
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2023

Code Beats - Teaching Computer Programming Coding via Hip Code Beats - Teaching Computer Programming Coding via Hip

Hop Beats Hop Beats

Douglas Lusa Krug
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/7288

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars
Compass. For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F7288&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/7288?utm_source=scholarscompass.vcu.edu%2Fetd%2F7288&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

CODE BEATS - TEACHING COMPUTER PROGRAMMING CODING VIA HIP

HOP BEATS

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

by

DOUGLAS LUSA KRUG

Ph.D. Candidate

Director: Kostadin Damevski,

Associate Professor, Department of Computer Science

Virginia Commonwealth University

Virginia Commonwealth University

Richmond, Virginia

May, 2023

i

Acknowledgements

It would not be possible to go through this journey without the unconditional

support that I received from my family. Their encouragement and understanding

have been crucial to me since the moment I decided to start the whole Ph.D. process.

So, I dedicate this work to my wife, Nariel, my daughter Brenda, my son Luiz, and

my parents, Lauro and Marileusa.

During my Ph.D. journey, I had the chance to be advised by Dr. David Shepherd,

who understood my strengths and weakness and made me use them toward my goals.

Thanks, Dave!

Also, during the last mile, Dr. Kostadin Damevski facilitated my path until I

could cross the finish line. Thanks, Kosta!

Finally, this would not be possible without God. Everything at His time. So,

I’m grateful for having this experience.

ii

Table of Contents

Table of Contents . iii

List of Tables . vi

List of Figures . vii

Abstract . x

1 Introduction . 1

1.1 Research Goals . 3

1.2 Dissertation Structure . 5

2 Background and Literature Review . 6

2.1 Disparities in Access to Computer Science 6

2.1.1 Structural Barriers . 7

2.1.2 Perceptions of Programming 9

2.2 Using Music to Teach Coding . 10

2.2.1 Platforms to Teach Coding using Music 11

2.2.2 Experiments Using Music to Teach Coding 12

2.3 Culturally Relevant Pedagogy . 14

2.4 Discussion . 15

2.4.1 Dissertation Contributions 16

3 The Code Beats Approach . 17

3.1 Curriculum: Music + Computer Science Concepts 17

3.2 Genre Choice . 24

3.3 Software Tooling . 25

3.4 Camp Format . 27

3.4.1 Curriculum Distribution . 28

3.4.2 Core Segments . 29

3.5 Activities . 31

3.5.1 Example Activity in TunePad.live 33

3.5.2 Example Activity in TunePad.com 38

3.5.3 List of Activities . 40

iii

4 Measuring Engagement Toward Computer Science 42

4.1 Research Questions . 43

4.2 Methods . 44

4.2.1 Participant Demographics . 44

4.2.2 Data Collection . 44

4.2.3 Data Analysis . 45

4.3 Results . 46

4.3.1 RQ1: Student Engagement 46

4.3.2 RQ2: Developing Creators 50

4.4 Limitation and Threats to Validity 51

4.5 Conclusions . 51

5 Indirectly Engaging Adult Learners . 53

5.1 Related Work . 54

5.2 Research Question . 56

5.3 Methods . 56

5.3.1 Study Design and Data . 56

5.3.2 Participant Demographics . 57

5.3.3 Data Analysis . 58

5.4 Results . 59

5.5 Discussion . 67

5.5.1 Perception about Computer Programming - Before Code Beats 67

5.5.2 Perception about Computer Programming - After Code Beats 67

5.6 Limitations and Threats to Validity 68

5.7 Conclusion . 68

6 Engaging Students with No Musical Background 70

6.1 Context of Work . 71

6.1.1 Computer Science Education in Brazil 71

6.1.2 Music Education in Brazil 72

6.2 Adapting Code Beats for Context 73

6.3 Research Question . 75

6.4 Methods . 76

6.4.1 Study Design . 76

6.4.2 Participant Demographics . 76

6.4.3 Data Collection and Analysis 77

6.5 Results . 78

6.5.1 Students’ Motivation . 78

iv

6.5.2 Direct Observation . 82

6.6 Limitation and Threats to Validity 84

6.7 Conclusion and Future Work . 84

7 Study of Scaffold-based Activities for Music Coding 86

7.1 Related Work . 87

7.1.1 Scaffold-Based Curricula and Activities 87

7.1.2 Scaffolding Music-based Programming 88

7.2 Adapting Scaffolding for Music Coding 89

7.2.1 Complete the Code . 89

7.2.2 Buggy Code . 90

7.2.3 Reorder the Code . 91

7.3 Research Questions . 92

7.4 Methods . 93

7.4.1 Participant Demographics . 93

7.4.2 Study Design . 94

7.4.3 Data Analysis . 95

7.5 Results . 96

7.5.1 RQ1: Difficulty . 96

7.5.2 RQ2: Correctness . 98

7.6 Limitation and Threats to Validity 101

7.7 Conclusion . 102

8 Using Domain-Specific, Immediate Feedback in Code Beats to Support

Students . 103

8.1 Related Work . 104

8.1.1 Feedback to Improve Code Learning 104

8.2 Background . 106

8.2.1 Domain-Specific Immediate Feedback 106

8.3 Research Questions . 110

8.4 Methods . 110

8.4.1 Study Design and Data . 110

8.4.2 Participant Demographics . 112

8.4.3 Data Analysis . 112

8.5 Results . 113

8.5.1 RQ1: Correctness . 113

8.5.2 RQ2: Students Perception on Feedback 114

8.6 Discussion and Conclusion . 116

v

8.7 Limitation and Threats to Validity 118

9 Conclusion . 120

9.1 Research Contributions . 120

9.2 Significant Findings . 122

9.3 Future Work . 124

References . 126

Appendix A List of Activities - TunePad.live 145

Appendix B List of Activities - TunePad.com 148

vi

List of Tables

1 Curriculum Distribution - Final Version 29

2 Coding with Doug - Videos . 30

3 Decoding the Beat - Videos . 30

4 Vocabulary Definitions - Videos . 31

5 Differences between pre and post-surveys 46

6 Curriculum Distribution - Brazilian Edition 74

7 List Code Beats of Activities - Brazilian Edition 75

8 Pre and Post-course Survey . 79

9 Programming Concepts and Activity Types 94

10 Code Beats Camps - Number of Participants 124

11 List with Code Beats Activities 1 . 146

12 List with Code Beats Activities 2 . 149

vii

List of Figures

1 Code Example - Modularization . 23

2 Example - Parallelism . 24

3 Code Example in TunePad.com . 26

4 Code Example in TunePad.com - Drums 27

5 In-Class Activity - Example - Instructions 33

6 In-Class Activity - Example - Melody . 34

7 In-Class Activity - Example - Bass . 35

8 In-Class Activity - Example - Drums (Hi-hat) 36

9 In-Class Activity - Example - Drums (Snare) 36

10 In-Class Activity - Example - Drums (Kick) 37

11 In-Class Activity - Example - Timeline 38

12 In-Class Activity - Example 2 - Instructions 38

13 In-Class Activity - Example 2 - Videos 39

14 In-Class Activity - Example 2 - Melody 40

15 Survey Results: statements with a positive view of computer science . . . 48

16 Survey Results: statements with a negative view of computer science . . . 49

17 Number of original beats per student over time 50

18 Q1 - What did you think before? . 59

19 Q2 - What do you think now? . 61

20 Q3 - Interested in learning more? . 63

viii

21 Q4 - Interested in a career? . 64

22 Q5 - Did the use of music change your attitude? 65

23 Difficulty - Results for Complete the Code and Buggy Code 97

24 Difficulty - Results for Complete the Code and Reorder the Code 98

25 Correctness - Results for Complete the Code and Buggy Code 99

26 Correctness - Results for Complete the Code and Reorder the Code . . . 100

27 Example of Hints . 107

28 Example of Feedback - 1 . 108

29 Example of Feedback - 2 . 109

30 Percentage of Correct Solutions . 114

31 Students Motivation - Feedback System 115

ix

Abstract

Computer programming is a crucial skill for future professionals, not only those

working as computer programmers but most modern workers. To train the next

generation, society has created many initiatives to introduce computer programming

to young students. These initiatives range from classes in a formal academic setting

to informal, extracurricular sessions in after-school and summer camps. Even with

the increasing offer of these initiatives to expand the opportunities to learn computer

programming, the interest in computer programming remains low, especially among

populations underrepresented in computing.

This lack of interest could be impacted by stereotypical views of computer pro-

gramming as tedious and difficult to learn and the idea that programming is only for

those with a “geek” gene. Therefore, introducing students to a different side of com-

puter programming, such as its ability to make high-quality music in connection to

the use of culturally relevant pedagogy, may be an essential tool in changing students’

perceptions of this field.

To investigate this, this dissertation describes and evaluates my approach that

introduces the foundational concepts of computer programming using music. First, it

investigates prior work that has used music to teach programming. Next, it describes

my approach and curriculum design, which combines programming with hip-hop mu-

sic. Then, it analyzes my approach’s impact on attracting and engaging students

in several contexts. Finally, it demonstrates how pedagogical approaches commonly

used in computer science education can be adapted to this musical context without

losing effectiveness. The results indicate that my approach attracts, motivates, and

x

engages students in computer science, a promising step in the effort to broaden the

appeal of computer science to increase diversity.

xi

CHAPTER 1

INTRODUCTION

Computer programming is considered a crucial skill for future professionals, not only

for those who are interested in working in the area but also for those who look for

positions that are not directly related to computer programming or in the Computer

Science (CS) field, as many jobs will require basic knowledge of computer program-

ming [1]. Nowadays, thousands of positions are open for professionals skilled in com-

puter programming, with the forecast of thousands more to be created in the short

term, increasing the already existing shortage of professionals for this field [2].

To train the next generation of professionals in these skills, more and more ini-

tiatives are being created to teach computer programming to young students. These

initiatives include specific classes in a high school curriculum, summer camps, com-

munity coding events, and guided online curricula. Even with the increased offering

of computer programming courses, interest remains low, especially among popula-

tions underrepresented in computing [3, 4]. This lack of interest could be impacted

by stereotypical views of computer programming as boring or difficult to learn [5,

6]. Students may also believe that programming is only for socially awkward people

with no other interests but technology [7]. Combating these perceptions is essential,

as they lead many students to ignore or avoid opportunities to engage with this vital

skill.

Introducing students to a different side of computer programming, such as its

ability to make high-quality music, may be an essential tool in changing students’ per-

ceptions of this field. In particular, middle school is the ideal time to try and change

1

these perceptions; in middle school, students typically undergo intense physical and

physiological development, which is crucial to their intellectual and behavioral devel-

opment [8]. For instance, it has been shown that active participation in out-of-school

time during this period in a child’s life predicts subsequent values and self-conception

of their abilities [9]. If we can reach students during this time, we may be able to

build the confidence and competence necessary to promote a lifelong engagement with

computer programming, even if it is not their primary occupation.

One promising approach to engaging all students in CS is using culturally rele-

vant pedagogy [10, 11]. Another practical approach is to leverage students’ existing

interests, such as music [12]. Code Beats, an innovative and novel approach where

this dissertation is situated, uses both, leveraging hip-hop music to capture the imag-

inations of a wide array of urban youth of color from diverse places of origin [13].

The use of hip-hop aims to overcome structural and social barriers to access to CS

classes. The Code Beats approach uses a vernacular culture, incorporating a musical

genre that is part of our targeted audience, aiming to, in the first step, attract the

students’ attention and, in the second step, keep them motivated to learn computer

programming using something that is from their interest.

My thesis statement is: introducing students to computer programming using

high-quality, culturally relevant music, will improve students’ perceptions of the com-

puter science field. To investigate this thesis, the primary goal was to design and

analyze a curriculum that uses hip-hop beats to teach the foundational concepts of

computer programming to attract and engage students in the CS field. I started

focusing on students currently in middle school, understanding that they are in an

essential phase of their lives to make choices for their future. Then, the range of the

population increased, experimenting with the approach with adult learners, who, in

the scope of this dissertation, are those adults looking to improve their skills through

2

education, either to improve their current job or to seek better opportunities.

Additionally, the approach was tested with a population without previous music

knowledge. Finally, although the musical genre choice was motivated to broaden

the diversity in computer science, the participants are not limited to those from

underrepresented groups in CS.

1.1 Research Goals

Analyze the current use of music to teach computer programming. The

use of music to teach programming has increased in the past years as an alternative

to attract and engage students in CS. As a result, multiple platforms were explicitly

created to apply the computer programming constructs in the music composing pro-

cess. My work does not intend to create a new platform, as I understand it is possible

to use the existing platforms to achieve the primary research goal. Nevertheless, un-

derstanding the platforms, their strengths, and their weakness is crucial for this work

to choose the platform that best fits this research’s goal. Understanding the existing

curricula is also essential to building and validating my approach.

To accomplish this goal, I searched for, analyzed, and experimented with the

computer programming platforms that have published research results that use music

to attract and engage students toward CS. This investigation led to the choice of the

platforms to create and apply the approach.

Design a curriculum that integrates computer programming concepts with

music. The curriculum is an essential piece of every kind of instruction. It must

guarantee that the main topics are addressed in the proper order and with sufficient

depth. When using a novel approach to teach computer programming, it is vital to

understand how to build the connections between the computer programming con-

structs and the domain topic, music, in this work’s scope. Using a natural connection

3

between topics is extremely important to keep it engaging and not force unrelated

concepts.

To put my approach into practice, I designed a curriculum with the foundational

computer programming concepts mapped to the musical concepts, mainly from hip-

hop.

Analyze the impact of this approach on student engagement in computer

science. The approach presented in this dissertation does not intend to teach the

students all the foundational computer programming concepts deeply. Instead, its

main objective is to attract and engage students in computer science. Thus, assessing

this approach regarding engagement and motivation in the CS field is necessary to

evaluate its effectiveness.

To analyze the impact of this approach, serving as a basis for the community, I

assessed the students’ impressions and knowledge before, during, and after exposure

to Code Beats approach, using surveys, focus groups, and students’ artifacts.

Investigate the use of educational techniques to facilitate the students’

experience. Naturally, the first contact that someone has with something new can

create friction, and if this friction is not managed, it can develop problems such as a

lack of confidence and self-created barriers. Understanding the pain points of students

during the activities is essential to create ways to overcome those problems.

Aiming for a better experience for students during the activities, I analyzed how

students struggled during music-related programming activities, identifying common

issues. Once identified, I applied education techniques, such as scaffolding and imme-

diate feedback, to reduce the friction of learning and improve students’ experience.

4

1.2 Dissertation Structure

This dissertation is organized as follows: Chapter 2 provides a background and

literature review of the dissertation topics; Chapter 3 explains my approach, Code

Beats, the software tooling choice, the curriculum, and the camp format; Chapter 4

presents first use of Code Beats, reporting the results of the first camp; Chapter 5

reports using Code Beats with adult learners; Chapter 6 reports using this approach

with a population without previous experience with music; Chapter 7 presents the

use of different scaffold-based activity types to measure the difficulty and correctness

across the selected activity types; Chapter 8 reports the use of a domain-specific,

immediate feedback system to guide students during the activities-solving process;

Finally, Chapter 9 discusses the overall results and conclusions and future work.

5

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

This chapter presents the literature, providing background to situate the work. It

starts by stating the current barriers to broadening participation in computer science.

Next, it discusses the related work that uses music to teach coding. Then, it situates

the work in the use of culturally relevant pedagogy. Finally, it ends with a discussion

about the existing gaps in current work.

2.1 Disparities in Access to Computer Science

Research examining race, ethnicity, and gender disparities in access, preparation,

and persistence in the CS field has shown barriers that are convergent [3]. These

barriers can be divided into two categories which we briefly describe and then discuss

in detail:

Structural barriers: disparities in access to rigorous computer science work;

lack of engaging and relevant computing curriculum; lack of diverse role models and

peer networks in computer science; and implicit bias affecting recruitment, hiring,

and promotion in technology workplaces.

Social and psychological barriers: misconceptions about the field of comput-

ing; perceptions of computer science as lacking cultural and social relevance; stereo-

type threat associated with being a member of a marginalized group; and stereotypical

cues in the classroom and workplace environment.

6

2.1.1 Structural Barriers

The disparity by race and ethnicity is evident; the overall population in the 2020

U.S. Census [14] shows that the general population is formed by 57.8% of White,

12.1% of Black or African-American, and 18.7% of Hispanic or Latino. Simultane-

ously, according to the labor force characteristics report [15], the population employed

in computer and mathematical occupations (total of 5,352,000 positions) is repre-

sented by 65.7% of White, 8.7% of Black or African-American, and 7.8% of Hispanic

or Latino.

One way to increase diversity in CS is through formal education, such as higher

education courses. Advanced Placement tests, like AP Computer Science A 1 and AP

Computer Science Principles 2, offer college credits equivalency for those that take

the exam and perform above a certain threshold. Offering regular CS classes in High

Schools encourages students to take the AP Computer Science A or AP Computer

Science Principles tests.

Currently, according to the 2020 State of Computer Science Education report [16],

only 47% of High Schools in the U.S. offer CS courses for their students. The overall

demographics of high school students are formed by 47% white students, 15% African-

American students, and 27% of Hispanic or Latino students. If one examines only

the high schools where AP CS is being taught, the demographics are quite similar:

48% white, 13% African-American, and 26% of Hispanic or Latino.

The problem is in the number of students taking the AP CS exams. The de-

mographic is formed by: 44% of white students, 6% of African-American students,

and 17% of Hispanic or Latino students [16]. It shows that African-Americans and

1https://apstudents.collegeboard.org/courses/ap-computer-science-a
2https://apcentral.collegeboard.org/courses/

ap-computer-science-principles

7

https://apstudents.collegeboard.org/courses/ap-computer-science-a
https://apcentral.collegeboard.org/courses/ap-computer-science-principles
https://apcentral.collegeboard.org/courses/ap-computer-science-principles

Hispanic or Latino students are less likely to take the AP computer science exam,

even when they attend a school that offers CS courses.

Noteworthy, the proportion of students who take the AP CS exams from each

demographic has increased. For instance, the percentage of African-American stu-

dents who took the AP CS exam in 2014 was 3.9%, growing to 5.7% in 2019. For the

Hispanic or Latino population, the difference is higher. In 2014, the percentage was

8.8%, and in 2019 it increased to 16.6%. This increment in participation coincides

with the introduction of AP Computer Science Principles [16], which rather than

the AP Computer Science A, introduces students to the foundational concepts of the

field.

Each state has its policies to broaden students’ participation in CS, adopt stan-

dards, and create state plans at the state level. However, it is also true that each state

has its demographics. For instance, the overall high school student demographics of

the Commonwealth of Virginia is formed by 48% of white students, 22% of African-

American students, and 16% of Hispanic or Latino students. The demographics in

high schools that offer CS courses are also similar: 49% of white students, 19% of

African-American students, and 17% of Hispanic or Latino students [16].

Statewide, as nationwide, the disparity can be observed in the number of students

taking the AP CS exams, where the demographics are formed by: 44% of white stu-

dents, 8% of African-American students, and 8% of Hispanic or Latino students [16].

So, in the Commonwealth of Virginia, African-American and Hispanic or Latino stu-

dents are each three times less likely than their White peers to take an AP CS exam

when they attend a school that offers it.

8

� The proportion of the population studying or employed in CS differs from

the overall population in the U.S., with African-Americans and Hispanics

or Latinos being underrepresented in the area.

2.1.2 Perceptions of Programming

In addition to offering computer programming classes in high schools, several

initiatives use informal learning environments to teach foundational skills in com-

puter programming. For example, they go from unplugged activities [17] to the use

of robots [18] to the use of block-based environments [19, 20, 21] and video-games

development [22].

Even with this variety of ways to introduce computer programming and CS con-

cepts, some stereotypes of people studying or working with CS persist. For instance,

some people think that code is too difficult to learn, that coding is boring, and that

it is a solitary occupation that does not generalize to other fields of interest [1]. Fur-

thermore, some people think that to study or work in CS, one must have a natural

computing ability, creating beliefs of a requirement of a “geek gene” [23]. Moreover,

some characteristics were identified as a requirement to “fitting in CS”: singularly

focused on CS; asocial; competitive; and male [24]. These stereotypes can create

negative attitudes toward CS, discouraging individuals from learning computer pro-

gramming [1] or just presenting CS as an unappealing field [23].

Those “stereotypes” of computer scientists are pervasive, and the system of in-

equality in CS appears to rely on stereotypes about the practitioners [23]. However,

it is possible to refer to the term “stereotypes” as “narratives”. They are connected

but conceptually distinct. The term “narratives” captures the notion that beliefs

about computing and computer scientists are communicated by and between people

and therefore can and do change [23]. Changing the narratives makes it possible to

9

change the thoughts about computing and computer scientists.

In addition to the stereotypes about one who studies or works in the CS field,

learning or working with computer programming is perceived as difficult. Historically,

learning to program is perceived as difficult for many people. Furthermore, introduc-

tory programming courses typically have high student dropout and failure rates [25].

The claim that introductory programming courses have high dropout and failure rates

has been one of the main practical concerns for computing teachers and computing

education researchers [25]. However, studies that report those rates fail to compare

with other courses in the same institution or across different institutions [25].

This narrative created by the CS stereotype and the difficulty of computer pro-

gramming is one of the reasons for the disparities by race, ethnicity, and gender in

access, preparation, and persistence in CS courses and workforce still exists, with

women, African-Americans, and Latinos participating at rates lower than their rep-

resentation in the population [3].

� A stereotype about computer science, mainly computer programming, still

exists, creating a belief that it is boring and difficult to learn, requiring a

natural ability to succeed.

2.2 Using Music to Teach Coding

One way to attack the barriers mentioned above is by using different ways to

present and teach computer coding. Among these ways that is starting to show

promise is using music to teach coding. Several groups have used music intending to

broaden participation in CS, motivating students to learn to program. This section

will first present the platforms and their main features. And next, the most relevant

works that use music to teach coding, along with their main characteristics.

10

2.2.1 Platforms to Teach Coding using Music

EarSketch [26], a programming environment for remixing music developed at

Georgia Tech, has been shown to increase engagement for all, especially for both

females and racial minorities. The EarSketch approach “..focuses on the level of beats,

loops, and effects more than individual notes, enabling students with no background

in music theory to begin creating ..music immediately, focusing on higher-level musical

concepts such as ..mixing.” [26]. That is, EarSketch emphasizes immediacy.

While EarSketch favors immediacy, other platforms emphasize depth. For ex-

ample, JythonMusic [12] allows users to generate individual notes or chords instead

of just mixing existing audio files. However, JythonMusic has been used in the con-

text of a first-year university music appreciation course at the College of Charleston,

where many genres of music are discussed, and a deep knowledge of music theory is

required by its current curriculum [12].

Sonic Pi [27] is a coding platform initially created to run on a Raspberry Pi3

that had as its objective “...create a minimal domain-specific language (DSL) that

would a) provide a musically engaging experience for students; and b) demonstrate

a reasonably wide range of basic computational concepts.”[27]. Sonic Pi works as a

text-based IDE and allows the use of individual notes and additional samples, such

as a hi-hat or a guitar.

TunePad [28] is another approach to engaging students via music mixing, created

in a computational notebook style. Its mix of visualization and computation, focusing

on usability and ease of use, makes it well-suited for a broader audience. Using

TunePad, it is also possible to use individual notes to “play” pitched instruments

or use a set of drum sounds. Furthermore, in TunePad, one can write its code and

3https://www.raspberrypi.org/

11

https://www.raspberrypi.org/

see the distribution of its music in an instrument timeline. Thus, in this dissertation

research, we chose TunePad as the platform.

2.2.2 Experiments Using Music to Teach Coding

Besides the works that propose platforms that integrate coding with music, some

researchers also compare students’ engagement, motivation, future in CS, and learning

when using these environments. In some cases, the paper presenting the platform

also presents the initial results. For instance, the paper that presented EarSketch [26]

also reported its curriculum’s first idea and results. The curriculum was designed

for use in a five-day summer workshop setting and was based on the CS principle

topics within the context of loop-based composition, targeting high school students.

The results from this initial experiment suggest that students’ attitudes positively

and statistically increased in “Computing Confidence”, “Motivation to Succeed in

Computing” and “Creativity”.

Another paper briefly describes a curriculum, where music technology and com-

puting concepts were taught together, always linking new computational concepts to

musical applications. The results of a pilot experiment with high school students sug-

gest that EarSketch’s music and computing learning environment effectively teaches

introductory computing concepts in a formal academic course, also improving stu-

dents’ attitudes toward CS [29]. Finally, another experiment using EarSketch with

high school participants, where the curriculum focuses on broader views of CS, such as

computational thinking, creativity, abstraction, programming, and the Internet, pro-

vided evidence showing significant increases in intent to persist and content knowledge

in computing [30].

The paper introducing Sonic Pi also reports preliminary findings of a pilot study.

This study focused on middle school students and had five one-hour lessons. The

12

paper did not provide more details about the curriculum and lessons and did not

use surveys or other instruments to measure students’ perceptions or knowledge.

However, through the researcher’s observations, the paper’s findings show that all

students successfully acquired basic competence in programming [27].

It is also possible to find experiments performed by researchers different from

those that proposed the platforms. For instance, two experiments using Sonic Pi

conducted by researchers unrelated to the Sonic Pi platform proposal are reported

next. The first report results from workshops held for high school students [31].

This paper does not report curriculum or activities details but claims that basic

programming concepts were introduced and successfully applied by the participants.

The second reports an experiment with middle school students, reporting growth in

programming attitudes [32]. This work reports activity plans and concepts taught,

but does not use a specific music genre.

The results of preliminary tests using TunePad with middle school students are

included in the paper where TunePad was first described [28]. It reports that students

found TunePad engaging, making it a potential platform for introducing learners to

computational thinking skills. In another experiment with middle school students,

where TunePad was part of more extensive programmatic activities, such as learning

about the history of hip-hop, making and tinkering activities, and work of “real” sci-

entists, participants showed significant attitudinal gains in interest, self-confidence,

enjoyment, and intention to persist in CS [33]. Finally, there is a report on using

EarSketch and TunePad at the same camp, where findings suggest that using dif-

ferent approaches may help engage students with varying levels of music and coding

experience [34].

13

� Using music to teach coding is being shown as promising, with exciting

results in attracting and engaging students in computer programming.

2.3 Culturally Relevant Pedagogy

Culturally responsive computing in education is a relatively new approach with

the goal of potentially increasing student interest from underrepresented ethnic groups [35].

Culturally responsive education is not limited to raising test scores in some subjects.

Instead, it can improve the inclusive scope to better serve a multicultural society’s

needs, inclusively inspiring a new generation of computing professionals.

In terms of culturally relevant education, six themes or strategies are commonly

implemented in K-12 [36]:

Sociopolitical consciousness raising : defined as a practice in computing that

allows students to reflect and build awareness of current social-political issues in the

world.

Heritage culture through artifacts : described as a culture that is transferred

through ancestral roots.

Vernacular culture: encompasses the local social environment of participants,

incorporating contemporary cultural practices relevant to the participants.

Lived experiences : involves the recognition of students’ lived experiences, con-

necting to the participants’ real-world context and the participants’ self-identity.

Community connections : uses a strategy of building community connections in-

volving community members, students, and teachers as brokers of cultural knowledge

in computer programming.

Personalization: that focuses on product customization in student-centered projects.

Unlike the heritage culture, vernacular culture corresponds to domains such as

rap music and a wide variety of other popular activities that children from underrep-

14

resented groups feel some sense of ownership [35].

� Incorporating contemporary cultural practices relevant to participants can

increase their interest in a specific topic, such as computer science.

2.4 Discussion

The CS field is an important field in terms of open positions to be filled, but it is

a field that lacks diversity. One reason for that is the structural, social, and psycho-

logical barriers. These complex and interconnected barriers create and perpetuate

significant disparities in the computer science field where, even with all initiatives

already in place, there is still work to be done.

