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2. Abstract

Advancing our understanding on the role of Bromodomain PHD-Finger Transcription Factor
(BPTF) in Cancer through the Analysis of Publicly Available Databases.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science
in Bioinformatics at Virginia Commonwealth University

By: Preksha Jerajani
B.S in Bioinformatics, 2021
Virginia Commonwealth University

Mentor: Dr. Joseph Landry, Ph.D.
Assistant Professor
Department of Human and Molecular Genetics

The initiation and progression of cancer are significantly influenced by genetic factors, and

despite ongoing research, a definite cure for this disease remains elusive. Over time, researchers

have explored various genes as potential targets for treating various types of cancer, and

numerous innovative therapies continue to be developed. General chemotherapies face their own

challenges like recurrence, while cancer specific drugs face the challenge of metastasis.

Therefore, therapeutic strategies have slowly started to shift towards comprehending the

pathways and corresponding genes that may be implicated in multiple types of cancer, with the

aim of identifying more effective targets for drug development. One such potential target being

the Bromodomain PHD-Finger Transcription Factor (BPTF), an essential subunit of Nucleosome

Remodeling Factor (NURF) that has been reported through previous research to be a highly

druggable potential target of NURF. This study seeks to improve our knowledge about the role of

the BPTF gene in the onset of cancer and explore the correlated biological pathways and genes

that might aid in further research and identification of cancer biomarkers using publicly available

databases. Specifically, we use The Cancer Genome Atlas (TCGA) SpliceSeq to analyze

alternative splicing events in both normal and tumor samples, and TCGA Wanderer to examine

CpG methylation patterns in normal and tumor samples. Additionally, we conducted gene

ontology analysis using the Database for Annotation, Visualization and Integrated Discovery

(DAVID) to identify shared pathways and genes that may be relevant for further research and

potential therapeutic targeting.
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3. Introduction

3.1 Cancer Review

The definition of cancer is the uncontrollable growth and spread of the body's cells to other parts

of the body. The role of genetics in the onset of cancer is significant, as genes control the way

cells function, and genetic changes that lead to cancer may result from errors in cell division,

DNA damage caused by harmful environmental substances, or inheritance (National Cancer

Institute [NCI], 2011). Over the years, these factors have been studied, and therapies have been

developed to target the overall process and the genes responsible for a more targeted approach.

Advancements in technology, such as DNA sequencing, proteomics, and transcriptomics, have

resulted in the discovery of more information about multiple pathways being correlated and

working together to bring about the onset of cancer.

Metastasis is a significant challenge when considering cancer therapies and studying cancer, as it

can spread to other parts of the body, making treatment for metastasized cancers complex. While

treatment in these cases may help prolong people's lives, in other cases, the goal is to control the

overall growth of the cancer and relieve symptoms that are causing the growth. Recurrence has

also become a research topic over the last few decades. Recurrence of cancer is commonly seen

in aggressive cancer types and can be resistant to previous treatment (National Cancer Institute

[NCI], 2020). This phenomenon poses a different set of challenges in terms of prevention,

diagnosis, and treatment. As one of the most complex diseases that has perplexed the scientific

community for decades, different cancers and their therapies have been studied, yet there is still

so much more to be discovered.

3.1.1. Bladder Urothelial Carcinoma
Bladder cancer is a common neoplasm of the urinary system and is considered one of the top ten

malignant tumors (Kaseb, H., & Aeddula, N. R., 2022). Bladder urothelial carcinoma, which is

the invasion of the basement membrane and lamina propria by neoplastic cells of urothelial

origin, has an incidence rate of 350,000-380,000 cases per year worldwide (Kaseb, H., &

Aeddula, N. R., 2022). According to Ferlay and Shin (2008), bladder cancer causes about

150,000 deaths annually. Bladder cancer is classified into non-muscle-invasive bladder cancer

(NMIBC) and muscle-invasive bladder cancer (MIBC). NMIBC frequently recurs at a rate of

50-70% and progresses to MIBC at a rate of 15%. The progress of MIBC leads to more advanced
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stages of cancer with a five-year survival rate of less than 50%. Bladder urothelial carcinoma is

the most common pathological type of bladder cancer, accounting for 90% of tumors, and has a

recurrence rate of 50-70% after surgery (Kaseb, H., & Aeddula, N. R., 2022). Due to the

progressive nature of this cancer, there have been advances in molecular and drug treatments.

The FGFR3 receptor proteins and TP53 are some genes that have been studied for their

significance, and with new molecular findings and genetic engineering, molecular profiling is

expected to be useful in providing better prognosis and more effective treatment (Bai, Y., et al.,

2022).

3.1.2. Breast Invasive Cancer
Breast cancer is a complex disease that involves multiple cell types and stages. It is one of the

most difficult cancers to prevent and the second leading cause of cancer deaths among women.

Globally, it is responsible for about 570,000 deaths in 2015, and over 1.5 million women are

diagnosed with breast cancer each year (Stewart, B. W., & Wild, C. P., 2014). This cancer has the

ability to metastasize to distant organs such as the liver, lungs, and brain, making it challenging

to treat. However, early detection is crucial for improving the prognosis and survival rate of

patients (Sun, Y. S., et al., 2017).

Breast cancer diagnosis and therapy decisions are based on the immunohistochemistry (IHC)

classifications of certain proteins/receptors including estrogen receptor (ER), progesterone

receptor (PR), and human epidermal growth factor receptor 2 (HER2) (Onitilo, A. A., et al.,

2009). The IHC profile determines whether a patient is positive or negative for these receptors

and helps to inform treatment decisions. One of the most aggressive subtypes of breast cancer is

triple negative breast cancer (TNBC), which is negative for ER, PR, and HER2 (Aysola, K., et

al., 2013). TNBC is a heterogeneous disease that lacks effective therapies and has a lower overall

survival rate.

Breast cancer initiation and progression theories differ among the various subtypes (Figure 1).

Many risk factors increase the likelihood of developing breast cancer, including sex, age, family

history, and genetic mutations, among others.

11
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Figure 1: Breast Cancer Subtype Division Hypothesis. A) A single breast cancer stem cell then
gets characterized to different subtypes with different sets of proteins that are present or not
based on carcinogenic factors. B) The stem cells get differentiated and further divide into

separate categories to show breast cancer subtypes. Note. Represented from “Risk Factors and
Preventions of Breast Cancer”, by Sun, Y. S., et.al, 2017, International Journal of Biological

Sciences, 13(11), p.1389.

3.1.3. Prostate Adenocarcinoma
Prostate adenocarcinoma is the second most commonly diagnosed cancer in men worldwide,

with over 1,276,106 new cases and 258,989 deaths in 2018. While this cancer may be

asymptomatic in its early stages, frequent symptoms include difficulty with urination and

nocturia. More severe symptoms include urinary retention and back pain (Bray et al., 2018).

Studies have shown that dietary factors and physical activity can impact the development and

progression of this disease, highlighting the need for a deeper understanding of risk factors and

lifestyle factors (Figure 2) (Rawla, P., 2019). Researchers are focusing on identifying genes

involved in the inheritance and somatic mutations that can be acquired from environmental

changes. Genes that have been associated with the initiation and progression of prostate

adenocarcinoma include PTEN, CDKN1B, and c-MYC (Hartmann, A., & Friess, H., 2017).
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Figure 2: Prostate Adenocarcinoma Mortality and Incidence ASR Rate. The bar chart
illustrates the estimated age-standardized incidence and mortality rates in 2018 in males of all
ages. The data was obtained from Globocan 2018. Note. Represented from “Epidemiology of

Prostate Cancer” by Rawla, P., 2019, World Journal of Oncology, 10(2), p.65.

3.1.4. Thyroid Carcinoma
As advancements in diagnostic imaging and surveillance continue, the incidence of thyroid

cancer is on the rise. In the United States, it ranks as the fifth most common cancer among

women (Cabanillas, M. E., 2016). However, a major challenge faced by physicians treating this

cancer is to ensure that patients with lower risk disease or benign thyroid nodules are not

overtreated. Genetic analysis of thyroid cancer through DNA sequencing has revealed that

mutations in the mitogen-activated protein kinase (MAPK) cellular signaling pathway are

present in most cases (Singh, A., et al., 2021). Additionally, other genetic alterations such as

RET proto-oncogene, ALK, and BRAF have been shown to play a role in the development of

thyroid carcinoma (Younis, E., 2017).

3.1.5. Uterine Corpus Endometrial Carcinoma
​​According to Rutgers (2015), endometrial cancer is the most commonly diagnosed female

genital cancer and ranks fourth in incidence among women globally, following lung, colorectal,

and breast cancers. Uterine corpus endometrial carcinoma (UCEC) is a frequent subtype of

endometrial cancer, and its incidence increases with age, with most diagnoses occurring in
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women between 45 and 65 years old. To aid in early detection and better treatment of UCEC,

researchers have explored potential biomarkers such as activated leukocyte cell adhesion

molecules, sperm-associated antigen 9, and heat shock protein family A, among others (Shen, L.,

et al., 2018).

