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Abstract

EARLY TERMINATION IN PHASE II CLINICAL TRIALS: ADMISSIBLE

DESIGNS USING DECREASINGLY INFORMATIVE PRIORS

By Chen Wang

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor

of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2023.

Director: Roy T. Sabo, Ph.D.,

Associate Professor, Department of Biostatistics

In Phase II clinical trials, the efficacy and futility of a new treatment are evaluated

to determine whether it warrants further investigation in a larger-scale confirmatory Phase

III trial. Ethically, Thall and Simon’s Bayesian posterior probability design is commonly

implemented in Phase II clinical trials to allow for an early termination in case of evidence of

sufficient efficacy or a lack of futility based on posterior probability [1][2]; this in turn requires

a pre-selected prior distribution based on known clinical opinion or historical information

which is directly related to statistical decision making. Moreover, this Bayesian approach

can result in an issue of inflating type I error rate by monitoring interim data to inform early

termination decisions. Alternatively, Bayesian approach with the decreasingly informative

prior (DIP), which is an informative yet skeptical prior, can be implemented to overcome

the contentious prior selection and constrain the prior from providing evidence that would

favor termination at early phase of a trial, but more adaption and informed by the observed

data as more subjects are accrued, and consequently guarantee the control of the type I error

rate.[3]

vii



We apply the Bayesian DIP approach to one-parameter and two-parameter models of

Phase II clinical trials, and aim to calculate the required smallest sample size, stopping de-

cision cutoffs, the expected sample size, and the exact power and type I error rate, given an

admissible target power and significant level. We facilitate the DIP construction by utilizing

the prior effective sample size (ESS) and functionalize the prior ESS in terms of the nonac-

crued sample size and center the prior distribution at some null values. For implementing the

Bayesian DIP approach to two-parameter models, we extend the expected local-information-

ratio (ELIR) approach, which is used for one-parameter models for determining prior ESS,

for single-parameter in multivariate cases. Simulation comparing the performance of the

standard Bayesian approach and DIP approach in both one-parameter and two-parameter

models show that the DIP approach requires fewer patients when admissible designs are

achieved; otherwise, the DIP approach controls the type I error and type II error rates with

comparable or fewer sample size. We also build an R package, BayesDIP, that accommo-

dates the admissible designs for both standard Bayesian approach and DIP approach for

one-parameter and two-parameter models of Phase II clinical trials.
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CHAPTER 1

INTRODUCTION

1.1 Background

Phase II clinical studies typically focus on determining whether a treatment has sufficient

evidence of preliminary efficacy to warrant further investigation in a Phase III trial, or

whether the investigation should be discontinued due to unacceptable safety or a lack of

efficacy. These studies tend to be small, and data monitoring tends to occur continuously

as subjects accrue. For ethical and financial considerations, Phase II trials often allow early

termination for efficacy, safety or futility if early results are extreme. In the case that a trial

is terminated early due to efficacy, the intervention will progress to Phase III trial sooner

and more subjects will benefit from the treatment. In the case where evidence suggests the

trial is unlikely to achieve its objectives, it can be terminated early for futility, as there is no

reason to continue enrollment.[4],[5] While traditional frequentist methods provide stopping

rules or termination guidance in Phase II trials at a small number of fixed time points,

Bayesian methods (Thall and Simon [1],[2]) allow for more continual monitoring as well as

the inclusion of prior or historical information, which may help improve decision making.

Bayesian approaches are also more amenable to adaptive designs and complex modelings.[6]

1.1.1 Bayesian Approaches to Early Termination

In early termination research, several approaches are considered [7]: traditional frequentist

approach (e.g., Pocock group sequential designs, O’Brien-Fleming alpha-spending function),

Simon’s two-stage design, Lee and Liu Bayesian predictive posterior probability design [8],

and Thall and Simon Bayesian posterior probability design [1][2]. In a two-sample trial, the

1



Pocock group sequential design splits subjects into K equally-sized and sequential groups.

For each group, an equal number of subjects are allocated to each treatment. After the

kth group is observed, we calculate test statistic for the kth interim analysis. We decide to

terminate the trial for efficacy if the test statistic is greater than a constant critical value;

otherwise we continue to enroll the next group, and continue in this manner until (i) we

terminate or (ii) the predetermined total number of subjects are accrued. Instead of using

a constant critical value for all the K groups, the O’Brien-Fleming approach sets the test

stopping boundaries progressively as more groups of data are collected. Simon’s two-stage

design is frequently used in single-sample designs with a binary outcome, splitting the sample

into two stages. In stage I, a fixed n1 subjects are accrued and observed, and if the number

of responses (y1) is low, we terminate the trial and claim the treatment is unpromising. If

a sufficient number of responses is observed at stage I, an additional fixed n2 subjects are

accrued in stage II. At the end of the trial, if the total number of responses is low, then we

claim the treatment is unpromising, otherwise we claim the treatment is promising.

Bayesian approaches allow the inclusion of prior or historical information, which may

improve statistical decision making. These Bayesian approaches are also more amenable to

adaptive designs and complex modeling.[6] Despite these benefits, the Bayesian approach

can be subject to inflated type I error rates. These approaches can be based on either

posterior probabilities or predictive posterior probabilities, the latter of which refer to the

future observations of data when we have observed the enrolled subjects, though we will not

investigate that possibility here.

In Thall and Simon’s one-sample Bayesian approach with binary outcomes [1], suppose

we have a likelihood function f(y|θ), with each yi ∈ {0, 1} representing a failure or a success,

and prior distribution π(θ) as beta distribution beta(a, b) for simplicity. Let θ1 be a parame-

ter(s) representing efficacy in a new treatment, and let θ0 reflect null levels representing the

boundary between an efficacious and non-efficacious treatment. Then, the hypotheses we

2



are testing are

H0 : θ1 ≤ θ0 + δ0 (1.1)

H1 : θ1 > θ0 + δ0

where δ0 is a fixed targeted improvement for the new treatment to achieve (which could be 0).

Note that these hypotheses assume that larger values of θ1 are reflective of greater efficacy;

we could simply switch the directions of the inequalities (and likely select a negative δ0) if

lower values imply greater efficacy. We also set predetermined upper and lower boundaries

for the posterior probability, denoted as ps and pf respectively, representing the probabilis-

tic thresholds needed to be met in order to terminate the trial for superiority or futility,

respectively. Throughout the trial, we can decide to terminate for efficacy if the evidence

is promising (P (θ1 > θ0 + δ0|y) ≥ ps) or terminate for futility if the evidence is unpromising

(P (θ1 > θ0 + δ0|y) ≤ pf ), and we continue the trial and enroll additional subjects if the ev-

idence is inconclusive (pf < P (θ1 > θ0 + δ0|y) < ps). These probabilities can be estimated

and the resulting decisions can be made after each new subject is enrolled and observed

until the new treatment is determined as being either efficacious or futile, or when all the

predetermined total number of subjects are recruited. The posterior probabilities could also

be calculated after cohorts of patients are accrued and observed.

Suggested by Thall and Simon [1], the chosen prior distribution π(θ) should be formu-

lated informatively to reflect a practically useful design. Based on the concentration parame-

ter ce = a+b in the prior, it is recommended that a = ce(θ0+δ0/2) and b = ce(1−(θ0+δ0/2))

so that the mean equals a
a+b

= ce(θ0+δ0/2)
ce

= θ0 + δ0/2, corresponding to the most pessimistic

view that the efficacy in a new treatment is on average identical to the null levels and the

most optimistic view that the new treatment provides the targeted improvement δ0/2. Thall

and Simon also suggested the range of ce ∈ [2, 10] and discussed that for the same θ0 and δ0,

larger values of ce correspond to a narrower 90% probability interval (W90) of the dispersion

3



of π(θ), and the prior with smaller W90 is highly localized around its mean and more infor-

mative, whereas the prior with larger W90 corresponds to a dispersed prior distribution and

less informative.[1]

1.1.2 Prior Effective Sample Size

Prior selection in Bayesian approach is crucial, because it is possible to generate posterior

distributions that are strongly influenced by the priors.[6] Knowing the prior effective sample

size (ESS) facilitates prior selection as it indicates the amount of information contained in

the prior in an intuitive value (i.e. number of subjects-worth of information). Though several

approaches are available (Morita[9],[10]), ESS can be determined using the expected local-

information-ratio (ELIR) approach for standard one-parameter exponential family (Neuen-

schwander[11]). Letting i(p(θ)) and iF (θ) be the information of the prior distribution p(θ)

and the expected Fisher information for one information unit,

i(p(θ)) = −d2log p(θ)

d θ2
, iF (θ) = −Ey|θ

{d2log f(y|θ)
d θ2

}
(1.2)

the ESS is defined as the expected ratio of the prior information to the Fisher information.

ESSELIR = Eθ{r(θ)} = Eθ

{i(p(θ))
iF (θ)

}
(1.3)

In the exponential family,

f(y|θ) = h(y) exp
( k∑

i=1

ηi(θ)ti(y)− c(θ)
)

the information ratio for the natural parameter η can be written as r(η) = i(p(η))/iF (η). If

we rewrite the prior and observed distribution as

p(η) = exp{n0m0η − n0M(η)}, f(y|η) = exp{yη −M(η)} (1.4)

4



we can have

i(p(η)) = −d2log p(η)

d η2
= −d2 (n0m0η − n0M(η))

d η2
=

n0d
2M(η)

d η2
, and (1.5)

iF (η) = −Ey|η

{d2log f(y|η)
d η2

}
= −Ey|η

{d2 (yη −M(η))

d η2

}
=

d2M(η)

d η2
. (1.6)

Thus, based on the Equation 1.3, it follows that ESS = E(r(η)) = n0.

For example, consider a Poisson distribution with a Gamma(a,b) prior for the mean λ.

The exponential family of Poisson distribution can be written as f(y|λ) = 1
y!
exp{y logλ −λ},

whose natural parameter is η = logλ so that λ = exp(η) = M(η). This can equivalently

be written as f(y|η) = 1
y!
exp{y η − exp(η)}, from which we know iF (η) = exp(η) (Equation

1.6). The exponential family of Gamma prior distribution can be expressed as p(λ|a, b) =

λ−1 exp{−bλ+ a logλ+ a logb− log Γ(a)}, and an equivalent form of the natural parameter

expression is p(η|a, b) = exp(η)−1 exp{−b exp(η) + a η + a logb − log Γ(a)}. Then, we can

calculate the prior information i(p(η)) = b exp(η) by Equation 1.5, and n0 = b by Equation

1.3.

Some ESSELIR values for common one-parameter exponential families are provided by

Neuenschwander[11], and we can refer to the quantities straightforwardly in our Aim 1.

However, the method introduced by Neuenschwander[11] is restricted to single-parameter

models. We will extend this method to multivariate models.

1.1.3 Decreasingly Informative Prior Approach

In practice, the Bayesian approach can be contentious when prior information is based mainly

on subject matter experts.[6] To exchange this type of subjectivity for assumptions more

directly related to statistical decision making in clinician studies and trials, the decreasingly

informative prior (DIP) (Sabo[3], Donahue and Sabo[12]) is considered, where null skepticism

is explicitly incorporated into the prior in a manner that decreases its prior effective sample
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size (ESS) as subjects accrue. This approach was initially introduced in a Bayesian response-

adaptive allocation method for the beta− binomial model by Sabo[3], where an informative

yet skeptical prior is parameterized in a way that centers the prior distribution around the

mode p0, resulting in a DIP distribution pi ∼ Beta(1 + p0(N − n), 1 + (1− p0)(N − n)) for

both treatment groups. The choice of beta − binomial conjugate model with DIP yields a

posterior distribution for efficacy rate pi, as shown below:

yi|pi ∼ Binomial(ni, pi), i = 1, 2 (1.7)

pi ∼ Beta(1 + p0(N − n), 1 + (1− p0)(N − n))

pi|yi ∼ Beta(1 + yi + p0(N − n), 1 + ni − yi + (1− p0)(N − n))

where yi is the observed number of successes out of ni accrued patients for the ith group. Note

that p0 can be vaguely modeled with a hyperprior or a chosen value from many sources such

as historical studies. The net effect of the DIP prior formulation is that it restricts response-

based adaptation early in a trial (since it centers the posterior mean at a null value), gradually

permitting more adaptation as the overall Bayesian model transfers the total effective sample

size from the prior to the likelihood. In this way, the posterior distribution is increasingly

informed by observed data and less by the prior information as subjects are accrued. Sabo[3]

compared the performance of the DIP method with the functional exponent-based Thall and

Wathen (TW) method[13]. Both methods achieve a gradual lead-in to response-adaptive

allocation weights and behave similarly in terms of power, sample size and variability.

Donahue and Sabo[12] extended the DIP approach to continuous outcomes, primarily in

the normal conjugate model with unknown mean and variance by parameterizing the prior

ESS to equal the unobserved sample size as follows:
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yi|µ, σ2 ∼ N
(
µ, σ2

)
, i = 1, 2 (1.8)

µ|σ2 ∼ N

(
µ0,

σ2

N − n

)
σ2 ∼ Inverse−Gamma

(
N − n, σ2

0

)
where µ0 is the prior mean, N −n is both the ESS that µ0 is based on and the prior degrees

of freedom on which σ2
0, the prior mean of σ2, is based. Toward the end of the trial, the

posterior estimate of µn approaches ȳ and the posterior estimate of σn approaches n−1
n
s2.

By comparing various DIP methods, including the ESS DIP, linear DIP (functionalizing the

prior variance with σ2 = c(n+1)
N+1

), exponential DIP (functionalizing the prior variance with

σ2 = c(n+1)
N+1

exp( cn
N−p

) ), and frequentist response-adaptive in two allocation equations: the

moment-based allocation equation proposed by Zhang and Rosenberger[14] and the effect-

size mapping allocation equation defined by Bandyopadhyay and Bhattacharya[15], the ESS

DIP was proved to increase the allocation weights steadily as the trial progresses and offer the

lower variability early in the trial. In comparing the behaviors of the ESS DIP approach and

the other approaches, including the frequentist response-adaptive approach, the Bayesian

approach with non-informative priors, and the balanced design approach, the ESS DIP

approach maintained increased numbers of total responses with lower variability and greater

power.

1.2 Specific Aims and Proposed Methods

1.2.1 Aim 1: Implement the Decreasingly Informative Prior in Single-Parameter

Phase II Models

In order to reduce the chance of erroneously adapting trials too early in Bayesian early ter-

mination methods, we propose implementing a skeptical but informative prior - decreasingly
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informative prior (DIP) - in one-parameter statistical models for Phase II clinical trials. The

null skepticism is directly functionalized into the prior in a manner that decreases its prior

effective sample size (ESS) as subjects accrue. In this way, the posterior distribution is

increasingly informed by observed data and less by the prior information as subjects are ac-

crued. We hypothesize that under admissible designs (those with at least 80% power and no

more than 5% type-I-error rates), the DIP approach will have fewer or comparable subjects

accrued, similar power, and better-controlled type-I-error, compared to the conventional

Bayesian priors.

1.2.2 Aim 2: Extend the Prior Effective Sample Size Derivation to Multivariate

models and Implement Decreasingly Informative Prior Approach in Two-

parameter Phase II Models

For early termination under admissible designs, we first will extend the one-dimensional

ESSELIR method to multi-dimensional ESSELIR of a single-parameter to help functionalize

the DIP for multivariate models in Phase II early termination trials, such as Dirichlet −

Multinomial model, Normal−Inverse−Gamma model, and Weibull model with unknown

scale and shape parameters, etc.. We then consider implement the DIP for continuous out-

comes (e.g., Normal − Inverse − Gamma model) and survival outcomes (e.g., Weibull

model). We hypothesize that compared to the conventional Bayesian priors, the DIP ap-

proach will require fewer or comparable subjects, have similar power, and better-controlled

type I error for admissible designs (those with at least 80% power and no more than 5%

type-I-error rates).

1.2.3 Aim 3: Build an R Package

We will build an R package, BayesDIP, which has two functionalities. First, this package

can help to determine the total planned sample size N to achieve the admissible designs;
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Second, it can estimate the smallest sample size under admissible Phase II trials for the

following distributions: Bernoulli, Poisson, and Normal with the DIP or a traditional

Bayesian prior. The specific function of interest will depend on the type of outcomes and

the interested parameters in efficacy. Users can input target power and type-I-error rates,

as well as lower and upper boundaries for posterior probabilities (used in deciding whether

to terminate), in order to achieve an admissible design. All functions output the smallest

sample size necessary to obtain the admissible design, the exact power, and the exact type

I error.

1.3 Dissertation Format

Each of the following chapters is written as individually distinct manuscripts. Therefore,

they do not form a continuous narrative.
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CHAPTER 2

EARLY TERMINATION IN SINGLE-PARAMETER MODEL PHASE II

CLINICAL TRIAL DESIGNS USING DECREASINGLY INFORMATIVE

PRIORS

This manuscript was published on International Journal of Clinical Trials on April 25, 2022.

2.1 Abstract

Background : To exchange the type of subjective Bayesian prior selection for assumptions

more directly related to statistical decision making in clinician studies and trials, the decreas-

ingly informative prior (DIP) is considered. We expand standard Bayesian early termination

methods in one-parameter statistical models for Phase II clinical trials to include decreas-

ingly informative priors (DIP). These priors are designed to reduce the chance of erroneously

adapting trials too early by parameterize skepticism in an amount always equal to the un-

observed sample size.

Method : We show how to parameterize these priors based on effective prior sample size

and provide examples for common single-parameter models, include Bernoulli, Poisson, and

Gaussian distributions. We use a simulation study to search through possible values of total

sample sizes and termination thresholds to find the smallest total sample size (N) under

admissible designs, which we define as having at least 80% power and no greater than 5%

type I error rate.

Results : For Bernoulli, Poisson, and Gaussian distributions, the DIP approach requires fewer

patients when admissible designs are achieved. In situations where type I error or power are

not admissible, the DIP approach yields similar power and better-controlled type I error

with comparable or fewer patients than other Bayesian priors by Thall and Simon.
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Conclusions : The DIP helps control type I error rates with comparable or fewer patients,

especially for those instances when increased type I error rates arise from erroneous termi-

nation early in a trial.

2.2 Introduction

Phase II clinical studies typically focus on determining whether a treatment has sufficient

evidence of preliminary efficacy to warrant further investigation, such as in Phase III trials,

or whether the investigation should be discontinued due to a lack of efficacy or safety. These

studies tend to be small, and data monitoring tends to occur as subjects are accrued so that

decisions on whether to stop the study early - for efficacy, safety, or futility - can be made

as soon as possible, even before the planned end of the study.

While the traditional frequentist methods (e.g., Pocock group sequential designs, O’Brien-

Fleming alpha-spending function, etc.) provide stopping rules or termination guidance in

Phase II trials, Bayesian methods allow the inclusion of prior or historical information, which

may help to improve decision making.[1],[2] The Bayesian approaches are also more amenable

to adaptive designs and complex modelings.[6] Despite these benefits, the Bayesian approach

can be subject to inflated type I error rates.

Further, the prior selection in Bayesian approach is crucial because it is possible to

generate posterior distributions that are strongly influenced by the priors which is not desir-

able. In practice, the Bayesian approach can be contentious when prior information is based

mainly on subject matter experts.[6] To exchange this type of subjectivity for assumptions

more directly related to statistical decision making in clinician studies and trials, the decreas-

ingly informative prior (DIP) is considered, where null skepticism is elicited into the prior in

a manner that decreases its prior effective sample size (ESS) as subjects accrued.[3],[12],[16]

In this way, the posterior distribution is increasingly informed by observed data and less by

the prior information as subjects are accrued.
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The goal of this paper is to develop and present the DIP approach based on the ef-

fective sample size for single-parameter models, include Bernoulli, Poisson, and Gaussian,

and compare the DIP approach to the Thall and Simon’s Bayesian approaches.[1],[2] The

net effect of this DIP formulation is that it restricts response-based adaptation early in a

trial, gradually permitting more adaptation as the overall Bayesian model transfers the to-

tal effective sample size from the prior to the likelihood. If applied to designs featuring

early termination processes, this decreasingly informative prior could possibly help control

type I error rates, especially for those instances when increased type I error rates arise from

erroneous termination early in a trial.

This paper presents an alternative Bayesian approach to early termination in Phase II

trials using DIP in single-parameter statistical models. Following a description of standard

Bayesian early termination Phase II trial designs in Section 2.3.1, the rationale of DIP

approach and the general model is detailed in Section 2.3.2. Examples of one-sample models,

including Bernoulli, Poisson, and Gaussian distributions, are presented in 2.3.3. Simulation

studies (Section 2.3.4) are used to compare the performance of the DIP approach with the

standard Bayesian model, focusing on identifying admissible designs (those with at least 80%

power and no more than 5% type-I error rates) and the minimum sample size that yields

such designs. Section 2.5 concludes the paper with a discussion.

2.3 Statistical Methods

2.3.1 Standard Bayesian Early Termination Phase II Trials

In single-group Phase II studies and two-group Phase II trials, we often need to know if

an experimental treatment is sufficiently efficacious relative to some threshold or the other

treatment. Suppose we have a likelihood function f(y|θ) and prior distribution π(θ) for

outcome vector y and scalar parameter θ. Let θ1 be the parameter value representing efficacy

in a new treatment, while θ2 reflects either some null level representing the boundary between
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an efficacious and non-efficacious treatment or the efficacy parameter in a comparison group.