Informal learning in CS is a fundamental approach to attracting students to

the field and letting them explore the opportunities. Unfortunately, most informal

learning opportunities attract students already interested in CS. Therefore, narratives

that stereotype CS people may be problematic in attracting one not yet interested in

this area.

In a more formal environment, such as in high schools, CS courses are offered, but

the diversity of students taking these courses is still a problem. One may argue that

if the student does not experience computer programming, how would the student

opt to choose a year-long class about computer programming? It may be a broad

impact because if one does not see computer programming as something doable and

enjoyable during middle school, one may not choose CS as an elective for high school.

The use of culturally relevant pedagogy in CS education sounds promising in

modifying the narrative about CS and, at least, attracting students that are not yet

interested in CS to “give it a chance”. One way to do that is to use vernacular culture,

incorporating contemporary cultural practices relevant to the participants, such as

15

hip-hop for African-Americans and Hispanic or Latino Americans.

Music programming has shown promise, with exciting results in improving the

aptitudes towards CS and being effective in teaching the foundational concepts of

computer programming. However, most studies presented do not fully integrate the

content with a specific musical genre to attract the population underrepresented in

the field. Furthermore, the studies are focused on a specific population (i.e., high

school students), not being tested with multiple populations, with variations of age,

culture, prior coding experience, and prior music experience.

2.4.1 Dissertation Contributions

This dissertation contributes to the CS community by presenting an approach

that incorporates culturally relevant aspects to teach computer programming using

music. It aims to broaden CS education by attracting those who the historically

traditional approaches would not attract.

Additionally, it contributes to the growing body of studies that use music to

teach coding testing it with different populations, such as adult learners, in different

cultures and contexts, and people without a music background. Finally, it describes

and tests the use of educational techniques, such as scaffolding and task feedback in

the context of music, providing guidance on how to use it and what works better.

16

CHAPTER 3

THE CODE BEATS APPROACH

This dissertation presents Code Beats, an innovative approach that uses music, specif-

ically hip-hop, to teach the foundational computer programming concepts while cre-

ating beats. Code Beats was proposed by a group of researchers that I worked with,

to develop new ways of broadening the participation of underrepresented populations

in CS and attracting more and more people to this field. For that, actual hip-hop

songs are used, transcribed to a coding platform, as background for the activities,

using them as a means to complete a coding task that connects to a musical concept.

This chapter presents the computer programming concepts taught, the motivation

for the genre choice, the software tooling used in my approach, and the camp format,

with its segments and activities.

3.1 Curriculum: Music + Computer Science Concepts

With the Code Beats curriculum, it is possible to teach various computer pro-

gramming concepts, including sequencing, variables, constants, functions and param-

eters, lists, repetitions, modularization, and parallelism. This list covers almost all

concepts from Units 4, 5, and 7 in the code.org CS Principles Curriculum Guide [37].

The main point of using music as a background for teaching computer pro-

gramming is the relation that both fields have, allowing for smoothly connecting the

concepts in an almost natural way, as follows:

Sequencing: This is one of the first concepts introduced in our class. It might be

natural for those more experienced in computer programming. Still, it is imperative

17

to teach beginners how a computer will read and perform the commands, line-by-

line, in order, from top to bottom, and, consequently, how it respects the order that

a program is written. This concept can be naturally connected with music. Making

an analogy, a musician will follow a sequence of musical notes to compose or play a

piece of music.

For instance, at Listing 3.1, we have a code extract from a melody, where the

order or musical notes, represented by computer commands, matters. So, suppose we

change the order of any of the commands (function playNote) or change the order of

the parameters (MIDI number). In that case, the melody will not be consistent with

the original song playing in the background.

Listing 3.1: Code Example - Sequencing

1 playNote (49)
2 playNote (56)
3 playNote (57)
4 playNote (56)

Variables and constants: The concept of variables can be hard to teach, mainly if

you cannot link it to any concrete example. Our approach can almost naturally solve

this problem by giving a name (musical note) to a MIDI number. One can say that

it can be characterized as a constant, and in essence, it is, but it can be transformed

into a variable if we use the same musical note and change the octave, for instance,

increasing the current MIDI number by 12. One natural aspect related to music is

the name of musical notes, where each pitch receives a name, in this case, a musical

note name.

At Listing 3.2, we have one example of the use of constants, where we have

the same melody from Listing 3.1 but now using the names of the musical notes as

parameters through the use of constants.

18

Listing 3.2: Code Example - Constants

1 Cs = 49
2 Gs = 56
3 A = 57
4
5 playNote (Cs)
6 playNote (Gs)
7 playNote (A)
8 playNote (Gs)

One example of using variables can be seen at Listing 3.3, where the musical note

“F” is used in two different octaves in this piece of code. Initially, its value is 53 (line

2), which is F in the 3rd octave, then it changes to 65 (line 14), adding 12, which is

F in the 4th octave, and later comes back to the 3rd octave (line 17), subtracting 12.

Listing 3.3: Code Example - Variables

1 Eb = 51
2 F = 53
3 G = 55
4 Ab = 56
5 C = 60
6 D = 62
7 vo l = 120
8 vo l2 = 75
9

10 playNote (Eb , beats = 0 , su s t a i n = 4 , v e l o c i t y = vol2)
11 playNote (C, beats = 0 , su s t a i n = 4 , v e l o c i t y = vol2)
12 playNote (G, beats = 2 , su s t a i n = 4 , v e l o c i t y = vol2)
13 playNote (D, beats = 1 , v e l o c i t y = vo l)
14 F = F + 12
15 playNote (F , beats = 1 , v e l o c i t y = vo l)
16
17 F = F − 12
18 playNote (F , beats = 0 , su s t a i n = 4 , v e l o c i t y = vol2)
19 playNote (Ab, beats = 0 , su s t a i n = 4 , v e l o c i t y = vol2)
20 playNote (C, beats = 2 , su s t a i n = 4 , v e l o c i t y = vol2)
21 playNote (D, beats = 2 , v e l o c i t y = vo l)

Functions Calls and Parameters: As the most important commands used in our

class are functions, the parameter is a crucial concept to teach. For instance, we

19

use parameters to play a specific musical note in functions play and playNote where

the musical note (a MIDI number or a constant) works as a value for a parameter.

Additionally, we can control other behaviors with parameters, such as how long a

note will be played. This is a perfect example of the use of parameters in music,

where the musician must read this “parameter” and execute the “function” (playing

an instrument) for that duration of time.

At Listing 3.4, we have examples of functions rest and playNote and their pa-

rameters. At first, we use only the parameters beats that control for how long the

pause will be. At second, we use two parameters, note and beats. The first can receive

a number representing a pitch value or a drum sound, and the second one controls

how long the sound will play.

Additional parameters can also be used in function playNote. For instance, at

Listing 3.3, lines 10 to 13, we have the parameters sustain and velocity. The first

allows the note to play for time longer than the value used for parameter beats. The

second one says how loud the note will sound.

Listing 3.4: Code Example - Functions and Parameters

1 c lap = 58
2
3 r e s t (2)
4 playNote (clap , beats = 1)

Lists: Lists (data structures) can be seen as a complicated concept to teach to

beginners in computer programming. Even the concepts of constant and variable may

be difficult, so imagine explaining a constant where you can store and use more than

one value simultaneously. Linking to a concrete example makes explaining abstract

constructs, such as data structures, easier to explain. In our approach, we are using

lists and limiting the use of a list to store multiple values, use all values simultaneously,

and use each one individually. Connecting lists with music makes teaching it a little

20

easier because we use the musical concept of “chords” where a group of harmonic

musical notes is played simultaneously, and “scale” where you can store the musical

notes from a musical scale.

At Listing 3.5, we have one example of the use of lists where we are creating

lists - chords (lines 4, 8, and 12) with multiple variables - musical notes. So when we

“play” a chord (lines 14 to 18), we are “playing” all musical notes simultaneously.

Listing 3.5: Code Example - Lists

1 Ab = 56
2 Db = 61
3 E = 64
4 Db min = [Db, E, Ab]
5
6 A = 57
7 Gb = 54
8 Gb min = [Gb, A, Db]
9

10 Eb = 63
11 B = 59
12 Ab min = [Ab, B, Eb]
13
14 playNote (Db min , beats = 3)
15 playNote (Gb min , beats = 5)
16 playNote (Db min , beats = 3)
17 playNote (Gb min , beats = 3)
18 playNote (Ab min , beats = 2)

Repetitions: Repeating a command or a group of commands is a very frequent task

when we write “regular” programs (e.g., visit elements in a list). In our approach, we

are teaching two different types of repetition; one is numerically controlled (i.e., for

i in range(0, 4):), and another one is linked to a list (i.e., for n in notes:). In fact,

we have automatic repetitions for both tools that we used (Sonic Pi and TunePad).

With Sonic Pi the commands must be written inside a live loop, which means that

this specific group of commands will repeat until the user asks to stop the program.

In TunePad each track is structured to repeat for (at least) 4 beats when we use

21

individual tracks. Relating to music, we can observe repetitions in a drum sequence

that repeats a hi-hat several times, and also a melody that repeats a group of notes

during the song.

For instance, at Listing 3.6, we have a hi-hat track that is playing the hi-hat

eight times, controlled by a numeric repetition (line 3), each time for 0.5 beats (line

4).

Listing 3.6: Code Example - Repetitions - Numeric controlled

1 h i ha t = 4
2
3 f o r i in range (0 , 8) :
4 playNote (h i hat , beats=0 .5)

At Listing 3.7, we are playing a melody using the order of the notes (line 7)

retrieved from a list (line 5). As all the notes are being played for the same amount

of time, it is possible to use a repetition controlled by lists.

Listing 3.7: Code Example - Repetitions with list

1 D = 74
2 C = 72
3 B = 71
4
5 notes = [D, C, B, B]
6
7 f o r note in notes :
8 playNote (note , beats = 2)

Modularization: This is another concept that might be hard to teach to beginners,

mainly when using small programs. Indeed, modularization makes sense when we use

a relatively large program. In our approach, we can teach modularization using each

“instrument” in a different module in our program. It naturally links with music,

where each instrument is one part of the song.

For instance, in Figure 1, we have a completely transcribed beat that is divided

22

into six modules. With that, we can avoid the complexity, directing the students’

focus on one specific track that contains the activity to be done.

Fig. 1.: Code Example - Modularization

Parallelism: Usually, parallelism is not taught in an introductory computer pro-

gramming class due to its complexity, even for those more familiar with computer

programming and CS. But when we talk about music and create music with code, it

is almost natural to speak of parallelism, where all the tracks can be played simulta-

neously to achieve one task, producing a complete song.

In Figure 2, we have one example of parallelism, where all the tracks are set

to execute (play) simultaneously. So, each track will complete one part of the song,

forming, at last, a complete beat.

One additional concept was present in the first version of our curriculum is con-

23

Fig. 2.: Example - Parallelism

ditionals. This concept was taught in the camp reported in Chapter 4 but was later

removed from our curriculum. This is indeed a foundational concept in computer

programming. Still, as the main objective of Code Beats is to engage students in com-

puter programming and not teach all the concepts extensively, we opted to remove

concepts that are not naturally connected with music, as is the case of conditionals.

3.2 Genre Choice

One way to instigate interest and motivate one to learn something is to use a

topic present in their life. In line with that, one promising approach to engaging

all students in CS is using culturally relevant pedagogy [10, 11]. Culturally relevant

pedagogy “validates, facilitates, liberates, and empowers ethnically diverse students

by cultivating cultural integrity, individual ability, and academic success” [10].

At Code Beats, hip-hop was chosen as the musical genre to use to teach com-

puter programming for two main reasons: (1) hip-hop is one of the most popu-

lar musical genres, using a vernacular culture, especially for African-Americans and

Latino-Americans who are underrepresented in computer science; (2) how a hip-hop

beat is created is well suited to teaching computational concepts. Because its creation

does not require extensive harmonic knowledge (e.g., Next Episode, from Dr. Dre,

24

has only one chord), focusing instead on complex rhythms tends to support the more

technical concepts present in computational sciences.

3.3 Software Tooling

To put the Code Beats approach into practice, it was necessary to select a music-

coding platform that was possible to transcribe the songs in a way that they were

recognizable. For this, initially, Sonic Pi [27, 38] was chosen, which was used in

the experiment reported in Chapter 4. Then, we moved to TunePad [28, 39] used

in its first version (TunePad.live) 1, in the experiment reported in Chapter 5 and in

Chapter 7, and, in its upgraded version (TunePad.com) 2, in the experiments reported

in Chapter 6 and in Chapter 8.

Sonic Pi was used in the first camp, but it was decided to look for another

platform. The most critical point that led to investigating a different platform to

implement Code Beats is that Sonic Pi must be downloaded and installed as regular

software, requiring a basic knowledge of CS. Additionally, until the time the decision

to switch was made, it was not possible to install Sonic Pi on Chromebooks. This

computing platform is widely used by the Code Beats target audience.

The TunePad [28, 39] is a web tool that uses a computational notebook approach,

organizing tracks as instruments, each with its code segment, that can be played

individually or simultaneously using a timeline. TunePad uses Python3 to create the

beats.

As shown in Figure 3, to play notes, students write the commands (1), such as

1https://tunepad.live/
2https://tunepad.com/
3https://www.python.org/

25

https://tunepad.live/
https://tunepad.com/
https://www.python.org/

Fig. 3.: Code Example in TunePad.com

command playNote using a musical note (initially as a MIDI 4 number) as the main

parameter. When using a synthesizer, it is possible to choose the instrument (2) that

will play in that track. The commands (musical notes and intervals) specified for that

segment are visually created (3), showing what will play.

The way that TunePad is built, using a visual style mixed with a textual part,

allows the user to hear a musical note or an instrument before using it, by just clicking

on it (4). It makes it easier, especially for those not musically trained, to choose a

musical note or an instrument that will be played without writing and executing the

actual code.

Similarly, as shown in Figure 4, students write the commands (1) informing what

4Musical Instrument Digital Interface

26

Fig. 4.: Code Example in TunePad.com - Drums

will be played with percussion instruments. In addition, it is possible to select a group

of percussion instruments (2), and it is possible to see the track distribution (3) with

instruments and intervals. Finally, it is possible to click and hear each instrument

individually (4) before using it in the code. Additionally, TunePad is a web tool,

making it easier to share projects through the platform without the necessity to save

and upload computer files.

3.4 Camp Format

Code Beats was initially planned to be held in person, but due to the restrictions

imposed by the pandemic of COVID-19, its format was re-designed to a virtual format.

The camps in which the results are reported in Chapter 4, Chapter 5, and Chapter 7

were all virtual.

27

With the evolution of the pandemic and the ease of restrictions, it was possible to

hold two camps in person. The results of the experiments performed in those camps

are reported in Chapter 6 and Chapter 8.

The camp whose results are reported in Chapter 4 had 15 classes. All other

camps had 10 classes. Their duration and division are reported in their respective

chapters. Subsection 3.4.1 reports the contents and their sequence. The first camp

was a first exploration, so it was possible to evaluate the content and make some

changes, improving the curriculum for the subsequent editions. One of the changes

was the duration of the camp. Another difference is in the order in which the contents

are taught.

Every class contained some repetitive segments. These segments are reported on

Subsection 3.4.2. Additionally, the hands-on activities for the students are described

in Section 3.5. At the end of each camp, a beat contest was held, so the students

could demonstrate what they had learned.

The pedagogic approach used at Code Beats is based on the Use-Modify-Create

framework [40]. Throughout the camp, the students receive actual hip-hop songs

transcribed to Sonic Pi or TunePad and are instructed to modify one specific track

(Modify) to do the activity. However, they are free to explore and use the rest of the

project (Use). At the after-class activity and mainly in the camp project, students

are instigated to explore their creativity, creating their beats (Create)

3.4.1 Curriculum Distribution

After the first camp, analyzing the main takeaways, the curriculum was improved

for the next edition of Code Beats :

Camp duration: as four days of the first version were used for revision of the content

and preparation for the contest, it was decided to decrease the number of classes to

28

10, offering the help differently, with after-class help sessions.

Conditionals: after the first experience, it was decided to remove this concept from

our curriculum. The main reason is that conditionals are one concept not naturally

connected with music. As one of the points of using music as the background is

naturally connecting the concepts, it was decided to remove what is not strongly

related.

Lists before Repetitions: in our curriculum review, the order in which lists and

repetitions are taught was changed, introducing lists before repetitions. The main

reason for that is that repetitions controlled by lists are used, so it makes sense to

make this change in the sequencing of our curriculum. The final curriculum version

is presented in Table 1.

Day Programming Concept Music Concept

1 Sequencing Melody

2 Variables and Constants System of Musical Notes

3 Functions (with single parameter) Rhythm

4 Functions (with multiple parameters) Rhythm and Melody

5 Lists Chords

6 Repetitions (numeric controlled) Repetition

7 Repetitions (list iteration) Repetition

8 Repetitions (nested lists) Chord progression

9 Modularization Orchestration

10 Parallelism Orchestration

Table 1.: Curriculum Distribution - Final Version

3.4.2 Core Segments

Due to its initial format, Code Beats was designed to look like a TV show, with

some core segments that are “presented” in every class. For the virtual camps pre-

recorded videos of each section were used. In the in-person camps, the sections were

performed live by their respective instructor.

29

Coding with Doug: this segment, with its name referring to the author of this

dissertation, is where the concepts of computer programming are introduced in depth.

The computer programming concept is explained using the programming platform,

making the connection with music but without explaining the music concepts. Table 2

lists the videos used in this segment in the camp reported in Chapter 7.

Day Programming Concept Link to the Video

1 Sequencing https://youtu.be/UOzDgYKyZSo

2 Variables and Constants https://youtu.be/BvIGrhL7yuE

3 Functions (with single parameter) https://youtu.be/o50LR6Y8k0U

4 Functions (with multiple parameters) https://youtu.be/OFEZJklpNDQ

5 Lists https://youtu.be/Ln0Slpj9QoQ

6 Repetitions (numeric controlled) https://youtu.be/1GFd_daucl4

7 Repetitions (list iteration) https://youtu.be/RJgm74mRphk

8 Repetitions (nested lists) https://youtu.be/t6AkQQCLT90

9 Modularization https://youtu.be/BLrj1fraFrA

10 Parallelism https://youtu.be/r2wRWPYGHjM

Table 2.: Coding with Doug - Videos

Decoding the Beat: formerly named “Music Theory Minute”, this segment is where

the musical concepts are introduced. It is presented by a music professor who collab-

orates on the Code Beats project. Table 3 lists the videos used in this segment.

Day Music Concept Link to the Video

1 Melody https://youtu.be/Gkcr2ZlzOSc

2 System of Musical Notes https://youtu.be/bR8y1NOlMso

3 Rhythm https://youtu.be/QPdmVuduJZ0

4 Rhythm and Melody https://youtu.be/e8L84Mlk9wM

5 Chords https://youtu.be/XbVts685cWs

6 Repetition https://youtu.be/zqwbiSN9jiM

7 Repetition https://youtu.be/N2tPYHLyI44

8 Chord Progression https://youtu.be/wiBL8PTvp8s

9 Orchestration https://youtu.be/9Cwb_IoqbAk

Table 3.: Decoding the Beat - Videos

30

https://youtu.be/UOzDgYKyZSo
https://youtu.be/BvIGrhL7yuE
https://youtu.be/o50LR6Y8k0U
https://youtu.be/OFEZJklpNDQ
https://youtu.be/Ln0Slpj9QoQ
https://youtu.be/1GFd_daucl4
https://youtu.be/RJgm74mRphk
https://youtu.be/t6AkQQCLT90
https://youtu.be/BLrj1fraFrA
https://youtu.be/r2wRWPYGHjM
https://youtu.be/Gkcr2ZlzOSc
https://youtu.be/bR8y1NOlMso
https://youtu.be/QPdmVuduJZ0
https://youtu.be/e8L84Mlk9wM
https://youtu.be/XbVts685cWs
https://youtu.be/zqwbiSN9jiM
https://youtu.be/N2tPYHLyI44
https://youtu.be/wiBL8PTvp8s
https://youtu.be/9Cwb_IoqbAk

Vocabulary Definitions: at this segment, some of the common vocabulary used in

computer programming is presented in a different way, correlating it with everyday

situations. Table 4 lists the videos used in this segment.

Along with these core segments, some other sections (i.e., quizzes; complete the

lyrics) are present in every class to improve the engagement and students’ participa-

tion.

Day Programming Concept Link to the Video

1 Syntax https://youtu.be/kdE4qHrS57U

2 Variables and Constants https://youtu.be/cvob_LkpxT8

3 Functions https://youtu.be/JSX-KEua77c

4 Parameters https://youtu.be/hPDpNS7jlkk

5 Lists https://youtu.be/IVHVzbWhozc

6 Repetitions https://youtu.be/NAMR-CEpOms

7 Repetition with Range https://youtu.be/05fUZWJfk_w

8 Nested Repetitions https://youtu.be/H-No5rSTGnE

9 Modularization https://youtu.be/CIpPOVEusF0

10 Parallelism https://youtu.be/ZvWLs_2JvTY

Table 4.: Vocabulary Definitions - Videos

3.5 Activities

At Code Beats, students have an opportuniy to put their knowledge into practice

with hands-on activities in every class. There are two types of activities. One is

the short activity, designed to be solved in 5 minutes, with straightforward solutions

strongly connected to the class’s content. And the other one is the long activity, which

can be solved in 15 minutes or take longer for the most engaged students. The long

activity is more open-ended, allowing students to use their creativity more extensively.

In the virtual version of Code Beats, the short activities were solved during class time

and the long activity after class time. Both types were solved during class in the

in-person version of Code Beats.

31

https://youtu.be/kdE4qHrS57U
https://youtu.be/cvob_LkpxT8
https://youtu.be/JSX-KEua77c
https://youtu.be/hPDpNS7jlkk
https://youtu.be/IVHVzbWhozc
https://youtu.be/NAMR-CEpOms
https://youtu.be/05fUZWJfk_w
https://youtu.be/H-No5rSTGnE
https://youtu.be/CIpPOVEusF0
https://youtu.be/ZvWLs_2JvTY

The activities are planned to allow the students to code from the very first

activity. The way that the songs are coded in Sonic Pi and TunePad allows us to

have a realistic-sounding beat that can be changed by the student in a very specific

part, without changing the core of its original version, at the same time allowing them

to “see” their participation in that beat. Using this approach makes it possible to

keep the student’s attention on the concept they are learning in that class, increasing

the activities’ complexity in each class.

For example, in the first activity, students are asked to create a melody for a

song, guided by the right notes to use. As a result, they can create a melody that

matches the actual beat, which is purposely missing in the transcribed one.

Listing 3.8: Code Example 1 - Sonic Pi

l i v e l o o p : melody do
##################################
Create a melody by modifying the code below .
To match the background music , use the se notes :
Ab4, Bb4, Cb5, Db5, Eb5, Fb5, Gb5
To match the dominant chord , emphasize these notes :
Ab4, Cb5, Eb5
##################################
play : Eb5
s l e ep 1
play : Eb5
s l e ep 1
play : Eb5
s l e ep 1
play : Eb5
s l e ep 1
##################################

end

For instance, in Listing 3.8, there is one example in Sonic Pi where the students

would be asked to read the comments and modify the existing (single-note) melody,

which appears at the bottom. By altering the notes, playing the file, and listening to

the changes, they begin to understand the implications of their code.

32

The same with Listing 3.9, an example in TunePad, where the students are

asked to complete a melody by choosing the suggested MIDI numbers to match the

background beat. The examples above are extracted from an activity. Next, a com-

plete activity is detailed, first using TunePad.live and then adding details specifics to

TunePad.com.

Listing 3.9: Code Example 2 - TunePad

1 ”””
2 FIRST TRACK − MELODY
3 Complete the melody us ing command playNote and MIDI numbers 49 ,

56 and 57 .
4 Your melody should sum up to 4 or 8 beats where each command

playNote i s 1 bea t .
5 ”””
6
7 playNote (49)
8 playNote (56)

3.5.1 Example Activity in TunePad.live

Fig. 5.: In-Class Activity - Example - Instructions

First, in Figure 5, we have the activity instructions, the required steps to create

the student copy of the project, and the details about what is expected. This example

asks students to complete a list declaration and completes the command for with the

33

variable used in the command playNote. The song name, author name, and a link for

a song video are also included for students’ reference.

Fig. 6.: In-Class Activity - Example - Melody

After instructions, come the song’s tracks. The track where the student must do

the activity is the first track. As shown in Figure 6, this example is in the Melody

track.

First, the activity instructions are reinforced with more details (lines 2 to 7). Next

comes the actual code, where the student has to make the changes. In this example,

the student must complete the list declaration (line 14) with the already declared

constants in the order stated in the instructions (D, C, B, and B). Additionally, the

student must replace the question mark (line 16) with the variable that is being

used on the command playNote (line 17). With this activity, we expect to see if the

student understands how a list works and how a repetition with lists works, changing

the variable’s value at each iteration.

34

Next comes the additional tracks that form the complete song. The student does

not have to worry about these tracks but is free to explore and make changes. Each

track corresponds to one instrument. Looking at it individually, it appears to be

simple, and listing to a single track may not make sense, but it forms a complete and

recognizable song when all tracks are played together.

Fig. 7.: In-Class Activity - Example - Bass

In Figure 7, a bassline is shown where three different notes (lines 1 to 3) are used.

First comes a pattern that repeats three times (lines 6 to 11), lasting for two measures

(4 beats) that first plays the musical note B (line 7), rests for five beats (lines 8 to

10), and then plays the musical note C (line 11). Note that in this example, two

commands rest are used in sequence. That is to group the commands in a measure

(4 beats) in line with the musical concept. Next comes a measure that contains the

musical note B played for two beats (line 14) and an interval of two beats (line 15).

The last measure for this track is formed by musical note D played for three beats

35

(lines 17 and 18) and musical note C played for one beat (line 20).

Fig. 8.: In-Class Activity - Example - Drums (Hi-hat)

In Figure 8, a simple hi-hat track first plays the hi-hat five times during 0.5 beats

(lines 3 and 4). Then rests for 2.5 beats (lines 6 to 8) and finishes playing the hi-hat

four times during 0.5 beats (lines 9 and 10).

Fig. 9.: In-Class Activity - Example - Drums (Snare)

Next, in Figure 9, we have an additional drum track that plays a clap with some

intervals, creating a rhythm. The command playNote plays the constant clap for one

beat in lines 4, 6, 7, and 9. The command rest adds an interval of two beats on line

3 and an interval of 0.5 beats on lines 5 and 8.

36

Fig. 10.: In-Class Activity - Example - Drums (Kick)

Finally, Figure 10 shows the last drum track. It plays the drum kick in a pattern

three times (lines 4 to 9), adding up to six measures, playing the drum kick for two

beats (line 5), resting for five beats (lines 6 to 8), and then playing the drum kick for

one beat (line 9). Next, play the drum kick for two beats (line 12) and rests for two

beats (line 13). Finally, play the drum kick for one beat four times (lines 15 and 16).

In addition to playing each track individually, students can play all the tracks

simultaneously, reproducing the song similar to the actual beat on which the activity

was based. In Figure 11, there is the timeline for this example where the “Melody”

track starts playing in the first beat, and all the other tracks start playing in the 9th

beat (third measure).

In this example 5, students can explore all the concepts that they are learn-

ing during the camp, functions, parameters, and constants in all tracks, variables in

tracks that have repetitions, lists, and repetitions with lists in the “Melody” track,

5Link for the activity: https://tunepad.live/app/dropbook/53401

37

https://tunepad.live/app/dropbook/53401

Fig. 11.: In-Class Activity - Example - Timeline

numerically controlled repetition at the “Bass”, “Hi-Hat” and “Kick” tracks, modu-

larization as we are keeping the code in small parts and parallelism, playing all the

tracks at the same time.