3.2. Chromatin Remodeling Factors
When considering therapies and treatments for cancer, the most studied and utilized are

metabolic enzymes/pathways and well-known oncogenes. According to Therapeutic Targets in

Cancer Cell Metabolism and Autophagy, an article by Cheong, H., et.al (2012), a lot of these

metabolic and genetic pathways have become targets for drug development. An aspect not

studied in detail is the chromatin remodeling complexes (CRC) that have been noted to play a

role in cancer onset and recurrence.

CRCs aid in modification and modulation of the chromatin. Cell proliferation is greatly affected

by changes made to the chromatin structure, and these changes are often seen in cancer cells

(Nair, S. S., & Kumar, R., 2012). The ATP-dependent chromatin remodeling factors serve to

regulate DNA accessibility by repositioning, ejecting and/or modifying nucleosomes. CRCs are

divided into four families that are differentiated based on their ATP domain. The families include

the switch/sucrose nonfermentable, inositol-requiring mutant 80 families,

chromodomain-helicase DNA binding protein and the imitation switch. All these complex

families have many roles, for example, INO80 complexes aid in DNA damage repair, CHD

complexes interact with may chromatin modifying complexes, and SWI aid in remodeling

chromatins by nucleosome sliding, creating DNA loops in order to repress or enhance activation

of genes.

These are some of the most studied families of CRC, however, the ISWI (imitation switch)

which is the smaller family, has a specific complex known as the Nucleosome Remodeling

Factor (NURF), that has been shown to play part in cancer biology in model organisms

(Morecock, C., 2022). Along with the NURF complex, ISWI ATPase includes the chromatin

assembly complex (CHRAC) and ATP-utilizing chromatin assembly and remodeling factor

(ACF) complexes. Figure 4 illustrates the different classifications of the ISWI family and details

the molecular components, subcellular localization, targeting inhibitors and the functional

domains. First discovered in Drosophila melanogaster NURF was described as an ATP

14
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dependent biochemical activity that helped mediate nuclease accessibility to reconstituted

chromatin. When isolated and purified from human cells the complex was highly homologous to

the one discovered in Drosophila melanogaster (Alkhatib, S. G., & Landry, J. W., 2011).

Figure 3: Classification of ISWI Units and Subunits. A) The sixteen different types of
complexes harboring either the SMARCA1 or SMARCA5 as ATPase subunits and 1-3 non-
catalytic subunits. B) Representation of the ISWI, the domains (functional), the subcellular
localization, the size in amino acids and the inhibitors for each of the ISWI members.Note.

Represented from “The Emerging Role of ISWI Chromatin Remodeling in Cancer” by Li, Y.,
et.al., 2021, Journal of experimental & clinical cancer research, 40(1), p.3.

3.3 Nucleosome Remodeling Factor (NURF)

The NURF complex has three subunits: histone binding protein (RBBP4/7), ATPase ISWI

protein SNF2L which is encoded by SMARCA1 and the bromodomain PHD-finger transcription

factor (BPTF). The NURF complex is responsible for catalyzing ATP-dependent nucleosome

sliding. BPTF is responsible for identifying the loci of methylation and acetylation on histones,
15
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while RBBP4 and RBBP7 are components of multiple protein structures, and the role of

SMARCA1 varies depending on the type of tumor. SMARCA1 and its homologs are mainly

responsible for cell survival and cell cycle progression.

Figure 4A details the overall structure of NURF and its interaction with nucleosomes. NURF’s

structure and its individual components play an important role in interacting with other

transcription factors and genes that have been related to cell division, cell differentiation and

gene expression. For example, MITF also known as microphthalmia associated transcription

factor plays an essential role in the differentiation, survival and proliferation of normal

melanocytes and in controlling the melanoma cell physiology. The MITF interacts with the

NURF complex and this interaction discovery led to investigations of their role in melanoma

cells. Investigations by Koludrovic, D., et.al in 2015, found that BPTF, a component of NURF, is

essential to produce differentiated adult melanocytes. They discovered that MITF and BPTF

co-regulate PREX1 expression in melanocytes in vitro. The PREX1 gene encodes a protein that

acts as a guanine nucleotide exchange factor for the RHO family of small GTP binding proteins.

This gene is not only seen in relation to melanoma but also plays a role in breast cancer. It is a

key mediator in ErbB signaling in breast cancer and has been implicated in mammary

tumorigenesis and metastatic dissemination.
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Figure 4: NURF complex and its Protein Domains. A) NURF subunits contribute to the sliding
of the nucleosomes along the DNA. B) The possible units of the NURF complex’s functional
domains and phosphorylation sites are done to scale. (A) created with BioRender.com, B)
Represented from “Analyses of Internal CRISPR Screen and RNA-Seq data, and Publicly

Available Genomic Datasets to Study the Roles of Epigenetics in Cancer Biology.” by Morecock,
C., 2022, VCU Scholars Compass).

3.4 Bromodomain PHD-Finger Transcription Factor

The significance of the pathogenic variants of BPTF was reported in 2017 in other

neurodevelopmental disorders with dysmorphic faces and distal limb anomalies. Over the years

it has been identified as a pro-tumorigenic factor. BPTF, being the largest subunit of NURF, has a

crucial function in ensuring the proper functioning of the NURF complex. Thus, the

amplification of BPTF in cancerous cells and possible alterations in the BPTF gene that encodes

this protein have demonstrated the potential to increasingly promote cell proliferation.As seen in

Figure 5 BPTF is located on chromosome 17. BPTF consists of a DDT domain, two

PHD-Fingers and a bromodomain. DDT better characterized as the DNA-binding

homeobox-containing proteins and the different transcription and chromatin remodeling factor

which is a domain generally of 60 amino acids that contains the regions of conserved

phenylalanine and leucine residues that aids in DNA binding and is essential (Doerks, T., et.al.,

2001). PHD-fingers are structurally conserved modules that are usually found in proteins that

modify chromatin and mediate molecular interactions in transcription and it generally recognizes

methylated lysine residues in histone tails. The bromodomain determines the binding affinities

and aids in acetylation binding. The features of BPTF allow for it to bind to multiple histones

like H4K16ac and H3K4me3.

In recent decades, researchers have observed that the amplification of BPTF promotes

malignancy. This was demonstrated through knockdown analysis, which showed that reducing

BPTF levels slowed down cell proliferation. In BLCA the Circ-BPTF which is derived from the

BPTF exons has been shown to be overexpressed compared to normal cell lines, in BRCA the

copy number of BPTF was gained in 34.1% and amplified in 8.2% of the breast cancer tissue

cohorts, and in THCA the gene along with others like NCOR2 and ANK3 was found to have a

high frequency of mutations.
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Figure 5: BPTF Ch17q24.2. The location of the BPTF gene is on Chromosome 17 in the Q arm.
There are four main functional domains, DDT, PHD-Fingers 1, PHD-Finger 2 and the

Bromodomain. BPTF is about 3.12 gb in length. (created with BioRender.com)

Furthermore, the overexpression of BPTF leads to downstream changes, such as it affecting

MAPK signaling which regulates cell cycle and survival, and c-MYC which is a transcription

factor that has been shown to be overexpressed in many human cancers. c-MYC is a well-studied

gene/pathway and currently has drug therapies that target the pathway. Since BPTF interaction

with c-MYC occurs in most if not all tumor types, it can be a potential target for treating c-MYC

driven tumors (Zahid, H., et.al., 2021). Although there is significance noted in these interactions,

there are not many detailed studies on the overall effect of overexpression of BPTF and how the

interactions between BPTF and other co-related genes can be targeted. Along with the

overexpression of the BPTF gene, somatic mutations of the gene were found to be correlated

with tumor volume. The gain of function mutation of BPTF could confer the abnormal

expression and activate sets of target genes that could contribute to tumorigenesis and

maintenance thereafter of the cancer (Duan, C., et al., 2018).The goal is to gain a deeper

understanding of BPTF and the NURF complex as sources of potential therapy targets in

different cancer types.
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3.5 Alternative Splicing

mRNAs are the molecular templates for the synthesis of proteins. In humans, pre-mRNA

splicing is essential for the expression of more than 95% of the genes. Removal of introns from

the precursor messenger RNA is an essential step for the expression of most eukaryotic genes.

