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Phosphorene is a two-dimensional electron poor p-type semiconductor with high 

carrier mobility and great promise for applications in electronics and optoelectronics. As 

the main theme in this dissertation, the following work represents different investigations 

of various electronic properties associated with phosphorene. Most notable are the findings 

on charge transfer doping with metal-chalcogenide superatoms which displays novel 

control of the two most important properties of a semiconductor – the band gap energy and 

the nature of carriers. By tuning the width of the gap and p-/n-type character of conduction, 

we gain control over a material’s capacity to play a certain role upon incorporation into a 

device setting. For example, control of bandgap characteristics on the nanometer and sub-

nanometer scale is an integral next step for scientists and engineers to move beyond the 

current size limit of logic transistors. Additionally, improving the function of 

optoelectronics leading to a variety of positive enhancements in sensing devices spanning a 

wide array of fields from specialized medical devices to ubiquitous consumer electronics. 

Another possibility is fine-tuning photovoltaic devices to increase efficiency or expand the 

energy range which a solar panel may harvest light, subsequently increasing overall output 



 x 

– a vital component to our transition and continued improvement of renewable energy 

technologies. 

Summary of Contents 

Chapter 1:  A brief survey of two-dimensional materials and an introduction of the 

various compositions which lead to novel physical and chemical properties like ambipolar 

and anisotropic electronic behavior, strain- and layer-dependent bandgap, and relatively 

high carrier mobility. A more thorough introduction of phosphorene and phosphorene 

nanoribbons and associated research interests such as the ribbon stability and 

fragmentation pathways, tunability of bandgap and work function are discussed as well.  

Chapter 2: The short history and significance of the Density Functional Theory (DFT) can 

be found in Chapter 2. Additionally, the relevant theory and density functional formalisms 

associated with calculations completed in investigations of phosphorene are discussed in 

more depth. One can also find explanations for key takeaways and the reason DFT has 

been so successful to this day at producing reliable calculations for the energy 

minimization problem and other important electronic properties in solid state physics and 

physical chemistry such as band gap and work function. Computational details for various 

structures calculated with periodic and non-periodic boundary conditions are included in 

this chapter as well.  

Chapter 3: Results presented in this chapter first discuss the effects of edge passivation 

with hydrogen on the stability of nanoribbons before moving into the work on potential 

fragmentation pathways. In the final portions, the effect of ribbon width and edge 

passivation on electronic properties like bandgap, work function and electron affinity as 

well as Bader charge analysis can be found. This chapter provides the groundwork for the 

remaining composition of the dissertation by combining verification of previous trends in 

literature with studies in stability. These results lead to questions about the control of 

phosphorene nanoribbon quantum states as well as novel doping techniques which may 

add to the tunability of electronic properties while maintaining crystallinity of 

phosphorene.  

Chapter 4: Here one can find a discussion on the effects of varying edge-passivating 

ligands on the bandgap, work function, electron affinity, and ionization energy of small 



 xi 

phosphorene flakes as well as nanoribbons. Additionally, an exploration of chemical 

doping via sodium atom adsorption shows the potential in tuning the bandgap of 

phosphorene nanoribbons.  

Chapter 5: Combining the principles of chemical doping and control of quantum states via 

ligand exchange in metal chalcogenide superatoms leads to a success story in charge 

transfer doping. This chapter covers the specific results associated with adsorbing ligated 

metal chalcogenide superatoms to a phosphorene support. Ultimately, it was shown that 

this technique can be utilized in altering the carrier nature of the material from p-type to n-

type. 

Chapter 6: This chapter covers several promising potential directions for future work 

including the extension of charge transfer doping via superatoms to magnetic ligated metal 

chalcogenide superatoms on a variety of two-dimensional supports.  
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Chapter 1. An Introduction to Two-Dimensional Materials 

Featuring Phosphorene and A Novel Approach To Surface 

Doping 

 

1.1 Motivation – A History of Innovation and the Modern Demand for 

Technological Advancement 

“We were wanderers from the beginning…then, as now, technology was the key to 

our survival.”[1] Carl Sagan’s sage observations eloquently highlight the survival 

advantage of our species’ wandering and plundering tactics. All the while, technological 

advances yielded one tribe’s gain and held the power to exert more and more dominance 

over their domain. Beyond improved survival, climbing the hierarchy of needs through 

human history also allowed for interests in convenience to enter our daily lives. By the 

twentieth century, technologies made possible a quality of life which our distant ancestors 

could have scarcely imagined.  However, advent of ease would not quell our species’ 

wandering spirit. In 1990, one feat of science and engineering also gave us the gift of 

humility – the view of home from roughly six billion kilometers. Voyager 1 successfully 

completed its mission tour of our solar system but it also served as a poignant reminder of 

our unified existence. Thus, technology not only improves our survival and global quality 

of life but the has the power to unify and inspire fellow humans.  

 Presently, we are faced with another unifying realization – in the light of our 

species’ successes, our collective actions now carry the significance to affect all souls on 

our planet. Our collective wellbeing far into the future depends on solutions which meet 
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human demand but, not at the expense of nature. Developments in energy technologies, 

which make access and storage equitable and efficient, improvements in shelter which do 

not degrade our health, and even equitable access to clean water, depend upon the 

combined efforts of scientists, engineers, lawmakers, and consumers. 

At the heart of the technological term in the equation of progress, stands materials 

research. The ability to push past current limitations depends upon the discovery, 

fundamental understanding, and production of novel materials. One such area of growth 

includes two-dimensional materials. This class of materials shows great promise due to 

novel mechanical, electronic, and magnetic properties which would enable sizable leaps 

forward in chip manufacturing, energy storage, optoelectronics, spintronics, and additive 

manufacturing. This dissertation focuses on the advancement of two-dimensional materials 

with particular attention to a material called phosphorene with an exploration of novel 

surface doping techniques. Let us begin with an overview of the field.  

1.2 A Brief Background on Two-Dimensional Materials: 

Palpable interest in two-dimensional materials dramatically increased in 2004 with 

the first mechanical exfoliation of graphene by A. Geim and K. Novoselov.[2,3] The 

realization of two-dimensional materials with unique properties which were dramatically 

different from bulk counterparts spelled exciting new opportunities for technological 

advancements. Thus, a hunt ensued for materials characterized by novel properties 

resulting from quantum confinement and size effects.[2] Presently, the existence of 

hundreds of stable single-layer materials has been proposed.[4] Among the most 

commonly known are other single element materials e.g. silicene, stanene, plumbene, 

phosphorene, etc. transition metal dichalcogenides (TMDCs or TMDs) such as MoS2 and 
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WSe2, and others like Boron Nitride, Carbon Nitride, Boron Carbo-Nitride, Clays, etc. 

While enthusiasm surrounding potential practical uses for these materials is in abundance, 

the materials have yet to be incorporated into devices at scale and are still mainly subjects 

of research. Thus, research remains vital to garner an understanding of fundamental 

material properties which enable the development of new technologies and devices. It is 

the aim of this proposal to briefly outline the properties of two-dimensional materials, 

provide an in-depth discussion of the current state of phosphorene, outline the necessary 

background information to understand superatoms and their potential role in providing 

another control for tunability of two-dimensional materials, and, finally, to discuss the 

completed research and proposed future work.  

In general, two-dimensional materials are defined to be crystalline solids consisting 

of a single layer of atoms or a single polyhedron layer.[3,5] This simple definition may be 

expanded considerably as we further characterize unique behaviors exhibited by the large 

variety of possible single-layer materials. Several different classes have been proposed to 

better categorize two-dimensional materials.[3] Though there are sources which quote five 

different categories of 2D materials, the three which comprise the majority of research and 

prove most promising in terms of potential for application will be the ones covered in this 

brief review of 2D materials.[12]  

First, there are layered van der Waals solids such as graphene, h-BN, phosphorene, 

SiC, Si2BN, transition metal dichalcogenides (TMDs) (MX2 (X-M-X layer) where M=Ti, 

Zr, Hf, V, Nb, Ta, Mo, W, and X = S, Se, Te), and layered metal oxides such as vanadium 

oxide and Sb2Te3, etc.[3,8] Characteristics within the first category run the gamut of 

electrical behavior from zero bandgap graphene to insulating h-BN. They are grouped, 
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generally, as a result of the van der Waals forces which “bond” the layers together. Note, 

as the main subject of research covered in this proposal is phosphorene, this particular class 

of materials will be the one with which we are most concerned. However, it is prudent to 

provide an outline of other well-researched 2D materials so that the reader may have a 

more complete picture of the wide range of possibilities in this area of research.  

Layered ionic solids comprise the second category. As the name suggests, these 

materials possess stronger, ionic interlayer bonding. This interlayer bonding may “consist 

of a charged polyhedral layer sandwiched between hydroxide or halide layers by 

electrostatic forces”[3] as in the superconducting material La2CuO4; however, it is also 

possible to have layers bound by electropositive ions such as Na or Ca as seen in 

CaZn2Sb2, a well-known thermoelectric material.[32,33] Other examples include, 

La0.90Eu0.05Nb3O10, KLnNb2O7, Eu(OH)2.5(DS)0.5.[3]  Behaviors of these solids are quite 

unique and have only recently been explored. Notable properties range from the 

superconducting behavior of La2CuO4 and thermoelectric properties of CaZn2Sb2, both of 

which are derived, in part, by the anisotropy within the solids.[33] These exciting findings 

can be considered significant developments in materials science and in the evolution of 

goals for energy-harvesting thermoelectric materials as well as high temperature 

superconducting materials and even oxidation catalysts.[33,34] 

Finally, the third category “includes surface-assisted nanolayered solids such as 

silicene, germanene, stanene, etc”.[3] This class of materials generally requires growth on 

a substrate under high vacuum and high temperature via molecular beam epitaxy (MBE). 

They too have unique physical and chemical properties compared to their bulk counterparts 

but the challenges lie within control of the epitaxial growth as well as controlled 
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exfoliation in order to utilize the material in application settings. Developments such as 

those shown in a 2016 study published by Gibaja et al.  which “isolated few-layered 

antimonene by both liquid phase exfoliation and mechanical cleavage methods” are 

required to progress this class of materials.[10,11] 

1.3 Graphene as a Starting Point for Modern 2-D Materials: 

Graphene, since its first mechanical exfoliation in 2004, represents the beginning of 

the boom in modern day research of two-dimensional materials.[2] It falls in the first 

category of van der Waals layered materials and is the most well-known and researched 

two-dimensional crystal. It forms an atomically thin, honeycomb lattice structure with sp2 

hybridization of the carbon atoms.[3,12] As a result, graphene boasts an “all-surface” 

structure compared to its bulk counterpart meaning an extremely high surface to volume 

ratio.[12] Properties like high carrier mobility (µ > 103 cm2/Vs12) at room temperature, 

excellent thermal conductivity, and quantum confinement effects have been well 

documented and rightfully lead to significant buzz in the scientific community surrounding 

the potential for graphene.[14] For all its elicited excitement, graphene does have its 

limitations; most notably, the lack of bandgap restricting the application of graphene in 

electronic devices. Engineering a bandgap in graphene is certainly possible but requires the 

introduction of impurities which significantly affect carrier mobility.[12,13] Thus, the 

existence of such unique properties does not automatically equate to an ability to harness 

them in device construction. However, recent works by Geim, Novoselov, Liu, and 

others[26-31] have shown that, although graphene alone is limited in its applications within 

electronic devices, it is a member of a host of 2D materials which have the potential to be 

combined in the creation of van der Waals heterostructures proving to have unique 
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properties of their own.[11,26-30] These combinations of materials in the creation of 

heterostructures echo the spirit of the questions raised by Richard Feynman in his 1959 

lecture, “There’s Plenty of Room At The Bottom”. Thus, supporting the notion that, if we 

can control the individual components of devices at the nanoscale, we may observe new 

physics and ultimately reach technological capabilities which were previously 

unimaginable.  

1.4 Phosphorene Background and Phosphorene Nanoribbon Synthesis: 

One member of the suite of 2D materials known today has garnered significant 

attention recently. Phosphorene, or two-dimensional black phosphorus, is the subject of a 

growing number of studies examining electronic properties from a few to single 

layers.[15,25,35,36] Subsequent excitement surrounding this particular member of the van 

der Waals category is due to its extraordinary, directional and layer-dependent properties. 

High carrier mobility (up to 1000 cm2/Vs) similar to that of conventional semiconductor 

materials (1500 cm2/Vs) coupled with a relatively low current on/off switching ratio 

compared to transition metal dichalcogenides (TMDs) has been referred to as a good trade-

off.[15,18,36] These characteristics, as well as a bulk, direct bandgap of 0.3eV and 

monolayer, direct bandgap of 1.51eV situate phosphorene on the spectrum between zero 

bandgap graphene (very high mobility and low on/off ratio) and the transition metal 

dichalcogenides (low mobility and very high on/off ratio).[15-23]  

Pristine phosphorene possesses a puckered honeycomb structure due to its sp3 

hybridized bonding, creating two different P – P bond lengths. This atomic structure 

ultimately leads to the observed anisotropic characteristics "including its electronic, 

thermal and ionic transport properties”.[15] For example, Yongqing Cai et al. performed a 
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first principles study revealing the layer-dependent workfunction of few layer phosphorene 

with significant tunability up to 5L before reaching the bulk value of about 4.5eV (DFT, 

PBE level).[25] Other works have shown that the layer-dependent bandgap is highly 

tunable and can also be altered via edge termination/ functionalization, doping, and 

strain.[21,24] Furthermore, separating phosphorene from the metal dichalcogenides and 

graphene, is its ambipolar character allowing for n-type or p-type semiconducting 

behavior.[21] The aforementioned properties make phosphorene an attractive potential 

material for “interfaces which are themselves the devices” as described by Herbert 

Kroemer.[12,21] There are, however, limitations to this novel material which have thus far 

proved to be a hindrance in application settings. Most significant are concerns about 

stability. Phosphorene is known to be rather unstable and begins to degrade in as little as a 

few hours in ambient conditions through the adsorption of water molecules and conversion 

of the surface to phosphoric acid, subsequently dissolving the sheet and rendering the 

material useless.[21] Excitingly, recent findings by Watts and Picco et al. show that it is 

possible to synthesize phosphorene nanoribbons (PNRs) in a variety of widths and with 

extraordinary aspect ratios. Best of all, these findings note a stability of ribbons far greater 

than that of their few layer and monolayer counterparts, lasting up to six days in ambient 

lab conditions before degrading. Nanoribbons were synthesized via lithium intercalation of 

black phosphorus and immersion in solvents. The proposed chemical scissors action by the 

Li ions weakens and breaks the longer P-P bonds resulting in fragments. Layers become 

negatively charged as a result of the Li ion intercalation and, after immersion in polar 

solvent, zig-zag phosphorene nanoribbons (ZPNRs) are formed.[15] 
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The synthesis and stabilization of PNRs represent a promising advancement for this 

material as these ribbons display even more tunability than few to monolayer 

phosphorene.[15,21,36,37] First-principles electronic properties of PNRs have been well 

documented and display band gap tunability with varying ribbon width, edge termination, 

and strain.[21,36,37] In general, band gap value increases with decreasing number of 

layers or decreasing width of the PNR. Thus, it has been said that the increase in bandgap 

follows an increase in confinement effects from decreasing number of layers or increase in 

the contributions of edge states in the ribbons of decreasing width.[36] Additionally, it is 

critical to note the electronic anisotropy of phosphorene between armchair (APNR) and 

zig-zag nanoribbons (ZPNR) leading to significant differences in band properties which 

can be seen in Figure 1.1. In the case of the respective ribbons, non-passivated or non-

terminated ZPNRs have been shown to have a metallic nature while hydrogen edge-

termination leads to an indirect bandgap.[36,38]  

 
Figure 1.1 Band gap values as a function of PNR width in direct comparison with ribbon 

type, termination, and the monolayer sheet. 
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Non-terminated APNRs exhibit an indirect bandgap while hydrogen edge-

termination of the APNRs leads to a direct bandgap.[36] Multiple studies have reported 

both direct and indirect bandgaps as well as nearly direct bandgaps.[36,38,39] Thus, the 

nuances here should be subsequently addressed.  

Tran et al. published a study in 2014 discussing the scaling behavior of hydrogen 

edge-terminated PNR bandgaps in armchair PNRs (APNRs) vs zig-zag PNRs 

(ZPNRs).[39] In this discussion of bandgap tunability, the scaling properties as a function 

of ribbon width were the focus. It was shown that, based on the kind of ribbon (i.e. type of 

ribbon created by direction of propagation, armchair or zig-zag) different bandgap scaling 

was observed. In other words, the electronic anisotropy leads not only to a difference in 

value of bandgap along different directions of the material, but also a difference in how the 

bandgap scales with width in armchair vs zig-zag ribbons. Importantly, in the discussion of 

the character of these bandgaps, Tran et al. discussed observations that both kinds of 

ribbons exhibited “nearly direct bandgaps.” More specifically, it was observed that in each 

ribbon type, the true bandgap of the material was shifted slightly away from the gamma 

point, or, origin of the first Brillouin zone in the reciprocal space lattice. However, the 

difference in energies between the true bandgap and the bandgap taken at the gamma point 

were all less than 20meV for each ribbon type and ribbon width.[39] Therefore, given the 

small difference in energy between the “true valence band maximum and local valence 

band maximum at the gamma point”, the materials are considered direct bandgap 

materials.[38,39] Since there are multiple other studies which have presented findings 

highlighting the strain-dependence of bandgaps, the observations made by Tran et al. seem 
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acceptable in that, at room temperature conditions, these small variances in bandgaps 

would be difficult to detect experimentally.[36,37] Ultimately, Tran et al. and similar 

studies show that PNRs exhibit exceptional tunability with control of nanoribbon width 

and edge termination as well as strain and layer-dependent variability.  

1.5 Research Interests in Phosphorene Nanoribbons: 

This work has been of significant interest within our research group and as a result 

has been the subject of my research with several questions in mind. First, the question of 

stability. If phosphorene is to be used in the construction of widely applicable devices, the 

material must be stable enough in ambient conditions not to degrade and be rendered 

useless. As shown in the work presented by Watts and Picco et al., phosphorene 

nanoribbons are significantly more stable at room temperature in ambient conditions than 

their mono-to-several-layer counterparts.[15] At this point, however, we do not know of 

any other studies that have investigated the stability characteristics and potential 

fragmentation pathways. As such, we have performed an examination of the possible 

fragmentation pathways as well as the relative stability of the fragments. Additionally, 

edge-passivation or ligation plays a significant role in the observed stability of PNRs of 

varying width. Detailed results and discussion are provided in subsequent sections in this 

dissertation.  

 Also of interest are the tuning of the electronic and even magnetic properties. 

There is a wide variety of applicable areas of interest such as room temperature magnetism, 

spin density waves, and applications in photovoltaic water splitting, batteries, etc. 

