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Abstract

Reassessing Replication: Addressing the Replication Crisis from a Statistical Perspective

Alicia Richards

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2023

Director: Robert A. Perera, PhD., Associate Professor, Department of Biostatistics

Introduction: In 2015 a study titled “Estimating the Reproducibility of Psychological

Science” replicated 100 studies from the psychology literature and found astonishingly

low replication rates. Since the article was published, researchers have suggested factors

that may have influenced the low rates, including publication bias, and underpowered

studies, among others. The definitions used to decide whether or not a replication study

was successful all suffer from flaws. Therefore, we propose a new metric for assessing

replication and compare it to existing metrics. The new metric has several advantages,

including allowing estimates of the likelihood a study was a successful replication rather

than forcing a binary choice and accounting for study design limitations. Therefore, this

research aims to design a new statistical metric to assess replication on a continuous

scale and compare this metric to current metrics.
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Methods: Using equivalence study techniques, we will first propose a new metric to

assess replication, defining a successful replication as one where either the replicated

study’s effect size falls within an original study’s effect size equivalence margin or the

difference in original and replicated effect sizes falls with the equivalence margin

centered around zero. We will then compare our metric to current metrics using the

Reproducibility Project data. Following this, we will extend this approach to multiple

studies using meta-analysis and multivariate methods. Lastly, we will design a survey to

assess replication qualitatively. This survey will collect demographic information,

provide vignettes of study results where respondents will rank and use multiple metrics,

and evaluate attitudes about the metrics provided.

Results: We found that when assessing replication on a continuous scale more

information on a study’s probability of replication is provided. Additionally, we

discovered a study’s probability of replication is highly impacted by the study’s design

elements such as sample size, effect size, and power. When extending the equivalence

metric to multiple studies, the replication probabilities decreased as the variance

between studies played a larger role.

Discussion: Using equivalence study techniques to assess replication supplies much

more information than the current metrics provide and helps overcome many of the

limitations of current metrics. Regardless of the number of studies, the metric produced

improved replication rates by accounting for various study design limitations.

Keywords: Replication, Underpowered Studies, Publication Bias, Equivalence Studies
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Chapter 1

Introduction

Replication, sometimes referred to as reproducibility, is considered a distinguishing

feature of science. For this dissertation, replication is defined as researchers obtaining

consistent results using newly collected data and code following the population and

protocol from the original study while reproducibility refers to researchers obtaining

consistent results using the same data and code from the original study1 2. For decades,

scientists have used replication to confirm the validity and generalizability of research

findings. In 1979, Braude stated that reproducibility and replication are ”demarcation

criterion between science and non-science”3. Thirty years later Schmidt added to

Braudes ideas saying ”to confirm results or hypotheses by a repetition procedure is at

the basis of any scientific conception”4. Based on Braude, Schmidt and many other

researchers approaches to replication, it is argued that when a study does not replicate,

it is not reliable or valid3. Over the last few decades, concerns about reproducibility

and replication have been highlighted in most, if not all, research fields leading to a

potential replication crisis in science.

The awareness of the potential replication crisis grew in the 2010s due to a concern of

a lack of replication in the social sciences5. It has led to renewed interest in the conduct

1



and analysis of replication studies. In simplest terms, the replication crisis is an ongoing

problem where research findings cannot be reproduced or replicated. Some suspected

causes of the crisis include the absence of replication studies in published literature, the

existence of publication bias and questionable research practices and statistics, and the

lack of transparency in published papers6. As a result, from these problems and many

others, the potential replication crisis has caused a lack of trust in scientific literature7.

Due to alarming low replication rates in published literature, the replication crisis has

expanded dramatically in the last decade. As the concerns have grown, many potential

reasons for the low replication rates have been researched8. However, even with the

abundance of new research about the replication crisis, there is little research about better

approaches, metrics, or solutions for assessing replication. Therefore, this study aims to

explore this missing piece of the replication puzzle through the design and presentation

of a new metric used to assess replication.
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1.1 Definitions

The term ’reproducible research’ was coined in the 1990s by computer scientist Jon

Claerbout and was used as a way for researchers to verify and show that their research

was reproducible9. Over the years the term reproducible research has evolved and often

is confused with repeatably and replication research. The three terms—repeatability,

reproducibility, replicability— denote three distinct concepts, but some researchers use

them interchangeably10. In this dissertation we will distinguish between the terms as

such:

1. Repeatability: Refers to a single dataset being analyzed by a single researcher and

achieving consistent results1.

2. Reproducibility: Refers to a single dataset being analyzed by a single or different

researcher and arriving at the same conclusions11,2.

3. Replication: Refers to new researchers obtaining consistent results using newly

collected data and code following the population and protocol from the original

studies2.

3a. Direct replication: Refers to the attempt to repeat a previously observed result

using the original study procedures, such as the sample size, research design,

and measures, exactly11,12.

3b. Conceptual replication: Refers to the attempt to repeat a previously observed

result using some of the original study procedures and design characteristics,

but with variation in some of the design characteristics11.

Together, direct, and conceptual replication supply confidence in the validity of findings13.

The simplest way to distinguish between the three concepts in this paper is:

3



repeatability is the same team and same experiment; reproducibility is a new team and

same experiment; and replication is new team and new experiment1. Throughout this

paper, a few other terms are used often and are defined as such:

1. Generalizability: Refers to the extent that results from a study apply to other

populations different from the original one; the lack of variation in findings across

studies that differ on one or more substantive moderators11,14.

2. Research Reliability: The extent to which an experiment, test, or any measuring

procedure yields the same results on repeated trials15.

3. Construct Validity: The extent to which the construct measures what it says it is

measuring15.

4. Publication bias: A selective preference for publishing studies that reject the null

hypothesis5.

5. Variance of Estimates: Refers to how close measurements of the same item are to

each other16.

6. Type I Error (false-positive): Occurs if an investigator rejects a null hypothesis that

is true in the population17.

7. Type II Error(false-negative): Occurs if the investigator fails to reject a null

hypothesis that is actually false in the population17.

8. Alpha: Refers to a threshold value selected by the researcher to conclude whether a

test is statistically significant or not. It is the desired Type I error rate and ranges

from 0 to 118.

9. P-hacking: Refers to when researchers collect or run statistical analyses until their

results become significant19.

4



1.2 Background

Recently, replication has gained widespread attention in science. However, researchers

have been exploring issues related to replication, such as publication bias, for decades.

Sterling first discussed the issue of publication bias in 195920. He introduced publication

bias as the idea that researchers and publishers focus mainly on publishing ”successful”

studies which can lead to false conclusions. He found that in four high impact psychology

journals more than 95% of the studies rejected the null hypothesis20. Sterling concluded

that tests that reject the null hypothesis are more likely to be published and that the

likelihood a study is replicated becomes much lower once published20, emphasizing the

problems with publication bias. This idea was further explored in 1975 at Ohio State

University. Greenwald published a paper shining light on how often researchers and

publishers discriminate against failing to reject the null hypothesis, potentially leading to

detrimental effects for the progression of science and research21. With researchers focused

heavily on finding ”statistically significant” results, many studies ignore or misinterpret

results leading to false findings in literature.

Though publication bias was discussed in the 1900’s it was not until 2005 that the

link between publication bias and lack of replication was clearly made. Ioannidis, in

his paper ”Why most Published Findings are False,” introduced how publication bias

leads to inflated rates of false positives in the published literature which contributes to

low replication rates22. Using pre-clinical cancer trial data from Amgen, Ioannidis found

only 11% of studies successful replicated leading to the conclusion that focusing only on

significant results leads to weak studies, decreasing the accuracy and replicability of the

studies22.

Since these studies, the science of replication has evolved into its own area of science.

5



In 2015, the awareness and discussion on this crisis escalated when the Center for Open

Science Framework (OSF) published a large-scale replication project in psychology called

the Reproducibility Project23.

6



1.3 Reproducibility Projects

Though replications of individual studies are crucial to science, the studies that have

drawn the most attention to the potential replication crisis involve replications of

multiple studies. This section discusses a handful of replication projects and initiatives,

the challenges each project faced, and the results found. The most prominent of these

projects is OSF’s Reproducibility Project.

The Reproducibility Project

In 2015, OSF published, ”Estimating the Reproducibility of Psychological

Science”23, which is better known as the Reproducibility Project. This project aimed to

obtain estimates of reproducibility in a large-scale collaborative effort in psychological

science. For this project, 270 scientists from eleven different universities and countries

conducted single direct replications on one hundred published psychology studies from

three prominent journals23. Each collaborator selected a study and then followed the

same replication protocol. The protocol included contacting the original authors,

creating a protocol and analysis plan that followed the original protocol, registering the

protocol, collecting data, conducting the replication, and drafting the report. Each

replication study used a larger sample size (at least 2 times) than the original study and

thus, had greater statistical power. The attempted replication results were then

compared to the original studies results to determine if the study replicated the original

findings23. The three main metrics used to assess a successful replication were:

1. Statistical significance and p-values: For this metric, the proportion of the studies

where the original and replication study matched in terms of their statistical

significance using the alpha level of 0.05 was calculated. This measure became the

7



focal point of the study. If the replication study result showed a statistically

significant effect (p < 0.05) in the same direction as the original study result it

was considered a successful replication23.

2. Effect sizes: The proportion of studies in which the original effect size fell within

the 95% confidence interval of the replicated effect size23.

3. Subjective Assessment: The number of studies in which independent researchers

were able to qualitatively show whether a study replicated based on the results

from the original and replicated study23.

Of the original one hundred studies, 97% had statistically significant result (p <

0.05) leading authors to expect roughly the same proportion of significant results in the

replicated studies. However, what they found was only 36% of the replicated studies

had statically significant results (p < 0.05)23. Based on the p-value, of the ninety-

seven originally statistically significant studies, 37% of the studies successfully replicated.

When using the effect size metric, 47% of the original studies successfully replicated.

Additionally, the mean effect size of the replicated studies was half the size of the mean

effect size of the original studies23. Lastly, the subjective assessment found that 39% of

the original studies successfully replicated based on raters’ opinions23 12. The closeness

between the p-value and subjective metric shows how heavily raters rely on the p-values

to decide whether a study replicated or not.

Based on the metrics used to assess a successful replication, the replication rates were

dramatically lower than expected. This has lead authors to conclude that most of the

published psychology studies fail to replicate. This has caused scientists, the media, and

the public to question the reliability of not only published studies in the psychology field,

but in all scientific fields22.
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Other Projects

Amgen and Bayer Initiatives

Prior to the Reproducibility Project in psychology, Glen Begley, a former senior

researcher from Amgen, and Lee Eliss, at the University of Texas MD Anderson Cancer

Center, were interested in replication rates to enhance drug discovery1. Before leaving

Amgen, Lee and Begley attempted to replicate fifty-three positive effect cancer studies

Amgen published from 2001 to 2011 to determine if the results were as promising as the

literature suggested. Shockingly, when using the standard statistical significance metric

with an alpha threshold of 0.05, only six of the fifty-three studies (11%) successfully

replicated24. Additionally, Begley and Eliss discovered the average number of citations

from the studies that did not successfully replicate were greater than that of the

replicable findings (averaging 248 vs 231 citations)24.

These findings led not only Begley, but other Amgen employees and many researchers

to question the validity of findings in the fields of medicine and health sciences24 1. As

a result of these findings, Amgen continued to explore their replications and took steps

to improve the validity of their studies. One initiative Amgen took was to create an

online journal available for researchers to publish their studies that failed to replicate.

The purpose of the journal is to reduce researchers time and resources of following up on

flawed findings and to improve medical sciences1 25.

Like Amgen, Bayer Health Care performed a large-scale replication of their studies.

To determine the reliability of their research, sixty-seven of their published projects were

replicated26. Twenty-three of the laboratory heads that participated in producing the

original studies were included in the replication attempts. Sadly, the company was only

able to find 20-25% of the replicated data matched their original project results and

two thirds of the studies presented inconsistent data sources, producing questionable
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results1 26. Even though this study presented debatable results, the overall findings, that

most of the published findings failed to replicate, were consistent with what Begley and

Eliss found at Amgen.

Open Science Cancer Biology Initiative

Like the Reproducibility Project, the ongoing 2013 Cancer Biology Initiative is led by

the Center of Open Science Framework. This ambitious project was originally funded to

replicate fifty high-impact cancer studies from Nature, Science, and Cell 27 28.

Unfortunately, this project has faced many obstacles and shortcomings. Firstly, the

funding needed to replicate fifty cancer studies was higher than originally requested and

caused the number of studies to decrease in 2015 from fifty to thirty-seven. Then, due

to the lack of transparency and available resources, the project again decreased to

twenty-nine studies in 2017 and then again, recently, to only eighteen studies27.

The original preliminary results published in 2017 found that only two of the five

original studies successful replicated28. Then a year later, they found only five of ten

studies were ’mostly repeatable’, but not necessarily replicable1 27. More recently, in

2019, of 24 studies, twelve study results replicated, four study results fully replicated, two

study results did not replicate at all, and six study results were considered inconclusive1.

Finally, in 2021 this project published a paper addressing how hard it is to assess whether

findings are credible due to the many challenges replication faces29. Overall, though,

the project found replication rates much lower than the authors expected for cancer

studies and discovered that many studies do not replicate easily, highlighting that studies

experimental methods and conditions lack the details needed to recreate the original

study accurately27. This was emphasized for the project when Begley dropped out of

participating in the Cancer Biology Initiative because he felt the methods in the original

cancer studies were inadequate and would only lead to meaningless results1 27.
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Many Labs

A few years after the Reproducibility Project was published, a collaborative psychology

replication project called the Many Labs project began. Like the Reproducibility Project,

the Many Labs Project attempted to directly replicate the methods of original studies,

but also explore how the differences in sites affect replication rates, leading to multiple

projects1. The first Many Labs Project (Many Labs 1) selected thirteen psychology

experiments that were each replicated at thirty-six different labs. The project included

6,344 participants and found eleven out of thirteen (85%) effects replicated successfully30

using the standard statistical significance criteria (p < 0.05). Additionally, the researchers

found that the interventions accounted for more of the between study variation than the

sites or participants did30 31.

Unlike Many Labs 1, Many Labs 2 also explored the variations in replicability across

both the samples and settings. This study used 125 samples, comprised of 15,305

individuals from thirty-six different countries32. The study found, using the standard

statistical significance criteria (p < 0.05), that 54% of the twenty-eight studies (fifteen

studies) successfully replicated, with small variations across both the sample and

settings32.

Similarly, the Many Labs 3 project focused on the methods of the studies across

various sites and subjects. The goal of this project was to determine the extent to which

psychological effects varied across academic semesters33. The researchers were interested

in assessing whether the time in the academic semester where students engage in an

experiment is related to reproducibility or not. Twenty different institutions from both the

United States and Canada were included in the study33. Of the conceptual replications

performed, only 50% successfully replicated33 1. Though the Many Labs Project found

increased replications rates, the studies selected for the project were expected to have
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high replication ability based on the sample size and research field, leading researchers

to expect near perfect replication rates.

Other smaller Projects

Like the Reproducibility Project and the Cancer Biology Initiative, the Reproducibility

Project Experimental Economics attempted eighteen direct replications , but in the

field of economics. They used studies from two prominent economic journals, American

Economic Review and The Quarterly Journal of Economics, published from 2011 to

201434. All replications followed the analysis plan from original studies and required at

least 0.9 statistical power for the replication studies. The project produced replications

rates of 61% (eleven of eighteen studies) with the common statistical significance

p-value replication metric (p<0.05) but found higher rates of replication that ranged

from 67-78% when using other metrics34 1. Regardless, many economists were expecting

much higher rates of replication, leading to the belief that there is also potential

replication crisis in economics.

Similarly, in social sciences, the Social Science Research Project attempted replications

of twenty-one social science studies in Nature and Science from 2010 to 2015. Using the

p-value metric, thirteen of the twenty-one (61.9%) studies successfully replicated. When

using other metrics, the replication success rates ranged from 57% to 67%34. Lastly, the

Pipeline Project used a meta-analysis approach and selected ten unpublished experiments.

Similar to the Many Labs 2 project, each experiment was conducted twelve to eighteen

times at different labs. Six of the ten studies successfully replicated based on a statistical

significance threshold of 0.0535.
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Summary: Replication projects

Though the more recent projects have slightly higher replication rates compared to

the RPP, as shown in Table 1.1, they still have unwanted low replication rates. If the

replication rates for all the replication projects are averaged, using the primary metric

for each (p < 0.05), more than 53% of the studies failed to replicate1, which has led to

the potential replication crisis. The curiosity of these low rates has led many researchers,

scientists, and statisticians to investigate the potential statistical and non-statistical issues

science and replication face22.

Table 1.1: Summarized Replication Project results

Replication Study Results

Study Number of Replications Success Rate

The Reproducibility Project 100 36%

Amgen 53 11%

Bayer 67 22%*

OSF Cancer Biology 6 67%

Many Labs I 13 85%

Many Labs II 28 54%

Economics 18 61%

Pipeline Project 10 60%

Social Science 21 62%

* Average replication rate
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1.4 Replication Assessment

A common discussion is whether replication rates below 50% call for a replication

crisis or just a concern. Although higher replication rates would be preferable, it is

not reasonable to expect replication rates of 100%. Preclinical research cannot expect

perfect replication rates since new and exploratory research comes with high rates of

uncertainty and competing hypotheses36. Therefore, even though a successful replication

helps confirm a study, it should not be expected that every new research area will, or

should, successfully replicate. However, as a field of study is further researched, higher

replication rates are expected, which is not the case in many fields. Though a failure to

replicate can be due to many things, such as flawed original or replicated studies methods,

there are both statistical and non-statistical factors that can contribute to the rates when

assessing replication.

1.4.1 Factors and Critiques

Non-statistical

Though this dissertation focuses on the statistical factors and critiques that affect the

low replication rates, it is important to note and understand the non-statistical factors.

Some of these non-statistical factors include the lack of descriptive methods, lack of

statistical knowledge, and the accuracy of the replication.

The first and most prominent non-statistical factor that contributes to the low

replication rates is the lack of detailed descriptions of methodology in published papers.

The factors that may contribute to vague descriptions of methods include word limits

for published articles, lack of methodology writing knowledge, and failure to identify

specific content and strategies used37. With journals setting word limits, many authors

14



cut the methodology section of their papers leaving out the details needed to perform

an exact replication. Additionally, without the details needed, it is unclear whether

authors collected high quality data, used sufficient sampling methods or sample sizes,

and/or performed and interpreted their result correctly. Without this information, a

study cannot successfully be repeated, replicated, or reproduced37. To decrease this

limitation, if journals continue to limit word counts, researchers should consider

providing the missing information on publicly available platforms like the OSF or in the

supplementary materials38. By providing in-depth study information and analysis,

replications will be easier and cleaner, leading to more precise replication rates.

Another issue that cannot be addressed through analysis is the lack of statistical

training researchers receive. To conduct reproducible research, researchers need to

understand the value of replicability and transparency. Currently, many scientists are

not educated about the value of replications and are unaware about the resources and

tools available. Fortunately, in the last few years, multiple universities and

organizations are now supplying training to researchers on the importance of

replication. Many universities, like the University of California Berkeley, John Hopkins

University, and New York University, all provide courses to their students on the

techniques and tools available to perform replicable research1. In addition, these

universities and many others host seminars on the topics to introduce students to

replication. Not only are universities designing training, but many companies and

nonprofit organizations are now providing free online replication courses1.