Alternative splicing gives rise to a diverse set of mRNAs that get translated and turned to

proteins, which eventually aids in normal cellular function. Different splicing events are common

in cancers and are associated with mutations and altered expression of the components of the

machinery. Cancer cells usually generate advantageous splicing variants that provide a growth

advantage. The cells often show increased splicing complexity and diversity compared to normal

cells, indicating that they have developed mechanisms to regulate and fine-tune the splicing

process. These changes in efficiency can be targeted by developing inhibitors or targeted

therapies. The analyses of over 8000 tumors across 32 cancer types revealed thousands of

variants that are not present in non-malignant tissue that were likely to generate cancer-specific

markers and neoantigens (Bonnal, S. C., et al., 2020). Since BPTF is known to be overexpressed

in most cancer types, we can analyze if there are any specific splicing patterns that occur more

often in a specific type of cancer compared to the normal splicing patterns in normal cells. We

can also illustrate if there is significance in the splicing patterns of BPTF in these cancer types.

3.6 CpG Methylation

DNA methylation is a type of epigenetic mechanism that involves the transfer of a methyl group

onto the 5th carbon position of the cytosine to form a 5-methylcytosine. DNA methyltransferase

mediates this process by aiding in creating a covalent bond between the methyl group and the

5-carbon on the cytosine base. Furthermore, this process only occurs on the cytosine linked

directly to a guanine by the phosphodiesterase link which forms the CpG dinucleotide pair.

Methylation usually occurs near the promoter regions of different genes, and generally

methylation patterns in normal cells differ from those in cancer cells. Since cancer cells go

through extensive genetic changes, using this method to gain insight on the different processes

by which the cancer is developed can lead to better understanding and more effective targeting

for therapies. DNA is usually hypomethylated which refers to the loss of the methyl group in the

5-methylcytosine nucleotide than hypermethylated during carcinogenesis leading to a net

decrease in the genomic 5-methylcytosine content. There are also considerable differences in

methylation based not only on the species but is also tissue specific therefore one must consider
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the changes in between normal and tumor methylation from the same tissue to conduct proper

analysis. There are many drugs developed that target these epigenetic changes, specifically some

that demethylate DNA (Ammerpohl, O., et.al., 2016). These drugs normally target

hypermethylated regions in tumor suppressor genes that have been dysregulated in many

cancers. Figure 6 illustrates how hypomethylation and hypermethylation affect the transcription

of the RNA. The hypermethylation in and around the CpG island leads to the overall shutdown

of the transcription. DNA methylation could be interesting to look at for individualized antitumor

targeting, which would be a more personalized method of therapy.

Figure 6: Hypomethylation and Hypermethylation of CpG Islands. The CpG island of a tumor
suppressor gene is represented in normal and a tumor cell. The black dots represent methylated
CpG islands while the white dots represent the unmethylated CpG islands. Note. Represented

from “CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter
future.”, by Esteller, M., 2002, Oncogene, 21(35), p.5429.

3.7 Gene Ontology

Gene Ontology (GO) is a means of describing biological knowledge in three aspects: molecular

functions, cellular components, and biological processes. According to the GeneOntology

Unifying Biology website, an example of GO annotation is the cytochrome c gene product, which

can be described by its molecular function as an oxidoreductase, its biological process as

oxidative phosphorylation, and its cellular component as the mitochondrial matrix. These three

aspects are interdependent and work in tandem to provide a more comprehensive understanding
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of related pathways and genes. In cancer research, GO analysis has been employed to identify

co-related pathways and genes, and to uncover potential biomarkers for targeted therapies. For

instance, in a study on secondary bone cancer conducted by Dr. Shikha Vashisht and Ganesh

Bagler in 2012, a cancer gene network was constructed to represent the protein interactome of

cancer genes. This resulted in a more comprehensive understanding of the role of molecular

regulators in cancer. Additionally, GO is highly valuable in the pharmaceutical and drug

development industry, as it enables the combination of gene and pathway knowledge to create a

working network that can be used to identify essential and non-essential pathways.

3.8 Rationale for Study

The overexpression of BPTF has been observed in various cancer types, based on previous

research. However, the underlying reasons behind this overexpression are still unclear.

Therefore, this study aims to investigate the mechanisms that drive changes in the expression of

BPTF and analyze the genes that are co-expressed with BPTF in five specific types of cancer.

Through carrying out an examination of the expression of BPTF and its related genes, this study

aims to provide a comprehensive understanding of the effects of BPTF changes on the

development, metastasis, and recurrence of the five cancers of interest.

3.9 Research Aims

The three main aims of the study are:

Aim 1:

To identify the alternative splicing patterns of the BPTF gene between normal and tumor patient

samples for BLCA, BRCA, PRAD, THCA and UCEC and determine if they affect patient

survival.

Aim 2:

To understand CpG island methylation patterns on the BPTF gene between normal and tumor

samples through interrogating publicly available databases for the BLCA, BRCA, PRAD, THCA

and UCEC cancer types.

Aim 3:

Utilize the gene ontology (biological processes, cellular components, and the molecular

functions) of the genes that have been shown to have been co-expressed with BPTF in cancer

and to analyze these pathways and genes across the five cancer types to aid in finding pathways

that might commonly be affected and eventually targeted for a better therapy.
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4. Methods and Materials

4.1 Databases and Data Acquisition
4.1.1. The Cancer Genome Atlas

The Cancer Genome Atlas (TCGA) is a cancer genomics research program that molecularly

characterized over 20,000 primary cancers and their normal samples spanning 33 cancer types.

This project was launched by the NIH in December 2005 and over time the data collected by this

program generated over 2.5 PB of genomic, epigenomic, proteomic and transcriptomic publicly

available data that can be used by the research community.

4.1.2. Splicing Database: TCGA SpliceSeq

The TCGA SpliceSeq Version 2.1

(https://bioinformatics.mdanderson.org/public-software/tcgaspliceseq/) is a Java application that

allows for the investigation of alternative mRNA splicing patterns in data from high throughput

mRNA sequencing studies (Ryan, M. C., et al., 2012). The source code and tool installation can

be found at https://bioinformatics.mdanderson.org/public-software/spliceseq/installation/ for

more details and the creators can be contacted using their help and support contact information.

The splice graph maps the sequence reads and quantifies the inclusion level of each exon and the

splice junction. The graphs are traversed to predict the protein isoforms that are likely to result

from the observed exon junctions and the UniPort annotations are mapped as well. The splicing

events are quantified through calculating the percent spliced in (PSI) values. This is a ratio of

normalized read counts indicated over the total normalized reads for the event. The formula for

the PSI value is the number of inclusive reads over the total of inclusive and exclusive reads of

the exon. Therefore, when a PSI value of 0.5 is noted in the database it indicates that the exon is

included in half of the expressed isoforms. The PSI value of 0 would indicate that the exon is

never included in any of the transcripts and a PSI value of 1 would indicate that the exon is

always included in all the transcripts.

4.1.3. Methylation Database: TCGAWanderer
Using the TCGA database Wanderer (http://maplab.imppc.org/wanderer/index.html) was built

as an intuitive tool allowing for real time access and visualization of DNA methylation profiles
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(Díez-Villanueva, et.al., 2015). For a given gene the tool provides detailed individual 𝛽-values of

all the HumanMethylation450 probes within or in the vicinity of the gene. The Wilcoxon rank

sum test is performed on normal versus tumor provided there are more than two observations in

each of the groups. The green colored probes indicate the CpG islands for the gene query and

additionally the interactive tool marks statistically significant probes with asterisks. The database

datasets are available for download and the datasets include 𝛽-values for normal samples and

tumor sample with patient/sample ID. The Wanderer code repository is available through

https://sourceforge.net/projects/tcga-wanderer/ and was created using R/Shiny and a PostgreSQL

backend using an eXtreme programming software development methodology.

4.1.4. CBioPortal

CBioPortal version 5.3.5 (https://github.com/cBioPortal/) for Cancer Genomics was developed at

the Memorial Sloan Kettering Cancer Center and is a public site that is hosted by the Center for

Molecular Oncology at MSK. This open-access resource is available for interactive exploration

of multidimensional cancer genomics datasets (Cerami, E., et al., 2012 and Gao, J.,et al, 2013 ).

The portal itself supports and stores a diverse set of data like DNA copy number data, mRNA

seq, microRNA expression data and de-identified clinical data for all types of cancer. The

GitHub link for the datahub is https://github.com/cBioPortal/datahub and contact information for

the team is available at the github directory link above.

4.1.5. DAVID

The Database for Annotation, Visualization and Integrated Discovery version2023q1

(https://david.ncifcrf.gov/) is a bioinformatics resource system for functional enrichment

analysis, functional annotation and ID conversion of gene lists. This tool was released in 2003

and has gone through multiple updates throughout the years to include new information and

methods (Díez-Villanueva, A., et.al., 2015) . The download client code is available for the

different software packages at this link https://david.ncifcrf.gov/content.jsp?file=WS.html. This

tool can provide high throughput functional annotation tools rarely found in other similar works.

Specifically, the gene functional classification tool that can quickly group large lists of genes into

functional groups and the functional annotation clustering tool that can condense redundant and

heterogeneous annotation terms into groups to ease interpretation.