Then, the hypotheses we are testing are

H0 : θ1 ≤ θ2 + δ0,

H1 : θ1 > θ2 + δ0 (2.1)

where δ0 is a fixed targeted improvement for the new treatment to achieve (which could

be 0). Note that these hypotheses assume that larger values of θ1 are reflective of greater

efficacy; we could simply switch the directions of the inequalities if lower values imply greater

efficacy. We also set upper and lower boundaries for the posterior probability, denoted as

ps and pf respectively, representing the probabilistic thresholds needed to be met in order

to terminate the trial for superiority or futility. Throughout the trial, we can decide to

terminate for efficacy if the evidence is promising (P (θ1 > θ2 + δ0|y) ≥ ps) or terminate for

futility if the evidence is unpromising (P (θ1 > θ2 + δ0|y) ≤ pf ), and we continue the trial

and enroll additional subjects if the evidence is inconclusive (pf < P (θ1 > θ2 + δ0|y) < ps).

These probabilities can be estimated and the resulting decisions can be made after each new

subject is enrolled and observed until the new treatment is determined as either efficacious

or futile, or when all the predetermined total number of subjects are recruited. Note that

posterior probabilities could be calculated after cohorts of patients are accrued and observed,

though we will not investigate that possibility here.

2.3.2 Decreasingly Informative Prior

A decreasingly informative prior (DIP) is a skeptical prior that decreases in effective sample

size (ESS) as a trial progresses. To that end, it incorporates both the predetermined total

sample size and the current observed sample size in such a way that the unobserved sample

size N−n is made explicitly or approximately equal to the prior ESS in the prior distribution.

The DIP is also parameterized in a way that centers the prior distribution at some value

13



or values that would reflect conditions of the null hypothesis (i.e. the new therapy is not

efficacious). The basic steps for constructing a DIP are as follows:

1. Determine the prior ESS for a statistical model.

2. Functionalize the prior in terms of the observed sample size n and the planned sample

size N (often N − n, the unobserved sample size) so that the prior ESS is N at the

beginning of the trial and 0 at the end of the trial.

3. Center the prior distribution at some value reflecting the null hypothesis; which could

come from a hyperprior.

Though several approaches are available, ESS can be determined using the expected local-

information-ratio approach (Neuenschwander[11]). For example, given binary outcomes with

response rate p and a prior Beta(a, b), we know the mode of the prior is a−1
a+b−2

, as well as

the prior ESS = a+ b. If we want the mode of the prior centered around p0, the value from

the null hypothesis, then we can set prior ESS = a+ b = N − n and a−1
a+b−2

= p0, and solve

to get a = 1 + p0(N − n − 2) and b = 1 + (1 − p0)(N − n − 2). We could slightly alter the

prior parameterization of a and b as a = 1+ p0(N − n) and b = 1+ (1− p0)(N − n) so that

the prior would be non-informative when the unobserved sample size is 0 at the end of the

trial. Similarly, if we want the prior mean centered around a null value of p0, then we let

prior ESS = a+ b = N−n and a
a+b

= p0, and derive a = p0(N−n) and b = (1−p0)(N−n);

we again set a = 1 + p0(N − n) and b = 1 + (1− p0)(N − n) to make sure we have at least

non-informative prior information when n = N in the trial.

In clinical trials, the number of accrued subjects n is small at the beginning of a trial

relative to the planned sample size N , making the prior ESS large (e.g. 2+N-n) and the DIP

informative. Since the prior is skeptical and parameterized to reflect the conditions stated

in the null hypothesis (with mean or mode set to θ0), the resulting posterior distribution,

with a low effective sample size n in the likelihood function, will be restricted from providing

evidence in the form of posterior probabilities that would favor termination of the trial. As

14



the trial progresses, and the prior ESS is “transferred” to the likelihood via the increased

observed sample size, the posterior distribution becomes increasingly more sensitive to the

likelihood, and terminating the trial – if evidence for concluding as such is present – becomes

more likely.

2.3.3 Examples

2.3.3.1 Bernoulli data with a Beta prior

Thall and Simon evaluate the efficacy of a new treatment based on Bernoulli outcomes

where the interested parameter is the response rate.[1] In this case, we assume θ = p and

we have the likelihood distribution f(y|θ) = f(y|p) =
∏n

i=1 p
yi(1− p)1−yi . In the one-sample

case, we temporarily assume a non-informative prior distribution π(θ) = π(p) ∼ beta(1, 1);

we will relax this assumption in subsequent paragraphs. Let θ = p denote the response

rate of the new treatment and θ0 = p0 denote the null response rate (which could be taken

as the standard or current rate), we can derive the posterior distribution of p based on the

conjugate nature of the beta−binomial pairing p|y ∼ beta(1+y, 1+n−y), where y =
∑n

i=1 yi

is the total number of successes out of the n observed subjects in the trial.

Instead of assuming a non-informative prior, we could elicit an informative prior – as

suggested by Thall and Simon – by setting the prior mean equal to p0+ δ0/2 and selecting a

value for concentration parameter ce.[1] Thus, we can reparameterize the beta(a, b) prior using

a = ce(p0+δ0/2) and b = ce[1− (p0+δ0/2)]. Thall and Simon discuss several possible values,

including low values of ce (e.g., 2) representing a sparse prior distribution, and larger values

ce (e.g., 10) representing an informative prior distribution localized around its mean.[1] The

posterior distribution of p for an informative prior is then given by p|y ∼ beta(a+y, b+n−y).

With a binary outcome and conjugate beta prior distribution, an informative and skep-

tical DIP can be specified as beta(1+p0(N −n), 1+(1−p0)(N −n)), as discussed in Section

2.3.2. Combining the DIP with the binomial likelihood function, the posterior distribution
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of p is

p|y ∼ beta(1 + p0(N − n) + y, 1 + (1− p0)(N − n) + (n− y)).

At the beginning of the trial, n and y are small and the posterior distribution of p is more cen-

tered at the prior mode p0. As n and y become larger, the accrued data become increasingly

more important while the prior information is decreasing in importance.

2.3.3.2 Poisson data with a Gamma prior

If the outcome in a clinical trial is the number of the events per subject, then a Poisson

distribution withGamma prior is a plausible choice for likelihood. One choice of the standard

Bayesian prior distribution is a Jeffreys’ non-informative Gamma prior (limiting case) λ ∼

Gamma(0.5, 0.001) and the posterior is λ|y ∼ Gamma(0.5 + y, 0.001 + n). To apply a

DIP for the one-sample case with Poisson outcomes with mean event rate θ = λ and a

prior Gamma(a, b), we know the null mean (λ0) of the prior is a
b
and the prior ESS = b

(Neuenschwander[11]). If we want the prior centered around its null mean, then set prior

ESS b = N−n and a
b
= λ0, and get a = λ0(N−n) and b = N−n. Then, functionalize a and

b as a = 0.5+λ0(N −n) and b = 0.001+(N −n) so that the prior would be non-informative

when the unobserved sample size is 0 at the end of the trial. Thus, the DIP model for the

count outcomes is defined as follows:

y|λ ∼ Poisson(λ)

λ ∼ Gamma(0.5 + λ0(N − n), 0.001 + (N − n))

λ|y ∼ Gamma(0.5 + λ0(N − n) + y, 0.001 +N)

In the DIP approach, when more subjects n are accrued in the trial, the skewness of the

posterior distribution will depend more on the observed data instead of the prior information.
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2.3.3.3 Normal data with known variance

For outcomes that could be modeled with a Normal distribution with variance s2 known,

we have the likelihood function f(y|θ) ∼ N(θ, s2) with a normal prior θ ∼ N(θ0, τ
2). In

this case, the prior ESS = s2/τ 2 (Neuenschwander[11]). In a one-sample clinical trial, we

assume θ = µ is the new treatment mean and τ 2 = s2/n0, where n0 is the prior ESS with

a null-mean µ0. For the given likelihood y|µ ∼ N(µ, s2) and prior µ ∼ N(µ0, s
2/n0), the

posterior distribution of µ can be written as

µ|s2, y ∼ N

(
n0

n0 + n
µ0 +

n

n0 + n
ȳ,

s2

n0 + n

)
(2.2)

The value of prior parameters n0 determines the level of information contained in the prior

and the contribution of the null mean. If n0 is small and s2/n0 is large, the prior distribution

is dispersed and less informative; when n0 is larger, the prior distribution will be more tightly

centered around the null mean and become more informative.

For the DIP model, we set a skeptical prior (centered at µ0) as initially informative

with n0 = N − n. This formulation allows the information contained within the posterior

distribution of µ to shift from the skeptical prior at the beginning of the trial to the likelihood

function as subjects accrued. The DIP posterior distribution of µ is

µ|s2, y ∼ N

(
N − n

N
µ0 +

n

N
ȳ,

s2

N

)
As the posterior mean in the Bayesian model is a weighted average of the prior mean µ0 and

the sample mean ȳ, this DIP formulation will cause the posterior mean to approximate the

prior mean µ0 early in a trial, and will increasingly approximate ȳ as subjects accrued.

2.3.4 Simulation Templates

The goals of our simulation studies are to identify the smallest possible sample size N among

admissible designs and to compare the DIP approach with other Bayesian approaches. We
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define an admissible design as having at least 80% power and no greater than 5% type I

error rate. If there are no admissible designs based on power, we default to selecting the

combination of parameters that yield the highest power and best-controlled type I error. If

there are no admissible designs based on type I error, we default to selecting the combination

of parameters that yield the lowest type I error and at least 80% power. We will explore

Bernoulli-, Poisson- and Normal-distributed outcomes.

In these simulations, the observed outcome yi for each subject in each trial is randomly

simulated from the probability density or mass function f(yi|θ), where θ is based off the

population-level values assumed for that trial. Each subsequent subject is recruited until

the trial is stopped (for futility or efficacy) or the planned sample size N is reached. In

all one-sample cases, the upper (efficacy) and lower (futility) decision boundaries are set to

ps ∈ (0.80, 0.99) and pf ∈ (0.01, 0.10) respectively, and the total sample size N ∈ (10, 100).

For simplicity, we assume the target threshold δ0 equals 0. We simulate the observed data

and estimate the power and type I error for each combination of ps, pf and the planned

total sample size N . We then select the smallest total sample size under the admissible

power and type I error. Type I error is measured as the proportion of trials where the null

hypothesis is rejected under the null hypothesis (e.g. θ1 = θ0 for one-sample case), while

power is measured as the proportion of trials where the null hypothesis is rejected under the

alternative hypothesis (e.g. θ1 > θ0). Each parameter setting is repeated in 1000 simulated

trials. All simulations are coded using R 1.4.1717.[17] The random samples are generated

with the same seed.

For the Bernoulli outcome when θ = p, we assume the treatment group with higher

response rate is more efficacious, and consider several models: a non-informative prior

beta(1, 1), informative prior beta(a, b) with several choices of prior information a + b = 2, 6

or 10, and a DIP skeptical prior, as illustrated in Section 2.3.3.1. In the one-sample case, we

consider null response rates of p0 = 0.1, 0.3, 0.5, or 0.7, with the actual response rate for the
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new treatment response rate p1 set at p1 = p0+δ, where we range δ ∈ (0, 0.05, 0.10, 0.15, 0.2).

The outcome for each subject is randomly generated from Bernoulli(p1).

For the Poisson outcomes where θ = λ, we assume the lower values of event rates imply

improved efficacy, and consider a Jeffrey’s non-informative prior (limiting case)Gamma(0.5, 0.001)

and a decreasingly informative prior (DIP) stated in Section 2.3.3.2. We set the null event

rate as λ0 = 0.5 or 5, and define the new treatment event rate as λ1 = λ0−δ. When λ0 = 0.5,

we set δ ∈ (0, 0.05, 0.10, 0.15, 0.2); when λ0 = 5, we set δ ∈ (0, 0.5, 1, 1.5, 2). Each subject is

randomly generated from Poisson(λ1).

For the Normal cases where θ = µ with known variance, we consider Bayesian models

with n0 = 2, 6, or 10 for Equation 2.2, as well as a DIP case. We study low-variance and high-

variance cases reflecting our assumptions about the known variability. For each template,

we set the null mean as µ0 = 100 and expect lower values to imply improved efficacy; thus

the new treatment mean is defined as µ1 = µ0 − δ, where we set δ = 0, 5, or 10 and set

δ0 = 0 for simplicity; we consider the low variability with s = 15 and the high variability

with s = 30. Each subject is randomly generated from N(µ1, s
2).

2.4 Results

Table 1 shows the simulation results for one-sample Bernoulli cases with a low response

rate (p0 = 0.1). Compared with different standard Bayesian approaches, the DIP approach

always has better-controlled type I error, with a comparative or lower sample size. For some

cases in which the standard Bayesian approach cannot achieve the admissible design on type

I error, such as the case p1 = 0.2, the DIP approach not only controlled type I error, but also

has the smallest planned sample size. Results are similar for other cases (p0 = 0.3, 0.5, 0.7)

(see Tables S.1, S.2, and S.3 in the Appendix B).

The simulation results for the one-sample Poisson cases are shown in Table 2. Compared

to the non-informative Bayesian approach, the DIP approach performs better in controlling
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Table 1. Simulation Results for Bernoulli Cases - One Sample (p0 = 0.1)

Model p0 p1 Sample Sizea Futility Efficacy Power Type I Errorb

DIP 0.1 0.15 94 0.01 0.89 0.808 0.239

Bayesian (Beta(1, 1)) 0.1 0.15 96 0.02 0.94 0.802 0.294

Bayesian (a+ b = 2) 0.1 0.15 92 0.01 0.85 0.804 0.342

Bayesian (a+ b = 6) 0.1 0.15 100 0.01 0.87 0.810 0.295

Bayesian (a+ b = 10) 0.1 0.15 98 0.03 0.85 0.805 0.301

DIP 0.1 0.20 76 0.10 0.98 0.802 0.050

Bayesian (Beta(1, 1)) 0.1 0.20 88 0.02 0.99 0.868 0.076

Bayesian (a+ b = 2) 0.1 0.20 85 0.01 0.99 0.816 0.050

Bayesian (a+ b = 6) 0.1 0.20 90 0.01 0.99 0.800 0.051

Bayesian (a+ b = 10) 0.1 0.20 86 0.07 0.98 0.820 0.050

DIP 0.1 0.25 42 0.06 0.98 0.843 0.050

Bayesian (Beta(1, 1)) 0.1 0.25 38 0.03 0.99 0.811 0.056

Bayesian (a+ b = 2) 0.1 0.25 52 0.09 0.99 0.816 0.050

Bayesian (a+ b = 6) 0.1 0.25 43 0.01 0.97 0.816 0.050

Bayesian (a+ b = 10) 0.1 0.25 38 0.04 0.96 0.808 0.050

DIP 0.1 0.30 22 0.02 0.98 0.801 0.050

Bayesian (Beta(1, 1)) 0.1 0.30 24 0.08 0.99 0.818 0.052

Bayesian (a+ b = 2) 0.1 0.30 25 0.08 0.97 0.821 0.050

Bayesian (a+ b = 6) 0.1 0.30 25 0.03 0.96 0.826 0.050

Bayesian (a+ b = 10) 0.1 0.30 25 0.08 0.95 0.810 0.050

a The Planned Sample Size

b Type I error is calculated under the null hypothesis p1 = p0

type I error. Additionally, when the effect size is large, the DIP approach has a lower sample

size and better-controlled type I error rate.

Table 3 show the simulation results for one-sample Normal cases. In both low and

high variability settings, compared with different standard Bayesian approaches, the DIP

approach has lower or comparative sample size when type I error is controlled (0.05). When

the admissible type I error rate cannot be achieved, the DIP approach has a better-controlled

type I error and comparable sample size.
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Table 2. Simulation Results for Poisson Cases

Model λ0 λ1 Sample Sizea Futility Efficacy Power Type I Errorb

DIP 0.5 0.45 100 0.10 0.80 0.695 0.424

Bayesian 0.5 0.45 98 0.02 0.80 0.793 0.587

DIP 0.5 0.4 99 0.03 0.87 0.804 0.253

Bayesian 0.5 0.4 80 0.05 0.90 0.807 0.355

DIP 0.5 0.35 98 0.02 0.96 0.803 0.075

Bayesian 0.5 0.35 97 0.06 0.97 0.831 0.138

DIP 0.5 0.3 68 0.07 0.98 0.806 0.050

Bayesian 0.5 0.3 86 0.06 0.99 0.845 0.058

DIP 5 4.5 98 0.03 0.96 0.802 0.071

Bayesian 5 4.5 99 0.09 0.97 0.802 0.147

DIP 5 4 29 0.03 0.97 0.808 0.050

Bayesian 5 4 37 0.02 0.99 0.802 0.050

DIP 5 3.5 12 0.09 0.96 0.819 0.050

Bayesian 5 3.5 14 0.03 0.97 0.832 0.050

DIP 5 3 10 0.03 0.95 0.945 0.050

Bayesian 5 3 10 0.04 0.96 0.931 0.050

a The Planned Sample Size

b Type I error is calculated under the null hypothesis λ1 = λ0

2.5 Discussion

In summary, we introduced the rationale of the DIP, applied the DIP to three formula-

tions of early termination phase II trial designs (Poisson, Bernoulli, and Normal), and

compared the performance to the Bayesian approaches by Thall and Simon using simula-

tion studies. The results show that, for the three distributions and across all one-sample

settings, compared to the traditional Bayesian approaches by Thall and Simon, the DIP

approach requires fewer patients when admissible designs are achieved.In the designs where

type I error or power are not admissible, the DIP approach yields similar power and better-

controlled type I error with comparable or fewer patients than Thall and Simon’s Bayesian

approaches[1][2]. We also extend the one-sample case to two-sample cases, and the results
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Table 3. Simulation Results for Normal Cases with Known Variance

Model µ0 µ1 s Sample Sizea Futility Efficacy Power Type I Errorb

DIP 100 95 15 61 0.07 0.98 0.802 0.050

Bayesian (κ0 = 2) 100 95 15 71 0.03 0.99 0.814 0.050

Bayesian (κ0 = 6) 100 95 15 74 0.07 0.99 0.805 0.050

Bayesian (κ0 = 10) 100 95 15 67 0.02 0.98 0.808 0.050

DIP 100 90 15 19 0.06 0.97 0.869 0.050

Bayesian (κ0 = 2) 100 90 15 17 0.04 0.97 0.926 0.050

Bayesian (κ0 = 6) 100 90 15 16 0.06 0.95 0.816 0.050

Bayesian (κ0 = 10) 100 90 15 17 0.07 0.95 0.821 0.050

DIP 100 95 30 100 0.09 0.88 0.805 0.204

Bayesian (κ0 = 2) 100 95 30 98 0.08 0.92 0.802 0.272

Bayesian (κ0 = 6) 100 95 30 94 0.01 0.92 0.80 0.249

Bayesian (κ0 = 10) 100 95 30 98 0.05 0.91 0.803 0.246

DIP 100 90 30 60 0.05 0.97 0.811 0.050

Bayesian (κ0 = 2) 100 90 30 73 0.10 0.99 0.819 0.050

Bayesian (κ0 = 6) 100 90 30 73 0.01 0.99 0.805 0.050

Bayesian (κ0 = 10) 100 90 30 67 0.10 0.98 0.809 0.050

a The Planned Sample Size

b Type I error is calculated under the null hypothesis µ1 = µ0

are presented in the Appendix B. For two-sample cases, it is concluded that the DIP ap-

proach performed better than Thall and Simon’s Bayesian approaches for moderate to large

response rates, but performed poorly with low response rates and low effect sizes.

It should be noted that the focus of this study is on identifying the smallest sample size

to achieve an admissible design, defined by the commonly used thresholds of at least 80%

power and at most 5% type I error. Changing the minimum power and maximum type I error

rate might change our findings and conclusions, though these values are conventional. We

also ignored admissible designs with a larger sample sizes, forfeiting designs with possibly

higher power or lower type I error. While our choices for the predetermined sample size

(N) are limited within the admissible design as having at least 80% power and no greater

than 5% type I error, the choices for parameters settings in the simulations are broadly and

comprehensively considered to reflect realistic scenarios. For each parameter set, we also
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investigated a non-informative and three informative models (κ0 = 2, 6, 10) in comparison

with the DIP model.

While we elicited the DIP in the way that is not based on any historical or optimistic

prior, the researchers can still explore other subjective priors at the end of the trial to

determine the robustness of their findings. We also motivated the DIP approach using

conjugate examples: poisson-gamma, beta-binomial, and normal-normal models. We can

easily extend this to other prior-likelihood combinations, particularly those that lead to non-

conjugate or intractable posterior distributions using MCMC approaches. The key of the DIP

approach with a non-conjugate prior is to parameterize the prior so that its effective sample

size equals N −n, which may require numerical or simulation-based determination[9][11]. In

future work, we plan to extend the single parameter DIP model to cases with two or more

parameters.
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CHAPTER 3

PRIOR EFFECTIVE SAMPLE SIZE OF A SINGLE PARAMETER ON

MULTIVARIATE CASES

3.1 Abstract

We extend the expected local-information-ratio (ELIR) approach for determining respective

prior effective sample size (ESS) for single parameters in multivariate cases. The extension

satisfies the predictive consistency criterion, as exemplified through cases of the Dirichlet-

Multinomial and Normal-Inverse-Gamma models.