3.5.2 Example Activity in TunePad.com

Fig. 12.: In-Class Activity - Example 2 - Instructions

Beyond the clear difference in the visual interface between TunePad.live and

38

TunePad.com and the engine behind the platform, which will not be discussed here,

we took advantage of the platform migration to improve Code Beats activities in

terms of instructions and objectives. With that in mind, only the parts that have

differences will be explained in this subsection and not the whole project 6.

To start, in Figure 12, we modified the instructions to have clearer instructions

and tips for doing the activities. Additionally, we reinforced that remixing the project

to create the student’s own copy is necessary.

With the platform upgrade, it is possible to embed videos. So, instead of having

only the link for the video that contains the original song, the video can be played

from the project. Additionally, as it is possible to observe in Figure 13 we added a

video with the expected result from the track that the student will work.

Fig. 13.: In-Class Activity - Example 2 - Videos

After experiments reported in Chapter 7 we decided to change the activities’

framework, not providing partial code to be changed or repaired. Rather, the activi-

6https://tunepad.com/project/38124

39

https://tunepad.com/project/38124

ties ask students to create their own code. In some cases, the activities are still with

the constants already declared. Figure 14 shows an example of an activity track the

students have to solve. First, we have the activity instructions (lines 2 to 9). Lines 8

and 9 exemplify the syntax to create repetition. Next are the constants declarations

(lines 12 to 14) with their corresponding MIDI numbers. Then the space to students

builds their own code.

Fig. 14.: In-Class Activity - Example 2 - Melody

3.5.3 List of Activities

Beyond the hands-on activities for the students, in each class, before students

start doing the activities, it is explained how to solve a similar problem using a

worked example. This worked example is similar to the short activity and gives

40

students guidance about how to solve the activities. All the worked examples, in-

class, and after-class activities using TunePad.live can be seen in Appendix A. All

the worked examples, short activities, and long activities using TunePad.com can be

seen in Appendix B.

41

CHAPTER 4

MEASURING ENGAGEMENT TOWARD

COMPUTER SCIENCE

Despite all the efforts to broaden the participation of underrepresented groups in CS,

a difference in the proportion of the overall population and the population studying

or employed in the field still exists, where groups such as African-Americans and His-

panics or Latinos are underrepresented in the area [3, 4]. As presented in Chapter 2,

this difference persists even in schools that formally offer opportunities for students

to take CS classes [16]. One reason is that the approaches that try to attract and

engage students use incentives that work with those who are already interested in

the field, such as robotics and video games, perpetuating the stereotype of CS as a

singularly focused activity [1].

One non-conventional way to teach code that seems to engage those not interested

in CS is using music to teach computer programming [12]. Furthermore, using the

musical genre that is part of the culture of populations underrepresented in CS, such

as African-Americans and Latinos, can enhance its potential [10].

I applied Code Beats in a pilot camp, with students that are in middle school, to

measure the effect on student engagement toward CS. In this pilot camp, described

in this chapter, I experimented with the first version of Code Beats curriculum, in a

three-week-long virtual camp using Sonic Pi. This experiment’s main objective was

to analyze our approach’s impact in terms of engagement toward CS.

This pilot edition of Code Beats program was organized as a three-week online

camp (note: due to COVID-19), with a one-hour class held each weekday. Classes

42

were streamed to students using the Twitch1 platform, where the students could inter-

act with each other using the platform’s chat. Students gave feedback to instructors

using the multiple choice, and open-ended questions presented during lectures using

the online presentation platform Mentimeter2, in addition to end-of-class interactive

quizzes and after-class help sessions. Each day students had an after-class program-

ming assignment to reinforce the knowledge about the content learned so far. The

students were strongly encouraged to upload their submissions each day, as assign-

ments were reviewed daily to track students’ progress.

4.1 Research Questions

The main purpose of this study was to determine whether using culturally rele-

vant music to teach computer programming to students in middle school would affect

their engagement and attitude toward Computer Science. In order to validate the

approach, we investigated two research questions:

RQ1: How does the use of hip hop in teaching coding affect the engagement

(i.e., enjoyment, confidence, belonging, intent to persist) of middle school students

towards CS?

RQ2: Does this graded scaffolding approach enables students to progress to the

Create phase of the Use-Modify-Create framework?

1https://www.twitch.tv/
2https://www.mentimeter.com/

43

https://www.twitch.tv/
https://www.mentimeter.com/

4.2 Methods

4.2.1 Participant Demographics

Because the camp was conducted online, recruiting was conducted via social

media, with students registering by purchasing a one-month channel subscription

($25) on Twitch. Over the course of the three weeks, an average of 45 students

attended the Code Beats camp. From this group, 31 students answered the pre and

post-survey and had IRB parental consent. From this group, 17 students had no

previous exposure to Code Beats, and so these 17 students are the only students

included in the questionnaire results. This population was, on average, 12 years old

(min: 10 - max: 14), and was 70.6% male and 29.4% female. 41.2% were self-declared

minorities, and 23.5% were Black. 64.7% of the students declared that they knew how

to read music, and 41.2% declared that they had previously taken a programming

class.

4.2.2 Data Collection

The primary way we measured students’ perception of Computer Science was by

asking them to answer a survey at the beginning of the first day of class and at the

beginning of the last day of class. The survey included 19 questions answered via

a Likert scale, from 1 (Strongly Disagree) to 5 (Strongly Agree). During the class,

students also provided live feedback via Mentimeter, a crowd interaction tool. To

provide qualitative support for our quantitative data, we performed an open coding

process on these written responses, grouping them by theme.

At the end of each day of class, the students were asked to do an activity, designed

to take 15 minutes to complete. They were encouraged (not required) to submit their

daily activity from which a subset was used to provide constructive feedback during

44

the next day’s class. On the last day of camp, we conducted a beat contest, where each

student could submit an original hip-hop beat created with what they had learned

during the camp. They were informed about the contest on the first day of camp.

4.2.3 Data Analysis

To compute the statistical significance of the pre and post-camp survey re-

sults, the Wilcoxon signed-rank test was applied to each question individually. The

Wilcoxon signed-rank test is a non-parametric statistical procedure for comparing two

samples that are paired or related. The Wilcoxon signed rank test does not require

that the data is normalized [41]. With Wilcoxon signed rank test, if the p-value is

lower than 0.05 (p-value < 0.05), we can say that we have statistically significant

evidence to reject the null hypothesis (no changes in answers between the first and

last survey).

Additionally, the Wilcoxon signed-rank test was applied to groups of categorized

questions. For that, the questions in the survey were placed in four groups: computing

enjoyment (5 questions); computing confidence (5 questions); identity and belonging

in computing (5 questions); and intent to persist in computing (4 questions). Note

that, because some answers were positively phrased and others negatively phrased,

the value of the negative statements was inverted prior to analysis. For example, a 5

(Strongly Agree) answer to the question “Computers are not for me” was converted

to a 1 (Strongly Disagree) to be compatible with answers to the question “Computers

are cool”. Then the answers to the questions of each group for each respondent were

added, and the total for pre and the total for the post was considered to calculate

the p-value.

45

4.3 Results

4.3.1 RQ1: Student Engagement

When questions were grouped, as described in Section 4.2, all four categories of

questions showed a statistically significant difference (p-value < 0.05) between pre

and post-surveys, as shown in Table 5.

Category p-value

Computing enjoyment 0.006

Computing confidence 0.001

Identity and belonging in computing 0.011

Intent to persist in computing 0.022

Table 5.: Differences between pre and post-surveys

Drilling down to individual questions, we show positively-phrased questions in

Figure 15. As you can see, when moving from the pre-survey (top) to the post-survey

(bottom), students’ answers became more positive, as indicated by the increasing

amount of Agree and Strongly Agree statements, shown in green. Eight of these twelve

questions showed a statistically significant difference when analyzed individually (p-

values to the right of each question).

In Figure 16, we show only negatively-phrased questions, such as “I cannot be

a computer scientist”. When moving from the pre-survey (top) to the post-survey

(bottom), students’ answers changed, becoming more negative, as indicated by the

increasing amount of Disagree and Strongly Disagree, shown in red. Three of these

seven questions showed a statistically significant difference when analyzed individu-

ally.

Further supporting this point, other data shows that students remained engaged

throughout the three-week camp. During the 3 weeks, students were assigned 14

46

activities, where 7 were open-ended activities, including the beat for the contest. On

average, 10 students submitted an assignment even though it was not required, with

students submitting a total of 140 assignments over the course.

When asked on the final day “Do you think you might take a programming course

in school?” students had overwhelmingly positive answers such as “yes because I love

it #CodeBeats forever”, “Definitely!! I really enjoy coding and computer science, and

I intend to pursue it”, and “yes because I want to have a higher chance to get into the

tech center”. Even students that were less confident in their future were positive about

their experience, saying “maybe because I definitely have fun doing this”, “I might,

because it is really fun”, and “I think I could”. Taking into account this qualitative

data along with the above quantitative data, we can answer RQ1, noting that using

hip hop to teach computing concepts does lead to an increase in engagement.

47

11.8

5.9

5.9

5.9

5.9

11.8

11.8

5.9

5.9

11.8

5.9

35.3

11.8

17.6

23.5

5.9

5.9

5.9

5.9

5.9

11.8

11.8

29.4

11.8

23.5

41.2

23.5

17.6

52.9

29.4

17.6

5.9

5.9

11.8

5.9

11.8

11.8

11.8

17.6

29.4

35.3

29.4

23.5

35.3

35.3

35.3

47.1

23.5

58.8

29.4

17.6

23.5

23.5

11.8

5.9

11.8

23.5

23.5

29.4

23.5

29.4

35.3

17.6

17.6

64.7

64.7

52.9

35.3

41.2

23.5

29.4

17.6

11.8

11.8

23.5

23.5

100.0

88.2

88.2

82.4

64.7

64.7

58.8

58.8

47.1

35.3

41.2

35.3

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Computers are cool
I enjoy computer games and activities very much

I’m good using a computer for school work and play
I can be creative using a computer

Solving problems using a computer is fun
I would share with my family what I can do using a computer

I'm proud about what I can do with a computer
I'm self-confident when I'm using a computer

I’m the kind of person that can be a computer scientist
I'm sure I could do advanced work in computing

I would like to study computer science
I would like to work in the computer science field

Computers are cool
I enjoy computer games and activities very much

I’m good using a computer for school work and play
I can be creative using a computer

Solving problems using a computer is fun
I would share with my family what I can do using a computer

I'm proud about what I can do with a computer
I'm self-confident when I'm using a computer

I’m the kind of person that can be a computer scientist
I'm sure I could do advanced work in computing

I would like to study computer science
I would like to work in the computer science field

Survey Results - Pre and Post- Positive Statements

Strongly Disagree Disagree Neutral Agree Strongly Agree

p-value

0.020
0.058
0.035
0.010
0.034
0.026
0.012
0.100
0.013
0.021
0.163
0.142

0.020
0.058
0.035
0.010
0.034
0.026
0.012
0.100
0.013
0.021
0.163
0.142

Pre

Post

Fig. 15.: Survey Results: statements with a positive view of computer science

48

82.4

35.3

41.2

64.7

35.3

17.6

5.9

88.2

70.6

64.7

76.5

58.8

41.2

11.8

11.8

47.1

23.5

23.5

23.5

11.8

5.9

23.5

29.4

11.8

11.8

29.4

23.5

5.9

11.8

29.4

5.9

23.5

35.3

35.3

5.9

5.9

5.9

5.9

11.8

11.8

29.4

5.9

5.9

11.8

35.3

47.1

5.9

11.8

5.9

5.9

5.9

5.9

11.8

5.9

11.8

29.4

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Computers are not for me
I'm not the type to do well in computing classes

Solving problems with a computer is boring
Working with a computer makes me nervous

I can not be a computer scientist
It is difficult to learn things related to computer science

It is very difficult to be a computer scientist

Computers are not for me
I'm not the type to do well in computing classes

Solving problems with a computer is boring
Working with a computer makes me nervous

I can not be a computer scientist
It is difficult to learn things related to computer science

It is very difficult to be a computer scientist

Survey Results - Pre and Post- Negative Statements

Strongly Disagree Disagree Neutral Agree Strongly Agree

p-value

0.783
0.011
0.039
0.157
0.223
0.019
0.156

0.783
0.011
0.039
0.157
0.223
0.019
0.156

Pre

Post

Fig. 16.: Survey Results: statements with a negative view of computer science

49

One potential caveat is that students may become more engaged with CS after

taking any CS class. While this may be true, we believe that many of the students in

our class would not have taken other CS classes. When asked, on the first day, why

they signed up for our course, many responses directly referred to hip-hop and music,

saying “I wanted to learn code, and I love rap”, “I’m very interested in beats like Dr.

Dre, and I saw this, so I want to make or create beats”, “I wanted to learn how to

make music with code”, and “For fun and also learning to code with music. Also, I

love music, so I was like, why not make it.”.

4.3.2 RQ2: Developing Creators

If students can create an original beat by the end of the camp, they may have

achieved the highest level of learning in the Use-Modify-Create framework. To inves-

tigate this RQ I analyzed the beats students submitted for open-ended assignments

(i.e., assignments without pre-defined beats) over the course of the camp. From these

submissions, I only considered original beats; filtering any beats that were even partial

copies from earlier assignments.

76.5

35.3 35.3 29.4 23.5 23.5 17.6

47.1

11.8
11.8 17.6 11.8

11.8

47.1

23.5 17.6
17.6

17.6

29.4

11.8
11.8

11.8

23.5 29.4

11.8

29.4

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Day 4 Day 5 Day 7 Day 9 Day 10 Day 11 Day 14

1 2 3 4 5 6

Number of Submissions

Fig. 17.: Number of original beats per student over time

50

As it is possible to see from Figure 17, we have graphed the percentage of students

that contributed an original beat over time. By Day 4 (the first submission of an open-

ended activity), 76.5% of students contributed an original beat, and by Day 14, 100%

submitted at least one beat. I prepared a playlist3 of the beats submitted on Day 14,

as we believe that their overall quality indicates students’ relatively deep learning.

Note that many students submitted more than one original beat, which we also show

in Figure 17, with 29.4% of students submitting six original beats by Day 14.

4.4 Limitation and Threats to Validity

Although the findings of this experiment are promising and highlight its positive

effect on students’ engagement with computer science, there are several validity con-

cerns to address. Specifically, the sample size of students included in the study was

smaller than the total number of students who participated in the camp. This was

due to the exclusion of students who attended a pre-pilot camp.

It’s important to take into account external factors as well. Since our classes

were virtual and streamed, we couldn’t oversee the students’ learning environment or

any potential factors that could affect it.

4.5 Conclusions

Based on the survey’s results and beats submitted during Code Beats and for

the contest, I can say that the use of hip-hop to engage students in computational

thinking is promising. It is possible to note a statistically significant change in the

engagement towards computer science, mainly when comparing the questions in a

grouped way. Also, it is possible to mention that the use of the Use-Modify-Create

3https://bit.ly/CodeBeatsPlayListContest

51

https://bit.ly/CodeBeatsPlayListContest

framework was successful, as all 17 students submitted at least one beat of their own

creation.

Additionally, there are some points that can be highlighted: (a) The importance

of the beats contest: A motivation from students to create and show their beats at the

contest was noted. It was noted during the classes via chat and with numbers with

beats submitted; (b) The quality of beats: at the end of the third week, the students

were able to create their own beats, as we had some very good beats, analyzing

via musical perspective, and we had some very good beats analyzing via the code

perspective and the use of the Sonic Pi resources.

Despite the good results from this pilot camp, there are some limitations in our

work: (a) The demographic of our students was not ideal, as we were planning to

have more Black and Latino students as our target audience; (b) Sonic Pi has to be

installed or used as standalone software; it might need some previous knowledge from

students about how to do that. Also, there is some difference between platforms (i.e.,

Windows and Mac); (c) Due to the COVID-19 outbreak, this pilot camp was held

online. It was initially planned to be held in person, and it was initially a limitation,

but it also opened doors and new ways that were not being considered before.

52

CHAPTER 5

INDIRECTLY ENGAGING ADULT LEARNERS

Motivated by the results presented in Chapter 4 and the overall experience with

Code Beats, I decided to experiment with Code Beats with a different audience, adult

learners.

Teaching computer programming to adults can empower this immense and fast-

growing population, improving their quality of life and financial outlook [42]. In fact,

for the subset of adults who truly embrace computer programming, learning these

skills can be life-changing. The field has, for years, had a considerable number of

open positions that will increase for at least the next ten years. The U.S. Bureau

of Labor Statistics [2] projects that the number of CS-related posts will increase by

more than 667,000 positions, or 13.4%, from 2020 to 2030.

Unfortunately, it is challenging to attract adults to computer programming. They

typically view computer programming as difficult and boring, something impossible

for them to learn at this stage of life [1]. Getting these skeptical adults to even sign

up for a computer programming class requires some convincing. However, if this

initial reluctance can be overcome, there is hope, as even a brief, concrete learning

experience with computer programming has been shown to significantly impact adults

and their attitudes towards programming [1].

To attract people resistant to a particular field, they may need to be indirectly

introduced to it. Referring to the field of mathematics specifically, for instance, Sey-

mour Papert said “The mathophobia endemic in contemporary culture blocks many

people from learning anything they recognize as ‘math,’ although they may have no

53

trouble with mathematical knowledge they do not perceive as such.” [43] As presented

before, one indirect approach to teaching computer programming, which may help

people overcome their hesitation, is through music [26, 29, 33]. If students are pro-

gramming music, it turns out that much of their focus is on musical creation [28], and

they learn the necessary computational concepts almost by accident. When culturally

relevant music, such as hip-hop, is used, it creates an even more powerful platform

for students to learn computational concepts by engaging in the seemingly unrelated

but extremely engaging task of creating beats [10, 11].

This chapter reports the results of an informal computer programming course

that presented foundational computer programming concepts to an audience formed

by adult learners, coding hip-hop beats. This course was held virtually for five weeks,

with one hour class twice a week, using TunePad.live and the second version of Code

Beats curriculum (refer to Chapter 3, Table 1). During this course, I investigated the

impact of this indirect approach, already known to be effective with young learners,

on the engagement and motivation of adult learners.

5.1 Related Work

To date, most research that creates and investigates ways to motivate and engage

students in learning foundational concepts of computer programming targets young

learners. This body of work typically analyses the effects of tools and methods of

programming among students from primary and secondary educational or, at most,

introductory college-level classes. While an increasing number of for-profit coding

boot camps target adults, these courses are expensive and require full-time engage-

ment for about twelve weeks [44]. Unfortunately, most adults are either unwilling

or unable to dedicate much of their resources to what they perceive as a high-risk

endeavor [45]. Furthermore, some boot camp students faced the same informal com-

54

munity boundaries (e.g., race, gender, previous experience, and stereotypes) as in

other informal and formal learning environments [46].

Some studies have begun to investigate interventions with adults. For instance,

Charters et al. [1] report an experiment that uses an educational video game to

provide adult participants with programming experience. In this work, the authors

found that, after a positive exposure to programming, through the educational video

game, attitudes such as the belief that programming is difficult, boring, and something

that they could not learn, changed positively [1].

Using an online survey, Guo [42] investigated older adults’ motivation to learn

computer programming and the frustrations they experienced. In terms of motivation,

three important categories were found: (a) Age-related Motivations: respondents

wanted to make up for missed opportunities during their youth; (b) Enrichment-

Related Motivations: for instance, learning programming to implement a specific

hobby project idea; and (c) Job-Related Motivations: for instance, respondents

wanted to learn programming as continuing education that is relevant to their current

job or to improve their future job prospects. Finally, in terms of frustrations, findings

were categorized into (a) Age-Related Frustrations: for instance, cognitive limitations

such as bad memory; (b) Pedagogy-related Frustrations: for instance, lack of instruc-

tional scaffolding; and (c) Technology-related Frustrations: for instance, debugging

syntax and run-time errors.

Krafft, Fraser, and Walkinshaw [47] investigated the effects of using Scratch, a

block-based language already known as an approach that motivates young learners

with adult learners. They observed a positive effect on students’ self-perception and

motivation to continue learning programming.

In a longer study, during a six-month-long course with textual and visual pro-

gramming languages, Sayago and Bergantiños [48] examined the computer program-

55

ming learning experience of a group of older adults and active computer users with

low levels of formal education and no previous experience with computer program-

ming. By the course’s end, participants learned and understood how to write simple

programs.

There are several methods and tools to engage and attract people to computer

programming, which vary from unplugged activities [17] to the use of robots [18] to

the use of block-based environments [19, 20, 21] to the use of video-games develop-

ment [22] and the use of music creation [26, 12, 27, 28], but as said before, the vast

majority targeting the young part of the population.

5.2 Research Question

This study aims to analyze this learning experience’s influence on adult learners’

perceptions of computer programming. In line with that, the research question being

investigating is: How does the use of hip-hop in teaching coding impact adult learners’

perceptions of computer programming?

5.3 Methods

5.3.1 Study Design and Data

This chapter reports on data collected during a 5-week virtual course. During

that period, participants attended streamed 1-hour lessons offered twice a week. The

classes were live-streamed using the YouTube 1 platform, where the participants could

interact with the instructors and each other using the platform’s chat. Each class con-

sisted of a mix of interactive live sections and pre-recorded coding and music lessons,

with two hands-on activities completed during class and one activity completed after

1https://www.youtube.com/

56

https://www.youtube.com/

class. Every activity was designed to explore the concept taught that day but could

also include previously introduced concepts, adding more complexity to the activities

each day. The background to these activities was a realistic-sounding beat based on

an actual hip-hop song. College musicians transcribed that into TunePad. At the

end of the course, participants engaged in a beats exhibition and contest, where they

created their beats to show what they learned. After the course, they were asked

through an online survey to answer a set of open-ended questions:

Q1. What did you think about computer programming before Code Beats?

Q2. What do you think about computer programming now?

Q3. After Code Beats, are you interested in learning more about computer program-

ming? Why or why not?

Q4. After Code Beats, are you interested in a career in computer science? Why or

why not?

Q5. Did the use of music in Code Beats change what you thought about computer

programming? If so, how?

5.3.2 Participant Demographics

To reach participants, this session of Code Beats was organized and publicized

by Computer CORE 2. This organization prepares under-served adults in Virginia

to realize career aspirations with foundational digital and professional skills. During

the five-week course, an average of 40 adult learners attended each class. From

this group, 32 participants answered the post-survey, which was not mandatory. This

population was from a wide range of ages, where the youngest participant was 20 years

old, and the oldest participant was 74 years old (average age was 43.8). Of those,

2https://www.computercore.org/

57

https://www.computercore.org/

37.5% identified as man, and 62.5% identified as woman. In addition, 59.4% were

self-declared minorities, and 43.8% were African-American. In addition, 34.4% of the

participants knew how to read music, and 18.8% had previously taken a programming

class. Hip-hop is the music genre preferred by 31.25% of the participants.

5.3.3 Data Analysis

To answer the research question, the responses from the five questions stated

above were analyzed using a Reflexive Thematic Analysis, also known as Braun &

Clarke [49], in an inductive and semantic way, where the coding and theme develop-

ment reflects and were directed by the content of the data.

First, all the responses were grouped by question in a spreadsheet and were

de-identified, where a pseudo-identifier was attributed to each learner. Then, this

spreadsheet was shared with the author of this dissertation and a research assistant,

so each could start creating codes independently. In the first cycle, an open coding

process was used, where every answer was analyzed, and one or more codes were

attributed when applicable. After that, a new code was created whenever necessary,

as determined by the answer’s content.

Next, the two independent researchers met to merge and agree upon common

codes in the second cycle. At this point, the following actions were taken: (a) For

exactly the same codes, the code was maintained; (b) For codes with different words

but with the same meaning, the codes were merged; (c) For codes identified by only

one of the researchers, the question and the answer were re-analyzed by both, and

after discussion, they decided whether the code should be deleted or kept. After

finishing this process, the remaining codes were analyzed to identify themes emerging

from the codes.

58

5.4 Results

In this section, the results of the reflexive thematic analysis are presented sepa-

rated by question from our survey (Q1 to Q5). For each question, the themes from

the open coding process and how many times that theme appeared in the data are

listed.

Q1. What did you think about computer programming before Code Beats?

The responses to this question were grouped in two themes, Theme 1 (left): Cod-

ing would be difficult/impossible/boring to learn and Theme 2 (right): I was curious

about computer programming. Figure 18 presents all of the codes that contributed to

these themes and the number of times each code occurred.

Curious about coding: 6

Cool thing to check out: 2

Curious about: 2

Already liked: 1

Difficult to learn: 17

Difficult to learn: 9

No idea about: 4

Something impossible: 2

Could be boring: 1

Could never do it: 1

Looking for a class like this: 1

Fig. 18.: Q1 - What did you think before?

Theme 1: Difficult to learn (n=17) - Participants were initially intimi-

dated by the prospect of learning programming, believing that it was, at best, difficult

and sometimes impossible for them to learn. Most adult learners had reservations

about their ability to learn programming before taking Code Beats, as shown by this

group of codes that appeared 17 times in the responses for Q1. Participants’ responses

included: “I thought [coding] was something impossible and that I could never do

it” (S12). “I thought [coding] was difficult and boring” (S21). “[Coding] was com-

59

plicated and beyond my ability” (S24). “I thought [coding] was fairly difficult to

learn. It also seemed like it would involve a lot terminology I wouldn’t understand

and prerequisite skills.” (S29).

Theme 2: Curious about coding (n=6) - While most adults were intimi-

dated by computer programming, a few adult learners were curious about computer

science. For many of these curious adult learners, the fact that Code Beats was cen-

tered around music seemed to make it less intimidating, or at least potentially fun, to

them, with relevant responses appearing a total of 6 times for Q1. Participants said:

“Had no idea how to do it. Just sounded like a cool thing to check out” (S2).

“I did not understand how to code, and make music out of Python. I am a music

producer, and would like to better understand computers, so I figured that this

is the best fit for me” (S28). “..then I saw my child to simple coding games and toys

and programs and Code Beats seemed like a fun way to try it out. I really enjoyed

it and my big break through moment was when I realized that the errors were my

friends and showed me exactly what to change. Before that I saw it as me getting it

wrong. That little shift in mindset made it so much more fun to try out things”

(S12).

Q2. What do you think about computer programming now?

The responses to this question were grouped into four themes. The codes are

shown in Figure 19, from left to right, and from top to bottom: “I’m confident

that I can learn computer programming” (10); “I’ve improved my knowledge about

computer programming” (9); “I’m interested in learn more and use it in the future”

(9) and “Programming classes are not for me / it is difficult to learn” (5).

Theme 3: Increased confidence (n=10) - It seems that taking the class

increased the learners’ confidence and helped them to understand that, while it

might take practice, computer programming was a skill they could learn. This theme

60

Increased confidence: 10 Improved knowledge: 9

I'm confident I can learn: 7

It is less difficult now: 3

Learn something new: 6

Improved knowledge: 2

Gave me a better idea: 1

Not for me: 5

Is still difficult to learn: 2

It is not for me: 2

Didn't understand: 1

Wanting more: 9

Want to learn more: 4

I can use it in the future: 2

I'm interested: 2

Is useful: 1

Fig. 19.: Q2 - What do you think now?

emerged from a group of codes that appeared 10 times in the responses for Q2. Some

examples of responses that we received for this question and were grouped in this

theme are: “I think if I put the time to learn into it, I can do it” (S7). “I think

it is possible to get good at it with lots of practice. I think I’ve found my inner

geek!” (S12). “I think that I am capable of doing computer programming. It

doesn’t seem as hard as 1 would think and Code Beats taught me that!” (S19). “It’s

still a bit complicated but seems less daunting. I think the basics are doable

with continual practice” (S29).

