controllers, a variety of control services, and

data analytics services. The main goal of our testbed is to provide researchers and students

with the means to develop novel traffic and vehicle control algorithms with higher fidelity

than what can be achieved with simulation alone. Specifically, we are using the testbed

to develop an integrated management system that combines model-based control and data

analytics to improve the system performance over time. In this paper, we give a detailed

description of each component within the testbed and discuss its current developmental state.

Additionally, we present initial results and propose future work [96].
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A Physical Testbed for Smart City Research

Authors. Adam Morrissett, Sherif Abdelwahed

Conference. 2018 IEEE/ACS 15th International Conference on Computer Systems and

Applications (AICCSA)

Abstract. City infrastructure is deteriorating, traffic management systems are becoming

increasingly inefficient due to volume, and resources are becoming scarce. In the era of infor-

mation and analytics, the idea of smart cities has been increasingly proposed as a solution

to inefficient public services and resource management. While some cities have had success

with beginning to transform into smart cities, the process has revealed significant barriers.

One of which is the communication infrastructure necessary to create an interconnected net-

work of sensors, actuators, and analytics systems. This barrier is discussed, and a physical

testbed for smart city research is proposed. The current progress of the testbed development

is reported, and a plan for continued work is outlined [97].
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