However, for the purposes of this dissertation, a specific focus on tuning electronic 

properties including the band gap by varying width of the ribbon as well as varying 
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terminal groups at the edges of nanoribbons. Since demonstrated possible, the ability to 

synthesize individual ribbons offers the unique potential of tuning the electronic properties 

by selectively functionalizing edge termination.[15] 

1.6 Designer Superatoms as Efficient Donors or Acceptors: 

 

In addition to varying the band gap width and shifting the electronic spectrum up or 

down, the possibility to utilize and advance the principles of chemical doping in order to 

change p-/n-character of phosphorene is of great interest. Specifically, we investigate the 

capacity of ligated metal chalcogenide superatoms to act as charge transfer dopants, and 

effectively influence carrier concentration and type compared to a traditional chemical 

doping approach. To adequately address the nuances of the aforementioned approach, we 

begin by outlining the relevant concepts of superatoms in more depth. The origins of the 

superatom concept lie in the ideas of magic numbers associated with electronic and 

geometric shell closings. Almost forty years ago Knight and coworkers reported significant 

variations in the abundance of size-selected clusters generated by molecular beam of alkali 

metals.[40,42] Clusters which appeared most frequently were a result of higher binding 

energy and subsequently labeled “magic numbers”.[42] High ionization energy and low 

polarizability were key attributes of these magic number clusters – patterns synonymous 

with closed electronic shells (as opposed to closed nuclear shells in nuclear physics).[42] It 

was then posited that these periodic trends of magic numbers were likely due to quantum 

confinement effects. Subsequently, the shell model under the jellium approximation was 

developed for metallic clusters in which a nearly free electron gas was confined to a 

spherical square well in a uniform positive background which led to spherical shells in 

which the electron gas was grouped. These shells, or allowed quantum states, were ordered 
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1S, 1P, 1D, 2S, 1F, 2P, . . . and are a result of the orthogonality requirements of the core 

and delocalized electrons within the nearly free electron gas.[41] Ultimately, the shell 

closings predicted by this model accounted for the observation of accepted magic number 

metal clusters at sizes 2, 8, 18, 20, 34, 40, . . ..[40,41,42] The ideas developed by Knight et 

al. led to the formalism that a cluster with an effective zero valent superatomic state was 

both electronically and chemically stable.[42]   

This concept has been explored on various fronts by Khanna and coworkers and has 

led to the development of a concise definition for superatoms as: “clusters whose chemical 

and electronic properties are dominated by their proximity to a zero valent state, just like 

the valence of atoms in the Periodic Table”.[42] The superatom concept has been expanded 

to metal chalcogenide clusters leading to highly stable clusters with closed electronic shells 

and large HOMO-LUMO gaps. , to multiple valence superatoms which have been shown 

useful in chemical doping via the formation of charge transfer complexes.[43] First and 

foremost, unlike noble and transition metal clusters, metal chalcogen clusters do not abide 

by the nearly free electron gas approximation. Instead, covalent bonding between metal d-

electrons and chalcogen p-electrons prohibits this behavior. However, the cluster symmetry 

introduced by the octahedral geometry and filling of the cluster valence shell leads to 

enhanced stability among the transition metal chalcogenide clusters. Khanna and 

coworkers have shown that a variety of different ligated transition metal chalcogenide 

combinations with octahedral geometry ( ), exhibit 

closed electronic shells and high stability are maintained even under ligand exchange 

thereby exhibiting unique control of quantum states through ligand exchange.[42,45,46] At 

such small sizes, confinement effects dominate the clusters’ electronic behavior, grouping 
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states into shells much akin to atomic orbitals which led to the view that some such clusters 

 

Figure 1.2 One-electron energy levels of optimized ground state ligated clusters through 

ligand exchange from 6PEt3 to 6CO. Reprinted with permission from the authors Khanna 

and Reber. [45] 

 

could be considered superatoms.[43,45,46] With the electronic contributions from the 

binding of ligands either through charge transfer or traditional covalent bonding, it has 

been shown that the entire electronic spectrum shifts up or down based on a specific ratio 

of donating vs accepting ligands while maintaining the large HOMO-LUMO gap and 

therefore overall stability. The cluster’s electron affinity and ionization energies 

subsequently are affected as well demonstrating control over the cluster’s electronic 

spectrum. These effects can be visualized with the help of Figure 1.2 which shows the shift 

in one-electron levels during the course of ligand exchange. 

 



26 

 

Figure 1.3 displays the subsequent shifts in adiabatic ionization energy and electron 

affinity as well as the cluster highest occupied molecular orbital (HOMO) and lowest 

unoccupied molecular orbital (LUMO) levels. This work is directly related to our intrigue 

in the ability to form nano p-n junctions as published in a study by Khanna and Reber with 

Co6S8(Pet3)6 superatoms on WSe2 surface and has been extended to our interest in the 

unique properties of phosphorene nanoribbons.[43] Chapter 5 discusses the results of 

charge transfer doping of phosphorene with ligated metal chalcogen superatoms.  

 

 

Figure 1.3 Plot of the energy shift in HOMO and LUMO levels (left) and the adiabatic 

ionization energy (AIE) compared to adiabatic electron affinity (AEA) for 

Co6Te8(PEt3)n(CO)6-n (right). Reprinted with permission from Khanna and Reber.[45] 

 

1.7 Extension of Chemical Doping Concepts to Superatoms and Other 

Two-Dimensional Systems 

Our interest in chemical doping stems from the inherent limitations of current 

standards for doping semiconductor materials. Most semiconducting materials are doped 

with impurities which are incorporated into the crystal lattice of the system. The “kind, 

concentration, and location of impurity levels” govern observed characteristics.[54-55] As 
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such, they are restricted by the ability of and degree to which the semiconductor material 

can incorporate the aforementioned impurities; a task known to be difficult or, at the very 

least expensive and technologically limiting (e.g. photolithography, proprietary doping and 

assembly techniques). If one has any doubt, one need not look further than the sheer 

number of patents awarded to device companies such as IBM or TSMC.  

Kiriya, D. and others have explored one potential solution, in the realm of two-

dimensional or thin film solids, for overcoming limitations of bulk semiconductors.[58,59] 

The approach consists of surface-deposition of dopants which bind directly to surface sites. 

This deposition, whether through field effect or charge transfer donation, has a significant 

effect on charge carrier density within the material. There are limitations here too, 

however. Atoms are typically only able to donate a single electron and are limited by their 

second ionization energy.[43] Additionally, atomic control of coverage can be difficult to 

direct potentially leading to unintended effects in semiconductor applications like the 

collapsing of bandgap entirely, inducing metallic behavior. Thus, it would certainly be an 

improvement if surface dopants could donate multiple carriers with relative energetic ease 

and still exert the ability to control p-/n-type character. Khanna and Reber provide a 

preliminary investigation of this very concept utilizing Co6S8(Pet3)6 superatoms on WSe2 

surface in which, the effects of ligand exchange on the nature of charge donation behavior 

and subsequent effects on semiconducting character of the material as a whole are 

outlined.[43] It was shown that the ligated cluster, Co6S8(Pet3)5 binds preferentially with 

the WSe2 surface over the fully ligated Co6S8(Pet3)6 counterpart and charge donation 

behavior is tunable via ligand exchange at the cluster (superatom) level. This is a key 

attribute as the tunability of HOMO and LUMO levels in the cluster give the ability to 
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tailor the superatom in order to either inject electrons into the bandgap of the surface 

material, or situate the LUMO below the valence band of the surface material thereby 

affecting carrier concentration and kind. Excitingly, the ionization potentials were also 

calculated yielding a first ionization energy of 4.76eV (lower than that of the sodium 

atom), followed by 7.48eV 10.38 eV, and 12.88 eV for the removal of second, third, and 

fourth electron.[43] Thus, there is a realistic possibility for donation of more than a single 

electron to the system. Visualization of geometries and superatom placement can be seen 

in Figure 1.4. 
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Figure 1.4 Geometry and placement of Co6Se8(PEt3)5,6 superatomic clusters on WSe2 

surface to initiate charge transfer doping effects. Reprinted with permission from Khanna 

and Reber [43] 

Figure 1.5 displays the control of fermi energy of the material through subsequent 

ligand exchange at the cluster level. 

 
Figure 1.5 Visualization of the shift in fermi level as the inserted HOMO and LUMO 

levels change with respect to ligand exchange on the cluster.  

Ultimately, this combination of effects leads to an ability for twofold control over 

tuning of the fermi level of the material; both at the level of the cluster through ligand 

exchange and the ability of the superatom to donate more than one electron in a charge-

transfer complex with the WSe2 surface. Experimental work from the group of Nuckolls et 

al. at Columbia University have utilized these novel ideas and doped two-dimensional 

transition metal chalcogenides using Co6Se8 (PEt3)6 superatoms as electron donors.[55,56] 

Their experiments indicate that electron-rich superatom could be used as a tunable and 

controllable surface dopant for the semiconductors. For example, their experiments show 

that they could transform MoS2 from moderately to heavily electron-doped-states by 

controlling the concentration of superatoms in the solution. Fig. 1.6 shows the transfer 

characteristics of the n-type MoS2 upon doping from the experiments by Nuckcolls et 
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al.[55,56] Even more interesting was that for WSe2, the characteristics of the film changed 

from hole transporting to electron transporting upon doping (Fig. 1.6). They further used a 

lithographic mask (h-BN) to selectively dope areas of WSe2 film thereby creating p-n 

junctions effectively creating a diode. These are remarkable findings that could open the 

pathway to novel class of doped semiconductors. 

 

Figure 1.6 “(a) Schematic of a back-gated TMDC FET doped with electron-rich molecular 

clusters, Co6Se8(PEt3)6. Transfer characteristics of the fewlayer (b) MoS2 and (c) WSe2 

FETs. The black and red curves are before and after doping with superatoms, 

respectively.”[55,56] 

 

We are particularly interested in exploring the possibility of controlling the 

semiconducting properties of nanoribbons by charge transfer doping methods, and, in 

general, whether it is even possible to apply these methods to a material such as 

phosphorene with such a high valence band relative to proposed dopant superatoms. 

Results of these investigations are covered in Chapter 5 in more detail.  
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1.8 Research Objectives and Remaining Composition 

 The work presented in the subsequent chapters follows the motivation of the next 

three research objectives:  

1. A study of the relative stability and fragmentation patterns of phosphorene 

nanoribbons and the effects of ligation or edge-passivation on the potential 

fragmentation pathways available during synthesis.  

2. Investigating the effects of edge-passivation with various ligands on the work 

function and associated quantum states of the system. 

3. The comparison between traditional chemical doping via atoms or small molecules 

and charge transfer doping of phosphorene by ligated metal chalcogenide 

superatoms with a specific aim to control p-/n-character of the system. 

Chapter 2 discusses the development of density functional theory and relevant methods 

utilized in the theoretical research presented in Chapters 3 – 6. The study of ribbon stability 

between bare and passivated ribbons, fragmentation pathways, and bandgap variation or 

dependence upon width is contained in Chapter 3. The effects of ligands on work function, 

bandgap, and associated quantum states of the system are presented in Chapter 4. A 

comparison between chemical doping of phosphorene nanoribbons by varying 

concentration of Na surface atoms and charge transfer doping by ligated metal 

chalcogenide clusters is covered in Chapter 5. Finally, a discussion dedicated to related 

future works can be seen in Chapter 6.  
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Chapter 2. Density Functional Theory and Computational 

Methods 

2.1 Introduction and Background 

Density functional theory (DFT) is the basis for modern computational quantum 

mechanical methods and has led to the ability to perform complex calculations to 

determine, principally, the ground state electronic structures of many-body systems. 

However, it has not always held this position with unwavering support from the scientific 

community. In fact, there had been outright dismissal of the methods proposed in DFT by 

quantum chemists until the 1990s when the exchange-correlation functionals underwent 

significant refinement by Perdew and coworkers.[12,14,40] However, after their 

enhancement, these methods have led to the development of numerous software packages 

which make possible diverse theoretical exploration of physics, chemistry, and materials 

science. Theoretical modelling has proven predictive power as well as the capacity for 

aiding experimentalists in determining the inner workings of observed, novel physical or 

chemical properties. Thus, through collaborative and explorative efforts, the advent and 

application of DFT has led to a better understanding of the physical world in which we 

reside. As such, contributions of theoretical scientists have played a significant role in the 

development of better technologies utilized by the modern world today.[1-3] 

Consequently, we may not understate the utility of DFT and the value of continued 

contributions from the world of computational physics and chemistry.  
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2.2 The Schrodinger Equation: 

Much of modern quantum mechanics rests on the shoulders of Erwin Schrodinger. 

His adaptation of Newton’s second law led to the development of a wave equation whose 

evolution over time gives the quantum mechanical details about the path some isolated 

physical system takes with time. Specifically, that the behavior of electrons within atoms 

could be treated mathematically as matter waves was theorized in 1925 and published in 

1926. His seminal work proved a vital interpretation of the wave-nature of the electron and 

successfully reproduced the spectral energies of hydrogen. Soon after, Max Born 

effectively interpreted the wave function as the probability amplitude while noting its 

modulus squared equates to the probability density. [6] Pertinent to the development of 

DFT, is the time-independent Schrodinger equation which, for a system with N electrons 

and M nuclei, is expressed in equation (2.1). 

 
 

Where,  , the Hamiltonian operator, is an observable which gives the total energy of the 

system as a sum of the operators associated with the kinetic and potential energies of the 

system,  is the corresponding energy eigenvalue, and 𝜓 represents the wavefunction of 

the total system. Expanding the Hamiltonian Operator, , into its constituent parts in 

atomic units is given by equation (2.2). 

  

 Note, the first two terms in Eq. 2.2 describe the kinetic energy of the electrons and nuclei 

respectively while the latter three terms represent the attractive electrostatic potential 

2.1 

2.2 
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between nuclei and electrons, repulsive electrostatic potential associated with electron-

electron interactions, and the repulsive potential between nuclei. A first approximation to 

simplify the Hamiltonian considers the significant difference in mass between electrons 

and nuclei in the system. Known as the Born-Oppenheimer approximation, electrons are 

treated as a sea of electrons moving among a background of positive, spatially fixed nuclei. 

Since the nuclei are approximately stationary relative to the electrons, we may assume the 

kinetic energy of the nuclei approaches zero and the nuclear potential term to be a constant. 

Thus, the second term of the Hamiltonian vanishes and the expression can be reduced as 

follows in Equation 2.3, 

  

 

where N and e denote nucleus and electron respectively. The exact solution to many-body 

Schrödinger equation given by Eq. 2.1. is considered the pinnacle of ab initio 

computational materials science. This would give us a wealth of information about every 

electron interaction within the system, including the exact details of the ground state 

energy of the system. The simplicity of this many-body Schrodinger equation is deceptive 

as, even with this first approximation, it remains entirely unsolvable. For example, if we 

take a 5-electron sample system on a 10x10x10 grid, data storage alone required to store 

the many-body wave function dependent upon all of the electronic spatial coordinates is on 

the order of 10 petabytes. (7) A proposed method for working around this problematic 

search for exact solutions is to map the wave function which depends on all spatial 

coordinates of all electrons in a system to a single electron.[7] This is called the one-

2.3 
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electron theory, and can be attributed to the work of Hohenberg and Kohn.[7-10] The 

Hohenberg-Kohn theorem declares that all ground state properties of a system may be 

attributed to the density of that system. As such, the ground state energy exists as a 

functional of the electronic density. Thus, if we can determine the electron density then we 

may also solve the total energy of the system. This greatly simplifies the many-body 

Schrodinger equation because the electron density only depends upon one spatial 

coordinate. Anything that is unknown about the system is grouped together into the 

exchange-correlation functional which is also a functional of the electron density. In this 

way, all of quantum mechanics is packed into these two terms which we know exist but 

have not yet defined. Thus, utilizing the system’s electron density as the fundamental 

parameter to determine the quantum mechanical properties of the system remains quite an 

attractive approach from a practical standpoint. Not only is the electron density an 

observable parameter, thus experimentally obtainable, but the density functional approach 

leads to a computationally tractable minimization of energy for small systems. Let us dive 

deeper and observe the individual pillars of modern density functional theory in the 

subsequent sections, beginning with the definition of the electron density.   

2.3 The Electron Density:  

Recall from introductory quantum mechanics the wavefunction, 𝜓, mentioned in 

section 2.1, is not an observable quantity as it represents the probability amplitude of a 

particular electron in the system. However, the modulus squared of the wavefunction 

represents the probability density of electrons and is therefore directly related to the 

systems electron density which can be obtained experimentally via X-ray diffraction 

(XRD). Since electrons are indistinguishable from one another, for any N electron system 
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the total electron density may be defined as N times the integral of the wavefunction 

modulus squared (probability density) with respect to all possible spin coordinates (ds1) 

and all but one spatial coordinate, ( ) shown below: 

  

Where,  now defines the probability of finding any electron (N) within a volume 

element of  with arbitrary spin. All other electrons within the system (N-1) also have 

arbitrary positions and spin where the state is defined by wavefunction 𝜓. Though the 

quantity, , obtained by solving Eq. 2.4 represents the probability density, it is 

commonly referred to as the electronic density and the function obeys the following criteria 

[5]: 

a)  The function  integrates to an integer N, total number of electrons in the 

system and vanishes at infinity  

  

b)  At the nucleus of any atom or molecule within a material the electron density 

reaches a finite value resulting in a discontinuity. To avoid any blowups of 

Hamiltonian terms as a result of this cusp; the specific cusp condition is given 

below, 

  

 

where  is the spherical average of . 
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c)   The final important result is the long-range law for electron density which states 

the asymptotic exponential decay of the electronic density for large distances, or, as           

.[5]  

 

 

Importantly, the probability of finding two electrons simultaneously whose spin 

states are  within two different volume elements  respectively 

is given by Eq. 2.8, 

 
 

The remainder of the electrons in the system are treated with arbitrary position and spin. 

Note, the pair density is positive and normalized to the total number of non-distinct 

electron pairs.[5, 11] Now that we have a better idea for what parameterizes the electron 

density, let us inspect the first of several founding ideas which comprise modern DFT – 

The Thomas-Fermi Model.  

  

 

2.4 The Thomas-Fermi Model: 

A first approach utilizing the density functional was proposed by Llewellyn 

Thomas and Enrico Fermi in 1927.[5,6] As mentioned in previous sections, utilization of 

the density functional approach greatly reduces the computational cost required to solve 

the energy minimization problem. It can be measured experimentally and depends only on 

2.7 

2.8 
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the spatial variables of the wavefunction mapped to a single electron, thus, decreasing the 

number of variables from 4N for an N-electron system (3N related to spatial and N related 

to spin), to N. Thus, for small systems like molecules the calculations become possible. 

Thomas and Fermi were the first to propose a density functional-based model which 

utilized the uniform electron gas approximation in order to derive the quantum mechanical 

kinetic energy of the system. The accuracy of the model is flawed, however, as all other 

energetic contributions within the system (attractive nuclear potential, and electron 

repulsion) are considered classically. The power and significance of this model lies in the 

proof that a density functional-based approach could be used to obtain a result.  

 

Eq 2.9 represents the T-F kinetic energy: 

 

 

Where, adding the classical contributions, we have the following expression for total 

energy ETF, 

  

Considering the extent of these estimations as well as the exclusion of the exchange 

and correlation effects it does not require much effort to discern the lack of accuracy in 

solutions obtained with this approach. Again, the significance is in the first representation 

of the total energy of the system using only the electron density. Given the evidence 

against the presented method and the lack of justification for the proposed method at the 

time, the importance of the preliminary work by Thomas and Fermi cannot be understated 

in its importance and influence in modern computational solid-state physics and materials 

2.9 

2.10 



44 

 

science. It wasn’t until the work of Hohenberg and Kohn and later Kohn and Sham in the 

1960s that the density functional approach took another leap forward.  

2.5 The Hohenberg-Kohn Theorems 

Hohenberg and Kohn’s pustulates published in their seminal paper in 1964 mark 

the birth of modern density functional theory. These two theorems provide justification of 

Thomas and Fermi’s earlier model as well as lay the fundamental theoretical groundwork 

necessary to utilize a density functional approach for rigorous quantum mechanical 

investigation of solid-state materials. The two theorems apply to any system of electrons 

moving under the influence of some external potential.[5,6,8-11] 

1. The ground state energy of the system is a unique functional of the electron density 

of the system.[5,6,8-11] 

Corollary 1: The ground state density uniquely determines the potential and 

therefore all knowable properties of the system including the many body 

wavefunction.  

Corollary 2: Since the energy of the system is a functional of the ground state 

electron density, the spectrum of the Hamiltonian is also a unique functional of the 

ground state charge density.[5,6,8-11] 

2. The electron density that minimizes the energy of the overall functional is the true 

electron density corresponding to the full solution of the Schrodinger equation. 

[5,6,8-11] These theorems were first applied to the stationary, time independent 

ground state but later adapted for time dependent consideration as well.[5,6,8-11] 

While the proposed theorems by Hohenberg and Kohn seem a viable path one 

might take to arrive at the ground state energy of some system, the validity must be proven. 
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The proof of the first theorem lies in showing that the energy can indeed be written as a 

functional of the electron density, while proof of the second theorem must say something 

about what form the density functional takes. First, recall the Born-Oppenheimer 

approximation as discussed in section 2.1 which utilizes the relatively heavy mass of nuclei 

to adjust the electronic Hamiltonian to what is given by Equation 2.3. Now, the ground 

state energy of the system is directly related to the potential associated with the nuclei 

within the system – called the external potential.  It states that the ground-state electron 

density  of an electronic system distinctively determines an external potential 

( ) acting on the electrons up to an additive constant. This theorem creates a one-to-

one correspondence between the ground-state electron density and the external potential. 

Quite significantly, this reduces the dimensionality of the problem for a 100 Pt atom 

system with 78 valence e-, each with three spatial dimensions, from a total of 23,400 

dimensions in the wave function regime to a reliance on just three spatial dimensions.[11] 

Recall, from Equation 2.5, integrating the electron density   within some volume  

yields the integer number of electrons within the system defined by the specified volume, 

 

 

 

Now, assume  represents the exact ground state density for some non-degenerate 

system, while  is the ground state wavefunction. Furthermore, assume there exist two 

potentials,  , varying by more than just a constant, which give rise to 

the same ground state density. These two potentials correspond to distinct Hamiltonians, 

, and distinct wavefunctions,  . The variational 
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principle states that no wavefunction may give an energy that is less than that of  

for . In other words,  

   

 

Now, utilizing the variational principle, computing the expectation value of  with 

 yields the following, 

 

 

 

 

 

Similarly, exchanging labels in Eq. 2.12 to find the expectation value of  with 

, we have, 

 

 

 

 

By adding Equations 2.12 and 2.13 we obtain,  

 
 

The solution given by Equation 2.14 is clearly contradictory. As such, theorem 1 has been 

proven via reductio ad absurdum, and there must be a unique  which corresponds to 

the ground state energy of the system and therefore a single .  