Theme 4: Improved knowledge (n=9) - This theme emerged from a group

of codes that appeared 9 times in the responses for Q2. Participants said: “I see

how to use it better and how it applies to so many things. I loved using TunePad

to make a song” (S2). “Honestly I don’t see Myself as an Older Job Seeker being a

Computer Programmer. The Course Has Added a More In depth layer to my

core skill set. The Easier YouTube Platform makes For Much Easier Access” (S16).

“I can understand and know the vocabulary of coding which helps in my next

computer coding class” (S18). They used many growth phrases (e.g., “use it better”,

61

“added to my skill set”, etc.) to describe how they felt the class had changed their

knowledge of coding.

Theme 5: Wanting more (n=9) - Adult learners who attended this class

may have increased their interest in pursuing further education and even employment

in the field. This theme emerged from a group of codes that appeared 9 times in the

responses for Q2. Some examples of responses that we received for this question and

were grouped in this theme are: “I might be interested in it now. In fact I might

also think about pursuing a career in it” (S1). S20: “Excited to do more and

do my own job as a Code Beats master”. (S20). “I would like to get certified in

Python and A+. I would like to also get Security+ ,and Network+” (S28).

Related to this theme, while we could not track all the participants after the

class, we know 18 participants who followed up this class by attending a Python class

and at least one that gained employment in the field.

Theme 6: Not for me (n=5) - As expected, a few adult learners decided

that computer programming was not for them. This theme emerged from a group

of codes that appeared 5 times in the responses for Q2. Some examples of responses

that we received for this question and were grouped in this theme are: “Confused.

Programming as I saw in Code Beats is very different from, say, Data Structures in

C. But it seems to be fun.” (S27). “Not in the computer programming class.”

(S32).

Q3. After Code Beats, are you interested in learning more about computer

programming? Why or why not?

The responses to this question were grouped into two themes: “I would like to

learn more about computer programming. I can do this.” and “I’m not interested in

computer programming.”. The codes and their counting is presented in Figure 20.

Theme 7: Ready for more (n=25) - Many adult learners were interested

62

Not interested: 4

Not interested: 2

I'm not motivated: 1

Want to learn more basic
concepts: 1

Ready for more: 25

Want to learn more: 17

I can use it in the future: 5

I'm confident that I can learn: 2

I see different ways to learn: 1

Fig. 20.: Q3 - Interested in learning more?

in programming and optimistic about their ability to learn it, with responses from

this theme appearing 25 times for Q3. Participants said: “Yes. I think I could

enjoy having a job doing computer programming” (S7). “Yes very eager”

(S15). “Yes, I was very much interested in learning more. I thought the Code

Beats class was fun and it was an introduction to Coding. So, it makes me feel

confident that I could take on a Computer Programming course” (S19). “Yes I’m

more interested in coding because I see there is a different way to learn the skills

needed” (S21). “I feel comfortable moving forward to learn more about coding.

I was very nervous at first, but not anymore” (S30). These learners expressed both a

desire to learn more (e.g., eager, very much interested, more interested) and a growth

in confidence (e.g., confident, not [nervous] anymore, comfortable).

Theme 8: Not interested (n=4) - After taking the class, a few adult learners

decided they were not interested in computer programming. For these adult learners,

the class did not focus enough on motivating the importance of computer science, or

they failed to learn enough to gain confidence in their ability to code. This theme

emerged from a group of codes that appeared 4 times in the responses for Q3. Par-

ticipants said: “Maybe. It seems important but I haven’t seen a need for it yet in

my career. Also I don’t feel I am motivated at this time to learn it” (S29). “Not

interested because I don’t know how to code” (S32).

63

Q4. After Code Beats, are you interested in a career in computer science?

Why or why not?

The responses to this question were grouped into two themes: “I can use com-

puter programming in the future” (13) and “I’m not interested in computer program-

ming” (4), presented in Figure 21.

Not enthusiastic: 4

I don't see my self as
computer programmer: 2

Not interested: 1

It is not for me: 1

Future usage: 13

I can use it in the future: 9

Want to do it as a job: 2

I want to earn more money: 1

Would work with it if it is fun
and creative: 1

Fig. 21.: Q4 - Interested in a career?

Theme 9: Future usage (n=13) - Many adult learners believed they could

and would use computer programming in the future. During completing our class,

participants’ confidence in their ability to program a computer grew enough that

they could imagine working in the field. This theme emerged from a group of codes

that appeared 13 times in the responses for Q4. Some examples of responses that we

received for this question were: “Maybe, if the coding can be used in a fun way &

in a company that was creative. I am not exactly sure what the jobs would entail

if I did it as a career. If I got involved with a game company, I am sure I would

love it and learn fast” (S2). “Yes. I have a disability that makes me rely on jobs at

a desk. This could be a great fit” (S7). “Yes. I want to do something different,

learn new technology and get paid more money” (S10). “Yes, I love working

on computers! I think that coding is in my future and that I am more than capable

of getting the job done!” (S19). “After Code Beats, I am interested in a career in

64

computer science, because it has so many applications, it is rampant everywhere,

and very useful. I especially like how much computers can change our lives, make

things more easy for us, and do things faster than without any technology” (S22).

Theme 10: Not enthusiastic (n=4) - A few adult learners were not enthu-

siastic about programming. These participants’ lack of enthusiasm stemmed from a

lack of interest and, in some cases, was influenced by difficulties that the adult learner

had in understanding the class materials. This theme emerged from a group of codes

that appeared 4 times in the responses for Q4. Participants said: “Probably not

because I don’t see myself doing anything with computer software. I only

really understand programming” (S1). “No not interested in a career in this

field. I was so lost in this class, by trying to program music” (S32).

Q5. Did the use of music in Code Beats change what you thought about

computer programming? If so, how?

The responses to this question were grouped into two themes: “The use of hip

hop made it easier / fun to learn.” (25) and “The use of hip hop had no affect on

learning” (3), presented in Figure 22.

No affect: 3

Didn't change my thought
about coding: 3

Hip hop increased enjoyment: 25

Made it easy to learn coding:
15

Made it more fun: 6

I have enjoyed it: 4

Fig. 22.: Q5 - Did the use of music change your attitude?

Theme 11: Hip hop increased enjoyment (n=25) - Almost all adult learn-

ers thought using hip-hop increased their class enjoyment. Hip-hop made the class

more engaging, even for adult learners who struggled to learn the material. This

theme emerged from a group of codes that appeared 25 times in the responses for Q5.

65

Participants said: “Yes, it made it easy. You were able to create a finished product

and you could learn from your mistakes or see on the keyboard what sounded good

and try to fix the code to match it. I have no music background so it was chal-

lenging, but I enjoyed it and it drove me to figure out how to do it better” (S2).

“Definitely! It was instant gratification. Basically anyone could do coding the

way it was taught through music with Code Beats. You didn’t have to be musical

but if you were, it helped. With the tracks laid down already, it was fun to write

and change the code to make different sounds and to learn coding terms...loops, vari-

ables, lists and more” (S12). “Yes it did, I thought was a fun and interactive way

to learn coding ” (S13). “Yes, I always thought that computer programming was

hard. The code itself makes no sense just by looking at it, however with Code Beats

I understand that the coding has meaning and is formatted to give instructions to

complete a task” (S19). “Absolutely. That was the best, most fun part (including

Dave’s dancing). Even though I didn’t get most of the material, it was refreshing

to see that you guys are normal and have a sense of humor. Very different from old

fashioned programming in UNIX/C or FORTRAN” (S27).

Theme 12: Hip hop had no affect(n=3) - Only a few adult learners did

not think the use of hip-hop affected the class. This theme emerged from a group of

codes that appeared 3 times in the responses for Q5. Some examples of responses that

we received for this question and were grouped in this theme are: “No. It didn’t”

(S10). “No, I just know the behind the scenes better!” (S18).

66

5.5 Discussion

5.5.1 Perception about Computer Programming - Before Code Beats

Before Code Beats, most adult learners perceived coding as difficult, boring, or

something they could never do. This is consistent with past findings; previous studies

found that adult learners, prior to exposure to computer programming, thought that

programming was difficult, boring, or something that they could not learn [1]. It

seems that adult learners are unlikely to consider computer programming as a career

option without external encouragement. Furthermore, providing an initial, positive

programming experience may be crucial to whether they will ever consider studying

CS.

Despite this initial reluctance, adult learners sometimes changed their minds

when they realized they could learn programming by making music. Participants

mentioned that Code Beats “seemed like a fun way to try it out” and “sounded like

a cool thing to check out”, and that Code Beats “[was] the best fit for me” due to

its focus on music. The focus on the music seemingly provided adult learners with

additional motivation; they seemed to think that even though they would understand

the coding, at least they would be working with music they like. Furthermore, anec-

dotally, it seemed to make an even greater difference for adults with musical talent.

It made them more comfortable as they knew and understood the musical concepts,

making the computational concepts less daunting. Overall, data suggest that associ-

ating programming with music is a promising way to attract adult learners.

5.5.2 Perception about Computer Programming - After Code Beats

After participation in the program, adult learners’ perception of computer pro-

gramming seemed to be much more positive. They were more confident in their ability

67

to program, were more likely to consider furthering their programming knowledge,

and some even thought that Code Beats made coding easy. I believe that at least

part of this change in perception was because we taught computational concepts by

relating them to familiar musical concepts. It seems that this technique, which led

to a shift in motivation for young learners [50], may also benefit adult learners.

5.6 Limitations and Threats to Validity

The following chapter outlines the outcomes of a virtual course that was attended

by participants who volunteered for the experience and had full access to it. However,

it is important to note that this group may not be a representation of all adult learners,

and this presents a potential external threat to the validity of the study. As a result,

replicating the same study and obtaining identical results may not be feasible.

Furthermore, the surveys were limited to five questions instead of more in-depth

interviews. Additionally, the survey questions were asked only after the camp. Hence,

responses to questions about perceptions prior to the course demonstrate students’

reflections about how they might have thought before the course.

I conducted the Reflexive Thematic Analysis with the assistance of a research

associate who had knowledge of the objectives of the study. Although I followed all of

the protocols outlined by the Braun & Clarke method [49], there is still a possibility

that it could pose a threat to the validity of the study.

5.7 Conclusion

This chapter presented the use of music to teach the foundational concepts of

computer programming to adult learners during a five weeks course. The activities in

this course used actual hip-hop songs transcribed to a programming platform, where

participants could modify a part of the song to apply the computer programming

68

concepts introduced during the classes.

By the end of the course, changes in adult learners’ perception of computer pro-

gramming were documented, which they had previously perceived as boring, difficult,

or impossible to learn. After Code Beats, they started to think of computer program-

ming as something they could learn and do, demonstrating an interest in looking for

more opportunities to learn these important skills. Finally, using hip-hop to teach

computer programming was found useful, motivating adult learners and making the

learning process enjoyable.

69

CHAPTER 6

ENGAGING STUDENTS WITH NO MUSICAL

BACKGROUND

While countless efforts to broaden CS education exist within high-income and devel-

oped nations [51], few efforts directly target regions outside of North America and

Europe. Many of these regions, such as South America and Africa, could benefit

the most from these educational initiatives, as there are large population bases that,

as the cost of computers drops, are quickly starting to gain access to the necessary

infrastructure to enact innovative technology education programs [52]. Therefore, the

CS education community needs to prepare to serve the needs of CS education for all,

specifically for all countries [53].

One clear challenge for CS education research is that approaches may not hold

across cultures. Work has begun to investigate the potential effectiveness of CS

education interventions in Latin America. Still, this initial work lacks rigor, so the

question of which approaches will transfer cleanly remains open [54]. When focusing

on Brazil, the largest country in South America, one of the more obvious challenges

of transferring approaches across cultural boundaries quickly becomes clear: There

are few schools with computer labs [55].

Specifically for initiatives that use music to broaden CS education, when analyz-

ing the prior music experience of students in existing studies, it is evident that most

students had some prior knowledge. While some studies do not report this data[26,

30, 29, 27, 33], the studies that do provide this information indicate that students had

previous experience with music. For instance, Zhang et al. [56] indicated that 60% of

70

students had prior music knowledge, while Koppe [31] found that 30 to 50 percent of

participants in their workshop had previous experience with music. Similarly, in the

experiment reported on Chapter 4, where 64.7% of participants knew how to read

music. Finally, Petrie [32] found that only 8 out of 22 participants were completely

new to music and programming.

Further, most of these studies [26, 30, 29, 56, 33], including those presented in

previous chapters, were held in the United States, where historically, students have

had access to music classes in primary education. Outside of the United States, a

few studies were conducted in Europe [27, 31] and one study in New Zealand [32]. In

South America, and specifically in Brazil, to the best of our knowledge, this is the

first study reporting the use of music to teach computer programming.

This chapter presents a case study using music to teach computer programming

to students without previous music education. The study was conducted in Brazil,

where formal music education is not generally offered in the primary and

secondary education system. The course was offered in partnership with a public

school during after-school hours. Students from 6th to 9th grades volunteered to

participate in the study. The data collected through surveys, focus groups, and direct

observation demonstrated that even in settings where music knowledge is limited,

using music to teach coding can attract and motivate students to study computer

programming. In fact, in these settings, it may be even more motivating.

6.1 Context of Work

6.1.1 Computer Science Education in Brazil

In Brazil, CS education is still in its infancy. Brazil does not yet have formal

CS education at the primary and secondary levels. Except for the career preparation

71

integrated into the high school curriculum offered in some institutions in Brazil [57],

there is only a reference guideline about implementing CS at the primary and sec-

ondary levels [58]. The National Learning Standards 1 for primary education refer

to computational thinking as a cross-cutting theme related to mathematics and not

specifically to CS [59]. Fortunately, the number of studies in CS education at the

primary and secondary levels is growing in Brazil, with studies in primary education

receiving more attention than studies in secondary education [60]. Also, initiatives

to broaden diversity in CS are in place [61].

One mapping study of computational thinking and programming in Brazil [60]

indicated that games (e.g., Scratch) and robotics (e.g., Lego Robots and Arduino)

are the most prevalent domains to teach computational thinking and that the least

explored domain is media. Unfortunately, these efforts are held back by a lack of ac-

cess to equipment in Brazilian schools, where students have access to desk computers

in only 54% of schools, laptops in 35% of schools, and tablets in 15% of schools [62].

To overcome this situation, studies often try to use alternatives, such as unplugged

activities [55] and more affordable equipment [63].

6.1.2 Music Education in Brazil

Music education in primary and secondary education in Brazil has been histor-

ically neglected. When it exists, it is focused primarily on singing and, in many

schools, even this has ceased to exist [64]. Legislators attempted to make music edu-

cation mandatory in 2008 2, yet in 2016 3, this effort was reversed, and music became

1Free translation of Base Nacional Comum Curricular - BNCC
2http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2008/lei/

l11769.htm
3https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2016/lei/

l13278.htm

72

http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2008/lei/l11769.htm
http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2008/lei/l11769.htm
https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2016/lei/l13278.htm
https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2016/lei/l13278.htm

an optional part of arts education that also contains visual arts, dance, and theatre.

Despite the laws and regulations, some challenges were faced in implementing

music as a mandatory school component. For instance, align the universities’ forma-

tion roadmap with the schools’ curriculum [64]. Additionally, the laws and regulations

are seen as vague, not specifying factors such as how many hours per week the music

classes should be and a need for clear requirements of teachers’ credentials, methods,

and learning objectives [65].

One example of the art component diversity in primary and secondary education

in Brazil is the data reported by Araújo and Lima [66], which shows how students re-

sponded when asked which activities the art teachers usually developed in the classes.

Specifically, 31% of the students said drawing, 22% painting, 31% writing, and only

16% music. In summary, despite the attempts to make music part of primary and

secondary education in Brazil, it is clear that music is not present in these levels of

education. Therefore, students interested in music, such as music theory, singing, or

learning how to play an instrument, must seek opportunities outside of the formal

primary and secondary education environment.

6.2 Adapting Code Beats for Context

Some adaptations were necessary to implement Code Beats in Brazil. The first

is translating all the activities and instructions into Portuguese without changing the

activities’ objectives and content. The translation occurred only on the instructions,

not in the TunePad interface, TunePad documentation, or built-in functions (e.g.,

playNote, rest). Also, adaptations were needed in the curriculum, where not all

concepts from the original format were taught, and, in some cases, the concept was

approached in more than one class. The curriculum distribution is shown in Table 6.

Another difference from the original approach is the number of hands-on ac-

73

Day Programming Concept Music Concept

1 Sequencing Melody

2 Sequencing Melody

3 Variables and Constants Musical Notes System

4 Functions (with single parameter) Rhythm

5 Functions (with single parameter) Rhythm

6 Lists Chords

7 Lists Chords

8 Repetitions (numeric controlled) Rhythm

9 Repetitions (numeric controlled) Rhythm

10 Modularization Orchestration

Table 6.: Curriculum Distribution - Brazilian Edition

tivities during classes. Due to time constraints of the after-school session, in this

implementation, students had one short and one long activity instead of two short

and one long activities from the original format. While two short activities were

prepared for this class, during the first days of the course, it became evident that

this group would need significantly more time to complete activities, as students were

taking much more time to understand the music requirements for the activity. Thus I

opted to remove the second short activity from each day, and, on some days, I ended

up applying only one activity, leaving the other for the following class, as shown in

Table 7.

Another change is in the way the music content was taught. In the original

context, even though connections were made between music and coding in the in-

structions, in all lessons, the CS instructor taught coding, and the music instructor

taught music. In the implementation reported in this chapter, it was impossible to

have the music instructor in every day of class, so the coding instructor (having wit-

nessed the music instruction many times as part of other classes) gave the music

lesson on days the music instructor was absent.

74

Day Type Link

1 Short https://tunepad.com/project/41875

2 Long https://tunepad.com/project/41876

3 Short https://tunepad.com/project/41917

3 Long https://tunepad.com/project/41918

4 Short https://tunepad.com/project/42220

5 Long https://tunepad.com/project/42221

6 Short https://tunepad.com/project/42310

7 Long https://tunepad.com/project/42311

8 Short https://tunepad.com/project/42544

8 Long https://tunepad.com/project/42545

9 Short https://tunepad.com/project/42546

9 Long https://tunepad.com/project/42839

10 Project https://tunepad.com/project/55281

Table 7.: List Code Beats of Activities - Brazilian Edition

Finally, when implemented in the United States, students composed their own

beats (from scratch) at the end of the course to participate in a beat contest. When

implemented in Brazil, students did not engage with the beats contest. There were

two main reasons for this. First, not all students had computer access outside of class

time, and second, students’ lack of previous music experience limited their ability to

progress to the create phase of the Use-Modify-Create framework.

6.3 Research Question

This study aims to test the feasibility and understand what motivates a popu-

lation without previous music experience to attend a coding course that uses music.

Thus, the research question being investigated is: What motivated students to attend,

continue to attend, and engage in this course?

75

https://tunepad.com/project/41875
https://tunepad.com/project/41876
https://tunepad.com/project/41917
https://tunepad.com/project/41918
https://tunepad.com/project/42220
https://tunepad.com/project/42221
https://tunepad.com/project/42310
https://tunepad.com/project/42311
https://tunepad.com/project/42544
https://tunepad.com/project/42545
https://tunepad.com/project/42546
https://tunepad.com/project/42839
https://tunepad.com/project/55281

6.4 Methods

6.4.1 Study Design

The Code Beats classes were organized in partnership with a public school that

allowed the researchers to advertise the course for the students and use the school

computer lab. The students were divided into two groups due to the limited size of

the available computer lab. Both groups had the same content in the same order.

Each group consisted of ten classes, over two weeks, with an hour-long class each

weekday after school. The classes included computer programming lessons, music

theory lessons, hands-on activities, and interactive quizzes. A typical day of classes

had two hands-on activities based on an actual hip-hop song transcribed to TunePad.

Students had to do their activities in one TunePad cell, which would complement the

transcribed song. Students were asked to complete a voluntary pre and post-course

survey at the beginning and end of the course. On the last day of the course, students

were invited to participate in a focus group session.

6.4.2 Participant Demographics

A total of 55 students participated in at least one day of classes. From this

total, 25 students answered the pre and post-course surveys. They were, on average,

13.5 years old (min 12 - max 15). 44% of the students self-identified as girls, 40% as

boys, and 16% of the students preferred not to say. 60% of the students self-identified

as White, 36% as Mixed Races4, and 4% as Black. 52% of the students said they

had computer classes in the past. However, for 60% of the students, this course was

their first experience with computer programming, and 32% had less than one year

4Translation of Pardo, multi-racial Brazilians.

76

of experience in computer programming. 80% of the students did not play a musical

instrument, and 88% said they had never had music classes. The students’ preferred

musical genres are funk (52%), Brazilian country music (44%), pop (40%), rap (40%),

rock (36%), and hip-hop (32%).

6.4.3 Data Collection and Analysis

A pre and post-course survey was administered to document the changes between

pre and post-course and to provide data to answer the research question. The pre and

post-course survey is the same one used in previous experiences of Code Beats, and it

is adapted from Mouza et al. [67], inspired by Ericson and McKlin [68]. The survey

includes 26 questions and asks students to rate their agreement or disagreement us-

ing a Likert scale format, from 1 - “Strongly Disagree” to 5 - “Strongly Agree.” The

questions were grouped into four categories, (a) confidence in CS, with 16 questions

(e.g., “I have a lot of self-confidence when it comes to computing.”); (b) belonging to

CS, with 3 questions (e.g., “I feel like I “belong” in computer science.”); (c) gender

equality in CS, with 3 questions (e.g., “Girls can do just as well as boys in comput-

ing.”); and (d) students’ future in CS, with 4 questions (e.g., “Someday, I would like

to have a career in computing.”).

Survey data on students’ attitudes toward computing were scored, entered into

a spreadsheet, and subsequently exported into statistical software, where means and

standard deviations were calculated to assess changes from pre to post-administration.

To test the statistical significance of the difference between pre and post-course sur-

veys, the Two Sample t-test was performed when the data were normally distributed

and the Wilcoxon Rank Sum test when the data were non-normally distributed. To

test the normal distribution, the Shapiro-Wilk test was used.

In addition to survey data, focus groups were also conducted with 24 students

77

to assess student experience. Focus group questions addressed student motivation

for attending the course (e.g.,“ What made you decide to attend this course?”);

experience with coding (e.g., “Tell me about your experience coding in TunePad.

How did it work?”); potential surprises (e.g., “Did anything surprise you about the

course?”); and the role of music in sustaining interest (e.g., “Did the fact that you

were making music make you more or less interested in this course?”). Focus group

data were analyzed qualitatively to identify emerging themes.

All questions in the survey and in the focus group were in Portuguese, the stu-

dents’ native language, and the answers were translated into English to perform the

analysis and report the results.

The author of this dissertation acted as an instructor in the course, helped by

another instructor with an art degree with a concentration in music. He teaches music

and art classes in Brazil. To corroborate the findings, their observations during the

classes and the main challenges faced during the course are reported.

6.5 Results

6.5.1 Students’ Motivation

High prior interest:

Student scores on a pre and post-survey were analyzed, and it was found that

they started the class with unusually high scores for all measures, and these scores

did not change much throughout the session.

Table 8 reports each category’s pre and post-course responses. The first column

has the category. The second and third columns contain the average of responses

for pre and post-course surveys, with their standard deviation in parenthesis. The

fourth column shows the difference between the pre and post-course survey averages.

78

Category Pre Post Diff p-value

Confidence in CS 4.0 (1.2) 4.2 (1.0) 0.2 0.0627

Belonging in CS 3.0 (1.3) 3.3 (1.3) 0.3 0.0756

Gender Equality 4.7 (0.8) 4.7 (0.8) 0.0 0.1198

Future in CS 3.6 (1.3) 3.7 (1.2) 0.1 0.5999

Table 8.: Pre and Post-course Survey

The last column has the p-value for each category. For all but “Gender Equality,”

the statistical significance was tested using the Two sample t-test. For the category

“Gender Equality,” the test performed was the Wilcoxon test. The difference between

the pre and post-course survey averages is not statistically significant for any category.

Motivation for attendance:

This after-school course was entirely voluntary. However, it required students

to sign up ahead of time, and each day, students had to return to school, as it

was held after they had already returned home. When students were asked what

made them decide to attend this course, many students cited an interest in learning

music. For instance, S18 answered, “To fill my free time and improve my music

theory knowledge.” S29 stated, “Because I thought it would be cool, and I always

wanted to learn about music.” Finally, S35 answered, “My interest in music. Learn

about music theory.” An interest in learning CS was also a factor. For example, S26

answered, “Because I’m interested in computer science, and I guess it is cool.” S16

stated, “Because computer science is one of my interests.” And S31 answered, “I

am interested in computers, and it appeared to be an opportunity to start studying

them. The music made it more fun.” S04 answered, “I was interested in learning

more about computer science and music.” demonstrating interest in music and CS.

79

Students also attended because they thought it would be interesting and fun.

For instance, S08 said, “I decided to attend this course because it was interesting, and

my friends would attend too.” that is in line with the answer from S06, “I decided

to attend because it appeared to be fun.” Some students indicated that it was a good

use of their free time. For example, S27 answered, “I thought it would be fun and

something to do with my free time.” S20 answered, “I thought it was fun and I would

have something to do with my free time.”

In contrast, parents’ choice was one of the main reasons students joined the Code

Beats in North America. For instance, in the camp held in 2021, the most common

reason for attending the camp, selected by almost 70% of respondents, was “my

parent or guardian recommended it.” In line with that, this reason was selected by

56.3% of respondents in the camp held in 2022. Some examples of students’ answers

given during the focus group are “my mom just signed me for this.” and “my mom

recommended me for it.”

Programming experience:

Students were asked to talk about their coding experience during the course.

Some students said that it was easy, like S24, who said, “It was really easy.” One

student (S09) who had experience with another programming language said, “Easy,

there is no semicolon.” Another student with previous programming experience said

“It was not hard. The syntax was easy to memorize. The hard part was to know

how to use the music. It is easier than Scratch.” On the other hand, some students

said it was hard at the beginning of the course, but it became easy with time. For

instance, student S14 said, “In the beginning was hard, and then it started to be

easier.” Likewise, student S29 stated, “In the beginning, it was a little confusing, but

now it is easy.” Additionally, student S10 explained what helped him in the course,

“It was a little difficult, but with help from the instructors, it became easier.” Finally,

80

student S36 pointed out that it was hard to memorize the commands, “It was a little

complicated. It was hard to memorize everything. With time, we could get it.”

Unexpected pairing:

Students were asked if anything surprised them during the course. Some students

said they were surprised that they could create music with coding. For instance,

student S12 answered, “The TunePad. I never imagined that it was possible to create

music like that.” Student S04 stated, “The fact that it is possible to create music with

coding.” Another student, S06, said, “When we created the song, even the minimal

one, I was impressed.” Additionally, one student was surprised by how the different

tracks combined to make a complete song. S32 stated, “Use all the code together. It is

really interesting. I had no idea it was possible.” Finally, one student was surprised

by the music instructor’s ability. S31 said, “The music instructor’s ability. It is

possible to see that he knows what he is doing.”

Music as a ‘hook’:

Students were asked if making music made them more or less interested in this

course. The vast majority pointed out that the music was crucial to their interest,

motivating them to attend the course. For instance, student S01 said, “Yes, I would

not attend with no music. When the course was advertised, you 5 started talking about

computer programming, and it did not bring my attention, but when you talked about

music, I thought, yes, this I would like to do.” Students S12 and S18 stated, “If there

were no music, I would not be interested in / I would not attend the course.” Some

students agreed that the music made the course more interesting, but would attend

as well without music. For example, student S06 answered, “If there were no music,

I would attend, but the interest would be lower.” Student S31 stated, “I would have

5The researcher that advertised the course.

81

been interested without music, but the music made it more fun.”