4.2. Methods
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The data downloaded from these databases was cleaned and analyzed in R using different R

packages which included but were not limited to tidyverse (Wickham, H., et.al., 2019) ,

patchwork (Pedersen, T., 2022), dplyr (Wickham, H., et.al., 2023), ggplot2 (Wickham, H, 2016),

knitr (Xie, Y., 2023), gt_summary (Iannone, R., et.al., 2023) and

janitor (Firke, S., 2023).

4.2.1. Splicing Data: TCGA SpliceSeq
The data was collected using the MD Anderson Cancer Center SpliceSeq web-based tool as a

text file that included the PSI values and their patient data from the TCGA program, and the rest

of the settings were left as defaults to get a good range of data (data that included more than 75%

PSI values). Figure 7C illustrates the exons of BPTF as a whole. The alternative splicing events

that were part of the datasets included alternative donor events of exon 23.2 as seen in Figure

7A. Exon skip of exons 5 and 6 as well as exon skip of exon 5 was noted as seen in Figure 7B.

Figure 7: Exon view of BPTF and Alternative Splicing. The exons of BPTF and each of the
exons are shaded based on expression intensities. A) The exon alternative donor event of exon
23.2 B) The exon skip event of exons 5:6 and exon 5. C) BPTF Exons 8, 9, 23.1, 24, 25, 26, 27,

28, 29, and 30 all showing intense expression compared to the other exons. (Created with
BioRender.com).

The dataset was then run through R and tbl_summary() function was used to obtain the data

demographics for the datasets. Table S-1 illustrates the overall distribution of all the variables

that were in the dataset and describes the missingness related to the raw data. Significance of the

splicing patterns seen in the five cancer types was calculated using the Welch’s Two-Sided

T-Test, which is a test that compares the means of two independent groups and assumes that both

groups of data are sampled from populations that follow a normal distribution but not the same

variance. Previous research conducted significance testing using the Wilcoxon-rank sum test
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which is a non-parametric alternative to the unpaired two sample t-test used for data that is not

normally distributed. The normality of the normal and tumor PSI values was tested using the

Shapiro-Wilk normality test. Results showed that the normal PSI samples of BLCA, PRAD,

THCA, and UCEC were potentially normally distributed, while the normal PSI values of BRCA

and the tumor PSI values of BLCA, BRCA, PRAD, THCA, and UCEC were not normally

distributed. As a result, Wilcoxon-rank sum tests were performed and significance was recorded

in the study to account for the observed differences in distribution as per the Shapiro-Wilk

normality test.

Splicing Survival Analysis

The patient data for survival was gathered from CBioPortal’s PanCancer datasets for each of the

cancer types and the dataset was cleaned to keep overall survival, disease free survival and

progression free survival status and months of the correlated SpliceSeq patients with the PSI

values. Overall survival is the length of time from the date of diagnosis/start of treatment, it is

usually a five year survival rate. Disease free survival is the length of time after primary

treatment for a cancer ends that the patient survives without any signs or symptoms of the cancer.

Finally, progression free survival is the length of time during and after the treatment of the

disease that the patient lived with the disease, but it does not get worse.

The Kaplan Meier Survival curves were calculated using the survfit() function within the

survminer and survival packages for each of the cancer types. The PSI values were placed into

two categories: high and low inclusion. High inclusion had PSI values greater than 0.55, while

the low inclusion PSI values included less than 0.45 values. High inclusion in terms of PSI meant

that the exons during the event were spliced in 55% or more of the times in the transcripts seen

in the patient samples. While low inclusion was indicative that the exons involved in the event

were spliced in less than 45% of the time. Finally, the survival was conducted based on

comparing the high and low inclusion of the exons in the tumor samples for the three survival

types over a five year period noted in days. The p-values noted are based on the log-rank test

where in the null hypothesis is that each of the strata has the same survival probability.

4.2.2. Methylation Data: TCGAWanderer
Methylation expression for the tumor and their matched normal tissue samples were gathered

from TCGA Wanderer. The HumanMethylation450 BeadChip probe measurements were given
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as beta ( ) values that ranged from 0 to 1, where a value of 0 indicated unmethylated probesβ

while the value of 1 indicated fully methylated probes. The Shapiro-Wilk normality test was

performed for the 16 probes within the normal and tumor data downloaded from TCGA

Wanderer. The Shapiro-Wilk normality test informed on what statistical test would be used to

accurately measure significance and to understand the distribution of small sample size in normal

samples for each of the probes. The normality test indicated the tumor beta values for the sixteen

probes were not normally distributed while the normal samples of the 16 probes indicated some

probes had beta values that were potentially normally distributed. The beta values for the 16

probes that ranged throughout the BPTF gene were downloaded and were run through the

Wilcoxon- Rank Sum Test that compared the means between the normal tissue 𝛽-values and the

tumor tissue -values. The ggplot2 package was used to illustrate the boxplots that show the𝛽

overall distribution of the probe values between the normal and tumor samples. The significance

shown in the boxplot uses the Wilcoxon test to conduct significant difference examination.

Finally, the fold change of methylation was calculated between the mean of normal and tumor

beta values.The fold change was calculated by dividing the average of normal beta values by the

average of tumor beta values to indicate whether the probe registered more methylation in

normal samples or in the tumor samples.

4.2.3. Gene Ontology DAVID

Initially, a gene list of co-expressed genes with BPTF was obtained from CBioPortal's

Pan-Cancer database by querying BPTF as the gene of interest. This database provided data on

BPTF as well as the genes correlated with it, determined by Spearman correlation calculated by

the CBioPortal interface. This gene list was specific to each cancer type. As DAVID's functional

clustering annotation tool has a gene limit intake of 2000, only the most significant genes (p <

0.05) were selected for analysis. The default selection of GOTERM_BP_DIRECT,

GOTERM_CC_DIRECT, and GOTERM_MF_DIRECT were used to select the terms for

biological processes, cellular components, and molecular function, respectively, which had a

percentage of involved genes over 92% of the total, and the number of genes involved from the

list provided was also listed. The DAVID tool provided a text file containing the gene ontology

terms, their counts, percentage, P Values, False Discovery Rates (FDR) values, Fold Enrichment,

Bonferroni, Benjamini values, and the genes involved in those processes. To compare highly

related gene ontology terms between cancer types, FDR values were used to create a heatmap.
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Due to the extremely small FDR values, the values were log scaled to provide a more precise

view of the comparisons between cancer types and their highly related gene ontology terms.

5.Results
5.1. Alternative Splicing

The alternative splicing patterns between the PSI values of TCGA tumor patient samples and

their adjacent normal patient samples were analyzed through conducting the Wilcoxon t-test

shown in Table 1. In BRCA all three alternative splicing events were seen to be significantly

different between the normal and tumor samples with alternate donor of exon 23.2 (p = 1. 31𝑒−14

), exon skip 5:6 (p = ), and exon skip 5 (p = ). In the cases of BLCA and5. 96𝑒−38 6. 20𝑒−35

UCEC only the alternate donor of exon 23.2 splicing event was found to have significant

different between the PSI values of normal and tumor samples with BLCA (p = ), and1. 68𝑒−06

UCEC (p = ). PRAD alternate donor of exon 23.2 (p = ), exon skip 5:6 (p =3. 53𝑒−06 6. 55𝑒−09

), and THCA alternate donor (p = ), exon skip (p = ) were the7. 24𝑒−05 1. 94𝑒−09 2. 34𝑒−06

alternative splicing events that showed significance based on a cutoff of p < 0.05.

Table 1: Wilcoxon T-Test of Significance. The significant BPTF splicing events for the
different cancer types (p < 0.05) and NS indicates no significance.
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Figure 8: Significant Splicing Events PSI Comparison for Five Cancers. Tumor and their
adjacent normal samples PSI values compared for significant differences (blue asterisks indicate
outlier values). A) Alternate Donor of Exon 23.2. B) Exon Skip of Exons 5 and 6. C) Exon Skip

of Exon 5.

Survival Analysis
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Based on the significance analysis conducted between the PSI-values of normal and tumor

samples further analysis was conducted to potentially understand if alternative splicing patterns

affect the survival of the tumor positive patients over a five-year period. The PSI values placed

into the high and low inclusion categories yielded tumor patient samples and their respective

counts are noted in Table 2 below. The low inclusion category consistently had a good amount of

data for the analysis while the high inclusion categories for the alternate donor event for exon

23.2 had a number of tumor samples < 30 for BLCA, PRAD and THCA cancer types.

Table 2: Tumor Sample Counts for Survival. The sample counts for each alternative splicing
event for the two different PSI levels.

The survival curves in the alternate donor event of exon 23.2 do not yield any significant

difference in survival of the patients with low inclusion of the exon or high inclusion of the exon.