In addition to a lack of training regarding reproducible research, many researchers

lack training in statistical analysis. This leads to misinterpreting or misunderstanding

statistical significance tests and p-values. Many investigators falsely believe the p-value

is the probability that the null hypothesis is true, when it is actually the probability of
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obtaining results as extreme or more extreme than the data obtained, given that the

null hypothesis is true39. P-values can range from zero to one, but researchers typically

ascribe ”statistical significance” to p-values below the tolerable Type I error probability

(p<0.05), or alpha level39 40. In 2016, the American Statistical Association released six

principles on the p-value that were meant to shed light on the misuse of p-values in

research41. Though this article was meant to help people understand what p-values do

and do not tell us, many researchers still misinterpret them. In 2019, Wasserstein and

Lazar published an article focused on p-values, the alpha threshold of 0.05, and statistical

significance in the hopes of steering people away from using the statistical significance

thresholds as evidence due to high levels of misinterpretation42.

Misinterpreting p-values has caused obstacles for the potential replication crisis. The

emphasis on and misunderstanding of p-values helps provide a reason for the criticized

low replicability rates. For example, many researchers falsely believe 1 − p is equal to the

likelihood that an effect will be replicated43. If an alpha level is set at 5% it does not imply

that there is a 95% chance of replication. This misinterpretation leads to many researchers

believing they have much lower rates of replication than the 95% they expected. However,

if used and interpreted correctly, p-values provide useful information about replication.

Therefore, even though there are multiple reasons why a study may fail to replicate, the

probability of replication is lower if the null hypothesis is true. However, even if the

p-value is less than alpha, the null hypotheses could still be true, and the converse is

also true. Thus, many studies that potentially could produce successful replications fail

to replicate simply because they do not meet the alpha cutoff. Consequently, relying

on congruent statistical significance in both studies to define a successful replication

potentially contributes to the low replication rates and the replication crisis in science39.
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Statistical

Although the Reproducibility Project helped expand research on replication, there are

statistical weaknesses in the metrics used to define a successful replication. Firstly, all

the metrics dichotomize the assessment of replication into successful versus unsuccessful.

However, for some studies, it is not clear whether a study replicated or not. Thus, by

dichotomizing replication success, we are inaccurately assessing replication. Secondly,

none of the suggested metrics fully account for the published studies methodological

limitations. Some of these limitations include underpowered studies with insufficient

sample sizes, the presence of publication bias, and the increased errors44.

Underpowered Original Studies

Statistical power is vital in the research process, from the design and planning phases of

studies, to interpreting the results of a study. Statistical power is defined as the ability

to correctly reject a null hypothesis that is indeed false, or simply the probability that a

study detects an effect when one exists given a pre-set value of alpha and a sample size45 46.

The power of a study is decided by the sample size, the variance, the alpha level, and the

population effect size47. In underpowered studies, the proportion of successful replication

rates has been estimated to be as low as 0.12244. This is because an underpowered study

is one where the standardized effect size used to power the study is larger than the true

effect size, leading to an insufficient sample size. If a study does not have a large enough

sample size, the study will potentially find an effect that is greater than the true effect

size, making it difficult to replicate44. Therefore, one statistical factor that highly affects

the low rates of replication in the Reproducibility Project is the presence of underpowered

published studies.

Sadly, many researchers focus only on statistical significance when assessing a

study’s rate of replication rather than the impact the studies statistical power and type
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II error rate have on the rate of replication. Underpowered studies reduce the

probability of a successful replication, especially when replication success is defined

using statistical significance48. When studies are underpowered, they tend to have an

insufficient sample size, leading to challenges in replications as shown in the

Reproducibility Project49. Therefore, a responsible investigator should adequately

assess statistical power when originally designing a study and account for it when

performing a replication study50.

Publication Bias

The most discussed statistical factor that potentially affects the low replication rates, with

underpowered studies, is publication bias. Publication bias is the likelihood of a study

being published based solely on the statistical significant findings51. When publication

bias is present, a study with statistical significance is more likely to be published51. The

prevalence of publication bias has been a growing concern over the last few decades and

is known as a ”crisis of confidence”5. In recent years, the quantity of research studies has

increased leading to a competitive environment increasing expectations of publications for

researchers. Favorable results (p < 0.05), leading to publication bias, are often defined

by statistical significance based on the p-value, as discussed earlier. The presence of

publication bias decreases the rate of replication success by encouraging the publication

of more false positives52. With publication bias, the average published effect size is

inflated and leads to overly optimistic calculations with extremely low p-values49. Thus,

addressing publication bias and related issues will improve the quality of the original

studies which in term will help improve the replication crisis51.

Errors

Another statistical factor that potentially contributes to the low reproducibility rates is

the several types of errors. Type II errors, as mentioned earlier, are caused by
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underpowered studies, which can impact the rate of replications heavily. However, Type

II errors are not the only errors present in the Reproducibility Project and in published

findings. Furthermore, in the Reproducibility Project, some errors not addressed or

accounted for, are random systematic errors such as the differences in the original and

replication samples44. These differences can strongly impact a study’s replication

probability. If the Reproducibility Project has performed multiple replications of each

study, the amount of error could have been estimated, even if using the identical

populations and procedures from the original studies was not always possible, which

could help reduce the errors rates impacting the replication rates. Lastly, even if the

original study reports a true effect size, and the replication study uses the original

procedure, the replication study could fail to replicate due to sampling error alone.

Therefore, Type II, random, and sampling errors can also impact replication rates.
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1.4.2 Assessing Replication Metrics

Due to the many factors that can contribute to the low replications rates, many

scientists and statisticians have suggested solutions to better define replication. Each of

these suggestions has been discussed, but few have been implemented or assessed. Thus,

in this section we will explore the various proposed adjusted metrics to assess replication

and apply these metrics to the Reproducibility Project data.

Alpha Thresholds

Many researchers believe that one of the leading causes of non-replicability is the

selection of the alpha threshold of 0.05 to decide statistical significance. One suggested

solution has been adjusting the alpha criterion from 0.05 to 0.00553. The hope is that

lowering the statistically significant threshold will reduce the number of false positive

and thus, improve replicability. Benjamin and others believe that lowing the threshold

to 0.005 will quickly improve the replication rates in all scientific fields for two main

reasons53. Firstly, 0.005 presents stronger evidence toward the alternative hypothesis

than using 0.05. Secondly, as mentioned, reducing the standard 0.05 to 0.005 could help

reduce the number of false positives in published research53 54.

Though this idea was novel at first, many statisticians have argued that reducing the

alpha level or p-value threshold could have the opposite effect and increase the number

of false positives though a process called ”negative selection”55. Negative selection

makes it so ”worst studies produce a larger share of significant outcomes”16 55. In

addition, some scientists believe that lowering the threshold will only enhance the

already existing misinterpretation and focus on p-values12. Another argument against

changing the threshold is that changing the alpha threshold will not address the more

prominent problems that affect replication like publication bias and underpowered
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studies and is only a distraction from finding a solution53 54. The last argument against

changing the threshold is that some believe there should not be a universal threshold.

Rather, they believe the statistical significance threshold should vary based on scientific

disciple since the levels of variability, bias, and power vary across fields53 54. Therefore,

simply changing the level from 0.05 to 0.005 will not help all fields of science. Based on

these arguments, changing the p-value threshold may not necessarily help the

replication crisis, but it could hurt it.

Assessing Alpha thresholds

Even though the proposed solution of changing the alpha threshold has led to

discussions in the replication world, it has not yet been applied. Thus, we explored this

suggestion using the Reproducibility Project data to see how the rates of replication

varied as the thresholds varied. Prior to assessing the studies at each threshold, we

plotted the published and the replicated studies p-values below. Figure 1.1 shows that

most of the original studies have lower p-values than the replicated studies and most of

the p-values of the original studies fell below the common 0.05 threshold.

Figure 1.1: The Reproducibility Project-P-values

To determine if changing the alpha thresholds reduces the number of false positives

and improves replication rates we used various alpha levels that ranged from 0.001 to 0.05
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including the suggested 0.005 level. The results are shown in Table 1.2. The percentage

of the original studies with significant p-values, based on the threshold level, ranged from

33-97%, compared to the replication studies which ranged from 20-36%. Of the original

significant studies, only 36-42% successfully replicated while the non-significant studies

replicated 67-91%. However, when looking at all the studies, statistically significant or

not, we found that 37-75% of the studies replicated using alpha threshold of 0.05 to 0.001.

Table 1.2: Assessing Replication Metrics: P-values

Percent Significant based on P-value Percent Replicated
P-value Original Studies Replicated Studies of Significant Of Non-significant Overall

0.05 97% 36% 36% 67% 37%
0.01 58% 29% 34% 72% 43%
0.005 48% 25% 38% 87% 63%
0.001 33% 20% 42% 91% 75%

Confidence Intervals

Similar to adjusting for the alpha threshold levels, many researchers have started

reporting confidence intervals (CIs) to determine statistical significance instead of p-

values. Confidence intervals are ”measures of uncertainty around an effect estimate”56.

The narrower the CIs the more precise the effect estimate is. If the null value does not

fall within the CI, the findings are said to be statistically significant. An advantage

to using confidence intervals over p-values to determine significance is that the result

is given directly at the level of data measurement and provides information on both

statistical significance and the direction and strength of the effect56 57. This information

helps support not just statistical relevance, but also clinical and practical relevance. In

addition, unlike p-values, CIs provide an adequate plausible range for the true value57.

Assessing Confidence Intervals
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Since some researchers are moving toward CIs and away from p-values, replication was

assessed using a second definition in the Reproducibility Project—if the original effect

size fell in the replicated effect size confidence interval. Additionally, we examine if the

replicated effect size fell in the original effect size’s confidence interval, and whether the

effect size confidence intervals of the original and replicated studies overlapped. For all

three, various confidence interval levels (90%, 95%, 99%, 99.5%, 99.9%) were examined.

The results are in Table 1.3. Depending on how a successful replication was defined and

which interval level was selected, there was a wide range of replication rates. However, we

see that the narrower the confidence interval, the lower the replication rate. In addition,

as expected, when replication success is defined as whether the effect size confidence

intervals overlap between the original and replicated study, the rates of replication are

larger than when looking at replication success as whether the effect size of one study fell

in the effect size confidence interval of the other study.

Table 1.3: Assessing Replication Metrics: Confidence Intervals

Confidence Interval Original ES was in
Replicated ES CI

Replicated ES was in
Original ES CI ES CIs overlapped

90% 46.3% 44.7% 82.6%
95% 47.5% 54.3% 92.3%
99% 56.8% 69.1% 97.8%

99.5% 66.3% 73.4% 97.8%
99.9% 72.6% 81.9% 98.9%

Bayesian Statistic

Bayesian statistics emphasize earlier knowledge of an event to describe the

probability of event by focusing on the prior probability58. Frequentist statistics tend to

focus on the p-value while a Bayesian counterpart is the Bayes factors. Etz and

Vandekerckhove suggested using Bayes factors to decide whether a study successfully

replicated or not59. Bayesian statistics, even though less commonly used, have multiple
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benefits over frequentist statistic, including being more flexible, not needing to decide

the sample size in advance, and keeping all the relevant information contained in the

observed data rather than the unobserved quantities60. In addition, investigators

believe Bayes factors, which are the gold standard for Bayesian hypothesis testing, will

increase the accuracy of replication60 61 and overcome the many problems traditional

p-values face62.

Standard Bayes Factors

Harold Jeffrey originally developed Bayes factors62 which quantify the evidence in

favor of one statistical model compared to another63. Bayes factors estimate how much

the data set changes the balance of evidence from the null hypothesis to the alternative

hypothesis. Mathematically, the Bayes factor is the ratio of two marginal likelihoods; the

likelihood of the data under the null hypothesis and the likelihood of the data under the

alternative hypothesis. Bayes factors are expressed as

BF = p(X|H1)
p(X|H0)

(1.1)

and represent as the probability of the data given the alternative hypothesis divided

by the probability of the data given the null hypothesis59. Jeffery proposed that Bayes

factors greater than three or less than 0.5 provide sufficient evidence for the alternative or

null hypotheses, and anything in between is unclear63. However, most researchers view

Bayes factors below one as support for the null hypothesis and Bayes factors above one

as support for the alternative hypothesis, with a Bayes factor greater than or equal to

ten as strong support for the alternative hypothesis60 61.

Assessing Bayes Factors

Investigators strongly suggest using Bayes factors to define a successful replication and
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thus, the standard Bayes factors for the Reproducibility Project studies expanding off

Etz and Vandekerckhove methods were calculated59. Etz and Vandekerckhove

compared the null hypothesis of no difference to the alternative hypothesis of a nonzero

effect size. Assuming a standard normal distribution with a mean of zero and standard

deviation of one, they calculated the standard Bayes factor for seventy-two of the

original Reproducibility Project studies that used univariate tests (t-test, F-tests,

univariate regression). They found that of the seventy-two original studies only 43% of

them strongly favored (BF ≥ 10) the alternative hypothesis of a nonzero effect size and

no study offered compelling evidence for the null hypothesis59. We looked to expand

their research to explore various Bayes factors levels, to include more studies from the

Reproducibility Project, and to assess the rates of replication.

Using Etz and Vandekerckhove and Vaerahen, Wagenmakers and Ly’s methods, we

used Bayes factors to determine whether the replication results from the

Reproducibility Project fit with the original effect (alternative hypothesis) or null model

(null hypothesis)59 64. Vergahen stated it as ”is the (replication) effect similar to what

was found before or is it absent?”65. Using Vaerahen and other’s code, we calculated

the replicated studies Bayes factors based off the replicated effect sizes64. The Bayes

factor was calculated by taking the original studies correlation coefficient to determine

the posterior distribution and then comparing that distribution and the null model to

the replication result. If the Bayes factor was larger than one, then the replication effect

fits better with the original effect model than with the null model, which is considered a

successful replication. The larger the Bayes factor, the more evidence the replication

effect matched the original studies effect. Thus, we selected cutoff factor levels based on

both weak and compelling levels of evidence of replication success. In addition, the

cutoff levels selected correspond with the alpha thresholds selected above to compare
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the replication rates between the two metrics. The cutoff factors and reasons selected

are listed in Table 1.4.
Table 1.4: Levels of Bayes Factors

Bayes Factor Cutoff Reason

1 Replication effect fits better with the original effect model/ weak evidence
≥ 2.5 Corresponds to p<0.05; Weak evidence toward the original effect model
≥ 3 Anecdotal evidence toward the original effect model
≥ 5 Moderate evidence toward the original effect model
≥ 8 Corresponds to p<0.01; Strong evidence toward the original effect model
≥ 10 Extremely strong evidence toward the original effect model

The replicated Bayes factors were calculated for ninety-five of the original studies.

Five studies were excluded due to missing data. Figure 1.2 shows the replicated study’s

Bayes factors. For visual purposes, we capped all the studies Bayes factors at ten.

Figure 1.2: The Reproducibility Project-Replicated Studies’ Bayes Factors

If the Bayes factors calculated from the replicated study fell within the cutoff

threshold, the study was considered a successful replication. For example, if the

replicated Bayes factors were greater than three but less than five, the study

successfully replicated at the greater than three cutoff, but not at the greater than five
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cutoff. The replication results for the standard Bayes factors are shown in Table 1.5.

We found only 24-44% of the studies successfully replicated based on the cutoff values

selected. As expected, as the evidence of a nonzero effect increased, the percentage of

the studies that successfully replicated decreased. Additionally, more of the studies (95

vs 72) presented lower rates of replication than what Etz and Vandekerckhove found.

Table 1.5: Assessing Replication Metrics: Bayes Factors

Bayes Factors Standard Face Value (n=95)-Replication Rates
> 1 44.2%

≥ 2.5 35.8%
≥ 3 33.6%
≥ 5 29.5%
≥ 8 25.3%
≥ 10 24.2%
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Mitigated Bayes Factors

Standard Bayes factors used to determine a successful replication, like frequentist

methods, do not address any of the methodological limitations discussed earlier. This led

to the suggested solution of mitigated Bayes factors, which are enhanced Bayes factors

that adjust for publication bias40. Mitigated Bayes factors are computed by taking the

average of the four censoring models Guan and Vandekerckhove used for varying levels

of publication bias. The four models’ descriptions and weighing functions are detailed in

Table 1.640.

Table 1.6: Guan and Vandekerckhove’s Four Censoring Models

Model Description weight if p >0.05 Parameter

No-bias model Significant and non-significant results are
published with equal probability w(x)=1 None

Extreme-bias model Non-significant results are never published w(x)=0 None

Constant-bias model
Non-significant results are published at a rate that is

some constant times the rate at which
statistically significant results are published

w(x—π) = π π

Exponential-bias model The probability that non-significant results are
published decreases exponentially as (p − α) increases w(x—γ) = e−γ(p−0.05)) γ

It is important to note that none of these censoring functions provide the exact level

of publication bias that exists in science, but they provide a reasonable statistically

significant filter for some level of bias. To calculate the mitigated Bayes factors (BM),

Guan and Vandekerckhove define a likelihood function as the t-distribution multiplied by

a weighting function (w),

p+
w(x|n, δ, θ) ∝ tn(x|δ)w(x|θ). (1.2)

The x represents the t-value, n represents the degrees of freedom, δ is the effect size

parameter of the noncentral t-distribution, and w is one of the weighted censoring

models59 40.

Together, the four censoring models form the alternative hypothesis, and the null
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hypothesis is when δ = 0. The marginal likelihoods of the models are then calculated by

integrating the likelihood for each model over the prior as such:

E+
w =

∫
Θ

∫
∆

p+
w(x|n, δ, θ)p(δ)p(θ)dδdθ (1.3)

E−
w =

∫
Θ

p−
w(x|n, θ)p(θ)dθ. (1.4)

Using the marginal likelihoods, the posterior probabilities are calculated by summing and

multiplying each likelihood with the priors and then dividing each of the products with

the sum of all the products for all models shown here,

Pr(HA|x) = Pr(HA) ∗
∑

Pr(w)E+
w∑

Pr(k)[Pr(HA)E+
k + Pr(HO)E−

k ] . (1.5)

Pr(w) is the prior probability of the censoring model for w and Pr(HA) is the prior

probability that there is a nonzero effect59. Lastly, to calculate the mitigated Bayes

factor the following formula was used59 40:

Posterior Odds = Prior Odds ∗ Mitigated Bayes factor (1.6)

Pr(HA|x)
Pr(HO|x) = Pr(HA)

Pr(HO) ∗
∑

Pr(w)E+
w∑

Pr(w)E−
w

(1.7)

Assessing Mitigated Bayes Factors

Etz and Vandekerckhove applied Guan and Vandekerckhove’s method to seventy-two of

the one hundred original studies. For the seventy-two studies, they calculated the original

and replicated standard Bayes factor and the original mitigated Bayes factor. They

found that using the mitigated Bayes factors, rather than the original standard Bayes

factors, decreased the percentage of original studies that strongly favored (BF M ≥ 10)

the alternative hypothesis (the original effect) from 43% to only 26%59. When exploring
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the replication studies, only fifteen of the studies (21%) strongly favored the alternative

hypothesis (BF≥ 10) and no study strongly supported the null hypothesis. Figure 1.3

shows the standard Bayes factors, mitigated Bayes factors, and the replicated studies

Bayes factors.