6.5.2 Direct Observation

Students’ interest:

The first unusual observation happened before the course started, during recruit-

ment, when the author of this dissertation visited each class to describe the course

to students briefly. The students’ reaction was positive, with a strong appreciation

of the idea of using music to teach coding. Registration forms were only given to

students that explicitly asked for them. 150 students asked for this form, and 55 re-

turned them signed by their parents, registering the student and giving the research

consent.

The students remained engaged and motivated during classes, paying careful

attention to the music and coding lessons. After each day’s lessons, we held an

interactive quiz. The students showed interest and engagement, especially during

these quizzes, where they competed amongst themselves to see who could answer

the most questions correctly and quickly. During the focus group interviews, when

students talked about what they liked most, they consistently said quizzes.

The difference between the students who attended at least one day of classes and

those who answered the pre and post-course surveys is due to students who came

in the vast majority in the first one or two days of the course and did not return

for classes. Additionally, even those students that answered the pre and post-camp

surveys missed some classes. Following up with students and schools’ responsible, the

main reason for them to miss classes was due to weather conditions, where on rainy

days, it is common for students to miss even regular classes at this school.

Specifically, regarding motivation and interest during classes, students paid at-

tention to the coding and music lessons. Of course, some students were distracted,

82

talking to their peers or even browsing the Internet. Still, the vast majority paid

attention to the instructors and asked questions to clarify their understanding.

Musical competence and confidence:

For most students, this course was their first contact with music theory; these

students did not have the basic knowledge of music, for instance, musical notes and

rhythm. Even though the activities do not require deep knowledge, students had to

gain at least a basic understanding to complete the activities successfully. Fortunately,

students seemed to be able to pick up musical concepts quickly, and they were engaged

when asked to work on their activities. They did especially well with the shorter

activities, with more straightforward solutions, with an example to follow and hints

that guided them to the correct answer. On the other hand, students struggled with

longer, more open-ended activities, seemingly due to a lack of music knowledge or

perhaps confidence. When the instructor solved these longer activities with the class,

students could answer specific questions about what commands to use and how to use

them but struggled to do this alone. Similarly, when students were asked to create

their own compositions on the last day of class, they struggled to do so. It seems that

their lack of confidence in their own musical skill made them hesitate or even stop

when asked to make musical choices, even though they had a good understanding of

the necessary programming concepts and commands to implement a solution.

On the last day of the course, while some students were participating in the focus

group, the rest were composing the class song. The initial idea was to have individual

students composition. However, as students struggled to solve the long activities

during the classes, the researchers decided to have one single composition for the

group of students. During this process, students could indicate the commands to use

in TunePad with its parameters but needed help deciding the musical composition.

So the music instructor conducted that.

83

6.6 Limitation and Threats to Validity

This study was performed in specific settings. Therefore, its results may not

be generalizable in other contexts with populations from different backgrounds. The

number of students attending the course differs from those who answered the pre

and post-course surveys and participated in the focus group. Unfortunately, it was

impossible to collect the reason for drop-out from students that did so. The interviews

and data analysis was conducted by the same researcher who developed and delivered

the Code Beats program. Therefore, it may represent author bias.

6.7 Conclusion and Future Work

This chapter reports a case study of teaching computer programming with music

to students without music experience in a country where, predominantly, music is

not part of students’ formal education. Based on an approach already tested and

validated in a context where most students have previous music knowledge, the orig-

inal curriculum and activities were adapted to this new setting. It was impossible

to see a statistically significant difference between the pre and post-course surveys

regarding students’ confidence in CS, CS belongingness, gender equality in CS, and

students’ future in CS. However, the pre-course survey answers were already high

for these categories. According to students’ interviews and researchers’ observations,

the use of music was a key factor in attracting and engaging students in this course,

with some students saying that they would not be interested in attending the classes

without music.

This case study shows that it is possible to use music to attract students in a

setting where music is not part of their formal education, adding new findings to the

growing body of CS education research that looks for ways to attract, motivate and

84

engage students into this area.

New musical genres can be tested in future work to see if they produce different

results. Additionally, a more extensive curriculum with more classes can be tested to

cover all the foundational computer programming and music concepts.

85

CHAPTER 7

STUDY OF SCAFFOLD-BASED ACTIVITIES

FOR MUSIC CODING

One way to keep students engaged and improve their confidence in learning computer

programming is by decreasing the friction of initial computer programming instruc-

tions and exercises. Studies have shown that scaffolding can reduce the possibility of

overwhelming and frustrating students new to programming, especially during inde-

pendent learning activities [69].

One way to do that is by implementing scaffold-based activities [70]. Although

there is an extensive body of literature on using scaffold-based activities in program-

ming broadly [71, 72, 73], their use in a music coding context can require non-trivial

adaptations. For example, traditional programming activities often require a partic-

ular state to be attained at the end of an activity, such as sorting a given list or

successfully navigating a maze. Because music is an ephemeral art form, producing

only a series of sounds over time, it can be challenging to create the same types of

activities in the domain of music, and the consequences of adapting these scaffolds to

a music coding context have not yet been studied.

This chapter describes a study implementing scaffolding within a two-week vir-

tual summer camp using the Code Beats approach. Before this camp, I adapted three

common scaffolded activities—complete the code, buggy code, and reorder the code—

to the domain of music coding, subtly offering musical support while still requiring

students to learn and use programming concepts. During this camp, I examined these

different scaffold-based activity types applied to in-class activities and compared them

86

in terms of perceived difficulty and solution correctness.

7.1 Related Work

7.1.1 Scaffold-Based Curricula and Activities

The term scaffolding has been used to refer to the process where a teacher or a

more knowledgeable peer assists a learner, altering the learning task so the learner

can solve problems that would otherwise be out of reach [74]. One of the benefits of

scaffolding is increasing learning engagement and motivation, permitting students to

work with artifacts that are complex enough to be meaningful and fun [75].

Scaffolding can be used as a teaching and learning strategy in terms of curriculum,

for instance, the Use-Modify-Create framework [40] and PRIMM [76], and in directly

scaffolded activities, such as worked example, buggy code and Parsons Problems [77].

When it comes to activities, worked examples, incomplete code, buggy code,

modifying code, and parsons problems are listed as activity types that are scaffold-

based and can be used in a wide range of ways to teach computer programming

concepts [78, 77].

One type of scaffold-based activity, Parsons Problems, was initially described as

“Parson’s Programming Puzzles” [71]; the original idea resembles a drag-and-drop

puzzle where all code fragments must be ordered to form complete working code.

To date, there are several variations in Parson’s problems. For instance, there are

specific platforms that allow users to solve Parsons Problems [79], there are Parsons

Problems implemented in ebooks [80], and, perhaps most naturally, Parsons Problems

implemented in block-based environments [81].

Another common scaffold-based activity is intentionally placing bugs within

learning activities, asking students to explain or fix bugs carefully designed to ad-

87

dress key concepts and highlight common errors [72, 82, 83]. A final scaffold-based

activity type is to ask students to complete partial programs, known as completion

strategy or the completion problem [73, 84].

7.1.2 Scaffolding Music-based Programming

Despite the good results in motivating and engaging students in computer pro-

gramming classes using coding music [26, 29, 33], none of the approaches related here

deeply apply scaffold-based techniques in the activities.

To our knowledge, the only work that applies scaffolding techniques to music cod-

ing is the one reported in previous chapters of this dissertation, where the curriculum

and how the activities are distributed in classes are based on the Use-Modify-Create

framework [40]. In this approach, students were given relatively lightly scaffolded

exercises. For example, they were given backing tracks and asked to add a new track,

which added a melody or a percussion instrument, and the new track only contained

light guidance.

The music domain presents unique challenges to scaffolding techniques such as

complete the code, buggy code, and Parsons Problems. For instance, any activity

based on reordering statements can become more challenging in a musical context,

as the order of notes has a profound effect on the melody, and notes should match

the underlying chord progression, which adds complexity. In addition, any activity

based on fixing bugs, filling in missing statements, or adding commands is subject

to the same underlying chord progression, as well as the key of the song, and asking

students to add notes without strong guidance can lead to melodies that violate

musical guidelines, thus sounding off to the ear. It is clear that there are several new

challenges when using scaffold-based programming activities in the musical domain.

88

7.2 Adapting Scaffolding for Music Coding

In this chapter, I applied scaffold-based techniques that are normally used to

teach programming, such as complete the code, debug the code, and reorder the code,

and re-purposed them for implementation in a musical setting. First, I introduce them

and explain the adaptations needed to use them in a musical setting. For simplicity,

the term “scaffold-based activity type” will be referred to as “activity type” in this

chapter.

7.2.1 Complete the Code

This activity type, inspired by program completion [85], requires students to fill

in the blank, both musically and in code. From a coding perspective, the student

is given an almost complete code snippet that is not compiling due to the fact that

it is incomplete. To complete the code, the student has to define a variable, add

a parameter, or add commands. From a musical perspective, students are given an

entire backing track and an almost complete melody, and their task is to add one or

more notes to complete the melody.

Listing 7.1: Complete the Code - Example 1

1 ”””
2 1 . Complete the constant d e c l a r a t i on f o r A with the r i gh t va lue (

MIDI number) .
3 ”””
4
5 G = 67
6 A = ?
7 Bb = 70
8
9 playNote (G)

10 playNote (G)
11 playNote (A)
12 playNote (Bb)

89

Listing 7.1 is an example of this activity type, where students have to define the

variable A to complete the melody. 1

Listing 7.2: Complete the Code - Example 2

1 ”””
2 1 . Complete the l i s t d e c l a r a t i on with the f o l l ow i n g c on s t an t s . D,

C, B, B
3 2 . Complete command f o r with a va r i ab l e that w i l l be used on

command playNote
4 ”””
5
6 D = 74
7 C = 72
8 B = 71
9 notes = []

10
11 f o r ? in notes :
12 playNote (note , beats = 2)

Listing 7.2 shows another, more complex example of this activity type, where

students have to (1) complete the list declaration by adding four notes and (2) replace

the question mark with the name of the variable that controls the loop. 2

7.2.2 Buggy Code

For this activity type, inspired by finding and fixing errors [86], students are

given code that contains no syntax errors, but does contain one or more semantic

bugs. In the context of music, a semantic bug is an incorrect note in a melody or

harmony, an incorrect rhythm, or a combination of the two. To fix these, students

have to identify the bug and subsequently modify the code. As with complete the

code, they can identify the bug by listening to the music. Their prior exposure to

1https://youtu.be/WfK09YjwSPc shows a simulation of a student completing this
activity in TunePad, as described above.

2https://youtu.be/XyXPyJrJrvs shows a simulation of a student completing a
more complex “Complete the Code” activity.

90

https://youtu.be/WfK09YjwSPc
https://youtu.be/XyXPyJrJrvs

Western music and hip-hop specifically will guide them toward finding the incorrect

note (or rhythm).

Listing 7.3: Buggy Code

1 ”””
2 1 . One constant (i . e . , note) has the wrong MIDI va l u e . Find i t

and change i t .
3 ”””
4
5 G = 67
6 A = 45
7 Bb = 70
8
9 playNote (G)

10 playNote (G)
11 playNote (A)
12 playNote (Bb)

Listing 7.3 shows an example of this activity type. Students must play the song

and identify which note is incorrect, trace that back to the incorrect MIDI number,

and then change the MIDI to the correct value. 3 As you can see, this example is

intentionally almost exactly the same as Listing 7.1, from complete the code, the

difference being that in the buggy code example, students have to identify which

variable is incorrect, whereas, in the complete the code example, it is clear which

variable needs to be defined.

7.2.3 Reorder the Code

This activity type is inspired by Parsons Problems [71], where the student receives

a complete code listing, yet statements within that listing are ordered incorrectly.

Students’ objective in these problems is to identify which lines are out of order and

reorder them correctly, ultimately building a working program and song.

3https://youtu.be/qTrn4g51vzk is an example of how students might solve a
“Buggy Code” activity.

91

https://youtu.be/qTrn4g51vzk

Listing 7.4: Reorder the Code

1 ”””
2 1 . Reorder the commands in t h i s t rack to c r e a t e a melody f o r t h i s

b ea t .
3 ”””
4
5 notes = [D, C, B, B]
6 D = 74
7 C = 72
8 B = 71
9

10 playNote (note , beats = 2)
11 f o r note in notes :

At Listing 7.4, there is one example of this activity type where students have to

identify the code that is out of order and reorder it. 4 In this case, students should

(1) understand how a “for loop” repeats commands that follow it (not precede it)

and (2) that a list only can use variables or constants after they are declared.

7.3 Research Questions

This research aims to compare the use of different types of activities in terms of

students’ perceived difficulty and task performance (i.e., correctness). The research

questions are:

RQ1: How do students’ perceptions of task difficulty vary among different activity

types?

RQ2: Which activity type leads to better performance (i.e., task correctness) among

students?

4https://youtu.be/0IND90AH0Aw is an example of how a student might solve a
“Reorder the Code” activity.

92

https://youtu.be/0IND90AH0Aw

7.4 Methods

7.4.1 Participant Demographics

This Code Beats summer camp was conducted online, with two groups of stu-

dents, one in the morning (Camp A) and another in the afternoon (Camp B), to

accommodate student interest and demand, since the students chose the section they

would like to attend, the participants were not randomly assigned. The average num-

ber of unique online viewers was 89.2 for Camp A and 64.1 for Camp B. A total of

87 students completed at least one in-class activity for Camp A and a total of 62 for

Camp B.

If students submitted at least one in-class activity, I could match their usernames

with the brief pre-camp survey, which collected demographic information. It repre-

sents more than 80% of the total. For Camp A, 73 students met these conditions, and

that population was, on average, 11.7 years old (min: 9 - max: 14). The self-reported

gender distribution was 43.8% girls, 50.7% boys, and 5.5% prefer not to say. The

self-declared race distribution was 28.8% African-American; 19.2% Asian; 2.7% His-

panic; 6.8% Multiracial, not Hispanic; 2.7% Other; 4.1% Prefer not to say; and 35.6%

White. For Camp B, 50 students met these conditions, and that population was, on

average, 11.9 years old (min: 7 - max: 15). The self-reported gender distribution was

34% female, 64% male, and 2% prefer not to say. The self-declared race distribution

was 24% African-American; 14% Asian; 8% Hispanic; 6% Multiracial, not Hispanic;

10% Other; 6% Prefer not to say; and 32% White.

Additionally, in terms of music knowledge, 38.4% of students from Camp A

declared that they did not know how to read music and did not play a musical instru-

ment. For Camp B, 22% of the students declared that they do not know how to read

music and neither plays a musical instrument. Concerning music genre preference,

93

39.7% of students from Camp A stated that hip-hop is their preferred music genre.

For Camp B, this is true for 44% of the students.

7.4.2 Study Design

Since two different camp sessions were held, it was possible to examine and

compare across activity types, as the same music coding activity was assigned, with

minimal changes, using a different activity type for each camp.

Day Programming Concept Camp A Camp B

1 Sequencing Complete Buggy

2 Variables and Constants Buggy Complete

3 Functions (single parameter) Complete Buggy

4 Functions (multiple parameters) Buggy Complete

5 Lists Reorder Complete

6 Repetitions (numeric control) Complete Reorder

7 Repetitions (list iteration) Reorder Complete

8 Repetitions (nested lists) Complete Reorder

Table 9.: Programming Concepts and Activity Types

As shown in Table 9 for Day 1 - Camp A, the “Complete the Code” activity type

was used, which was possible to compare directly with the “Buggy Code” activity

type used in Day 1 - Camp B because the music coding activities were otherwise

identical. Note that each day students completed two activities, meaning that I have

a total of 8 music coding activities with which to compare “Complete the Code”

with “Buggy Code” (Days 1-4, 2 activities each day), and similarly eight activities

with which to compare “Complete the Code” with “Reorder the Code” (Days 5-8, 2

94

activities per day). This allowed me to examine each activity type in the context of

completing the same music coding activity 5.

To measure students’ perception of the difficulty of each activity type, an in-

teractive polling system (Mentimeter) was used during the live class, which asked

students to respond to the following statement: I found the activity... with one of

the following choices: a) too easy; b) about the right level for me; or c) too difficult.

To measure the correctness of each student’s solutions, the source code each student

submitted during the camps for each given music coding activity was also collected

by downloading them directly from the programming platform after the camp.

7.4.3 Data Analysis

To compute the perception of difficulty for each activity type, I counted the

answers collected via the live polls for each activity type that was used.

To verify the correctness of each activity, each student’s solution was analyzed

and compared with an expected solution. As a result, each solution was classified as

“Correct” or “Incorrect”. A solution was only marked as “Correct” if that solution

was 100% accurate in both coding and musical parts. For instance, the solution

must use the proper programming constructs and the expected musical instruments

and notes in the expected order. Using Listing 7.2, as an example, the solution is

only classified as “Correct” if the order of the musical notes in the list definition is

exactly as expected (notes = [D, C, B, B]) and the repetition variable is defined

correctly (for note in notes:). After identifying whether an activity was correct

or incorrect, results were analyzed for each in-class activity on each day of camps A

and B and counted for each activity type.

5The list of activities can be accessed here: http://bit.ly/3VwQJQn

95

http://bit.ly/3VwQJQn

It is essential to state that it is possible to classify the solutions for in-class

activities used in Code Beats as “Correct” or “Incorrect” using the criteria of the

expected solution. For after-class activities and the camp project that are not within

the scope of this study, the students have space to show their creativity, where a

single “correct” solution is not expected for the problems.

To test the association between an activity type and level of difficulty, and activ-

ity type and correctness of the solution, I used the Chi-squared (χ2) test for indepen-

dence, with the value of alpha equal to 0.05. The Chi-squared test for independence

is used to determine whether there is a statistical association between two categorical

attributes [41].

7.5 Results

7.5.1 RQ1: Difficulty

Comparing the first four days of camp, where the activity types used were “Com-

plete the Code” (8 activities, 432 responses; 54 on average, SD = 11.6) and “Buggy

Code” (8 activities, 437 responses; 54.6 on average, SD = 10.1), the overall percentage

of students who classified the activity as “too difficult” for “Complete the Code” is

12.0% and for “Buggy Code” is 19.5%. The percentage of students who classified the

activity as “too easy” for “Complete the Code” is 20.1% and for “Buggy Code” is

17.2%. This difference was significant (χ2
(2) = 9.26, p-value = 0.01).

In Figure 23, I report the variation in the percentage of perceived difficulty

attributed by the students for each in-class activity in the first four days of the camp.

It is possible to observe that the mean percentage of students that rated the activity

as “too difficult” for “Complete the Code” activities is lower than for “Buggy Code”

activities. At the same time, the mean percentage of students who rated the activity

96

Fig. 23.: Difficulty - Results for Complete the Code and Buggy Code

as “about right level for me” is higher for “Complete the Code” than for “Buggy

Code”. Finally, the mean percentage of students who rated the activity as “too easy”

is higher for “Complete the Code” than for “Buggy Code”.

� In the context of coding music, “Buggy Code” is perceived as more difficult

than “Complete the Code”.

Comparing the last four days of camp, where the activity types used were “Com-

plete the Code” (8 activities, 308 responses; 38.5 on average, SD = 6.7) and “Reorder

the Code” (8 activities, 312 responses; 39.0 on average, SD = 7.6), the overall per-

centage of students classifying the activity as “too difficult” for “Complete the Code”

is 18.5% and for “Reorder the Code” is 34.0%. The percentage of students classifying

the activity as “too easy” for “Complete the Code” is 12.7% and for “Reorder the

Code” is 13.1%. This difference was significant (χ2
(2) = 20.61, p-value = 0.00003).

In Figure 24, I report the variation in the percentage of perceived difficulty

attributed by the students for each in-class activity in the last four days of the camp.

It is possible to observe that the mean percentage of students that rated the activity

97

Fig. 24.: Difficulty - Results for Complete the Code and Reorder the Code

as “too difficult” for “Complete the Code” activities is lower than for “Reorder Code”

activities. Additionally, the mean percentage of students who rated the activity as

“about right level for me” is higher for “Complete the Code” than for “Reorder the

Code”. Finally, the mean percentage of students who rated the activity as “too easy”

is slightly higher for “Reorder the Code” than for “Complete the Code”.

� When coding music, “Reorder the Code” is perceived as more difficult

than “Complete the Code”.

7.5.2 RQ2: Correctness

Comparing the first four days of camp, where the activity types used were “Com-

plete the Code” (8 activities, 355 coded solutions; 44.4 on average, SD = 10.3) and

“Buggy Code” (8 activities, 358 coded solutions; 44.8 on average, SD = 9.6), the

overall percentage of students with a correct solution using “Complete the Code”

as the activity type was 51.5%, and using “Buggy Code” was 62.0%. The overall

percentage of students with an incorrect solution using “Complete the Code” as the

activity type was 48.5%, and using “Buggy Code” was 38.0%. Considering the group

98

of answers, the χ2 − test was significant (χ2
(1) = 7.95, p-value = 0.005).

This also can be observed when we look at the variation in the percentage of

correct and incorrect solutions for all in-class activities for the first four days of the

camp. For example, in Figure 25, we can see that the mean percentage of incorrect

solutions using “Complete the Code” is higher than that of solutions for activities

using “Buggy Code”. Coexisting, the mean percentage of correct solutions is higher

for activities using “Buggy Code” than solutions using “Complete the Code”.

Fig. 25.: Correctness - Results for Complete the Code and Buggy Code

� When coding music, students perform better when the activity was

scaffold-based on “Buggy Code” than “Complete the Code”.

Comparing the last four days of camp, where the activity types used were “Com-

plete the Code” (8 activities, 279 coded solutions; 34.9 on average, SD = 9.1) and

“Reorder the Code” (8 activities, 263 coded solutions; 32.9 on average, SD = 8.8), the

overall percentage of students who reached the correct solution for the activity that

used “Complete the Code” as the activity type is 37.3%, and for “Reorder the Code”

is 40.3%. The overall percentage of students who did not reach the correct solution

99

for the activity that used “Complete the Code” as the activity type is 62.7%, and for

“Reorder the Code” is 59.7%. Considering the group of answers, the χ2 − test was

not significant (χ2
(1) = 0.52, p-value = 0.47), as students seemed to struggle equally

on both activity types. This also can be observed when we look at the variation in

the percentage of correct and incorrect solutions for all in-class activities for the last

four days of the camp in Figure 26.

Fig. 26.: Correctness - Results for Complete the Code and Reorder the Code

To summarize, 51.5%, 62%, 37.3%, and 40.3% of students provided correct an-

swers for the four combinations of activity types and time periods, even though the

activities were designed to be easy to complete correctly. There is clearly room for

improvement when, in all cases, more than a third of students were struggling to

complete activities correctly.

� When coding music, students struggled to create correct solutions, even

with scaffold-based support.

In the context of this study, based on students’ classification, I found that “Com-

plete the Code” is perceived as less difficult than “Buggy Code” and “Reorder the

100

Code”. At the same time, students performed better in terms of correctness for

“Buggy Code” activities than “Complete the Code”, possibly because correctness in

music (i.e., it sounds good) differs from correctness on programming assignments,

which require a near-exact match. Especially during the second week of classes, less

than 50% of the students could complete the activities correctly. While there are

some potential explanations—students do not always read instructions carefully—I

believe that student difficulties with these activities were deeper than this.

7.6 Limitation and Threats to Validity

The virtual format of this camp made the students’ participation in the activities

hard to influence. Consequently, the number of students who attempted to complete

the activities was lower than those who watched the class. Additionally, the number

of students I could analyze the activity solution is lower than those who rated the

activity’s difficulty. This difference may be because some students were not logged

in to the coding platform to perform the activities or were using credentials different

from the one informed. This may skew the data, especially the analysis of students’

final beats, towards the most engaged students. However, that data should be seen

as the best-case data and may change for in-person classes, where a more significant

percentage of the class would participate actively in activities.

Another possible threat to validity is the percentage of the students with previous

knowledge of music, as those who answered that they know how to read music or play

a musical instrument was high (Camp A - 61.6% and Camp B - 78%). Unfortunately,

this percentage might not be possible to reproduce in future classes; it is unclear

whether the high percentages were because musical people were attracted to this

class or whether this would hold for most populations. It is important to mention

that the musical genre used in Code Beats was not the preferred musical genre for

101

the majority of the students.

7.7 Conclusion

As the main contribution to the CS Education community, this study compares

three different scaffold-based techniques in terms of perceived difficulty and correct-

ness that are applied to a specific approach, teaching coding using music, but can

also be used as a starting point for comparison in different contexts and approaches.

For Code Beats, which aims to attract students that would have their first contact

with computer programming, I believe it is of the utmost importance that students

do not perceive activities as difficult, which could lead to frustration and class aban-

donment.

102

CHAPTER 8

USING DOMAIN-SPECIFIC, IMMEDIATE

FEEDBACK IN CODE BEATS TO SUPPORT

STUDENTS

Motivated by the results from the experiment that uses scaffold-based activities for

music coding, presented in Chapter 7, I decided to implement and evaluate an extra

level of help to the students in the learning process, using domain-specific, immediate

feedback to support students during the activities-solving process.

While Code Beats has shown overall promise, as with any external domain, there

is a significant caveat that students must understand two domains at once, com-

puter science and music. To avoid unnecessary barriers to learning, researchers and

instructors must pay careful attention to this secondary domain, ensuring that ei-

ther the students already have the necessary background or that they are given this

background. Creating positive experiences (including enjoyment and growing confi-

dence) is particularly important because they profoundly impact students’ intention

to persist in computing [87].

Learning programming can be challenging, and most students need help to make

progress. Therefore, providing timely feedback is an important factor in learning [88]

for improving knowledge and acquiring skills [89]. Specifically, immediate automated

hints can help students progress in their learning by providing instant and relevant

feedback to correct their mistakes and point them in the right direction to advance

through activities [90]. Some studies use feedback with programming activities, which

has been shown to be helpful [88, 89]. However, there is still a need for further research

103

on designing programming feedback to create positive, motivating, and engaging pro-

gramming experiences while promoting performance and learning [91]. Furthermore,

the feedback necessary to ensure good musical choices is orthogonal to the feedback

needed to create correct programs; a program can be syntactically valid and even

play the right number of notes but still be woefully out-of-key.

This chapter presents the results of a quasi-experimental study using the Code

Beats approach. Students from one group received expert-authored, domain-specific

feedback in their in-class activities to help them during the solution process. In

comparison, students from another group that received the exact instructions had

to solve the same activities without integrated feedback. The data collected during

eight classes, and twenty-four activities, shows statistically significant evidence that

the group that received feedback completed their activities with higher scores of

correctness. In addition, focus groups conducted after the camp showed that the

students valued the feedback and that they increased student confidence.

8.1 Related Work

8.1.1 Feedback to Improve Code Learning

Formative feedback is defined as information communicated to the learner in-

tended to modify their thinking or behavior to improve learning [92]. An effective

feedback is defined as non-evaluative, supportive [92], timely, specific [93, 92], posi-

tive, and corrective [93].

The timeliness of feedback can be divided into three categories. First, immedi-

ate feedback is often more effective on complex tasks when students have less prior

knowledge [92] and is appropriate for novice programmers [91]. Next, delayed feed-

back is given when the student submits a solution to an auto-grader or test case.

104

This type of feedback is most used to show correct behavior rather than subgoals

for a task [91]. Finally, feedback on demand, where the student has to ask for help

explicitly, an action that novice programmers need help with [91].

Feedback can also be categorized by type. For instance, “Verification”, which

informs the learners about the correctness of their responses; “Correct Response”,

that tells the learner of the correct answer to a specific problem, with no additional

information; “Try Again”, informs the learner about an incorrect response and allows

the learner one or more attempts to answer it; “Error Flagging”, which highlights

errors in a solution without giving a correct answer; “Elaborated”, explains why a

specific response was correct or not and may allow the learner to review part of

the instruction; “Hints”, indicate what to do next, avoiding explicitly presenting the

correct answer; And “Bugs/misconceptions”, provides information about the learner’s

specific errors or misconceptions [92].