3.2 Introduction

Neuenschwander et al.(2020) addressed the importance of knowing the prior effective sam-

ple size (ESS) in clinical trial design. They compared different information-based methods

for obtaining prior ESS for one-parameter exponential families and proposed an expected

local-information-ratio (ELIR) method which shows the predictive consistency by taking the

expected values of the ratio of prior and Fisher information. This work exclusively focused on

the one-parameter exponential family, leaving the multivariate case an open question.[11][18]

In Discussion papers, Biswas and Angers considered the determinant of the prior and Fisher

information matrices to define a predictively consistent ESS for the multivariate case[19], but

Neuenschwander et al. argued that the determinant version fails the predictive consistency

criterion in the case of two-sample Normal distributions.[18] Biswas and Angers also men-

tioned a trace-based approach but did not give an analytical formula.[19] Neuenschwander

et al. also stated in the rejoinder that there was no discussion of how to obtain a predictively

consistent ESS of a single parameter θj for multivariate case.[18]
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In this paper, instead of focusing on the overall ESS of the entire parameter vector

θ = (θ1, θ2, . . . , θn), we focus on the respective ESS of each single parameter θj on multivariate

case by naturally expanding the ELIR ESS (Neuenschwander et al.[11]) from the univariate

case. The desirable property of predictive consistency criterion in multivariate settings are

evaluated in the examples of Dirichlet-Multinomial distribution and Normal-Inverse-Gamma

distribution. The general definition of ELIR ESS in the multivariate case is introduced in

Section 3.3. Examples of Multinomial distribution with Dirichlet prior and Normal-Inverse-

Gamma distribution are presented in Section 3.4. Simulations are used in obtaining the prior

and expected posterior ESS of Normal-Inverse-Gamma model, given in Section 3.5. Section

3.6 concludes the paper with a brief discussion.

3.3 Methods

The approach by Neuenschwander et al. (expected local-information-ratio, ELIR) to deter-

mine ESS is appropriate for one-parameter cases and is defined as the expectation of the

ratio of the prior information to the Fisher information, given by[11]

ESSELIR = Eθ{r(θ)} = E

{
i(p(θ))

iF (θ)

}
. (3.1)

Supposing we have a multivariate model with likelihood function f(y|θ) with a joint prior

distribution π(θ) for parameter vector θ = (θ1, θ2, ..., θn), we can extend Equation 3.1 to

matrix form and define the multivariate ESSELIR as

ESSELIR = Eθ{r(θ)} = Eθ{i(p(θ)) (iF (θ))−1} (3.2)

where ESSELIR is a n × n matrix, i(p(θ1, θ2, ..., θn)) is the information matrix of the joint

prior distribution, and iF (θ1, θ2, ..., θn) is the Fisher information matrix for single subject.

Similarly, we extend Section 2.6 in Neuenschwander et al.[11] to decide the expected posterior
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ESS matrix form for a sample size of N under the prior predictive distribution, which is given

by

E
{[

i(p(θ1, θ2, . . . , θn)) +NiF (θ1, θ2, . . . , θn)
]
(iF (θ1, θ2, . . . , θn)

−1)
}

(3.3)

where θ = (θ1, θ2, ..., θn) follows the joint posterior distributions. Note that instead of

providing one general ELIR ESS for the whole parameter vector, we instead will focus on

providing the respective ELIR ESS for each separate parameter.

For comparison, we include possible alternatives for approximating ESS by the variance

ratio (VR) and precision ratio (PR) approaches. Due to complexity of joint posterior and

prior formulations, we apply the univariate approaches separately for each parameter. For

example, the variance ratio and precision ratio for θ1 are

ESSθ1
V R =

E{i−1
F (θ1|θ2, ..., θn)}
V ar(θ1)

, ESSθ1
PR =

V ar−1(θ1)

E{iF (θ1|θ2, ..., θn)}

where iF (θ1|θ2, ..., θn) is the conditional Fisher information for a single subject.

3.4 Examples

Here we discuss two multivariate examples.

3.4.1 Multinomial model with Dirichlet prior

We first consider a conjugate prior distribution: the Dirichlet-Multinomial model with θ =

(p1, . . . , pk). The density function of the Multinomial model of one trial with k categories is

f(y|θ) = f(y1, . . . , yk|p1, . . . , pk) =
k∏

j=1

p
yj
j (3.4)

where pk = 1 −
k−1∑
j=1

pj and yk = 1 −
k−1∑
j=1

yj. The probability of each category is 0 < pj < 1,

and yj = 1 if category j is observed, otherwise yj = 0. The Fisher information matrix of
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f(y1, ...yk|p1, ..., pk) for one information unit is given by

iF (p1, . . . , pk) =


1/p1 . . . 0

. . .
...

0 1/pk−1

+
1

1−
∑k−1

j=1 pj
Jk−1 (3.5)

Thus, we can derive the inverse of Fisher information by Binomial Inverse Theorem and get

iF (p1, . . . , pk)
−1 =


p1 . . . 0

. . .
...

0 pk−1

−


p1
...

pk−1


[
p1, . . . , pk−1

]
(3.6)

With a conjugate Dirichlet prior for θ = (p1, ..., pk), which is given by

π(p1, . . . , pk|α1, ..., αk) =
Γ(α0)
k∏

j=1

Γ(αj)

k−1∏
j=1

p
(αj−1)
j (1−

k−1∑
j=1

pj)
α−αj−1 (3.7)

where αj are independent and α =
k∑

j=1

αj. We can get the information of the prior distribu-

tion, which is

i(p(p1, . . . , pk)) =


α1−1
p21

. . . 0

. . .
...

0 αk−1−1

p2k−1

+


α−α1−1

(1−
∑k−1

j=1 pj)2
. . . 0

. . .
...

0 α−αk−1−1

(1−
∑k−1

j=1 pk−1)2

 (3.8)

Then, with Equation 3.2, the multivariate ESSELIR of Multinomial distribution with Dirich-

let prior is defined as

ESSELIR = E{i(p(p1, . . . , pk))(iF (p1, . . . , pk)−1} (3.9)
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We can get the diagonal elements of the Equation 3.9, which is

ESS
pj
ELIR = E

{(
αj − 1

p2j
+

α− αj − 1

(1−
∑k−1

j=1 pj)
2

)(
pj − p2j

)}

= E

{
(αj − 1)(1− pj)

pj
+

(α− αj − 1)pj(1− pj)

(1−
∑k−1

j=1 pj)
2

}
(3.10)

With known E(pj) =
αj

α
, E(

1−pj
pj

) =
α−αj

αj−1
, and E

(
pj

1−pj

)
=

αj

α−αj−1
, we get

ESS
pj
ELIR = α− αj + (α− αj − 1)E

(
pj(1− pj)

(1−
∑k−1

j=1 pj)
2

)

≈ α− αj + (α− αj − 1)E

(
pj

1− pj

)
= α (3.11)

From Equation 3.3, we know the expected posterior ESS is

E{[i(p1, . . . , pk) +NiF (p1, . . . , pk)](iF (p1, . . . , pk)
−1)} (3.12)

and the diagonal elements of the posterior ESS is

E

{[(
αj − 1

p2j
+

α− αj − 1

(1−
∑k−1

j=1 pj)
2

)
+N ·

(
1

pj
+

1

1−
∑k−1

j=1 pj

)](
pj − p2j

)}

= α +N · E

(
1− pj +

pj(1− pj)

1−
∑k−1

j=1 pj

)

≈ α +N (3.13)

After some algebra, we get the posterior ESS is approximate to α +N . The ESS values for

multinomial model are listed in Table 4 and it is predictively consistent.

3.4.2 Normal model with both mean and variance unknown

Consider a Normal distribution with both mean µ and variance σ2 unknown. The density

function is f(y|µ, σ2) = 1√
2πσ2

exp{− 1
2σ2 (y − µ)2}, with potential priors µ|σ2 ∼ N(µ0, σ

2/κ0)
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Table 4. Multivariate expression for ESS for Multinomial model

Parameter Method Prior ESS Expected posterior ESS

pj ELIR α α+N

VR α α+N

PR α α+N

Note: α =
∑k

j=1 αj

and σ2 ∼ Γ−1(ν0/2, ν0σ
2
0/2), where µ0, σ

2
0, κ0 and ν0 can be interpreted as the mean, variance

and sample sizes from a set of prior observations, and where ν0σ
2
0 can be thought of as prior

sums of squares.[20] The Fisher information matrix of f(y|µ, σ2) for one information unit is

given by

iF (µ, σ
2) =

 1
σ2 0

0 1
2(σ2)2

 (3.14)

with inverse

(iF (µ, σ
2))−1 =

σ2 0

0 2(σ2)2

 . (3.15)

The joint prior distribution (µ, σ2) is

π(µ, σ2) =

(
2π

σ2

κ0

)−1/2

(
ν0σ2

0

2

)ν0/2
Γ(ν0

2
)

(σ2)−
ν0
2
−1exp

(
− 1

2σ2

[
κ0(µ− µ0)

2 + ν0σ
2
0

])
, (3.16)

which yields joint information matrix

i(p(µ, σ2)) =

 κ0

σ2

k0(µ−µ0)
(σ2)2

k0(µ−µ0)
(σ2)2

− 1
2(σ2)2

− (ν0
2
+ 1) 1

(σ2)2
+ 1

(σ2)3
[κ0(µ− µ0)

2 + ν0σ
2
0]

 . (3.17)
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Based on Equation 3.2, the multivariate ESSELIR of Normal distribution is

ESSELIR = E
{
r(µ, σ2)

}
= E

{
i(p(µ, σ2)

(
iF (µ, σ

2)
)−1 }

. (3.18)

By plugging in Equations 3.15 and 3.17, we have

ESSELIR = E

{ κ0

σ2

k0(µ−µ0)
(σ2)2

k0(µ−µ0)
(σ2)2

− 1
2(σ2)2

− (ν0
2
+ 1) 1

(σ2)2
+ 1

(σ2)3
[κ0(µ− µ0)

2 + ν0σ
2
0]


σ2 0

0 2(σ2)2

}

= E

{ κ0 2κ0(µ− µ0)

κ0(µ− µ0)/σ
2 −ν0 − 3 + 2

σ2

[
κ0(µ − µ0)

2 + ν0σ
2
0

]
 ,

}
(3.19)

where 1/σ2 ∼ Γ(ν0/2, ν0σ
2
0/2) and µ ∼ N(µ0, σ

2/κ0). We identify the ELIR ESS for each

parameter by examining the diagonal elements of the expectation matrix. In this case, the

prior ESSµ
ELIR = κ0 and ESSσ2

ELIR = E{−ν0 − 3+ 2
σ2 [κ0(µ− µ0)

2 + ν0σ
2
0]}. From Equation

3.3, we know the expected posterior ESS is

E{[i(p(µ, σ2)) +NiF (µ, σ
2)](iF (µ, σ

2))−1}

=E

{ κ0

σ2 +
N
σ2

k0(µ−µ0)
(σ2)2

k0(µ−µ0)
(σ2)2

− 1
2(σ2)2

− (ν0
2
+ 1) 1

(σ2)2
+ 1

(σ2)3
[κ0(µ− µ0)

2 + ν0σ
2
0] +

N
2(σ2)2


σ2 0

0 2(σ2)2

}

=E

{ κ0 + N 2κ0(µp − µ0)

κ0(µp − µ0)/σ
2
p N − ν0 − 3 + 2

σ2
p

[
κ0(µp − µ0)

2 + ν0σ
2
0

]
} (3.20)

where (µp, σ
2
p) follows the joint posterior distribution. For this example we have ESSµ

ELIR =

E{κ0 +N} and ESSσ2

ELIR = E{N − ν0 − 3 + 2
σ2
p
[κ0(µp − µ0)

2 + ν0σ
2
0]}. The ESS values for

each method are listed in Table 5.

3.5 Simulation and results

With Equations 3.19 and 3.20, it is straightforward to decide the prior and the expected

posterior ELIR ESS of the mean µ – the prior ESSµ
ELIR = κ0 and the expected posterior
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Table 5. Multivariate expression for ESS for Normal model with both mean and variance

unknown

Parameter Method Prior ESS Expected posterior ESS

µ ELIR κ0 κ0 +N

VR κ0ν0
ν0−2

κnνnσ2
n

(νn−2)σ2
p

PR κ0
κnσ2

n

σ2
p

σ2 ELIR E{−ν0 − 3 + 2
σ2 [κ0(µ− µ0)

2 + ν0σ
2
0]} E{N − ν0 − 3 + 2

σ2
p
[κ0(µp − µ0)

2 + ν0σ
2
0]}

VR ν0 − 2 νn − 2

PR (ν0−2)2(ν0−4)
ν0(ν0+2)

(νn−2)2(νn−4)
νn(νn+2)

Note: νnσ
2
n = ν0σ

2
0 + (n− 1)s2 + κ0N

κn
(ȳ − ν0)

2 (posterior sum of square)

ESSσ2

ELIR = κ0 + N , respectively. However, for the prior and the expected posterior ELIR

ESS of the variance σ2, the mean of 10,000 simulations are used to determine the expectation.

Each simulated data set of size N = (10, 50, 100, 1000) is generated from the sampling model

and used to generate the respective posterior distribution (µp, σ
2
p), from which the ESS for

each parameter are obtained. Table 6 shows the prior ESS, the expected posterior ESS, and

the difference between the expected posterior ESS and N , with different settings of sample

size of prior observations for mean and variance – κ0 and ν0 – respectively.

We see from Table 6 that for both mean µ and variance σ2, the expected posterior ELIR

ESS is the sum of prior ELIR ESS and N , especially as N increases (e.g., N > 10). Only

the ELIR ESS seems to satisfy the predictive consistency criterion for the two parameters µ

and σ2 simultanuesouly. The VR ESS seems to be predictively consistent on the variance σ2,

but not predictively consistent on the mean µ, while the PR ESS is only consistent (short of

a small constant bias) for µ.
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Table 6. Prior ESS and expected posterior ESS - N for planned sample size N = 10, 50, 100,

and 1000: for normal data with mean and variance unknown.

Prior ESS Expected Posterior ESS Expected Posterior ESS - N

Parameter Method N = 0 N = 10 N = 50 N = 100 N = 1000 N = 10 N = 50 N = 100 N = 1000

κ0 = 1, ν0 = 1

µ ELIR 1 11 51 101 1001 1 1 1 1

VR −1 11 51 101 1001 1 1 1 1

PR 1 9 49 99 999 −1 −1 −1 −1

σ2 ELIR 0 9 50 100 1000 −1 0 0 0

VR −1 9 49 99 999 −1 −1 −1 −1

PR −1 4 42 91 991 −6 −8 −9 −9

κ0 = 2, ν0 = 5

µ ELIR 2 12 52 102 1002 2 2 2 2

VR 3 12 52 102 1002 2 2 2 2

PR 2 10 50 100 1000 0 0 0 0

σ2 ELIR 4 12 54 104 1004 2 4 4 4

VR 3 13 53 103 1003 3 3 3 3

PR 0 7 46 95 995 -3 -4 -5 -5

κ0 = 4, ν0 = 5

µ ELIR 4 14 54 104 1004 4 4 4 4

VR 7 14 54 104 1004 4 4 4 4

PR 4 12 52 102 1002 2 2 2 2

σ2 ELIR 4 12 53 104 1004 2 3 4 4

VR 3 13 53 103 1003 3 3 3 3

PR 0 7 46 95 995 -3 -4 -5 -5

ELIR = expected local-information-ratio method, VR = variance ratio method, PR = precision ratio method
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3.6 Discussion

Our straightforward multivariate extension of the original univariate ELIR ESS approach

requires a holistic approach across parameters, focusing on each as a separate part of a vector-

valued whole, rather than attempting to determine a single ESS for the entire prior. This

approach maintains predictive consistency, in both the cases of Multinomial distribution and

Normal distribution. The results show that the ELIR ESS of each parameter in multivariate

cases inherits the predictive consistency property as the ELIR ESS in original univariate

cases, whereas neither the VR ESS or the PR ESS have this property for every parameter

in the models.

It should be noted that in comparisons, instead of obtaining an exact value of the VR

ESS and the PR ESS, we approximate the VR ESS and the PR ESS for each parameter

separately; as a limitation, we are not sure if these approximates lead to under- or over-

estimates of ESS. We also do not make use of the off-diagonal values from the ESSELIR

matrices, though as our focus is on particular parameters this may not be a limitation.

From our simulations we notice that the predictive consistency does not change with prior

sample sizes (κ0 and ν0), nor is the approach affected after a modicum of observed sample

size is attained, as the predictive consistency of the ELIR ESS on the variance parameter

(σ2) is satisfied when the sample size of N is enough large (e.g., N > 10).
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CHAPTER 4

EARLY TERMINATION IN TWO-PARAMETER MODEL PHASE II

CLINICAL TRIAL DESIGNS USING DECREASINGLY INFORMATIVE

PRIORS

4.1 Abstract

Decreasingly informative priors (DIP) have been previously used in one-parameter models

for early termination Phase II clinical trials.[21] In this paper, we extend the DIP approach to

two-parameter models for Normal and Weibull data, by functionalizing the prior effective

sample size (ESS) of each parameter to equal the unobserved sample size and center the

distribution around skeptical assumptions reflecting the null hypothesis. Simulated studies

comparing the performance of the DIP with standard Bayesian priors show that the DIP

approach needs fewer sample size with lower variability under admissible designs and helps

to control type I error rates.

4.2 Introduction

Phase II clinical trials typically aim to determine if there is sufficient evidence of preliminary

efficacy for a treatment to warrant futher investigation, such as in Phase III trials, or whether

the investigation should be stopped early due to a lack of efficacy or safety. These trials are

often small and data monitoring usually happens as subjects are enrolled, allowing decisions

on whether to stop the trials early for efficacy, safety or futility to be made as soon as possible,

even before the planned end of the study. Thall and Simon proposed Bayesian methods for

early termination Phase II clinical trial [1][2], but the prior or historical information is

required and crucial because the resulting posterior distributions are strongly influenced by
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the priors. One way to exchange the subjectivity of prior information is through the use

of a decreasingly informative prior (DIP), which incorporates a skeptical prior in a manner

that decreases its prior effective sample size (ESS) as subjects accrue. [3][12] In this way, as

the number of subjects increases, the posterior distributions is increasingly informed by the

observed data and less by the prior information. The DIP is also centered around skeptical

assumptions about treatment efficacy, which restricts termination early in the trial, gradually

allowing for more sensitivity to the observed data and thus terminating the trial becomes

more likely. The DIP approach has previously been implemented in one-parameter models

for the early termination Phase II trials.[21] In one-parameter models, we investigated the

performance of the DIP approach by comparing with different standard Bayesian priors

using simulation studies and found that the DIP approach requires fewer subjects with

lower variability under admissible designs. Further, the DIP could help control type I error

rates, especially for those instances when increases type I error rates arise from erroneous

termination early in a trial.[21]

In this paper, we extend research by considering two-parameter models to implement

the DIP approach for continuous outcomes and survival outcomes. The Bayesian framework

for early termination Phase II trials, as well as the rationale of the DIP approach with

examples, are described in Section 4.3. Simulation studies are conducted in Section 4.4 to

compare the performance of the DIP approach with the standard Bayesian priors. Section

4.5 concludes the paper with a discussion. Throughout this paper we focus on one-sample

clinical trials.

4.3 Statistical Methods

In early termination Phase II trial, for one-parameter models, we assumed that we have a

likelihood function f(y|θ) and prior distribution π(θ) for outcome vector y and scalar param-

eter θ.[21] For multi-parameter models, suppose we have a multivariate likelihood function
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f(y|θ) and prior distribution π(θ) for vector-based θ = {θ1, θ2, ..., θn} and the prior distribu-

tion π(θ), which can be a joint prior distribution such as π(θ) = π(θ1|θ2, ..., θn)π(θ2, ..., θn)

or independent prior distributions such as π(θ) = π(θ1)π(θ2)...π(θn). Let function m(θ) be

the value representing efficacy in the experimental treatment, while m(θ0) reflects some null

level representing the boundary between an efficacious and non-efficacious treatment. Then

the hypotheses we are interested in are:

H0 : m(θ) ≤ m(θ0) + δ0

H1 : m(θ) > m(θ0) + δ0 (4.1)

where δ0 is a fixed improvement that the new treatment is intended to achieve (which could

be 0) in efficacy. Note that these hypotheses assume that larger values of m(θ) are reflective

of more efficacy; if lower values imply more efficacy, we could simply reverse the directions of

the inequalities. We can decide to terminate the trial if the evidence is promising (P (m(θ) >

m(θ0)|π,N, n) ≥ ps), or unpromising (P (m(θ) > m(θ0)|π,N, n) ≤ pf ), where ps and pf

are the probabilities thresholds needed to terminate the trial for superiority or futility, π

reflects the prior information we assume, N is the predetermined sample size for the new

treatment, n is the total number of recruited subjects. These probabilities can be estimated

and the resulting decisions can be made after each new subject is enrolled and observed

until the experimental treatment is determined as either efficacious or futile, or when all the

predetermined total number of subjects for any of the two treatments are recruited.