The log rank statistical p-values seen in Figure 9 for BLCA were p = 0.64, p = 0.2 and p = 0.11

for overall, disease free and progression free survival respectively. Figure 10 for BRCA noted

log rank p = 0.65, p = 0.38 and p = 0.46 for overall, disease free and progression free survival.

The risk tables shown in each of the subfigures (A, B, C) indicated the number of patients at each

interval (in days) that were present for the strata (high and low inclusion).
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Figure 9: BPTF Alternate Donor Exon 23.2 Survival Curves in BLCA.Comparing tumor
patients survival by the relative inclusion of exon 23.2. A) Overall Survival B) Disease Free

Survival C) Progression Free Survival

Figure 10: BPTF Alternate Donor Exon 23.2 Survival Curves in BRCA. Comparing tumor
patients survival by the relative inclusion of exon 23.2. A) Overall Survival B) Disease Free

Survival C) Progression Free Survival

Figures 11 and 12 for cancers PRAD and THCA the survival difference between the high and

low inclusion of exon 23.2 between tumor patient samples indicated log rank p-values for

overall, disease free and progression free survival of p =0.67, p = 0.32 and p = 0.15 respectively

for PRAD and p = 0.61, p = 0.4, and p =0.92 for THCA. Figure 13 survival curves for UCEC’s

low and high inclusion survival differences for the tumor patient samples indicated log rank

p-values of p = 0.66,p = 0.23 and p = 0.53 for the three survival types.
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Figure 11: BPTF Alternate Donor Exon 23.2 Survival Curves in PRAD. Comparing tumor
patients survival by the relative inclusion of exon 23.2. A) Overall Survival B) Disease Free

Survival C) Progression Free Survival

Figure 12: BPTF Alternate Donor Exon 23.2 Survival Curves in THCA. Comparing tumor
patients survival by the relative inclusion of exon 23.2. A) Overall Survival B) Disease Free

Survival C) Progression Free Survival
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Figure 13: BPTF Alternate Donor Exon 23.2 Survival Curves in UCEC. Comparing tumor
patients survival by the relative inclusion of exon 23.2. A) Overall Survival B) Disease Free

Survival C) Progression Free Survival

Figure 14, 15 and 16 for BRCA, PRAD and THCA noted log rank p = 0.2, p = 0.60 and p =

0.097 for BRCA (Figure 14), p = 0.54, p = 0.50, and p = 0.41 for PRAD (Figure 15) and p =

0.24, p = 0.39 and p = 0.46 for THCA (Figure 16). These p-values are for the survival difference

between the high and low inclusion of exons 5 and 6 in overall, disease free and progression free

survival respectively for the tumor patient samples. The risk tables shown in each of the

subfigures (A, B, C) indicated the number of patients at each interval (in days) that were present

for the strata (high and low inclusion).

Figure 14: BPTF Exon Skip Exons 5 and 6 Survival Curves in BRCA. Comparing the tumor
patient survival by the relative inclusion of exons 5 and 6. A) Overall Survival B) Disease Free

Survival C) Progression Free Survival
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Figure 15: BPTF Exon Skip Exons 5 and 6 Survival Curves in PRAD. Comparing the tumor
patient survival by the relative inclusion of exons 5 and 6. A) Overall Survival B) Disease Free

Survival C) Progression Free Survival

Figure 16: BPTF Exon Skip Exons 5 and 6 Survival Curves in THCA. Comparing the tumor
patient survival by the relative inclusion of exons 5 and 6. A) Overall Survival B) Disease Free

Survival C) Progression Free Survival

The log rank p-values for the survival difference between the high and low inclusion of exon 5 in

overall, disease free and progression free survival respectively for the BRCA tumor patient

samples were p = 0.59, p = 0.96 and p = 0.34 . The risk tables shown in each of the subfigures

(A, B, C) indicated the number of patients at each interval (in days) that were present for the

strata (high and low inclusion).

Figure 17: BPTF Exon Skip Exon 5 Survival Curves in BRCA. Comparing the tumor patient
survival by the relative inclusion of exon 5. A) Overall Survival B) Disease Free Survival C)

Progression Free Survival

5.2. CpG/DNA Methylation
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There were 16 HumanMethylation450 probes noted on the BPTF gene, most of which were at

the beginning of the BPTF gene as seen in Figure 18. This figure shows the placement of these

probes where the methylation beta values were recorded. Significant difference between the

tumor and their adjacent normal samples was conducted first by using the Welch’s test on all the

16 probes. Probes cg22443205 and cg16028064 which are noted to be the CpG islands of the

gene are of main interest, however probes cg12398397, cg22972262, cg16435601 and

cg03215657 are all of interest because they are located at the beginning of the gene and would be

able to inform on the ability to access the gene for translation to occur.

Figure 18: HumanMethylation450 probes on the BPTF gene region. A scaled BPTF gene with
the methylation probe locations on the gene. Probes cg22443205 and cg16028064 are noted to

be the CpG islands for the gene (Created with BioRender.com).

In BLCA there were many probes out of the sixteen of interest that indicated significant

differences between the normal 𝛽-values and tumor 𝛽-values (Figure 19 and Table-3). As seen in

Table S-3 BLCA probes cg12398397 (p = ), cg22443205 (p = ), cg164356018. 82𝑒−06 3. 87𝑒−04

(p = ), and cg03215657(p = ) that are located in/near CpG methylation2. 93𝑒−04 3. 85𝑒−04

islands were found to be significant and their fold change was calculated to 1.333, 1.088 and

1.396, 1.062 respectively. The fold changes indicate that overall, the normal BPTF gene had a

slightly higher mean 𝛽-value than tumor cells which in turn informs that normal BPTF gene is
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slightly more methylated than the tumor BPTF gene in those locations. The other probes

downstream of the gene (in order of occurrence) that were of noted significance were

cg06647360(p = ), cg18762647(p = ), cg06420179(p = ),5. 7𝑒−04 2. 06𝑒−05 9. 2𝑒−03

cg05271336(p = ), cg02530753(p = ) and cg14781826(p = ).3. 27𝑒−03 4. 53𝑒−02 1. 37𝑒−04

These downstream probes had a fold change of about 1.008 to 1.04 however, the cg14781826

probe had a fold change of 0.857 as seen in Table S-3.

Figure 19: BLCA 𝛽-values Distribution Comparison between Normal and Tumor. The sixteen
probes compared for methylation beta levels (range 0 to 1). The stars represent the level of
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significance based on the Wilcoxon test and NS indicates not significant. The blue stars are noted
to be beta value outliers.

The methylation analysis in BRCA illustrated through Figure 20 and Table S-3 indicated that

probes cg12398397 and cg16028064 had significant differences in methylation between normal

and tumor BPTF gene. The cg16028064 probe is located on the CpG island and had a p-value of

and a fold change of 0.208 which indicates that this region was more methylated in the2. 94𝑒−13

tumor genes overall compared to the normal gene. The cg12398397 probe that is located before

the CpG island has a p-value of and a fold change of 1.607 which indicates that the2. 74𝑒−12

mean beta values had higher values in the normal gene compared to tumor gene beta values. This

would that signify the normal gene was slightly more methylated overall in this position

compared to the tumor gene transcript. The other downstream probes that were significant were

cg06647360(p = ), cg06420179( p = ), cg05271336(p = ),7. 36𝑒−03 9. 4𝑒−03 4. 47𝑒−02

cg02530753(p = ) and cg14781826(p = ) and their fold changes ranged from1. 72𝑒−02 2. 47𝑒−14

0.77 to 1.008 as seen in Table S-3.
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Figure 20: BRCA 𝛽-values Distribution Comparison between Normal and Tumor. The sixteen
probes compared for methylation beta levels (range 0 to 1). The stars represent the level of

significance based on the Wilcoxon test and NS indicates not significant. The blue stars are noted
to be beta value outliers.

Within the PRAD methylation analysis there was slight significance noted for probes

cg12398397 (p = ) with a fold change of 1.04 which indicated almost the same 2. 87𝑒−03

mean methylation between the normal and the tumor samples. The downstream probes that

had noted significance in PRAD for difference between normal and tumor samples were

cg13776905 (p = ), cg18687753(p = ), cg04798252(p = ), 9. 51𝑒−04 1. 29𝑒−02 6. 8𝑒−06
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cg06647360(p = ), cg18762647(p = ), cg06420179(p = ), cg05271336(p2. 9𝑒−03 2. 3𝑒−10 3. 6𝑒−03

= ), cg26135490(p = ), cg02530753(p = ) and cg14781826 (p =1. 16𝑒−05 8. 63𝑒−06 2. 66𝑒−07

). Their fold changes for these probes ranged from 0.745 and 1.039 as seen in Table7. 56𝑒−09

S-4.