Successful results in learning, student engagement, and motivation in computer

programming using feedback are reported [88, 89]. For instance, Reis et al. [94] re-

port that students using Clara, a tool that provides hints, could significantly reduce

their effort to get the correct solution compared to using Python Tutor [95], which

produces code visualization, or only test cases. Additionally, students scored Clara as

more useful than test cases to fix bugs in their programs [96]. Also, Marwan et al. [91]

presented an adaptive immediate feedback system integrated into a block-based pro-

gramming environment. This system provides positive and corrective feedback in

real-time as students work. The results show that the feedback system increased

students’ intention to persist in CS and that students that used the feedback system

had greater engagement than the students that did not use the feedback system.

In terms of expert-authored feedback, Gerdes et al. [97], presents Ask-Elle, a tutor

for learning that supports the stepwise development of Haskell programs by providing

105

hints during the development process. Also using expert-authored feedback, Benotti

et al. [98], presents Mumuki, a web-based tool that provides formative feedback. One

of the differences between Mumuki and Ask-Elle is that Mumuki shows feedback only

when the solution is submitted and not during the development of the program.

8.2 Background

8.2.1 Domain-Specific Immediate Feedback

In a previous iteration of Code Beats, reported on Chapter 7, I noticed that even

using scaffolded, short tracks, the code developed by many students, while accurate

from a computer science perspective, often violated musical guidelines, playing notes

out-of-key or in an odd rhythm. While most students could hear, and correct, the

most egregious musical mistakes, they often struggled with more subtle issues. This

eroded their confidence overall, even when they were mastering the computer pro-

gramming concepts. With that in mind, I implemented a domain-specific, immediate

feedback system to guide students as they completed the activities. The feedback

messages point out the music requirements of the activity, specifically where the cur-

rent composition falls short, and not the coding requirements. In the context of this

work, aligned with the feedback types explained by Shute [92], formative feedback

will be called “Hints”, indicating what to do next, avoiding presenting the correct

answer. The other type will be called “Feedback”, combining “Verification” and “Er-

ror Flagging” from their original types, indicating whether the program is correct or

incorrect.

The content of the hints and feedback messages is a breakdown of the activity

requirements. When the activity starts, the messages on the screen are hints that

inform students of the activity requirements. At the bottom of Figure 27, in yellow,

106

are examples of hints, each pointing to one of the activity’s requirements. The first

reminds the student that the melody must be four beats long, the second states that

the melody must be the same as the original, and the third states that the rhythm

must be the same as the original melody. The sound of the original track (e.g., melody

or drum track) is provided to students as an example.

Fig. 27.: Example of Hints

Each activity has a trigger that transforms the hint into feedback. In our running

example, the feedback mechanism is triggered each time the number of beats in a track

changes (i.e., the student plays a note or adds a rest). For example, Figure 28 shows

an example of the same activity that is now four beats long. The messages that were

hints in Figure 27 (yellow) now are feedback in Figure 28 (green and red). The first

and third messages, in green, are examples of verification feedback indicating that

the student has achieved two requirements: (1) the melody is four beats long; (2) the

107

rhythm is the same as the rhythm from the original melody. The second message, in

red, is an example of verification feedback indicating that the student did not reach

that requirement because the melody is not the same as the melody from the original

song. The feedback points out that something is wrong and indicates the line of code

with the problem, also working as error flagging.

Fig. 28.: Example of Feedback - 1

On the other hand, if the student reaches all the requirements, all messages

will be green, using the verification feedback to indicate that the solution is correct.

Figure 29 shows an example of the same activity with all feedback messages in green,

indicating that the student reached the correct answer.

Observing the classification described by Narciss [99] and extended by Keuning,

Jeuring, and Heeren [88], the formative feedback used in the context of this work have

108

Fig. 29.: Example of Feedback - 2

the following components: Knowledge of Performance (KP), as we identify the activity

subgoals and indicate when they are achieved; Knowledge of Result/Response (KR),

identifying the specific subgoal as correct or incorrect; Knowledge of the Correct

Results (KCR), identifying when all subgoals are correct, the activity is correct;

Knowledge About Task Constraints (KTC), subtype Hints on Task Requirements

(TR), breaking down the activity goal in domain-specific hints. Knowledge About

Mistakes (KM), subtype Solution Errors (SE), indicating that the solution does not

show the behavior expected in the activity, pointing to the line where the error is.

Finally, in terms of technique, also defined by Keuning, Jeuring, and Heeren [88],

the feedback system reported here uses Basic Static Analysis (BSA), analyzing the

piece of code the student is writing in a specific cell to generate the hint or feedback

109

message.

To implement this immediate feedback, a test case-like code performs the static

analysis using as input the cell code and cell output (e.g., MIDI numbers), returning

to the activity cell the messages content and its type. This analysis is performed

at every line completion in the students’ code (e.g., hitting enter, changing line, or

“playing” the cell’s code). This categorizes the feedback as immediate, as it is there

since the beginning of the activities, and it is updated at every code change. The

feedback is expert-authored, where the rules are specified according to the expected

results of each activity known by the feedback author.

8.3 Research Questions

RQ1: How does domain-specific, immediate feedback affect the activities’ correctness

during class?

RQ2: What is the student’s perception of the domain-specific, immediate feedback?

8.4 Methods

8.4.1 Study Design and Data

This chapter reports a quasi-experiment using data collected from a Code Beats

summer camp held in the Summer of 2022. The classes were in person and held for

five days, with two classes each day, each with a duration of one hour and forty-five

minutes. Each class consisted of a mix of instructions and coding activities. The

coding activities are actual hip-hop songs transcribed into TunePad. The project

presented to the student is almost complete, with all song tracks but one that the

students will create (e.g., melody or hi-hat track). The activities were divided into

two types. The first is the short activity, which asks students to create a song track

110

in a specific code cell that will mimic the original song. This short activity has only

one correct answer, for example, a sequence of musical notes in a particular order and

rhythm. And the second is the long activity that asks students to create a song track

in a code cell that will fit the original song. This activity has the music requirements

but allows multiple solutions. For instance, they require that the students use a

group of musical notes but do not specify the order. Each class, from class one to

class eight, had two short and one long activity, summing up to 24 activities 1. The

last two classes did not have these activities, as the classes were used to prepare the

students to create their final project.

During the Summer of 2022, two sessions of Code Beats were offered, one in the

morning and another in the afternoon. The student chose the session that they would

like to attend. Students from one session received the activities with the immediate

feedback system, and students from the other session received the same activities,

except by the immediate feedback system. All the rest of the classes were the same.

The group of students that received the immediate feedback will be called “Group A”

and the group of students that did not receive the immediate feedback will be called

“Group B”.

To analyze the correctness of the students’ solution (RQ1), the final solution de-

veloped by the student and code snapshots generated during the solving process were

collected. To analyze the immediate feedback system effect (RQ2), the students from

Group A answered the question: “When you saw a message that looked like this, how

did it affect your motivation?” presented with each of the hints/feedback examples.

Additionally, they participated in a focus group to talk about their experience.

1The list of activities can be accessed here: http://bit.ly/3GBpOP1

111

http://bit.ly/3GBpOP1

8.4.2 Participant Demographics

Students from both groups answered demographic questions. 24 students from

each group answered questions. On average, Group A students are 12.1 years old (min

- 10; max - 15). 33.3% of the students from Group A self-declared as girls, 58.3% as

boys, and 8.3% prefer not to say. 12.5% of the students from Group A self-declared

as Asian/Asian-Americans, 33.3% as Black/African-American, 8.3% as Multi-Racial,

37.5% as White/Caucasian, and 8.3% prefer not to say. 58.3% of the students from

Group A declared that they play instruments, and for 29.2% of the students from

Group A, Code Beats was their first coding experience.

On average, Group B students are 12.2 years old (min - 10; max - 17). 16.7% of

the students from Group B self-declared as girls, 75.0% as boys, and 8.3% prefer not

to say. 25.0% of the students from Group B self-declared as Asian/Asian-Americans,

25.0% as Black/African-American, 8.3% as Multi-Racial, 33.3% as White/Caucasian,

and 8.3% prefer not to say. 54.2% of the students from Group B declared that they

play instruments, and for 16.7% of the students from Group B, Code Beats was their

first coding experience.

8.4.3 Data Analysis

To answer the first research question, all activities’ final solutions and code snap-

shots collected during the solving process were analyzed, searching for the code that

meets the expected solution. If the code that meets the expected solution was identi-

fied at any time, the solution for that student and activity was classified as “Correct”,

even if the student changed the solution afterward. Otherwise, the student’s solu-

tion for that activity was classified as “Incorrect”. This code analysis was performed

automatically using a Python script that compared the result produced by all the

112

solutions with the expected result.

That analysis was performed for solutions developed by students from both

groups. To test the statistical significance of the difference between both groups, the

Two Sample t-test was performed when the data is normally distributed (Shapiro-

Wilk test with p-value > 0.05), and the Wilcoxon Rank Sum test when the data is

non-normally distributed (Shapiro-Wilk test with p-value < 0.05).

To answer the second question, I analyzed the data from a post-camp survey

question that asks about students’ motivation regarding the immediate feedback sys-

tem and a follow-up question on the post-camp interview. These questions were asked

only for students from Group A.

8.5 Results

8.5.1 RQ1: Correctness

To answer the first research question, I present the results of the analysis of the

solutions, where the students’ solutions for each activity were classified as “Correct”

or “Incorrect”. There were a total of 24 activities for each group. A total of 526

solutions were submitted by students from Group A, with an average of 21.9 (SD =

1.2). A total of 565 solutions were submitted by students from Group B, with an

average of 23.5 (SD = 2.4).

Figure 30 shows the percentage of correct solutions for both groups. The per-

centage of students that reached a correct solution is normally distributed for both

groups, Group A (p-value = 0.2117) and Group B (p-value = 0.1645). The differ-

ence in the percentage of correct solutions between groups A and B is statistically

significant (Two Sample t-test - p-value = 0.0002145).

Considering only students from Group A, on average, 59.4% of the students

113

Fig. 30.: Percentage of Correct Solutions

that reached the correct solution were able to do that without receiving any error

flagging during the solving process of the activity that they got right. (SD = 21.82;

Shapiro-Wilk test p-value = 0.7625).

Analyzing only the long activities, the difference is more expressive. The average

percentage of students that got the correct solution is 45.7% for Group A (SD =

15.7) and 13.5% for Group B (SD = 9.4). This difference is statistically significant

(Wilcoxon Rank Sum test - p-value = 0.002742).

8.5.2 RQ2: Students Perception on Feedback

To answer the second research question, I present in Figure 31 the results of

students’ responses regarding their motivation for each message type. With examples

of each message type, the student answered if they felt less motivated, more motivated,

or the motivation did not change when seeing a message like the one showed them as

an example.

After the camp, Group A students were asked, “how did you know if you coded

114

Fig. 31.: Students Motivation - Feedback System

something correctly or not.” One student related the whole feedback system behavior,

since the error identification to the indication when the problem was fixed: “Well,

there’s something that pops up as an error. It’s at the bottom, of yourself, and then

you have to read what the problem is or it’ll tell you the problem. Then when you

find the problem, you could fix it and then it would just go away. I guess that would

be how it works.”

Another student pointed out the error flagging functionality that tells the student

where the problem is: “It would tell me the line that was in or row. It would be like,

“Error in line 36,” or something. Then I’d go to 36 and see what the problem is, or

there would be where it would say an error, but it isn’t actually an error. You just

have to continue the code.”

Finally, one student reported the verification behavior of the feedback system,

making a correlation with a check mark: “It basically gives you this thing on the

bottom part where it gives you like a check mark, if it’s correct. And if it has anything

bad on it, then it says invalid syntax or something.”

Furthermore, during the focus group, they were prompted to discuss the feedback

they received, how helpful they were in identifying and fixing mistakes, and what

would happen if TunePad had no feedback available.

115

One student pointed out how the feedback helped him/her to identify the MIDI

numbers that were expected: “The hints were helpful when you were trying to figure

out, when you were trying to... when you knew what we wanted it to sound like, but

you had to find out which number on the keyboard or which string on the guitar it

was. And the hints’ kind of helped you lean towards the area that the number you

wanted were.”

Some students highlighted the importance of the feedback to help develop a

good-sounding solution, for example: “If they weren’t there, then the music would

either sound very bad or not play at all.”, and: “Then until then when you finished

the music, you’re wondering, “How come it’s not working,” or it sounds so off and

you would have never found it because the error wouldn’t have showed you.”

Another student mentioned how hard it would be to find the lines with error

if the feedback system was not in use: “It would’ve been a lot harder [without the

hints]. . . Because you don’t know what you did wrong, so you would have to check

every single line of code you have to see what you did wrong. Because it tells you

where exactly you did it wrong.”

Finally, one student stated that it would not be possible to know what happened

with its solution: “You would never know what happened.”, and another student

thinking of a bigger solution stated that with more lines of code the situation would

be worst: “If you had larger lines that go up to 100, then we would be doomed.”

8.6 Discussion and Conclusion

The results presented in this chapter provide evidence that using domain-specific

immediate feedback improves the percentage of correct solutions developed by the

students. The data show a statistically significant difference in the percentage of stu-

dents that reached the expected solution between both groups. Students who received

116

domain-specific immediate feedback have a higher percentage of correct solutions than

those who did not receive the feedback.

� The percentage of students who reached the correct solution is greater for

the group that received the immediate feedback than for the group that

did not receive feedback.

This finding differs in parts from the one reported by Reis et al. [96], where

students using the feedback system and only test cases got similar scores in a post-test.

It is crucial to mention that the measure used in that work differs from the measure

I am using, as I am using specifically the activity correctness and not a post-test.

Conversely, Marwan et al. [91], found suggestive evidence that using their feedback

system improved students’ performance and learning. The finding is reinforced by

Marwan, Williams, and Price [100], which found evidence suggesting that code hints

with textual explanations and code hints with both textual explanations and self-

explanations prompts significantly improve performance.

Furthermore, when isolating and analyzing only the long activities, this difference

between the averages of the percentage of students that reached the correct solutions

from both groups is even higher, indicating that the feedback is even more critical

with longer tasks, showing that students are more engaged in doing the activities.

The difference in student engagement aligns with findings from Marwan et al. [91],

where students using their feedback system significantly improved their engagement.

However, it is essential to mention that the measure used in that work differs from

the measure used here.

The results presented in this chapter show that students were more motivated

by the “green” messages that indicated that they met one requirement. In contrast,

the motivation did not change when students saw a “yellow” or “red” message. This

117

suggests that, regardless of the hints and feedback indicating something was wrong,

the students were motivated to see that their solution was correct.

� Most students were motivated to receive the “green” feedback during the

activity solution process.

This finding is in some measure related to the result reported by Mitrovic, Ohls-

son, and Barrow [101], not associated with the motivation but with the importance

of the positive feedback, as they report the impact of the positive feedback on stu-

dents’ performance on SQL activities. Moreover, this finding is related to the affective

consequences of feedback, where positive feedback increases motivation, carrying in-

formation about one’s accomplishments, strengths, and correct responses [102].

Analyzing the interviews, it is possible to conclude that students understood how

immediate feedback works and how to use it to reach the objectives of the activities.

Furthermore, students believe the feedback is helpful, and without it, it would be

much harder to solve the activities.

� Students found the hints and feedback helpful, and it would be much

harder to solve the problems without them.

This finding is in line with what is related by Reis et al. [96], where students

score their hints system as more useful than test cases, and the students could easily

find the location of the errors using the hints system.

8.7 Limitation and Threats to Validity

Due to the nature of the summer camp organization, where each student chooses

to register for the session that best suits their interests, it was impossible to have

an equivalent distribution of participants between both groups or randomize the stu-

118

dents’ selection, that is the main reason to use a quasi-experimental setup rather than

a controlled experiment. This immediate feedback system was implemented specifi-

cally in TunePad. Therefore, implementing a similar approach in other tools used to

teach coding with music or in different contexts might not be possible.

In this study, the use of immediate feedback directs students toward a solution

that meets the activity requirements. However, it is important to note that utilizing

different forms of feedback may yield varying results. Additionally, it is uncertain

whether the findings from this study can be replicated with different demographics.

119

CHAPTER 9

CONCLUSION

The primary goal of this research presented in this dissertation is to design and

evaluate a curriculum that uses hip-hop beats to teach the foundational concepts

of computer programming to attract and engage students in the CS field, helping

the growing body of work of studies that look for alternatives that attract those

who are not yet interested in the field, presenting an alternative to the traditional

approaches. This chapter summarizes the major research contributions and findings

from the research studies.

9.1 Research Contributions

Designed and implemented multiple instances of the Code Beats curricu-

lum. This dissertation described a curriculum that teaches the foundational concepts

of computer programming, incorporating them with music. Its first version consisted

of 15 classes, which was changed for its second version, reducing to ten classes. One of

the reasons for that is that, during the first experiences with the curriculum, concepts

like conditionals were not easy to map. So I decided to remove this concept and also

make some adjustments in the order each concept was presented.

The curriculum presented in this dissertation aims to introduce students to dif-

ferent computer programming resources, including some not usually explained during

introductory computer programming classes, such as modularization and parallelism.

Nonetheless, the curriculum presented here is not static. On the contrary, it can be

adapted and changed according to the needs. Indeed, in the experiment reported

120

in Chapter 6, the curriculum was adapted, removing some of the concepts to fit the

conditions of that experiment best.

Studied the impact of Code Beats approach on student engagement in

computer science in multiple contexts. One of the main objectives of Code

Beats is to attract and engage students toward CS.

In this dissertation, the students’ engagement was reported in three chapters.

First, in Chapter 4, I reported the initial results of this approach, where after a vir-

tual summer camp with students from middle school, it was possible to say that the

use of hip-hop to engage students toward CS is promising. Next, in Chapter 5, with

a different audience, this time applying the approach to adult learners, I documented

changes in adult learners’ perception of computer programming, where, after Code

Beats, they started to think of computer programming as something they could learn

and do, rather than their previous perceptions of computer programming, that was

something boring, difficult, and impossible to learn. Finally, in Chapter 6, I applied

the Code Beats approach with middle schoolers that do not have music experience.

In this experiment, it was possible to see that, according to students’ interviews and

researchers’ observations, the use of music was a crucial factor in engaging students

in this course, also being fundamental to attracting them to register and attend the

classes, with some students reporting that they would not be interested in participat-

ing in the classes if it were not related to music.

Investigated the use of two student support educational techniques to im-

prove the students’ learning experience. Despite the exciting and motivating

student engagement results observed when using the Code Beats approach, we be-

lieved that the student learning environment could be improved. The first strategy I

reported in Chapter 7 is using different scaffolding strategies in the in-class activities.

The experiment aimed to test these historically used learning strategies in the music

121

coding context. This required strategies adaption and provided new findings to the

CS education community, contrasting with results from previous works using these

scaffolding types in different contexts. Unfortunately, even using these scaffolding

strategies, the percentage of correct solutions delivered by the students was quite

lower than expected, with, in some cases, the rate of correct solutions being lower

than 50%.

So, after using scaffolding strategies, I explored using expert-authored domain-

specific immediate feedback to guide students toward the activity solution, helping

them with the musical requirements and allowing them to focus their attention on

the code part of the solution. The results using feedback were exciting, improving

the correct solution’s rate compared to students who did not receive this extra help.

9.2 Significant Findings

Each experiment revealed specific findings to contribute to this research disserta-

tion. Starting with the main finding from Chapter 4, that reported the first experience

with the Code Beats approach: The use of music, specifically hip-hop, to teach

coding improved the students’ engagement towards Computer Science.

Motivated by this first finding that was observed with middle school students,

I used the Code Beats approach with adult learners. This experience is reported in

Chapter 5, and its main finding is: Music has proven to be a helpful tool in

teaching foundational concepts to adult learners, as it can alter their per-

ception of computer programming. Prior to attending Code Beats, many

perceived computer programming as boring, difficult, or even impossi-

ble to learn. However, after participating in the program, their outlook

changed, and they began to view computer programming as an attainable

skill.

122

Next, the Code Beats approach was tested in a different context, with students

without previous music knowledge. This experiment is reported in Chapter 6 and

has as its main finding: The use of music to teach coding was a key factor in

attracting and engaging the students in the classes.

Beyond the results in terms of students’ motivation and engagement, I also tested

education techniques to facilitate the student learning process. The first technique

that I tested using the Code Beats approach is using activities scaffolding techniques

that are commonly used in computer programming in the context of coding music.

The main finding from the experiment reported in Chapter 7 is: When coding

music, students struggled to create correct solutions even with scaffold-

based support.

Finally, the use of immediate feedback on coding activities was implemented and

tested in the context of Code Beats. The experiment is reported in Chapter 8, and its

main finding is: The use of immediate feedback during the activities-solving

process improved the percentage of activities’ correctness, with students

perceiving the use of feedback as helpful and being motivated when seeing

that their activity was correct.

Ultimately, it is possible to say that the thesis that introducing students to com-

puter programming using high-quality, culturally relevant music will improve students’

perceptions of the computer science field holds.

A total of 352 students were part of the experiments reported in this dissertation,

with 245 students being part of the demographics considered in each chapter. The

table 10 summarizes the number of participants for each experiment.

123

Experiment Details Number of Participants

Chapter Format Total For Demographics

4 - Engagement Virtual 45 17

5 - Adult Learners Virtual 40 32

6 - Without Music Background In-person 55 25

7 - Scaffold-based Activities Virtual 149 123

8 - Music-coding Feedback In-person 63 48

Total 352 245

Table 10.: Code Beats Camps - Number of Participants

9.3 Future Work

This dissertation contributes to advancing the CS education community and the

growing body of research about music to teach computer programming. That being

said, there are several directions for future work.

Scaling up, collecting more data. The work reported in this dissertation proposed

the initial framework of Code Beats, testing this approach in different contexts, such

as middle school students with previous music knowledge, middle school students

that do not have music experience, and adult learners. Even with the exciting results

so far, more experiments can be performed, collecting more data and improving the

framework.

Tweaks to the curriculum. With the new experiments, it is possible to tweak the

curriculum, adding new computer programming concepts or even finding different

ways to connect the already used concepts with music.

New music genres. Additional music genres can be studied and used with the

124

proposed curriculum. The use of different music genres has the potential to attract

other populations, contributing to the effort of broadening CS education.

More qualitative studies. The studies conducted and reported in this dissertation

show that the approach attracts students to attend the classes and engages them

toward CS. However, more qualitative studies are necessary to understand why it

works.

Analysis by demographics. The results reported in this dissertation are overall

results for the population of the studies. It would be interesting to obtain the results

of each subgroup of the population, for instance, by race, by gender, and by previous

experience in coding or music.

Testing the students’ gained knowledge. Another area for future research is

to test the impact of the Code Beats approach on students’ knowledge of music and

computer programming.

125

References

[1] Polina Charters et al. “Challenging Stereotypes and Changing Attitudes:

The Effect of a Brief Programming Encounter on Adults’ Attitudes toward

Programming”. In: Proceedings of the 45th ACM Technical Symposium on

Computer Science Education. SIGCSE ’14. Atlanta, Georgia, USA: Associa-

tion for Computing Machinery, 2014, pp. 653–658. isbn: 9781450326056. doi:

10.1145/2538862.2538938. url: https://doi.org/10.1145/2538862.

2538938.

[2] United States Bureau of Labor Statistics. Occupational projections and worker

characteristics. Dec. 2020. url: https : / / www . bls . gov / emp / tables /

occupational-projections-and-characteristics.htm.

[3] Allison Scott et al. “Broadening Participation in Computer Science: Exist-

ing Out-of-School Initiatives and a Case Study”. In: ACM Inroads 7.4 (Nov.

2016), pp. 84–90. issn: 2153-2184. doi: 10.1145/2994153. url: https:

//doi.org/10.1145/2994153.

[4] College Board. AP Program Participation and Performance Data 2020. Dec.

2020. url: https://research.collegeboard.org/programs/ap/data/

participation/ap-2020.

[5] Anthony V Robins. “Novice Programmers and Introductory Programming”.

In: The Cambridge handbook of computing education research (2019), p. 327.

[6] Colleen M Lewis, Niral Shah, and Katrina Falkner. “Equity and Diversity”.

In: The Cambridge handbook of computing education research (2019), p. 481.

126

https://doi.org/10.1145/2538862.2538938
https://doi.org/10.1145/2538862.2538938
https://doi.org/10.1145/2538862.2538938
https://www.bls.gov/emp/tables/occupational-projections-and-characteristics.htm
https://www.bls.gov/emp/tables/occupational-projections-and-characteristics.htm
https://doi.org/10.1145/2994153
https://doi.org/10.1145/2994153
https://doi.org/10.1145/2994153
https://research.collegeboard.org/programs/ap/data/participation/ap-2020
https://research.collegeboard.org/programs/ap/data/participation/ap-2020

[7] Jane Margolis and Allan Fisher. Unlocking the clubhouse: Women in comput-

ing. MIT press, 2002.

[8] E. H. Erikson. The life cycle completed: A review. New York: Norton, 1982.

[9] Eccles J. S. Simpkins S. D. Davis-Kean P. E. “Math and science motivation:

A longitudinal examination of the links between choices and beliefs”. In: De-

velopmental Psychology 42 (2006), p. 70.

[10] Geneva Gay. “Teaching to and through cultural diversity”. In: Curriculum

inquiry 43.1 (2013), pp. 48–70.

[11] Gloria Ladson-Billings. “Toward a theory of culturally relevant pedagogy”.

In: American educational research journal 32.3 (1995), pp. 465–491.

[12] Bill Manaris, Blake Stevens, and Andrew R Brown. “JythonMusic: An en-

vironment for teaching algorithmic music composition, dynamic coding and

musical performativity”. In: Journal of Music, Technology & Education 9.1

(2016), pp. 33–56.

[13] Jeff Chang and S Craig Watkins. “It’s a hip-hop world”. In: Foreign Policy

163 (2007), p. 58.

[14] United States Census Bureau. Racial and Ethnic Diversity in the United

States: 2010 Census and 2020 Census. Aug. 2020. url: https : / / www .

census.gov/library/visualizations/interactive/racial-and-ethnic-

diversity-in-the-united-states-2010-and-2020-census.html.

[15] United States Bureau of Labor Statistics. Labor force characteristics by race

and ethnicity, 2019. Dec. 2020. url: https://www.bls.gov/opub/reports/

race-and-ethnicity/2019/home.htm.

127

https://www.census.gov/library/visualizations/interactive/racial-and-ethnic-diversity-in-the-united-states-2010-and-2020-census.html
https://www.census.gov/library/visualizations/interactive/racial-and-ethnic-diversity-in-the-united-states-2010-and-2020-census.html
https://www.census.gov/library/visualizations/interactive/racial-and-ethnic-diversity-in-the-united-states-2010-and-2020-census.html
https://www.bls.gov/opub/reports/race-and-ethnicity/2019/home.htm
https://www.bls.gov/opub/reports/race-and-ethnicity/2019/home.htm

[16] Code.org and CSTA. “2020 State of Computer Science Education - Illumi-

nating Disparities”. In: code.org (2020). url: https://advocacy.code.org/

2020_state_of_cs.pdf.

[17] Tim Bell and Jan Vahrenhold. “CS Unplugged—How Is It Used, and Does

It Work?” In: Adventures Between Lower Bounds and Higher Altitudes: Es-

says Dedicated to Juraj Hromkovič on the Occasion of His 60th Birthday. Ed.

by Hans-Joachim Böckenhauer, Dennis Komm, and Walter Unger. Cham:

Springer International Publishing, 2018, pp. 497–521. isbn: 978-3-319-98355-

4. doi: 10.1007/978-3-319-98355-4_29. url: https://doi.org/10.