4.3.1 Decreasingly Informative Prior

For models in early termination Phase II clinical trial designs, in the traditional Bayesian

framework, the prior or historical information are necessary for the prior selection. Instead

of requiring prior or historical information, we propose implementing a Bayesian method

incorporating a natural lead-in skeptical prior - decreasingly informative prior (DIP), which
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is parameterized in such a way that the unobserved sample size N − n is made explicitly

or approximately equal to the prior effective sample size (ESS) in the prior distribution

π(θ). In clinical trials, the number of accrued subjects n is small at the beginning of a trial

relative to the predetermined sample size N , making the prior ESS predominate and the DIP

informative. Additionally, the DIP is parameterized in a way that the prior distribution π(θ)

is centered at the value or set of values that would reflect conditions of the null hypothesis in

Equation 4.1. Therefore, the DIP approach will constrain the resulting posterior distribution

early in the trial from providing evidence in the form of posterior probabilities that would

favor termination of the trial. As more subjects are enrolled, the observed data dominates

the posterior, allowing the posterior distribution becomes more sensitive to the likelihood

function instead of the DIP and thus terminating the trial becomes more likely. The following

are the steps for Bayesian models incorporating the DIP.

1. Determine the prior ESS for each parameter of the multivariate likelihood function.

2. For each parameter, functionalize the prior in terms of the unobserved sample size

N − n so that the prior ESS is N at the beginning of the trial and 0 at the end of the

trial.

3. Center each prior distribution at some value reflecting the null hypothesis to constrain

termination early in a trial.

In this manuscript, we default to use expected local-information-ratio (ELIR) to determine

the prior ESS.[11] We extended Neuenschwander’s ELIR approach to two-parameter ap-

proach and showed that it maintains predictive consistency for two-parameter models in

Chapter 3.

37



4.3.2 Examples

4.3.2.1 Normal data with both mean and variance unknown

For outcomes that could be modeled with a Normal distribution, the vector-valued θ =

(µ, σ2) and the likelihood function f(y|θ) = f(y|µ, σ2) ∼ N(µ, σ2). We here assume the

variance σ2 is unknown, then a natural choice would be the conjugate joint prior distribution

π(θ) = π(µ, σ2) = π(µ|σ2)π(σ2)

Suppose we have priors π(µ|σ2) ∼ N(µ0, σ
2/κ0) and π(σ2) ∼ Γ−1(ν0/2, ν0σ

2
0/2), which can

be written as

π(µ, σ2) =

(
2π

σ2

κ0

)−1/2

(
ν0σ2

0

2

)ν0/2
Γ(ν0

2
)

(σ2)−
ν0
2
−1exp

(
− 1

2σ2

[
κ0(µ− µ0)

2 + ν0σ
2
0

])
(4.2)

where the prior mean µ0 is based on κ0 prior obervations from Normal distribution, σ2
0 can

be interpreted as the sample variance from ν0 prior observations from Inverse − Gamma

distribution, and ν0σ
2
0 can be thought of as prior sums of squares.[22] Based on Bayesian

theory, the posterior distribution of the treatment mean µ can be written as

µ|σ2, y ∼ N

(
κ0

κ0 + n
µ0 +

n

κ0 + n
ȳ,

σ2

κ0 + n

)
(4.3)

and the posterior distribution of σ2 can be derived from σ2|y ∼ Γ−1(νn/2, νnσ
2
n/2), where

νn = ν0+n and νnσ
2
n = ν0σ

2
0+(n−1)s2y+

κ0n
κ0+n

(ȳ−µ0)
2, which can be considered as posterior

sums of squares, and s2y is the observed sample variance.[22]

The values of prior parameters κ0 and ν0 determine the level of information contained in

the prior and the contribution of the prior mean. If κ0 is small and σ2/κ0 is large, the prior

Normal distribution is dispersed and less informative; as κ0 increases, the prior Normal

distribution will be more tightly centered around mean and become more informative.
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For the DIP model in the Normal case, the prior ESS is given by

ESSELIR = E

{ κ0 2κ0(µ− µ0)

κ0(µ− µ0)/σ
2 −ν0 − 3 + 2

σ2

[
κ0(µ − µ0)

2 + ν0σ
2
0

]
} (4.4)

We identify the ESS for µ and σ2 by examining the diagonal elements of the expectation

matrix, which are ESSµ
ELIR = κ0 and ESSσ2

ELIR = E{−ν0 − 3 + 2
σ2 [κ0(µ− µ0)

2 + ν0σ
2
0]}.

Next, we will set a skeptical prior centered at µ0 for the parameter µ and a skeptical prior

centered at σ2
0 for the parameter σ2 as initially informative with

E{κ0} = N − n (4.5)

E{−ν0 − 3 +
2

σ2

[
κ0(µ− µ0)

2 + ν0σ
2
0

]
} = N − n (4.6)

These formulations allow the information contained within the posterior distribution of µ

and σ2 to shift from the skeptical prior at the beginning of the trial to the likelihood function

as subjects accrue. By simplified approximation with µ = µ0 and σ2 = σ2
0, the formulations

4.5 and 4.6 can be written as

κ0 = N − n (4.7)

ν0 = N − n+ 3 (4.8)

With this construction, we have the DIP posterior distribution of the treatment mean µ,

which is

µ|σ2, y ∼ N

(
N − n

N
µ0 +

n

N
ȳ,

σ2

N

)
(4.9)

and the posterior distribution of the nuisance parameter σ2 can be derived from σ2|y ∼

Γ−1(νn/2, νnσ
2
n/2), where νn = ν0 + n and νnσ

2
n = ν0σ

2
0 + (n − 1)s2y +

κ0n
κ0+n

(ȳ − µ0)
2, with

ν0 = N − n+ 3 and κ0 = N − n in the DIP approach.

In this way, as the posterior mean in the Bayesian model is a weighted average of the
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prior mean µ0 and the sample mean ȳ, this DIP formulation will cause the posterior mean to

approximate the skeptical prior mean µ0 early in the trial, and will increasingly approximate

ȳ as subjects accrue.

4.3.2.2 Weibull data with both shape and rate parameters unknown

In survival data, outcomes are often modeled with distribution f(y|θ) = f(y|λ, γ) ∼ Weibull(λ, γ),

parameterized by vector-based θ = (λ, γ) , where λ is the rate parameter and γ is the shape

parameter. Assume that both the parameters λ and γ are unknown, and consider the prior

distribution

π(θ) = π(λ, γ) = π(λ)π(γ)

∝ λa−1e−bλγc−1e−dγ (4.10)

where λ ∼ Γ(a, b) and γ ∼ Γ(c, d). We are interested in the hypotheses

H0 : m1 ≤ m0 + δ0

H1 : m1 > m0 + δ0 (4.11)

where m1 is the median survival time for the new treatment and m0 is the median survival

time for the null-level treatment, which can be calculated as m = {λ−1log(2)}1/γ, and δ0 is

the fixed targeted improvement for the treatment to achieve. Since there are no conjugate

choices, the posterior distribution of λ and γ can be calculated using Markov Chain Monte

Carlo (MCMC) approaches, for instance, with R (RJAGS package).

For the DIP model in the Weibull case, the prior ESS is determined using the ELIR

approach and functionalize the prior with N − n, which is given by

ESSλ
ELIR = a− 1 = N − n (4.12)

ESSγ
ELIR = E

{ c− 1

1 + λγ2E [yγ−1 + γ(γ − 1)yγ−2]

}
= N − n (4.13)
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Based on the DIP construction steps, we then center the prior mean at the null hypothesis

value m0 for both the parameters λ and γ, that are a/b = m0 and c/d = m0, . Thus, the

DIP formulations for the rate parameter λ ∼ Γ(a, b) can be written as

a = N − n+ 1

b = (N − n+ 1)/m0, where m0 = {λ−1
0 log(2)}1/γ0 (4.14)

And for the shape parameter γ ∼ Γ(c, d), we want the shape parameter c on the Gamma

prior to be as large as enough so that π(γ) could be approximate Normal distribution at

the beginning of the trial. With that, we can simplify Equation 4.13 so that the DIP prior

for γ ∼ Γ(c, d) can be derived as

c = N − n+ 1

d = (N − n+ 1)/m0, where m0 = {λ−1
0 log(2)}1/γ0 (4.15)

In the DIP approach, as more subjects n accrued in the trial, the posterior distribution of

the median survival time m will depend more on the observed data whose size n is related

to the prior.

4.4 Simulation Studies

The goals of our simulation studies are to compare the smallest possible sample size N among

admissible designs, the correspondent end-of-trial sample size n and its standard deviation,

power, type I error, and the percentage of end-of-trial for futility between the DIP and the

standard Bayesian approaches. We define the admissible design as having at least 80% power

and no greater than 5% type I error. If there are no admissible designs based on power, we

default to selecting the combination of parameters that yield the highest power and best-

controlled type I error. If there are no admissible designs based on type I error, we default to

selecting the combination of parameters that yield the lowest type I error and at least 80%
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power. Power is measured as the proportion of trials where the null hypothesis is rejected

under the alternative hypothesis, while type I error is measured as the proportion of trials

where the null hypothesis is rejected under the null hypothesis. All simulations are coded

using R for at least 10, 000 simulated trials per parameter setting.

4.4.1 Simulation Template

We will explore both Normal− and Weibull− distributed outcomes. The observed data yi

for each subject in each trial is randomly simulated from the probability density function

f(yi|θ), where θ is based off the population-level values assumed for that trial. Each subse-

quent subject is recruited until the trial is stopped for futility or efficacy or the maximum

N is reached. To identify the smallest possible sample size among the admissible design,

we set the total sample size N ∈ (10, 100), the threshold probabilities pf ∈ (0.01, 0.10) and

ps ∈ (0.80, 0.99), both in increments of 0.01. For simplicity, we assume the target threshold

δ0 = 0. With the simulated observed data, we estimate the power, type I error, end-of-trial

sample size and its standard deviation, and the percentage of stopping the trial for futility

for each combination of ps, pf and N . Then, we report the smallest total sample size N under

those combinations (ps, pf , and N) yielding admissible power and type I error rate, with the

corresponding estimated characteristics. An indicator of whether the null hypothesis was

rejected, the number of patients recruited, and the reason the trial was stopped early are

recorded for each simulated trial.

In Normal case, we consider Bayesian models with ν0 = 1 and κ0 = 2, 6, or 10. For

both standard Bayesian and the DIP approaches, we study four different cases reflecting

our assumptions about prior variability: (1) highly informative prior (σ2
0) with low observed

response variability (σ2
1), (2) minimally informative prior (σ2

0) with high observed response

variability (σ2
1), (3) overestimation of the prior variability (σ2

0 ≫ σ2
1), and (4) underestimation

of the prior variability (σ2
0 ≪ σ2

1). We look at these cases as they represent plausible mistakes
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that the statisticians could make when eliciting a prior. For each template, we set the null

mean as µ0 = 100 and expect lower values to imply improved efficacy; thus the new treatment

mean is defined as µ1 = µ0 − δ, where δ with the observed variability (σ2
1) determine the

standardized small, medium and large effect sizes, noted as d = δ/σ1. We consider highly

informative prior with σ0 = σ1 = 12 and δ ∈ {2, 5, 10}, the minimally informative prior with

σ0 = σ1 = 30 and δ ∈ {5, 10, 20}, the overestimating prior variability with σ0 = 30, σ1 = 12

and δ ∈ {2, 5, 10}, and the underestimating prior variability with σ0 = 15, σ1 = 30 and

δ ∈ {5, 10, 20}. Each subject is randomly generated from N(µ1, σ
2
1).

In Weibull case, we study three different cases reflecting our assumptions about haz-

ard function: monotonically decreasing hazard function (γ0 = γ1 = 0.5), constant hazard

function (γ0 = γ1 = 1), and monotonically increasing hazard function (γ0 = γ1 = 2). Here,

the rate parameters are set with λ0 = 0.69 and λ1 ∈ {0.29, 0.49, 0.69} for those three cases.

Each survival time (ti) is randomly generated from Weibull(λ1, γ1). To make the survival

analysis realistic, we simulate a censoring time ci ∼ Poisson(η), and cap the survival time

(t) and the censoring time (c) with a maximum observation time (T ). The parameters η

and T are determined by a 10% censoring rate and are different for each case. We set the

traditional Bayesian models with Gamma priors for the shape (γ) and rate (λ) parameters

centered on the null values.

4.4.2 Simulation Results

The simulation results for Normal cases with the first template - highly informative prior

(σ2
0) and low observed response variability (σ2

1) - are shown in Table 7. Comparing the DIP

to several Bayesian priors, we can see that when the effect sizes are at medium (δ = 5) or high

(δ = 10) level, the DIP approach requires lower planned sample size as well as lower expected

sample size to achieve an admissible design on power and type I error; when the effect size is

low (δ = 2), the DIP approach has comparable planned sample size, higher expected sample
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size but with lower standard deviation. Though at the low effect size (δ = 2), both the

DIP and the Bayesian priors cannot achieve the admissible design on type I error, the DIP

approach can control type I error better, compared to other priors.

Table 7. Simulation Results for Normal Distribution (Mean and Variance Unknown) - Low

Prior Variance and Low Observed Response Variability

Model µ0 µ1 σ0 σ1 Na n (SD)b Futility (%c) Efficacy Power Type I Errord

DIP 100 90 12 12 10 10 ( 0 ) 0.02 (0) 0.95 0.817 0.050

Bayesian (κ0 = 2) 100 90 12 12 12 11 (0.8) 0.02 (0) 0.96 0.829 0.050

Bayesian (κ0 = 6) 100 90 12 12 36 14 (4.5) 0.06 (0) 0.98 0.998 0.050

Bayesian (κ0 = 10) 100 90 12 12 12 11 (0.8) 0.10 (0) 0.91 0.837 0.050

DIP 100 95 12 12 40 29 ( 8.4) 0.03 (0) 0.97 0.816 0.050

Bayesian (κ0 = 2) 100 95 12 12 49 29 (14.0) 0.05 (0.35%) 0.99 0.811 0.050

Bayesian (κ0 = 6) 100 95 12 12 83 36 (19.6) 0.03 (0) 0.99 0.956 0.050

Bayesian (κ0 = 10) 100 95 12 12 51 31 (13.2) 0.10 (0.31%) 0.98 0.839 0.050

DIP 100 98 12 12 95 58 (26.1) 0.08 (0.73%) 0.87 0.803 0.235

Bayesian (κ0 = 2) 100 98 12 12 100 45 (34.5) 0.01 (0.70%) 0.92 0.807 0.320

Bayesian (κ0 = 6) 100 98 12 12 99 47 (33.8) 0.01 (0.30%) 0.91 0.804 0.305

Bayesian (κ0 = 10) 100 98 12 12 96 45 (31.7) 0.06 (2.50%) 0.90 0.802 0.296

a The planned sample size

b The expected sample size (standard deviation)

c The percentage of stopping the trial for futility

d Type I error is calculated under the null hypothesis µ1 = µ0

The results with the second template - minimally informative prior (σ2
0) and high ob-

served response variability (σ2
1) are shown in Table S.5 in the supplemental materials and

have the same conclusions. Furthermore, we notice that in this case, some standard Bayesian

priors at the medium effect size (δ = 10) cannot achieve admissible designs on type I error;

however, the DIP approach can get the admissible design on power and type I error, with

lower planned sample size and comparable expected sample size with a smaller variability.
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For the Normal case with overestimating prior in Table S.6 (see supplemental materials),

the DIP approach performs better at the medium effect size (δ = 5) compared to the other

Bayesian priors, with lower planned sample size and comparable expected sample size with

a smaller variability under the admissible designs. Similarly, in the Normal case of under-

estimating prior in Table S.7 (see supplemental materials), the DIP approach works better

when the effect sizes are at medium (δ = 10) or high (δ = 20) levels.

Table 8 shows the simulation results forWeibull cases. We can see that in the case of the

decreasing hazard rates (γ0 = γ1 = 0.5), the DIP approach has smaller maximum planned

sample sizes, and similar recruited sample sizes with lower standard deviation to terminate

the trial. The type I error in both the DIP and Bayesian approaches are not controlled well.

With the constant hazard rates (γ0 = γ1 = 1), that is the special case of Weibull distribution

- Exponential distribution, and the inverse of the rate parameter represents the mean time

until the event occurs. The results show that the DIP approach works well and has a larger

power compared to the standard Bayesian approach when the average survival time of two

groups are large. However, the DIP shows inferior to the standard Bayesian approach when

the average survival time of two groups are small. In the case of the increase hazard rates

(γ0 = γ1 = 2), which is the most common case among oncology studies, the DIP works as

well as the standard Bayesian approach; importantly, the DIP performs slightly better in

the situation of rate differences are small, with a smaller maximum planned sample size and

a higher power.

4.5 Discussion

In conclusion, we applied the DIP approach to multivariate models and took the examples of

two-parameter models in early termination Phase II clinical trial designs with simulations to

evaluate the performance of the DIP, by comparing it with the standard Bayesian posterior

probability approach. For both Normal and Weibull cases, we considered different scenarios
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Table 8. Simulation Results for Weibull Distribution

Model γ0 γ1 λ0 λ1 Na n (SD)b Futility (%c) Efficacy Power Type I Errord

DIP 0.5 0.5 0.69 0.29 20 19 (1.2) 0.09 (0.3%) 0.99 0.81 0.23

Bayesian 0.5 0.5 0.69 0.29 29 16 (5.5) 0.10 (0.2%) 0.99 0.84 0.16

DIP 0.5 0.5 0.69 0.49 23 21 (2.6) 0.09 (5%) 0.95 0.81 0.39

Bayesian 0.5 0.5 0.69 0.49 26 20 (5.7) 0.10 (0.2%) 0.99 0.82 0.39

DIP 1 1 0.69 0.29 10 10 (0) 0.02 (0) 0.93 0.86 0.05

Bayesian 1 1 0.69 0.29 10 10 (0) 0.02 (0) 0.93 0.80 0.05

DIP 1 1 0.69 0.49 41 32 (8.0) 0.04 (9.8%) 0.98 0.85 0.08

Bayesian 1 1 0.69 0.49 26 20 (5.8) 0.06 (0.2%) 0.99 0.82 0.17

DIP 2 2 0.69 0.29 10 10 (0) 0.01 (0) 0.89 1 0.05

Bayesian 2 2 0.69 0.29 10 10 (0) 0.01 (0) 0.94 1 0.05

DIP 2 2 0.69 0.49 10 10 (0) 0.10 (0) 0.90 0.82 0.05

Bayesian 2 2 0.69 0.49 12 10 (0.9) 0.07 (0) 0.95 0.80 0.05

a The planned sample size

b The expected sample size (standard deviation)

c The percentage of stopping the trial for futility

d Type I error is calculated under the null hypothesis µ1 = µ0

that reflect a broad scope of the real-world trials. The results show that, in some but not

all cases, such as Normal case with high effect sizes, the DIP performs better, including

fewer maximum planned patients, fewer expected patients with lower variability, better-

controlled type I error with admissible power. These results are consistent with the previous

research on the DIP approach in one-parameter models. Noteworthy is the fact that the

results of Weibull case do not indicate that the DIP approach is superior to the standard

Bayesian approach. While the performance of the DIP in Weibull case with increasing

hazard functions appears to be acceptable, more research is needed to confirm that the DIP
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is more efficient than the standard Bayesian approach and leads to ethical and statistical

benefits. For example, changing the shape and rate parameters in Weibull distributions

might change our findings and conclusions.

While we introduced the rationale of the DIP approach in general multivariate models

in Section 4.3.1, there are limitations that we only considered two-parameter models as

examples in this study. Future work could apply the DIP approach to Multinomial −

Dirichlet model for early termination designs of multiple outcomes.[23] In particular, as for

the simulation-based designs, the computation time cannot be ignored. As we mentioned

before, MCMC approaches with RJAGS package are used to calculate the single or multiple

unknown parameters for the non-conjugate models, including, for example, Weibull case.

The compiling time of RJAGS package is dependent on the number of interested parameters,

iterations, chains, and the ”burn-in” period, which is much longer than we expected. It is

suggested to set a small number of simulations, iterations, and chains to test the parameter

settings, especially for the multiple unknown parameter cases; once the appropriate range of

parameter values are determined, the number of simulations and iterations can be increased

to estimate more precise results.