In THCA methylation analysis there were three probes in/near the CpG islands the first being

cg12398397 (p = ) with a fold change of 1.05, and the CpG island probes 6. 36𝑒−04

cg22443205 (p = ) with a fold change of 0.909 and cg16028064 (p = ) with a1. 41𝑒−03 1. 83𝑒−02

fold change of 1.04. The downstream probes that had noted significance in THCA for difference

between the normal and tumor samples beta values were cg13776905 (p = ), 9. 66𝑒−03

cg05271336(p = ), cg26135490 (p = ), cg02530753(p = ) and4. 73𝑒−02 2. 95𝑒−02 2. 17𝑒−02

cg14781826 (p = ). The fold change for the downstream probe samples as seen in Table7. 71𝑒−05

S-4 were around 0.99.
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Figure 21: PRAD 𝛽-values Distribution Comparison between Normal and Tumor. The sixteen
probes compared for methylation beta levels (range 0 to 1). The stars represent the level of

significance based on the Wilcoxon test and NS indicates not significant. The blue stars are noted
to be beta value outliers.
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Figure 22: THCA 𝛽-values Distribution Comparison between Normal and Tumor. The sixteen
probes compared for methylation beta levels (range 0 to 1). The stars represent the level of

significance based on the Wilcoxon test and NS indicates not significant. The blue stars are noted
to be beta value outliers.

The methylation probes cg12398397, g22443205 and cg16435601 were found to be significantly

different with p-values of , , and respectively in UCEC7. 89𝑒−09 1. 40𝑒−12 4. 03𝑒−05

methylation analysis. Their respective fold changes were calculated to be 1.26, 1.334, and 1.226.
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These values inform that the overall mean methylation beta values were slightly greater in

normal than in tumor BPTF gene. The downstream probes that had noted significance in UCEC

for difference between normal and tumor samples were cg06647360(p = ),2. 19𝑒−11

cg18762647(p = ), cg02530753(p = ) and cg14781826 (p = ). The3. 06𝑒−07 4. 08𝑒−03 1. 75𝑒−14

fold changes noted for these probes ranged from 1.003 to 1.03 except for the cg14781826 which

had a fold change value of 0.5614 (Table S-5).
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Figure 23: UCEC 𝛽-values Distribution Comparison between Normal and Tumor. The sixteen
probes compared for methylation beta levels (range 0 to 1). The stars represent the level of

significance based on the Wilcoxon test and NS indicates not significant. The blue stars are noted
to be beta value outliers.

5.3. Gene Ontology

The positively and negatively co-expressed genes with BPTF in the tumor cells gave insight into

the pathways and co-expression profiles that aid in better understanding the BPTF gene. The first
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aspect that was checked was the biological processes as seen in Figure 24A where their FDR

values were converted into log space and then visualized through a heatmap. The same concept

was used for the other two aspects of the cellular component and the molecular function seen in

Figure 24B and Figure 24C respectively. The FDR values for each of the three aspects are noted

in Table S-6, Table S-7 and Table S-8. Figure 24A indicates that all these biological processes

are common between the five different cancer types and are highly significant (FDR < 0.05).

However, the processes of translation, regulation of transcription DNA-templated and regulation

of transcription from RNA polymerase 2 promoter have the most significant FDR values related

to the biological processes in all five cancers of interest. The translation biological process for

BLCA (FDR = ), BRCA (FDR = ), PRAD (FDR = ), THCA (FDR1. 20𝑒−05 2. 77𝑒−13 2. 84𝑒−02

= ) and UCEC (FDR = ) all had common genes that had been correlated to9. 01𝑒−23 1. 60𝑒−06

BPTF expression. Some of the genes included EGFR, MRPL’s (multiple variations) and RPL’s.

The Spearman’s correlation noted for the EGFR gene for BLCA(0.251), BRCA(0.116),

PRAD(0.672), THCA(0.666) and UCEC(0.528).The regulation of transcription DNA-templated

had FDR values of , , , , and regulation of4. 24𝑒−15 2. 63𝑒−07 5. 06𝑒−11 8. 63𝑒−10 1. 54𝑒−07

transcription from RNA polymerase 2 promoter had FDR values of , ,1. 34𝑒−17 1. 20𝑒−07

, , and for BLCA, BRCA, PRAD, THCA and UCEC respectively.3. 55𝑒−09  8. 34𝑒−12  1. 98𝑒−09

A few genes related to these processes along with common genes seen in the translation

biological process were ZNF, TRRAP, NSD’s, DMAP1 ATF1, ATF2 and SMARCC1/2. The

Spearman’s correlation noted for the ATF1/ATF2 gene for BLCA(0.324/0.619),

BRCA(0.388/0.653), PRAD(0.666/0.800), THCA(0.515/0.810) and UCEC(0.465/0.723). The

Spearman’s correlation noted for the SMARCC1/2 gene for BLCA(0.468/0.389),

BRCA(0.355/0.255), PRAD(0.646/0.255), THCA(0.720/0.347) and UCEC(0.558/0.130).

Spearman's correlation noted for the TRRAP gene to BPTF for BLCA(0.670), BRCA(0.514),

PRAD(0.783), THCA(0.807) and UCEC(0.610). DMAP1 spearman’s correlation to BPTF for

BLCA is -0.336, BRCA is -0.489, PRAD is -0.586, THCA is -0.484 and for UCEC it is -0.467.
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Figure 24: Gene Ontology Terms and Log FDR values for BPTF Correlated Genes. A)
Heatmap of Biological Process terms of five cancers related to BPTF and its co-expressed genes.
B) Heatmap of Cellular Component terms of five cancers related to BPTF and its co-expressed

genes. C) Heatmap of Molecular Function terms of five cancers related to BPTF and its
co-expressed genes.

The cellular components section in Figure 24B shows a clear high significance of the nucleus

and the nucleoplasm with FDR log values. The nucleus FDR values for BLCA, BRCA, PRAD,

THCA and UCEC were , , , , and1. 02𝑒−65 2. 08𝑒−50 1. 32𝑒−52 1. 77𝑒−60 2. 26𝑒−45
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respectively. As for the nucleoplasm the values for those cancers were , ,3. 35𝑒−88 1. 00𝑒−69

, , and . A few related genes to these cellular components included8. 57𝑒−67 4. 10𝑒−86 4. 77𝑒−72

MYCBP2, MAPK1, BRCA2, DAPK3 and RHOC. Spearman correlation noted for the MYCBP2,

MAPK1, BRCA2, DAPK3 and RHOC genes for BLCA (0.521, 0.406, 0.570, -0.426, -0.445

respectively), BRCA(0.487, 0.411, 0.486, -0.425, -0.370 respectively), PRAD(0.730, 0.601,

0.545, -0.577, -0.610 respectively), THCA(0.819, 0.496, 0.496, -0.536, -0.701 respectively) and

UCEC(0.745, 0.518, 0.648, -0.346, -0.396 respectively).

The molecular function (Figure 24C) is the final aspect of the gene ontology analysis and the

most significant functions in all five cancer types were RNA binding and protein binding. The

FDR values for RNA binding were BLCA (FDR = ), BRCA (FDR = ),3. 20𝑒−24 4. 29𝑒−31

PRAD (FDR = ), THCA (FDR = ) and UCEC (FDR = ) and for7. 41𝑒−23 2. 00𝑒−37 5. 70𝑒−29

the protein binding the values were , , , and5. 47𝑒−36 7. 06𝑒−37 1. 11𝑒−42 3. 88𝑒−43 1. 31𝑒−39

respectively. A few of the common genes were MYL, TOP1, RBBP6, TUT4, and AKAP1.

Spearman correlation noted for the TOP1, RBBP6, TUT4, and AKAP1 genes for BLCA (0.550,

0.526, 0.596, 0.487 respectively), BRCA(0.523, 0.446, 0.295, 0.348 respectively), PRAD(0.550,

0.676, 0.721, 0.327 respectively), THCA(0.485, 0.450, 0.797, 0.258 respectively) and

UCEC(0.469, 0.447, 0.672, 0.410 respectively).