Figure 1.3: The Reproducibility Project-Mitigated Bayes Factors

We then expanded on Etz and Vandekerckhove assessment of replication using the

calculated mitigated Bayes factors for the Reproducibility Project data studies. We

defined a successful replication in two ways. Firstly, like the p-values, we first defined a

successful replication as one where both the original studies Bayes factor and the

replicated Bayes factor (RBF) fell in the same cutoff (RR 1). We did this using both

the original studies standard Bayes factor (OBF) and the original studies’ mitigated

Bayes factor (MBF). Therefore, a successful replication was one where either both

studies were above the cutoff or both studies were below the cutoff. We also defined a

successful replication as one where both the OBF or MBF and the RBF at least fell in
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the Bayes factor cutoffs (RR 2). Thus, for the study to successfully replicate using this

metric, both Bayes factors had to be at least as large as the cutoff level. We used the

same Bayes factor cutoffs as show in Table 1.4. The replication rate results are shown in

Table 1.7. When using definition RR 1, the MBF had higher rates of replication at

lower cutoffs than the OBF. However, we found the opposite when using definition RR

2. The rates of replication ranged from 7-53% using the OBF and RBF whereas the

replication rates ranged from 7-36% when using the MBF and RBF.

Table 1.7: Assessing Replication Metrics: Mitigated Bayes Factors (n=72)

BF Level 0BF MBF RBF OBF RR 1 MBF RR 1 OBF RR 2 MBF RR 2
> 1 43.1% 26.4% 20.8% 58.3% 75.0% 52.8% 36.1%

≥ 2.5 13.9% 6.9% 11.1% 83.3% 87.5% 20.8% 15.3%
≥ 3 8.3% 5.6% 8.3% 91.7% 91.7% 14.3% 11.1%
≥ 5 5.6% 5.6% 4.2% 93.1% 93.1% 8.3% 8.3%
≥ 8 5.6% 5.6% 2.8% 94.4% 94.4% 6.9% 6.9%
≥ 10 5.6% 5.6% 2.8% 94.4% 94.4% 6.9% 6.9%

Meta-analysis

Another natural alternative to the previously described replication metrics is to

apply meta-analytic techniques to replications. Meta-analysis is a study design that

systematically assesses previous research studies to create one conclusive result66 67. A

meta-analysis is performed by first transforming a study’s findings into a standardized

effect size statistic, then pooling the effect size statistics across multiple studies, and

finally evaluating the impact variables have on the pooled effect size68. Though this

procedure is more in-depth than performing one standard study, the results from a

meta-analysis are known to provide a more precises estimate of the effect66. Over the

years, the use of meta-analysis has grown rapidly in many fields, including psychology

and medicine. In 1991, PubMed only had 334 published medical meta-analyses;

however, in 2014, the number had already increased to 9,13569. Though meta-analysis
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has evolved and grown rapidly over the years, the use of meta-analysis to assess the

replication crisis is still fairly new.

Before the Reproducibility Project results were published, in 1992, Schmidt was one

of the first to study the use of meta-analysis for replication. Schmidt believed that

individual studies provide little information and hamper the development of cumulative

knowledge70. He thinks that only using statistically significant tests and the decision

rule (p < .05) alone often leads to mistaken conclusions ignoring errors and power. He

suggested that meta-analysis can solve these problems while reducing the error rates70.

Additionally, it has been shown that collections of studies are more robust than any single

study to flaws, weaknesses, and limitations in research48 71.

Assessing Meta-analysis

We extended the meta-analysis techniques done in The Reproducibility Project using the

meta72 and metafor73 packages in R. Fixed-effect meta-analysis on the Fisher transformed

correlation coefficients were used for all the study pairs, as the Reproducibility Project

did, and one combined p-value was calculated. If the p-values were less than the alpha

threshold the study pair was considered a successful replication. The same levels of

alpha thresholds as in Table 1.2 (0.05, 0.01, 0.005, 0.001) were used. The percentage

of successful replications slightly increased compared to when only one replication study

was used as shown in Table 1.8 when more than one replication was used. In general,

meta-analyses presented higher rates of successful replications ranging from 36-68%, but

unfortunately the arbitrary p-value alpha thresholds were still used.

Table 1.8: Assessing Replication Metrics: Meta-Analysis

Meta-analysis P-values Percent meta-analytic (n=90)
p < 0.05 68%
p < 0.01 51%
p < 0.005 45%
p < 0.001 36%
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Continuously Cumulating Meta-Analytic Approach

In 1990, Rosenthal suggested a type of meta-analysis to use to improve replication

rates in his book the Handbook of Replication Research in Behavioral and Social

Sciences. Since meta-analysis often is used retrospectively, looking backwards to

summarize multiple studies, Rosenthal proposed a continuously cumulating

meta-analysis (CCMA) approach as a more appropriate way to assess replication48.

CCMA is a meta-analysis used in a continuous fashion after each replication. The

CCMA approach assesses whether all studies conducted thus far support the

conclusions previously found47. Like standard meta-analysis, in the CCMA approach,

individual effect sizes from a collection of studies are pooled into one estimate. Like

meta-analysis, this pooled estimate is more trustworthy and precise since it is based on

not just one study, but multiple studies. By combining studies, meta-analyses and or

the CCMA approach, supply more evidence, than one study, that the effect is real47.

Though meta-analysis and the CCMA approach address concerns and strengthen the

evidence provided, they do not solve every problem that occurs when assessing

replication. If studies were p-hacked or publication bias was present, the CCMA

approach and meta-analysis would also show bias in their results.

Metric Comparisons and Limitations

A comprehensive table of all the replication rates by metric are in Table 1.9. The

threshold levels and metrics used yielded varying levels of replication rates. The rates of

replication when using standard p-values and Bayesian statistics were quite similar while

the rates of replication using meta-analysis and confidence intervals had slightly higher

rates of replication. Even though some of the metrics found higher rates of replication

than the original Reproducibility Project found, all the metrics face similar limitations.
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Table 1.9: Summarized Current Metrics Replication Rates

Metric Number of Studies Levels Used Replication Rates

P-values 100 α =0.05-0.001 36 − 42%
Original ES falls in replicated ES CI 100 CI=90 − 99.9% 46 − 73%
Replicated ES falls in original ES CI 100 CI=90 − 99.9% 45 − 82%

Original and replicated ES CI overlapped 100 CI=90 − 99.9% 83 − 99%
Bayes Factors 95 2.5-10 24 − 36%

Mitigated Bayes Factors 1 72 BF=2.5-10 75 − 94%
Mitigated Bayes Factors 2 72 BF=2.5-10 7 − 36%

Meta-Analysis 90 α =0.05-0.001 36 − 68%

The first, and primary limitation all the metrics face are they assess replication using

a binary threshold to define replication. Instead of considering a study’s replication

probability on a continuous scale, each of these metrics dichotomizes replication success.

However, for some studies, it is not clear if a study replicated or not. Often, clinicians and

investigators want to dichotomize their variables for data presentation and interpretation,

but dichotomizing variables, or metrics like replication, has serious statistical drawbacks.

Firstly, dichotomizing variables in statistics often leads to a loss of information74. For

variables, Cohen found that dichotomizing a variable at the median reduces the power

on average by the same amount as if one third of the data was discarded75. In addition,

dichotomizing data increases the risk of a result being a false positive or negative76.

The challenges due to dichotomization of variables apply directly to the current

metrics used for defining a successful replication above. Each metric dichotomizes

replication and uses an arbitrary cutoff to decide what a successful replication is or is

not. This not only leads to loss of information, but also could incorrectly identify

whether a study replicated or not. Without a successful replication, studies are deemed

as invalid when they could be valid. For example, if the original study had a p-value of

0.0440 and the replicated study had a p-value of 0.0510, the study would not

successfully replicate based on the standard statistically significant metric (p<0.05).

However, if the replicated study has a p-value of 0.0001 the study would replicate. Yet,
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if the cutoff were 0.06 rather than 0.05, both replications would be successful. Hence,

the arbitrary cutoff and dichotomization of replication impacts the replication results

heavily. Therefore, a weakness of all the above metrics is how each metric defines

replication success on a binary scale using arbitrary cutoffs, rather than on a continuous

scale leading to potential over or underestimated replication rates.

Another limitation is that not all replication metrics can be performed on all the

studies due to the original data limitations. For instance, the Bayes factors and meta-

analysis metrics could not be calculated for all the original or replicated studies due to

the data restrictions. Lastly, none of these definitions can assess the methodological

limitations the original studies have. Even though the mitigated Bayes factors adjusts

for some level of publication bias, it is not adjusting for the realistic levels of publication

bias present in the studies and does not account for other methodological challenges such

as underpowered studies. Therefore, not only are these rates of replication lower than

desired using the current and suggested metrics, but all the current metrics that define

replication have multiple limitations.
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1.5 Aims

To overcome the drawbacks of the current low replication rates, including the use of

binary definitions, and the shortcoming of the various metrics used to evaluate

replication, a better statistical metric for replication is needed. Thus, in this

dissertation, our goal is to provide an improved metric for assessing replication that

addresses the methodological limitations. To accomplish this, we will apply continuous

definitions, using equivalence study techniques, to both single and multiple studies. In

addition, we plan to design a survey that can analyze replication from both the

qualitative and quantitative perspective. In order to accomplish these goals, we propose

the following specific aims.

1.5.1 Aim 1: Develop an equivalence study metric for single

studies

We will first combine current definitions of successful replications (p-value,

confidence intervals, Bayes factors, etc.) to create one encompassing metric (aim 1a).

Using Monte Carlo simulations, we will replicate the original reproducibility projects

studies and average the proportion of successful replications for each study to determine

how previous definitions of replication work via simulations and combined. We will then

assess replication continuously using equivalence studies, which is an area of research

that has not been studied (aim 1b). The hope is that this novel replication metric will

address the limitations current metrics face while increasing the flexibility of replication

by assessing replication on a continuous scale. Lastly, using the Reproducibility Project

data, we will compare the replications rates of the equivalence study approach metric to

the current metrics used to assess replication (aim 1c). We hypothesize that the
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equivalence study approach metric will provide a useful alternative to assessing

replication since it is able to account for the limitation’s current metrics face.

1.5.2 Aim 2: Extend the equivalence study metric to multiple

studies

Using the replication metric built in aim 1, we will assess multiple replications applying

meta-analytic (aim 2a) and multivariate techniques (aim 2b). Using the same simulation

conditions as aim 1b, we will determine how the replication probabilities of multiple

studies compare to those of single studies. Additionally, we assess how power, sample

size, and effect size impact the replication probabilities using the equivalence metric for

multiple replications. We hypothesize that multiple replications will produce more precise

replication rates compared to single study replications.

1.5.3 Aim 3: Design a survey to assess the equivalence replica-

tion metric

To better understand how researchers approach replication qualitatively, we will

design a survey to determine what leads researchers to evaluate a successful replication.

The survey will include the existing and proposed metrics to assess replication.

Following this dissertation, the survey will be distributed and the results will be

analyzed to assess replication both qualitatively and quantitatively.
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1.6 Dissertation Format

Each chapter is written as an individual manuscript, but with slight modifications as

there is cross referencing between the aims chapters and they build on one another.
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Chapter 2

Develop an Equivalence Study

Metric for Single Studies

2.1 Abstract

Introduction: Replication, defined as obtaining consistent results using newly

collected data following the original studies population and protocol, is used to assess

the validity and reliability of research findings. In 2015, the Center for Open Science

Framework directly replicated 100 psychology studies and found shockingly low

replication rates. Since this article, other fields of research have also found remarkably

low replication rates. This lack of successful replications in the published literature has

led to a concern of a replication crisis and a reduced confidence in science. Scholars

have offered potential reasons for the low replication rates, including using flawed

statistical metrics to assess replications. Currently, the common metrics to assess

replication dichotomize replication success and do not account for study limitations.

Thus, this study aims to build a metric that assesses replication continuously while

having the ability to address the impact of publication bias and power to improve
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confidence in published studies.

Methods: A novel metric, which uses equivalence study techniques to assess

replication success on a continuous scale, was examined via a simulation study and

applied to the Reproducibility Project’s data. Equivalence margins were centered

around the effect size (ES) of the original study or 0; their widths varied based on

literature suggestions. The replicated studies ES interval and the interval of the ES

differences between the studies was then used to determine the study’s replication

probability. Additionally, the equivalence replication success rate results were compared

to replication rates from previous metrics used to assess replication including p-values,

confidence intervals, and Bayes factors.

Results: For the equivalence metric, a study’s replication probability was higher when

the ES difference between the original and replicated studies was small. However, the

sample size and power of the original study highly impacted a study’s replication

probability. We found when the ES differences were larger, a study with a smaller mean

sample size had a higher probability of being replicated than a study with a larger

sample size. Furthermore, we saw that as the ES was smaller and the power levels were

higher, the probability of replication was highest. Overall, when assessing replication

continuously, in both simulation studies and the Reproducibility Project data, more

information about the study’s replication probability was provided compared to when

using current metrics to assess replication.

Discussion: Using equivalence studies to assess replication allows replication success to

fall on a continuous scale providing more details on a study’s replication probability.

Additionally, a study’s replication probability is highly impacted by the study’s design

elements. Due to this, using equivalence study techniques to assess replication provides

more information than currents and does not face the same limitation as the current
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metrics.

Keywords: Replication, replication crisis, equivalence study, publication bias
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2.2 Introduction

Replication:

Replication, defined as researchers obtaining consistent results using newly collected

data following the original studies population and protocol, is considered a

distinguishing feature of science1. For decades, replication has been used to confirm the

reliability and validity of prior research findings. In recent decades, the lack of

successful replications of published studies has resulted in reduced confidence the in

scientific process and led to concerns of a replication crisis7. In the simplest terms, the

replication crisis is centered on the belief that, because only a small proportion of

studies can be replicated, the published literature contains many spurious results,

leading to a lack of trust in the scientific literature. Some causes of the crisis include the

absence of replication studies in the published literature, the existence of publication

bias and questionable research practices and statistics, and the lack of transparency in

published papers38. As the concerns have grown, many potential reasons for the low

replication rates have been examined. However, even with the abundance of new

research about the replication crisis, there is little research about better approaches,

metrics, or solutions for assessing replication success since the current statistical metrics

used to assess replications face many limitations.

The Reproducibility Project

Though the potential replication crisis has been explored for many years, the

awareness and discussion of this topic escalated in 2015 when the Center for Open

Science Framework (OSF) published “Estimating the Reproducibility of Psychological

Science,” which is better known as the Reproducibility Project38. The goal of the
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Reproducibility Project was to obtain estimates of the replication rate in the

psychological sciences through a large-scale collaborative effort. For the project, 270

scientists, from eleven countries, conducted direct replications of one hundred

psychology studies published in three prominent journals38. The results from the

replicated studies were compared to the original studies’ results to determine if the

study successfully replicated the original findings. Replication was primarily assessed

using p-values where a successful replication was defined when a replications study’s

statistical significance (p < 0.05 or p > 0.05) was the same and effect size (positive or

negative) was in the same direction as the corresponding original studies. Of the

original one hundred studies, 97% had statistically significant results (p¡0.05), leading

authors to expect roughly the same proportion of significant results in the replicated

studies. However, they found only 36% of the replicated studies had statically

significant results (p < 0.05), and only 37% deemed successful replications using the

p-value38.

Current Metrics of Assessing Replication

Like the Reproducibility Project Psychology, other scientific disciplines have

conducted large-scale replication studies and found remarkably low replication rates.

Due to the low replication rates, many scholars have explored different ways to assess

replication success. Currently, the most common metrics used to assess replication

success are p-values (see above), confidence intervals, and Bayes factors. Confidence

intervals are ”measures of uncertainty around an effect estimate”56. The narrower CI,

the more precise the effect estimate is. If the null value does not fall within the CI, the

finding is said to be statistically significant. When using CIs to assess a replication, a

successful replication is defined in one of three ways: 1) if the original effect size falls in
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the replicated effect size confidence interval, 2) if the replicated effect size falls in the

original effect size’s confidence interval, or 3) when the effect size confidence intervals of

the original and replicated studies overlap.

Bayes factors (BF) assess replication using Bayesian statistics. Bayesian statistics

emphasize earlier knowledge of an event to describe the probability of the event by

focusing on the prior probability58. Bayes factors, which can be thought of as the

Bayesian p-value, quantify the evidence in favor of one statistical model compared to

another63. Bayes factors estimate how much the data set changes the balance of

evidence from the null hypothesis to the alternative hypothesis. Mathematically, the

Bayes factors are the ratio of two marginal likelihoods; the likelihood of the data under

the null hypothesis and the likelihood of the data under the alternative hypothesis.

Bayes factors are expressed as

BF = p(X|H1)
p(X|H0)

and represent the probability of the data given the alternative hypothesis divided by

the probability of the data given the null hypothesis59. A successful replication for a

Bayes factor is defined as one where the replicated studies BF falls within a set cutoff

threshold.

Limitations of Current Metrics

Though all the current metrics, p-values, confidence intervals, and Bayes factors,

assess replication success, they all face similar statistical limitations. First, these

metrics dichotomize replication success which has statically drawbacks. For some

studies, it is not clear whether a study replicated or not. Often, clinicians and

investigators dichotomize their variables for data presentation and interpretation, but

dichotomizing variables, has serious statistical disadvantages. For instance,
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dichotomizing data often leads to a loss of information74. For variables, Cohen found

that dichotomizing a variable at the median reduces the power on average by the same

amount as if one-third of the data were discarded75. In addition, dichotomizing data

increases the risk of a result being a false positive or negative76. Thus, by dichotomizing

replication success, there is not only a loss of information, but replication success could

be incorrectly identified. Secondly, not all the proposed metrics are universal for all

types of studies. For example, due to statistical computations, Bayes Factors can only

be calculated for some of the original and replicated studies. Lastly, none of the

suggested metrics can fully assess the original studies’ design flaws which can impact

replication rates such as suffering from low power or publication bias.

Underpowered studies cause an insufficient sample size which can cause the study to

find an effect that is further from the true effect size, making it difficult to replicate. In

underpowered studies, the proportion of successful replication rates has been estimated

to be as low as 0.12244. Additionally, with underpowered original studies, the presence

of publication bias, which is the likelihood of a study being published based on the

statistical significance of the findings of a study, increases51. Publication bias decreases

the replication success because the original studies potentially contain more false

positives52. Therefore, because of these limitations, using the current metrics to assess

replication potentially over-or underestimates the true rates of replication.

Consequently, a stronger statistical metric is needed to assess replication success.

Paper Motivation

Maxwell and Anderson agreed that a more robust statistical metric is needed to

assess replication success77. They discussed how researchers narrow their interpretation

of replication by focusing heavily on statistical significance and suggested six replication
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goals that researchers should take into consideration when designing a replication77. Two

of the six recommended goals involved the use of equivalence studies for analysis. The

first goal, to infer a null replication effect, defined a successful replication as one where

the effect’s confidence interval falls completely inside the equivalence region. The second

goal was to assess whether the replicated study is consistent with the original study. This

goal’s purpose was to determine whether the original and replicated effects have identical

effect sizes by using equivalence studies. They recommended using equivalence tests on

the differences in effect sizes between the two studies. A successful replication occurs

when the confidence interval for the difference in effect sizes falls completely within the

region of equivalence77. Though these goals were proposed almost six years ago, using

equivalence studies to assess a successful replication has not been implemented or further

explored in published literature.