47



CHAPTER 5

BAYESDIP: AN R PACKAGE FOR BAYESIAN EARLY TERMINATION IN

PHASE II CLINICAL TRIALS USING DECREASINGLY INFORMATIVE

PRIORS

5.1 Abstract

In Phase II clinical trials, Thall and Simon’s Bayesian posterior probability design is com-

monly used to monitor the data and decide the trial stopped for sufficient efficacy or a lack

of futility associated with a new treatment. However, this Bayesian approach depends on

a pre-selection prior and may inflate type I error rate and raise the risk of erroneously ter-

minating the trials too early. In this paper, we primarily implement Sabo’s decreasingly

informative prior to provide an informative yet skeptical prior on Bayesian early termination

Phase II trials, that can overcome the challenges of the standard Bayesian priors. We present

an R package, BayesDIP, that allows flexibility with standard Bayesian priors or the de-

creasingly informative prior for Bayesian early termination Phase II trials to accommodate

power analysis or expected sample size calculation given target significant level, power and

stopping decision cutoffs. The relevant statistical theory, models, and examples for each

distribution using BayesDIP are discussed in this paper.

5.2 Introduction

For ethical and economical considerations, a Phase II trial is typically conducted by exam-

ining the interim data to decide whether a new treatment warrants further investigation in

a Phase III trial, or whether the investigation should be stopped early for futility or lack of

efficacy. Thall and Simon proposed a Bayesian posterior probability design with binary out-
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comes for defining termination rules in terms of efficacy and futility in Phase II trials[1][2],

but this standard Bayesian approach relies on a pre-selected prior and may raise an issue of

inflating type I error rate and a risk of erroneously adapting the trails too early.

Extending from the standard Bayesian approach, Sabo developed a skeptical prior dis-

tribution, which incorporates the nonaccrued data and functionalizes the prior to be centered

around at some value reflecting the null hypothesis.[3] The proposed DIP distribution is just

functional and does not rely on any prior or historical information. In early termination

of Phase II trials, this informative yet skeptical prior distribution restricts the posterior

distribution from providing evidence that would favor termination of the trial during early

period of a trial, and with more data observed, the prior distribution becomes decreasingly

informative and the posterior distribution becomes increasingly more sensitive to the like-

lihood so that terminating the trial becomes more likely. Wang et.al applied the DIP to

admissible designs of early termination Phase II trials for single-parameter models, include

Bernoulli, Normal and Poisson distribution, where the simulation results showed that the

DIP requires fewer patients when admissible designs are achieved and when there are no

designs attaining the target power, the DIP yields similar power and better-controlled type

I error with comparable or fewer patients, compared with the standard Bayesian priors.[21]

Currently, two packages (ph2bayes[24] and ph2bye[25]) are available in R to perform

the Bayesian early termination rules in Phase II clinical trials. The ph2bayes[24] package

implements Thall and Simon’s Bayesian posterior probability design[1] and Lee and Liu’s

Bayesian predictive probability design[8] to determine the stopping decision cutoffs for single-

arm Phase II trials for binary outcomes. The package ph2bye[25] determines sample size and

stopping decision cutoffs for single-arm Phase II trials based on Bayesian posterior/predictive

probabilities. Until now, there exists no R package providing a comprehensive toolkit capable

of the power analysis or calculating the expected sample size. Such a comprehensive program

would allow for use of Thall and Simon’s standard Bayesian priors or Sabo’s DIP given the
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significant level, power and stopping decision cutoffs, when the outcomes have a Bernoulli,

Normal or Poisson distribution. The BayesDIP package described below fills this gap.

This paper describes the theoretical formulas of both the DIP and standard Bayesian

approaches for early termination rules during Phase II trials in Section 5.3. Different func-

tions with a variety of data distributions as well as input parameters, output and results

are detailed in Section 5.3. Example applications of clinical trials in how to implement and

customize the functions are provided in Section 5.4. Section 5.5 summaries the paper with

a discussion.

5.3 BayesDIP: R Package Description

The functions in this package can be used to determine the minimum planned sample size N

achieving the admissible design or to determine the expected sample size n with its standard

deviation, the exact power and the exact type-I-error (e.g. given the planned sample size N

and the stopping boundaries). The specific function of interest will be determined by the

type of outcome variable and the data distribution. All functions return an object of list

where the users can extract detailed information about the designs they are interested in.

Note that all functions conduct simulations to estimate the power and type-I-error,

where power is measured as the proportion of trials when the null hypothesis is rejected

under the alternative hypothesis, while type-I-error is measured as the proportion of trials

where the null hypothesis is rejected under the null hypothesis.

5.3.1 Binomial

Testing one-sample or two-sample response rates are common in clinical trials when the

outcome follows a binomial distribution. Let yi is a binary response from the i-the subject

with response rate p, i = 1, . . . , n. We have the likelihood function f(y|p) =
n∏

i=1

pyi(1−p)1−yi .
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The hypothesis we are testing is:

H0 : p1 ≤ p0 + δ0,

H1 : p1 > p0 + δ0

where p1 is the response rate of the new treatment, p0 is the null hypothesized value, and δ0 is

a fixed targeted improvement of the new treatment to achieve (which could be 0). Note that

this hypothesis assumes that larger response rate implies greater effcacy; we could simply

switch the directions of the inequalities if lower values imply greater efficacy. Based on the

conjugate natural of Beta−Binomial model, the standard posterior distribution of p for an

informative prior Beta(a, b) is:

p|y ∼ Beta(a+ y, b+ n− y)

where y =
n∑

i=1

yi is the total number of successes out of the n observed subjects in the trial.

Assume that an informative and skeptical DIP can be specified as

Beta(1 + p0(N − n), 1 + (1− p0)(N − n))

the posterior distribution of p for the DIP is

p|y ∼ beta(1 + p0(N − n) + y, 1 + (1− p0)(N − n) + (n− y)).

In the DIP approach, the posterior distribution of p is more centered at the prior mode p0

early in the trial. As more data observed and unobserved sample size N − n becomes small,

this skeptical prior becomes less informative and the posterior distribution of p becomes

more sensitive to the observed data instead of the prior; thus, terminating the trial becomes

more likely.

We can easily extend the one-sample case to two-sample case. Here, null distributions

– centered at the null hypothesized value – could be incorporated through a hyper-prior.
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The DIP for parameters in each group would still be functionalized with N − n equalling

the effective sample size, but the parameter in question would be given its own probability

distribution reflecting the possible values under the null. Supposed that in two-sample case,

we assume yij be a binary response from the i-th subject in the j-th group, i = 1, . . . , nj, j =

1, 2. For the standard Bayesian model, the resulting posterior with an informative prior

pj ∼ beta(a, b) is given by:

pj|yij ∼ Beta(a+ yj, b+ nj − yj)

where yj is the total number of successes out of the nj observed subjects for the j-th group

in the trial. For the DIP approach, the resulting posterior is given by:

yij|pj ∼ Binomial(nj, pj), i = 1, 2

pj ∼ Beta(1 + p0(Nj − nj), 1 + (1− p0)(Nj − nj))

p0 ∼ Beta(1, 1)

pj|yij ∼ Beta(1 + p0(Nj − nj) + yj, 1 + (1− p0)(Nj − nj) + (nj − yj))

where Nj is the total planned sample size for the j-th group.

We have developed four functions in this package for the cases where the binary outcomes

are assumed follow a Bernoulli distribution.

The OneSampleBernoulli function is used for one-sample Bernoulli distribution and

returns an object including the expected sample size n with its standard deviation, the

exact power and the exact type-I-error. This function uses algorithm described above. The

arguments for OneSampleBernoulli are as follows:

1 OneSampleBernoulli(prior , N = 100, p0, p1, d = 0, ps = 0.95, pf =

0.05, alternative = c("less","greater"), seed = 202209 , sim =

5000)

A list of length 3 containing the distributional information for the prior. The first

element is a number specifying the type of the prior. Options are
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1. DIP;

2. Beta(a,b), where a = shape, b = scale

If the prior is specified as option 1 (DIP), the second and the third elements of the list are

set as 0. Otherwise, the second and the third elements of the list are the parameters a

and b, respectively. The total planned sample size N has a default value of 100. The null

response rate p0, which could be taken as the standard or historical rate, and the response

rate of the new treatment p1 must be specified. The target improvement, which can be

considered as the minimal clinically meaningful difference, is set with d and default to 0.

The efficacy (upper) and futility (lower) decision boundaries are indicated as ps and pf,

respectively, with 0.95 and 0.05 as the default value. The argument alternative specifies

the alternative hypothesis as either “less” (lower values imply greater efficacy) or “greater”

(larger values imply greater efficacy). The observed data are simulated with a default seed

and a default value of 5000 iterations indicated as sim to estimate the posterior probability

(e.g., P (p1 > p0 + δ0|y) ) for early termination decision.

The OneSampleBernoulli.Design function is used for one-sample Bernoulli distri-

bution in determining the minimum planned sample size to achieve an admissible design and

returns the minimum planned sample size N , the expected sample size n with its standard

deviation, the exact power and the exact type-I-error. This function uses algorithm described

above and iterates over the specified searching sample size to identify the minimum sample

size under the admissible design. The arguments for OneSampleBernoulli.Design are as

follows:

1 OneSampleBernoulli.Design(prior , nmin = 10, nmax =100, p0, p1, d = 0,

ps , pf , power =0.8, t1error =0.05 , alternative = c("less","greater

"), seed = 202209 , sim = 1000)

A list of length 3 containing the distributional information for the prior. The first

element is a number specifying the type of the prior. Options are
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1. DIP;

2. Beta(a,b), where a = shape, b = scale

If the prior is specified as option 1 (DIP), the second and the third elements of the list are

set as 0. Otherwise, the second and the third elements of the list are the parameters a and

b, respectively. The minimum and maximum searching sample size are set with nmin and

nmax and default to 10 and 100, respectively. The null response rate p0, which could be

taken as the standard or historical rate, and the response rate of the new treatment p1 must

be specified. The target improvement, which can be considered as the minimal clinically

meaningful difference, is set with d and default to 0. The efficacy (upper) and futility

(lower) decision boundaries are indicated as ps and pf, respectively. The admissible design

is specified with power and t1error and we default to achieve an admissible design which has

80% power and 5% type-I-error. If there are no admissible design based on this type-I-error,

then we default to output the designs with the lowest type-I-error and at least the user-

defined (e.g., 80%) power. The argument alternative specifies the alternative hypothesis as

either “less” (lower values imply greater efficacy) or “greater” (larger values imply greater

efficacy). The observed data are simulated with a default seed and a default value of 1000

iterations indicated as sim to estimate the posterior probability (e.g., P (p1 > p2 + δ0|y) )

for early termination decision.

The function TwoSampleBernoulli is used for two-sample Bernoulli distribution in

calculating the expected sample size with its standard deviation, the exact power and the

exact type-I-error. This function uses algorithm for two-sample case described above and

applies equal allocation between two treatment groups, with the same arguments as the

function OneSampleBernoulli shown as follows, where the parameter N defaults to 200

and the response rate of the new treatment p1 and the response rate of the compared-group

treatment p2 must be specified. See OneSampleBernoulli for more details.
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1 TwoSampleBernoulli(prior , N = 200, p1, p2, d = 0, ps = 0.95, pf =

0.05, alternative = c("less","greater"), seed = 202209 , sim =

5000)

The TwoSampleBernoulli.Design function is designed to determine the minimum

total planned sample size under an admissible design. The arguments are as follows, same

with the function OneSampleBernoulli.Design, where the maximum searching sample

size defaults to 200 and the response rate of the new treatment p1 and the compared-group

treatment p2 must be specified. See OneSampleBernoulli.Design for more details.

1 TwoSampleBernoulli.Design(prior , nmin = 10, nmax =200, p1, p2, d = 0,

ps , pf , power =0.8, t1error =0.05 , alternative = c("less","greater

"), seed = 202209 , sim = 1000)

5.3.2 Normal

When the data has a normal distribution, we are interested in comparing two sample means

with the hypothesis:

H0 : µ1 ≥ µ0 + δ0

H1 : µ1 < µ0 + δ0

where µ1 is the mean value of the new treatment, µ0 is the null mean value and δ0 is the fixed

target improvement of the new treatment to achieve (which could be 0). Here, we expect

lower mean values imply improved efficacy and we could simply switch the directions of the

inequalities if higher mean values imply greater efficacy.

With the case of variance known, let yi be a continuous response from the i-th subject
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with mean µ and variance s2, i = 1, . . . , n, the standard posterior distribtuion is given by:

yi|µ ∼ Normal
(
µ, s2

)
µ ∼ Normal

(
µ0,

s2

n0

)
µ|s2, yi ∼ Normal

(
n0

n0 + n
µ0 +

n

n0 + n
ȳ,

s2

n0 + n

)
(5.1)

where s2 is the known variance, µ0 is the null mean value, which could be considered as

the prior mean from the standard or historical data, and n0 is a prior parameter indicating

the level of information contained in the prior and the contribution of the null mean. Small

value of n0 provides a dispersed and less informative prior distribution; otherwise, when n0

is large, a more informative prior distribution will be more tightly centered around the null

mean.

With a skeptical and informative DIP, the resulting posterior distribution in the case of

known variance is as follows:

yi|µ ∼ Normal
(
µ, s2

)
µ ∼ Normal

(
µ0,

s2

N − n

)
µ|s2, yi ∼ Normal

(
N − n

N
µ0 +

n

N
ȳ,

s2

N

)
(5.2)

where N is the planned sample size and N − n is the unobserved sample size in the trial.

With the case of variance unknown, let yi be a continuous response from the i-th subject

with mean µ and variance σ2, i = 1, . . . , n, the standard posterior distribution of µ is given
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by[22]:

yi|µ, σ2 ∼ Normal
(
µ, σ2

)
µ ∼ Normal

(
µ0,

σ2

κ0

)
σ2 ∼ Γ−1

(
ν0
2
,
ν0σ

2
0

2

)
µ|σ2, yi ∼ Normal

(
κ0

κ0 + n
µ0 +

n

κ0 + n
ȳ,

σ2

κ0 + n

)
(5.3)

where σ2 is the unknown variance which is taken as a nuisance parameter, µ0 is the null

mean value, which can be taken as the prior mean from the standard or historical data, κ0

is a prior parameter indicating the level of the information contained in the prior mean, σ2
0

indicates the sample variance from ν0 prior observations, and ν0σ
2
0 can be thought of as prior

sums of squares. Small κ0 value results in a dispersed and less informative prior distribution

of µ; otherwise, as κ0 increases, the prior distribution of µ will be more informative. The

posterior distribution of the nuisance parameter σ2 in Equation 5.3 can be derived from

σ2|y ∼ Γ−1(νn/2, νnσ
2
n/2), where νn = ν0+n and νnσ

2
n = ν0σ

2
0+(n−1)s2y+

κ0n
κ0+n

(ȳ−µ0)
2, which

can be considered as posterior sums of squares, and s2y is the observed sample variance.[22]

In the case of unknown variance, the DIP posterior distribution of µ can be written as:

yi|µ, σ2 ∼ Normal
(
µ, σ2

)
µ ∼ Normal

(
µ0,

σ2

N − n

)
σ2 ∼ Γ−1

(
N − n+ 3

2
,
(N − n+ 3)σ2

0

2

)
µ|σ2, yi ∼ Normal

(
N − n

N
µ0 +

n

N
ȳ,

σ2

N

)
(5.4)

where N is the planned sample size, N − n is the unobserved sample size, and σ2
0 indicates

the sample variance from prior observations. The posterior distribution of the nuisance

parameter σ2 in Equation 5.4 can be derived from σ2|y ∼ Γ−1(νn/2, νnσ
2
n/2), where νn =
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N + 3 and νnσ
2
n = (N − n+ 3)σ2

0 + (n− 1)s2y +
(N−n)n

N
(ȳ − µ0)

2, which can be considered as

posterior sums of squares, and s2y is the observed sample variance.[22]

For the DIP approach in Equation 5.2 and 5.4, the posterior distribution of µ is a

weighted average of the prior mean µ0 and the sample mean ȳ; thus, the posterior mean µ

will approximate the prior mean µ0 early in the trial and will increasingly approximate ȳ as

more data observed.

In this package, we offer four functions for the cases where the outcomes follow aNormal

distribution.

The OneSampleNormal1 function is used for one-sample Normal distribution with

known variance, and returns the expected sample size with its standard deviation, the exact

power and the exact type-I-error. This function uses the algorithm described above in

Equation 5.1 and 5.2. The arguments for OneSampleNormal1 are as follows:

1 OneSampleNormal1(prior , N = 100, mu0 , mu1 , var , d = 0, ps = 0.95, pf

= 0.05, alternative = c("less","greater"), seed = 202209 , sim =

5000)

A list of length 2 containing the distributional information for the prior. The first element

is a number specifying the type of the prior. Options are

1. DIP;

2. Normal(µ0, s
2/ν0), where µ0 is the prior mean, and s2 is the known variance.

If the prior is specified as option 2 (standard prior), the second element of the list is the

parameter ν0; otherwise, we can set any value to the second element of the list. The planned

sample size N defaults to 100. The null mean value mu0, which could be taken as the

standard or historical mean, and the mean value of the new treatmentmu1must be specified.

The known variance is indicated as var. The target improvement, which can be considered

as the minimal clinically meaningful difference, is set with d and default to 0. The efficacy

(upper) and futility (lower) decision boundaries are indicated as ps and pf, and default to
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0.95 and 0.05, respectively. The argument alternative specifies the alternative hypothesis

as either “less” (lower values imply greater efficacy) or “greater” (larger values imply greater

efficacy). The observed data are simulated with a default seed and a default value of 5000

iterations indicated as sim to estimate the posterior probability (e.g., P (µ1 < µ0 + δ0|y) )

for early termination decision.

The function OneSampleNormal1.Design is useful for a study design to identify

the minimum planned sample size under an admissible design, when the outcomes follow a

Normal distribution with variance known. This function uses algorithm described above in

Equation 5.1 and 5.2 and iterates over a range of planned sample size. The arguments for

OneSampleNormal1.Design are as follows:

1 OneSampleNormal1.Design(prior , nmin = 10, nmax =100, mu0 , mu1 , var , d

= 0, ps , pf , power =0.8, t1error =0.05 , alternative = c("less","

greater"), seed = 202209 , sim = 1000)

A list of length 2 containing the distributional information for the prior. The first element

is a number specifying the type of the prior. Options are

1. DIP;

2. Normal(µ0, s
2/ν0), where µ0 is the prior mean, and s2 is the known variance.

If the prior is specified as option 2 (standard prior), the second element of the list is the

parameter ν0; otherwise, we can set any value to the second element of the list. The minimum

and maximum searching sample size are set with nmin and nmax and default to 10 and

100, respectively. The null mean value mu0, which could be taken as the standard or

historical mean, and the mean value of the new treatment mu1 must be specified. The

known variance is indicated as var. The target improvement, which can be considered as

the minimal clinically meaningful difference, is set with d and default to 0. The efficacy

(upper) and futility (lower) decision boundaries are indicated as ps and pf, respectively.

The admissible design is specified with power and t1error and we default to achieve an
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admissible design which has 80% power and 5% type-I-error. If there are no admissible

design based on this type-I-error, then we default to output the designs with the lowest type-

I-error and at least the user-defined (e.g., 80%) power. The argument alternative specifies

the alternative hypothesis as either “less” (lower values imply greater efficacy) or “greater”

(larger values imply greater efficacy). The observed data are simulated with a default seed

and a default value of 1000 iterations indicated as sim to estimate the posterior probability

(e.g., P (µ1 < µ0 + δ0|y) ) for early termination decision.

The function OneSampleNormal2 is designed for one-sample Normal distribution

with variance unknown, and returns the expected sample size with its standard devia-

tion, the exact power and the exact type-I-error. This function uses the algorithm de-

scribed above in Equation 5.3 and 5.4 and applies the same arguments with the function

OneSampleNormal1 but adds an argument of var0 indicates the prior sample variance

σ2
0 in Equation 5.3 and 5.4. See OneSampleNormal1 for more details.

1 OneSampleNormal2(prior , N = 100, mu0 , mu1 , var0 , var , d = 0, ps =

0.95, pf = 0.05, alternative = c("less","greater"), seed =

202209 , sim = 5000)

The OneSampleNormal2.Design function is used for a study design to determine

the minimum planned sample size under an admissbile design, assuming the outcomes fol-

low a Normal distribution with variance unknown. This function uses algorithm described

above in Equation 5.3 and 5.4, with the same arguments as the function OneSampleNor-

mal1.Design but adds an argument of var0 indicates the prior sample variance σ2
0 in

Equation 5.3 and 5.4. See OneSampleNormal1.Design for more details.

1 OneSampleNormal2.Design(prior , nmin = 10, nmax =100, mu0 , mu1 , var0 ,

var , d = 0, ps, pf, power =0.8, t1error =0.05, alternative = c("

less","greater"), seed = 202209 , sim = 1000)
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5.3.3 Poisson

If the outcome in a clinical trial is the number of events occurring in a fixed interval time,

length of stay in hospital, or other count measurements, then a Poisson distribution with

Gamma prior is a plausible choice for early termination models. Supposed that we are

interested in test the Possion rates and the hypothesis is as follows:

H0 : λ1 ≥ λ0 + δ0

H1 : λ1 < λ0 + δ0

where λ is the rate as well as the mean value of the new treatment, λ0 is the null event rate

(null mean value) and δ0 is the fixed target improvement of the new treatment to achieve

(which could be 0). Here, we expect lower values of the event rates imply improved efficacy

and we could simply switch the directions of the inequalities if higher values of the rates

imply greater efficacy.