Now, since we have shown that the external potential is uniquely determined by the 

density of the system and, since this external potential subsequently determines the ground 

2.11 

2.12 

2.13 
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state wavefunction,  also uniquely determines all other energetic properties of the 

ground state such as the electron kinetic energy, , and electron interaction energy, .   

As such, we may write the total energy of the ground state as a functional of the 

density like so,  

 

 

 

 

Note, we have grouped the terms according to their relation to a particular system, or, as 

universal terms independent of system. The first term represents the system-dependent 

attractive potential energy between nuclei and electrons while the universal energy terms 

include the kinetic energy of electrons and repulsive potential associated with electron 

interactions. Equation 2.15 may be transformed further by grouping the system-

independent terms into a single universal functional, , as follows: 

 

 

 

 

This universal, , depends only on the density and, mathematically, remains 

independent from any system under observation. Though simple, the universal functional 

proves fundamentally vital to DFT calculations; If its explicit form is known, exact 

solutions to the Schrodinger equation may be found. Alas, the exact form is yet unknown 

and presently proves one of the great challenges in DFT research. The electric potential 

can, however, be expanded in the interest of progressing toward a more exact form and 

2.15 
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subsequently more accurate solutions to the ground state properties. Separating the 

electronic potential into a classical Coulombic interaction term, , and a non-classical 

self-interaction correction and exchange,  due to the error from the sum of Coulomb 

and exchange self-interactions of the electron, we have the following, 

 

  

 

 

 

While the first Hohenberg-Kohn theorem proves that the energy of the system may indeed 

be written as a functional of the electron density, and as such, there exists a particular 

density which is associated with the ground state of a system, we do not have any notion 

about how to determine this particular density. We do know that the ground state energy 

can be defined by a unique ground state density. Thus, in theory, it is possible to utilize the 

variational principle to vary the density until arriving at a global energy minimum. The 

second theorem tells us that  acts as an upper bound to the ground state energy, , 

meaning that any other density than the ground state density will produce an associated 

energy higher than that of the global minimum. In other words, a trial density, , which 

satisfies the necessary boundary conditions,  

, 

, 

 

corresponds to some  and yields an energy value  greater than or equal to that of 

the ground state energy : 
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Given the correspondence between the density and Hamiltonian to some wavefunction, we 

may utilize the related wavefunction as a trial wavefunction. As well we may use the 

Hamiltonian associated with the true external potential, to obtain the resulting expectation 

value of the energy: 

 

. 
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It is important to note that the density discussed in the previous sections is defined by 

distinct criteria:  

1. The summation to integer, N, total electrons or N-representability.[5,6,11] 

2. The association of the density with some external potential, .[5,6,11] 

The first condition is met simply by ensuring the density originates from an 

antisymmetrized wavefunction. The second condition is not so trivial, however, as not all 

possible densities map directly to some antisymmetrized wavefunction. Thus, they cannot 

have the necessary direct correlation to . In other words, though the first condition is 

easily met, not all densities inherently abide by this condition and must be discerned 

accordingly. This has been shown by the work of Levy and Lieb and remains an area of 

study presently in the interest of finding trial densities which meet the second condition to 

provide more accurate results.[13,14]  
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2.6 The Kohn Sham Method: 

While Hohenberg Kohn methods were integral in building the framework for 

adapting the density functional theory from its initial formulation laid out by Thomas and 

Fermi, they lacked a formalism for computing the energy minimization as well as a process 

for calculating appropriate densities abiding by the criteria defined in the previous section. 

Kohn and Sham developed an approach which avoided one of the main limitations of the 

Hohenberg-Kohn theorems, namely, the inaccuracy of the kinetic energy term contained 

within the critical universal function  defined in section 2.4, 

. 
2.20 

In 1965 Kohn and Sham proposed calculating the kinetic energy from a known wave 

function for a reference, non-interacting system yet, whose density would be the same as a 

real interacting system. This kinetic energy expression is given as, 

, 

2.21 

which yields the following expression for the electron density, 

, 

2.22 

 

where  represents the wavefunction from the reference system. We note  even 

for the same electron density. However, the majority of  is expected to be preserved in 

. Kohn and Sham’s proposed correction for this inequality is grouping that which is 

unknown into a new term within the universal function , called the Exchange-

Correlation Energy. 
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, 
2.23 

which is expressed as the sum of differences between terms in respective models yielding,  

. 
2.24 

In this way, Kohn and Sham have packaged all that is unknown about a particular system 

into a single term, , which approximates the difference between the reference and 

real systems as well as decreases the computational load. These unknowns, like the 

electron exchange energy, electron correlation, residual kinetic energy, and a self-

interaction correction, are ignored in the energy minimization calculations and left for 

approximating as a whole. Presently, a great number of accurate approximations exist for 

the exchange-correlation functional e.g. the Local Density Approximation (LDA), 

Generalized Gradient Approximation (GGA), a variety of Hybrids, and meta-GGA.  

 Returning to the business of finding the associated potential, , of the 

aforementioned non-interacting reference system, we are still tasked with obtaining an 

antisymmetrized wavefunction (Slater determinant) associated with the exact density from 

our particular real system of interest. To begin, Kohn and Sham list the new energy 

expression as follows:  

. 
2.25 

 

Expanding each term yields,  
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2.26 

where the only unknown remains the exchange-correlation term . Applying the 

variational principle on Equation 2.26 finally gives the famed Kohn-Sham equations under 

the constraint, , 

 

 

 

2.27 

 

where  can be defined as the functional derivative of the exchange-correlation energy 

with respect to the density,  

. 

2.28 

 

Note, in the Kohn-Sham operator, the effective potential, , depends only on  instead 

of the index over all electrons within the system thus, greatly simplifying matters. Orbitals 

obtained from Equation 2.22 are used to compute the following total density shown in 

Equation 2.29: 
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. 

2.29 

 

This density can, in turn, be used to begin the cycle again to obtain a new effective 

potential and continued until the calculation reaches self-consistency – the condition in 

which the beginning density leads to a final density of the exact same form. It would be 

remiss not to mention that the Kohn-Sham orbitals, , do not translate to any physical 

meaning and are not equivalent to the actual electronic orbitals within a system. They do, 

however, effectively lead to an accurate approximation of the ground state energy and 

other physical properties of a system through the previously mentioned self-consistency 

cycle. This process can be visualized by referring to the pictograph in Figure 2.1. 
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Figure 2.1. Kohn-Sham DFT flow chart depicting the self-consistency method for energy 

minimization.  

 There remains one final artifact which arises from the treatment of the exchange-

correlation functionals, whose general form is expressed in Equation 2.23 – The idea of 

Self-interaction correction to the exchange-correlation energy. Recall, the density 

functional formalism relies on mapping to a one-electron system. In a physically real 
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equivalent, the hydrogen atom, the energy of the system clearly depends solely on the 

kinetic energy of the electron and the external potential of the nucleus. In this system, there 

obviously can be no electron-electron interactions. This seems a painfully trivial 

observation until one considers the energy expression for a one-electron system governed 

by the Kohn-Sham approach which is indeed the exact same expression as the general form 

given by Equation 2.25: 

. 
 

Recall, the classical electrostatic repulsion term, , can be expressed as follows,  

. 

 

Now, since in this integral there is no restriction prohibiting , this term does not 

completely vanish and results in Coulomb interaction of the density with itself.[27] For the 

one-electron system this results in a non-zero contribution from electron interaction which 

is a physically nonsensical result. [27] This error extends to other systems as well and in 

order to correct for this spurious inclusion we must mathematically constrain the repulsion 

term to be equivalent to the negative exchange-correlation energy, , such that the 

false self-interaction cancels,  

 

Herein lies a major obstacle in the density functional approach. In the Hartree-Fock 

scheme, the previous expression is satisfied. Yet, in any application of the Kohn-Sham 

approach, accounting for this self-interaction does not guarantee complete rectifying of 

energy mis-match.[27] In fact, the error is amplified in some cases, especially for many-
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body systems since the approximations to the exchange-correlation energy are independent 

of repulsion term, . [27] 

 

2.7 Exchange-Correlation Energy and Choice of Functional 

We saw from the beautiful work of Hohenberg-Kohn-Sham DFT that the ground 

state energy of a reference system could be obtained by utilizing a self-consistent 

minimization of the energy functional which yields a self-consistent solution to a set of 

single particle equations.[11] Also, the work conveniently grouped all unknowns which 

separated our reference system from the real one into a single term called the exchange-

correlation functional shown in Equation 2.27.  However, there exists one major 

complication in an otherwise elegant formulation: in order to solve the Kohn-Sham 

equations we must explicitly define the exchange-correlation function. Herein lies the 

unique difficulty of density functional theory as the exact form of the elusive exchange-

correlation functional is unknown. Fortunately, there is a model by which this functional 

can indeed be derived exactly. This toy system called the uniform electron gas treats the 

electron density as a constant at all points in space. Realistically, this approximation is a far 

cry from the delicate variations in electron density which give materials inherently 

interesting qualities. However, it does provide utility to theorists allowing for the use of the 

Kohn-Sham equations to build somewhat accurate models of real systems. Certainly, the 

most accurate way to estimate the exchange-correlation energy is the constraint search 

approach using mathematical conditions that precisely represent physical constraints of 

real systems yielding exact exchange and correlation energies. However, as described in 

the Jacob's ladder analogy by J. Perdew, the higher up one climbs, the greater the increase 
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in accuracy and complexity of the approximation and, subsequently, the greater the 

computational cost.[12] Modern DFT has produced a growing variety of viable exchange-

correlation functionals which have been computed using Monte Carlo methods.[7,12] The 

discussion below outlines the major classes of exchange-correlation functionals with 

increasing complexity and accuracy. 

2.7.1 Local Density Approximation (LDA) 

The Local-density approximations (LDA) remain the simplest class of 

approximations as they depend solely on the electron density at specific points in space as 

opposed to derivatives of the density as seen in the Kohn-Sham orbitals in Section 2.5. The 

success of LDA lies in the approximation of the system’s true inhomogeneous electronic 

density as a locally well-behaved homogeneous or uniform electron gas. As one might 

imagine this leads to accurately portrayed electron densities near nuclei within a real 

system, however, the more nuanced electron densities associated with chemical bonding 

are not well represented by the LDA. Nevertheless, the local-density approximation exists 

as a first step towards chemical accuracy.  

For a spin-unpolarized system, in general, the local-density approximation (LDA) 

for the exchange-correlation energy is written as follows,  

 

2.30 

 

where  is the electronic density and  is the exchange-correlation energy per 

particle of a homogeneous electron gas of the same density. The exchange and correlation 

terms are then separated linearly as follows  
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 2.31 

 

The exchange term  correlates to the exchange energy of an electron interacting with a 

uniform electron gas, of particular density, which takes a simple analytic form and is 

therefore known precisely. The correlation energy has multiple different approximations 

but can be obtained numerically up to three significant figures for select electron densities 

and later adapted for all densities.[13,14] As mentioned before, given the nature of the 

LDA and uniform electron gas, the method has success defining slowly varying electronic 

densities, like bulk metals. Additionally, LDA has played an integral role in predicting 

various materials properties such as vibrational frequencies, elastic moduli, etc., as well as 

lay the groundwork for the construction of more sophisticated approximations to the 

exchange-correlation energy. Still, significant issues arise when modelling other properties 

such as the binding energy, band energies, work function, and lacks predictive power for 

defining energy barriers in chemical reactions. As such, the approximation does not boast 

much popularity in quantum chemistry or materials science applications. More specifically, 

there is a tendency to lose accuracy predicting properties of systems in which electron-

electron interactions dominate. Aside from its shortcomings, the local-density 

approximation produces decent estimates for  in certain systems because of its inherent 

error cancellation between the exchange and correlation energies by underestimating  

but overestimating . Thankfully, far brighter minds than my own worked tirelessly to 

produce more accurate representations of the exchange-correlation functionals. The next 

natural progression of the LDA class led to the development of the generalized gradient 

approximations (GGA).  
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2.7.2 Generalized Gradient Approximation (GGA) 

The aforementioned structure of the LDA formalism depends on the well behaved 

uniform electron density. In practice, however, the electron density in real systems tends to 

be spatially inhomogeneous. Therefore, concentrating efforts in the development of 

formulae that consider the inhomogeneity of the electron density, or more specifically, the 

gradient of the electron density a varying points in space within model systems. GGA 

made significant strides in rectifying binding energy and other systematic errors like the 

overestimation of molecular atomization energies and bond lengths. With its improvements 

over its predecessor, the generalized gradients approximations of the exchange-correlation 

functional were quickly adapted by the field of theoretical quantum chemistry beginning in 

the early 1990s. Some of the most successful within the suite of GGA functionals are 

Perdew-Burke-Ernzehof (PBE) and Perdew-Wang (PW91) in physics and Becke- Lee-

Yang-Parr (BLYP).[14,15,16] Currently available GGA functionals produce far more 

accurate results for defining and differentiating chemical bonding – covalent, ionic, 

metallic, etc. However, there is a general failure to accurately define and account for Van 

der Walls interactions.[17] Therefore, in the interest of constantly improving theoretical 

models, suited to build a complete picture of materials properties under the influence of the 

drive for a comprehensive understanding, as well as societal pressures to create enhanced 

technologies, more sophisticated formulations have been developed to better model weaker 

electrostatic interactions.  
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2.7.3 Meta-GGA functionals 

Next in the emergence of a more sensitive class of exchange functionals which 

account for a variety of electrostatic interactions come the meta-GGAs. The development 

of meta-GGA relies on the utilization of the Laplacian (second derivative) of the density as 

well as the magnitude and gradient of the electron density. Importantly, the local kinetic 

energy of electrons is also considered which aids in the more accurate treatment of weaker 

electrostatic interactions; usually this is defined as the Kohn-Sham kinetic-energy density. 

Meta-GGA functionals are improved in several cases over GGA counterparts as they 

typically report higher accuracies in atomization energies, metal surface energies, and 

transition pressure.[18] Moreover, they also support accurate van der Walls interactions 

required for consideration of material aspects such as adsorption on surfaces.[19] 

 

2.7.4 Hybrid Exchange Functionals 

Beyond the local or semi-local methods discussed previously (LDA, GGA, meta-

GGA), there is a group of functionals which utilizes a mixture of Hartree-Fock and Kohn-

Sham theories. The hybrid functionals tend to be far more accurate for non-metallic 

systems, particularly in their treatment and calculations of band structures. To address this 

known disparity between known and calculated band structures (band gaps), recent 

developments in exchange-correlation functional introduce a non-locality in DFT by 

incorporating a fraction of Fock exchange with exchange-correlation energy within the 

GGA. In other words, the exchange-correlation functional becomes a linear combination of 

HF and semi-local exchange terms. Hybrid functionals exist on a range of screening 

depending on specific application. For example, in periodic solids, HSE (Heyd-Scuseria-
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Ernzehof), based on the PBE exchange-correlation (Exc), is usually preferred as the short-

range screening leads to faster convergence respective of number of k-points and size of 

the unit cell.[21] Afterall, the main limitation of this high-level functional is indeed the 

computational cost. Two other notable hybrid functionals include PBE0, and in quantum 

chemistry, B3LYP which introduces updated mixing and other empirical parameters into 

its predecessor BLYP.[20,21,22] Generally speaking, hybrid functionals result in a 

substantial improvement in obtaining a variety of more complex or nuanced material 

properties, such as bond lengths, van der Waals interactions, atomization energies, and 

band structure in nonmetallic solids. However, in the quest for exact chemical accuracy 

and the growing desire for accurate computational models of forefront materials, we soon 

may rely on help from additional computational methods. For example, applying data-

driven machine learning systems to current DFT methods may prove vital in progressing 

the field of theoretical materials science and quantum chemistry. In fact, one such approach 

has predicted a variety of material properties such as bond lengths, electronic structures, 

crystal structures, etc.[23] Another possibility for the employment of hybrid DFT-machine 

learning methods could lie with the predictive power of materials not yet envisaged. 

Imagine the benefits to humankind and the planet of one such method with the ability to 

forecast particular novel assemblies of materials with desirable properties, e.g. improved 

photovoltaic efficiency.  

The success of DFT as well as improvements in computational resources, has led to 

a vast and rapidly growing database of hundreds of thousands of materials. With such 

large, open-source datasets, machine-learning approaches are gaining traction, especially in 

the application to predictive models which can both propose novel materials as well as 
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focus research efforts on viable materials with desired properties like band gap, formation 

energy, melting point, magnetic anisotropy, catalytic activity, adsorption energy, etc. 

Having the ability to parameterize material predictions would prove greatly beneficial to 

our species as we march forward on our evolutionary path colored by a unique set of 

modern challenges – energy consumption, food production, water production and 

allocation, etc.  

 

2.8 Periodic Boundary Conditions  

As we have seen from Hohenberg-Kohn-Sham density functional theory, we have 

reduced the dependence of the system by mapping the many-body wavefunction onto a 

single electron (one-electron theory) by taking a product of one-electron states like so:  

. 2.32 

This is a clear improvement over the dependence on every aspect of all electronic 

wavefunctions in the complex many-body Schrodinger equation, or a function to the power 

of N. However, this improvement to a dependence on the number of one electron states, N, 

only works well for small systems of a few atoms or small molecules. As we approach bulk 

systems the number of electrons quickly approaches N23 again making solutions quite 

expensive computationally. So, we must again make clever approximations or set favorable 

boundary conditions in order to achieve accurate solutions to the Kohn-Sham equations. 

The Vienna ab initio Simulation Package (VASP) makes use of periodic boundary 

conditions in order to simplify and reduce computational expense while retaining accuracy 

in the calculation of bulk or periodic system properties once again.  
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Bloch’s theorem states that solutions to the Schrodinger equation in a periodic potential 

take the form of a plane wave modulated by a periodic function” [24]. By treating our 

system like a perfect crystal and applying periodic boundary conditions, the system’s 

nuclei resemble this periodic potential. As such, electrons within our solid abide by a set of 

symmetry rules which means that the wavefunction is an eigenstate of all translation 

operators simultaneously. Therefore each of these electronic wavefunctions is a Bloch 

state, shown by the Bloch function below,  

, 

. 

2.33 

 

where  is a periodic function with the same periodicity as the crystal, n is the band 

index, on the order of the number of electrons per unit cell, k is the Bloch wave vector 

usually constrained to lie within the first Brillouin zone of the reciprocal space, and r is a 

lattice vector of the Brillouin space lattice. Due to the periodicity of the system, the 

wavefunction remains invariant under spatial translations,  like so: 

 

, 

 

2.34 

 

Thus, solutions to the Kohn-Sham equations are labeled by the previous methods where 

one index runs over the number of electrons contained within the unit cell, while the 

second index, runs over all possible Bloch vectors contained within the first unit cell. We 

then, transform the electron density expression to abide by the same periodic boundary 

conditions to obtain the following,  
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. 

 

2.35 

 

We can see from Equation 2.35 that the density involves an integration over the first 

Brillouin zone. This is potentially problematic since the number of Block vectors, k, is 

quite large. We can, however, take advantage of the fact that Bloch vectors which are close 

together are nearly identical and approximate the integral by a weighted sum over a 

discrete set of k-points within the first Brillouin zone.[7,24 ]  

 

2.36 

 

This produces a density with dependence upon discrete quantities and greatly reduces the 

computational load leading to accurate and timely results, depending on the computing 

system. 

2.9 The Reciprocal Space Lattice, Plane Wave Basis, and Monkhorst 

Pack k-Point Sampling 

 Recall, from Bloch’s theorem mentioned in Section 2.7, the index, k, is a vector 

and considered a quantum number which characterizes wave functions in a periodic 

crystal.[24] An additional point of distinction for wave vector k is in its definition as the 

crystal momentum This distinction has led to k-space also referred to as reciprocal space or 

momentum space. Now, for each given set of real space lattice points, 

, there exist corresponding reciprocal lattice space vectors to 

define the reciprocal space lattice given in general by Equation 2.37, 
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 2.37 

For the practical three-dimensional space, these reciprocal lattice vectors take the 

following form,  

, 

 

 

2.38 

Where, the denominator is equivalent to the volume of the real space unit cell or, the 

Wigner-Seitz cell.[24] In the same fashion the real space Bravais lattice is divided up into 

the Wigner-Seitz cell by a set of perpendicular bisectors of nearest neighbors, the 

reciprocal space lattice can be divided into Brillouin zones. Refer to Figure 2.2 for a 

general visual representation of the real space lattice, the conversion of real to reciprocal 

space, and the generation of the first Brillouin zone for a face-centered cubic (fcc) real 

space lattice.  