Therefore, even though various metrics and research practices have been proposed to

access replication, like Bayes factors and equivalence study techniques, each faces either

statistical limitations, potentially over-or underestimating the true rates of replication

or has not been implemented in published literature. To overcome the weaknesses of

current metrics, a better statistical metric to evaluate replication is needed. Our goal is to

provide an improved metric for assessing replication success that addresses the limitations

current metrics face, and that uses equivalence study techniques. Enhancing Maxwell and

Anderson’s goals to expand the standard use of equivalence studies—to assess whether

a new treatment is as equivalent to a current treatment—to replication studies has not

been done in the published literature. Using equivalence studies, we hope to find more

precise replication rates by determining whether the original and replicated studies are not

”too” different from one another. We hypothesize that by using a metric that assesses

replication on a continuous scale, more information about the study’s probability of
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replication will be available. Additionally, we hypothesize that this novel metric can

detect the impact study designs have on replication rates, helping researchers understand

which studies, in the future, should and should not be replicated.
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2.3 Methods

Before introducing the proposed equivalence replication metric, we first describe the

combined metric that is used to assess replication in Section 2.3.1. Then in section 2.3.2,

we will introduce our equivalence replication metric to assess replication accounting for

the limitations the current metrics face. This novel approach uses equivalence study

techniques to assess replication continuously while accounting for the original studies’

design elements. We will then present our simulation study conditions (section 2.3.3)

and apply this equivalence metric to the Reproducibility Project data (section 2.3.4).

Initially, the metric is designed for single replicated studies and will be extended to

multiple replication studies in a later chapter.

2.3.1 Aim 1a: Combined Replication Assessment Metric

Prior to building a novel definition of replication, we first assessed replication rates

by simply combining the current definitions of replication to create one encompassing

definition. The purpose is to determine if combining the common current metrics (p-

values, confidence intervals, and Bayes factors) produces different replication rates than

when using a single metric. One thousand simulations, simulating an original and one

corresponding replicated study based on various levels of power and effect sizes, were

used to understand, and identify a study’s probability of replication. The selected levels

used are in Table 2.1. The effect sizes were selected based on Cohen’s effect sizes for

small, medium, and large. Furthermore, the power levels were selected to have a range

of low to high power for the original study. For this analysis, we assumed there was no

publication bias, and all studies had an equal likelihood of publication.
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Table 2.1: Aim 1a: Simulation Conditions

Levels
Power 0.2, 0.4, 0.6, 0.8

Effect Size (r) 0.1, 0.3, 0.5
Publication Bias None(0%)

For each study, the p-values, confidence intervals, and Bayes factors are calculated. A

successful replication is defined as one where any of the metrics found a replication using

the definition of a successful replication (for p-value<.05, ES falls within CI, BF≥3). We

then determine the average proportion of successful replications for each simulation to

determine each study’s replicate rate. Additionally, we compared the different simulation

conditions to discover which factors contribute to replication success most heavily.

2.3.2 Aim 1b: Equivalence Replication Assessment Metric

We expand the standard use of equivalence studies—assessing whether a new

treatment is equivalent to a current treatment—to replication studies. With the use of

equivalence studies, we will have the ability to determine the replication of the original

and replicated studies more precisely. We do this by varying the equivalence margin to

decide what an acceptable replication level is and accounting for various methodological

limitations the original studies have.

Equivalence Studies

Equivalence designs are primarily used in randomized controlled trials (RCTs) to show

that a novel intervention is just as effective as the standard intervention78. Equivalence

studies provide more information than standard statistical testing because they not only

show whether two results are not significantly different from one another, but they also

evaluate whether the two results are figuratively the same. The International Conference

on Harmonisation (ICH) defines an equivalence trial as ”a trial designed to show that two
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interventions do not differ in either direction by more than a pre-specified unimportant or

insignificant amount”79. The goal of an equivalence study is to determine whether a new

intervention is as effective as the standard (original) by determining if the difference in

effects between two treatments lies within the preset equivalence margin. The hypotheses

are

H0 :d < −δL or d > δU ; The difference is outside the equivalence margin-nonequivalent

HA : − δL ≤ d ≤ δU ; The difference is inside the equivalence margin-equivalent,

where δL and δU are the lower and upper the pre-set equivalence margin, δ, and d is the

observed effect78 80 81. Generally, the equivalence margin is set such that differences

smaller than the margin are not considered clinically meaningful. Once the margin is

selected, the confidence interval (CI) around the effect estimate is formed. The most

widely used analysis approach to test equivalence is the two one-sided test procedure

(TOST). If the entire (1–2α) × 100% CI for the difference in treatments falls within the

preset equivalence margin, the null hypothesis is rejected, and equivalence is

established81 82.

Design of Metric

To design a novel metric to assess replication, we extended Maxwell and Anderson’s

goals and equivalence study techniques. First, the preset equivalence margin was

determined. The validity and credibility of a study depend on how well the margin is

justified82. Unfortunately, though, there currently is no gold standard. If the margin is

too large, rejecting the null hypothesis would be meaningless, but if the margin is too

small, the power to detect equivalence is reduced. Therefore, since there is no gold

standard and margin selection is important, for this project, multiple margins were
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selected based on what researchers have proposed78 80 83. When using the replicated

studies effect size, the margin was centered around the original effect size; whereas when

using the difference in effect sizes between the original and replicated studies, the

margin was centered around 0. The margin widths were selected based on Cohen’s

standard for small and medium effect sizes, and what literature suggests. The different

margins explored are presented in Table 2.4.

Once the margins were determined, we calculated the study’s probability of

replication. As mentioned, for the equivalence margins based on the original ES, we

used the replicated studies ES to determine the probability of replication, whereas, for

the equivalence margins based around 0, the difference in ES between the original and

replicated studies was used to determine the probability of replication. The CDF

functions for both the replicated ES and difference are presented below in the last step,

where theta represents what the margin was built around, and delta represents the

margin width selection. The probability of replication was then used to determine the

study’s ability to replicate successfully. The generalized design of this metric is broken

up into the following steps

Step 1: Determine the equivalence margin.

• Decide what the margin is based around.

• Decide the width of the margin.

Step 2: Calculate the studies probability of replication.

∫ θ+δ

θ−δ
f(R)dx;

∫ θ+δ

θ−δ
f(R − O)dx (2.1)

A visualization of this metric is presented in Figure 2.1. The equivalence margin is

defined as the original ES ± 0.1, and the probability of replication was calculated using
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the replicated ES. The original study’s ES is represented as the red vertical line, the

equivalence margins are the light grey vertical lines (δL, δU), and the replicated studies

ES and width of the sampling distribution are presented in dark blue. The shaded areas

for each scenario with the numeric number show the probability of replication.

To better understand, we can first consider the bottom two examples. Here, both the

replicated studies have similar ES sizes, close to the original ES, and inside the equivalence

margin, but their replication probabilities varies. The bottom example, or study with the

larger sample size, has a higher replication probability compared to the study above it

with the smaller sample size. However, as we look at the top two examples, we see that

if the replicated effect sizes are outside the preset equivalence margin, the study with the

smaller sample size has a higher replication probability than the study with the larger

sample size. Thus, this tells us that sample size will noticeably impact the replication

probabilities for this metric.

Figure 2.1: Equivalence Study Metric Overview

This figure present how the equivalence metric is designed to work. Here the equivalence margin is
defined as the original ES±0.1 and the probability of replication was calculated using the replicated ES.
The original study’s ES is represented as the red vertical line, the equivalence margin is the light grey
vertical lines, and the replicated studies ES and width of the sampling distribution is the blue dots and
blue lines. The shaded areas, for each scenario, show the replicated study’s probability of replicates with
the numeric number above.
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2.3.3 Simulation Study

Simulation Condition Assessment

Prior to proposing a new metric for assessing replication, the amount of the

publication bias and underpowered studies in the original studies was estimated using

the Reproducibility Project data. We evaluated the power, effect sizes, and publication

bias to determine realistic simulation conditions to use to assess replication throughout

this research.

Publication Bias

Contour Enhanced Funnel Plots:

Small study effects, which typically reflect publication bias, were assessed visually and

formally using Peter’s contour enhanced funnel plots, Egger’s regression test, Begg’s ranks

test, PET-PEESE meta-regression, and Duval and Tweedie’s trim and fill method. We

first assessed the presence of publication bias visually with Peter’s contour enhanced

funnel plots84. Standard funnel plots are defined as a scatter plot of the study’s observed

effect size against a measure of their standard error85. When there is no publication bias

present, we would expect the data points to be distributed roughly symmetric around the

pooled effect size. Contour enhanced funnels plots extend funnel plots by allowing the

statistical significance of a study to be considered in determining whether the asymmetry

of the funnel plot is caused by publication bias or not84.

The contour enhanced funnel plot for the Reproducibility Project data is shown in

Figure 2.2. The colors represent the regions of p-value with cutoffs of 0.1, to 0.05, to

0.01. As shown, many of the studies fell within the region that has p-values less than

0.01 and very few studies fell in the regions that have p-values greater than 0.05, the
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common threshold. Since most of the data points appear in the top right corner, the

funnel plot appears asymmetric. Additionally, since studies appear to be missing in areas

of low statistical significance, it is likely that the asymmetry is due to publication bias

and/or small study effects.

Figure 2.2: The Reproducibility Project: Contour Enhanced Funnel Plot

This figure presents Peter’s Contour Enhance Funnel Plot using the Reproducibility Project data, When
there is no publication bias present, we would expect the data points to be distributed roughly symmetric
around the pooled effect size, or the vertical line. The legend presents the various p-value ranges. Since
studies appear to be missing in areas of low statistical significance, it is likely that the asymmetry is due
to publication bias and/or small study effects.

Egger’s Regression Test and Begg’s Rank Test:

Since the contour enhanced funnel plot appears to be asymmetric due to publication

bias, we formally assessed this using Egger’s Regression test, Begg’s rank test, and PET-

PEESE meta-regression. Egger’s regression test examines whether the linear regression

intercept is equal to zero. The test uses linear regression with the dependent variable as

the observed effect sizes and the study’s precision as the predictor variable. In the absence

of publication bias, the intercept is expected to be close to zero86. When evaluating the

Reproducibility Project data, our intercept for the regression model is 0.11 (p < .0001),

which is statistically significantly larger than zero, indicating that the data in the funnel

plot is asymmetrical, likely due to publication bias.
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Similarly, we assessed the presence of publication bias with Beggs’s rank test. The

rank test explores the correlation between the effect sizes and corresponding sampling

variances. The larger the correlation coefficient, the higher the likelihood that bias

presents. For the Reproducibility Project data, the correlation coefficient was 0.47

(p < .0001), which is considered a relatively large coefficient, and implies potentially

strong statistical evidence of a high presence of small study effects and possibly

publication bias87.

Duval and Tweedie’s Trim and Fill Method and PET-PEESE:

Since high publication bias is likely, due to the visual and formal tests, we then assessed

for the magnitude of that bias using Duval and Tweedie trim and fill method88 and the

precision-effect test and precision-effect estimate with standard errors (PET-PEESE).

The trim and fill method estimates what the actual effect size is if the non-significant

studies were published. It does this by ‘trimming’ or removing the outlying studies and

replacing or ‘filling’ them with the removed studies mirrored effect sizes to produce a

symmetric funnel plot88. We used the default algorithm (trimfill()) provided by the

metafor package in R to implement the trim and fill method. Prior to using the default

algorithm, we first fit the random effects meta-analysis model using the random Fisher’s

z as the effect sizes and their standard error as the variance.

The trim and fill method applied to the Reproducibility Project data is presented

in Figure 2.3. The method trimmed twenty-nine studies and ”filled” them to the white

area, or to the left-hand side of the pooled effect size, to produce a symmetric plot. The

filled twenty-nine studies are shown as white dots. Based on the adjusted funnel plot the

bias-corrected effect size for the data is 0.28 which is about 35% smaller than the original

pooled effect the Reproducibility Project published of 0.42. Therefore, it is concluded

that the original pooled effect size is overestimated, most likely due to small-study effects
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and possibly publication bias.

Figure 2.3: The Reproducibility Project: Trim and Fill Method

This figure presents the trim and fill method, using the Reproducibility Project data, which assesses
small study effects and publication bias. The method trimmed twenty-nine of the Reproducibility Project
studies and ”filled” them to the white area to produce a symmetric plot, showing there is likely small-
study effects and possibly publication bias.

Since the trim and fill method is an older method that does not produce reliable

results when the between-study heterogeneity is large89, we also explored using PET-

PEESE. PET-PEESE is a means to detect for small-study effects which typically reflect

publication bias. PET-PEESE is publication-bias-adjustment method that adjusts for

the correlation between the study effect sizes and their standard errors90. It corrects

for the ES inflation in two steps. First, the PET model, is a simple regression model,

where the study’s effect size is regressed on its standard error. It is estimated and used

to test for the presence of the effect with α=0.1091. The study weight is calculated as the

inverse of the variance. The PET model is similar to Egger’s regression test. If the PET

ES estimate is non-significant, the PET model and its ES estimate is used, but if the

PET model ES is significant, the PEESE model is used. PEESE, is a regression model

where the study’s effect size is regressed on its standard errors squared. Here, compared

to the PET model, the PEESE model provides a better effect-size approximation in the
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presence of an effect90 91.

When using the Reproducibility Project data and PET-PEESE, we use linear

regression in R. We specified the Fisher’s z transformation of the correlation coefficients

as the response variable, the standard error of the Fisher’s z as the predictive variable,

and its inverse as the meta-analysis weight. We obtained that the test for the effect size

with PET was not significant at α = .10 (ρ=0.080, p-value=0.112), and thus,

interpreted the PET model. The adjusted mean-effect-size estimate of 0.08 is

significantly smaller than the original pooled effect the Reproducibility Project

published. Therefore, we can conclude that the original pooled effect size is

overestimated likely due to small-study effects.

Power and Publication Bias

Z-Curves

Though there is potential for large publication bias in the studies, the presence of this

bias does not imply that all published studies are false. Thus, we need to explore the

impact publication bias, and other statistical factors such as underpowered studies have

on the ability to successfully replicate, which was done using z-curves. Z-curves are a new

extension of p-curves, which show the distribution of statistically significant p-values for

a set of studies92.

Z-curves are finite mixture models used for predicting the success rate if a set of

significant results was replicated exactly93. The z-curves are constructed in five steps.

Firstly, all p-values are converted into absolute z-scores using the inverse normal

distribution. Secondly, all the z-scores greater than six are set aside to eliminate fitting

a large number of normal distributions to extremely small p-values. Afterward, an

approximate finite mixture model is fitted by generating z’s from a normal distribution

using the studies means and a standard deviation of 1. This causes the normal

57



distribution to be truncated on the left at 1.96 and on the right at six. Based on the

parameter estimates, the mean power for the studies with z-scores less than six is

calculated and called the expected discovery rate (EDR) or mean power before bias.

Lastly, all the studies with z-scores greater than six are re-included and used to

re-weight the estimated power and calculate the true mean power after bias, or the

expected replicability rate (ERR)93 94. The statistical terms Z-curves use and report are:

1. Observed discovery rate (ODR): The percentage of the original studies that are

statistically significant. If the ODR is larger than the true discovery rate,

publication or selection bias is present94.

2. Expected discovery rate (EDR): The mean power of all the studies, statistically

significant or not94.

3. Expected replicability rate (ERR): The mean power of only the statistically

significant studies. It is called the ERR since the mean power after selection for

significance is what predicts the relative frequency of statistically significant

results in replication studies94.

Of the 100 original Reproducibility Project studies, 90 studies’ z-scores were estimated

using the ‘zcurve’95 package in R. The results are presented in Figure 2.494. Multiple

conclusions can be made from the z-curve analysis. Firstly, based on visual inspection,

there are many more just significant studies than just non-significant studies since the

ODR (94%) is much larger than the EDR (39%). Additionally, since the 95% confidence

interval of the EDR does not include the ODR there is statistically significant evidence

that questionable research practices inflated the percentage of significant results. This is

only further validated since the 95% confidence interval of the ERR does not include the

37% success rate found in the original Reproducibility Project.

Lastly, the z-curve shows that the average power before bias of the original studies
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Figure 2.4: The Reproducibility Project (n=90): Z-Curve

This figure presents the Z-curve, using the Reproducibility Project data, which predicts the success rate
if a set of significant results was replicated exactly. Here The solid blue line represents the finite mixture
model fit to the distribution of significant z-scores solid red vertical line is at z=1.96, meaning all the
studies to right of the line are considered significant.

is 0.39 which is much lower than expected or desired. Further, since the ERR is greater

than the EDR, we know the heterogeneity between the studies is large94. This means that

some studies have power lower than 39%, which only decreases the strength of the results

of the study and hurts the replication rates. The z-curve lets us conclude with stronger

statistical confidence that the original studies had prominent levels of bias, p-hacking,

and/or were significantly underpowered. Therefore, the quality of the original studies

is another factor that potentially impacts the replication rates for the Reproducibility

Project data.

Effect Size and Power

Based on the results above, we assessed the impact of statistical power, effect sizes,

and samples size have on each other using simulations. The original studies empirical

distribution, Cohen’s standard metrics, and results from the publication bias assessment
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were used for the simulations.

All the effect sizes were converted into standardized correlation coefficients using the

”effectsize”96 package in R. When assessing the effect sizes, we found that the average

original studies standardized effect sizes was more than 50% larger than the average

replicated studies effect size (r=0.42 versus r=0.197). When removing studies with

extremely small sample sizes (less than twenty), the original studies effect size remained

larger than the replicated studies average correlation coefficient (r=0.381 versus

r=0.193). Therefore, having evidence that the original studies had high publication bias

and low power, we concluded that the original studies likely had inflated effect sizes.

Using the original studies’ effect sizes and multiple levels of power (0.4-0.9), we

determined what the needed sample size for each study was and then compared the

needed sample size to the original sample size. The power levels were selected to have a

realistic range of power based on the Z-curve analysis, the average power levels of the

original and replicated studies, and the statistically desired levels of power. The

percentage of studies that met the needed sample at each power level based on the

original studies effect sizes are listed in Table 2.2. Around 50% of the studies have

power levels less than 70% and only 30% had power levels of at least 0.9.

Table 2.2: Power Levels: The Reproducibility Project

Power Level(≥) Percentage of Studies with the required
sample size based on effect size and power level

0.4 90.8
0.5 80.6
0.6 66.3
0.7 53.1
0.8 43.9
0.9 31.6

We then used a simulation study and selected effect sizes to determine what sample

sizes were needed to adequately power the study at each effect size and to determine
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realistic levels to use by using the ”pwr.r.test”97 package in R. For each of the above power

levels, we used the original studies average effect size, the average replicated studies effect

size, Cohen’s standard small, medium, and large correlation effect sizes, and the effect

size after adjusting for publication bias (from the trim and fill method) to determine the

required sample sizes. The sample sizes needed for each ES are in Table 2.3 .