Let yi be the number of events from i-th subject with rate λ, i = 1, . . . , n, the standard

posterior distribution of λ is:

yi|λ ∼ Poisson(λ)

λ ∼ Γ(a, b)

λ|yi ∼ Γ(a+ y, b+ n)

where y =
n∑

i=1

yi is the total number of events from the n observed subjects in the trial. The

constructed DIP posterior distribution of λ is defined as follows:

yi|λ ∼ Poisson(λ)

λ ∼ Gamma(0.5 + λ0(N − n), 0.001 + (N − n))

λ|yi ∼ Gamma(0.5 + λ0(N − n) + y, 0.001 +N)

where λ0 is the null mean value or the null event rate , which could be taken as the standard
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or historical event rate, N is the planned sample size, and N − n is the unobserved sample

size in the trial. In the DIP approach, with more subjects observed in the trial, the skewness

of the posterior distribution will be determined more by the observed data rather than the

prior distribution.

The functionOneSamplePoisson is designed to estimate the expected sample size with

its standard deviation, the exact power and the exact type-I-error for one-sample case where

the outcomes follow a Poisson distribution. The algorithm of this function is described

above. The arguments for OneSamplePoisson are as follows:

1 OneSamplePoisson(prior , N = 100, m0 , m1 , d = 0, ps = 0.95, pf =

0.05, alternative = c("less","greater"), seed = 202209 , sim =

5000)

A list of length 3 containing the distributional information for the prior. The first element

is a number specifying the type of the prior. Options are

1. DIP;

2. Gamma(a,b), where a = shape, b = scale

If the prior is specified as option 2 (standard Gamma prior), the second and the third

elements of the list are the parameters a and b, respectively; otherwise, the second and the

third elements of the lists can be set as NULL or any values. The total planned sample size

N has a default value of 100. The null event rate m0, which could be taken as the standard

or historical rate, and the event rate of the new treatment m1 must be specified. The target

improvement, which can be considered as the minimal clinically meaningful difference, is set

with d and default to 0. The efficacy (upper) and futility (lower) decision boundaries are

indicated as ps and pf, respectively, with 0.95 and 0.05 as the default value. The argument

alternative specifies the alternative hypothesis as either “less” (lower values imply greater

efficacy) or “greater” (larger values imply greater efficacy). The observed data are simulated
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with a default seed and a default value of 5000 iterations indicated as sim to estimate the

posterior probability (e.g., P (λ1 < λ0 + δ0|y) ) for early termination decision.

The functionOneSamplePoisson.Design is designed to estimate the minimum planned

sample size necessary to obtain an admissible design for one-sample case where the outcomes

follow a Poisson distribution. This function uses algorithm described above and iterates over

a range of sample size to identify the minimum sample size achieving the admissible design.

The arguments for OneSamplePoisson.Design are as follows:

1 OneSamplePoisson.Design(prior , nmin=10, nmax =100, m0 , m1 , d = 0, ps ,

pf , power =0.8, t1error =0.05 , alternative=c("less","greater"),

seed = 202209 , sim = 1000)

A list of length 3 containing the distributional information for the prior. The first element

is a number specifying the type of the prior. Options are

1. DIP;

2. Gamma(a,b), where a = shape, b = scale

If the prior is specified as option 2 (standard Gamma prior), the second and the third

elements of the list are the parameters a and b, respectively; otherwise, the second and the

third elements of the lists can be set as NULL or any values. The minimum and maximum

searching sample size are set with nmin and nmax and default to 10 and 100, respectively.

The null event rate m0 and the event rate of the new treatment m1 must be specified. The

target improvement, which can be considered as the minimal clinically meaningful difference,

is set with d and default to 0. The efficacy (upper) and futility (lower) decision boundaries

are indicated as ps and pf, respectively. The admissible design is specified with power and

t1error and we default to achieve an admissible design which has 80% power and 5% type-I-

error. If there are no admissible design based on this type-I-error, then we default to output

the designs with the lowest type-I-error and at least the user-defined (e.g., 80%) power.

The argument alternative specifies the alternative hypothesis as either “less” (lower values
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imply greater efficacy) or “greater” (larger values imply greater efficacy). The observed data

are simulated with a default seed and a default value of 1000 iterations indicated as sim to

estimate the posterior probability (e.g., P (λ1 < λ0 + δ0|y) ) for early termination decision.

5.4 Example Application of BayesDIP

In this section, we provide two examples implemented withBayesDIP. One example demon-

strates the use of examining the performance of the posterior probability; The other example

shows how to perform the minimum planned sample size calculations with a target power

and significant level.

Simmons et al.[26] describe a Phase II study assessing whether vitamin C helps improve

recovery from Bone Marrow Transformation (BMT). In this study, A total of 40 patients

received intravenous (IV) vitamin C. Based on the binary outcomes of cytomegalovirus

(CMV) infection, which is an important risk factor associated with BMT, the study aims at

determining whether receiving IV vitamin C can reduce the CMV infection rate to less than

0.5. The hypotheses for the study are as follows:

H0 : the CMV infection rate ≥ 0.5

H1 : the CMV infection rate < 0.5 (5.5)

In this example, the true CMV infection rate (p1) in this study is considered as 0.275, and the

null CMV infection rate (p0) is 0.5. We set the lower (futility) and upper (efficacy) decision

boundaries as default to 0.05 and 0.95, respectively. To determine the expected sample size

for early terminating the trial and examine the performance of the posterior probability, we

use OneSampleBernoulli to estimate the expected sample size with its standard devia-

tion, the power, the type-I-error and the probabilities of reaching the efficacy and futility

boundaries. We apply both the DIP approach and the standard Bayesian approach to the

study. The default values of the simulation seed and the number of simulations are used.
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The output is given below:

1 library(BayesDIP)

2

3 # DIP approach

4 DIP.result <- OneSampleBernoulli(list (1,0,0), N=40, p0=0.5, p1

=0.275 , alternative = "less")

5 DIP.result$power
6 [1] 0.9352

7 DIP.result$type_I_error
8 [1] 0.086

9 DIP.result$expected_sample_size
10 [1] 23.6

11 DIP.result$expected_sample_size_std
12 [1] 8.12

13 DIP.result$the_prob_futility
14 [1] 2e-04

15

16 # Standard non -informative prior Beta (1,1)

17 Bayes.result <- OneSampleBernoulli(list(2,1,1), N=40, p0=0.5, p1

=0.275 , alternative = "less")

18 Bayes.result$power
19 [1] 0.956

20 Bayes.result$type_I_error
21 [1] 0.176

22 Bayes.result$expected_sample_size
23 [1] 16.2

24 Bayes.result$expected_sample_size_std
25 [1] 8.6

26 Bayes.result$the_prob_futility
27 [1] 0.001

The obtained result indicates that the DIP approach stops the trial at the sample size of

24 (sd = 8.1) to reach a 95% efficacious boundary and demonstrate receiving IV vitamin C

can reduce the CMV infection rate to less than 0.5, with significant level of 0.086 and power

of 0.9352; while the non-informative Bayesian prior requires 17 (sd = 8.6) subjects, with

significant level of 0.176 and power of 0.956.

Again using data from the Simmons et al.[26] study, we use the number of CD56+

natural killer (NK) at day 30 as a continuous outcome, with the goal to assess whether

receiving IV vitamin C can improve the amount of the CD56+NK cells from the null mean
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200 (with known variance s2 = 100). The hypothesis for the study is:

H0 : the amount of the CD56+NK cells ≤ 250

H1 : the amount of the CD56+NK cells > 250 (5.6)

In this example, we use a range of sample size 10 to 50 inOneSampleNormal1.Design and

fine-tune through iterations to determine the minimum sample size with target power equal

to 0.8 and significant level equal to 0.05. Assumed the true mean value of the amount of

the CD56+NK cells from the Simmons et.al[26] study is 294, with known variance 100, and

the null mean value is 250. The posterior probability boundaries are set to 0.95 and 0.05 for

efficacy and futility, respectively. The target power, the significant level, the simulation seed

and the number of simulations are defaulted. Note that since simulations and iterations are

used within the function OneSampleNormal1.Design, computing time is dependent upon

the number of trials in the simulation and the tuned sample size. It is suggested to provide

an appropriate range of the sample sizes (e.g., [10, 50]) for a large number of simulations

(e.g., sim = 1000). The output for this example is displayed below.

1 # DIP approach

2 DIP.design <- OneSampleNormal1.Design(list (1,0), nmin=10, nmax=50,

mu0=250, mu1=294, var=100, ps=0.95 , pf=0.05 , alternative = "

greater")

3 DIP.design$planned_samle_size
4 [1] 10

5 DIP.design$power
6 [1] 1

7 DIP.design$type_I_error
8 [1] 0.057

9 DIP.design$expected_sample_size
10 [1] 10

11

12 # Standard prior Normal (250, 100/5)

13 Bayes.design <- OneSampleNormal1.Design(list (2,5), nmin=10, nmax=50,

mu0=250, mu1=294, var=100, ps=0.95 , pf=0.05 , alternative = "

greater")

14 Bayes.design$planned_sample_size
15 [1] 16
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16 Bayes.design$power
17 [1] 1

18 Bayes.design$type_I_error
19 [1] 0.050

20 Bayes.design$expected_sample_size
21 [1] 10

The results indicate that the DIP approach requires fewer planned sample size to achieve an

admissible design, compared to a less informative Bayesian prior.

5.5 Summary and Discussion

The BayesDIP package was developed to perform study designs capable of calculating the

minimum planned sample size and the expected sample size given admissible significant level,

power and stopping rule cutoffs for Bayesian early termination Phase II clinical trials when

the outcomes have a Binomial, Normal, or Poisson distribution. The package incorporates

Bayesian early termination rules with an innovative DIP approach to achieve the admissi-

ble designs with smaller or comparable sample sizes, without relying on historical data or

optimistic prior.[21][3][16][12] For a comprehensive use of the package, we also provide user-

defined standard Bayesian priors in the package. As for a simulation-based package, users

can customize the designs with options to set the priors, to specify the assumptions for the

hypothesis test, to tune the stopping boundaries, to give the target power and significant

level, and to set the number of trials in the simulation. Ten functions are provided in the

package and allow the user to study observed data with Binomial, Normal, and Poisson

distributions, with one-sample or two-sample cases. The models behind the DIP and the

standard Bayesian priors are specified and described in details, and practical applications are

illustrated by clinical study examples. The BayesDIP provides an comprehensive, all-in-one

solution for study designs for common distributions encountered in Phase II clinical trials.

We possible develop study designs for Weibull distribution and Multinomial distribution

in the future.
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5.6 Computational Details

The results in this paper were obtained using R.4.0.3. R itself and R packages used are

available from the CRAN at https://CRAN.R-project.org/.
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CHAPTER 6

DISCUSSION

We have presented the rationale of the decreasingly informative prior in the Bayesian frame-

work and applied it to featuring early termination designs for Phase II clinical trials. The

decreasingly informative prior is a functionalized prior distribution that centers the prior at

skeptical null values and equates the prior ESS in terms of the unaccrued sample size, which

refrains the termination at early stage of a trial and allows the posterior distribution to be

increasingly informed by the likelihood function and less by the skeptical prior information

as subjects are accrued. Our first aim applied DIP in Bayesian early termination Phase

II trial designs for single-parameter models, where the outcomes could be modeled with a

Bernoulli, Poisson, or Normal distribution. We compared the sample size under admissible

designs, which is defined by the target of at least 80% power and at most 5% type I error

rate, between the DIP approach and the traditional Bayesian approaches by Thall and Si-

mon for one-sample and two-sample cases. In one-sample cases, the DIP performed better in

terms of smaller sample size and control of type I error under admissible designs for different

settings. In two-sample Bernoulli cases, we concluded that the DIP performed better for

moderate to large response rates. Before utilizing the DIP in Bayesian early termination de-

signs for two-parameter models in Aim 2, we introduced the calculation of prior ELIR ESS

of single parameter on multivariate cases, which was extended from the univariate ELIR

ESS approach proposed by Neuenschwander et al[11]. After that, we incorporated the DIP

to Bayesian designs for two-parameter models, where the response was assumed to follow

a Normal distribution with both mean and variance unknown, or a Weibull distribution

with both scale and shape parameters unknown. By comparing with tradtional Bayesian
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approaches, we found that the DIP approach performed better in Normal cases when the

effect sizes are medium or high. Aim 3 introduced an R package BayesDIP that was devel-

oped for an comprehensive and integrated solution for common distributions illustrated in

Aim 1 and Aim 2. The package includes ten functions that are capable of calculating sample

size by customizing the thresholds of admissible designs and stopping decision cutoffs for

Bayesian early termination Phase II trials.

One contribution of our research is to establish a decreasingly informative prior for

Bayesian early termination trials, and this prior distribution avoids the necessity for a tradi-

tional prior selection which is based mainly on clinical opinions or historical data. The key of

the DIP approach is to obtain the prior effective sample size and the mean, median or mode

of the prior distribution, and then setting up the simultaneous equations or simulations to

derive the parameters of the DIP distribution. The feature that the DIP is centered at null

value early in the trial prevents the trail terminated erroneously too early. Our proposed DIP

approach can be used in a broad scope of models for Bayesian early termination Phase II

trial designs, including but not limited to Bernoulli, Normal, Poisson, Multinomial, and

Weibull models. Generally, we found that compared to the traditional Bayesian approach,

the DIP approach employs similar or smaller sample size to reach the desired 80% power

and control a better type I error, which benefits in cutting down on the trial duration and

financial costs and addresses the issue of potentially inflated type I error rates in Bayesian

continuous monitoring designs.

We investigated multiple scenarios for each model with a range of effect sizes, which

reflect a broad scope of realistic scenarios. For some scenarios with low effect sizes, it is

difficult to attain a design with at least 80% power and a control of 5% type I error, within

a reasonable sample size for Phase II trials. In these scenarios, the DIP approach does not

present a significant advantage over the standard Bayesian approach. To achieve a reliable

application of the DIP approach in power analysis for Phase II trial designs, we recommend
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employing the DIP at medium or high effect sizes. Further, we recommend utilizing our

R package BayesDIP to see the subtle changes prompted by the choice of the DIP or the

regular Bayesian priors. Since simulation is used within each function, in part, computational

time depends on the number of trials in the simulation. It is suggested that a small value of

trials be used, such as 100, to determine an initial range for the sample size (e.g., N) and

stopping decision cutoffs ps and pf . The efficacious threshold ps is suggested to be set to a

low value if we know there are only a few, such as 20, subjects available. When the sample

size cannot be increased, we can also adjust the decision boundaries ps and pf to find an

admissible design. Once an appropriate parameters are determined, the number of trials

should be increased, such as 1000, to output more stable and accurate results.

In addition to Thall and Simon posterior probability design, the decreasingly infor-

mative prior can also be used in Lee and Liu predictive posterior probability design [8].

The logic of functionalizing the DIP is similar except that we have to consider the cur-

rent observed data in the trial. Additionally, the DIP approach can also be applied to

Bayesian sequential monitoring designs with multiple outcomes, including, for example, an

efficacy and a toxicity outcome [23] with Beta−Binomial model, which is the special case

of Dirichlet − Multinomial model, is used to track the posterior probability of efficacy

and toxicity independently. In this case, the functionalization of the DIP is based on the

prior effective sample size of the single parameter of the multivariate models, see Chapter 3.

Furthermore, other future considerations include:

• Extension of the DIP approach in Bayesian adaptive designs of hierarchical models

• Maintain and optimize the published R package BayesDIP, including adding more

functions, for example, Weibull distribution with time-to-event outcomes.

• Consider methods to reduce execution time, such as compiling the code using C/C++.

• Create an R shiny application that provides an user-friendly platform to implement
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the DIP in Bayesian sequential monitoring designs of Phase II trials.
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Appendix A

R CODE RELEVANT TO CHAPTER 2

One-sample Normal distribution (variance known) with DIP approach

# prior parameters

mu0<-100

sig<-15

for( N in seq(from=10, to=100, by=1) ){

for(mu1 in seq(from=90, to=100, by=5)){

for (p_f in seq(from=0.01, to=0.10, by=0.01) ){

for (p_s in seq(from=0.80, to=0.99, by=0.01) ){

s<-1000

cat1s<-0

cat1f<-0

for(k in seq(from=1,to=s,by=1)){

y<-NULL

j<-0

cat<-0

cats<-0

catf<-0

pp_stop<-0.5

while(cat==0){

j<-j+1

y<-append(y,rnorm(1,mu1,sig))

y_sd<-sd(y)

y_mean<-mean(y)

n<-length(y) # number of accrued subjects

#Early Termination Trigger (With DIP)

if(j>=10){

mu1_s<-rnorm(1000,((N-n)*mu0+n*y_mean)/N,sig/sqrt(N))

mu1_s[is.na(mu1_s)]<-mean(y)

pp_stop<-sum(mu1_s<mu0-d)/1000

}

if(pp_stop>=p_s){cats<-1}

if(pp_stop<p_f){catf<-1}

cat<-cats+catf

if(j==N){cat<-1}

}
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#Calculation of posterior probability of efficacy

if(cats==1){cat1s<-cat1s+1}

if(cats==0){cat1s<-cat1s}

if(catf==1){cat1f<-cat1f+1}

if(catf==0){cat1f<-cat1f}

}

power<-append(power,cat1s/s)

N_v<-append(N_v, N)

ss_v<-append(ss_v,j)

p_f_v<-append(p_f_v,p_f)

p_s_v<-append(p_s_v,p_s)

mu0_v<-append(mu0_v,mu0)

mu1_v<-append(mu1_v,mu1)

sig_v<-append(sig_v,sig)

data.normalDIP1 <- cbind("DIP", mu1_v, mu0_v, sig_v, N_v, ss_v, p_f_v, p_s_v, power)

}

}

}

}

Two-sample Bernoulli distribution with DIP approach

for( N in seq(from=100, to=200, by=1) ){

for (p_1 in seq(from=p_2, to=0.15, by=0.05)) {

for (p_f in seq(from=0.01, to=0.10, by=0.01) ){

for (p_s in seq(from=0.80, to=0.99, by=0.01) ){

N1 <- N/2 # planned sample size for group 1

N2 <- N/2 # planned sample size for group 2

s=1000

cat1s<-0

cat1f<-0

for (k in seq(from=1, to=s, by=1)) {

y<-NULL

Group<-NULL

r<-0.5 # equal allocation

j<-0

cat<-0

cats<-0

catf<-0

pp_stop<-0.5

while(cat==0)

{

j<-j+1

u<-runif(1,min = 0,max = 1)

if(u<=r){
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Group=append(Group,1)

y<-append(y,rbinom(1,1,p_1))}

if(u>r){

Group=append(Group,0)

y<-append(y,rbinom(1,1,p_2))}

Matd<-as.data.frame(cbind(y,Group))

y1<-Matd$y[which(Matd$Group==1)]

y2<-Matd$y[which(Matd$Group==0)]

n1<-length(y1)

n2<-length(y2)

sn1 <- length(y1[y1==1]) # number of successes

sn2 <- length(y2[y2==1])

if(sn1>0 & sn2>0)

{

p_0 <- rbeta(1000,1,1) # hyper-prior

p1_s<-rbeta(1000,1+sum(y1)+p_0*(N1-n1),1+(n1-sum(y1))+(1-p_0)*(N1-n1))

p2_s<-rbeta(1000,1+sum(y2)+p_0*(N2-n2),1+(n2-sum(y2))+(1-p_0)*(N2-n2))

p1_s[is.na(p1_s)]<-sum(y1)/n1

p2_s[is.na(p2_s)]<-sum(y2)/n2

pp_stop<-sum(p1_s>p2_s+d)/1000

}

if(pp_stop>=p_s){cats<-1}

if(pp_stop<p_f){catf<-1}

cat<-cats+catf

if(j==N){cat<-1}

}

if(cats==1){cat1s<-cat1s+1}

if(cats==0){cat1s<-cat1s}

if(catf==1){cat1f<-cat1f+1}

if(catf==0){cat1f<-cat1f}

}

p_1_v<-append(p_1_v,p_1)

p_2_v<-append(p_2_v,p_2)

power<-append(power,cat1s/s)

N_v<-append(N_v, N)

ss1_v <- append(ss1_v, n1)

ss2_v <- append(ss2_v, n2)

p_f_v<-append(p_f_v,p_f)

p_s_v<-append(p_s_v,p_s)

data.dip1 <- cbind(p_1_v, p_2_v, N_v, ss1_v, ss2_v, p_f_v, p_s_v, power)

}

}

}

}
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Appendix B

CHAPTER 2 SUPPLEMENTAL MATERIALS

Table S.1. Simulation Results for Bernoulli Cases - One Sample (p0 = 0.3)