 

Figure 2.2. Representation of the transformation from real space (a) to reciprocal space (b) 

and the construction of the first Brillouin Zone for a face-centered cubic (fcc) real space 

lattice, from VASP lecture, Martijn Marsman, University of Vienna, open source.[7,24]  
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According to Bloch’s theorem, electronic wavefunctions at each k-point can be 

expanded in terms of a discrete plane-wave basis set. Recall the periodic condition of 

translational invariance imposed upon the periodic wavefunction given in Equation 2.33, 

, 

. 

 

 

All the periodic functions may be written as a sum of plane waves as follows: 

, 

. 

 

2.39 

 

These periodic functions written in terms of plane waves can be written in terms of a grid 

in the k-space shown in Figure 2.2 a). Though there are technically still an infinite number 

of plane waves, the higher order Fourier components (large ) are generally 

considered negligible and we can truncate the expansion at a value which is larger than the 

kinetic energy value of all plane waves within a certain volume, known as the cutoff 

energy (ENCUT) shown in Figure 2.3 b). 
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Figure 2.3. Visualization of the truncation of the plane wave basis in reciprocal space via 

the cutoff energy such that the cutoff energy is less than or equal to kinetic energy of the  

Now, the application of Bloch’s theorem is a wonderful computational 

simplification given that the total energy of the sample crystal can be computed simply by 

the knowledge of the periodic function of the lattice, , given in Equation 2.33. 

However, the theorem also requires calculating wavefunctions for all boundary conditions 

(translational invariance under periodic boundary conditions). Therefore, for a finite 

crystal, the number of terms to be summed becomes equivalent to the number of unit cells 

in the system.[24,25] As a result, k-space sampling becomes quite fine and we lose any 

computational advantage we once had. Therefore, we must take advantage of another 

approximation made by Monkhorst and Pack.[25] Their work utilizes the weak dependence 

of the lattice periodic part of the wave function, , on wave vector k. Given the weak 

dependence, a small, finite number of k-points is sufficient to reach accurate energy 

minimization. However, it is important for certain systems, like phosphorene and other 

two-dimensional materials, to run multiple calculations, successively increasing the 
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number of k-points in order to ensure the most accurate ground state energy. Additionally, 

it can be quite useful to ensure that a gamma-shifted set of k-points is utilized in order to 

include the Γ-point, especially if it is physically significant, i.e., there are band maxima 

located at the Γ-point for a semiconductor (like phosphorene).  

  Choice of basis set is vital for accurate and timely results. For solid state materials 

and the use of the periodic software VASP, choosing a basis set whose phase shares the 

same periodicity of the system matters a great deal. Along these lines, for the systems 

explored utilizing VASP in the remainder of this dissertation, a plane wave basis set was 

utilized in the energy minimization of doped phosphorene and ligated phosphorene as well 

as preliminary results on doped MoS2 with magnetic superatoms. 

 

2.10 Non-Periodic, Cluster Model DFT Calculations 

Molecular orbitals, in general, can be expressed as linear combinations of n basis 

functions, known as the LCAO-MO method, as  follows:  

. 

2.40 

 

Each orbital or one electron function, , is a linear combination of basis functions  

where the coefficients are defined as molecular orbital expansion coefficients, .[26] 

There are a variety of options for non-periodic localized basis functions one can choose 

from based on the specifics of calculations. Two widely applicable methods for expansion 

of basis functions are Slater type orbitals (STOs) and Guassian type orbitals (GTOs).  

Slater type orbitals contain a radial and spherical portion describing the radial 

extent of a particular orbital and description of the shape of a particular orbital; 
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, 

2.41 

 

where, the normalization constant N is chosen such that integration over the square of the 

basis function yields unity. The radial portion obviously depends on the distance, r, from 

the origin of the basis function exposing the cusp condition for a point nucleus of charge Z: 

. 

2.42 

The spherical harmonics depend upon angular and magnetic quantum numbers l and m 

respectively.  

 Gaussian type orbitals are similarly constructed of a radial and spherical part 

however, the spherical contribution is expressed in cartesian coordinates like so,   

, 

2.43 

 

By which the angular momentum vector L can be expressed as the sum of integer 

exponents, 

L = a + b + c. The normalization constant abides by similar restrictions for unity as STOs. 

The major differences between the two functions occur at the bounds 

. At  we have seen the cusp condition results in a function with finite 

slope in the Slater type orbitals while the Gaussian function has a zero-slope resulting in an 

incorrect behavior at the nucleus. For large values, , the radial portion of the GTO, 

, decays far more rapidly than its Slater type radial counterpart, .[26] STOs 

more accurately describe quantitative features of the molecular orbital than GTOs and, 

fewer STOs are needed in a basis function expansion of the orbital for comparable results. 
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GTOs show their prowess in the calculation of multicenter, multi-electron operators such 

as structured in the Fock matrix operator shown below:  

 

 
2.44 

Where,  

. 

 

 

2.45 

Which have the advantage of integrating with respect to the same center.  

 

2.11 Computational Details 

Theoretical studies carried out on the periodic phosphorene systems are based on 

a dispersion corrected density functional theory (DFT) within generalized gradient 

approximation (GGA) using the gradient corrected functional proposed by Perdew, Burke 

and Ernzerhof (GGA PBE) for the exchange correlation functional.[40] The Vienna Ab-

initio Simulation Package (VASP) was utilized for all periodic computations, individual 

ribbon and doped phosphorene, with a plane wave basis set and cutoff energy set to 400 

eV.[41, 42, 43] While the GGA functionals are known to be quite accurate for ground state 

geometric optimizations, they are known to underestimate bandgaps; as such, for the work 

on doped phosphorene sheets, calculations of the electronic structure were carried out 
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using the HSE06 hybrid functional.[44] Upon examination of the results of bandgap as a 

function of ribbon type and width as well as hydrogen edge termination, obtained bandgap 

values were consistent with those previously presented in other works [45]. Projected 

density of states was plotted using sumo.[46] Thus, results presented on the energetics and 

bandgap as a function of width were obtained using GGA-PBE while results which 

investigated the more nuanced effects on the electronic structure by charge transfer doping 

of phosphorene monolayers used the hybrid functional (HSE06). 

The calculations on the periodic sheets were performed in a large supercell with a 

100-atom phosphorene sheet with a supercell of size 16.55 x 21.55 x 21.00 Å. The large 

size of the supercell ensured no interaction above and below the plane of the two-

dimensional phosphorene sheets. The size of the supercell varied for calculations of 

individual phosphorene nanoribbons based on width and type (ZPNR or APNR).  For 

ribbon calculations, the size of the supercell was adjusted in relation to the change in width 

of the various ribbons. For ribbon calculations with varying termination, the same size of 

the supercell was utilized (9.93 x 47.80 x 21.00 Å) constructed in relation to the change in 

width for N = 9 zigzag PNR. We tailored the supercell to include sufficient vacuum space 

above and to either side of the ribbon edges. As the VASP package treats all systems as 

periodic, this ensured no interaction above and below the plane of the phosphorus ribbon as 

well as to either side of the ribbon. Thus, each ribbon can be considered individually and 

absent of electronic effects of neighboring ribbons.  

Bader charge analysis was initiated by including the INCAR tags, LCHARG = 

.TRUE. and LAECHG = .TRUE. and computed after convergence by first compiling the 

following two output files, AECCAR0 and AECCAR2, which describe the core charge and 
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valence charge respectively, to write the CHGCAR_sum file. Afterwards the bader script 

completes the bader analysis on the CHGCAR by the following command line: bader 

CHGCAR ref-CHGCAR_sum.  

Work function calculations were also performed on ZPNRs. In this case, a dipole 

correction was incorporated along the z-axis of the ribbons. This dipole correction 

improves the convergence and allows for the calculation of the electrostatic potential in the 

vacuum which was used in the calculation of the work function of the system. Electron 

affinity calculations also make use of these settings as they are calculated by subtracting 

conduction band energy from the vacuum energy of the system.  

Regarding the non-periodic density functional theory (DFT) based results 

reported in this dissertation, i.e., the phosphorene flakes, calculations are executed using 

the Amsterdam Density Functional (ADF) software.[29] The gradient-corrected Perdew, 

Burke, and Ernzerhof (PBE) functional was utilized for all reported results.[15] The Slater 

type triple ζ basis set with two polarization functions (TZ2P) core was chosen for all 

elements.[31,48] The frozen core orbitals of the elements are expressed as an auxiliary set 

of Slater-type basis functions. The relativistic effect of the heavy elements is accounted for 

by using the zero-order regular approximation (ZORA).[49,50] The dispersion correction 

is included by Grimme’s DFT-D3 correction with the Becke-Johnson damping.[51]  The 

hessian-based quasi-Newton method without symmetry constraints is used for all the 

geometry optimizations.[52] During all optimizations and single point energy evaluation, 

the energy convergence threshold is set to 1×10-7 Hartree, whereas the default convergence 

criteria are chosen for the geometric optimizations.[15,51] The spin contamination values 

are also checked for the spin-polarized systems, ensuring no significant deviation is 
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present. To determine the global minima of each structure, a wide range of spin 

multiplicities were examined, and only the lowest energy structures were chosen for all 

cases. 
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Chapter 3. Ligand and Width Effects: Fragmentation Pathways, 

Ribbon Stability, Band Gap, Work Function and Electron 

Affinity 

 

3.1 Introduction 

 Throughout human history, the narrative of unquenchable fascination with our 

material surroundings has spun a thread of progress through the web of happenings over 

the course of our species’ evolution. In tracing this thread, we see the connections that 

formed as a result of this exploration of the physical world form a theme of discovery. 

While not always with premeditated intent, like the fortuitous discovery of fire, humans are 

responsible for all the technological advancements we take for granted in the modern 

world. One such discovery which took millennia to develop, was the discernment of 

periodic trends within the matter that makes up our physical world. Marked by specific 

‘ages’ in anthropology, e.g., stone age, copper age, bronze age, iron age, we can see the 

development of human interest in manipulating surroundings to our advantage but the 

noticing and subsequent exploration of patterns in abundance and types of materials were 

not well documented until the time of ancient Greeks. That burning question – what are the 

fundamental components of substances around us? – ultimately drove early philosophers 

and, later, scientists to concentrate efforts in pursuing a way to order elements around us. 

Dmitri Mendeleev is credited as the Father of the Periodic Table and the one who 

ultimately created a formalism by which we recognize characteristic patterns in the 

makeup of matter. Additional models of the atom and quantum mechanics gave us a 



79 

 

fundamental understanding of these patterns as well as the confidence to explore 

modifications in or harnessing documented properties.  

As modern chemistry and materials science stand upon the shoulders of these 

giants, we perceive a new horizon on which the advent of new classes of materials is a 

reality. One such group showing considerable promise in the frontier of materials science 

is two-dimensional materials. The discovery of graphene in 2004 is commonly quoted as 

the birth of two-dimensional material research and at the time was all the rage. Since this 

date, the field has exploded, resulting in the discovery and experimental realization of a 

plethora of 2-D materials with a variety of different mechanical, optical, and electronic 

properties. Perhaps the biggest sources of demand for these materials is in battery 

technologies, photovoltaics, and chip manufacturing. Yet, despite demand for 

technological improvement and desire to meet this demand, challenges remain. 

Manufacturing at scale, precise control at the nanometer size regime, and incorporation of 

the materials into existing infrastructure prove major hurdles presently. The way forward is 

through the collective efforts of scientists and engineers to innovate solutions to the 

aforementioned trials. One integral piece to this complex puzzle is the shaping of 

fundamental knowledge through both theory and experiment in order to determine innate 

material properties. The understanding of a material’s tendencies births the power to utilize 

the properties to our advantage and, importantly, imagine solutions to technological and 

infrastructural stymies.  

One such modern material of intrigue is phosphorene. Many groups have 

contributed to the body of knowledge regarding the promising properties like high 

mobility, ambipolar conduction and tunable bandgap with layer number and ribbon 
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thickness. [20,23,24] Recently, our research group has contributed verification and new 

work to the known properties of phosphorene. The work on phosphorene is partially 

presented in this chapter, with a focus on the concepts of width-related bandgap control, 

effects of ligands on relative stability of ribbons, fragmentation pathways, an introduction 

to work function and scaling behavior with varying ribbon width, and, finally, bader charge 

analysis on binding between ligand and edge phosphorus atoms.  

3.2 Discussion of Naming, Geometry, Relative Stability, and Potential 

Fragmentation Pathways: 

It is helpful to have a general picture to provide some sort of clarity about what is 

happening structurally within a material. Especially at the small sizes which this research is 

focused, having a picture to construct a framework of operation can even be illuminating in 

finding explanations for observations that may seem counterintuitive when considering 

numbers alone. Thus, we will begin by outlining the parameters which define and 

differentiate armchair nanoribbons from zig-zag nanoribbons as well as the naming 

convention used in previous theoretical work on phosphorene nanoribbons (PNRs).[23] 

From our new understanding of what parameterizes a phosphorene nanoribbon, we can 

confidently begin the discussion on potential fragmentation pathways which utilizes 

energetics to demonstrate which “fragments” may be more likely to occur as the larger 

ribbons break apart. Furthermore, beyond the energetic arguments made, we will discuss 

the significant geometric reconstruction observed at small sizes that may also have a 

significant impact on strain-sensitive bandgap (revisited later in the discussion of band 

structure). 
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 First, observe the distinction between zig-zag (ZPNR) or armchair (APNR) 

directions shown in Figure 3.1. The APNRs are defined by the propagation along the 

direction of the “armchair” generated by the bonding of each phosphorus atom with three 

nearest neighbors. As mentioned before, we can see clearly that the geometry is a result of 

the sp3 – hybridized bonding leading to the “puckered honeycomb” seen in Figure 

2.[14,23] Note, the edges of APNRs are formed by the edges of the armchairs themselves, 

constituted by roughly vertically oriented P-P dimers with bond angles of 102.1 ̊ between 

the next nearest neighbor P-atoms seen in Figure 3.1 a).[57]  ZPNRs, in contrast, differ 

from their APNR counterparts as they propagate within the same plane but normal to the 

armchair axis. In other words, if we take a bird’s eye, or top-down, view looking down 

onto the ribbon, we would see propagation in the direction of “zig-zag” bonds within the 

ribbon. The general honeycomb geometry is still present but the edge geometry is quite 

different. Edges of ZPNRs are formed by single phosphorus atoms bonded to two nearest 

neighbors within the same plane forming 96.3 ̊ bond angles.  
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Figure 3.1. (a) Structure of non-terminated armchair phosphorene nanoribbon.  (b) 

Hydrogen terminated armchair phosphorene nanoribbons. (c) Non-terminated and (d) 

hydrogen-terminated zig-zag ribbons. Note, also, highlighted atoms, labeled N = 1-5, 

identify the naming convention for the ribbon widths in both armchair (a)–(b) and zig-zag 

ribbons (c)–(d). (e) Comparison of optimized structures of non-terminated zigzag 

phosphorene nanoribbons (left) and hydrogen-terminated zigzag phosphorene nanoribbons 

(right). (f) Comparison of optimized structures of non-terminated armchair phosphorene 

nanoribbons (left) and hydrogen-terminated armchair phosphorene nanoribbons (right). 

Note the differences in edge reconstruction between non-terminated and hydrogen-

terminated structures in both (e) and (f).   

 

With this picture in mind, let us consider the naming convention used when 

generating these structures seen in Figure 3.1 (a-c). Similar to a previous study, by H. Guo 

et al., APNRs counted dimers constituting the “edges” of the armchairs, beginning with the 

outermost atoms, for a range of ribbon widths N = 2-9.[23]  Armchair edges were counted 

along the x-axis, thus generating the various widths, while ribbon lengths were extended 

along the y-axis of the unit cell to create APNRs. ZPNRs counted the “ridges,” constituted 
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by the upper plane of phosphorus atoms, beginning with the outermost atoms for a range of 

ribbon widths (N = 2-9). These ridges are counted along the y-axis of the unit cell to 

dictate the various widths, while ribbon length is propagated along the x-axis to create zig-

zag nanoribbons. Both APNRs and ZPNRs were also terminated with hydrogen atoms on 

their respective edges for comparison of electronic properties, geometric reconstruction, 

and relative stabilities to their non-terminated counterparts. Figure 3.1 portrays the 

difference in ribbon geometry and shows the naming convention for each type of ribbon 

with various widths as well as a direct comparison of non-terminated and H-terminated 

APNRs and ZPNRs (a-d) for width N = 5. This specific choice of ribbon width was in the 

interest of providing concise but sufficient picture for the geometry of the structures. For a 

complete picture of both APNRs and ZPNRs all ribbon widths N = 2-9, refer to the 

supplemental information.  

Now that that the distinction has been made between ribbon type and the naming 

convention outlined, let us revisit the results for edge reconstruction of non-terminated 

ribbons as well as the significant rearrangement of the atoms within non-terminated 

ribbons of small sizes (N = 2,3). The importance of these results is related to the 

understanding of relative stability of PNRs. Ideally, with unlimited computational power, 

one could carry out a variety of stability-related investigations including one of the most 

well-documented issues with several layer to monolayer phosphorene in ambient 

conditions – the adsorption of water at the surface leading to formation of phosphoric acid 

and dissolving of the material. Alas, computational capabilities are limited thus, the study 

focused on potential fragmentation pathways available to phosphorene during synthesis 

and obtained data that supports one specific pathway over others. These results also portray 
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the stabilization effects of edge-termination as the hydrogen edge-terminated species 

undergo far lower geometric reconstruction than do the nonterminated counterparts. The 

most extreme case is at the end-range size limits for non-terminated armchair PNRs.  

Figure 3.2 shows a direct comparison between the pre-optimized unit cell and optimized or 

ground state geometry (bottom) of non-terminated APNR (a) and terminated APNR (b) 

both of width N = 5. Note, the edge reconfiguration for non-terminated APNRs verified by 

H. Guo et al.[23]  

 

Figure 3.2. Visual comparison of geometry optimization for non-terminated (a.) and 

terminated (b.) APNRs of width N = 5. 

 

We can see that the edges rearrange from their normal stacked dimer configuration 

characteristic of armchair geometry in the pre-optimized structure gives way to a flatter 

configuration with larger bond angles in the optimized geometry. In-plane angles increase 

from 96.3 ̊  to 111.1 ̊  while out of plane angles (affected by the stacked dimer edge 

reconfiguration) increase from 102.1 ̊  to 117.8 ̊ .  
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Figure 3.3. Visual comparison of geometry optimization for non-terminated (a.) and 

terminated (b.) ZPNRs of width N = 5. 

Non-terminated zig-zag ribbons show much less reconfiguration in the ground state energy 

than their armchair counterparts. Though minor, there seems to be some slight deflection 

along the z-axis of the edge atoms out of plane of their nearest neighbors for ZPNRs as 

seen in Figure 3.3(a). In direct comparison to the terminated ZPNRs shown in Figure 

3.3(b), non-terminated ribbons seem to take on more of a “curling” along the z-axis in 

addition to the deflection of the phosphorus atoms at the edges. Rearrangement effects are 

further exaggerated when approaching small sizes (N = 2,3) especially in the case of non-

terminated APNRs which can be seen in the visualization of fragmentation given in Figure 

3.4. 

Figures 3.4-3.7 visually demonstrate the fragmentation of parent ribbon into 

component parts and, upon relaxation, the reconstruction that ensues. Figure 3.4 gives a 

visual pathway for non-terminated armchair PNRs while Figure 3.5 displays the same 

picture for the terminated case. Figure 3.6 shows the lowest energy fragmentation pathway 

for non-terminated zigzag PNRs while the terminated case is shown in Figure 3.7.  
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Figure 3.4. Lowest energy fragmentation pathway for non-terminated APNR, width N = 5, 

showing cleavage point as well as the subsequent geometry optimized fragments for top-

down (a.) and face-on (b.) views. Note the significant reconstruction of the N = 2 fragment 

and persistent edge reconfiguration of the N = 3 (New) fragment.  

 

Figure 3.5. Lowest energy fragmentation pathway for terminated APNR, width N = 5, 

showing cleavage point as well as the subsequent geometry optimized fragments for top-

down (a.) and face-on (b.) views.  



87 

 

 

 
Figure 3.6. Lowest energy fragmentation pathway for non-terminated ZPNR, N = 5, 

showing cleavage point of the ribbon for top down (a.) and face on (b.) views as well as the 

geometry optimized fragments. 