1007/978-3-319-98355-4_29.

[18] Jennifer S. Kay and Janet G. Moss. “Using robots to teach programming

to K-12 teachers”. In: 2012 Frontiers in Education Conference Proceedings.

2012, pp. 1–6. doi: 10.1109/FIE.2012.6462375.

[19] Mitchel Resnick et al. “Scratch: Programming for All”. In: Commun. ACM

52.11 (Nov. 2009), pp. 60–67. issn: 0001-0782. doi: 10 . 1145 / 1592761 .

1592779. url: https://doi.org/10.1145/1592761.1592779.

[20] Brian Harvey. “Bringing ”No Ceiling” to Scratch: Can One Language Serve

Kids and Computer Scientists?” In: 2010.

[21] Bernat Romagosa i Carrasquer. “The Snap! Programming System”. In: En-

cyclopedia of Education and Information Technologies. Ed. by Arthur Tat-

nall. Cham: Springer International Publishing, 2019, pp. 1–10. isbn: 978-3-

319-60013-0. doi: 10 . 1007 / 978 - 3 - 319 - 60013 - 0 _ 28 - 2. url: https :

//doi.org/10.1007/978-3-319-60013-0_28-2.

[22] Alexander Repenning et al. “AgentCubes: Enabling 3D Creativity by Ad-

dressing Cognitive and Affective Programming Challenges”. In: Proceedings

128

https://advocacy.code.org/2020_state_of_cs.pdf
https://advocacy.code.org/2020_state_of_cs.pdf
https://doi.org/10.1007/978-3-319-98355-4_29
https://doi.org/10.1007/978-3-319-98355-4_29
https://doi.org/10.1007/978-3-319-98355-4_29
https://doi.org/10.1109/FIE.2012.6462375
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1007/978-3-319-60013-0_28-2
https://doi.org/10.1007/978-3-319-60013-0_28-2
https://doi.org/10.1007/978-3-319-60013-0_28-2

of EdMedia + Innovate Learning 2012. Ed. by Tel Amiel and Brent Wil-

son. Denver, Colorado, USA: Association for the Advancement of Comput-

ing in Education (AACE), June 2012, pp. 2762–2771. url: https://www.

learntechlib.org/p/41159.

[23] Colleen M. Lewis, Niral Shah, and Katrina Falkner. “Equity and Diversity”.

In: pp. 481–510. doi: 10.1017/9781108654555.017.

[24] Colleen M. Lewis, Ruth E. Anderson, and Ken Yasuhara. “”I Don’t Code

All Day”: Fitting in Computer Science When the Stereotypes Don’t Fit”.

In: Proceedings of the 2016 ACM Conference on International Computing

Education Research. ICER ’16. Melbourne, VIC, Australia: Association for

Computing Machinery, 2016, pp. 23–32. isbn: 9781450344494. doi: 10.1145/

2960310.2960332. url: https://doi.org/10.1145/2960310.2960332.

[25] Anthony V. Robins. “Novice Programmers and Introductory Programming”.

In: pp. 327–376. doi: 10.1017/9781108654555.013.

[26] Brian Magerko et al. “Tackling Engagement in Computing with Computa-

tional Music Remixing”. In: Proceeding of the 44th ACM Technical Symposium

on Computer Science Education. SIGCSE ’13. Denver, Colorado, USA: Asso-

ciation for Computing Machinery, 2013, pp. 657–662. isbn: 9781450318686.

doi: 10 . 1145 / 2445196 . 2445390. url: https : / / doi . org / 10 . 1145 /

2445196.2445390.

[27] Samuel Aaron and Alan F. Blackwell. “From Sonic Pi to Overtone: Creative

Musical Experiences with Domain-Specific and Functional Languages”. In:

Proceedings of the First ACM SIGPLAN Workshop on Functional Art, Music,

Modeling & Design. FARM ’13. Boston, Massachusetts, USA: Association for

129

https://www.learntechlib.org/p/41159
https://www.learntechlib.org/p/41159
https://doi.org/10.1017/9781108654555.017
https://doi.org/10.1145/2960310.2960332
https://doi.org/10.1145/2960310.2960332
https://doi.org/10.1145/2960310.2960332
https://doi.org/10.1017/9781108654555.013
https://doi.org/10.1145/2445196.2445390
https://doi.org/10.1145/2445196.2445390
https://doi.org/10.1145/2445196.2445390

Computing Machinery, 2013, pp. 35–46. isbn: 9781450323864. doi: 10.1145/

2505341.2505346. url: https://doi.org/10.1145/2505341.2505346.

[28] Jamie Gorson et al. “TunePad: Computational Thinking Through Sound

Composition”. In: Proceedings of the 2017 Conference on Interaction Design

and Children. ACM. 2017, pp. 484–489.

[29] Jason Freeman et al. “Engaging Underrepresented Groups in High School

Introductory Computing through Computational Remixing with EarSketch”.

In: Proceedings of the 45th ACM Technical Symposium on Computer Science

Education. SIGCSE ’14. Atlanta, Georgia, USA: Association for Computing

Machinery, 2014, pp. 85–90. isbn: 9781450326056. doi: 10.1145/2538862.

2538906. url: https://doi.org/10.1145/2538862.2538906.

[30] Brian Magerko et al. “EarSketch: A STEAM-Based Approach for Under-

represented Populations in High School Computer Science Education”. In:

ACM Trans. Comput. Educ. 16.4 (Sept. 2016). doi: 10.1145/2886418. url:

https://doi.org/10.1145/2886418.

[31] Christian Köppe. “Program a Hit – Using Music as Motivator for Introduc-

ing Programming Concepts”. In: Proceedings of the 2020 ACM Conference

on Innovation and Technology in Computer Science Education. ITiCSE ’20.

Trondheim, Norway: Association for Computing Machinery, 2020, pp. 266–

272. isbn: 9781450368742. doi: 10.1145/3341525.3387377. url: https:

//doi.org/10.1145/3341525.3387377.

[32] Christopher Petrie. “Programming music with Sonic Pi promotes positive

attitudes for beginners”. In: Computers & Education 179 (2022), p. 104409.

issn: 0360-1315. doi: https : / / doi . org / 10 . 1016 / j . compedu . 2021 .

130

https://doi.org/10.1145/2505341.2505346
https://doi.org/10.1145/2505341.2505346
https://doi.org/10.1145/2505341.2505346
https://doi.org/10.1145/2538862.2538906
https://doi.org/10.1145/2538862.2538906
https://doi.org/10.1145/2538862.2538906
https://doi.org/10.1145/2886418
https://doi.org/10.1145/2886418
https://doi.org/10.1145/3341525.3387377
https://doi.org/10.1145/3341525.3387377
https://doi.org/10.1145/3341525.3387377
https://doi.org/https://doi.org/10.1016/j.compedu.2021.104409
https://doi.org/https://doi.org/10.1016/j.compedu.2021.104409

104409. url: https://www.sciencedirect.com/science/article/pii/

S0360131521002864.

[33] Michael Horn et al. “TunePad: Engaging learners at the intersection of music

and code”. In: (2020).

[34] Tom McKlin et al. “Leveraging Prior Computing and Music Experience for

Situational Interest Formation”. In: Proceedings of the 52nd ACM Techni-

cal Symposium on Computer Science Education. SIGCSE ’21. Virtual Event,

USA: Association for Computing Machinery, 2021, pp. 928–933. isbn: 9781450380621.

doi: 10 . 1145 / 3408877 . 3432431. url: https : / / doi . org / 10 . 1145 /

3408877.3432431.

[35] Allison Scott et al. “Toward culturally responsive computing education”. In:

ACM Inroads 7.4 (Nov. 2013), pp. 84–90. issn: 2153-2184. doi: 10.1145/

2994153. url: https://doi.org/10.1145/2994153.

[36] Jessica Morales-Chicas et al. “Computing with Relevance and Purpose: A

Review of Culturally Relevant Education in Computing”. In: International

Journal of Multicultural Education 21.1 (Mar. 2019), pp. 125–155. doi: 10.

18251/ijme.v21i1.1745. url: https://ijme-journal.org/index.php/

ijme/article/view/1745.

[37] Code.org. Code.org Computer Science Principles Syllabus and Overview. 2020.

url: https://code.org/files/CSPSyllabus2020.pdf.

[38] Samuel Aaron, Alan F. Blackwell, and Pamela Burnard. “The development

of Sonic Pi and its use in educational partnerships: Co-creating pedagogies

for learning computer programming”. In: Journal of Music, Technology and

Education 9.1 (2016), pp. 75–94. issn: 1752-7066. doi: doi:10.1386/jmte.

131

https://doi.org/https://doi.org/10.1016/j.compedu.2021.104409
https://doi.org/https://doi.org/10.1016/j.compedu.2021.104409
https://www.sciencedirect.com/science/article/pii/S0360131521002864
https://www.sciencedirect.com/science/article/pii/S0360131521002864
https://doi.org/10.1145/3408877.3432431
https://doi.org/10.1145/3408877.3432431
https://doi.org/10.1145/3408877.3432431
https://doi.org/10.1145/2994153
https://doi.org/10.1145/2994153
https://doi.org/10.1145/2994153
https://doi.org/10.18251/ijme.v21i1.1745
https://doi.org/10.18251/ijme.v21i1.1745
https://ijme-journal.org/index.php/ijme/article/view/1745
https://ijme-journal.org/index.php/ijme/article/view/1745
https://code.org/files/CSPSyllabus2020.pdf
https://doi.org/doi:10.1386/jmte.9.1.75_1
https://doi.org/doi:10.1386/jmte.9.1.75_1

9.1.75_1. url: https://www.ingentaconnect.com/content/intellect/

jmte/2016/00000009/00000001/art00006.

[39] Mike Horn, Amartya Banerjee, and Matthew Brucker. “TunePad Playbooks:

Designing Computational Notebooks for Creative Music Coding”. In: Pro-

ceedings of the 2022 CHI Conference on Human Factors in Computing Sys-

tems. CHI ’22. New Orleans, LA, USA: Association for Computing Machinery,

2022. isbn: 9781450391573. doi: 10.1145/3491102.3502021. url: https:

//doi.org/10.1145/3491102.3502021.

[40] Irene Lee et al. “Computational Thinking for Youth in Practice”. In: ACM

Inroads 2.1 (Feb. 2011), pp. 32–37. issn: 2153-2184. doi: 10.1145/1929887.

1929902. url: https://doi.org/10.1145/1929887.1929902.

[41] G.W. Corder and D.I. Foreman. Nonparametric Statistics for Non-Statisticians:

A Step-by-Step Approach. Wiley, 2009. isbn: 9780470454619. url: https:

//books.google.com/books?id=-ufOfzVp6qYC.

[42] Philip J. Guo. “Older Adults Learning Computer Programming: Motiva-

tions, Frustrations, and Design Opportunities”. In: Proceedings of the 2017

CHI Conference on Human Factors in Computing Systems. CHI ’17. Den-

ver, Colorado, USA: Association for Computing Machinery, 2017, pp. 7070–

7083. isbn: 9781450346559. doi: 10.1145/3025453.3025945. url: https:

//doi.org/10.1145/3025453.3025945.

[43] Seymour A Papert. Mindstorms: Children, computers, and powerful ideas.

Basic books, 2020.

[44] Quinn Burke et al. “Understanding the Software Development Industry’s Per-

spective on Coding Boot Camps versus Traditional 4-Year Colleges”. In: Pro-

ceedings of the 49th ACM Technical Symposium on Computer Science Edu-

132

https://doi.org/doi:10.1386/jmte.9.1.75_1
https://doi.org/doi:10.1386/jmte.9.1.75_1
https://www.ingentaconnect.com/content/intellect/jmte/2016/00000009/00000001/art00006
https://www.ingentaconnect.com/content/intellect/jmte/2016/00000009/00000001/art00006
https://doi.org/10.1145/3491102.3502021
https://doi.org/10.1145/3491102.3502021
https://doi.org/10.1145/3491102.3502021
https://doi.org/10.1145/1929887.1929902
https://doi.org/10.1145/1929887.1929902
https://doi.org/10.1145/1929887.1929902
https://books.google.com/books?id=-ufOfzVp6qYC
https://books.google.com/books?id=-ufOfzVp6qYC
https://doi.org/10.1145/3025453.3025945
https://doi.org/10.1145/3025453.3025945
https://doi.org/10.1145/3025453.3025945

cation. SIGCSE ’18. Baltimore, Maryland, USA: Association for Computing

Machinery, 2018, pp. 503–508. isbn: 9781450351034. doi: 10.1145/3159450.

3159485. url: https://doi.org/10.1145/3159450.3159485.

[45] Sherry Seibel and Nanette Veilleux. “Factors influencing women entering

the software development field through coding bootcamps vs. computer sci-

ence bachelor’s degrees”. In: Journal of Computing Sciences in Colleges 34.6

(2019), pp. 84–96.

[46] Kyle Thayer and Amy J. Ko. “Barriers Faced by Coding Bootcamp Students”.

In: Proceedings of the 2017 ACM Conference on International Computing

Education Research. ICER ’17. Tacoma, Washington, USA: Association for

Computing Machinery, 2017, pp. 245–253. isbn: 9781450349680. doi: 10.

1145 / 3105726 . 3106176. url: https : / / doi . org / 10 . 1145 / 3105726 .

3106176.

[47] Maren Krafft, Gordon Fraser, and Neil Walkinshaw. “Motivating Adult Learn-

ers by Introducing Programming Concepts with Scratch”. In: Proceedings of

the 4th European Conference on Software Engineering Education. ECSEE

’20. Seeon/Bavaria, Germany: Association for Computing Machinery, 2020,

pp. 22–26. isbn: 9781450377522. doi: 10 . 1145 / 3396802 . 3396818. url:

https://doi.org/10.1145/3396802.3396818.

[48] Sergio Sayago and Ángel Bergantiños. “Exploring the first experiences of com-

puter programming of older people with low levels of formal education: A

participant observational case study”. In: International Journal of Human-

Computer Studies 148 (2021), p. 102577. issn: 1071-5819. doi: https://doi.

org/10.1016/j.ijhcs.2020.102577. url: https://www.sciencedirect.

com/science/article/pii/S1071581920301798.

133

https://doi.org/10.1145/3159450.3159485
https://doi.org/10.1145/3159450.3159485
https://doi.org/10.1145/3159450.3159485
https://doi.org/10.1145/3105726.3106176
https://doi.org/10.1145/3105726.3106176
https://doi.org/10.1145/3105726.3106176
https://doi.org/10.1145/3105726.3106176
https://doi.org/10.1145/3396802.3396818
https://doi.org/10.1145/3396802.3396818
https://doi.org/https://doi.org/10.1016/j.ijhcs.2020.102577
https://doi.org/https://doi.org/10.1016/j.ijhcs.2020.102577
https://www.sciencedirect.com/science/article/pii/S1071581920301798
https://www.sciencedirect.com/science/article/pii/S1071581920301798

[49] Virginia Braun and Victoria Clarke. “Using thematic analysis in psychology”.

In: Qualitative Research in Psychology 3.2 (2006), pp. 77–101. doi: 10.1191/

1478088706qp063oa. url: https://www.tandfonline.com/doi/abs/10.

1191/1478088706qp063oa.

[50] Douglas Lusa Krug et al. “Code Beats: A Virtual Camp for Middle School-

ers Coding Hip Hop”. In: Proceedings of the 52nd ACM Technical Sympo-

sium on Computer Science Education. New York, NY, USA: Association for

Computing Machinery, 2021, pp. 397–403. isbn: 9781450380621. url: https:

//doi.org/10.1145/3408877.3432424.

[51] Merijke Coenraad, Bih Janet Fofang, and David Weintrop. “Gusanos y Es-

pheros: Computing with Youth in Rural El Salvador”. In: Proceedings of the

52nd ACM Technical Symposium on Computer Science Education. SIGCSE

’21. Virtual Event, USA: Association for Computing Machinery, 2021, pp. 404–

410. isbn: 9781450380621. doi: 10.1145/3408877.3432535. url: https:

//doi.org/10.1145/3408877.3432535.

[52] James Zhang et al. “Scientific Collaboration Network Analysis for Comput-

ing Education Conferences”. In: Proceedings of the 26th ACM Conference

on Innovation and Technology in Computer Science Education V. 1. ITiCSE

’21. Virtual Event, Germany: Association for Computing Machinery, 2021,

pp. 582–588. isbn: 9781450382144. doi: 10.1145/3430665.3456385. url:

https://doi.org/10.1145/3430665.3456385.

[53] Mikko Apiola et al. “Computing Education Research Compiled: Keyword

Trends, Building Blocks, Creators, and Dissemination”. In: IEEE Access 10

(2022), pp. 27041–27068. doi: 10.1109/ACCESS.2022.3157609.

134

https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa
https://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa
https://doi.org/10.1145/3408877.3432424
https://doi.org/10.1145/3408877.3432424
https://doi.org/10.1145/3408877.3432535
https://doi.org/10.1145/3408877.3432535
https://doi.org/10.1145/3408877.3432535
https://doi.org/10.1145/3430665.3456385
https://doi.org/10.1145/3430665.3456385
https://doi.org/10.1109/ACCESS.2022.3157609

[54] Francisco J. Gutierrez et al. “Coding or Hacking? Exploring Inaccurate Views

on Computing and Computer Scientists among K-6 Learners in Chile”. In:

Proceedings of the 49th ACM Technical Symposium on Computer Science Ed-

ucation. SIGCSE ’18. Baltimore, Maryland, USA: Association for Computing

Machinery, 2018, pp. 993–998. isbn: 9781450351034. doi: 10.1145/3159450.

3159598. url: https://doi.org/10.1145/3159450.3159598.

[55] André Branco et al. “Programming for Children and Teenagers in Brazil:

A 5-Year Experience of an Outreach Project”. In: Proceedings of the 52nd

ACM Technical Symposium on Computer Science Education. SIGCSE ’21.

Virtual Event, USA: Association for Computing Machinery, 2021, pp. 411–

417. isbn: 9781450380621. doi: 10.1145/3408877.3432554. url: https:

//doi.org/10.1145/3408877.3432554.

[56] Yifan Zhang et al. “A Case Study of Middle Schoolers’ Use of Computa-

tional Thinking Concepts and Practices during Coded Music Composition”.

In: Proceedings of the 27th ACM Conference on on Innovation and Technology

in Computer Science Education Vol. 1. ITiCSE ’22. Dublin, Ireland: Associ-

ation for Computing Machinery, 2022, pp. 33–39. isbn: 9781450392013. doi:

10.1145/3502718.3524757. url: https://doi.org/10.1145/3502718.

3524757.

[57] Brasil and Ministério da Educação. Catálogo Nacional de Cursos Técnicos.

2016.

[58] Leila Ribeiro et al. “Diretrizes da Sociedade Brasileira de Computação para

o Ensino de Computação na Educação Básica”. In: Sociedade Brasileira de

Computação (2019).

135

https://doi.org/10.1145/3159450.3159598
https://doi.org/10.1145/3159450.3159598
https://doi.org/10.1145/3159450.3159598
https://doi.org/10.1145/3408877.3432554
https://doi.org/10.1145/3408877.3432554
https://doi.org/10.1145/3408877.3432554
https://doi.org/10.1145/3502718.3524757
https://doi.org/10.1145/3502718.3524757
https://doi.org/10.1145/3502718.3524757

[59] Taciana Pontual Falcão. “Computational Thinking for All: What Does It

Mean for Teacher Education in Brazil?” In: Anais do Simpósio Brasileiro de

Educação em Computação. SBC. 2021, pp. 371–379.

[60] Priscila S. C. Santos, Luis Gustavo J. Araujo, and Roberto A. Bittencourt.

“A Mapping Study of Computational Thinking and Programming in Brazilian

K-12 Education”. In: 2018 IEEE Frontiers in Education Conference (FIE).

2018, pp. 1–8. doi: 10.1109/FIE.2018.8658828.

[61] Cristiano Maciel, Śılvia Amélia Bim, and Karen da Silva Figueiredo. “Digi-

tal Girls Program: Disseminating Computer Science to Girls in Brazil”. In:

Proceedings of the 1st International Workshop on Gender Equality in Soft-

ware Engineering. GE ’18. Gothenburg, Sweden: Association for Computing

Machinery, 2018, pp. 29–32. isbn: 9781450357388. doi: 10.1145/3195570.

3195574. url: https://doi.org/10.1145/3195570.3195574.

[62] Núcleo de Informação e Coordenação do Ponto BR. Survey on the use of

information and communication technologies in Brazilian schools : ICT in

Education 2020. 2021. url: https://cetic.br/pt/publicacao/pesquisa-

sobre-o-uso-das-tecnologias-de-informacao-e-comunicacao-nas-

escolas-brasileiras-tic-educacao-2020/.

[63] Gabriel SantClair, Julia Godinho, and Janáına Gomide. “Affordable Robotics

Projects in Primary Schools: A Course Experience in Brazil”. In: Proceed-

ings of the 52nd ACM Technical Symposium on Computer Science Educa-

tion. SIGCSE ’21. Virtual Event, USA: Association for Computing Machin-

ery, 2021, pp. 66–72. isbn: 9781450380621. doi: 10.1145/3408877.3432555.

url: https://doi.org/10.1145/3408877.3432555.

136

https://doi.org/10.1109/FIE.2018.8658828
https://doi.org/10.1145/3195570.3195574
https://doi.org/10.1145/3195570.3195574
https://doi.org/10.1145/3195570.3195574
https://cetic.br/pt/publicacao/pesquisa-sobre-o-uso-das-tecnologias-de-informacao-e-comunicacao-nas-escolas-brasileiras-tic-educacao-2020/
https://cetic.br/pt/publicacao/pesquisa-sobre-o-uso-das-tecnologias-de-informacao-e-comunicacao-nas-escolas-brasileiras-tic-educacao-2020/
https://cetic.br/pt/publicacao/pesquisa-sobre-o-uso-das-tecnologias-de-informacao-e-comunicacao-nas-escolas-brasileiras-tic-educacao-2020/
https://doi.org/10.1145/3408877.3432555
https://doi.org/10.1145/3408877.3432555

[64] Liane Hentschke. “Global Policies and Local Needs of Music Education in

Brazil”. In: Arts Education Policy Review 114.3 (2013), pp. 119–125. doi:

10.1080/10632913.2013.803415. eprint: https://doi.org/10.1080/

10632913.2013.803415. url: https://doi.org/10.1080/10632913.2013.

803415.

[65] Dwight Manning and Marilia Kamil. “New legislation in Brazilian music edu-

cation: Studying the law and its implementation”. In: International Journal of

Music Education 35.1 (2017), pp. 79–92. doi: 10.1177/0255761415619422.

eprint: https://doi.org/10.1177/0255761415619422. url: https://doi.

org/10.1177/0255761415619422.

[66] Gustavo Cunha de Araújo and Irany Ferreira Lima. “Gaps in the training

of arts teachers: old challenges and problems in Brazilian education”. In:

Arts Education Policy Review 123.4 (2022), pp. 178–193. doi: 10.1080/

10632913.2020.1844830. eprint: https://doi.org/10.1080/10632913.

2020.1844830. url: https://doi.org/10.1080/10632913.2020.1844830.

[67] Chrystalla Mouza et al. “Development, Implementation, and Outcomes of an

Equitable Computer Science After-School Program: Findings From Middle-

School Students”. In: Journal of Research on Technology in Education 48.2

(2016), pp. 84–104. doi: 10.1080/15391523.2016.1146561. eprint: https:

//doi.org/10.1080/15391523.2016.1146561. url: https://doi.org/10.

1080/15391523.2016.1146561.

[68] Barbara Ericson and TomMcKlin. “Effective and sustainable computing sum-

mer camps”. In: Proceedings of the 43rd ACM technical symposium on Com-

puter Science Education. 2012, pp. 289–294.

137

https://doi.org/10.1080/10632913.2013.803415
https://doi.org/10.1080/10632913.2013.803415
https://doi.org/10.1080/10632913.2013.803415
https://doi.org/10.1080/10632913.2013.803415
https://doi.org/10.1080/10632913.2013.803415
https://doi.org/10.1177/0255761415619422
https://doi.org/10.1177/0255761415619422
https://doi.org/10.1177/0255761415619422
https://doi.org/10.1177/0255761415619422
https://doi.org/10.1080/10632913.2020.1844830
https://doi.org/10.1080/10632913.2020.1844830
https://doi.org/10.1080/10632913.2020.1844830
https://doi.org/10.1080/10632913.2020.1844830
https://doi.org/10.1080/10632913.2020.1844830
https://doi.org/10.1080/15391523.2016.1146561
https://doi.org/10.1080/15391523.2016.1146561
https://doi.org/10.1080/15391523.2016.1146561
https://doi.org/10.1080/15391523.2016.1146561
https://doi.org/10.1080/15391523.2016.1146561

[69] Mark Guzdial. “Software-realized scaffolding to facilitate programming for

science learning”. In: Interactive learning environments 4.1 (1994), pp. 001–

044.

[70] Barbara J. Ericson, Lauren E. Margulieux, and Jochen Rick. “Solving Par-

sons Problems versus Fixing and Writing Code”. In: Proceedings of the 17th

Koli Calling International Conference on Computing Education Research.

Koli Calling ’17. Koli, Finland: Association for Computing Machinery, 2017,

pp. 20–29. isbn: 9781450353014. doi: 10 . 1145 / 3141880 . 3141895. url:

https://doi.org/10.1145/3141880.3141895.

[71] Dale Parsons and Patricia Haden. “Parson’s Programming Puzzles: A Fun and

Effective Learning Tool for First Programming Courses”. In: Proceedings of

the 8th Australasian Conference on Computing Education - Volume 52. ACE

’06. Hobart, Australia: Australian Computer Society, Inc., 2006, pp. 157–163.

isbn: 1920682341.

[72] Jean M. Griffin. “Learning by Taking Apart: Deconstructing Code by Read-

ing, Tracing, and Debugging”. In: Proceedings of the 17th Annual Conference

on Information Technology Education. SIGITE ’16. Boston, Massachusetts,

USA: Association for Computing Machinery, 2016, pp. 148–153. isbn: 9781450344524.

doi: 10 . 1145 / 2978192 . 2978231. url: https : / / doi . org / 10 . 1145 /

2978192.2978231.

[73] Kyle J. Harms, Noah Rowlett, and Caitlin Kelleher. “Enabling independent

learning of programming concepts through programming completion puzzles”.

In: 2015 IEEE Symposium on Visual Languages and Human-Centric Com-

puting (VL/HCC). 2015, pp. 271–279. doi: 10.1109/VLHCC.2015.7357226.

138

https://doi.org/10.1145/3141880.3141895
https://doi.org/10.1145/3141880.3141895
https://doi.org/10.1145/2978192.2978231
https://doi.org/10.1145/2978192.2978231
https://doi.org/10.1145/2978192.2978231
https://doi.org/10.1109/VLHCC.2015.7357226

[74] Brian J Reiser. “Scaffolding complex learning: The mechanisms of structuring

and problematizing student work”. In: The Journal of the Learning sciences

13.3 (2004), pp. 273–304.

[75] Heidi Webb and Mary Beth Rosson. “Using Scaffolded Examples to Teach

Computational Thinking Concepts”. In: Proceeding of the 44th ACM Tech-

nical Symposium on Computer Science Education. SIGCSE ’13. Denver, Col-

orado, USA: Association for Computing Machinery, 2013, pp. 95–100. isbn:

9781450318686. doi: 10.1145/2445196.2445227. url: https://doi.org/

10.1145/2445196.2445227.

[76] Sue Sentance, Jane Waite, and Maria Kallia. “Teachers’ Experiences of Using

PRIMM to Teach Programming in School”. In: SIGCSE ’19. Minneapolis,

MN, USA: Association for Computing Machinery, 2019, pp. 476–482. isbn:

9781450358903. doi: 10.1145/3287324.3287477. url: https://doi.org/

10.1145/3287324.3287477.