Model p0 p1 Sample Sizea Futility Efficacy Power Type I Errorb

DIP 0.3 0.35 98 0.09 0.80 0.792 0.410

Bayesian (Beta(1, 1)) 0.3 0.35 77 0.03 0.83 0.802 0.480

Bayesian (a+ b = 2) 0.3 0.35 98 0.02 0.83 0.800 0.453

Bayesian (a+ b = 6) 0.3 0.35 97 0.02 0.80 0.803 0.472

Bayesian (a+ b = 10) 0.3 0.35 96 0.04 0.81 0.809 0.460

DIP 0.3 0.40 100 0.03 0.95 0.804 0.097

Bayesian (Beta(1, 1)) 0.3 0.40 98 0.07 0.97 0.806 0.174

Bayesian (a+ b = 2) 0.3 0.40 96 0.01 0.96 0.806 0.167

Bayesian (a+ b = 6) 0.3 0.40 100 0.07 0.95 0.802 0.156

Bayesian (a+ b = 10) 0.3 0.40 97 0.01 0.95 0.819 0.145

DIP 0.3 0.45 65 0.05 0.97 0.828 0.050

Bayesian (Beta(1, 1)) 0.3 0.45 75 0.04 0.99 0.828 0.057

Bayesian (a+ b = 2) 0.3 0.45 72 0.02 0.99 0.813 0.052

Bayesian (a+ b = 6) 0.3 0.45 79 0.06 0.99 0.812 0.050

Bayesian (a+ b = 10) 0.3 0.45 76 0.03 0.98 0.830 0.050

DIP 0.3 0.50 36 0.07 0.97 0.808 0.050

Bayesian (Beta(1, 1)) 0.3 0.50 44 0.05 0.99 0.819 0.050

Bayesian (a+ b = 2) 0.3 0.50 47 0.02 0.99 0.812 0.050

Bayesian (a+ b = 6) 0.3 0.50 48 0.07 0.99 0.806 0.050

Bayesian (a+ b = 10) 0.3 0.50 40 0.05 0.97 0.805 0.050

a The Planned Sample Size

b Type I error is calculated under the null hypothesis p1 = p0
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Table S.2. Simulation Results for Bernoulli Cases - One Sample (p0 = 0.5)

Model p0 p1 Sample Sizea Futility Efficacy Power Type I Errorb

DIP 0.5 0.55 94 0.08 0.80 0.767 0.399

Bayesian (Beta(1, 1)) 0.5 0.55 96 0.05 0.82 0.802 0.480

Bayesian (a+ b = 2) 0.5 0.55 84 0.03 0.82 0.800 0.499

Bayesian (a+ b = 6) 0.5 0.55 95 0.03 0.83 0.801 0.450

Bayesian (a+ b = 10) 0.5 0.55 92 0.04 0.81 0.800 0.486

DIP 0.5 0.60 98 0.06 0.93 0.806 0.124

Bayesian (Beta(1, 1)) 0.5 0.60 97 0.02 0.96 0.816 0.189

Bayesian (a+ b = 2) 0.5 0.60 98 0.03 0.96 0.809 0.196

Bayesian (a+ b = 6) 0.5 0.60 97 0.07 0.95 0.803 0.178

Bayesian (a+ b = 10) 0.5 0.60 90 0.01 0.94 0.800 0.169

DIP 0.5 0.65 68 0.04 0.97 0.810 0.050

Bayesian (Beta(1, 1)) 0.5 0.65 82 0.09 0.99 0.806 0.056

Bayesian (a+ b = 2) 0.5 0.65 74 0.06 0.99 0.811 0.056

Bayesian (a+ b = 6) 0.5 0.65 79 0.02 0.99 0.812 0.051

Bayesian (a+ b = 10) 0.5 0.65 87 0.09 0.99 0.805 0.050

DIP 0.5 0.70 36 0.07 0.96 0.804 0.050

Bayesian (Beta(1, 1)) 0.5 0.70 48 0.02 0.99 0.819 0.050

Bayesian (a+ b = 2) 0.5 0.70 48 0.04 0.99 0.830 0.051

Bayesian (a+ b = 6) 0.5 0.70 49 0.08 0.99 0.812 0.050

Bayesian (a+ b = 10) 0.5 0.70 45 0.04 0.98 0.822 0.050

a The Planned Sample Size

b Type I error is calculated under the null hypothesis p1 = p0

77



Table S.3. Simulation Results for Bernoulli Cases - One Sample (p0 = 0.7)

Model p0 p1 Sample Sizea Futility Efficacy Power Type I Errorb

DIP 0.7 0.75 100 0.06 0.80 0.769 0.373

Bayesian (Beta(1, 1)) 0.7 0.75 81 0.05 0.82 0.804 0.443

Bayesian (a+ b = 2) 0.7 0.75 98 0.02 0.88 0.803 0.450

Bayesian (a+ b = 6) 0.7 0.75 88 0.09 0.85 0.804 0.459

Bayesian (a+ b = 10) 0.7 0.75 99 0.02 0.85 0.801 0.434

DIP 0.7 0.80 100 0.04 0.95 0.815 0.075

Bayesian (Beta(1, 1)) 0.7 0.80 97 0.05 0.97 0.808 0.131

Bayesian (a+ b = 2) 0.7 0.80 98 0.05 0.98 0.800 0.148

Bayesian (a+ b = 6) 0.7 0.80 100 0.05 0.98 0.803 0.124

Bayesian (a+ b = 10) 0.7 0.80 94 0.05 0.97 0.803 0.114

DIP 0.7 0.85 50 0.07 0.96 0.816 0.050

Bayesian (Beta(1, 1)) 0.7 0.85 70 0.01 0.99 0.850 0.050

Bayesian (a+ b = 2) 0.7 0.85 62 0.09 0.99 0.859 0.073

Bayesian (a+ b = 6) 0.7 0.85 63 0.02 0.99 0.834 0.050

Bayesian (a+ b = 10) 0.7 0.85 66 0.01 0.99 0.816 0.050

DIP 0.7 0.90 24 0.06 0.95 0.823 0.050

Bayesian (Beta(1, 1)) 0.7 0.90 37 0.08 0.99 0.830 0.050

Bayesian (a+ b = 2) 0.7 0.90 27 0.10 0.99 0.802 0.050

Bayesian (a+ b = 6) 0.7 0.90 38 0.03 0.99 0.851 0.050

Bayesian (a+ b = 10) 0.7 0.90 29 0.10 0.97 0.809 0.050

a The Planned Sample Size

b Type I error is calculated under the null hypothesis p1 = p0
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Table S.4. Simulation Results for Bernoulli Cases - Two Samples (p2 = 0.5)

Model p1 p2 Sample Sizea Futility Efficacy Power Type I Errorb

DIP 0.55 0.5 199 0.02 0.80 0.651 0.380

Bayesian (Beta(1, 1)) 0.55 0.5 200 0.01 0.83 0.805 0.589

Bayesian (a+ b = 2) 0.55 0.5 191 0.01 0.82 0.802 0.604

Bayesian (a+ b = 6) 0.55 0.5 196 0.02 0.80 0.811 0.585

Bayesian (a+ b = 10) 0.55 0.5 196 0.02 0.80 0.787 0.572

DIP 0.60 0.5 174 0.09 0.82 0.809 0.319

Bayesian (Beta(1, 1)) 0.60 0.5 196 0.03 0.91 0.804 0.390

Bayesian (a+ b = 2) 0.60 0.5 190 0.05 0.90 0.804 0.402

Bayesian (a+ b = 6) 0.60 0.5 187 0.05 0.89 0.819 0.374

Bayesian (a+ b = 10) 0.60 0.5 194 0.01 0.89 0.808 0.342

DIP 0.65 0.5 190 0.05 0.92 0.807 0.115

Bayesian (Beta(1, 1)) 0.65 0.5 193 0.01 0.97 0.809 0.182

Bayesian (a+ b = 2) 0.65 0.5 193 0.02 0.97 0.800 0.181

Bayesian (a+ b = 6) 0.65 0.5 195 0.02 0.96 0.802 0.148

Bayesian (a+ b = 10) 0.65 0.5 197 0.02 0.96 0.803 0.139

DIP 0.70 0.5 166 0.04 0.96 0.810 0.050

Bayesian (Beta(1, 1)) 0.70 0.5 168 0.01 0.99 0.823 0.066

Bayesian (a+ b = 2) 0.70 0.5 166 0.02 0.99 0.810 0.071

Bayesian (a+ b = 6) 0.70 0.5 175 0.01 0.99 0.802 0.050

Bayesian (a+ b = 10) 0.70 0.5 193 0.05 0.99 0.800 0.051

a The Planned Sample Size

b Type I error is calculated under the null hypothesis p1 = p2
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Fig. S.3. Simulation Results for Bernoulli Cases - One Sample (p0 = 0.5)
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Fig. S.5. Simulation Results for Poisson Cases (λ0 = 0.5)
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Fig. S.6. Simulation Results for Poisson Cases (λ0 = 5)
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Fig. S.7. Simulation Results for Normal Cases with Known Variance (s = 15)
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Appendix C

R CODE RELEVANT TO CHAPTER 3

Assess Predictive Consistency - Variance Ratio and Precision Ratio methods

# Monte Carlo sampling approach to calculate the posterior

rm(list = ls())

set.seed(202210)

nu0 = 10

k0 = 10

s20 = 0.01

mu0 = 1.9

N = 1000

s21 <- 1/rgamma(1, nu0/2, nu0*s20/2)

mu1 <- rnorm(1, mu0, sqrt(s21/k0))

y<-rnorm(N, mean=mu1, sd=sqrt(s21)) # observed data

n<-length(y)

s2<-var(y)

ybar<-mean(y)

kn <- k0+n

nun <- nu0+n

s2n<-(1/nun)*(nu0*s20+(n-1)*s2+k0*n*(ybar-mu0)^2/(kn))

s2.post<-1/rgamma(10000,nun/2, s2n*nun/2)

mu.post<-rnorm(10000,(k0*mu0+n*ybar)/kn,sqrt(s2.post/kn))

mu.p <- mean(mu.post)

s2.p <- mean(s2.post)

# ------------------------------Calculate ESS-----------------------------------

# VR

VR.mu = (kn*nun*s2n) / ( (nun - 2)*s2.p )

VR.mu.prior = (k0*nu0) / (nu0 - 2)

print(round(c(VR.mu.prior, VR.mu), 0))

VR.s2 = nun - 2

VR.s2.prior = nu0 - 2

print(round(c(VR.s2.prior, VR.s2), 0))

# PR

PR.mu = (kn*s2n) / s2.p

PR.mu.prior = k0

print(round(c(PR.mu.prior, PR.mu), 0))
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PR.s2 = ( (nun - 2)^2*(nun - 4) ) / ( nun * (nun + 2) )

PR.s2.prior = ( (nu0 - 2)^2*(nu0 - 4) ) / ( nu0 * (nu0 + 2) )

print(round(c(PR.s2.prior, PR.s2), 0))

Assess Predictive Consistency - ELIR method

# Monte Carlo sampling approach to calculate the # Monte Carlo sampling approach to calculate the posterior

set.seed(202210)

rm(list = ls())

nu0 = 1

k0 = 1

s20 = 0.01

mu0 = 1.9

N = 50

elir <- NULL

elir.pr <- NULL

n.sim <- 10000

for (ss in 1:n.sim) {

s21 <- 1/rgamma(1, nu0/2, nu0*s20/2)

mu1 <- rnorm(1, mu0, sqrt(s21/k0))

y<-rnorm(N, mean=mu1, sd=sqrt(s21)) # observed data

n<-length(y)

s2<-var(y)

ybar<-mean(y)

kn <- k0+n

nun <- nu0+n

s2n<-(1/nun)*(nu0*s20+(n-1)*s2+k0*n*(ybar-mu0)^2/(kn))

s2.post<-1/rgamma(10000,nun/2, s2n*nun/2)

mu.post<-rnorm(10000,(k0*mu0+n*ybar)/kn,sqrt(s2.post/kn))

mu.p <- mean(mu.post)

s2.p <- mean(s2.post)

# ------------------------------Calculate Expected ESS-----------------------------------

# ELIR

ELIR.pr = -nu0 - 3 + 2 * k0 * (mu1 - mu0)^2 / s21 + 2*nu0*s20/s21 # prior ESS

ELIR.s2 = N - nu0 - 3 + 2 * k0 * (mu.p - mu0)^2 / s2.p + 2*nu0*s20/s2.p # posterior ESS

elir.pr = append(elir.pr, ELIR.pr)

elir <- append(elir, ELIR.s2)

}
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# Expected ELIR

round(mean(elir.pr), 0)

round(mean(elir), 0)
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Appendix D

R CODE RELEVANT TO CHAPTER 4

One-sample Normal distribution (both mean and variance unknown) with DIP approach

# Low prior variance and Low observed response variability

sig0<-12 #prior sample sd

sig1<-12 #observed sample sd

d<-0

# simulation size

n.sim = 10000

# mean

meanAll = rbind(c(100,90),

c(100,95),

c(100,98),

c(100,100))

mean.labels = apply(meanAll, 1, function(e)

paste("mu0=", e[1], " mu1=", e[2]))

# planned N

Nall = seq(from=10, to=100, by=1)

# tune parameter

pfAll = seq(from=0.01, to=0.10, by=0.01)

psAll = seq(from=0.80, to=0.99, by=0.01)

outAll = matrix(ncol=11, nrow=nrow(rbind(meanAll))*length(psAll)*length(pfAll)*length(Nall))

colnames(outAll) = c("mu0", "mu1", "sig0", "sig1", "N",

"p_s", "p_f", "power", "n", "SD", "futility")

check = 0

for( j.mean in 1:nrow(meanAll)){

for(j.N in 1:length(Nall)){

for(j.ps in 1:length(psAll)){

for(j.pf in 1:length(pfAll)){

check = check+1

mu0 = meanAll[j.mean, 1]

mu1 = meanAll[j.mean, 2]

N = Nall[j.N]

p_s = psAll[j.ps]

p_f = pfAll[j.pf]

v<-1000

cat1s<-0

cat1f<-0

sample_size<-NULL

mu1_s<-NULL
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s1_inv<-NULL

s1<-NULL

for(i in 1:n.sim){

y<-NULL

j<-0

cat<-0

cats<-0

catf<-0

pp_stop<-0.5

while(cat==0){

j<-j+1

y<-append(y,rnorm(1,mu1,sig1))

y_sd<-sd(y)

y_mean<-mean(y)

n1<-length(y)

#Early Termination Trigger (With Bayesian Prior)

if(j>=10){

k0<-N-j #DIP

nu0<-3+(N-j) #DIP - nuisance parameter

kn<-k0+j

nun<- nu0+j

sig1_n<-(1/nun)*(nu0*sig0^2+(j-1)*y_sd^2+k0*(j)*(1/kn)*(y_mean-mu0)^2)

s1_inv<-rgamma(v,nun/2,nun*sig1_n/2)

s1<-1/s1_inv

mu1_s<-rnorm(v,(k0*mu0+j*y_mean)/kn,sqrt(s1/kn))

mu1_s[is.na(mu1_s)]<-mean(y)

pp_stop<-sum(mu1_s<mu0-d)/v

}

if(pp_stop>=p_s){cats<-1}

if(pp_stop<p_f){catf<-1}

cat<-cats+catf

if(j==N){cat<-1}

}

#Calculation of posterior probability of efficacy

if(cats==1){cat1s<-cat1s+1}

if(cats==0){cat1s<-cat1s}

if(catf==1){cat1f<-cat1f+1}

if(catf==0){cat1f<-cat1f}

sample_size = append(sample_size, j)

}

outAll[check,c("power")] = cat1s/n.sim

outAll[check,c("n")] = round(mean(sample_size),1.)

outAll[check,c("SD")] = round(sd(sample_size),2.)

outAll[check,c("futility")] = cat1f/n.sim

outAll[check,c("mu0")] = mu0

89



outAll[check,c("mu1")] = mu1

outAll[check,c("sig0")] = sig0

outAll[check,c("sig1")] = sig1

outAll[check,c("N")] = N

outAll[check,c("p_s")] = p_s

outAll[check,c("p_f")] = p_f

}

}

}

}

One-sample Weibull distribution (both shape and rate unknown) with DIP approach

# Here the parameters

rate0 <- 0.69

rate1 <- 0.29

shape0 <- 0.5 # common shape with different scale parameters

shape1 <- 0.5

nsim <- 1000

rp <- 1

jags.file <- paste("wb_",shape0,"_",rate1,"_",rp,".txt",sep = "")

library(coda)

library(rjags)

#Define the model

cat("model

{

for(i in 1:j){

is.censoredp[i] ~ dinterval(t[i], t.cens[i])

t[i] ~ dweib(shape, (1/rate)^shape)

}

rate ~ dgamma(a,b)

shape ~ dgamma(a,b)

}", file=jags.file

)

# the median survival time for the Weibull distribution

m0 <- (1/rate0*log(2))^(1/shape0)

maxT<-4 #maximum time

N_v<-NULL

shape0_v<-NULL

shape1_v<-NULL

rate0_v<-NULL

rate1_v<-NULL
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p_f_v<-NULL

p_s_v<-NULL

power_v<-NULL

fut_stop<-NULL

ss_v <- NULL # sample size

std_v <- NULL # standard deviation

for(N in seq(from=10, to=100, by=1) ){

for (p_f in seq(from=0.01, to=0.10, by=0.01) ){

for (p_s in seq(from=0.80, to=0.99, by=0.01) ){

s<-nsim

cat1s<-0

cat1f<-0

check<-0

sample_size<-NULL

datalist<-list()

for(k in seq(from=1,to=s,by=1)){

check<-check+1

surt<-NULL

surt.cens<-NULL

t<-NULL # survival time to be passed into JAGS

t.cens<-NULL # censoring time to be passed into JAGS

j<-0

cat<-0

cats<-0

catf<-0

pp_stop<-0.5

sample_size <- NULL

while(cat==0){

# enroll subjects

j<-j+1

surt<-append(surt, rweibull(1,shape=shape1,scale=1/rate1))

if((j>=10&j<=N)){

n1<-length(surt)

surt.cens<-rpois(n1,2) # censoring time - predetermined
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surt.cens[surt.cens >= maxT] <- maxT # right censoring

t <- surt

t[surt >= surt.cens] <- NA # censored observations are NA in the survival times

t.cens <- surt.cens

t.cens[surt < surt.cens] <- 0 # If a failure was observed

# data<-cbind(t, t.cens)

#JAGS

a <- N-j+1

b <- (N-j+1)/m0

datalist <- list(t=t, t.cens = t.cens, j=j, a=a, b=b)

jagsModel <- jags.model(file=jags.file, data=datalist, n.chains=1, n.adapt=500)

codaSample <- coda.samples(jagsModel, variable.names = c("shape", "rate"),

n.iter=2000)

rate.s<-as.vector(unlist(codaSample[,1]))

shape.s<-as.vector(unlist(codaSample[,2]))

m1 <- (1/rate.s*log(2))^(1/shape.s)

pp_stop<-mean(ifelse(m1>m0,1,0))

}

if(pp_stop>=p_s){cats<-1}

if(pp_stop<p_f){catf<-1}

cat<-cats+catf

if(j==N){cat<-1}

}

#Calculation of posterior probability of efficacy

if(cats==1){cat1s<-cat1s+1}

if(cats==0){cat1s<-cat1s}

if(catf==1){cat1f<-cat1f+1}

if(catf==0){cat1f<-cat1f}

sample_size = append(sample_size, j)

}

shape0_v<-append(shape0_v,shape0)

shape1_v<-append(shape1_v,shape1)

rate0_v<-append(rate0_v,rate0)

rate1_v<-append(rate1_v,rate1)

p_f_v<-append(p_f_v,p_f)

p_s_v<-append(p_s_v,p_s)

power_v<-append(power_v,cat1s/nsim)
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fut_stop<-append(fut_stop, cat1f/nsim)

N_v<-append(N_v, N)

ss_v <- append(ss_v, mean(sample_size))

std_v <- append(std_v, sd(sample_size))

}

}

}
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Appendix E

CHAPTER 4 SUPPLEMENTAL MATERIALS

Table S.5. Simulation Results for Normal Cases (Mean and Variance Unknown) - High Prior