 

 

Figure 3.7. Lowest energy fragmentation pathway for terminated ZPNR, N = 5, showing 

cleavage point of the ribbon for top down (a.) and face on (b.) views as well as the 

geometry optimized fragments. 
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 Experimental synthesis of phosphorene nanoribbons by Watts and Picco et al., 

highlighted the stability of the individual ribbons in ambient conditions compared to the 

two-dimensional sheets which are known to degrade in hours.[14,23]  The zig-zag ribbons 

lasted up to six days in lab conditions before degrading and the degradation was observed 

at the edges of the ribbons as opposed to the surface.[14] Our interest in the stability of the 

ribbons stems from these findings but we have focused the research around potential 

fragmentation pathways or thermodynamic stability as opposed to looking into the 

chemical stability. In other words, the investigation explored the question - if larger 

ribbons were to break apart, which fragments would be the most energetically favorable? 

In answering this question, we may find trends in the way these ribbons fragment. Let us 

first visit the method by which the ribbons were generated and how exactly we defined 

fragmentation of the various ribbon widths. In order to generate fragments by splitting the 

larger ribbons into parts bonds must be broken along the length of the ribbon similar to the 

chemical scissors method outlined in the study by Watts, and Picco et al.[14]  As it is 

impractical in some cases to consider all possible fragmentation pathways, we chose to 

mitigate dangling phosphorus atoms at the edges of the fragments when splitting the 

“whole/parent” ribbons. This was accomplished by careful choice of bond breaking 

location for each potential composition of fragments such that the edge geometry matched 

that of the parent ribbon. Locations for fragmentations are previously outlined in Figures 

3.4-3.7 by a red arrow followed by the geometry optimized fragments. Fragment 

compositions varied by ribbon but followed the same method of utilizing every possible 

combination of two fragments which sum to the single parent ribbon. Combinations were 

limited by the perceived size limit of the smallest possible fragment i.e., a ribbon of width 
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N = 2. Beyond this ribbon width, armchair geometry does not persist. Additionally, there is 

terminology to consider in the fragmentation pathways. Since we chose to mitigate 

dangling phosphorus atoms in our exploration of fragmentation pathways, the ribbons 

cannot be split into fragments of equal size, nor can they fragment into two ribbons abiding 

by the naming convention outlined previously in this section. Instead, these constraints 

result in the formation of a fragment with an additional column of atoms and are 

subsequently labeled “new.”  

In order to obtain fragmentation energy values a simple equation is followed in 

which the combined energies of individual fragments are subtracted from the larger or 

complete ribbon:  , where ER = energy of the complete ribbon, and EF1,2 

are energies of the respective fragments. It is important to note that use of this equation 

results in a fragmentation energy value which denotes how close in energy the complete 

ribbon is to its summed parts. Thus, a more negative value implies a larger energy 

difference between parts and whole and therefore the energy required to separate the 

complete structure into those parts is greater. As a result, we are looking for the minimum 

(smallest) fragmentation energy since it implies that there is a smaller energy difference 

between the lowest energy whole ribbon and the parts into which it fragments. Figure 3.8 

graphs the smallest fragmentation energy per bond broken for structure for APNRs (a) and 

ZPNRs (b). These values are calculated by dividing the value obtained in the fragmentation 

energy equation by the number of bonds broken in the unit cell to generate the respective 

fragments. In other words, taking the value from the equation – ( , and 

dividing by number of bonds broken in order to generate the fragments to obtain 

fragmentation energy per bond. 
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Figure 3.8. Graph of minimum fragmentation energies for respective ribbon types. Note, 

the significant shift in fragmentation energy for non-terminated APNRs could be a result of 

the rearrangement occurring in the small fragment (N = 2) 

 

 A theme emerged among fragmentation pathways for most of the structures 

including terminated and non-terminated APNRs as well as non-terminated ZPNRs. For 

each of these ribbons, N = 4 – 9, the lowest energy fragments contain an N = 2 fragment. 

The reason for this effect could be two-fold; a rearrangement of the smallest fragment to 

produce a significantly lower energy than the pre-relaxed structure, and, the fact that the 

other fragment is the largest possible fragment able to sum to the full ribbon width. The 

shift in fragmentation energy seen in the non-terminated APNRs could be an artifact of this 

pattern as well in which the most dramatic rearrangement occurs at small sizes, especially 

for the non-terminated ribbons as pictured in Figure 3.4. Thus, in this case, the dramatic 

rearrangement leading to an energy gain in combination with the larger fragment will 

produce a significant decrease in overall energy when largest and smallest fragments are 

summed together as opposed to two fragments of similar size. 
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Extreme reconstruction at the end range size limits for APNRs could be an effect of 

lack of coordination along the width of the ribbon resulting in a shift from the black 

phosphorus, puckered armchair configuration to something more reminiscent of tetrahedral 

phosphorus. 

 

 

Figure 3.9. Comparison of geometric reconstruction in the small, non-terminated armchair 

ribbons (N = 2 (a), left and N = 3 (a), right). (b) Structure for tetrahedral phosphorous used 

to compare energies with the reconstructed non-terminated APNRs (c) The reconstruction 

demonstrated by the hydrogen terminated PNRs, showing minimal reconstruction. (d) 

Energy comparison of APNRs, N = 2 – 9, with tetrahedral phosphorous. Note, the 

horizontal axis, ‘N,’ is indicative of ribbon width.  

 

 To investigate further, “ribbons” of tetrahedral phosphorus were created and 

optimized in order to approximately compare the energetics of the N = 2,3 APNRs with 

ribbons consisting solely of tetrahedral phosphorus. The geometry of the tetrahedral ribbon 

can be seen in Figure 3.9b, while a comparison of the difference in atomization between 

tetrahedral phosphorus ribbon and APNRs for N = 2, 3, 4, and 5 can be seen in Figure 

3.9d. Atomization energy values in both the tetrahedral ribbons and non-terminated 
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APNRs were obtained by simply taking the ground state energy for the individual ribbon, 

, and dividing by the number of atoms in the unit cell to obtain energy per phosphorus 

atom, or,  . To analyze these findings, we looked at the geometric 

reconstruction of non-terminated and terminated ribbons at small sizes. We were 

particularly interested in ribbons with N=2 and 3 that had non-terminated and edges 

terminated with H atoms, as they are the preferred fragmentation products. In each case, 

the structure was allowed to fully relax without any symmetry constraint. We can see that 

the preferential rearrangement at small sizes decays quickly for ribbon widths beyond N = 

3 and the black phosphorus configuration is the more energetically favorable. Note, 

Figures 3.4-3.7 show that with the addition of edge passivation, or termination, with 

hydrogen atoms, the rearrangement does not happen to the same degree and the black 

phosphorus configuration persists even for small sizes N = 2,3. In the examination of 

fragmentation pathways, this atomic rearrangement reappears to a smaller extent for the 

edge-passivated ribbons (seen in Figure 3.5) due to the fact that a half-passivated ribbon is 

generated as a result of fragmenting the parent ribbon. Figure 3.9a shows the structure of 

the non-terminated reconstructed nanoribbon, Figure 3.9b shows the tetrahedral model, and 

Figure 3.9c shows the reconstructed H-terminated nanoribbon. Note that the ribbons with 

unterminated edges undergo strong reconstruction whereas ribbons with H terminated 

edges only undergo minor structural rearrangement. Relaxation considerably lowers the 

energy. The energy gain for unterminated N=2 is 0.42 eV per atom while it is 0.20 eV per 

atom for N=3. The relaxation energy is the difference between the energy for the structure 

based on the optimized structure of single layer phosphorene and the fully relaxed 

structure. The relatively large stability of the N=2 nanoribbon is responsible for the 
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preferred fragmentation pathway of the parent ribbon into N-2 (a fragment that is 2 layers 

less than the original nanoribbon) and N=2 component nanoribbons. For this reason, the 

non-terminated APNR is much easier to fragment than the other nanoribbons due to the 

N=2 nanoribbon being highly stable as compared to the black phosphorus structure. In the 

H-terminated, APNR, N=4 is the most stable nanoribbon, suggesting that armchair 

nanoribbons may be more stable as small nanoribbons than larger sheets. For the ZPNR, 

we see little size-dependence on the stability of the nanoribbon, but a slight enhancement at 

N=4. This size has the largest stability due to the fact that fragmentation forms two N=2 

fragments which are not energetically favorable. It is useful to compare the fragmentation 

energy per bond to the corresponding energy per bond in a white phosphorus nanoribbon 

that consists of tetrahedral clusters. Or, in other words, a nanoribbon constructed of 

clusters, and not bulk white phosphorus. In Figure 3.9d we compare the atomization energy 

in ribbons of various widths with the corresponding energy in a ribbon of white 

phosphorus. The fragmentation energy crossover, with the nanoribbon being more stable 

than the white phosphorus form, at sizes larger than occurs at N=5 for the Armchair, and at 

N=3 for the Zigzag. This means that armchair is less stable than highly reconstructed 

fragments up until this size, while for Zigzag, the black phosphorus structure is more stable 

than the cluster form of phosphorus, so reconstruction is much less likely. 

 

3.3 Band Structure and Band Gap Scaling with Width and Edge 

Passivation: 

As discussed in the introduction a suite of literature has explored bandgap 

characteristics from bulk to single layer black phosphorus and variable ribbon width.[34-

38] Bulk black phosphorus is known to have a direct bandgap value of 0.3eV while 
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monolayer black phosphorus (phosphorene) possesses a direct bandgap of 1.51eV.[35]  In 

general, band gap value increases with decreasing number of layers or decreasing width of 

the PNR. Thus, it has been said that the increase in bandgap follows an increase in 

confinement effects from decreasing number of layers or increase in the contributions of 

edge states in the ribbons of decreasing width.[35]  These confinement effects are a result 

of the edge states playing a more or less significant role as the physical width (and 

subsequent number of allowed states) increases or decreases. As a result, the nature of edge 

passivation and amount of reconstruction play a significant role in the bandgap values of 

the PNRs20. For example, in the case of hydrogen edge termination, edge states are 

quenched leading to an increase in overall bandgap from the edge-unpassivated PNRs.[20]  

Additionally, due to phosphorene’s anisotropy, bandgap values of the ribbons vary based 

on ribbon type as well as width while general scaling behavior depends on the ribbon 

type.[38]  We can see these aspects displayed in Figure 3.10. Non-terminated APNRs have 

a lower bandgap than their hydrogen-terminated counterparts and non-terminated ZPNRs 

are metallic while the hydrogen-termination of ZPNRs’ edges introduces a bandgap within 

the ribbons. 
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Figure 3.10. Band gap values as a function of PNR width in direct comparison with ribbon 

type, termination and the monolayer sheet. 

 

Previous work by Tran et al. has defined this scaling behavior to be  for 

hydrogen-terminated APNRs while hydrogen-terminated ZPNRs exhibit  where  = 

ribbon width in nanometers.[38] Interestingly, this scaling behavior is due to the character 

of charge carriers which is directly affected by how the width is confined in the 

nanoribbons. In general, this scaling behavior dictates that APNR bandgap values will 

decay more quickly than ZPNR counterparts of similar widths. Thus, ZPNRs tend to have 

larger gap values than do APNRs of nearly the same width.[38] This behavior can be seen 

in Figure 3.10 where, beyond widths N = 3, the bandgap trends follow those outlined by 

Tran et al. and others.[35,37,38] Band gap values do indeed decrease as ribbon width 

increases and values for hydrogen-terminated ZPNRs are larger than their hydrogen-

terminated APNR counterparts. It is important to note the following: first, as discussed in 

the introduction, the results shown are a product of the PBE functional and are thus 

undervalued bandgaps compared to the use of hybrid functional HSE06.[55] Second, 
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results given in this dissertation are produced for ribbon widths ranging from N = 2 – 9. In 

the review of literature, the typical range of ribbon widths is around N = 5 – 14.[38]  

Therefore, the discrepancy in the scaling behavior for the ribbon width at small sizes (N = 

2,3) may be twofold. First, their exclusion from previous work may indicate that the 

scaling behavior does not hold for such small sizes. Second, the significant geometric 

reconstruction seen in the previous section may cause a shift in bandgap which is not 

described by traditional scaling behavior. Thus, lack of hydrogen termination to stop 

reconstruction and quench edge states could be the reason that the scaling behavior is 

different in the non-terminated case. Note instead of immediate decay of bandgap values, 

minor oscillations are present at end-range sizes (N = 2-4) for non-terminated armchair 

PNRs. For hydrogen-terminated ZPNR and APNR the gap values for N = 2 are nearly 

identical which could also be an artifact of small size. In all cases the treatment of the 

exchange correlation term in the PBE functional could also play a role in the observed 

results.  

Concerning the character of the bandgap (i.e. direct or indirect), similar trends were 

also observed for bandgap variance between the direct and indirect behavior. Tran et al. 

show that the local valence band maximum at the gamma point yields bandgap values 

which are within 20meV of the true indirect bandgap shifted slightly away from the 

gamma point.[38] Thus, the ground state character of the terminated ZPNR and APNRs’ 

bandgaps is technically indirect, however, due to the bandgap’s significant dependence 

upon strain, it is posited that this small difference would be difficult to detect 

experimentally. As such, we consider them functionally as direct bandgap materials. 

Similar trends were observed in this research under the PBE functional with terminated 
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PNRs. In contrast, however, non-terminated APNRs show a more significant difference of 

about 0.12eV on average between gamma point band gap and slightly shifted true bandgap. 

In this case strain induced by room temperature thermal energy may not be significant 

enough to ignore the indirect bandgap behavior. Additionally, with such a small size range 

the significance of confinement effects and strain become imperative upon deposition as 

ribbons interact with the substrate surface (Sorkin et al).[20] For the non-terminated N=5 

armchair ribbon, our calculated value of the band gap energy is 0.47 eV as compared to 

0.53 eV obtained by H. Guo et al. [23] The slight difference is most likely due to a 

different treatment of the van der Waals interactions  between the two studies. We utilized 

DFT-D3 method with Becke-Johnson damping while the related study used the dispersion-

corrected DFT method, optB88-vdW. [23] 

3.4 Work Function and Electron Affinity Observations:  

3.4.1 Hydrogen-Terminated Zigzag Phosphorene Nanoribbons 

The work function of a material, or the minimum energy required to remove an 

electron from the material’s surface, becomes indispensable knowledge when constructing 

devices which have some dependence upon thermionic or photoelectric emission. This 

knowledge becomes even more invaluable when the characteristics of the device are 

dependent upon tuning heterostructure materials at the nanoscale. In the interest of 

characterizing phosphorene nanoribbons in a fashion similar to which the single to multi-

layer phosphorene has been studied, preliminary results for work function values of 

hydrogen-terminated ZPNRs of various widths were obtained. In a first principles study 

performed by Yongqing Cai et al., a trend of decreasing work function as the number of 

layers of 2D phosphorene sheets increases from 1 to 5.[24] A similar, less pronounced 
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trend can be seen in Figures 3.11 and 3.12 as the ribbon widths increase from N = 2 – 9. 

Work function values were obtained by subtracting the Fermi energy of the ribbons from 

the vacuum energy surrounding the ribbon, or, 

    3.1 

where -e = charge of an electron,  electrostatic potential of the vacuum level 

near the surface of the material and  the Fermi energy of the system. The work 

function value slowly approaches the single layer 2D sheet value of 4.50 eV quoted in 

previous literature.[24] Since work function is also dependent upon confinement effects 

one might expect the value to follow similar trends with ribbon width, i.e. as the ribbon 

increases in width the value of the work function decreases until it approaches the 

monolayer value.[24] This is indeed what the results show for zigzag PNRs.  

 

Figure 3.11. Work function and electron affinity as functions of increasing ribbon widths 

for hydrogen-terminated zigzag PNRs. 

 Of similar importance and close relation, but distinct from the work function and 

more commonly referred to when characterizing semiconductor materials is the electron 

affinity. In solid-state physics the electron affinity of a material is defined as the energy 
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gain achieved by an electron moving from vacuum, just outside the surface of the material, 

to the bottom of its conduction band within the semiconductor. This can be seen below in 

the Equation 3.2: 

   3.2 

Where  is the vacuum energy and  is the energy of the conduction band of the 

semiconductor. Since the electron affinity is a surface property, we might expect to see a 

similar trend to the work function arise when observing width-related confinement effects 

on a two-dimensional semiconductor. Figure 3.11 shows the results of varying width on 

hydrogen-terminated zigzag PNRs. Interestingly, we see inverse behavior when comparing 

the electron affinity to the work function with varying ribbon widths. While electron 

affinity should not necessarily change much for a bulk material with doping, at small sizes 

there are minor but relevant changes to the observed results. The fermi level shifts from          

-4.66 eV to -2.71 eV for armchair PNRs of ribbon width N = 2 to N = 9 while the 

conduction band remains somewhat constant. Additionally, there are some interesting 

shifts in the vacuum energy between even and odd numbered ribbons as widths increase. 

Ultimately, the upward shift in vacuum energy while conduction band energy remains 

mostly constant dictates the inverse relation between work function and electron affinity. 

Changes in fermi level, vacuum energy and conduction band energy can be seen in Figure 

3.12.  
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Figure 3.12. Comparison of Fermi level, vacuum level, and conduction band for zigzag 

PNRs. Note, Conduction band remains relatively constant with changes in width while the 

vacuum level and fermi level are pushed up overall.  

 

 

 

 

3.4.2 Hydrogen-Terminated Armchair Phosphorene Nanoribbons 

 

 

Figure 3.13. Work function and electron affinity as functions of increasing ribbon widths 

for hydrogen-terminated armchair PNRs. 
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We can see a similar trend for armchair PNRs in Figure 3.13 which shows the same 

inverse behavior when comparing the electron affinity to the work function with varying 

ribbon widths. The fermi level in armchair PNRs undergoes a significant change with 

respect to varying ribbon width while the conduction band shifts upwards slightly. In this 

case too there is an overall increase in vacuum level as the ribbons grow wider with the 

total difference between N = 2 and N = 9 proving larger than the shift for zigzag ribbons by 

about 0.13eV. Again, the upward shift in vacuum energy while conduction band energy 

remains mostly constant dictates the inverse relation between work function and electron 

affinity. 

 

Figure 3.14. Comparison of Fermi level, vacuum level, and conduction band for hydrogen-

terminated armchair PNRs. Note, Conduction band remains relatively constant with 

changes in width while the vacuum level and fermi level are pushed up overall. 

3.5 Bader Charge Analysis: 

Bader charge analysis was performed on all ribbons in the interest of deducing what 

might be happening with charge location associated with rearrangement of non-passivated 
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PNRs as well as how that behavior may shift with the addition of hydrogen atom edge 

passivation. It was found in the non-terminated case, that there was approximately even 

distribution of charge along the width of the ribbon with no large variance at the location 

of any phosphorus atom within the ribbon.  

For the hydrogen-terminated ribbons, Bader charge was calculated at all edge 

atoms and all hydrogen atoms to observe the charge associated with binding between 

phosphorus and hydrogen.[66-69] Average Bader charge was then obtained for edge 

phosphorus and hydrogen atoms for all ribbon widths and recorded in Table 3.1 below. 

Note, in the calculation of Bader charge, one obtains the difference between effective 

valence given in the POTCAR for a particular atom and the Bader charge for each atom in 

the output file to obtain the residual charge left on each atom. A negative value indicates 

that there is additional charge beyond the given Z-value for a particular atom meaning that 

atom has accepted charge, in this case, as the result of bond formation. Charge located at 

the edge phosphorus atoms was about 0.33 on average for the armchair PNRs and 0.34 for 

all zigzag PNRs, compared to the inner phosphorus atoms, with approximately zero charge. 

Charge on hydrogen atoms averaged about -0.32 for armchair PNRs while zigzag PNRs 

maintained an average of approximately -0.33. This suggests that the phosphorus atoms are 

acting as donors while the hydrogen atoms act as acceptors in the formation of a bond 

between the two at the ribbon edges.  
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Table 3.1. Comparison of average Bader Charge for edge phosphorus and hydrogen atoms 

of various ribbon widths.   