6.Discussion

Alternative Splicing

As alternative splicing has been related to the biological processes of multiple malignancies,

understanding the significant splicing events occurring of the BPTF gene and conducting

survival analysis could serve as a potential prognostic indicator. The three main splicing events

that were noted of high significance were the alternate donor (5’ prime donor) of exon 23.2, exon

skip of both exons 5 and 6 and then an exon skip of just exon 5. The alternate donor site was

noted to be significant in all five cancer types while the exon skip 5:6 was only significant in

BRCA, PRAD and THCA cancers and further exon skip 5 was only significant in BRCA. Exon

23.2 has no noted functional significance while exons 5 and 6 have been noted to have

interactions with KEAP1. KEAP1 also known as the Kelch-like ECH-associated protein 1 is a

component of the E3- ubiquitin ligase complex that controls the stability and accumulation of
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NRF2 (nuclear factor (erythroid-derived 2)-like 2). Cancer cells acquire malignancy by

perverting NRF2. In normal conditions NRF2 levels are very low but it can accumulate if it

escapes the KEAP1 trapping mechanism (Taguchi, K., & Yamamoto, M., 2017). The pathway

through which this interaction is occurring and the binding motif between the KEAP1 gene and

the BPTF gene has yet to be determined. However, in Alzheimer’s disease the FAC1 (Fetal

Alz-50 reactive clone protein) which is an alternatively spliced gene without the bromodomain

of BPTF that spans from exon 28 through exon 29 has been noted to in its full length interact

with human KEAP1 proteins. There is noted competition between the FAC1 and NRF2 for

binding human KEAP1 that indicates that there is an interaction between the three genes and

their proteins. As for exon 23.2 the alternate donor site does shorten the overall transcript that

gets translated into protein. This shortening of the gene might lead to downstream effects in

binding with other proteins and structural competency might be compromised. Furthermore the

zinc-finger and Ca2+ interacting regions of BPTF which are located through exons 26 and 27

might be affected structurally as the proteins are made.

The differences in splicing and the proteins that are eventually created play a crucial role in

understanding how other interacting proteins might be affected and based on these

understandings one can potentially edit the splicing mechanisms to produced only beneficial

transcripts that do not lead to the overproduction of the harmful splicing patterned BPTF. An

analysis of protein structure based on the splicing events, which have been noted to be

significantly different, and their interactive locations with other cofactors and co-expressed genes

might aid in furthering the understanding of how these splicing events impact the transcription

and translation of the BPTF gene.

The TCGA SpliceSeq dataset itself had many flaws as to how much of the data was presented

and the amount of information that was left out that could have aided in understanding variances

seen in splicing events based on gender, age, weight and other epigenetic factors that have been

known to play a role in initiation and progression of cancer. Table S-1 contains the demographics

of the dataset downloaded from the TCGA SpliceSeq. The ratio of the tumor to normal patient

samples and the distribution differences seen led to difficulty in further analysis. For example,

the overall missingness and involvement of null values within the PSI column were dealt with by

omitting those values leading to the loss of some data. A more accurate result on the significance
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of the splicing event can be achieved through the involvement of additional normal patient

samples proportional to the sample size of cancer patients.

Splicing Survival Analysis

In order to glimpse at the potential effects on patient survival of these splicing events occurring

more often or less often in the transcripts tested from tumor patients the PSI values were split

into two categories. In the first case of the alternate donor of 23.2 high inclusion meant that the

inclusion of 23.2 was seen more often in read transcripts and therefore the PSI values were

between 0.55 and 1. While, the low inclusion of the exon 23.2 was indicative of PSI values less

than 0.45 which meant that there were more read transcript that included the event of alternate

donor site for exon 23.2 (ie. missing the 23.2 and connecting the exon 23.1 3’ prime end to exon

24 5’ prime). The patient survival difference over 5 years compared the tumor patients with high

inclusion of exon(s) to the tumor patients with low inclusion exon(s) in the three alternative

splicing events seen in this study.

The alternate donor event of exon 23.2, exon skip event of exons 5 and 6 and finally the exon

skip event of just exon 5 indicated no significant difference at a 0.05 p-value cutoff in the tumor

patient survival between the two groups of high and low inclusion. However, at a p-value of 0.1

cutoff the BRCA progression free exon skip of exons 5 and 6 yields slight significant difference

in survival between the tumor patients with high inclusion of the exons and patients with low

inclusion of the exons at p-value of 0.097.

The overall analysis of the splicing events in terms of the survival of the patients has pointed to

some interesting results however, due to the missingness and the amount of confounding factors

that come along with understanding if the splicing event itself had an effect of the survival of the

tumor patients, this analysis might need to be conducted after understanding the changes that

could occur in the BPTF gene while the treatment is occuring, and any changes that might occur

due to the treatment. Additionally, having more complete data with a lot of null or NA values

would lead to more accurate results and could allow the analysis of other factors such as age,

height, weight and tumor status which are variables that were included in the dataset but were

missing in some cancer types or were noted as zero’s where using that variable would yield

improper results.

There are studies such as the Future directions of high throughput splicing assay in precision

medicine by Rhine, C. L., et.al., 2019, being conducted to address splicing databases and analysis
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of different variants by addressing limitations that can be overcome like tissue-specific splicing,

effect of surrounding sequence context, intronic variants, synthesizing large exons and also

amplifying the complex libraries for these different variants.

To further analyze the survival data, the protein configurations of the alternatively spliced BPTF

transcripts should be examined to better understand their interactions with other genes,

particularly those that are involved in cancer. Previous research has shown that exons 5 and 6 of

BPTF interact with KEAP1, which has been implicated as a gene that plays a role in cancer

development, along with NRF2. Additionally, investigating the structure of BPTF and its

interactions with other NURF subunits, such as SMARCA/SNF2 and RBBP7, as well as

co-expressed genes, may yield valuable insights.

DNA/CpG Methylation

The methylation patterns seen around and in the CpG islands of the BPTF gene indicate that the

gene was overall more methylated in normal patient samples than that of the tumor patient

samples. As seen in Figure 6 the hypermethylation leading to the shutdown of transcription of

the gene aids in the regulation of how often a gene is being transcribed and then eventually

translated. In the case of tumor suppressor genes like TP53, BRCA1 and BRCA2 are

hypermethylated which lead to their inactivation. Their ability to suppress tumors is suppressed

by this event. BPTF a transcription factor acts a bit differently where having it regulated through

methylation is crucial in order to not overproduce the gene and eventually the protein. In BLCA,

BRCA and UCEC the CpG island probes and the probes around the islands indicated that there

was higher methylation seen in normal cells than those from tumor cells. Furthermore, in most

cases the BPTF gene was highly methylated throughout the gene in the normal cells compared to

the tumor cells (other than in THCA) indicative of their maintenance of methylation pattern. As

the BPTF gene is overexpressed in many if not all cancer types, the hypomethylation patterns

indicate that there is a possibility that this hypomethylation is leading to the gene being

transcribed and eventually translated more often.

In order to further this analysis, the MRS can be calculated for the gene using the beta values and

weights to more accurately predict methylation patterns on each sight. MRS are the methylation

risk scores that are calculated by using weighted sums of the individual’s methylation markers

beta values of a pre-selected number of CpG sites (Hüls, A., & Czamara, D., 2020). This method

not only allows for understanding epigenetic biomarkers but also helps with association analyses
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in which a single CpG site did not give significance. It can also aid in predicting the individual

risk of disease or treatment success. Further analysis of the acetylation patterns of the BPTF gene

would also be beneficial in identifying a more holistic pattern that affects the transcription of the

gene.

Gene Ontology Analysis

The biological processes, cellular components and the molecular functions noted to be of high

significance indicate pathways and their respective genes that are highly related and

co-expressed with BPTF. Since BPTF is a transcription factor and is a conserved gene across

species, the involvement of its co-expressed genes in biological processes like translation and

transcription is expected. The other significant biological processes that are involved that have

been major players of cancer are DNA repair mechanisms, cellular response to DNA damage,

cell division and many others. The cellular components of high significance like nucleus,

nucleosome and cytosol as well as the molecular functions of high significance like RNA and

protein binding are all interconnected in many ways. These processes, components and functions

have also been noted to play major roles in controlling and contributing to the initiation and

progression of cancer. The genetic information that is consistently maintained to ensure stability.

Mutations are common but sometimes can be harmful and can damage mechanisms that can lead

to disease. DNA damage and error in the DNA repair mechanisms could lead to activation of

oncogenes and inactivation of tumor suppressor genes. Since BPTF is a transcription factor and

has been known to interact with other genes that are tumor suppressors and oncogenes these

pathways can aid in better understanding on the effect BPTF overexpression might have on its

co-expressed genes.

The overexpression of BPTF and the positively correlated co-expression of some of the genes

involved in these processes gives a better outlook on what BPTF’s role might be in these five

cancer types. The co-expression of related genes like EGFR, MYCBP2, MAPK1, BRCA2, ATF2,

ATF1 and many more have shown medium to high positive spearman correlation values

(cBioPortal) when comparing the mRNA expression levels (RSEM normalized Illumina HiSeq)

of BPTF and the respective genes. MAPK signaling cascades consist of the interaction of one or

more growth factors with their specific receptors. MAPK1 along with other analogs of the protein

were noted to be positively correlated to BPTF. The MAPK1 and BPTF pathways also cross

paths with the EGFR which is the epidermal growth factor receptor whose physiological function
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is to regulate the epithelial tissue development and homeostasis (Sigismund, S., et.al., 2018). A

study conducted by Dongyu Bai et al. through RT-qPCR, western blotting bioinformatic analysis

and immunohistochemistry indicated that BPTF and Raf1 were overexpressed in T-cell

lymphoma tissues compared to normal and that BPTF promoted the activation of the MAPK

pathway. This would lead to the activation of EGFR which is commonly upregulated in many

cancers like breast, pancreatic and metastatic colorectal cancer (Wee, P., & Wang, Z., 2017).