Table 2.3: Sample Size for each Effect Sizes and Power Level

Sample Needed at desired Power level
Effect Size (r) Selection 0.4 0.5 0.6 0.7 0.8 0.9

0.1 Cohen’s low standard 292 384 489 616 782 1046

0.197 Mean standardized ES
of the original studies 76 99 126 158 200 266

0.28 Mean ES after adjusting
for publication bias 38 49 62 77 97 130

0.3 Cohen’s medium standard 33 43 54 67 85 112

0.42 Mean standardized ES
of the replicated studies 17 22 27 34 42 55

0.5 Cohen’s high standard 12 16 19 23 29 38

Based on these results and the results presented throughout section 1.4.2, not only

does publication bias need to be accounted for to create realistic simulations, but effect

size, power, and sample size also need to be controlled and adjusted for to simulate

realistic data and produce more precise replications of the original studies.

Simulation Conditions

The simulation conditions are presented in Table 2.4. The conditions were selected

based on the assessment of power, effect sizes, and publication bias. The levels were

selected to represent a variety of studies and present both realistic and idealistic

simulations. Prior to simulating studies, the maximum possible replication rate for each

condition was determined to assess how this metric does without any variation. The

maximum possible rate was calculated using the exact same effect sizes and power levels

for the original and replicated studies.
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Simulation Procedure and Outline

Monte Carlo simulations were performed to understand the impact underpowered

studies and publication bias have on a study’s probability of replication. One thousand

iterations were performed for each simulation condition, where an original study was

paired with its replication study. For each iteration, a true effect size was set using

the simulation conditions in Table 2.4. To account for publication bias in studies, we

used the difference in the number of significant versus non-significant studies. For 100%

publication bias, we only included the simulated studies that were statistically significant

(p< 0.05). For 80% publication bias, we included 20% of the non-significant studies and

100% of the statistically significant studies (p< 0.05). Similarly, for 60% publication bias

we included 40% of the non-significant studies and 100% of the statistically significant

studies (p< 0.05), and so on, until 0% publication bias included all 1000 simulated studies

(all non-significant and significant studies).

For each simulation scenario, to follow other large-scale projects, the replicated study

had 2 times the sample of the original study, thus, having greater statistical power. To

calculate the true effect size, the original study’s correlation coefficient was converted

to the z-statistic and δ was sampled from a normal distribution with a mean of 0 and

standard deviations of 0, 0.05, or 0.15. Then the true z-statistic effect size was determined,

and it was converted back to a correlation coefficient. Once all the original and replicated

studies were simulated, we determined each study’s probability of replication based on

the various equivalence margins and took the average and median.

2.3.4 Aim 1c: Real Data

To assess this metric using real-world data, we applied our metric to the

Reproducibility Project data, which are publicly available and obtained from the Open
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Table 2.4: Simulation Conditions

Effect Size (r) 0.1, 0.197, 0.3, 0.4, 0.5
Power Level 0.2, 0.4, 0.6, 0.8, 0.9

Publication Bias Level (difference) 0%, 20%, 40%, 60%, 80%, 100%
Equivalence Margins

Centered Around Original ES ±0.05, ±0.1, ±0.3, 20% and 50% larger and smaller
Centered Around 0 ±0.05, ±0.1, ±0.3

δ (addition) None, N(0, 0.05), N(0, 0.15), N(0, 0.5)

Science Framework (https://osf.io/ezcuj). For each equivalence margin, the median,

minimum, and maximum probability of replication was determined for the 100 studies.

Lastly, by applying our definitions to these studies, we compared our rates of

replication, using the equivalence metric, to the current rates of replication from the

older metrics, quantitatively.
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2.4 Results

2.4.1 Aim 1a: Combined Replication Assessment Metric

Table 2.5 presents the replication results by the simulated conditions when we

combined the common replication metrics. Naturally, since a successful replication is

defined as one where any of the metrics (p-value, CI, BF) found a successful replication,

the overall rates of replication were higher than if we only looked at one of the metrics.

However, even when using this combined definition to assess replication, we can see the

impact of effect size and power.

When using this combined metric to assess replication, effect size had a smaller impact

on the replication rates than power. We see that for all power levels, as we increased

the effect sizes from 0.1 to 0.5, the average replication rates only slightly decreased.

However, as we increased the power levels from 0.2 to 0.8, we see the rates of replication

consistently increase for all effect sizes. Thus, we see that the highest replication rate is

for the smallest effect size, but the highest power level.

Overall, this combined metric produces higher replication rates than when just one

metric is used. Even though having higher replication rates is ideal, in this case the higher

replication rates are not necessarily more precise because of how they were assessed. For

example, some studies may have replicated simply because they met one of the metrics

criteria, but based on the others really should not have. Additionally, using this combined

approach we can see some of how power and effect size impact replication rates. However,

even though using multiple metrics increases the information about a study’s probability

of replication, it still dichotomizes replication success. Therefore, a new metric is still

needed that can assess replication continuously.

64



Table 2.5: Combined Replication rates

Original Studies Conditions Replication Rates
ES=.1, power=.2 80.6%
ES=.3, power=.2 80.2%
ES=.5, power=.2 79.8%
ES=.1, power=.4 78.9%
ES=.3, power=.4 78.5%
ES=.5, power=.4 79.0%
ES=.1, power=.6 83.1%
ES=.3, power=.6 83.5%
ES=.5, power=.6 84.0%
ES=.1, power=.8 89.1%
ES=.3, power=.8 88.9%
ES=.5, power=.8 88.3%

2.4.2 Aim 1b: Equivalence Replication Assessment Metric

Expectation

Prior to running realistic simulations using the equivalence replication metric, we

examined how the metric is expected to perform under perfect conditions. Figure 2.5

shows how this metric performs with different margins and sample sizes. The left figure

is the equivalence margin with a margin of 0±0.05, and the right figure shows when we use

a margin of 0±0.1. The different colored lines represent various sample sizes, calculated

using the harmonic mean, ranging from 24 to 500. We used the harmonic mean, which

is the reciprocal of the arithmetic mean of the reciprocals of the observations, because it

equalizes the weights of each data point giving less wieght to the larger values and more

to the smaller values to balance the values properly98 99. For both figures, the difference

in ES (x-axis) is plotted by the expected probability of replication (y-axis). Based on the

figures, we can see that as we increase the width of the margin from 0±0.05 to 0±0.1,

the expected probability of replication for all sample sizes increases. Additionally, as

expected, when the difference in ES’s is closer to 0, the expected probability is highest for

all sample sizes, and the larger sample sizes have higher expected probabilities. However,
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as the difference between ES moves farther away from 0, the smaller samples have a larger

expected probability of replication. Thus, we see that the sample size will impact our

this metric noticeably.

Figure 2.5: Expectation of Metric

Here we see exactly how the equivalence replication metric is expected to perform with different margins
and sample sizes. The left figure shows when a margin of 0±0.05 was used, and the right figure shows
when a margin of 0±0.1 was used. The different colored line represents various harmonic sample sizes
ranging from 24-500. The difference in ES is shown on the x-axis plotted by the expected probability of
replication shown on the y-axis.
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Simulation Results

Figures 2.6, 2.7, and 2.8 show the probability of replication results for each of the

three simulation scenarios. The full results for all the simulation conditions are in the

appendix (Figures 6.1, 6.2, 6.3). Looking at the figures below for each case, the maximum

replication rate is presented as the dark blue line and the other different colored lines

represent the different levels of publication bias from the simulation studies (orange (0%),

green (20%), red (40%), light blue (60%), yellow (80%), pink (100%)). The x-axis shows

the power levels, whereas the y-axis shows the replication probability. The top row of

figures is using equivalence margin 0±0.1 whereas the bottom row is using margin original

ES±0.1. The three columns represent the effect sizes ranging from 0.1 to 0.5, from left

to right.

Based on the results from the data using no delta (Figure 2.6), we see that,

regardless of the margin, the maximum probability of replication increases as the power

levels increase and the effect size decreases. Since the larger effect sizes lead to smaller

sample sizes, this tells us that small sample size is likely impacting the probabilities of

replication. This trend is also presented across the various publication bias levels.

ES±0.1 margin, we see publication bias does not impact replication success at the same

level as power, sample size, and ES. As the power and sample size increases and the ES

decreases, the probability of replication approaches the maximum possible probability

level. However, when exploring the 0±0.1 margin, publication bias has a small impact

on replication rates. Regardless of ES level, when the power is low and there is more

publication bias, the probability of replication is the lowest. Overall, the ES, sample

size, and power level still contribute most heavily to the probability of replication.
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Figure 2.6: Aim 1 Simulation Results-No δ
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Similarly, when looking at the results with a δ ∼ N(0, 0.05), in Figure 2.7, the

maximum probability of replication for both margins increases as the power levels

increase and the ES levels decrease, increasing the sample size. We also see that for the

original ES±0.1 margin, the publication bias does not impact the rates of replication

and as the power and sample size are high and the ES is small, the probability of

replication approaches the maximum probability level. However, we do see that when

the ES is small(r = 0.1) and the power is low (0.2), the probability of replication is

dramatically lower compared to the other power levels. For the 0±0.1 margin, we see

the same trend as we did when we used no δ where the replication rates become higher

with more publication bias compared to less publication bias when the power is higher.
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Figure 2.7: Aim 1 Simulation Results-δ ∼ N(0, 0.05)
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However, when comparing these results to when we used a δ ∼ N(0, 0.15), in Figure

2.8, we see many differences. There is less consistency in results with higher variance, as

presented in Figure 2.8. Additionally, with the higher standard deviation, regardless of

the ES, power, or publication bias level, none of the replication probabilities are close to

the maximum possible replication probability. We do, however, see that as the power

increases and the ES decreases, increasing the sample size, the overall replication

probabilities generally increase, particularly for the original ES±0.1 margin, which we

saw in the other simulation results as well.
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Figure 2.8: Aim 1 Simulation Results-δ ∼ N(0, 0.15)
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2.4.3 Aim 1c: Real Data

The results obtained when we applied the Reproducibility Project data to our metric

are presented in Figure 2.9 as boxplots. The x-axis shows which margin and study was

used to assess replication, and the y-axis tells us the probability of a successful replication.

The median replication rate is presented as the numeric value above the median line for

each margin. Since the average sample size for the Reproducibility Project was small

(n<40), we expected many studies to have lower probabilities of replication when assessed

using our metric, which is what we observed.

Regardless of the margin and approach selected, the median probabilities all fell

below 0.4. Additionally, we see the more conservative margins and bounds, the first and

last boxplots, have lower replication probabilities for each of the studies since the

equivalence margins are narrower. Lastly, even though many studies have lower

replication probabilities, the range of replication probability was high for all the

margins and bounds. Thus, we can see that when using this metric, regardless of the

margin and bounds selected, much more information is provided because it shows each

study’s probability of replication, not just whether the study replicated or not.
Figure 2.9: Reproducibility Project Applied to Equivalence Metric

Based on the results when we applied the Reproducibility Project data to the
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equivalence metric, we compared two of the margins and bounds using the equivalence

metric to the current and proposed suggested metrics. The results are shown in Table

2.6. Firstly, all the metrics, aside from the equivalence metric, dichotomize replication

success. Thus, we could only present the percentage of the number of studies that were

successfully replicated using these metrics. Furthermore, these metrics do not tell us

about the probability for replication for each replicated study. Therefore, we do not

know whether studies are just barely or almost perfectly replications. However, for the

equivalence metric, we were able to determine this. We presented the median rate of

replication across all the studies as well as the range, showing that some of the studies

did not replicate while others had 100% replication ability. We know this because our

metric assesses replication continuously for each individual study. Lastly, the

equivalence metric was able to include all 100 studies, whereas some of the other

metrics did not have this flexibility. Thus, our metric was able assess replication on a

continuous scale and universally presenting stronger, more precise replication rates for

individual studies.

Table 2.6: Replication Rates using Various Metrics and the Reproducibility Project Data

Metric Studies Levels Used Replication
Success Rate %

P-values 100 α = 0.05 36
Original Effect Size (ES)
falls in replicated ES CI 100 CI=95% 47.5

Replicated ES falls in
original ES CI 100 CI=95% 54.3

Original and replicated
ES CI overlapped 100 CI=95% 92.3

Bayes Factors 95 BF=2.5 35.8
Mitigated Bayes Factors 72 BF=2.5 15.3

Meta-Analysis 90 α = 0.05 68

Equivalence Metric* 100 Original ES ± 0.1
→ replicated ES 22.6 (0.0, 100.0)

Equivalence Metric* 100 0 ± 0.1
→ difference in ES 19.4 (0.0, 100.0)

*Median and Range
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2.5 Discussion

In conclusion, our metric more precisely assesses replication success compared to

current metrics since it assesses replication with fewer limitations while accounting for

multiple factors. When we investigated the impacts of the original study design factors,

we found that overall, regardless of the equivalence bounds selected, a study’s ability to

replicate increases as the power increases and decreases as the effect size increases and

sample size decreases. Surprisingly, we found that the level of publication bias had a

much smaller role in the probability of a study to replicate. However, for the

equivalence bounds centered around the original effect size, with high power, a larger

presence of publication bias did increase the rates of replication compared to a small

presence of publication bias, but with low power, higher levels of publication bias

lowered the probability replication. Generally, though, we found that with other

margins, publication bias had a minimal impact on replication rates using this metric.

One plausible reason for this is that compared to other metrics, like the p-value and

confidence intervals, the equivalence replication metric does not rely on statistical

significance. Furthermore, this result, that publication bias has a minimal impact on

replication rates, follows what Berinsky found when he explored how publication bias

manifests in replications. He found that publication bias impacts replication, but

largely as the file draw problem in replication studies is much smaller than that in

original studies100.

Additionally, we found when the original study has a smaller sample size, but the

effect sizes are similar between the original and replicated study, the maximum

probability of replication is much lower than when the sample size is large. However, as

the effect size difference between the original and replicated study increases, the
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maximum replication rate is higher for the studies with smaller sample sizes. This

shows that this metric is impacted substantially by sample size leading to the question

of ’are studies with small sample sizes worth replicating?’ One consideration is that

studies with small sample sizes can lead to problems in research. Patel found that

replicating studies with small original sample sizes increases the range of potential

replication estimates consistent with the original estimate. Thus, many smaller studies

will show statistically consistent replications, meaning the replication may be

statistically successful, but provide little information about the true effects101. However,

the same question in reverse could be asked ’are studies with extremely large sample

sizes worth replicating?’ The opposite of small samples, studies with larger sample sizes

have a narrower range of consistent replication estimates, and thus need to be replicated

less frequently, if at all101. Therefore, even though our metric replication probability

success rates are highly impacted by extreme sample sizes, this may not be as big of

limitation as expected since studies with extremely small sample sizes maybe should not

be replicated until enough studies have been performed.

In addition to the equivalence replication metric being able to determine the

impacts of power, effect size, publication bias, and sample size, we believe this metric

helps take many steps forward in replication assessment. Currently, all the standard

metrics used to assess replication determine replication success on a binary scale,

whereas our metric assesses replication on a continuous scale. By assessing replication

on a continuous scale, this metric can determine a study’s likelihood to replicate. Since

it is not always clear whether a study should have replicated or not using a binary scale,

assessing replication continuously helps eliminate the uncertainty for these studies

adding clarity, accuracy, and confidence to scientific replications. Secondly, though we

presented this metric using correlation coefficients, this metric can be applied to any
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effect size, which makes it universal across all studies. Furthermore, to make this metric

user-friendly, the computation complexity was kept low, leading the computation time

to remain short. All these benefits together produce a metric that is stronger and more

precise than the current metrics used.

This research offered a framework for future exploration into replication assessment

tools. Not only does it highlight the limitations and flaws of current replication metrics,

but it introduces benefits not presented in replication research. Though this metric is

novel, there is still needed research to be explored involving replication assessments.

Firstly, this metric could be used to help decide the best equivalence margins to use to

determine the bounds. Additionally, research into what sample sizes are too extreme for

replication could be explored using all replication assessment metrics. Lastly, research

that compares using the individual effect sizes from the original and replicate studies

versus the difference in effect sizes could be further investigated. One area of research we

explored was using Bayesian statistical credible intervals to assess the replications rather

than confidence intervals. Though Bayesian statistics is used less often, it could be

beneficial to some in helping increase trust and confidence in scientific research. Overall,

though, the equivalence replication metric designed assesses replication continuously and

can help expand the area of replication research.
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Chapter 3

Develop an Equivalence Study

Metric for Multiple Studies

3.1 Abstract

Introduction: In the past decade, there have been multiple large-scale replication

projects that have attempted to directly replicate research methods and found

shockingly low replication rates. Due to the low replication rates, many researchers

have explored potential reasons, including using flawed statistical metrics to assess

replication. Currently, the common metrics used to assess replication dichotomize

replication success and do not account for study limitations. Therefore, we developed a

metric that assesses single-study replications on a continuous scale and can address the

potential impact of publication bias, sample size, and statistical power. For this study,

we extend this new equivalence metric to assess the replication of multiple studies to

determine overall rates and probabilities of replication.

Methods: After assessing replication using meta-analysis, we extended the equivalence

replication metric to multiple replication studies using multivariate techniques. Using
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multivariate analysis, we assessed the probability of replication when performing

multiple replications of one original study. Various simulation conditions were used to

determine the impact the original study elements had on replication probability when

using multiple studies. Lastly, we compared the replication probabilities for the single

studies and multiple studies when using the equivalence metric.

Results: We found that meta-analysis was able to assess multiple replications of one

original study, but did so by dichotomizing replication success since it uses p-values and

confidence intervals to assess replication. However, when we used multivariate analysis

and the equivalence replication metric, we were able to assess multiple replications on a

continuous scale. We found that the equivalence margin widths, effect sizes, sample

sizes, and variance impacted the replication probabilities most heavily when using the

difference in effect sizes centered around 0 as the equivalence margin. However, we did

discover that regardless of the margin selected, the original studies with higher power,

larger samples sizes, and smaller effect sizes had higher replication probabilities. Lastly,

when we compared the probabilities of replication of single and multiple studies, we saw

this metric produced higher replication probabilities when using single studies.

Discussion: We found that though the equivalence replication metric can assess

multiple replications, it is highly impacted by the design elements of the original study.

However, this metric can assess multiple replications on a continuous scale and account

for the original study design elements, which other metrics are not able to do.

Keywords: Replication, equivalence study, multivariate analysis, meta-analysis
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3.2 Introduction

Though replication research has evolved and grown in the last decade, research on

multiple replications for one single study is still limited. As discussed in Chapter 1,

many researchers have proposed common new metrics to assess replication, like adjusting

the alpha levels, using confidence intervals, and using Bayesian statistics53 56 59, but all

these metrics are designed for single replications, not multiple. Some believe that since

individual replication studies provide little information and potentially increase error

rates70, using a collection of studies is more robust and reduces weaknesses and limitations

in research48 71.

One less common metric proposed to assess multiple replications is meta-analysis70.

Even with research on the use of meta-analysis to assess replication, there is still limited

research on why and how to apply meta-analysis techniques to assess replication.

Additionally, there is minimum research on the limitations of using meta-analysis, or

other current metrics, for multiple replications.