Average Bader Charge 
 

APNR ZPNR 

Ribbon Width Hydrogen Phosphorus Hydrogen Phosphorus 

2 -0.3249 0.3399 -0.3387 0.3544 

3 -0.3243 0.3352 -0.3388 0.3594 

4 -0.3153 0.3278 -0.3333 0.3439 

5 -0.3216 0.3354 -0.3232 0.3294 

6 -0.3206 0.3378 -0.3335 0.3382 

7 -0.3179 0.3311 -0.3370 0.3548 

8 -0.3218 0.3383 -0.3335 0.3375 

9 -0.3203 0.3372 -0.3267 0.3357 

 

3.6 Summary and Conclusions 

 Work presented in this chapter verified that width and edge passivation indeed have 

significant effects on bandgap and minor effects on the material’s work function and 

electron affinity, while the investigation of relative stability supports a particular 

fragmentation pathway for all ribbons. The parent ribbon splits into component fragments 

of width N = 2 and N – 2. Results inspire several questions which motivate and propel 

further study of alternative methods for tuning the electronic properties of phosphorene and 

phosphorene nanoribbons. Specifically, since termination or edge passivation plays a 

significant role in controlling and introducing a bandgap in ribbons, is it possible to fine-

tune these effects by varying termination? If so, what impact is made on other electronic 

properties like work function or electron affinity which act as initial indicators of 

performance upon incorporation into a device setting? Is it possible to employ the ideas of 
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chemical doping to these materials to not only control band gap but the nature of carriers? 

Chapter 4 continues the journey and makes a concerted effort to begin answering the 

former questions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



105 

 

References 
1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon 

films. Science 306, 666–669 (2004). 

2. Akhtar, M., Anderson, G. et al. “Recent advances in synthesis, properties, and 

applications of phosphorene”. npj 2D Materials and Applications volume 1, 

Article number: 5 (2017) 

3. Ashton, M.; Paul, J.; Sinnott, S. B.; Hennig, R. G. (2017). "Topology-Scaling 

Identification of Layered Solids and Stable Exfoliated 2D Materials". Phys. Rev 

4. Prasad S.V.S., Mishra R.K., Gupta S., Prasad S.B., Singh S. (2021) Introduction, 

History, and Origin of Two Dimensional (2D) Materials. In: Singh S., Verma K., 

Prakash C. (eds) Advanced Applications of 2D Nanostructures. Materials Horizons: 

From Nature to Nanomaterials. Springer, Singapore. 

5. Butler, S. Z. et al. Progress, challenges, and opportunities in two-dimensional 

materials beyond graphene. ACS Nano 7, 2898–2926 (2013). 

6. Bhimanapati, G. R. et al. Recent advances in two-dimensional materials beyond 

graphene. ACS Nano 9, 11509–11539 (2015). 

7. Thompson, Brianna C., et al. “Graphite Oxide to Graphene. Biomaterials to 

Bionics.” Advanced Materials, vol. 27, no. 46, Dec. 2015, pp. 7563–82. DOI.org 

(Crossref), https://doi.org/10.1002/adma.201500411. 

8. Duan, X., Wang, C., Pan, A., Yu, R. & Duan, X. Two-dimensional transition metal 

dichalcogenides as atomically thin semiconductors: opportunities and 

challenges. Chem. Soc. Rev. 44, 8859–8876 (2015) 

9. Gibaja, C. et al. Few-layer antimonene by liquid-phase exfoliation. Angew. Chem. 

Int. Ed. doi:10.1002/anie.201605298 (2016). 

10. Ares, P. et al. Mechanical isolation of highly stable antimonene under ambient 

conditions. Adv. Mater. 28, 6332–6336 (2016) 

11. Li, Xinming et al. “Graphene and related two-dimensional materials: Structure-

property relationships for electronics and optoelectronics.” Applied physics 

reviews 4 (2017): 021306. 

12. Gosling, J.H., Makarovsky, O., Wang, F. et al. Universal mobility characteristics of 

graphene originating from charge scattering by ionised impurities. Commun 

Phys 4, 30 (2021). https://doi.org/10.1038/s42005-021-00518-2 

13. Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-

dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015). 

14. Watts, Mitchell C., et al. “Production of Phosphorene Nanoribbons.” Nature, vol. 

568, no. 7751, Apr. 2019, pp. 216–20. DOI.org (Crossref), 

https://doi.org/10.1038/s41586-019-1074-x. 

15. Li, L. K. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–

377 (2014). 

16. Qiao, J. S., Kong, X. H., Hu, Z. X., Yang, F. & Ji, W. High-mobility transport 

anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 

4475 (2014). 

https://www.nature.com/npj2dmaterials


106 

 

17. Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole 

mobility. ACS Nano 8, 4033–4041 (2014). 

18. Xia, F. N., Wang, H. & Jia, Y. C. Rediscovering black phosphorus as an anisotropic 

layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014). 

19. Lee, S. et al. Anisotropic in-plane thermal conductivity of black phosphorus 

nanoribbons at temperatures higher than 100 K. Nat. Commun. 6, 8573 (2015). 

20. Sorkin, V., Cai, Y., Ong, Z., Zhang, G. & Zhang, Y. W. Recent advances in the 

study of phosphorene and its nanostructures. Crit. Rev. Solid State Mater. Sci. 42, 

1–82 (2017). 

21. Lewis, E. A., Brent, J. R., Derby, B., Haigh, S. J. & Lewis, D. J. Solution 

processing of two-dimensional black phosphorus. Chem. Commun. (Camb.) 53, 

1445–1458 (2017). 

22. Li, W. F., Yang, Y. M., Zhang, G. & Zhang, Y. W. Ultrafast and directional 

diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano 

Lett. 15, 1691–1697 (2015). 

23. Hongyan Guo, Ning Lu, Jun Dai, Xiaojun Wu, and Xiao Cheng Zeng. Phosphorene 

Nanoribbons, Phosphorus Nanotubes, and van der Waals Multilayers. J. Phys. 

Chem. C  118 (25), 14051-14059 (2014). 

24. Cai, Y., Zhang, G. & Zhang, YW. Layer-dependent Band Alignment and Work 

Function of Few-Layer Phosphorene. Sci Rep 4, 6677 (2014). 

https://doi.org/10.1038/srep06677 

25. A. K. Geim and I. V. Grigorieva, Nature 499, 419 (2013). 

26. Liu, N. O. Weiss, X. Duan, H. Cheng, Y. Huang, and X. Duan, Nat. Rev. Mater. 1, 

16042 (2016). 

27. Jariwala, T. J. Marks, and M. C. Hersam, Nat. Mater. 16, 170 (2017). 

28. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, Science 353, 

aac9439 (2016). 

29. Ajayan, P. Kim, and K. Banerjee, Phys. Today 69(9), 38 (2016). 

30. Li and H. Zhu, Phys. Today 69(9), 46 (2016). 

31. McKinney, R. W., et al. Ionic vs. van der Waals layered materials: identification 

and comparison of elastic anisotropy, J. Mater. Chem. A, 2018,6, 15828-15838 

32. Toberer, Eric S., et al. “Electronic Structure and Transport in Thermoelectric 

Compounds AZn2Sb2 (A = Sr, Ca, Yb, Eu).” Dalton Trans., vol. 39, no. 4, 2010, 

pp. 1046–54. DOI.org (Crossref), https://doi.org/10.1039/B914172C. 

33. Preparation, Characterization and Electrochemical Properties of La2CuO4@Au as 

a Novel Bifunctional Oxygen Electrode.” International Journal of Electrochemical 

Science, Oct. 2020, pp. 9933–39. DOI.org (Crossref), 

https://doi.org/10.20964/2020.10.74 

34. Na, Junhong, et al. “Few-Layer Black Phosphorus Field-Effect Transistors with 

Reduced Current Fluctuation.” ACS Nano, vol. 8, no. 11, Nov. 2014, pp. 11753–

62. DOI.org (Crossref), https://doi.org/10.1021/nn5052376. 

35. Zhang, J., et al. “Phosphorene Nanoribbon as a Promising Candidate for 

Thermoelectric Applications.” Scientific Reports, vol. 4, no. 1, Dec. 2014, p. 

6452. DOI.org (Crossref), https://doi.org/10.1038/srep06452. 

https://doi.org/10.1038/srep06677
https://doi.org/10.1039/B914172C
https://doi.org/10.20964/2020.10.74
https://doi.org/10.1021/nn5052376
https://doi.org/10.1038/srep06452


107 

 

36. Guo, Hongyan, et al. “Phosphorene Nanoribbons, Phosphorus Nanotubes, and van 

Der Waals Multilayers.” The Journal of Physical Chemistry C, vol. 118, no. 25, 

June 2014, pp. 14051–59. DOI.org (Crossref), https://doi.org/10.1021/jp505257g 

37. Ploog, Klaus, and Gottfried H. Döhler. “Compositional and Doping Superlattices in 

III-V Semiconductors.” Advances in Physics, vol. 32, no. 3, Jan. 1983, pp. 285–

359. DOI.org (Crossref), https://doi.org/10.1080/00018738300101561. 

38. Tran, Vy, and Li Yang. “Scaling Laws for the Band Gap and Optical Response of 

Phosphorene Nanoribbons.” Physical Review B, vol. 89, no. 24, June 2014, p. 

245407. DOI.org (Crossref), https://doi.org/10.1103/PhysRevB.89.245407. 

39. W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou, and M. 

L. Cohen, Phys. Rev. Lett. 52, 2141 (1984). 

40. Knight, W. D., et al. “Alkali Metal Clusters and the Jellium Model.” Chemical 

Physics Letters, vol. 134, no. 1, Feb. 1987, pp. 1–5. DOI.org (Crossref), 

https://doi.org/10.1016/0009-2614(87)80002-7. 

41. Khanna, Shiv N., et al. “The Superatomic State beyond Conventional Magic 

Numbers: Ligated Metal Chalcogenide Superatoms.” The Journal of Chemical 

Physics, vol. 155, no. 12, Sept. 2021, p. 120901. DOI.org (Crossref), 

https://doi.org/10.1063/5.0062582. 

42. Reber, Arthur C., and Shiv N. Khanna. “Co6Se8(PEt3)6 Superatoms as Tunable 

Chemical Dopants for Two-Dimensional Semiconductors.” Npj Computational 

Materials, vol. 4, no. 1, Dec. 2018, p. 33. DOI.org (Crossref), 

https://doi.org/10.1038/s41524-018-0092-9. 

43. Martin, T. P., et al. “Shell Structure of Clusters.” The Journal of Physical 

Chemistry, vol. 95, no. 17, Aug. 1991, pp. 6421–29. DOI.org (Crossref), 

https://doi.org/10.1021/j100170a009. 

44. Harbola, M. K. “Magic Numbers for Metallic Clusters and the Principle of 

Maximum Hardness.” Proceedings of the National Academy of Sciences, vol. 89, 

no. 3, Feb. 1992, pp. 1036–39. DOI.org (Crossref), 

https://doi.org/10.1073/pnas.89.3.1036. 

45. D. E. Bergeron, P. J. Roach, A. W. Castleman, N. O. Jones, and S. N. Khanna, 

Science 307, 231 (2005). 

46. D. E. Bergeron, A. W. Castleman, T. Morisato, and S. N. Khanna, Science 304, 84 

(2004). 

47. J. U. Reveles, S. N. Khanna, P. J. Roach, and A. W. Castleman, Proc. Natl. Acad. 

Sci. U. S. A. 103, 18405 (2006). 

48. A. C. Reber, S. N. Khanna, and A. W. Castleman, J. Am. Chem. Soc. 129, 10189 

(2007). 

49. Spear, W. E. & Le Comber, P. G. Substitutional doping of amorphous silicon. Solid 

State Commun. 17, 1193–1196 (1975). 

50. Erwin, S. C. et al. Doping semiconductor nanocrystals. Nature 436, 91–94 (2005). 

51. Yu, J. et al. Patterning superatom dopants on transition metal dichalcogenides. 

Nano Lett. 16, 3385–3389 (2016). 

52. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. 

Electronics and optoelectronics of two-dimensional transition metal 

dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012). 

https://doi.org/10.1021/jp505257g
https://doi.org/10.1080/00018738300101561
https://doi.org/10.1103/PhysRevB.89.245407
https://doi.org/10.1063/5.0062582
https://doi.org/10.1021/j100170a009
https://doi.org/10.1073/pnas.89.3.1036


108 

 

53. Kiriya, D., Tosun, M., Zhao, P., Kang, J. S. & Javey, A. Air-stable surface charge 

transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 136, 7853–7856 

(2014). 

54. Schellenberger, A., Schlaf, R., Pettenkofer, C. & Jaegermann, W. 

Synchrotroninduced surface-photovoltage saturation at intercalated NaWSe2 

interfaces. Phys. Rev. B 45, 3538–3545 (1992). 

55. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made 

simple. Phys. Rev. Lett. 77, 3865–3868 (1996). 

56. Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the 

exchange screening parameter on the performance of screened hybrid functionals. 

J. Chem. Phys. 125, 224106 (2006). 

57. Ling, Xi, et al. “The Renaissance of Black Phosphorus.” Proceedings of the 

National Academy of Sciences, vol. 112, no. 15, Apr. 2015, pp. 4523–30. DOI.org 

(Crossref), https://doi.org/10.1073/pnas.1416581112. 

58. Welch, Eric J., and Jeffrey R. Long. “Atom-Like Building Units of Adjustable 

Character: Solid-State and Solution Routes to Manipulating Hexanuclear Transition 

Metal Chalcohalide Clusters.” ChemInform, vol. 37, no. 2, Jan. 2006. DOI.org 

(Crossref), https://doi.org/10.1002/chin.200602221. 

59. Hafner, Juergen. “ChemInform Abstract: Ab-Initio Simulations of Materials Using 

VASP: Density-Functional Theory and Beyond.” ChemInform, vol. 39, no. 47, 

Nov. 2008. DOI.org (Crossref), https://doi.org/10.1002/chin.200847275. 

60. Yang, Y., Castano, C. E., Gupton, B. F., Reber, A. C. & Khanna, S. N. A 

fundamental analysis of enhanced cross-coupling catalytic activity for palladium 

clusters on graphene supports. Nanoscale 8, 19564–19572 (2016). 

61. Yang, Y. et al. More than just a support: graphene as a solid-state ligand for 

palladium-catalyzed cross-coupling reactions. J. Catal. 360, 20–26 (2018). 

62. Grimme, S. Semiempirical GGA-type density functional constructed with a 

longrange dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006). 

63. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy 

calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). 

64. Neugebauer, J. & Scheffler, M. Adsorbate-substrate and adsorbate-adsorbate 

interactions of Na and K adlayers on Al(111). Phys. Rev. B 46, 16067–16080 

(1992). 

65. Roberts, F. S., Anderson, S. L., Reber, A. C. & Khanna, S. N. Initial and final state 

effects in the ultraviolet and X-ray photoelectron spectroscopy (UPS and XPS) of 

size-selected Pdn clusters supported on TiO2(110). J. Phys. Chem. C 119, 6033–

6046 (2015). 

66. W. Tang, E. Sanville, and G. Henkelman A grid-based Bader analysis algorithm 

without lattice bias, J. Phys.: Condens. Matter 21, 084204 (2009). 

67. E. Sanville, S. D. Kenny, R. Smith, and G. Henkelman An improved grid-based 

algorithm for Bader charge allocation, J. Comp. Chem. 28, 899-908 (2007). 

68. G. Henkelman, A. Arnaldsson, and H. Jónsson, A fast and robust algorithm for 

Bader decomposition of charge density, Comput. Mater. Sci. 36, 354-360 (2006). 

69. M. Yu and D. R. Trinkle, Accurate and efficient algorithm for Bader charge 

integration, J. Chem. Phys. 134, 064111 (2011). 

https://doi.org/10.1073/pnas.1416581112
https://doi.org/10.1002/chin.200602221
https://doi.org/10.1002/chin.200847275


109 

 

Chapter 4. Controlling the Location of Quantum States in 

Phosphorene Nanoribbons via Edge Passivation with Various 

Ligands 

 

4.1 Introduction 

Chapter 3 showed our work in verifying previously observed properties of 

phosphorene nanoribbons. Tuning bandgap via controlling width and edge-passivation 

offer promising levers in the proverbial tool kit of materials engineering which one can 

utilize in future device settings. However, there has not been a demonstration of control 

over p-/n- character of phosphorene. Nor has there been convincing evidence one can 

pointedly manipulate the work function or electron affinity. The key objective of the 

present work is to propose a novel approach to controlling the placement of conduction and 

valence band edges. It is demonstrated that this can be accomplished by passivating the 

edge sites with charge transfer ligands. By attaching charge transfer ligands, one can create 

dipoles at the edges which can effectively change the vacuum level. It is interesting to 

highlight that the addition of ligands does change the Fermi energy but this change is not 

driven by a change in the valence count but by the formation of charge transfer dipoles at 

the edges. These intriguing features are observed by first considering a cluster model of 

phosphorene in which a flake with 141 phosphorus atoms is ligated with the following 

ligands, NH2, OH, H, SCH3, SH, Cl, OCN, and OCH3. These flakes have approximate 

dimensions of 2.9 nm length x 1.9 nm width. Use of the cluster model enabled a more 

direct investigation of ligand effects as dipole moments and adiabatic ionization energies 

could be calculated for all structures with the additional support of unbalanced ligations to 
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single out dipole effects. Periodic structures of zigzag phosphorene nanoribbons of width N 

= 9 possessed edges decorated with donor or acceptor ligands. Ligand choice is governed 

by the groups that have electro-negativities different from phosphorus to passivate the 

edges which could lead to the formation of polar bonds that, in turn, could affect the work 

function. The following group of ligands was used to terminate the phosphorene 

nanoribbon edges: NH2, OH, H, SCH3, SH, Cl, and OCN. It is worth noting these ligands 

are ordered in terms of their widely accepted donor strength – increasing from left to right. 

However, phosphorene is an exceptional electron donor and, as shown in Bader charge 

analysis, acts accordingly to varying degrees rendering the convention moot in this specific 

environment. Results show that it is likely the effects of the cumulative dipoles which act 

to change the vacuum energy and subsequently work function of the system. In the cluster 

model, a change in ionization energy can be directly related to an energetic shift in the 

highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital 

(LUMO). A direct manifestation of this change is the removal of electrons from HOMO. 

Consequently, the first results presented are on cluster models where it is shown that the 

shifts in HOMO/LUMO result in subsequent change in the ionization energy. Thus, we 

relate HOMO/LUMO shifts with the formation of dipoles at the ligand-ribbon edge 

interface. In the periodic nanoribbon model, the effect of edge passivation with various 

ligands on the material’s work function are considered.  

4.2 Cluster Model – an Investigation of the Nature of Edge Ligands 

Leading to a Shift in Molecular Orbitals and Ionization Energy 

To understand the effect of ligands on the ionization energy and work function of 

phosphorene, a cluster model of phosphorene was utilized. This allowed for the direct 
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determination of ionization energy for each sheet. The cluster model was constructed from 

141 P atoms and 35 H atoms, as shown in Figure 4.1. This leads to a sheet with length of 

about 2.9 nm and a width of 1.7 nm. The cluster shows slight bending as the hydrogen 

termination is in the cis position, and the HOMO-LUMO gap of the phosphorene model is 

1.24 eV. The adiabatic ionization energy, the energy difference between the optimized 

neutral and cationic structure is 5.68 eV. A Hirshfeld charge analysis finds that there is 

relatively little charge transfer between the phosphorus and the hydrogen termination with 

the charge on the H being from -0.01 to -0.02 e-, and the average charge on the phosphorus 

being less than +0.01 e-. The HOMO of the cluster is constructed from lone pair on the 

phosphorus, and the LUMO of the cluster is also constructed from the lone pair on 

phosphorus, but the LUMO has a node running through the central plane of the cluster 

(Appendix A). The cluster has a small dipole of 2.3 Debye that runs roughly perpendicular 

to the plane of the cluster due to the preponderance of P-H bonds pointing up as seen in 

Figure 4.1.    
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Figure 4.1 The structure of the Phosphorene cluster model, P141H35, top view, front view, 

and side view. 

To understand the effect of terminating the phosphorene sheet with different 

ligands on the redox and electronic properties, we systematically replaced the H atom with 

a series of other ligands. These ligands were OCN, Cl, OH, H, OCH3, SCH3, and NH2. The 

structures of the cluster models are shown in Figure 4.2. Substituting the H termination has 

little effect on the HOMO-LUMO gap, as the lowest HOMO-LUMO gap is for NH2 with a 

gap of 1.18 eV, and largest is OCH3 with a gap of 1.26 eV. The absolute value of the 

HOMO and LUMO versus the vacuum level are plotted in Figure 4.3. We see that while 

the HOMO-LUMO gap is mostly unchanged, there is a dramatic change in the absolute 

value of HOMO and LUMO. OCN has the lowest lying HOMO, and the absolute value of 

HOMO increases monotonically as we move to Cl, SH, H, OH, OCH3, SCH3, and NH2. 

This suggests that the ionization energy of the phosphorene sheets with different 

termination will have significantly different ionization energies. 
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Figure 4.2 The structure of the Phosphorene cluster models with the following 

termination, A) H  B) Cl, C) NH2, D) SCH3, E) OH, F) OCN, and G) OCH3.  
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Figure 4.3 The HOMO and LUMO energy of the Phosphorene cluster models as a 

function of the ligand. 
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We next examine the electronic properties of the phosphorene cluster models with 

differing termination. Figure 4.4 shows the ionization energy of the phosphorene cluster 

model as a function of the termination. We see that the largest ionization energy is OCN, 

with an ionization energy of 7.09 eV, followed by Cl with an ionization energy of 6.20 eV. 