SMARCC1 and SMARCC2 are part of the SWI/SNF family and have been noted to have

diagnostic value in HCC patients. The SMARCC1 gene has shown to affect immune infiltration

and potentially play a role in tumor promoting role in HCC (Cai, X., Zhou, et.al., 2021). Another

pathway that could be studied further is related to the ATF1, ATF2 , BRCA1 and BRCA2.

Poly-ADP ribose polymerase also known as PARP functions in various DNA damage repair

pathways and in DNA replication. PARP inhibitors impairs the repair of DNA breaks which

leads to the inhibition of repairs. Homologous recombination (HR) contributes to the repair of

DNA double stranded breaks, PARP trapping and collapsed forks. The alterations in HR factors

like BRCA1/2 can cause hereditary cancers like breast and ovarian cancer.

The overexpression of BPTF in many cancers is not alone sufficient to cause the initiation and

progression of cancer, however if the genes in pathways have had several significant mutational

changes and are constantly being co-expressed at a high rate in these different cancer types it

illustrates the importance of controlling the expression of BPTF that downstream could lower the

transcription of these mutated/ non-functional genes.

7. Conclusion

In conclusion, the analysis of BPTF and the publicly available datasets is crucial for advancing

cancer research and developing improved databases that will facilitate further studies in the field.

By understanding the role of BPTF in cancer initiation and progression, researchers can focus on

developing targeted therapies that will improve patient outcomes. Furthermore, the analysis of

publicly available datasets provides a wealth of information that can inform research and identify

areas where more focused studies are needed.

As the databases continue to expand, collaborations among researchers and organizations are

essential to ensure that the data is consistent and complete. This will enable researchers to

conduct more in-depth analyses and develop better predictive models for cancer. Additionally,
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the use of publicly available datasets will enhance the reproducibility and transparency of cancer

research by enabling other researchers to verify and build upon existing studies.

The results of this study provided significant insights into the potential mechanisms of BPTF

overexpression in certain cancers through the analysis of methylation using the TCGA Wanderer

bioinformatics tool. While the study only examined five different cancer types, the findings

suggest that differences in the alternative splicing of BPTF transcripts such as the alternate donor

of exon 23.2 and exon skip of exons 5 and 6, may contribute to the observed overexpression,

highlighting the need for further analysis of these transcripts through structural and interaction

studies using the TCGA SpliceSeq database or a much more comprehensive splicing database.

Although there were no significant differences in the survival analysis between the high and low

inclusion of the exons of interest from the splicing analysis in tumor patients. There were

interesting trends between the two categories of relative inclusion which can be studies in other

cancer types and analyzed with more restrictive cutoff levels.

Furthermore, the gene ontology and co-expressed gene analysis provided valuable information

on the biological processes, cellular components, and molecular functions associated with BPTF,

as well as its co-expressed genes such as MAPK1, EGFR, BRCA2 and so on, providing a deeper

understanding of the potential mechanisms of BPTF in the initiation and progression of cancer.

Even though this study does not provide any direct evidence of interactions between BPTF and

these co-related genes, the ontology analysis does highlight the potential genes that potentially

do have interactive power and should be researched further to establish interactive status. By

expanding these findings to other cancer types and analyzing a wider range of transcripts and

co-expressed genes, we can gain a more comprehensive understanding of the role of BPTF in

cancer.

Ultimately, the analysis of BPTF and the publicly available datasets has the potential to

transform cancer research by leading to the development of more efficient and long-term cures

for all forms of cancer. By leveraging the power of bioinformatics, researchers can better

understand the complexities of cancer biology and develop personalized treatment plans that will

improve patient outcomes. Therefore, it is imperative to continue to invest in this area of

research to accelerate the development of more effective cancer therapies.

8.Future Directions
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While this study has shed light on certain aspects of the BPTF gene, there is still much to be

explored. Specifically, a more comprehensive analysis involving all 33 cancer types using the

methodology outlined in this study is necessary to gain a more thorough understanding of how

BPTF splicing, methylation, and gene ontology evolve across different cancer types. Such a

meta-analysis could serve as a valuable resource for future research in both bioinformatics and

wet-bench experimental work, by identifying important pathways and genes involved in the

initiation and progression of cancer. Ultimately, a more holistic view of the workings of the

BPTF gene can help pave the way towards better diagnostic and treatment strategies for cancer

patients.

Despite the limitations of this study utilizing publicly available data, there is potential to

overcome these challenges by promoting collaborations and expanding the databases. The

Cancer Genome Atlas project provides extensive characteristics such as genomic and

transcriptomic information for analysis. Addressing missing data, standardizing data recording

and storage of patient samples and their attributes would lead to more robust analyses using

publicly available tools, which in turn could guide researchers in identifying potential targets for

therapies.

Furthermore, as part of my research in the lab, I am currently working with more sophisticated

bioinformatics tools and larger databases, such as CBioPortal and CIBERSORTx, to assess

BPTF mRNA expression and copy number alterations in different types of cancer. CBioPortal is

a comprehensive platform for exploring multidimensional cancer genomics data, including

TCGA and other large-scale cancer genomics datasets (Cerami, E., et al., 2012). Meanwhile,

CIBERSORTx is a versatile computational method that quantifies cell fractions from bulk tissue

gene expression profiles Newman, A. M., et al., 2019).

To analyze the immune composition of tumor biopsies based on BPTF gene analysis in our lab,

we use both mRNA sequencing and microarray data. The CIBERSORTx interface requires a

signature matrix that includes signature gene expressions for deconvolving cell types of interest

(Figure 25). The tool leverages support vector regression and robust mathematical optimization

techniques to enhance deconvolution performance. Specifically, CIBERSORTx applies a

machine learning algorithm to infer the proportions of cell types present in a bulk tissue sample

from the expression levels of signature genes. The tool uses an optimization approach based on
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quadratic programming to estimate the cell fractions that best fit the gene expression profile of

the sample (Newman, A. M., et al., 2019).

In summary, our research team is using bioinformatics tools and resources, such as CBioPortal

and CIBERSORTx, to study BPTF expression and copy number variations in different cancer

types. By leveraging the capabilities of CIBERSORTx, we are able to analyze the immune

composition of tumor biopsies with greater accuracy and efficiency, providing insights that could

help improve cancer diagnosis and treatment.

Figure 25: CIBERSORT Analysis Pathway. The cell proportionality calculated based on the
signature matrix that has the deconvoluted profiles from many normalized samples from previous
studies is placed as a control. The RNA profiles of interest gathered from the source of interest

are also entire and a fraction is delivered in matrix format with the different cell types as
columns and the individual samples as the rows. Note. Represented from “Profiling tumor

infiltrating immune cells with CIBERSORT” by Chen, B., et.al., 2018, Methods in molecular
biology, 1711, p.14.
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9.Supplemental Data

Table S-1: Alternative Splicing Dataset Demographics. The data distribution of all the
variables included in the TCGA SpliceSeq database dataset for the three splicing events for the

five cancer types.
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Table S-2: BPTF Exons on Chromosome 17. BPTF exons, chromosome number, exon start
and end positions based on the TCGA SpliceSeq database.
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Table S-3: Significant Methylation Probes and Fold Change. The significant probes based on
Wilcoxon Test comparing the normal and tumor beta methylation values of bladder urothelial
carcinoma and breast invasive carcinoma. The fold change was calculated based on the average
of normal beta values over the average of tumor beta values.
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Table S-4: Significant Methylation Probes and Fold Change. The significant probes based on
Wilcoxon Test comparing the normal and tumor beta methylation values of prostate

adenocarcinoma and thyroid carcinoma. The fold change was calculated based on the average of
normal beta values over the average of tumor beta values.
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Table S-5: Significant Methylation Probes and Fold Change. The significant probes based on
Wilcoxon Test comparing the normal and tumor beta methylation values of uterine corpus

endometrial carcinoma. The fold change was calculated based on the average of normal beta
values over the average of tumor beta values.
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Table S-6: Gene Ontology: Biological Processes related to BPTF. The biological processes
related to BPTF in all five cancers with the GO term code, the biological process terms, and the

FDR values to note for significance of each process in each of the cancer types.
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Table S-7: Gene Ontology: Cellular Components related to BPTF. The cellular components
related to BPTF in all five cancers with the GO term code, the cellular component terms, and the

FDR values to note for significance of each process in each of the cancer types.
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Table S-8: Gene Ontology: Molecular Functions related to BPTF. The molecular functions
related to BPTF in all five cancers with the GO term code, the molecular function terms, and the

FDR values to note for significance of each process in each of the cancer types.
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