[77] Veronica Cateté, Amy Isvik, and Tiffany Barnes. “Infusing Computing: A

Scaffolding and Teacher Accessibility Analysis of Computing Lessons De-

signed by Novices”. In: Koli Calling ’20: Proceedings of the 20th Koli Call-

ing International Conference on Computing Education Research. Koli Call-

ing ’20. Koli, Finland: Association for Computing Machinery, 2020. isbn:

9781450389211. doi: 10.1145/3428029.3428056. url: https://doi.org/

10.1145/3428029.3428056.

[78] Nicholas Lytle et al. “Position: Scaffolded Coding Activities Afforded by

Block-Based Environments”. In: 2019 IEEE Blocks and Beyond Workshop

(B B). 2019, pp. 5–7. doi: 10.1109/BB48857.2019.8941203.

139

https://doi.org/10.1145/2445196.2445227
https://doi.org/10.1145/2445196.2445227
https://doi.org/10.1145/2445196.2445227
https://doi.org/10.1145/3287324.3287477
https://doi.org/10.1145/3287324.3287477
https://doi.org/10.1145/3287324.3287477
https://doi.org/10.1145/3428029.3428056
https://doi.org/10.1145/3428029.3428056
https://doi.org/10.1145/3428029.3428056
https://doi.org/10.1109/BB48857.2019.8941203

[79] Petri Ihantola and Ville Karavirta. “Two-Dimensional Parson’s Puzzles: The

Concept, Tools, and First Observations”. In: Journal of Information Tech-

nology Education: Innovations in Practice 10 (Jan. 2011), pp. 1–14. doi:

10.28945/1394.

[80] Barbara J. Ericson, Mark J. Guzdial, and Briana B. Morrison. “Analysis of

Interactive Features Designed to Enhance Learning in an Ebook”. In: Pro-

ceedings of the Eleventh Annual International Conference on International

Computing Education Research. ICER ’15. Omaha, Nebraska, USA: Associa-

tion for Computing Machinery, 2015, pp. 169–178. isbn: 9781450336307. doi:

10.1145/2787622.2787731. url: https://doi.org/10.1145/2787622.

2787731.

[81] Rui Zhi et al. “Evaluating the Effectiveness of Parsons Problems for Block-

Based Programming”. In: Proceedings of the 2019 ACM Conference on In-

ternational Computing Education Research. ICER ’19. Toronto ON, Canada:

Association for Computing Machinery, 2019, pp. 51–59. isbn: 9781450361859.

doi: 10 . 1145 / 3291279 . 3339419. url: https : / / doi . org / 10 . 1145 /

3291279.3339419.

[82] Michael J. Lee. “Gidget: An online debugging game for learning and engage-

ment in computing education”. In: 2014 IEEE Symposium on Visual Lan-

guages and Human-Centric Computing (VL/HCC). 2014, pp. 193–194. doi:

10.1109/VLHCC.2014.6883051.

[83] Tony Lowe. “Debugging: The Key to Unlocking the Mind of a Novice Pro-

grammer?” In: 2019 IEEE Frontiers in Education Conference (FIE). Coving-

ton, KY, USA: IEEE Press, 2019, pp. 1–9. doi: 10.1109/FIE43999.2019.

9028699. url: https://doi.org/10.1109/FIE43999.2019.9028699.

140

https://doi.org/10.28945/1394
https://doi.org/10.1145/2787622.2787731
https://doi.org/10.1145/2787622.2787731
https://doi.org/10.1145/2787622.2787731
https://doi.org/10.1145/3291279.3339419
https://doi.org/10.1145/3291279.3339419
https://doi.org/10.1145/3291279.3339419
https://doi.org/10.1109/VLHCC.2014.6883051
https://doi.org/10.1109/FIE43999.2019.9028699
https://doi.org/10.1109/FIE43999.2019.9028699
https://doi.org/10.1109/FIE43999.2019.9028699

[84] Stuart Garner. “A tool to support the use of part-complete solutions in the

learning of programming”. In: Proceeding de conférence. 2001, pp. 222–228.

[85] Jeroen J. G. Van Merriënboer and Marcel B. M. De Croock. “Strategies

for Computer-Based Programming Instruction: Program Completion vs. Pro-

gram Generation”. In: Journal of Educational Computing Research 8.3 (1992),

pp. 365–394. doi: 10.2190/MJDX-9PP4-KFMT-09PM. url: https://doi.org/

10.2190/MJDX-9PP4-KFMT-09PM.

[86] Cornelia S. Große and Alexander Renkl. “Finding and fixing errors in worked

examples: Can this foster learning outcomes?” In: Learning and Instruction

17.6 (2007), pp. 612–634. issn: 0959-4752. doi: https://doi.org/10.1016/

j.learninstruc.2007.09.008. url: https://www.sciencedirect.com/

science/article/pii/S0959475207001004.

[87] Colleen M. Lewis, Ken Yasuhara, and Ruth E. Anderson. “Deciding to Major

in Computer Science: A Grounded Theory of Students’ Self-Assessment of

Ability”. In: Proceedings of the Seventh International Workshop on Comput-

ing Education Research. ICER ’11. Providence, Rhode Island, USA: Associ-

ation for Computing Machinery, 2011, pp. 3–10. isbn: 9781450308298. doi:

10.1145/2016911.2016915. url: https://doi.org/10.1145/2016911.

2016915.

[88] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. “A Systematic Litera-

ture Review of Automated Feedback Generation for Programming Exercises”.

In: ACM Trans. Comput. Educ. 19.1 (Sept. 2018). doi: 10.1145/3231711.

url: https://doi.org/10.1145/3231711.

[89] Galina Deeva et al. “A review of automated feedback systems for learners:

Classification framework, challenges and opportunities”. In: Computers & Ed-

141

https://doi.org/10.2190/MJDX-9PP4-KFMT-09PM
https://doi.org/10.2190/MJDX-9PP4-KFMT-09PM
https://doi.org/10.2190/MJDX-9PP4-KFMT-09PM
https://doi.org/https://doi.org/10.1016/j.learninstruc.2007.09.008
https://doi.org/https://doi.org/10.1016/j.learninstruc.2007.09.008
https://www.sciencedirect.com/science/article/pii/S0959475207001004
https://www.sciencedirect.com/science/article/pii/S0959475207001004
https://doi.org/10.1145/2016911.2016915
https://doi.org/10.1145/2016911.2016915
https://doi.org/10.1145/2016911.2016915
https://doi.org/10.1145/3231711
https://doi.org/10.1145/3231711

ucation 162 (2021), p. 104094. issn: 0360-1315. doi: https://doi.org/10.

1016/j.compedu.2020.104094. url: https://www.sciencedirect.com/

science/article/pii/S036013152030292X.

[90] Jessica McBroom, Irena Koprinska, and Kalina Yacef. “A Survey of Auto-

mated Programming Hint Generation: The HINTS Framework”. In: ACM

Comput. Surv. 54.8 (Oct. 2021). issn: 0360-0300. doi: 10.1145/3469885.

url: https://doi.org/10.1145/3469885.

[91] Samiha Marwan et al. “Adaptive Immediate Feedback Can Improve Novice

Programming Engagement and Intention to Persist in Computer Science”.

In: ICER ’20. Virtual Event, New Zealand: Association for Computing Ma-

chinery, 2020, pp. 194–203. isbn: 9781450370929. doi: 10.1145/3372782.

3406264. url: https://doi.org/10.1145/3372782.3406264.

[92] Valerie J Shute. “Focus on formative feedback”. In: Review of educational

research 78.1 (2008), pp. 153–189.

[93] Mary Catherine Scheeler, Kathy L Ruhl, and James K McAfee. “Providing

performance feedback to teachers: A review”. In: Teacher education and spe-

cial education 27.4 (2004), pp. 396–407.

[94] Sumit Gulwani, Ivan Radiček, and Florian Zuleger. “Automated clustering

and program repair for introductory programming assignments”. In: ACM

SIGPLAN Notices 53.4 (2018), pp. 465–480.

[95] Philip J Guo. “Online python tutor: embeddable web-based program visual-

ization for cs education”. In: Proceeding of the 44th ACM technical symposium

on Computer science education. 2013, pp. 579–584.

142

https://doi.org/https://doi.org/10.1016/j.compedu.2020.104094
https://doi.org/https://doi.org/10.1016/j.compedu.2020.104094
https://www.sciencedirect.com/science/article/pii/S036013152030292X
https://www.sciencedirect.com/science/article/pii/S036013152030292X
https://doi.org/10.1145/3469885
https://doi.org/10.1145/3469885
https://doi.org/10.1145/3372782.3406264
https://doi.org/10.1145/3372782.3406264
https://doi.org/10.1145/3372782.3406264

[96] Ruan Reis et al. “Evaluating Feedback Tools in Introductory Programming

Classes”. In: 2019 IEEE Frontiers in Education Conference (FIE). 2019,

pp. 1–7. doi: 10.1109/FIE43999.2019.9028418.

[97] Alex Gerdes et al. “Ask-Elle: an adaptable programming tutor for Haskell giv-

ing automated feedback”. In: International Journal of Artificial Intelligence

in Education 27.1 (2017), pp. 65–100.

[98] Luciana Benotti et al. “The Effect of a Web-Based Coding Tool with Au-

tomatic Feedback on Students’ Performance and Perceptions”. In: Proceed-

ings of the 49th ACM Technical Symposium on Computer Science Education.

SIGCSE ’18. Baltimore, Maryland, USA: Association for Computing Machin-

ery, 2018, pp. 2–7. isbn: 9781450351034. doi: 10.1145/3159450.3159579.

url: https://doi.org/10.1145/3159450.3159579.

[99] Susanne Narciss. “Feedback strategies for interactive learning tasks”. In: Hand-

book of research on educational communications and technology. Routledge,

2008, pp. 125–143.

[100] Samiha Marwan, Joseph Jay Williams, and Thomas Price. “An Evaluation of

the Impact of Automated Programming Hints on Performance and Learning”.

In: Proceedings of the 2019 ACM Conference on International Computing Ed-

ucation Research. ICER ’19. Toronto ON, Canada: Association for Computing

Machinery, 2019, pp. 61–70. isbn: 9781450361859. doi: 10.1145/3291279.

3339420. url: https://doi.org/10.1145/3291279.3339420.

[101] Antonija Mitrovic, Stellan Ohlsson, and Devon K. Barrow. “The effect of

positive feedback in a constraint-based intelligent tutoring system”. In: Com-

puters & Education 60.1 (2013), pp. 264–272. issn: 0360-1315. doi: https:

143

https://doi.org/10.1109/FIE43999.2019.9028418
https://doi.org/10.1145/3159450.3159579
https://doi.org/10.1145/3159450.3159579
https://doi.org/10.1145/3291279.3339420
https://doi.org/10.1145/3291279.3339420
https://doi.org/10.1145/3291279.3339420
https://doi.org/https://doi.org/10.1016/j.compedu.2012.07.002
https://doi.org/https://doi.org/10.1016/j.compedu.2012.07.002

//doi.org/10.1016/j.compedu.2012.07.002. url: https://www.

sciencedirect.com/science/article/pii/S0360131512001613.

[102] Ayelet Fishbach and Stacey R Finkelstein. “How feedback influences persis-

tence, disengagement, and change in goal pursuit”. In: Goal-directed behavior

(2012), pp. 203–230.

144

https://doi.org/https://doi.org/10.1016/j.compedu.2012.07.002
https://doi.org/https://doi.org/10.1016/j.compedu.2012.07.002
https://www.sciencedirect.com/science/article/pii/S0360131512001613
https://www.sciencedirect.com/science/article/pii/S0360131512001613

Appendix A

LIST OF ACTIVITIES - TUNEPAD.LIVE

145

Table 11.: List with Code Beats Activities 1

Begin of Table

Day Type Song Name Author Link

1 Worked Example Never Recover Lil Baby, Gunna https://tunepad.live/app/dropbook/52019

1 In Class Knuck If You Buck Crime Mob https://tunepad.live/app/dropbook/51060

1 In Class Mo Bamba Sheck Wes https://tunepad.live/app/dropbook/51066

1 After Class Make No Sense YoungBoy NBA https://tunepad.live/app/dropbook/51067

2 Worked example Bank Account 21 Savage https://tunepad.live/app/dropbook/51510

2 In Class EVERY CHANGE I GET DJ Khaled https://tunepad.live/app/dropbook/51071

2 In Class Work REMIX ASAP Ferg https://tunepad.live/app/dropbook/51074

2 After Class Bad Boy Juice WRLD https://tunepad.live/app/dropbook/51082

3 Worked example God’s Plan Drake https://tunepad.live/app/dropbook/51511

3 In Class Solid (feat. Drake) Young Stoner Life https://tunepad.live/app/dropbook/51106

3 In Class p r i d e . i s . t h e . d e v i l J. Cole https://tunepad.live/app/dropbook/51087

3 After Class Nonstop Drake https://tunepad.live/app/dropbook/51108

4 Worked example Next Episode Dr. Dre https://tunepad.live/app/dropbook/51781

4 In Class Have Mercy Cordae https://tunepad.live/app/dropbook/51795

4 In Class Russian Cream Key Glock https://tunepad.live/app/dropbook/51814

4 After Class Straightenin Migos https://tunepad.live/app/dropbook/51847

5 Worked example durag activity Baby Keem https://tunepad.live/app/dropbook/51856

5 In Class Oppanese Fredo Bang https://tunepad.live/app/dropbook/51863

5 In Class Tyler Herro Jack Harlow https://tunepad.live/app/dropbook/51865

5 After Class Laugh Now Cry Later Drake https://tunepad.live/app/dropbook/51866

6 Worked example Surf Young Thug https://tunepad.live/app/dropbook/51896

6 In Class 4 Quarters MaxThaDemon https://tunepad.live/app/dropbook/51898

6 In Class Forever Drake, Kanye, etc. https://tunepad.live/app/dropbook/51900

6 After Class Jumpman Drake https://tunepad.live/app/dropbook/51902

7 Worked example Slippery Migos, Gucci Mane https://tunepad.live/app/dropbook/53216

7 In Class Ball If I Want To DaBaby https://tunepad.live/app/dropbook/53401

146

https://tunepad.live/app/dropbook/52019
https://tunepad.live/app/dropbook/51060
https://tunepad.live/app/dropbook/51066
https://tunepad.live/app/dropbook/51067
https://tunepad.live/app/dropbook/51510
https://tunepad.live/app/dropbook/51071
https://tunepad.live/app/dropbook/51074
https://tunepad.live/app/dropbook/51082
https://tunepad.live/app/dropbook/51511
https://tunepad.live/app/dropbook/51106
https://tunepad.live/app/dropbook/51087
https://tunepad.live/app/dropbook/51108
https://tunepad.live/app/dropbook/51781
https://tunepad.live/app/dropbook/51795
https://tunepad.live/app/dropbook/51814
https://tunepad.live/app/dropbook/51847
https://tunepad.live/app/dropbook/51856
https://tunepad.live/app/dropbook/51863
https://tunepad.live/app/dropbook/51865
https://tunepad.live/app/dropbook/51866
https://tunepad.live/app/dropbook/51896
https://tunepad.live/app/dropbook/51898
https://tunepad.live/app/dropbook/51900
https://tunepad.live/app/dropbook/51902
https://tunepad.live/app/dropbook/53216
https://tunepad.live/app/dropbook/53401

Continuation of Table

Day Type Song Name Author Link

7 In Class Rockstar DaBaby https://tunepad.live/app/dropbook/53393

7 After Class Freestyle Lil Baby https://tunepad.live/app/dropbook/53536

8 Worked example Bout Me Coi Leray https://tunepad.live/app/dropbook/53538

8 In Class Graduation benny blanco, Juice WRLD https://tunepad.live/app/dropbook/53543

8 In Class Late At Night Roddy Rich https://tunepad.live/app/dropbook/53545

8 After Class Red $NOT https://tunepad.live/app/dropbook/53548

9 Worked example Walk It Talk It Migos ft. Drake https://tunepad.live/app/dropbook/54308

9 In Class Look Alive Blocboy JB ft. Drake https://tunepad.live/app/dropbook/54311

9 Sketch 1 https://tunepad.live/app/dropbook/54446

9 Sketch 2 https://tunepad.live/app/dropbook/54449

9 Sketch 3 https://tunepad.live/app/dropbook/54451

10 Worked example ball w/o you 21 Savage https://tunepad.live/app/dropbook/54736

10 In Class What’s Next Drake https://tunepad.live/app/dropbook/54737

End of Table

147

https://tunepad.live/app/dropbook/53393
https://tunepad.live/app/dropbook/53536
https://tunepad.live/app/dropbook/53538
https://tunepad.live/app/dropbook/53543
https://tunepad.live/app/dropbook/53545
https://tunepad.live/app/dropbook/53548
https://tunepad.live/app/dropbook/54308
https://tunepad.live/app/dropbook/54311
https://tunepad.live/app/dropbook/54446
https://tunepad.live/app/dropbook/54449
https://tunepad.live/app/dropbook/54451
https://tunepad.live/app/dropbook/54736
https://tunepad.live/app/dropbook/54737

Appendix B

LIST OF ACTIVITIES - TUNEPAD.COM

148

Table 12.: List with Code Beats Activities 2

Begin of Table

Day Type Song Name Author Link

1 Worked example Never Recover Lil Baby, Gunna https://tunepad.com/project/38097

1 Short Activity Knuck If You Buck Crime Mob https://tunepad.com/project/38098

1 Short Activity Mo Bamba Sheck Wes https://tunepad.com/project/38099

1 Long Activity Make No Sense YoungBoy NBA https://tunepad.com/project/38100

2 Worked example Bank Account 21 Savage https://tunepad.com/project/38101

2 Short Activity EVERY CHANGE I GET DJ Khaled https://tunepad.com/project/38102

2 Short Activity Work REMIX ASAP Ferg https://tunepad.com/project/38103

2 Long Activity Bad Boy Juice WRLD https://tunepad.com/project/38104

3 Worked example God’s Plan Drake https://tunepad.com/project/38106

3 Short Activity Solid (feat. Drake) Young Stoner Life https://tunepad.com/project/38108

3 Short Activity p r i d e . i s . t h e . d e v i l J. Cole https://tunepad.com/project/38109

3 Long Activity Nonstop Drake https://tunepad.com/project/38110

4 Worked example Next Episode Dr. Dre https://tunepad.com/project/38111

4 Short Activity Have Mercy Cordae https://tunepad.com/project/38112

4 Short Activity Russian Cream Key Glock https://tunepad.com/project/38113

4 Long Activity Straightenin Migos https://tunepad.com/project/38114

5 Worked example Oppanese Fredo Bang https://tunepad.com/project/38115

5 Short Activity durag activity Baby Keem https://tunepad.com/project/38116

5 Short Activity Tyler Herro Jack Harlow https://tunepad.com/project/38117

5 Long Activity Laugh Now Cry Later Drake https://tunepad.com/project/38118

”6 Worked example Surf Young Thug https://tunepad.com/project/38119

6 Short Activity Graduation benny blanco, Juice WRLD https://tunepad.com/project/38120

6 Short Activity 4 Quarters MaxThaDemon https://tunepad.com/project/38121

6 Long Activity Jumpman Drake https://tunepad.com/project/38122

7 Worked example Slippery Migos, Gucci Mane https://tunepad.com/project/38123

7 Short Activity Ball If I Want To DaBaby https://tunepad.com/project/38124

149

https://tunepad.com/project/38097
https://tunepad.com/project/38098
https://tunepad.com/project/38099
https://tunepad.com/project/38100
https://tunepad.com/project/38101
https://tunepad.com/project/38102
https://tunepad.com/project/38103
https://tunepad.com/project/38104
https://tunepad.com/project/38106
https://tunepad.com/project/38108
https://tunepad.com/project/38109
https://tunepad.com/project/38110
https://tunepad.com/project/38111
https://tunepad.com/project/38112
https://tunepad.com/project/38113
https://tunepad.com/project/38114
https://tunepad.com/project/38115
https://tunepad.com/project/38116
https://tunepad.com/project/38117
https://tunepad.com/project/38118
https://tunepad.com/project/38119
https://tunepad.com/project/38120
https://tunepad.com/project/38121
https://tunepad.com/project/38122
https://tunepad.com/project/38123
https://tunepad.com/project/38124

Continuation of Table

Day Type Song Name Author Link

7 Short Activity Rockstar DaBaby https://tunepad.com/project/38125

7 Long Activity Freestyle Lil Baby https://tunepad.com/project/38126

8 Worked example Bout Me Coi Leray https://tunepad.com/project/38127

8 Short Activity Late At Night Roddy Rich https://tunepad.com/project/38128

8 Short Activity Forever Drake, Kanye, etc. https://tunepad.com/project/38129

8 Long Activity Red $NOT https://tunepad.com/project/38130

End of Table

150

https://tunepad.com/project/38125
https://tunepad.com/project/38126
https://tunepad.com/project/38127
https://tunepad.com/project/38128
https://tunepad.com/project/38129
https://tunepad.com/project/38130

Vita

Douglas Lusa Krug received his BSc. in Computer Science in 2007 from Centro

Universitário de União da Vitória, Paraná, Brazil, and his MSc. in Applied Comput-

ing, concentration area in Computer Systems Engineering in 2018 from the Federal

Technological University of Paraná - UTFPR, Paraná, Brazil. As a full-time graduate

student in the Ph.D. in Computer Science program at Virginia Commonwealth Uni-

versity, his research focused entirely on developing and testing Code Beats, aligning

his previous experience as a computer science professor, for more than four years, and

his industry experience as a software engineer of more than twelve years.

151

Publications

[1] Douglas Lusa Krug et al. “Inspiring Interest in Computing using Music: A

Case Study on Students Lacking Prior Music Education”. In: In Progress.

2023.

[2] Douglas Lusa Krug et al. “Scaffolding for Introductory Music-Based Program-

ming Activities”. In: In Progress. 2023.

[3] Douglas Lusa Krug et al. “Using Domain-Specific, Immediate Feedback to

Support Students Learning Computer Programming to Make Music”. In: Pro-

ceedings of the 2023 Conference on Innovation and Technology in Computer

Science Education V. 1. ITiCSE ’23. Turku, Finland: Association for Com-

puting Machinery, 2023. doi: 10 . 1145 / 3587102 . 3588851. url: https :

//doi.org/10.1145/3587102.3588851.

[4] Douglas Lusa Krug et al. “Attracting Adults to Computer Programming via

Hip Hop”. In: Proceedings of the 54th ACM Technical Symposium on Com-

puter Science Education V. 1. SIGCSE 2023. Toronto ON, Canada: Associa-

tion for Computing Machinery, 2023, pp. 528–534. isbn: 9781450394314. doi:

10.1145/3545945.3569800. url: https://doi.org/10.1145/3545945.

3569800.

[5] Douglas Lusa Krug. “Code Beats - Teaching Computer Programming via

Hip Hop Beats”. In: Proceedings of the 27th ACM Conference on on Inno-

vation and Technology in Computer Science Education Vol. 2. ITiCSE ’22.

Dublin, Ireland: Association for Computing Machinery, 2022, pp. 646–647.

152

https://doi.org/10.1145/3587102.3588851
https://doi.org/10.1145/3587102.3588851
https://doi.org/10.1145/3587102.3588851
https://doi.org/10.1145/3545945.3569800
https://doi.org/10.1145/3545945.3569800
https://doi.org/10.1145/3545945.3569800

isbn: 9781450392006. doi: 10.1145/3502717.3532111. url: https://doi.

org/10.1145/3502717.3532111.

[6] Yifan Zhang et al. “A Case Study of Middle Schoolers’ Use of Computa-

tional Thinking Concepts and Practices during Coded Music Composition”.

In: Proceedings of the 27th ACM Conference on on Innovation and Technology

in Computer Science Education Vol. 1. ITiCSE ’22. Dublin, Ireland: Associ-

ation for Computing Machinery, 2022, pp. 33–39. isbn: 9781450392013. doi:

10.1145/3502718.3524757. url: https://doi.org/10.1145/3502718.

3524757.

[7] Douglas Lusa Krug et al. “Code Beats: A Virtual Camp for Middle Schoolers

Coding Hip Hop”. In: Proceedings of the 52nd ACM Technical Symposium on

Computer Science Education. SIGCSE ’21. Virtual Event, USA: Association

for Computing Machinery, 2021, pp. 397–403. isbn: 9781450380621. doi: 10.

1145 / 3408877 . 3432424. url: https : / / doi . org / 10 . 1145 / 3408877 .

3432424.

153

https://doi.org/10.1145/3502717.3532111
https://doi.org/10.1145/3502717.3532111
https://doi.org/10.1145/3502717.3532111
https://doi.org/10.1145/3502718.3524757
https://doi.org/10.1145/3502718.3524757
https://doi.org/10.1145/3502718.3524757
https://doi.org/10.1145/3408877.3432424
https://doi.org/10.1145/3408877.3432424
https://doi.org/10.1145/3408877.3432424
https://doi.org/10.1145/3408877.3432424

	Code Beats - Teaching Computer Programming Coding via Hip Hop Beats
	Downloaded from

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	 Introduction
	Research Goals
	Dissertation Structure

	 Background and Literature Review
	Disparities in Access to Computer Science
	Structural Barriers
	Perceptions of Programming

	Using Music to Teach Coding
	Platforms to Teach Coding using Music
	Experiments Using Music to Teach Coding

	Culturally Relevant Pedagogy
	Discussion
	Dissertation Contributions

	 The Code Beats Approach
	Curriculum: Music + Computer Science Concepts
	Genre Choice
	Software Tooling
	Camp Format
	Curriculum Distribution
	Core Segments

	Activities
	Example Activity in TunePad.live
	Example Activity in TunePad.com
	List of Activities

	 Measuring Engagement Toward Computer Science
	Research Questions
	Methods
	Participant Demographics
	Data Collection
	Data Analysis

	Results
	RQ1: Student Engagement
	RQ2: Developing Creators

	Limitation and Threats to Validity
	Conclusions

	 Indirectly Engaging Adult Learners
	Related Work
	Research Question
	Methods
	Study Design and Data
	Participant Demographics
	Data Analysis

	Results
	Discussion
	Perception about Computer Programming - Before Code Beats
	Perception about Computer Programming - After Code Beats

	Limitations and Threats to Validity
	Conclusion

	 Engaging Students with No Musical Background
	Context of Work
	Computer Science Education in Brazil
	Music Education in Brazil

	Adapting Code Beats for Context
	Research Question
	Methods
	Study Design
	Participant Demographics
	Data Collection and Analysis

	Results
	Students' Motivation
	Direct Observation

	Limitation and Threats to Validity
	Conclusion and Future Work

	 Study of Scaffold-based Activities for Music Coding
	Related Work
	Scaffold-Based Curricula and Activities
	Scaffolding Music-based Programming

	Adapting Scaffolding for Music Coding
	Complete the Code
	Buggy Code
	Reorder the Code

	Research Questions
	Methods
	Participant Demographics
	Study Design
	Data Analysis

	Results
	RQ1: Difficulty
	RQ2: Correctness

	Limitation and Threats to Validity
	Conclusion

	 Using Domain-Specific, Immediate Feedback in Code Beats to Support Students
	Related Work
	Feedback to Improve Code Learning

	Background
	Domain-Specific Immediate Feedback

	Research Questions
	Methods
	Study Design and Data
	Participant Demographics
	Data Analysis

	Results
	RQ1: Correctness
	RQ2: Students Perception on Feedback

	Discussion and Conclusion
	Limitation and Threats to Validity

	 Conclusion
	Research Contributions
	Significant Findings
	Future Work

	References
	Appendix List of Activities - TunePad.live
	Appendix List of Activities - TunePad.com