The next lowest ionization energy is SH, followed by H, OH, OCH3, SCH3, and NH2. 

Notice that this follows the same pattern as the HOMO energies. This means that the 

changes in the ionization energy are due to initial state effects. In other words, the trend in 

the ionization energy is not due to the electronic relaxation of the cation, but rather, the 

effect is due to the dipole induced band bending or the bonding between the ligand and 

cluster. Observations subsequently discussed suggest that the most likely explanation of 

the changing ionization energy is the band bending due the dipole formed by the ligand.  

 

Figure 4.4 The ionization energy, dipole moment, a comparison of the ionization energy 

and dipole moment, and the net charge on the phosphorene as compared to the ligand. The 

dipole moment is calculated by binding one side of the sheet with the ligand and the other 
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side is hydrogen terminated. The dipole moment is positive if it is pointing from the ligand 

to the phosphorene, and negative if it is pointing from the phosphorene to the ligand. 

 

To test whether the shift in the ionization energy was due to a dipole-induced band 

bending, we next analyzed phosphorene model clusters that are H-terminated on one side, 

and terminated by our list of ligands on the other. From this, we can find the dipole 

moment across the cluster. The hypothesis we are testing is that the dipole that is formed 

by the ligand terminating the phosphorene sheet causes band bending that raises or lowers 

the HOMO energy versus the vacuum energy. By comparing the dipole moment with the 

changes in the ionization energy, we may test this hypothesis. Note, that when we analyze 

a cluster with the same ligands on both sides, there is no significant net dipole moment as 

the charge distributions across both sides of the sheet are roughly symmetric counteract 

each other. This is an advantage of the cluster model as we can find the dipole moment and 

compare it with the ionization energy. In Figure 4.4, we see the dipole moment in Debye as 

a function of the terminal ligand. The structure of the half-ligated model clusters are shown 

in Figure 5, along with the dipole moment vector. The dipole vector points from negative 

charge to positive charge. We note that the trend in the dipole moment matches exactly 

with trend in the ionization energy. In Figure 4.4, we plot the ionization energy versus the 

component of the dipole moment that is perpendicular to the ligand-phosphorene interface, 

and we see an extremely strong correlation between the strength and direction of the dipole 

vector and the ionization energy.  The largest dipole which is pointing to the right is for the 

OCN cluster. This is due Nitrogen having a large negative charge of -0.23 e-, with the C 

having an average charge of +0.10 e-, and the O having an average charge of -0.10 e-. This 

produces a net dipole of 52.1 Debye pointing from the ligand towards the phosphorene 
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sheet. Note that the dipole is not primarily caused by the charge transfer between the ligand 

and the phosphorene sheet, but instead it is caused by the dipole of the ligand itself. In 

comparison, Cl results in an 18.9 Debye dipole moment pointing from the Cl to the 

phosphorene sheet. This is caused by charge transfer from the Cl to the phosphorene, with 

the Cl having an average Hirshfeld charge of -0.10 e-. Note that this is less than the charge 

on N in OCN, and for this reason, the dipole moment is lower. Next is OH which has a 

dipole moment of 9.8 Debye pointing from the phosphorene to the ligand. This is caused 

by the OH itself where the dipole points from the O atom to the H atom. OCH3 and SCH3 

are next with dipole moments of 12.0 and 12.2 Debye pointing from the phosphorene to the 

ligand. The dipole is caused by the ligand itself, the H atoms are charged at +0.04 e-, while 

the O and S atoms are negatively charged at -0.17 e-, and -0.01 e-, respectively, and the C 

is -0.04 e- when paired with O, and -0.12 e- when paired with S. The result of this is a 

dipole pointing from the negatively charged O and S to the positively charged H. Finally, 

we have NH2 which has a dipole pointing from the negatively charged N at, -0.22 e-, 

which points towards the positively charged H at +0.10 e-. This results in the large dipole 

that is pointing away from the phosphorene sheet. We also analyzed the charge transfer 

between the phosphorene and the ligand, as shown in Figure 4.4, to determine if this is a 

significant factor in the changing ionization energy. The hypothesis here is that a more 

positive phosphorene will lead to a larger ionization energy as it is more difficult to remove 

an electron from a more positive material. While OCN has the most positive phosphorene 

sheet, which is consistent with that ligand causing a large ionization energy in the 

phosphorene sheet, the remaining ligands show no significant correlation between the 

amount of charge on phosphorene and the ionization energy. OCN having a very positive 
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phosphorene sheet is expected at OCN is the only ligand that is expected to have a formal 

negative charge. OCH3 has one of the most positive net charges on phosphorene, yet it has 

one of the lowest ionization energies. This tells us that it is the dipole moment and not the 

charge transfer that controls the changes in the ionization energy. This analysis finds that 

the majority of the shift in the ionization energy is due to the dipole moment caused by the 

ligand leading to band bending.      

 

Figure 4.5  The structure of the cluster model of phosphorene with one side ligated with 

OCN, Cl, OH, OCH3, SCH3, and NH2. The dipole vector is shown in red, and the vector 

points from the ligand either towards or away from the phosphorene sheet depending on 

the sign of the dipole moment. 
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4.3 Effects of Varying Ligation on the Electronic Structure of Periodic 

Phosphorene Nanoribbons and Chemical Doping via Sodium Adatoms 

Following the work on cluster models, are periodic studies on phosphorene 

nanoribbons. As in the case of cluster models, edge passivation with various ligands leads 

to change in the work function. A detailed analysis indicated that the change is affected by 

the cumulative electrostatic potential from the ligands which shifts the valence and 

conduction band energies. Charge density visualizations show that these effects are non-

localized and are spread over the entire surface of the ribbon. The possibility of changing 

the p-/n- character was also explored. Inspired by the concept of chemical doping, the aim 

was to alter the Fermi energy by changing the valence count of the system via the 

adsorption of atoms that can donate or accept charge from the surface. If the Fermi energy 

can be changed without altering the gap could lead to n or p- type semiconductor. The 

initial attempt focused on the donation of charge to the phosphorene surface – a potentially 

difficult feat given the excellent oxidation capabilities of phosphorne. Sodium atoms were 

adsorbed on the surface of ribbons; given the sodium atom has a low ionization energy of 

5.14 eV, one could expect Na atoms to donates charge. However, as seen in the inspection 

of projected density of states and visualization of charge distribution, Na atoms are close 

enough to one another to interact forming dimers or other molecules resulting in overlap 

with the phosphorene p-states and the introduction of vacant states within the gap. Above 2 

sodium atoms per unit cell, the fermi level crosses the conduction band making the 

material metallic.  
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4.4 Control of Work Function by Various Edge-Passivation of N = 9 

Zigzag Phosphorene Nanoribbon 

 
Figure 4.6 Visualization of geometry for various termination/ligations of N=9 zigzag 

PNR. a) SCH3 – Terminated, b) NH2 – Terminated, c) OH – Terminated, d) SH – 

Terminated, e) H – Terminated, f) Cl – terminated, g) OCN – terminated 

 

Figure 4.6 gives a visualization of the converged zigzag geometry as well as the 

varying edge-passivation. Here, we can see that there is negligible rearrangement of 

phosphorene atoms and no effect of strain on the material. Additionally, it is important to 

note the relative difference in number of phosphorus atoms compared to the number of 

ligands at the edge sites. As shown later in the PDOS, this leads to a low overall 

contribution of states from ligands which further supports the theory that observed shifts in 

work function come, instead, from the dipole effects of the ligands.  
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Figure 4.7 Work Function various termination and Na – adsorption with varying 

concentration  

 The change in work function as a result of termination from 4.58 eV for SCH3 to 

5.25 eV in the case of OCN termination can be seen in Figure 4.7. Adsorption of sodium at 

various concentrations (0 to 8 Na atoms per unit cell) has a pronounced effect on the work 

function of the material as seen in Figure 4.7. However, the result provides an incomplete 

story as there is also a significant change in bandgap of the material associated with an 

increasing concentration of adsorbed sodium.  
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Figure 4.8 Bandgap vs edge termination with adsorbed Na concentration for 0, 2, 4, 6, and 

8 Na 

 

As shown in Figure 4.8, there is a shift in bandgap from about 0.94 eV in the case 

of bare phosphorene nanoribbon to about 0.42 eV when two sodium atoms are adsorbed 

and metallic past this concentration (4, 6, and 8 Na). Interestingly, the bandgap of the 

material is unaffected by varying the termination while the work function does change. 

Figure 4.9 directly compares the constant bandgap and changing work function for the case 

of a bare phosphorene nanoribbon as ligands differ. Nanoribbons do exhibit minor shifts in 

the energy of the valence and conduction band as well as the fermi energy, however, they 

are proportional and the average bandgap value is maintained. The significant effects are 

the shift in fermi level relative to the vacuum energy leading to the observed change in 

work function. This is attributed to the dipole effects from ligands as discussed in detail in 

the previous section explicitly outlining dipole effects in the cluster model. 
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Figure 4.9 Work function and Bandgap vs. Termination for comparison of bandgap 

change with termination to work function change with termination. B.G. remains constant 

pointing to level change as a result of dipole effects of edge terminal groups/ ligands.  

 

4.5 Controlling Bandgap and Inducing a Metallic Transition via 

Sodium Atom Deposition on Phosphorene Nanoribbon Surface 

The visualization of nanoribbons with varying sodium concentration can be seen in 

Figure 4.10. Comparison between 2, 4, 6, and 8 sodium atoms per unit cell are shown for 

the case of hydrogen termination, however, the method and placement of sodium is 

consistent for all ligand cases. Additionally, using the hydrogen edge-passivated example 

structure Figure 4.10 b gives a visualization of the unit cell dimensions used for all 

terminations of phosphorene nanoribbons. Here we can see clearly the vacuum to either 

side of the passivated edges as the ribbon propagates in the a-direction. Note, the vacuum 

space added above the ribbon is about 16.5 angstroms.  
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a   

          

b 

 

Figure 4.10 Visualization of converged geometry with sodium adsorption. (a) various 

concentrations of sodium adsorbed on hydrogen edge-passivated N = 9 zigzag PNR. (b) 

Example of standard unit cell dimensions for all nanoribbons using hydrogen edge-

passivation. 
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Figure 4.11  Comparison of projected density of states for OCN-Terminated 0, 2, and 8 Na 

cases, top, middle, and bottom respectively.  

  

 Density of states calculations were performed on all sodium-adsorbed structures 

which yielded similar results. For reference, the case of OCN edge passivation has been 

included in this discussion to illustrate the underlying mechanism at work for all structures. 

Observing the density of states in Figure 4.11 in conjunction with the visualization of the 

wavefunction associated with valence and conduction bands for sodium adsorbed on 

phosphorene nanoribbons (Figure 4.12) reveals the mechanism of electron donation by 

sodium is more complex than ionic bonding. In the 2 Na case, it seems that sodium forms a 

dimer on the surface of phosphorene which then forms a bond akin to a dipolar covalent 

bond with phosphorene. As such, the dimer interacts as a molecule meaning the donation 

of charge from the hybridized sodium s-orbitals overlaps with phosphorus lone pairs (p-
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orbitals). This interaction leads to the injection of occupied states or electrons into the 

bandgap creating a new valence band thereby decreasing the bandgap of the material from 

an average of 0.94 eV to 0.42 eV for the 2 Na case. These findings can be observed in the 

density of states given by FIGURE 4.11. At higher concentrations, we see the formation of 

multiple peaks in the density of states from overlapping sodium and phosphorus orbitals. In 

these cases, the distances between sodium atoms differs with conformational changes 

resulting in various combinations of dimers and larger groups or single sodium atoms. The 

dimer picture is rendered inconsistent at these higher concentrations of sodium atoms. 

However, the increased concentration yields higher charge transfer to the conduction band, 

thus the emergence of multiple peaks in the DOS (FIGURE 4.11). Continued filling of the 

conduction band pushes the fermi level above the conduction band producing the observed 

metallic behavior. A shift from semiconducting to metallic is 4 Na per unit cell. It is 

possible that the threshold concentration lies at 3 Na, thus further work could be completed 

to investigate the effects of a single sodium adatom and three sodium adatoms.  

The visualization of the wave functions associated with valence and conduction 

bands shows a picture consistent with that of the projected density of states. The valence 

band consists of sodium and phosphorus states which have shifted into the bandgap in the 2 

Na case while the conduction band lies on the phosphorus atoms. These are marked in 

Figure 4.12 below.  
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Figure 4.12  Visualization of charge density distribution for conduction band (a, b) and 

valence band (c, d) in different orientations of the unit cell.  

 

4.6 Bader Charge Analysis of Phosphorene Nanoribbons with Various 

Edge-Passivation 

 In order to investigate the charge transfer behavior between the ligands and 

phosphorene nanoribbons, as well as the adsorbed sodium atoms in the chemical doping 

example, Bader charge analysis was performed. This indicates which atoms are donating 

and which are accepting charge further enabling the understanding of what role ligands 

play in adjusting the quantum states of phosphorene nanoribbons.  
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Bader charge was calculated at all edge atoms and all hydrogen atoms to observe 

the charge associated with binding between phosphorus and hydrogen.[48-51] Average 

Bader charge was then obtained for edge phosphorus and hydrogen atoms for all ribbon 

widths and recorded in Tables 1 and 2 below. Note, in the calculation of Bader charge, one 

obtains the difference between effective valence given in the POTCAR file (containing 

pseudopotential information in the Vienna Ab initio Simulation Package (VASP)) for a 

particular atom and the Bader charge for each atom in the output file to obtain the residual 

charge left on each atom. A negative value indicates that there is additional charge beyond 

the given effective valence for a particular atom meaning that atom has accepted charge, in 

this case, as the result of bond formation. Thus, we can deduce that a positive value 

indicates electron donation while a negative value indicates electron acceptance.  

Table 4.1 Bader charge of bare zigzag phosphorene nanoribbon of width N = 9 

Bare PNR 

Termination AVERAGE CHARGE P AVG CHARGE Lig. 

NH2 0.6869 -0.1977 

OH 0.6892 -0.3389 

H 0.3357 -0.3267 

SCH3 0.2373 -0.048 

SH 0.232 -0.1259 

Cl 0.4414 -0.4657 

OCN 0.6687 -0.2386 

 

Table 4.2 Bader charge of sodium adsorbed zigzag phosphorene nanoribbon of width N = 

9 

Na - Adsorbed PNR 

Termination AVG CHARGE 
EDGE P 

AVG CHARGE 
Lig. 

AVG CHARGE 
P_Na 

AVG CHG Na 

NH2 0.6759 -0.1964 -0.2014 0.7128 

OH 0.6875 -0.3405 -0.1894 0.7168 

H 0.3244 -0.3300 -0.1934 0.7160 

SCH3 0.2227 -0.0497 -0.1942 0.7127 

SH 0.2446 -0.1313 -0.1956 0.7167 

Cl 0.4247 -0.472 -0.1976 0.7198 

OCN 0.6482 -0.2401 -0.1861 0.7268 



128 

 

 

 As we can see in Tables 4.1 and 4.2, phosphorene is a phenomenal electron donor 

and ends up donating charge to the ligand in all cases. However, in the case of sodium 

adsorbed structures, sodium ends up being a better donor and phosphorene accepts charge 

from sodium. This affirms what is observed in the density of states and charge density 

visualization. Sodium forms a dipolar-covalent-like bond with phosphorene and injects 

states into the gap for the two-sodium case and leads to metallic behavior when four or 

more sodium are adsorbed.  

  

4.7 Conclusions 

 From the cluster model, with a direct comparison of ionization energy to dipole 

moment attributed to the ligands, the strong positive correlation between the two becomes 

obvious suggesting that the dipole moment located on the ligand is indeed causing the 

effective change in ionization energy or shift in molecular orbitals. Furthermore, adding 

support to this conclusion, there seems to be no correlation between the charge on the 

phosphorus sheet and ionization energy. If charge transfer were the mechanism causing the 

observed shift in quantum states and subsequent change in ionization energy, we should 

see a positive correlation between the charge on phosphorene and ionization energy. Thus, 

we deduce that the dipole located on the ligands is causing the shift in molecular orbitals.  

 Comparing these results to the periodic nanoribbons, we see the increase in work 

function follow the same trend, or ligand order, as the ionization energy. Additionally, 

changes in bandgap values for various ligation are negligible supporting the conclusion 

hypothesis that charge transfer between phosphorene ribbon and ligand resulting from the 

binding action is not responsible for the observed shift in work function.  
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 Finally, the addition of sodium atoms in various concentrations was able to change 

the value of the bandgap from approximate 0.94 eV in the 0 Na case to 0.42 eV in the 2 Na 

case and transition to metallic nature at greater than or equal to 4 Na. However, these 

results showed that sodium adsorption had no effect on the p-/n-character of the material. 

Chapter 5 presents an adaptation of the surface doping approach taken with sodium atoms 

in this chapter in order to attempt a more targeted approach in controlling the nature of 

carriers for phosphorene.  
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Chapter 5.  Transforming the Electronic Properties of 

Phosphorene through Charge Transfer Superatomic Doping 

5.1 Introduction 

The work presented in Chapter 4 gave a promising outlook for tuning phosphorene 

nanoribbons via selective ligation or edge-passivation with various ligand types. By now, 

we also have an understanding of the directional and layer-dependent properties including 

high carrier mobility (up to 1000 cm2/Vs) and a direct bandgap of 1.51 which have led to 

such excitement surrounding phosphorene.[11–15] Verification of properties outlined in 

previous studies indicate that the bandgap in phosphorene nanoribbons is highly tunable 

with changes in ribbon width. Excitingly, we have also shown that the electronic spectrum 

can be shifted by varying termination groups. However, we have yet to demonstrate a 

potential avenue for controlling the p-/n- character of phosphorene. Ideally, control over all 

elements of semiconductor properties, bandgap, band location, and character of charge 

carriers, gives the freedom to apply a material to a wide range of potential application 

settings. In this sense we continue the investigation of chemical doping by extending the 

concept to formation of charge transfer complexes between superatomic clusters and 

phosphorene monolayer support.   

The key objective in this chapter is to propose a novel approach to controlling the 

band gap and even altering the p-/n-character of phosphorene by depositing ligated metal 

chalcogenide superatoms. Extensive work over the past few years has shown that stable 

metal-chalcogenide clusters[26–33] can be synthesized in solutions or in solid-state using 

wet chemical methods. These clusters are highly stable, and have charge donor/acceptor 

characteristics that can be controlled by their composition or the nature of ligands.[26,34–
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38] For example, recent work by Khanna, Reber, and coworkers has shown that the 

addition of PEt3 ligands to the metal chalcogenide cores can dramatically lower the first 

few ionization potentials making them excellent donors.[32] On the other hand, addition of 

CO ligands can make them excellent acceptors. The ability to design donor and acceptor 

superatoms has also led to the possibility of charge transfer doping, (the term charge 

transfer doping refers to clusters or molecules supported on a surface acting as a donor or 

acceptor) for two dimensional semiconductors that does not require creating defects or 

substituting atoms in the underlying lattice. These developments have come from 

experiments from the groups of Nuckolls and Roy at Columbia University.[39] In their 

experiments, they doped two-dimensional transition metal chalcogenide MoS2 using 

supported Co6Se8(PEt3)6 superatoms as electron donors. Their experiments indicate that 

electron-rich superatoms could transform MoS2 from moderately to heavily electron dope-

state by controlling the concentration of superatoms in the solution. Even more interesting 

was that for WSe2, where the characteristics of the film changed from hole transporting to 

electron transporting upon doping. They further used a lithographic mask (h-BN) to 

selectively dope areas of WSe2 film thereby creating p-n junctions effectively creating a 

diode. These experimental findings could open the pathway to novel class of charge 

transfer doped semiconductors and the key objective of the current work is to explore these 

possibilities for phosphorene monolayer.  

In the first iteration of charge transfer doping of phosphorene with superatoms, we 

first examine Co6S8(PH3)5-n(CO)n ligated clusters supported on phosphorene surface. We 

show that the phosphorene surface acts as a better ligand than the PH3 ligand subsequently 

enabling the superatom to bind preferentially to the phosphorene surface. The addition of 



137 

 

Co6S8(PH3)5-n(CO)n superatoms changes the width of the bandgap but is unable to change 

the p- or n- character of the underlying film. This is because the HOMO-LUMO gap in the 

deposited cluster is smaller than the desired gap to affect the change. We then show that 

Re6Se8(PH3)5-nCln superatoms offers a wider HOMO-LUMO gap energy and can effect a 

change in the p- or n- type of the phosphorene sheet. 