Many Labs Project

The Many Labs Projects is an example of a project that could have benefited from

using a multiple-study replication approach like meta-analysis. The Many Labs Projects

was one of the first large-scale replication projects that attempted to directly replicate

the methods of original studies multiple times1. The Many Labs 1 project replicated

thirteen psychology experiments, and the Many Labs 2 project replicated 28 studies32.

However, though both the projects produced multiple replications on each original

study, the goal of the project was not to find the best way to assess multiple

replications, but rather to attempt to assess the variation in replications across samples

and research contexts30. Therefore, both projects focused on using the simple standard
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statistical significance criteria (p < 0.05) to assess replication, rather than a multiple

study assessment approach, like meta-analysis. Thus, with a multiple replication

approach, the limitations this project faced by using the p-value criteria single study

assessment metric could have been eliminated if a replication metric designed for

multiple replications was used.

Meta-Analysis Studies

One statistical technique that is currently used that can assess replication for

multiple studies is meta-analysis. Over forty years ago, the term meta-analysis was

coined as a mathematical tool used to review an area of literature and determine an

overall trend102. However, it was not until the 1990s that the connection between

replication and meta-analysis was first discussed103 104. In 1992, Schmidt made the point

that without replication, meta-analysis should not be performed and vice versa70. This

was further enhanced in 2002 when Eden and Aviv stated, ”Replication is the flip side

of meta-analysis. Without replication, the meta-analyst has nothing to cumulate”102.

Schmidt also stated that meta-analysis is not possible unless the needed replication

studies are conducted and posed the question, ”is it possible that meta-analysis will kill

the incentive and motivation to conduct primary (replication) research studies?”70.

Though replication is important for the advancement of scientific knowledge,

meta-analytic research is just as important. As Eden states, ”without replications, there

is nothing to meta-analyze, and without meta-analysis, replications cannot be

adequately accrued as a basis for generalization, which remains scholars ’primary goal’

”102. Therefore, meta-analysis helps show what research is worthwhile to continue

replicating and what is not, based on the results, study quality, and time70 105.

Not only does meta-analysis support replications, but it was recently suggested as a

solution to the replication crisis. Though there have been critiques regarding conflicting
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results and how meta-analysis does not solve methodological weaknesses like p-hacking,

there are many reasons why it can help the replication crisis. Firstly, many published

meta-analyses produce nonzero effect sizes of a moderate magnitude106. This tells us

that the rates of replication are probably larger than what the current metrics used to

define successful replication produce. Secondly, given more studies, the use of random or

fixed effects meta-analysis to combine the estimates will give a more precise estimate of

the true effect, which provides us more detail about what areas of research are replicable

and which are not68.

However, even with the benefits meta-analysis provides when assessing replication

compared to other metrics, it faces many similar limitations. Firstly, meta-analysis, like

p-values and the other metrics, dichotomizes replication success because it still selects

an arbitrary alpha threshold. And as discussed in Chapter 2, dichotomizing replication

success inaccurately estimates replication rates. Secondly, not all studies can be applied to

meta-analysis techniques, decreasing its universality. For example, for the meta-analytic

analysis for the Reproducibility Project, only the paired studies where the correlation

coefficient and its standard error could be computed were included. Lastly, no meta-

analytic techniques proposed or used from replication in the literature fully account for

the original studies’ design elements, like underpowered studies. Therefore, because of

these limitations, a stronger metric that can account for multiple studies is needed to

assess replication success.

Motivation

Since meta-analysis has weaknesses when assessing replication, there is a need for a

metric that can assess multiple replications while reducing the limitations meta-analysis

has. Thus, the goal of this paper is to extend our equivalence replication metric to

multiple studies. The equivalence replication metric is designed for one replication of a

82



single original study. By using multivariate techniques, we extend this metric to work

for multiple replications of one original study. We hypothesize that multiple-study

replications will produce more precise and valid replication rates compared to

single-study replications since multiple replications will provide improved probabilities

of replication for each original study. Additionally, unlike single studies, when using

multiple studies, there is enough power to perform an equivalence test with a narrower

equivalence margin80.
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3.3 Methods

3.3.1 Aim 2a: Meta-analysis

Prior to extending the equivalence replication metric to multiple studies, we first

simulated 10 replications for each original study and used meta-analysis to assess multiple

replications. The original study conditions are presented in Table 3.1. Since the purpose

of this research was to review how meta-analysis performs on multiple replications, we

did not include all the simulation conditions from Chapter 2. Instead, we selected one

high and one low power level, Cohen’s standard small, medium, and large correlation

coefficient effect sizes, and calculated the true ES using the original studies effect size

and δ ∼ N(0, 0.05).

Table 3.1: Simulation Conditions for Meta-Analysis

Effect Size (r) 0.1, 0.3, 0.5
Power 0.4, 0.9

δ (addition) None, N(0, 0.05)

When using no addition (δ), the true effect size was simply the original study’s ES.

Thus, the replicated studies’ sample sizes were based on the original study’s effect size and

10 different power levels ranging from 0.2 to 0.99. For the simulations with the addition

of δ ∼ N(0, 0.05), the true effect size was calculated the same as in Chapter 2 where the

original studies correlation coefficient was converted to a z-statistic and δ was sampled

from a normal distribution with a mean of 0 and standard deviations of 0.05. Then the

true z-statistic effect size was determined and converted back to a correlation coefficient,

becoming the true ES. Lastly, the replicated studies sample size was calculated using the

true ES and the same 10 power levels.

To perform the meta-analysis, though mixed-effect meta-analysis is recommended

here due to the heterogeneity, we conducted fixed effect meta-analysis to follow what the
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Reproducibility Project used with the R package ’Metafor’73. Fixed effect meta-analysis

was conducted on fisher transformed correlations for original and replicated study pairs

with the odds ratio as the dependent variable. Using the Fisher transformation, we

converted all the original and replicated correlation coefficients to Fisher z-statistics and

calculated the standard errors to run a meta-analysis of the differences in effect size

between the original and replication studies. We then plotted the results on a forest plot.

For each effect size, power level, and δ combination, we reported the overall meta-effect

size, 95% confidence interval, and p-value.

3.3.2 Aim 2b: Equivalence Replication Metric for Multiple

Studies

Multivariate Analysis

Multivariate methods are ’designed to simultaneously analyze data sets, i.e., the

analysis of different variables for each person or object studied’107. These methods are

becoming vital in social science research108 109because they help limit the inflation of

Type I ’experimentwise’ error110. Additionally, it is said that multivariate analyses are

a better fit for ”real world” data since variables are often influenced and correlated with

other variables111.

Though replication data is not typical of multivariate data, replication data that

involves more than one replicated study for one original study can be used as multivariate

data. The original study can be thought of as the outcome and the replicated study as the

dependent variables, as shown in Figure 3.1. Most published replications and replication

projects are done at the bivariate level with one original study and one replicated study.

Currently, there are very few metrics that can assess multiple replications, which is why

we extend our equivalence metric to manage this type of data.
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Figure 3.1: Bivariate Data vs. Multivariate Data-Replications

Multiple replications are define as two or more replications done using the exact same original study.
Using this figure we can see how multiple replication data is multivariate data.

Review of Metric for Single Studies

The equivalence replication metric (Chapter 2) uses equivalence study techniques to

determine the probability of replication given the original study. The metric is developed

using the steps below (Chapter 2.3.2) with then the proceeding cdf functions listed as

well.

Step 1: Determine the equivalence margin.

• Decide what the margin is based around.

• Decide the width of the margin.

Step 2: Calculate the studies probability of replication.

∫ θ+δ

θ−δ
f(R)dx when the margins are built around the original ES; (3.1)∫ θ+δ

θ−δ
f(R − O)dx when the margins are built around 0; (3.2)

This metric was developed since all current metrics used to assess replication face

multiple limitations. Unlike other metrics, this metric assesses replication on a
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continuous scale rather than binarily. By assessing replication on a continuous scale,

more precise rates of replication are produced, and more information about a study’s

replication probability is presented. Secondly, the equivalence replication metric can

assess the replication of all studies, unlike many of the current metrics due to the

simplistic nature of the metric. For this metric, there is no additional input needed

beyond the standard information the original study provides (effect size, sample size,

power etc.). Lastly, when assessing replication with this metric, one can determine the

impacts sample size, power, effect size, and publication bias have on the levels of

replication, which is not able to be done using the current metrics. Thus, due to the

many additional benefits the equivalence replication metric has, we will extend this

metric to assess replication for multiple studies.

Extension of Equivalence Replication Metric

For this dissertation, multiple replications are defined as two or more replications done

using the exact same original study. To understand this approach, we look at Figure 3.2,

where we included one original study and two replicated studies. The x-axis was used for

the first replication, and the y-axis was used for the second replication. For both figures,

the original studies ES is the red dot, and the equivalence margin, based on the original

studies ES is the red square. The replicated studies ESs are presented as the blue dot in

the left figure and the yellow dot in the right figure (replicated ES 1, replicated ES 2).

The circle’s surrounding the replicated ESs are the multivariate confidence regions where

the probability of replication is where the regions and equivalence bounds overlap. ions.

Thus, the probability of replication is where the regions and equivalence bounds overlap.

For both figures, the original study had a correlation coefficient (ES) of 0.2, and an

equivalence margin of +-.1. was used. The first replicated study found a correlation

coefficient (ES) of 0.09, and the second replicated study had a correlation coefficient (ES)
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Figure 3.2: Equivalence Study Metric Overview-Extension to Multiple Studies

This figure explains how the equivalence metric was extended to multiple replications. Here one original
study and two replicated studies are presented where the x-axis shows the first replication, and the y-
axis shows the second replication. For both figures, the original studies effect size is the red dot and the
equivalence margin, based around the original studies effect size, is the red square. The replicated effect
sizes are presented as the blue dot on the left and the yellow dot on the right. The circle’s surrounding the
replicated effect sizes are the multivariate confidence regions with the numeric value of the probability
of replication listed.

of 0.31. Then using the multivariate normal distribution and both the replicated studies’

sample sizes, we see that the probability of replication for the first figure is about 0.25 and

for the second figure is 0.19. Though the probability of replication is smaller in the right

figure, in this case, since the replicated studies are significantly different from the original

study and outside the preset equivalence margin, a lower probability of replication is

expected for a larger sample size using this metric. Overall, based on the overview of

this metric, we see that even when having multiple replication studies for one study, this

metric is impacted by the original studies sample size and the margin selection.

Simulation Studies

The simulation conditions are presented in Table 3.2. The conditions were selected

using the simulation results from Chapter 2. We used the same effect size levels as we did
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for the single study simulations to compare the results. These effect sizes were selected

as they represent a variety of studies and present both realistic and idealistic simulations.

Since we saw the most significant difference between low and high levels of power at the

single-level assessment, we only included a low and high level of each. Additionally, since

we saw how minimal the impact of publication bias was when using this metric, we focused

on accounting for only the different effect sizes and power. For each simulation condition,

an original study was paired with two replication studies. Furthermore, like in Chapter 2,

we included the maximum possible replication rate for the equivalence replication metric

for each condition. For the maximum possible replication rate, we assumed both the

replicated studies had the exact same power and effect size as the original study.

Table 3.2: Simulation Conditions for Multiple Replications using the Equivalence Study Metric

Effect Size (r) 0.1, 0.197, 0.3, 0.4, 0.5
Power 0.4, 0.9

Equivalence Margins
Centered Around Original ES ±0.05, ±0.1, ±0.3, 20% and 50% larger and smaller

Centered Around 0 ±0.05, ±0.1, ±0.3
δ (addition) None, N(0, 0.05), N(0, 0.15), N(0, 0.5)

Simulation Outline and Protocol

For these simulations, we followed a similar protocol as in Chapter 2, but simulated

two replications for each original study rather than one. Thus, one thousand iterations

were performed for each simulation condition, where an original study was paired with

two replicated studies. For each simulation, each replicated study had 2 times the sample

of the original study meaning the replicated study had greater statistical power. To

calculate the true effect size, we converted the original study’s correlation coefficient to a

z-statistic, and δ was sampled from a normal distribution with a mean of 0 and standard

deviations of 0.05, or 0.15. Then, the true z-statistic effect size was determined. At the

end, it was converted back to a correlation coefficient. Thus, when using no addition
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(δ), the true effect size equaled the original study’s effect size. Once the original and

the two replicated studies were simulated for each condition, each study’s probability of

replication was determined using the multivariate R package ’mtvnorm’112.

Single versus Multiple Replication Probabilities

To fully assess the design and results of the equivalence replication metric, we

simply compared the probabilities of replication when using one single replication

(Chapter 2) versus multiple replications. We compared the probabilities for both types

of replications using various simulations conditions (ES=0.1,0.3, 0.5; power=0.4, 0.9,

δ ∼ none, N(0, 0.05), N(0, 0.15)). We reported the mean replication probabilities for

each condition and noted any differences between the probabilities for the single and

multiple replications.
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3.4 Results

3.4.1 Aim 2a: Meta-analysis

Table 3.3 shows the results from the fixed-effect meta-analysis based on the various

simulation conditions. The meta-analysis effects for the difference in replicated studies

are all small and non-significant based on the standard p-value criteria (p > 0.05). Thus,

we can conclude that there is no statistically significant difference between the original

and replicated study, regardless of the delta and original study conditions used. Since

there was little variance in effect sizes, the random effect model produces comparable

results as shown in Figure 7.1 in the Appendix (Chapter 7).

Table 3.3: Meta-Analysis Results using Fixed-Effect Meta-Analysis

Original ES (r) Original Power Delta Meta ES Difference (95% CI) P-value

0.1 0.4 None 0.01 (-0.4, 0.06) 0.6922
0.1 0.9 None 0.005 (-0.3, 0.04) 0.7808
0.3 0.4 None 0.006 (-0.17, 0.18) 0.9507
0.3 0.9 None 0.003 (-0.11, 0.11) 0.9657
0.5 0.4 None 0.166 (-0.11, 0.44) 0.2432
0.5 0.9 None 0.125 (-0.7, 0.33) 0.2190
0.1 0.4 N(0,0.05) -0.01 (-0.06, 0.04) 0.7527
0.1 0.9 N(0,0.05) -0.01 (-0.05, 0.03) 0.5924
0.3 0.4 N(0,0.05) 0.02 (-0.15, 0.19) 0.8299
0.3 0.9 N(0,0.05) -0.004 (-0.11, 0.10) 0.9435
0.5 0.4 N(0,0.05) -0.004 (-0.11, 0.10) 0.9435
0.5 0.9 N(0,0.05) 0.06 (-0.13, 0.26) 0.5081

Additionally, Figures 3.3 and 3.4 are the forest plots for all three effect sizes when

using an original study power of 0.9. We only plotted 0.9 power because there was a

trivial difference in the results between the high and low power. Figure 3.3 shows when

we used no delta and Figure 3.4 shows when a δ ∼ N(0, 0.05) was used. The black boxes

represent the difference in effect sizes between the two studies, with the larger boxes

having a larger sample size, and the horizontal lines represent the 95% confidence level.
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The larger the dot means that that study pair has a larger weight in the meta-analysis

calculation. The vertical line is the line of no effect or 0 in this case.
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Figure 3.3: Forest Plot of the Difference in Effect Sizes with no δ
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Figure 3.4: Forest Plot of the Difference in Effect Sizes when δ ∼ N(0, .05)
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We see the last row represents the meta-analytic mean with the 95% confidence

interval. We can see that in all the forest plots (Figures 3.3 and 3.4), the meta-analytic

results cross the line of no-effect, meaning that there is no statistical significant

difference between the original and replicated studies, as we presented above in Table

3.3.

Though the meta-analysis can assess whether there is an effect difference between

the original and replicated studies, it cannot tell us the probability the original study

replicated. Additionally, as mentioned earlier, meta-analysis still uses the arbitrary cutoffs

defined by p-values and confidence interval levels to determine whether the study was

significant or not. Therefore, this shows that although meta-analysis can be used to

explore differences in original and multiple replicated studies, it is not the best metric to

use when assessing multiple replications for one original study as it cannot determine a

study’s probability of replication.

3.4.2 Aim 2b: Equivalence Replication Metric for Multiple

Studies

Figures 3.5 and 3.6 show the replication probability for each of the simulation

scenarios for the two margins with widths of ± 0.1. We selected the bound and effect

size levels to make them comparable to the bounds and effect sizes we selected in

Chapter 2. The different colored lines represent the various simulation conditions. The

remaining simulation results are in the appendix (Figures 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, and

7.8).

Looking at Figures 3.5 and 3.6 the x-axis shows the power as a percentage (40 and

90%), the y-axis shows the mean probability of replication, and the three columns, from

left to right, are for the three original correlation effect sizes (0.1, 0.3, 0.5). The assorted
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color lines represent the various variability or delta adjustments that were used to simulate

the replicated studies.

Looking at Figure 3.5 where the bounds were the original effect size ± 0.1, we see that

the maximum probability (dark blue line) of replication is the highest, followed closely

by results when no additional δ was used. This is then followed by the replications with

the various delta adjustments, with the largest standard deviations having the lowest

probability of replication. Additionally, we see that as we increase the power levels,

the overall replication probabilities increase regardless of the effect size and adjustment.

Like what we saw in Chapter 2, as we increase the effect size, the overall probability of

replication decreases for both the low and high power.

Unlike Figure 3.5, Figure 3.6 has less consistency across power levels and effect sizes.

This was expected, since unlike the bounds centered around the original ES, this bound

is not based on any of the simulation conditions. Additionally, it uses the difference in

ESs between the replication and the original study to determine the rate of replication.

However, we do see a few small trends. As we increase the effect size from 0.1 to 0.5, the

overall probability of replication decreases. Additionally, as the power increases the rates

of replication generally increase as well, specifically when using no δ and a δ ∼ N(0, 0.5).

However, as we increase the delta standard deviations we see the consistency disappear.
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Figure 3.5: Equivalence Replication Metric Results using Multiple Studies- Bound: Original ES±0.1
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Figure 3.6: Equivalence Replication Metric Results using Multiple Studies- Bound:0±0.1
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Single versus Multiple Replication Studies

Looking at Table 3.4 we see, by simulation condition, the replication probabilities

for single versus multiple studies for the margin of original ES ± 0.1. Here we see a few

trends. Firstly, for all simulation conditions, the single study replications produced higher

replication probabilities than the multiple replication studies. We also see that regardless

of the δ, for both the single and multiple study replications, the higher the power and

the lower the effect size, the higher the probability of replication. Furthermore, we see

that the replication probabilities for multiple studies are more highly impacted by the

addition of δ than the single study replications.