Variance and High Observed Reponse Variability

Model µ0 µ1 σ0 σ1 Na n (SD)b Futility (%c) Efficacy Power Type I Errord

DIP 100 80 30 30 19 14 (3.3) 0.09 (0) 0.97 0.860 0.050

Bayesian (κ0 = 2) 100 80 30 30 43 17 (8.0) 0.05 (0) 0.99 0.985 0.050

Bayesian (κ0 = 6) 100 80 30 30 19 13 (3.5) 0.10 (0) 0.96 0.833 0.050

Bayesian (κ0 = 10) 100 80 30 30 21 14 (4.0) 0.05 (0) 0.95 0.867 0.050

DIP 100 90 30 30 66 45 (14.2) 0.08 (0.06%) 0.97 0.841 0.051

Bayesian (κ0 = 2) 100 90 30 30 72 41 (22.0) 0.01 (0) 0.99 0.806 0.059

Bayesian (κ0 = 6) 100 90 30 30 81 46 (23.3) 0.09 (1.11%) 0.99 0.823 0.050

Bayesian (κ0 = 10) 100 90 30 30 67 40 (18.7) 0.10 (0.93%) 0.98 0.804 0.056

DIP 100 95 30 30 99 60 (27.5) 0.01 (0.02%) 0.87 0.806 0.236

Bayesian (κ0 = 2) 100 95 30 30 100 45 (34.5) 0.01 (0.65%) 0.92 0.803 0.324

Bayesian (κ0 = 6) 100 95 30 30 97 46 (33.0) 0.02 (0.86%) 0.91 0.801 0.302

Bayesian (κ0 = 10) 100 95 30 30 96 45 (31.8) 0.05 (1.96%) 0.90 0.800 0.299

a The planned sample size

b The expected sample size (standard deviation)

c The percentage of stopping the trial for futility

d Type I error is calculated under the null hypothesis µ1 = µ0
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Table S.6. Simulation Results for Normal Cases (Mean and Variance Unknown) - Overesti-

mating Prior

Model µ0 µ1 σ0 σ1 Na n (SD)b Futility (%c) Efficacy Power Type I Errord

DIP 100 90 30 12 34 20 (3.7) 0.08 (0) 0.92 0.999 0.050

Bayesian (κ0 = 2) 100 90 30 12 10 10 ( 0 ) 0.09 (0) 0.89 0.823 0.050

Bayesian (κ0 = 6) 100 90 30 12 21 12 (3.0) 0.10 (0) 0.94 0.969 0.050

Bayesian (κ0 = 10) 100 90 30 12 22 13 (3.2) 0.09 (0) 0.93 0.977 0.050

DIP 100 95 30 12 45 36 ( 6.3) 0.08 (0) 0.93 0.876 0.050

Bayesian (κ0 = 2) 100 95 30 12 100 37 (21.0) 0.03 (0) 0.99 0.982 0.050

Bayesian (κ0 = 6) 100 95 30 12 69 34 (16.6) 0.10 (0.26%) 0.98 0.929 0.050

Bayesian (κ0 = 10) 100 95 30 12 55 32 (13.5) 0.04 (0) 0.97 0.882 0.050

DIP 100 98 30 12 100 76 (19.6) 0.01 (0.01%) 0.82 0.801 0.202

Bayesian (κ0 = 2) 100 98 30 12 98 47 (33.1) 0.01 (0.30%) 0.91 0.801 0.297

Bayesian (κ0 = 6) 100 98 30 12 99 48 (32.7) 0.03 (0.68%) 0.90 0.804 0.284

Bayesian (κ0 = 10) 100 98 30 12 99 49 (32.2) 0.04 (0.62%) 0.89 0.805 0.279

a The planned sample size

b The expected sample size (standard deviation)

c The percentage of stopping the trial for futility

d Type I error is calculated under the null hypothesis µ1 = µ0
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Table S.7. Simulation Results for Normal Cases (Mean and Variance Unknown) - Underesti-

mating Prior

Model µ0 µ1 σ0 σ1 Na n (SD)b Futility (%c) Efficacy Power Type I Errord

DIP 100 80 15 30 16 12 (2.5) 0.09 (0.07%) 0.98 0.807 0.055

Bayesian (κ0 = 2) 100 80 15 30 34 16 (7.1) 0.02 (0) 0.99 0.957 0.050

Bayesian (κ0 = 6) 100 80 15 30 71 20 (8.7) 0.03 (0) 0.99 0.999 0.050

Bayesian (κ0 = 10) 100 80 15 30 25 15 (5.0) 0.01 (0) 0.96 0.919 0.050

DIP 100 90 15 30 64 39 (16.9) 0.10 (0.60%) 0.98 0.827 0.063

Bayesian (κ0 = 2) 100 90 15 30 71 38 (21.9) 0.10 (2.13%) 0.99 0.804 0.064

Bayesian (κ0 = 6) 100 90 15 30 85 46 (24.6) 0.09 (1.14%) 0.99 0.844 0.050

Bayesian (κ0 = 10) 100 90 15 30 90 50 (24.8) 0.09 (0.69%) 0.99 0.861 0.052

DIP 100 95 15 30 100 50 (31.1) 0.09 (2.82%) 0.90 0.804 0.268

Bayesian (κ0 = 2) 100 95 15 30 98 42 (33.2) 0.03 (2.69%) 0.92 0.802 0.318

Bayesian (κ0 = 6) 100 95 15 30 98 44 (33.0) 0.04 (2.23%) 0.91 0.802 0.313

Bayesian (κ0 = 10) 100 95 15 30 99 43 (32.1) 0.09 (5.08%) 0.90 0.801 0.305

a The planned sample size

b The expected sample size (standard deviation)

c The percentage of stopping the trial for futility

d Type I error is calculated under the null hypothesis µ1 = µ0
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Appendix F

R CODE RELEVANT TO CHAPTER 5

One-sample Bernoulli distribution

# ------------------------------------------------------------------------------

# prior --> list containing the information for prior

# [[1]] - the prior distribution type:

# 1 - DIP

# 2 - Beta(a,b)

# [[2]] - a: first parameter of the Beta distribution

# [[3]] - b: second parameter of the Beta distribution

# ------------------------------------------------------------------------------

#’ One sample Bernoulli model

#’

#’ For a given planned sample size, the efficacy and futility boundaries,

#’ return the power, the type I error, the expected sample size and its

#’ standard deviation, the probability of reaching the efficacy and futility boundaries.

#’

#’

#’ @param prior A list of length 3 containing the distributional information of the prior.

#’ The first element is a number specifying the type of prior. Options are

#’ \enumerate{

#’ \item DIP ;

#’ \item Beta(a,b), where a = shape, b = scale}

#’ The second and third elements of the list are the parameters a and b, respectively.

#’ @param N The planned sample size.

#’ @param p0 The null response rate, which could be taken as the standard or historical rate.

#’ @param p1 The response rate of the new treatment.

#’ @param d The target improvement (minimal clinically meaningful difference).

#’ @param ps The efficacy boundary (upper boundary).

#’ @param pf The futility boundary (lower boundary).

#’ @param alternative less (lower values imply greater efficacy) or greater (larger

#’ values imply greater efficacy).

#’ @param seed The seed for simulations.

#’ @param sim The number of simulations.

#’ @return A list of the arguments with method and computed elements

#’ @examples

#’ # with traditional Bayesian prior Beta(1,1)

#’ OneSampleBernoulli(list(2,1,1), N = 100, p0 = 0.3, p1 = 0.5, d = 0.05,

#’ ps = 0.98, pf = 0.05, alternative = "greater",
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#’ seed = 202210, sim = 10)

#’ # with DIP

#’ OneSampleBernoulli(list(1,0,0), N = 100, p0 = 0.3, p1 = 0.5, d = 0.05,

#’ ps = 0.98, pf = 0.05, alternative = "greater",

#’ seed = 202210, sim = 10)

#’ @importFrom stats rbeta rbinom rgamma rnorm rpois

#’ @export OneSampleBernoulli

OneSampleBernoulli <- function(prior, N = 100, p0, p1, d = 0,

ps = 0.95, pf = 0.05,

alternative = c("less", "greater"), seed = 202209, sim = 5000)

{

alternative <- match.arg(alternative)

# Define the inputs

if(prior[[1]] == 1){

prior[[2]] <- NA

prior[[3]] <- NA}

## N limit

if(!is.null(N) && (!is.numeric(N) || N <= 0 ))

stop("N must be positive number and greater than 10")

## p0 limit

if(!is.null(p0) && (!is.numeric(p0) || (p0 < 0 | p0 > 1)))

stop("p0 must be numeric in [0,1]")

## p1 limit

if(!is.null(p1) && (!is.numeric(p1) || (p1 < 0 | p1 > 1)))

stop("p1 must be numeric in [0,1]")

## d limit

if(!is.null(d) && (!is.numeric(d) || (d < 0 | d > abs(p1-p0))))

stop("d must be numeric in [0, |p1-p0|]")

## efficacy boundary limit

if(!is.null(ps) && (!is.numeric(ps) || (ps < 0.8 | ps > 1)))

stop("ps (efficacy boundary) must be numeric in [0.8,1]")

## futility boundary limit

if(!is.null(pf) && (!is.numeric(pf) || (pf < 0 | pf > 0.2)))

stop("pf (futility boundary) must be numeric in [0,0.2]")

## set.seed

if(!is.numeric(seed))

stop("seed must be numeric")

## number of simulation

if(!is.numeric(sim))

stop("simulation number must be numeric")

set.seed(seed)

# Functions to calculate the posterior
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Bernoulli <- function(a,b,y){posterior<-rbeta(1000, a+sum(y), b+(length(y)-sum(y)))}

Bernoulli.DIP <- function(p0, y, N){

j<-length(y)

posterior<-rbeta(1000,1+sum(y)+p0*(N-j),1+(j-sum(y))+(1-p0)*(N-j))

}

# Simulated Data

# calculate power

n.enrolled <- NULL

cat1s <- 0

cat1f <- 0

for (k in 1:sim) {

y.data<-NULL

j<-0

cat<-0

cats<-0

catf<-0

pp_stop<-0.5

while(cat == 0)

{

j<-j+1

y.data<-append(y.data,rbinom(1,1,p1))

if(j>=10)

{

if (prior[[1]] == 2){

p1_s<-Bernoulli(a = prior[[2]], b = prior[[3]], y = y.data)

}else if (prior[[1]] == 1){

p1_s <- Bernoulli.DIP(p0, y = y.data, N = N)

}

if (alternative == "greater"){

pp_stop<-sum(p1_s>p0+d)/length(p1_s)

}else if (alternative == "less"){

pp_stop<-sum(p1_s<p0-d)/length(p1_s)

}

}

if(pp_stop>=ps){cats<-1}

if(pp_stop<pf){catf<-1}

cat<-cats+catf

if(j==N){cat<-1}

}

if(cats==1){cat1s<-cat1s+1}

if(cats==0){cat1s<-cat1s}

if(catf==1){cat1f<-cat1f+1}
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if(catf==0){cat1f<-cat1f}

# Recruited Sample Size

n.enrolled <- append(n.enrolled, j)

}

ss <- round(mean(n.enrolled), digits = 1)

sd <- round(sd(n.enrolled), digits = 2)

fut.rate <- cat1f/sim

power <- cat1s/sim

# calculate type I error

cat1s <- 0

cat1f <- 0

for (k in 1:sim) {

y.data<-NULL

j<-0

cat<-0

cats<-0

catf<-0

pp_stop<-0.5

while(cat == 0)

{

j<-j+1

y.data<-append(y.data,rbinom(1,1,p0)) # under the null hypothesis p1 = p0

if(j>=10)

{

if (prior[[1]] == 2){

p1_s<-Bernoulli(a = prior[[2]], b = prior[[3]], y = y.data)

}else if (prior[[1]] == 1){

p1_s <- Bernoulli.DIP(p0, y = y.data, N = N)

}

if (alternative == "greater"){

pp_stop<-sum(p1_s>p0+d)/length(p1_s)

}else if (alternative == "less"){

pp_stop<-sum(p1_s<p0-d)/length(p1_s)

}

}

if(pp_stop>=ps){cats<-1}

if(pp_stop<pf){catf<-1}

cat<-cats+catf

if(j==N){cat<-1}

}

105



if(cats==1){cat1s<-cat1s+1}

if(cats==0){cat1s<-cat1s}

if(catf==1){cat1f<-cat1f+1}

if(catf==0){cat1f<-cat1f}

}

t1error <- cat1s/sim

# Outputs

if (prior[[1]] == 1) {method = "DIP"

} else if (prior[[1]] == 2) {method=paste("Beta(",prior[[2]],",",prior[[3]], ")",sep="")}

z <- list(method = method, power = power, type_I_error = t1error,

expected_sample_size = ss, expected_sample_size_std = sd,

the_prob_efficacy = power, the_prob_futility = fut.rate)

z

}

One-sample Bernoulli distribution - Trial Design

# ------------------------------------------------------------------------------

#

# prior --> list containing the information for prior

# [[1]] - the prior distribution type:

# 1 - DIP

# 2 - Beta(a,b)

# [[2]] - a: first parameter of the Beta distribution

# [[3]] - b: second parameter of the Beta distribution

#

#

# ------------------------------------------------------------------------------

#’ One sample Bernoulli model - Trial Design

#’

#’ Calculate the minimum planned sample size under an admissible design.

#’ The users decide the power and type-I-error, and pick the efficacy and futility boundaries.

#’ If there are no admissible design based on controlled type-I-error, then default to output

#’ the designs with the lowest type-I-error and at least the user-defined (e.g. 80\%) power.

#’

#’

#’ @param prior A list of length 3 containing the distributional information of the prior.

#’ The first element is a number specifying the type of prior. Options are

#’ \enumerate{

#’ \item DIP ;

#’ \item Beta(a,b), where a = shape, b = scale}
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#’ The second and third elements of the list are the parameters a and b, respectively.

#’ @param nmin The start searching sample size

#’ @param nmax The stop searching sample size

#’ @param p0 The null response rate, which could be taken as the standard or historical rate.

#’ @param p1 The response rate of the new treatment.

#’ @param d The target improvement (minimal clinically meaningful difference).

#’ @param ps The efficacy boundary (upper boundary).

#’ @param pf The futility boundary (lower boundary).

#’ @param power The power to achieve.

#’ @param t1error The controlled type-I-error.

#’ @param alternative less (lower values imply greater efficacy) or greater (larger

#’ values imply greater efficacy).

#’ @param seed The seed for simulations.

#’ @param sim The number of simulations.

#’ @return A list of the arguments with method and computed elements.

#’ @examples

#’ \donttest{

#’ # with traditional Bayesian prior Beta(1,1)

#’ OneSampleBernoulli.Design(list(2,1,1), nmin = 10, nmax=100, p0 = 0.3, p1 = 0.5, d = 0,

#’ ps = 0.98, pf = 0.02, power = 0.80, t1error=0.05,

#’ alternative = "greater", seed = 202210, sim = 10)

#’ # with DIP

#’ OneSampleBernoulli.Design(list(1,0,0), nmin = 10, nmax=100, p0 = 0.3, p1 = 0.5, d = 0,

#’ ps = 0.98, pf = 0.02, power = 0.80, t1error=0.05,

#’ alternative = "greater", seed = 202210, sim = 10)

#’ }

#’ @importFrom stats rbeta rbinom rgamma rnorm rpois

#’ @export OneSampleBernoulli.Design

OneSampleBernoulli.Design <- function(prior, nmin = 10, nmax = 100, p0, p1, d = 0,

ps, pf, power = 0.8, t1error = 0.05,

alternative = c("less", "greater"), seed = 202209, sim = 1000)

{

alternative <- match.arg(alternative)

# Define the inputs

if(prior[[1]] == 1){

prior[[2]] <- NA

prior[[3]] <- NA}

## nmin limit

if(!is.null(nmin) && (!is.numeric(nmin) || nmin < 10 || nmin >= nmax))

stop("nmin must be positive number and at least 10")

## nmax limit

if(!is.null(nmax) && (!is.numeric(nmax) || nmax <= nmin || nmax >= 200))

stop("nmax must greater than ’nmin’ and less than 200")

## p0 limit
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if(!is.null(p0) && (!is.numeric(p0) || (p0 < 0 | p0 > 1)))

stop("p0 must be numeric in [0,1]")

## p1 limit

if(!is.null(p1) && (!is.numeric(p1) || (p1 < 0 | p1 > 1)))

stop("p1 must be numeric in [0,1]")

## d limit

if(!is.null(d) && (!is.numeric(d) || (d < 0 | d > abs(p1-p0))))

stop("d must be numeric in [0, |p1-p0|]")

## efficacy boundary limit

if(!is.null(ps) && (!is.numeric(ps) || (ps < 0.8 | ps > 1)))

stop("ps (efficacy boundary) must be numeric in [0.8,1]")

## futility boundary limit

if(!is.null(pf) && (!is.numeric(pf) || (pf < 0 | pf > 0.2)))

stop("pf (futility boundary) must be numeric in [0,0.2]")

## power limit

if(!is.null(power) && (!is.numeric(power) || (power < 0 | power > 1)))

stop("power must be numeric in [0,1]")

## t1error limit

if(!is.null(t1error) && (!is.numeric(t1error) || (t1error < 0 |t1error > 1)))

stop("type-I-error must be numeric in [0,1]")

## set.seed

if(!is.numeric(seed))

stop("seed must be numeric")

if(!is.numeric(sim))

stop("simulation number must be numeric")

set.seed(seed)

# Functions to calculate the posterior

Bernoulli <- function(a,b,y){posterior<-rbeta(1000, a+sum(y), b+(length(y)-sum(y)))}

Bernoulli.DIP <- function(p0, y, N){

j<-length(y)

posterior<-rbeta(1000,1+sum(y)+p0*(N-j),1+(j-sum(y))+(1-p0)*(N-j))

}

# Simulated Data

# calculate N that can achieve the power

N_v <- NULL

power_v <- NULL

n_v <- NULL

sd_v <- NULL

for (N in seq(from=nmin, to=nmax, by=1)){

cat1s <- 0

cat1f <- 0

n.enrolled <- NULL
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for (k in 1:sim) {

y.data <- NULL

j <- 0

cat <- 0

cats <- 0

catf <- 0

pp_stop <- 0.5

while(cat == 0){

j <- j+1

y.data <- append(y.data, rbinom(1,1,p1))

if(j>=10)

{

if (prior[[1]] == 2){

p1_s<-Bernoulli(a = prior[[2]], b = prior[[3]], y = y.data)

}else if (prior[[1]] == 1){

p1_s <- Bernoulli.DIP(p0, y = y.data, N = N)

}

if (alternative == "greater"){

pp_stop<-sum(p1_s>p0+d)/length(p1_s)

}else if (alternative == "less"){

pp_stop<-sum(p1_s<p0-d)/length(p1_s)

}

}

if(pp_stop>=ps){cats<-1}

if(pp_stop<pf){catf<-1}

cat<-cats+catf

if(j==N){cat<-1}

}

if(cats==1){cat1s<-cat1s+1}

if(cats==0){cat1s<-cat1s}

if(catf==1){cat1f<-cat1f+1}

if(catf==0){cat1f<-cat1f}

# Recruited Sample Size

n.enrolled <- append(n.enrolled, j)

}

power.cal <- cat1s/sim

jitter <- 0.01

if (power.cal >= power-jitter){

N_v <- append(N_v, N)

power_v <- append(power_v, power.cal)

n_v <- append(n_v, round(mean(n.enrolled), 0))

sd_v <- append(sd_v, round(sd(n.enrolled), 1))
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}

result1 <- cbind(N_v, power_v, n_v, sd_v)

} # End of power calculation

if (is.null(result1)){

message("Suggest: please adjust your input values!")

stop(paste("No sample size in the range [",nmin,",",nmax,"] can achieve ",power*100,"% power",

sep=""))

}

# calculate type I error

nmin1 <- N_v[which.min(N_v)] # start minimum sample size in calculation of exact type I error

N_v <- NULL

t1error_v <- NULL

for (N in seq(from=nmin1, to=nmax, by=1)){

cat1s <- 0

cat1f <- 0

for (k in 1:sim) {

y.data <- NULL

j <- 0

cat <- 0

cats <- 0

catf <- 0

pp_stop <- 0.5

while(cat == 0){

j <- j+1

y.data <- append(y.data, rbinom(1,1,p0)) # under the null hypothesis p1 = p0

if(j>=10)

{

if (prior[[1]] == 2){

p1_s<-Bernoulli(a = prior[[2]], b = prior[[3]], y = y.data)

}else if (prior[[1]] == 1){

p1_s <- Bernoulli.DIP(p0, y = y.data, N = N)

}

if (alternative == "greater"){

pp_stop<-sum(p1_s>p0+d)/length(p1_s)

}else if (alternative == "less"){

pp_stop<-sum(p1_s<p0-d)/length(p1_s)

}

}

if(pp_stop>=ps){cats<-1}

if(pp_stop<pf){catf<-1}

cat<-cats+catf

if(j==N){cat<-1}
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}

if(cats==1){cat1s<-cat1s+1}

if(cats==0){cat1s<-cat1s}

if(catf==1){cat1f<-cat1f+1}

if(catf==0){cat1f<-cat1f}

}

t1error.cal <- cat1s/sim

N_v <- append(N_v, N)

t1error_v <- append(t1error_v, t1error.cal)

result2 <- cbind(N_v, t1error_v)

} # End of Type-I-error calculation

# Outputs

if (!is.null(result1) & !is.null(result2)){

result <- merge(result1, result2, by=c("N_v"))

final <- as.data.frame(result)

# select the lowest/best-controlled type I error

final$diff <- abs(final$t1error_v - t1error)

final <- final[order(final$diff, final$t1error_v, final$power_v, final$N_v), ]

ff <- final[1,]

planN <- ff$N_v

exact.power <- ff$power_v

exact.t1 <- ff$t1error_v

ss <- ff$n_v

sd <- ff$sd_v

if (prior[[1]] == 1) {method = "DIP"

} else if (prior[[1]] == 2) {method=paste("Beta(",prior[[2]], ",", prior[[3]], ")", sep="")

}

z <- list(method = method, planned_sample_size = planN,

efficacy_boundary = ps, futility_boundary = pf,

exact_power = exact.power, exact_type_I_error = exact.t1,

expected_sample_size = ss, expected_sample_size_std = sd)

z

} # End of Outputs

}
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