5.2 Controlling the Band Gap in Phosphorene by depositing 

Superatoms: 

  As seen in Chapter 3 and 4, nanoribbons provide an approach for controlling the 

electronic features in phosphorene. By varying the width of the ribbon and by terminating 

the edges with various ligands, zigzag ribbons can be converted from metallic to 

semiconducting state with band gaps as large as 2.34 eV. We would like to control band 

gap energy and, ideally, exhibit a method for controlling the p- and n- character of the 

phosphorene sheet through charge transfer dopants. This allows for doping to occur 

without substitutional doping that is likely to induce additional defects. For two-

dimensional films, one way is to provide electrons or holes by depositing super donors and 

acceptors that can donate/accept multiple electrons. The ligated metal-chalcogenide 

superatomic clusters offer this unique possibility of donating or accepting multiple 

electrons.[33] 

The redox properties of transition metal chalcogenide clusters can be controlled by 

adding organic ligands. In the case of adding donor ligands like PH3, the first few 

ionization energies of Co6S8 and similar clusters can be lowered by several eV making 

them excellent donors.[33,46,47] On the other hand, attaching acceptor ligands such as CO 

increases the electron affinity making them acceptors.[27] Taking advantage of the 
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previous findings on shifting electronic spectrum, and subsequently, ionization energy and 

electron affinity, we explored the possibility of controlling the band gap energy and the 

Fermi level by depositing the Co6S8(PH3)5-n(CO)n clusters. The goal was to see if the band 

gap energy and the n-/p- character could be changed by depositing superatomic clusters, 

and exchanging the ligands, starting from electron donating PH3 and switching to the 

electron accepting CO.  Figure 5.1 gives a picture of the ligand exchange idea for 

Co6S8(PH3)5-n(CO)n clusters on phosphorene monolayer. Here we can see the successive 

exchange between PH3 and CO. 

 
Figure 5.1. Complete picture of all CONTCAR geometry for Co6S8(PH3)5-n(CO)n doped 

phosphorene monolayer as a function of n from 0 – 5 (a-f). 
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Since the absorption of the ligated clusters to the surface usually proceeds by preparing the 

fully ligated clusters in solution and depositing them on the surface, we first compared the 

binding energy of a 6th phosphine ligand to the binding energy of phosphorene if the 6th 

ligand is replaced with the phosphorene sheet. In order to take advantage of the unique 

properties of the ligated metal chalcogenide clusters we must show that the cluster can bind 

preferentially with the sheet over the sixth PH3 ligand or CO ligand. Table 5.1 gives all 

values of binding energy. 

Table 5.1. Comparison of binding energies for ligand-to-cluster and cluster-to-surface 

showing that all cases, for both (a) Co6S8(PH3)5-n(CO)n and (b) Re6Se8(PH3)5-n(Cl)n 

superatomic clusters, the cluster binds preferentially to the surface of the phosphorene 

monolayer.  

 

(b) Re6Se8(PH3)5-n(Cl)n 

# of Cl Ligands Ligand-to-Cluster B.E. (eV) Cluster-to-Surface B.E. 

(eV) 

0 0.7863 4.224 

1 0.8237 3.3691 

2 1.6669 3.2329 

3 1.6954 3.3529 

 

A plot comparison, given in Figure 5.2, of the relative binding energies ensures that 

the replacement of the ligand by the surface is energetically favorable. It becomes quite 

obvious upon observation of Figure 5.2 comparing binding energy of the ligand and the 

phosphorene film for various compositions of the cluster, that the binding energy of the 

(a) Co6S8(PH3)5-n(CO)n 

# of CO Ligands Ligand-to-Cluster B.E. (eV) Cluster-to-Surface B.E. 

(eV) 

0 2.0687 4.01877 

1 2.1048 3.829 

2 2.1125 3.7051 

3 2.2007 3.6649 

4 2.3096 3.6593 

5 2.4017 3.6269 
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phosphorene film is significantly higher than the phosphine ligand in all cases. This shows 

that the phosphorene surface may act as a ligand and ligand replacement by the 

phosphorene surface is energetically favorable.  

 

 

Figure 5.2. Binding energies of phosphine ligands to cluster and cluster to surface as 

ligands are exchanged as a function of n for both (a) Re6Se8(Cl)n(PH3)5-n and (b) 

Co6S8(CO)n(PH3)5-n respectively. 

 

 Since the cluster does bind preferentially to the phosphorene substrate, we direct 

our attention to the anticipated task of charge transfer doping with the aim of sufficiently 

shifting the electronic spectrum of the clusters within the bandgap of phosphorene. In order 

to effectively induce a change from traditional semiconductor to p-type character the 

LUMO of the cluster must insert into the bandgap below the conduction band of the 

phosphorene support, supplying available states lower in energy than the conduction band. 

For n-type doping to occur, the HOMO of the cluster must lie above the valence band of 

the phosphorene support subsequently injecting electrons into the bandgap. Figure 5.3 

outlines the results for Co6S8(PH3)5-n(CO)n clusters. Importantly, we note the use of HSE06 
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hybrid functional in order to model the electronic structure of the doped phosphorene more 

accurately.[44]  

 

Figure 5.3. (a) The structure of Co6S8(PH3)5, Co6S8(CO)3(PH3)2, and Co6S8(CO)5, 

supported on Phosphorene. (b) The position of the valence and conduction band of 

phosphorene, and the HOMO and LUMO of the Co6S8(CO)n(PH3)5-n cluster as a function 

of n. Note, the valence band maximum is set to zero in the presentation of the band energy 

levels.  

As the PH3 ligands are replaced with CO ligands, the effective gap between the 

occupied and unoccupied states that are both localized on the cluster changes from 1.44 to 

1.33 eV for the complete coverage with CO ligands, as seen in Figure 5.3b. The conduction 

band of the phosphorene and the LUMO of the cluster are pinned at the same energy level. 

For 0 and 1 CO molecules, the HOMO of the cluster lies slightly below the valence band 

of phosphorene. Further exchange of PH3 with CO ligands lowers the HOMO of the cluster 
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significantly below the valence band. This means that phosphine is not a strong enough 

electron donor to add to the high lying valence band of the phosphorene support.  This 

shows that, while the cluster does change the effective band gap, it is not able to alter the 

p- or n- character of the underlying film.  

Projected density of states for the Co6S8(CO)n(PH3)5-n clusters are shown in Figure 

5.4. If charge transfer p-/n-type doping was taking place we would be able to see an 

associated peak corresponding to states from the cluster inserted into the bandgap of 

phosphorene. In other words, while the phosphorene peaks associated with valence and 

conduction bands would change slightly in energy, there would be noticeable peaks 

between the conduction and valence band leading to the idealized doping behavior. 

Instead, we see the cluster HOMO states are deep to the valence band while the cluster 

LUMO states are hybridized with the phosphorene conduction band effectively pinning the 

energy.  
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Figure 5.4. Projected density of states for Co6S8(PH3)5-n(CO)n as a function of n, plotted 

from results obtained using the HSE06 hybrid functional. Note, for sumo software, the 

legend cutoff for PDOS is 3% thus, C and O are not included in the legend due to their low 

contribution to overall number of states in the plotted energy range. 

 

In conventional doping, local sites are substituted by a heterogeneous atom, and 

when this occurs, the impurity states have a large radius due to screened coulomb repulsion 

and lead to impurity band even for low concentrations. Here, the cluster electronic states 

are expected to be largely localized around the cluster and therefore one must consider the 

valence and conduction band of the underlying lattice as well as the HOMO and LUMO of 

the cluster. Fig. 5.5 shows the location of these states where the HOMO and LUMO of the 

cluster were identified by projecting the electronic states on the cluster. To examine how 

the cluster states mix with phosphorus states of the underlying phosphorene support, we 

show in Fig. 5.5 the charge density distribution of LUMO along with HOMO.  We found 

that HOMO of cluster states initially remains close to valence band of the underlying 
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lattice before dropping below the valence band while the LUMO is close to conduction 

band throughout the ligand exchange. We therefore tried a cluster where some of the CO 

ligands were replaced with Cl atoms to form a cluster with large HOMO-LUMO gap and 

desired placement of levels. We now show how a change in the cluster can lead to a 

control of the Fermi level of the underlying film. 

5.3 Controlling p-/n- Character using Re6Se8Cln(PH3)5-n Clusters as 

Charge Transfer Dopants: 

As shown in the previous section, Co6S8(CO)n(PH3)5-n was unable to change the 

Fermi level of the system. Since it was our aim to demonstrate that a suitable choice of  

 

Figure 5.5. Charge density associated with LUMO (a-c) and HOMO (d-f )states of the 

cluster for Co6S8(CO)1,3,5(PH3)4,2,0 

 

superatomic cluster can lead to states located within the gap of the phosphorene support, 

there needs to be a more dramatic shift in the electronic spectrum of the cluster with ligand 

exchange than the predecessor has displayed. With the knowledge that phosphorene has 

such a high valence band relative to the Co6S8(CO)n(PH3)5-n cluster an adjustment to the 
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cluster electronic spectrum is needed. A difference in cluster core and ligation could 

provide a sufficient shift to the electronic spectrum such that HOMO and LUMO levels are 

able to insert into the bandgap of phosphorene.  Given the unsatisfactory performance of 

the previous choice of cluster, the next choice of superatomic charge transfer dopant was 

guided by previous studies done by our group.[46,47] Figure 5.6 displays the adsorbed 

Re6Se8(Cl)n(PH3)5-n on phosphorene monolayer through ligand exchange between CO and 

Cl ligands.  

 
Figure 5.6. Complete picture of all CONTCAR geometry for Re6Se8(PH3)5-n(Cl)n doped 

phosphorene monolayer as a function of n from 0 – 3 (a-d).  

 

The Re6Se8(Cl)n(PH3)5-n cluster has a larger HOMO-LUMO gap than 

Co6S8(CO)n(PH3)5-n which, with successive ligand exchange, leads to either the injection of 
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electrons into the bandgap or the introduction of low-lying states to which an electron may 

be excited from the valence band of the phosphorene support. In so doing, we exhibit 

control over the Fermi level of the material thereby changing p-/n- character. The ground 

state of the of a Re6Se8(PH3)5 cluster, shown in Figure 5.6 a), is a spin triplet with LUMO 

located close to the conduction band of phosphorene. Also, the HOMO-LUMO gap is 

larger than the band gap of the phosphorene. This provides an ideal situation if the LUMO 

of the cluster could be lowered by replacing PH3 ligands with Cl towards the valence band 

of the phosphorene sheet. To explore such a possibility, the cluster was supported on the 

phosphorene surface and we carried out electronic structure calculations as 1-3 PH3 ligands 

were replaced with Cl atoms. In each case, the resulting electronic structure was analyzed 

to identify the valence band, the conduction band, and the HOMO and LUMO states of the 

cluster. The position of the valence and conduction band of phosphorene, and the HOMO 

and LUMO of Re6Se8 can be seen in Figure 5.7 b). Additionally, the Fermi energy of the 

system, obtained by broadening the electronic states with a Gaussian of width 0.05 eV, has 

been included. The location of Fermi energy helps to identify if the highest occupied state 

is located on the cluster or phosphorene (in case the cluster state is embedded in the 

valence band region). For a Re6Se8(PH3)5 and Re6Se8Cl(PH3)4 clusters, the highest 

occupied states are located on the cluster and are close to conduction band indicating a n-

type semiconducting behavior. The slight change in the HOMO and LUMO levels as a 

single PH3 is replaced by Cl is related to the even/odd electron count. The successive 

exchange of PH3 with an additional Cl atom lowers the LUMO state, while the resulting 

system has a closed electronic shell and a band gap energy of 1.48 eV. For 

Re6Se8Cl3(PH3)2 cluster, the LUMO of the cluster is slightly above the valence band and 
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the system behaves like a p-type semiconductor. This is remarkable as it shows that one 

can transform phosphorene into n- or p- type by depositing the appropriate superatoms and 

via ligand exchange.  

 

 

 

Figure 5.7. (a) The structure of Re6Se8(PH3)5, Re6Se8Cl2(PH3)4, and Re6Se8Cl3(PH3)2, 

supported on Phosphorene. (b) The position of the valence and conduction band of 

phosphorene, and the HOMO and LUMO of the Re6Se8Cln(PH3)5-n cluster as a function of 

n. 

As additional evidence, the combination of charge density visualization and 

projected density of states provides support to the observations from the electronic 

spectrum. Singling out the cluster HOMO gives a visualization of hybridization occurring 

with phosphorus and an indication of whether electrons at the observed energy given in 
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Figure 5.7 are indeed associated with the cluster states. Similar reasoning is followed for 

the cluster LUMO seen in Figure 5.8. 

 

Figure 5.8. Charge density associated with HOMO and LUMO states of the cluster for 

Re6Se8Cl1,2,3(PH3)4,3,2. 

Figure 5.8 displays the electronic wavefunctions associated with the 

HOMO/LUMO for the Re6Se8Cl3(PH3)2 cluster to identify the spread of the electronic 

states, while Figure 5.9 displays the projected density of states for the same levels. The 

HOMO is marked by cluster orbitals that are strongly hybridized with the phosphorene 

states (Figure 5.8 (d-f)). This is also clear in Figure 5.9 which shows that the valence band 

edge is composed of states derived from P as well as Cl p-states in the Re6Se8(PH3)2Cl3 

case. In the previous result, hybridization of the valence band edge can also be seen for Co 

d-states from figure 5.4.  Similarly, the conduction band edge is marked by states derived 

from the deposited cluster and the phosphorus states. Thus, it is this collective evidence 

that leads to the belief that the strong hybridization results in the formation of impurity 

band spread over both the phosphorene and cluster. This shows that the impurity bands in 
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charge transfer doping can also have a large radius but are not necessarily pinned to the 

conduction band as they are for the Co6S8 cluster.  

 

Figure 5.9. The projected density of states of Re6Se8(PH3)5, Re6Se8Cl(PH3)4, 

Re6Se8Cl2(PH3)3, and Re6Se8Cl3(PH3)4. In this case, the VBM energy is set to zero.  

 The promising results obtained from charge transfer doping utilizing the 

Re6Se8Cln(PH3)5-n cluster deposited on phosphorene also leads to the belief that these 

strategies provide a valid method for surface doping as we have shown that not only can 

we impact concentration of charge carriers but also the nature of carriers. Given the result 

for a high valence band material, we are intrigued by the prospect of expanding these 

techniques in investigations of other two-dimensional materials, including ribbons. 
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5.4 Conclusions 

The two most significant characteristics of any semiconductor are the band gap 

energy and the nature of carriers. In conventional semiconductors, the nature of carriers 

can be controlled via doping that involves replacement of host atoms with impurity atoms 

of a different chemical valence. Such replacements induce structural distortions limiting 

the amount of doping. The present work offers an alternative approach where the band gap 

and/or the nature of carriers can be changed by supporting ligated clusters on the surface. 

Here, we show that the band gap in phosphorene can be altered by supporting 

Co6S8(CO)n(PH3)5-n clusters with different combination of PH3 and CO ligands. We then 

show that the nature of carriers can be controlled by depositing Re6Se8Cln(PH3)5-n clusters. 

A larger concentration of Cl favors a p-type character while a larger number of PH3 ligands 

favor a n-type character. We believe charge transfer doping via supported superatoms 

offers another feature, hot electrons, which was recently presented in experimental work by 

F. Yan et al.[48] The absorption of photons in surface-supported clusters can create hot 

electrons since the absorbed radiation cannot lead to plasmonic excitations as a result of 

the few nm cluster size. The hot electrons can then be transferred to the supporting surface 

resulting in exciton formation and subsequent shifts of the bandgap energy.[48] We are 

currently exploring these effects and how the simultaneous absorption of different adjacent 

clusters can be used to create nano p-/n- junctions. Additionally, we raise a question for 

future work – could we combine the effects of ligands on two-dimensional ribbons with 

charge transfer doping to obtain more desirable results by shifting the electronic spectrum 

of the support into an optimal range such that the cluster HOMO and LUMO states may 

insert into the bandgap? 
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Chapter 6.  Proposed Future Work: Extending Charge Transfer 

Doping to Various Two-Dimensional Systems and Magnetic 

Superatoms 

 

 Semiconductor materials are ubiquitous in a vast number of technologies utilized 

by consumers and large research and development companies alike. As such, the ability to 

control or tune the most important properties of a semiconductor – the band gap energy, 

the location of energy levels, and the nature of carriers, becomes vital in the improvement 

and development of advanced technologies. By tuning the width of the gap and p-/n-type 

character of conduction, we gain control over a material’s capacity to play a certain role 

upon incorporation into a device setting. For example, moving beyond the current size 

limit of logic transistors, improving the function of optoelectronics devices, and even fine-

tuning photovoltaic devices to increase efficiency or expand the energy range which a solar 

panel may harvest light. Given the importance of controlling the electronic properties of 

semiconductor materials, I present in the following sections, a brief summary of the work 

presented in this dissertation as well as potential future directions one can explore in the 

advancement of semiconducting materials.  

Chapters 3-5 presented a body of work which highlights the bright possibilities of 

tuning phosphorene nanoribbons via width, and edge-passivation as well as two-

dimensional semiconductors via charge transfer doping. These findings play a small role in 

the overall advancement of materials. However, it is the collective efforts of materials 

research which help to move the needle of progress. Influenced by the great need for 

solving technological problems like reliable energy storage and renewable energy 
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production, moving beyond Moore’s law for logic transistors, etc. I propose several 

directions for future work.  

As demonstrated in Chapter 4, it is possible to shift the electronic spectrum of 

phosphorene nanoribbons by varying the edge-passivating ligands. Combining these 

effects with the promising results given in Chapter 5 for charge transfer doping, it may be 

possible to tune the electronic spectrum of both components in order to induce p-/n-type 

doping more easily in a high valence band material such as phosphorene.  

a                                                        b 

     

Figure 6.1. Example structures of phosphorene nanoribbons doped with Co6S8(CO)5 

superatoms with zigzag (a) and armchair (b) geometries respectively.  

 Additionally, expanding these ideas to other nanoribbons like graphene, MoS2, 

WSe2, etc. may induce a variety of exciting properties. For example, it has been shown that 

edge-passivation of MoS2 with oxygen induces “single edge ferromagnetism” in zigzag 

nanoribbons.[1] Investigating this effect in conjunction with the effects of ligated, 

magnetic metal chalcogenide superatoms could prove quite interesting and incites further 

inquisition. For example, does charge transfer doping two-dimensional nanoribbons, like 

edge-passivated MoS2, with magnetic metal chalcogenide superatoms increase the spin 

density of the material as a whole or are the initial effects of edge passivation negated? 
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 By a similar line of questioning, I am interested in the effects of magnetic 

superatoms on periodic two-dimensional sheets like MoS2 and WSe2. Preliminary 

calculations for these structures have been performed and can be seen in Figure 2.  

 

a   

b   

c   

Figure 6.2. Visualization of various ligated magnetic metal chalcogenide clusters, 

Fe6E8CO5, deposited on monolayer MoS2, where E = S, Se, and Mn, from top to bottom.  

 

 With the promising results presented in previous chapters, comes a spark of 

intrigue. What possibilities exist in these new materials and can they be applied to new 
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technologies that ultimately make an impact and elevate quality of human life at scale? By 

continuing this work we hope to add knowledge and insight to the growing body of work 

in the field of two-dimensional materials and inspire, inform, or at least, add a valuable 

node to the web of science.  
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Appendix-A 

 
Picture of Phosphorene Nanoribbon Optimized Geometry for All Ribbon Widths 

 

 
Figure A1 Complete picture of all CONTCAR geometry of non-edge-terminated armchair 

phosphorene nanoribbons, widths N = 2, 9. Note, again, the significant reconstruction for 

widths N = 2 and 3 which is not existent in ribbon widths past N = 3.  
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Figure A2 Complete picture of all CONTCAR geometry of terminated armchair 

phosphorene nanoribbons, widths N = 2, 9. 

 

 

 
Figure A3 Complete picture of all CONTCAR geometry of non-edge-terminated zigzag 

phosphorene nanoribbons, widths N = 2, 9. 

 
Figure A4 Complete picture of all CONTCAR geometry of terminated zigzag 

phosphorene nanoribbons, widths N = 2, 9.  
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Figure A5  The A) the HOMO and B) the LUMO of the Phosphorene Cluster model 

P141H35. 

 
 

 

 

 

 

 


	Using Superatomic Clusters and Charge Transfer Ligands to Control Electronic Characteristics of Phosphorene Nanoribbons and Phosphorene Monolayer
	Downloaded from

	1