Table 3.4: Single and Multiple Study Replication Probabilities using the Equivalence Replication with
Original ES ± 0.1 as Bounds

Simulation Conditions Single Replications Multiple Replications
ES=0.1, Power=0.4, no δ 0.91 0.65
ES=0.1, Power=0.9, no δ > .99 0.94
ES=0.3, Power=0.4, no δ 0.46 0.15
ES=0.3, Power=0.9, no δ 0.76 0.48
ES=0.5, Power=0.4, no δ 0.34 0.01
ES=0.5, Power=0.9, no δ 0.58 0.11

ES=0.1, Power=0.4, δ ∼ N(0, 0.05) 0.91 0.10
ES=0.1, Power=0.9, δ ∼ N(0, 0.05) 0.99 0.25
ES=0.3, Power=0.4, δ ∼ N(0, 0.05) 0.45 0.05
ES=0.3, Power=0.9, δ ∼ N(0, 0.05) 0.73 0.09
ES=0.5, Power=0.4, δ ∼ N(0, 0.05) 0.33 0.04
ES=0.5, Power=0.9, δ ∼ N(0, 0.05) 0.59 0.06
ES=0.1, Power=0.4, δ ∼ N(0, 0.15) 0.79 0.03
ES=0.1, Power=0.9, δ ∼ N(0, 0.15) 0.95 0.13
ES=0.3, Power=0.4, δ ∼ N(0, 0.15) 0.44 0.05
ES=0.3, Power=0.9, δ ∼ N(0, 0.15) 0.56 0.05
ES=0.5, Power=0.4, δ ∼ N(0, 0.15) 0.34 0.04
ES=0.5, Power=0.9, δ ∼ N(0, 0.15) 0.56 0.06

Unlike Table 3.4, when looking at Table 3.5, there are less consistent trends. When

using the bounds of 0 ± 0.1, the probabilities of replication vary dramatically. Here,

since we are using the difference in effect sizes to determine replication, the simulation

conditions and true ESs had a lower impact on the overall rates of replication and had no
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impact on the margin. Though there were fewer trends than we saw using the original ES

± 0.1 as the equivalence margin, there are still some. Firstly, we see that, the higher the

standard deviation used in δ, the lower the replication probabilities for both single and

multiple replicated studies. Additionally, for the single replications had higher replication

probabilities than the multiple replications. Thus, like the Original ES margin above, the

multiple replications were highly impacted by the by the additional δ .

Table 3.5: Single and Multiple Study Replication Probabilities using the Equivalence Replication with
0 ± 0.1 as Bounds

Simulation Conditions Single Replications Multiple Replications
ES=0.1, Power=0.4, no δ 0.79 0.87
ES=0.1, Power=0.9, no δ 0.98 0.99
ES=0.3, Power=0.4, no δ 0.34 0.31
ES=0.3, Power=0.9, no δ 0.60 0.86
ES=0.5, Power=0.4, no δ 0.23 0.00
ES=0.5, Power=0.9, no δ 0.42 0.06

ES=0.1, Power=0.4, δ ∼ N(0, 0.05) 0.76 0.01
ES=0.1, Power=0.9, δ ∼ N(0, 0.05) 0.88 0.99
ES=0.3, Power=0.4, δ ∼ N(0, 0.05) 0.35 0.34
ES=0.3, Power=0.9, δ ∼ N(0, 0.05) 0.52 0.53
ES=0.5, Power=0.4, δ ∼ N(0, 0.05) 0.22 0.07
ES=0.5, Power=0.9, δ ∼ N(0, 0.05) 0.45 0.19
ES=0.1, Power=0.4, δ ∼ N(0, 0.15) 0.43 0.00
ES=0.1, Power=0.9, δ ∼ N(0, 0.15) 0.53 0.002
ES=0.3, Power=0.4, δ ∼ N(0, 0.15) 0.30 0.33
ES=0.3, Power=0.9, δ ∼ N(0, 0.15) 0.48 0.24
ES=0.5, Power=0.4, δ ∼ N(0, 0.15) 0.25 0.06
ES=0.5, Power=0.9, δ ∼ N(0, 0.15) 0.33 0.18
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3.5 Discussion

In conclusion, our equivalence replication metric was extended to multiple studies

using multivariate analysis and was able to assess multiple replications of one study

continuously while accounting for multiple factors. When we explored how various factor

designs of the original study impact the replication rates for multiple studies, we found

that the margin, sample size, power, and effect size contributed to the probabilities of

replication noticeably. Lastly, as expected, we found that when comparing the replication

probabilities for multiple studies to single studies, with the equivalence replication metric,

the probabilities of replication were often higher for single studies, and the additional δ,

for the true effect size, heavily impacted the replication rates for multiple studies.

When assessing replications using multiple replications for one study, a few challenges

arose. Firstly, since each replication can have drastically different effect sizes and or

power levels, one replication study can impact the probability of replication noticeably,

just as outliers impact results113. For example, if we performed 10 replications of a study

that had an effect size of 0.1, and 9 of the 10 studies had an effect size close to 0.1, but

one study had an effect size of -0.7, the probability of replication would be lower than

expected due to the one outlier. Secondly, performing multiple replications is not always

feasible due to time, money, and interest. Currently, funding agencies and journal editors

value novelty research over replication research. Lastly, since multiple replications often

lead to increased variability, the overall replication rates are impacted more heavily often

leading to lower replication rates.

Regardless of all the challenges multiple replications face, there are many strengths.

Firstly, multiple replications provide a more confident replication probability than just

one study. Increased replications with consistent results lead to enhanced confidence in
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findings, especially if studies have small sample sizes. Secondly, in some areas of science,

completing multiple replications is necessary. This could be for many reasons such having

a small sample study, lab sciences, or research that involves human subjects with high

variability. Thus, because replicating a study more than once has benefits to scientific

progress, it is important that there is a statistical tool that can be used that precisely

and confidently assesses replication.

Thus, the equivalence replication metric is key to multiple replications. Though it is

highly impacted by some original study design elements like sample size, it is believed to

be the only metric that can assess multiple replications continuously. Even though it is

impacted by sample size and power, the studies that have extremely small sample sizes or

power levels, possible should not be replicated at the single study level, but rather after

multiple studies have been performed. Additionally, as we saw, this metric has a higher

probability of replication when using replicated effect size to determine the probability

of replication compared to the difference in effect sizes.

Though this metric is novel and provides a research tool to use when multiple

replications are performed, there is still more research that can be done in this area.

Firstly, it would be of interest to explore the impact of outliers on the replication

probabilities. Secondly, in the future, one could explore if publication bias played a

larger role in multiple replications than we saw it played in single studies in Chapter 2.

Lastly, we only applied this metric to simulated data, so with real-world data, it would

be interesting to see how this metric’s replication probabilities compare to other binary

metrics currently used to assess multiple replications.

Overall, though this metric has flaws, it currently is the only metric that can fully

assess multiple replications continuously, while addressing the original study design

elements. Thus, it is suggested that researchers performing multiple replications should
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investigate using this method to produce improved rates of replication. This will

hopefully lead to more confidence and trust in scientific literature.
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Chapter 4

Design a Survey to Assess the

Equivalence Replication Metric

4.1 Abstract

Introduction: Currently, all the common metrics used to assess replication

dichotomize replication success, which often provides inaccurate rates of replication.

Thus, we designed a novel metric to assess replication, using equivalence study

techniques, which assess replication on a continuous scale. Though this metric can

determine a study’s replication probability, it has only been assessed quantitatively.

Therefore, for this research, our goal is to design a survey that can be used to determine

how researchers approach and assess replication, and how the equivalence replication

metric compares to the other metrics in practice.

Methods: Using the information about the different metrics used to assess replication,

as well as the novel metric using equivalence studies, a survey was designed. All future

survey participants must hold at least a bachelor’s degree, be 18 years or older, and sign

a consent form.
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Results: The survey had two parts. The first part of the survey asked questions on

demographics, provided knowledge on replication, and gave multiple study scenarios.

Each scenario provided original and replication study results using the three common

replication metrics, p-values, Bayes Factors, and confidence intervals. After each scenario,

researchers were asked to rate the study’s likelihood of replication, rank the metrics, and

provide feedback. The second part of the survey included information on the limitations of

the current metrics and the equivalence replication metric. Following this round, multiple

questions were asked about the metrics and the approaches to assess replication.

Future Research: The survey is currently completed and ready for distribution. With

funding and IRB approval, the next step is to distribute the survey and perform an

analysis of the data.

Keywords: Replication, Bayes factors, Equivalence Study
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4.2 Introduction

In recent decades, the lack of successful replications of published studies has led to

concern of a replication crisis and has resulted in reduced confidence in science7. As

concerns have grown, scholars have offered potential reasons for the low replication

rates. These low replication rates have led researchers to conclude that most studies fail

to replicate successfully. As a result, researchers are seeking to understand why the

replication rates are so low. Although there are non-statistical factors, including

inadequate descriptions of study methods37 and poor statistical training1, that can

impact replication rates, this research focuses on the statistical factors that may lead to

rates of replication that appear low. These include original studies that are

underpowered, publication bias, and poor statistical definitions of a successful

replication. In the presence of publication bias (where studies with statistically

significant results have an increased likelihood of publication49 51), an underpowered

study makes a successful replication difficult to achieve since underpowered studies lead

to finding an effect size farther from the true effect size44. Additionally, researchers have

suggested that using p-values, confidence intervals, and Bayesian statistics to assess

replication can underestimate replication rates as they are often misused, dichotomize

replication success, and use arbitrary cutoff thresholds40,59,68.

Although the suggested solutions and statistical factors that affect replication have

been discussed in the literature, there is limited research on new metrics to assess

replication success that can fully account for the methodological limitations discussed

above. Thus, we designed a metric that assesses replication on a continuous scale (as

opposed to making dichotomous decisions, like all current metrics), and that accounts

for underpowered studies and publication bias using equivalence study techniques. This
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metric was applied to both single (Chapter 2) and multiple (Chapter 3) replication

studies. We found that a study’s replication probability depends on various study

design factors. We are now interested in how researchers compare our equivalence

metric to other metrics used to assess replication. Thus, our goal is to design a survey

for active researchers that can examine replication in practice, qualitatively and

quantitatively,

In this project, we design a survey that can help understand how researchers interpret

results from replication studies and validate the statistical metrics used. We designed a

survey for later distribution to researchers in various fields, in hopes of determining what

leads researchers to evaluate a successful replication. The survey includes the common

existing and proposed metrics used to assess replication which are p-values, confidence

intervals, and Bayes factors. The purpose of this research is to design a survey that can

assess the perception of replication researchers have across areas of science, examine the

performance of replication metrics in practice, and compare the equivalence replication

metric to current replication metrics. The distribution of the survey and analysis of the

data is future work.
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4.3 Survey

4.3.1 Design

We designed the survey as two separate two parts. The first part of the survey looks

at only the current metrics used to assess replication success whereas part two includes

the new replication metric using equivalence study techniques. The first part collects

information on the participants’ background, including their education level and

occupation, asks about their knowledge of replication, provides information on the

replication crisis, and gives a brief overview of the current metrics used to assess

replication. Then, vignettes describing study results with p-values, effect size confidence

intervals, and Bayes factors are provided for both the original and replicated studies.

The survey then asks each participant to evaluate the likelihood each vignette

replicated on a scale of 0-100%. Then some broad questions on what metrics influenced

their responses most heavily.

This second part of the survey includes information on the equivalence metric, gives

similar scenarios to the first part of the survey, but includes the new metric, and asks

participants to compare the current metrics to the new metric. The consent form and

survey are in Appendix 4 (Chapter 8).

The survey was designed to determine a few things. Firstly, we hope to determine the

metric researchers currently focus on to assess replication success and why. Secondly, we

want to assess how a participant’s background impacts their assessment metric selection,

and lastly, we want to establish how the equivalence metric compares to the current

metrics.
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Survey Participation

Our sample will include participants that are 18 years or older, have at least a college

bachelor’s degree, and have signed the consent form.

4.4 Future Work

4.4.1 Survey Distribution

We are currently seeking funding and IRB approval to distribute the survey. Once

we can move forward, we plan to use Qualtrics to distribute the surveys and keep the

participant’s personal information confidential. Each participant is required to sign the

consent form prior to starting the survey.

4.4.2 Institutional Review Boards

We applied for Virginia Commonwealth University’s Institutional Review Boards

(IRB) to conduct this survey. IRB approval was required as human subjects are used in

this study.

4.4.3 Statistical Methods

Once the surveys have been returned, we plan to perform an analysis of the data. All

the study participant’s characteristics will be summarized as frequencies and percentages

and the replication likelihoods and rankings will be summarized as means and standard

deviations. Certain categories of research will be combined to perform analysis with

sufficient sample sizes. As appropriate, McNemar’s tests, paired t-tests, and analysis

of variance (ANOVA) will be used to compare responses between metrics. Lastly, the
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open-ended responses will be assessed. All survey analyses will be performed using SAS

Version 9.4 Statistical Software and R.
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Chapter 5

Discussion

In closing, when equivalence study techniques are used to evaluate replication,

replication success is assessed on a continuous scale providing information on a study’s

probability of replication. When assessing single-study replications using the

equivalence replication metric, in both simulations and the Reproducibility Project

data, the margin, sample size, and power of each original study highly impacted the

replication probabilities, but publication bias had a negligible impact. However, when

assessing the replication of multiple studies, the margin selected, the sample size, and

the true ES, based on the δ used, had the largest impact on replication probabilities.

Here, when the true ES had higher variability the rates of replication had less

consistency across simulations conditions.

However, regardless of the number of replications preformed, the power, effect size, and

sample size impacted the probabilities of replication consistently. As the power increased

the probability of replication increased, but when the effect size increased, the probability

of replication decreased. This is due to the relationship between power, effect size, and

sample size and the impact simple size has on the equivalence metric. As presented using

various expectation figures in Chapter 2 and 3, replications that found similar results
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to the original study results had lower probabilities of replication when using smaller

samples sizes compared to larger sample sizes. This tells us that the impact power and

effect size have on replication probability is due to their connection with sample size. A

study with low power and a large effect size has a smaller sample size compared to a

study with high power and a small effect size. Thus, when using the equivalence metric

with an effect size that is large and/or power that is low the small size is what is driving

the low replication probabilities.

Based on the evaluation of the current and equivalence metrics, it is apparent that

the current metrics restrict replication assessment. Many of the current metrics

(p-values, confidence intervals, and meta-analysis) use statistical significance to evaluate

replication success. However, because statistical significance and p-value are often

misused, misunderstood, and misinterpreted there is a push in literature to avoid using

metrics to determine conclusions and assess replication because one value cannot, and

should not, determine the presence of an association114. Furthermore, even though

some metrics do not rely on p-values or statistical significance (Bayes factors and

mitigated Bayes factors), they still use an arbitrary threshold that determines when a

study is successfully replicated or not. Because of these reasons, all the current metrics

should not be used to assess replication success. This led to the need and design of the

equivalence replication metric.

The equivalence replication metric does what no current metric can do, it assesses

replication on a continuous scale. By assessing replication on a continuous scale, the

impact on replication success of the original study’s design elements was more clearly

observed. Based on the results, replication of some studies is more precise than other

studies. Thus, some studies cannot or should not be replicated. With sample size

impacting the probability of replication strongly when using the equivalence metric, a
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study with a small sample size is naturally going to have a lower replication probability

regardless of the margin, metric, or power used. Therefore, when a study has a small

sample and a low replication probability, we should not say the study cannot replicate,

but rather more information on the topic and research is needed to fully assess

replication. In this case, the study maybe should simply not be replicated until a larger

sample or more studies are available. One can think of this like when one flips a coin.

The more coins flipped, the closer to exactly 50% of heads one will get. Hence, we can

think that the larger the sample size, the closer to the expected probability of

replication we get. When the option is available, then, researchers need to focus on

producing and publishing higher-quality studies to produce higher, more precise

replication probabilities.

In addition to the equivalence replication metric assessing replication on a continuous

scale, it also has additional strengths. Firstly, unlike all the current metrics used to assess

replication, it is universal and can be used for all types of studies. Thus, all researchers,

regardless of the field of research can use this metric. Secondly, this metric is user-

friendly in the sense that it uses frequentist statistics, which many non-statisticians can

understand. It only requires researchers to know the study’s sample size, effect size, and

power. Lastly, unlike most of the current metrics, this metric can not only assess single

replications, but multiple replications. Therefore, regardless of the number of replication

studies, this metric can determine a study’s probability of replication. With all the above

strengths, this metric hopefully helps eliminate some of the mistrust in replication that

current metrics have caused and can help determine if there really is a replication crisis

or not.

Despite the fact that these strengths are powerful for replication research, this

metric does not come without a few limitations. Firstly, because many of the common
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current metrics used are just generally produced when a study result is produced

(p-values and confidence intervals) this metric does require researchers to perform an

additional replication analysis to assess replication. Though this is a little more time,

because of how user-friendly this metric is, the hope is that researchers will use this

metric. Secondly, this metric, regardless of the number of replications performed or the

bounds selected, is strongly impacted by sample size. Therefore, this metric is not ideal

for assessing studies with extreme sample sizes. Lastly, this metric does require some

understanding of equivalence bounds and margins. Since there is no “correct” or

“gold-standard” equivalence, using this metric requires the researchers to understand

and determine which margin is best for their research topic and field.

Since this metric is still novel, as research continues on metrics used to assess

replication, we hope that these restrictions will be addressed and solved. Maxwell and

Anderson77 suggested using equivalence studies to assess replication success, but this is

the first time in the literature that this has been done. As we dove into this research

topic and discovered various results, more potential research topics have come up that

have not been explored.

Nevertheless, there is ample research that can be done surrounding replication, the

next step of this research is to distribute the survey and analyze the data. This would

help answer the lingering question of how replication metrics and replication studies are

assessed qualitatively. Another topic of interest is the original study design. Knowing

the impact sample size has on replication success, one area of research to explore would

be to determine what types of study design elements are needed to produce more

precise, confident, and clear replication study. By knowing that the original study had a

sufficient sample size and clean methods that could be replicated, researchers could

perform replications on studies that should be replicated and get more precise
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probabilities of replication. This would hopefully help determine whether there truly is

an existing replication crisis or not. Another idea for future research is looking into

what equivalence margins are best to use for replication and if they vary across fields.

This would help eliminate researchers from having to select the margin and would help

compare replication rates across fields more precisely. Other areas that could be

invested are using various shaped confidence regions when assessing multiple replication

studies, and looking into the impact research journals and fields have on replication

probabilities.

In conclusion, even though there is more research that can be done, this equivalence

replication metric helps fill in a missing puzzle piece in the replication research field.

Currently, there are no metrics that can assess replication on a continuous scale, assess

both single and multiple replications, and determine which original study elements affect

replication rates, but this metric can. Thus, hopefully, this new equivalence replication

metric can help expand and provide more confidence in replication research.
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Chapter 6

Appendix A: Chapter 2 Figures
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Figure 6.1: Aim 1 All Simulation Results-No δ
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Figure 6.2: Aim 1 All Simulation Results-δ = 0.05
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Figure 6.3: Aim 1 All Simulation Results-δ = 0.15
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Chapter 7

Appendix B: Chapter 3 Figures

Table 7.1: Meta-Analysis Results using Mixed-Effect Meta-Analysis

Original ES (r) Original Power Delta Meta ES (95% CI) P-value

0.1 0.4 None 0.01 (-0.04, 0.06) 0.6922
0.1 0.9 None 0.01 (-0.03, 0.04) 0.7808
0.3 0.4 None 0.005 (-0.15, 0.16) 0.9528
0.3 0.9 None 0.003 (-0.11, 0.12) 0.9657
0.1 0.4 N(0,0.05) 0.002 (-0.05, 0.05) 0.9308
0.1 0.9 N(0,0.05) -0.002 (-0.03, 0.04) 0.9195
0.3 0.4 N(0,0.05) 0.06 (-0.09, 0.21) 0.4116
0.3 0.9 N(0,0.05) 0.07 (-0.04, 0.18) 0.2120
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Figure 7.1: Equivalence Replication Metric Results using Multiple Studies- Bound: Original ES±0.05
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Figure 7.2: Equivalence Replication Metric Results using Multiple Studies- Bound:Original ES±0.1
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Figure 7.3: Equivalence Replication Metric Results using Multiple Studies- Bound: Original ES±0.3
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Figure 7.4: Equivalence Replication Metric Results using Multiple Studies- Bound:Original ES± 0.2*Original ES
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Figure 7.5: Equivalence Replication Metric Results using Multiple Studies- Bound:Original ES± 0.5*Original ES
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Figure 7.6: Equivalence Replication Metric Results using Multiple Studies- Bound:0±0.05
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Figure 7.7: Equivalence Replication Metric Results using Multiple Studies- Bound:0±0.1
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Figure 7.8: Equivalence Replication Metric Results using Multiple Studies- Bound:0±0.3
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Chapter 8

Appendix C: Chapter 4 Forms and

Survey
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Replication Assessment Methods Survey 

Informed Consent 

You are invited to participate in a research study about the methods used to assess replication in 

research. The goal of this research study is to determine which methods are used most often by 

researchers to assess replication success and why. Additionally, the purpose of this study is to 

introduce a new method to assess replication and compare the older methods with the novel 

method.  

The study is being conducted by Ms. Alicia Richards and Dr. Robert Perera, funded by the 

Department of Biostatistics at Virginia Commonwealth University.  

There are 2 qualifications to participate in this study: (1) be 18 or older ; (2) have a college 

degree.    

Participation in this study is voluntary. If you agree to participate in this study, the link to 

complete the survey is below. The survey includes questions about your career and education. 

Additionally, the survey will provide information, study scenarios, and follow-up questions to 

achieve the objective of the study.  

Participating in this study may not benefit you directly, but it will help us qualitatively and 

quantitively compare methods used to assess replication.  

The information you will share with us if you participate in this study will be kept completely 

confidential to the full extent of the law. Each completed survey will be assigned a code number 

that is unique to this study. The list connecting your email to this number will be kept by 

Qualtrics file? [specify where] and only Qualtrics will see the emails that completed the survey. 

No one at Virginia Commonwealth University can see your survey or even know whether you 

participated in this study. Study findings will be presented only in summary form. While the 

investigator(s) will keep your information confidential, there are some risks of data breeches 

when sending information over the internet that are beyond the control of the investigator(s), but 

this study survey contains no sensitive information.  

If you have any questions about this study, please contact Alicia Richards (richardsar@vcu.edu). 

By clicking the link below and completing the survey, you are consenting to participate in this 

study.  

 



Replication Crisis Survey  

Page 1: Instructions and Background (Part 1) 
 
Instructions: Please read each question completely and carefully. All responses will be collected and 
submitted anonymously. Thank you for taking the time to further our research. The survey should only 
take you about 15 minutes to complete.  
 

1. Employment status (Select One): 
a. Full time employed (Not Self-Employed) 
b. Part time employed (Not Self-Employed) 
c. Self-employed 
d. Retired 
e. Student 
f. Unemployed 
g. Other 

 
2. Type of Employment (Select most relevant): 

a. Private Industry 
b. Academia 
c. Government 
d. Full Time Student 
e. Health Care 
f. Non-Profit (Non-Health Care) 
g. Other 

 
3. Field of research (select most relevant):  

a. Physical, Chemical and Earth Sciences 
b. Humanities and Creative Arts 
c. Engineering and Environmental Sciences 
d. Education and Human Society 
e. Business, Economics and Commerce 
f. Mathematical, Statistics, Information and Computing Sciences 
g. Biological and Biotechnological Sciences 
h. Social Sciences  
i. Medical and Health Sciences 
j. Other  
k. None  

  
4. Level of Education (please select your highest degree)  

a. Bachelor’s degree  
b. Master’s Degree  
c. Professional Degree (e.g., M.D., J.D.) 
d. Doctorate Degree (e.g., Ph.D., Ed.D.)   

 

 

 

 



Replication Crisis Survey  

Page 2: Learn background of the replication  
 
Replication of a study is repeating a study's methods and procedures and then observing if the new 
study and original study’s findings are similar. A successful replication is defined as a new study 
achieving consistent results using newly collected data following an earlier study’s population and 
protocol – is used to confirm the validity and reliability of prior research findings. In recent decades, the 
lack of successful replications of published studies has led to concern of a replication crisis. The 
awareness and discussion of this crisis escalated in 2015 when the Center for Open Science Framework 
(OSF) published “Estimating the Reproducibility of Psychological Science,” which attempted to directly 
replicate 100 psychology studies and found an astonishingly low replication rate of 37%. This led other 
fields of science, including health sciences, economics, sociology, biology, and oncology, to explore their 
rates of replication and found the average replication rates to fall below 50%. These low replication 
rates have led many researchers to conclude that most studies fail to replicate successfully and that 
there is a potential replication crisis.  
 

1. Prior to the description above, how familiar were you with the replication crisis? 
a. Extremely Informed 
b. Well informed 
c. Somewhat informed 
d. Heard briefly about 
e. Not at all 

 
2. In your field of research, there is a replication crisis.  

a. Strongly agree 
b. Slightly agree 
c. Neutral 
d. Slightly disagree 
e. Strongly disagree 
f. Unsure 

 
3. Over the years in your field of research, the replication crisis has improved. 

a. Strongly agree 
b. Slightly agree 
c. Neutral-stayed the same.  
d. Slightly disagree 
e. Strongly disagree 
f. No replication crisis 

 

 

 

 

 

 

 



Replication Crisis Survey  

Page 3: Statistical methods to assess replication 
 
A successful replication is often defined using p-values, confidence intervals, and Bayes factors, which 
are defined below.  
  

1. P-values: The probability of obtaining test results at least as extreme as the results observed, 
assuming the null hypothesis is true. 

 
𝜇0 

 
 
 
 

2. Confidence Intervals (CI): In repeated sampling, how often the interval contains the true 
value.  

 
 
 
 
 
 

 
 
 

  
3. Bayes Factors (BF): The Bayesian counterpart to p-values. The ratio of the likelihood of one 

hypothesis to the likelihood of another. The replication BF uses the posterior distribution from 
the original study as a prior distribution for the test of the data from the replication study. 

 
 
 
 
 
 
 
 
The next few pages will provide a study scenario with various results from original and replicated 
studies. Using the provided information and the defined methods above, please evaluate each 
scenario's probability of successful replication from 0-100% (100% perfect replication). 
 

𝛼
2⁄  

𝐻0 
 

Reject 𝐻0 Reject 𝐻0 

𝑯𝒂: 𝝁 ≠ 𝝁𝟎 

True value 

Sample Effect Size 

Sample Confidence Interval 

 

Extreme 

 

Very 
Strong 
 

Strong 
 

Moderate 
 

Moderate 
 

Strong 
 

Very 
Strong 
 

Extreme 

 

Anecdotal 
 

    0.01        0.03        0.1          0.33            1               3              10           30          100 

 Evidence favors the null hypothesis 

 

Evidence favors the alternative hypothesis 

 

 

𝛼
2⁄  



Replication Crisis Survey  

Page 4: Scenario  
 
Researcher A designed a randomized trial that tests whether a new drug improves the mobility of stage 
3 rheumatoid arthritis (RA) patients. Mobility was measured by the number of minutes a patient could 
walk on their own without assistance or help from others. All patients were at least 18 years of age, able 
to stand on their own, and did not have any other chronic diseases. Researcher A found evidence that 
the new drug improved the mobility of RA patients.  
 
Since this research could potentially enhance treatment and mobility of RA patients, researcher B 
wanted to check the validity and reliability of the results. Researcher B performed a direct replication of 
this study, by collecting new data and following the original study’s protocol and population.  
 
We will now provide you with multiple tables based on this scenario with different results from original 
and replicated studies and ask a few questions following each table.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Replication Crisis Survey  

 
The first set of results: 

 
1. Using the original and replicated study information from the above scenario, what is the 

likelihood from 0-100% (100% perfect replication), the study replicated?             . 

 
2. Provide the percentage each result contributed to your response above. This should add up to 

100%. 
i. P-value               

ii. Effect size confidence interval               
iii. Bayes factor               
iv. Other (Please Specify)              

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Original Study Replication Study 

Study Design Randomized Control Trial Randomized Control Trial 

Population Stage 3 RA patients 18+ treated at 
Boston Hospital: Jan 2018-Jan 2019 

Stage 3 RA patients 18+ treated at 
Boston Hospital: Jan 2019-Jan 2020 

Statistical Test 
 

Null Hypothesis 
Alternative Hypothesis 

Two-sided Two-Tailed T-Test 
Equal Variance 

𝜇𝐶 = 𝜇𝑇 
𝜇𝐶 ≠ 𝜇𝑇 

Two-sided Two-Tailed T-Test 
Equal Variance 

𝜇𝐶 = 𝜇𝑇 
𝜇𝐶 ≠ 𝜇𝑇 

Sample Size 
Control (𝒏𝑪) 

Intervention (𝒏𝑻) 

 
25 patients 
25 patients 

 
55 patients 
55 patients 

Mean (SD) 
Control (𝝁𝑪 (𝑺𝑫𝑪)) 

Intervention (𝝁𝑻 (𝑺𝑫𝑻)) 

 
41.9 (13.8) 
55.9 (20.0) 

 
47.9 (16.3) 
54.7 (19.7) 

DF 48 108 

T-Statistic (95% CI) -2.87 (-23.7, -4.2) -1.97 ( -13.6, 0.04) 

P-Value 0.0061 0.0514 

Bayes Factor NA 7.5 



Replication Crisis Survey  

 
The second set of results: 

 
1. Using the original and replicated study information from the above scenario, what is the 

likelihood from 0-100% (100% perfect replication), the study replicated?             . 

 
2. Provide the percentage each result contributed to your response above. This should add up to 

100%. 
i. P-value               

ii. Effect size confidence interval               
iii. Bayes factor               
iv. Other (Please Specify)              

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Original Study Replication Study 

Study Design Randomized Control Trial Randomized Control Trial 

Population Stage 3 RA patients 18+ treated at 
Boston Hospital: Jan 2018-Jan 2019 

Stage 3 RA patients 18+ treated at 
Boston Hospital: Jan 2019-Jan 2020 

Statistical Test 
 

Null Hypothesis 
Alternative Hypothesis 

Two-sided Two-Tailed T-Test 
Equal Variance 

𝜇𝐶 = 𝜇𝑇 
𝜇𝐶 ≠ 𝜇𝑇 

Two-sided Two-Tailed T-Test 
Equal Variance 

𝜇𝐶 = 𝜇𝑇 
𝜇𝐶 ≠ 𝜇𝑇 

Sample Size 
Control (𝒏𝑪) 

Intervention (𝒏𝑻) 

 
126 patients 
126 patients 

 
298 patients 
298 patients 

Mean (SD) 
Control (𝝁𝑪 (𝑺𝑫𝑪)) 

Intervention (𝝁𝑻 (𝑺𝑫𝑻)) 

 
26.6 (13.3) 
34.1 (13.8) 

 
34.7 (15.0) 
36.8 (10.8) 

DF 250 594 

T-Statistic (95% CI) -4.4 (-10.9, -4.2) -2.0 (-4.2, -0.01) 

P-Value <.0001  0.0492 

Bayes Factor NA 2.6 
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The third set of results: 

 
1. Using the original and replicated study information from the above scenario, what is the 

likelihood from 0-100% (100% perfect replication), the study replicated?             . 

 
2. Provide the percentage each result contributed to your response above. This should add up to 

100%. 
i. P-value               

ii. Effect size confidence interval               
iii. Bayes factor               
iv. Other (Please Specify)              

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Original Study Replication Study 

Study Design Randomized Control Trial Randomized Control Trial 

Population Stage 3 RA patients 18+ treated at 
Boston Hospital: Jan 2018-Jan 2019 

Stage 3 RA patients 18+ treated at 
Boston Hospital: Jan 2019-Jan 2020 

Statistical Test 
 

Null Hypothesis 
Alternative Hypothesis 

Two-sided Two-Tailed T-Test 
Equal Variance 

𝜇𝐶 = 𝜇𝑇 
𝜇𝐶 ≠ 𝜇𝑇 

Two-sided Two-Tailed T-Test 
Equal Variance 

𝜇𝐶 = 𝜇𝑇 
𝜇𝐶 ≠ 𝜇𝑇 

Sample Size 
Control (𝒏𝑪) 

Intervention (𝒏𝑻) 

 
45 patients 
45 patients 

 
153 patients 
153 patients 

Mean (SD) 
Control (𝝁𝑪 (𝑺𝑫𝑪)) 

Intervention (𝝁𝑻 (𝑺𝑫𝑻)) 

 
25.6 (9.8) 

21.5 (13.1) 

 
30.1 (11.8) 
27.4 (9.8) 

DF 88 304 

T-Statistic (95% CI) 1.70 (-0.7, 9.0) 2.2 (0.2, 5.1) 

P-Value 0.0937 0.0315 

Bayes Factor NA 3.7 
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The fourth set of results: 

 
1. Using the original and replicated study information from the above scenario, what is the 

likelihood from 0-100% (100% perfect replication), the study replicated?             . 

 
2. Provide the percentage each result contributed to your response above. This should add up to 

100%. 
i. P-value               

ii. Effect size confidence interval               
iii. Bayes factor               
iv. Other (Please Specify)              

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Original Study Replication Study 

Study Design Randomized Control Trial Randomized Control Trial 

Population Stage 3 RA patients 18+ treated at 
Boston Hospital: Jan 2018-Jan 2019 

Stage 3 RA patients 18+ treated at 
Boston Hospital: Jan 2019-Jan 2020 

Statistical Test 
 

Null Hypothesis 
Alternative Hypothesis 

Two-sided Two-Tailed T-Test 
Equal Variance 

𝜇𝐶 = 𝜇𝑇 
𝜇𝐶 ≠ 𝜇𝑇 

Two-sided Two-Tailed T-Test 
Equal Variance 

𝜇𝐶 = 𝜇𝑇 
𝜇𝐶 ≠ 𝜇𝑇 

Sample Size 
Control (𝒏𝑪) 

Intervention (𝒏𝑻) 

 
72 patients 
72 patients 

 
144 patients 
144 patients 

Mean (SD) 
Control (𝝁𝑪 (𝑺𝑫𝑪)) 

Intervention (𝝁𝑻 (𝑺𝑫𝑻)) 

 
32.9 (6.6) 

33.5 (12.0) 

 
36.3 (10.8) 
35.7 (14.8) 

DF 142 286 

T-Statistic (95% CI) -0.34 (-3.8, 2.6) 0.44 (-2.3, 3.7) 

P-Value 0.7322 0.6628 

Bayes Factor NA 1.0 
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The fifth set of results: 

 
1. Using the original and replicated study information from the above scenario, what is the 

likelihood from 0-100% (100% perfect replication), the study replicated?             . 

 
2. Provide the percentage each result contributed to your response above. This should add up to 

100%. 
i. P-value               

ii. Effect size confidence interval               
iii. Bayes factor               
iv. Other (Please Specify)              

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Original Study Replication Study 

Study Design Randomized Control Trial Randomized Control Trial 

Population Stage 3 RA patients 18+ treated at 
Boston Hospital: Jan 2018-Jan 2019 

Stage 3 RA patients 18+ treated at 
Boston Hospital: Jan 2019-Jan 2020 

Statistical Test 
 

Null Hypothesis 
Alternative Hypothesis 

Two-sided Two-Tailed T-Test 
Equal Variance 

𝜇𝐶 = 𝜇𝑇 
𝜇𝐶 ≠ 𝜇𝑇 

Two-sided Two-Tailed T-Test 
Equal Variance 

𝜇𝐶 = 𝜇𝑇 
𝜇𝐶 ≠ 𝜇𝑇 

Sample Size 
Control (𝒏𝑪) 

Intervention (𝒏𝑻) 

 
65 patients 
65 patients 

 
130 patients 
130 patients 

Mean (SD) 
Control (𝝁𝑪 (𝑺𝑫𝑪)) 

Intervention (𝝁𝑻 (𝑺𝑫𝑻)) 

 
25.7 (8.04) 
28.2 (7.95) 

 
26.5 (8.31) 
28.3 (7.44) 

DF 128 258 

T-Statistic (95% CI) -1.75 (-5.24, 0.31) -1.77(-3.66, 0.20) 

P-Value 0.0817 0.0781 

Bayes Factor NA 9.8 
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The six set of results: 

 
1. Using the original and replicated study information from the above scenario, what is the 

likelihood from 0-100% (100% perfect replication), the study replicated?             . 

 
2. Provide the percentage each result contributed to your response above. This should add up to 

100%. 
i. P-value               

ii. Effect size confidence interval               
iii. Bayes factor               
iv. Other (Please Specify)              

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Original Study Replication Study 

Study Design Randomized Control Trial Randomized Control Trial 

Population Stage 3 RA patients 18+ treated at 
Boston Hospital: Jan 2018-Jan 2019 

Stage 3 RA patients 18+ treated at 
Boston Hospital: Jan 2019-Jan 2020 

Statistical Test 
 

Null Hypothesis 
Alternative Hypothesis 

Two-sided Two-Tailed T-Test 
Equal Variance 

𝜇𝐶 = 𝜇𝑇 
𝜇𝐶 ≠ 𝜇𝑇 

Two-sided Two-Tailed T-Test 
Equal Variance 

𝜇𝐶 = 𝜇𝑇 
𝜇𝐶 ≠ 𝜇𝑇 

Sample Size 
Control (𝒏𝑪) 

Intervention (𝒏𝑻) 

 
93 patients 
93 patients 

 
253 patients 
253 patients 

Mean (SD) 
Control (𝝁𝑪 (𝑺𝑫𝑪)) 

Intervention (𝝁𝑻 (𝑺𝑫𝑻)) 

 
25.3 (9.9) 

31.9 (11.2) 

 
25.2 (10.1) 
33.2 (11.5) 

DF 184 504 

T-Statistic (95% CI) -4.2 (-10.6, -2.5) -8.4 (-10.0, -6.2) 

P-Value <.0001 <.0001 

Bayes Factor NA 8.9 
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Page 5: Follow-up Questions 
 

1. Provide the percentage each result contributed to your response to question 1. This should add 
up to 100%. 
a. P-value               
b. Effect size confidence interval               
c. Bayes factor               
d. Other (Please Specify)              

 
2. Which method(s) will you use in the future when deciding whether a study replicated 

successfully or not? Select All that Apply 
a. P-values 
b. Effect Sizes 
c. Bayes Factors 
d. Other (Please Specify)              
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Page 6: Limitations  
 
As noted earlier, the current methods of assessing replication discussed in the previous pages (p-values, 
confidence intervals, and bayes factors) produced shockingly low replication rates in large scale 
replication projects. One reason that potentially impacts replication rates is that all the current methods 
used to assess replication do so on a binary scale. Additionally, researchers have found two other 
statistical factors that may lead to low replication rates: underpowered original studies and the 
presence of publication bias. Though these factors can impact the replication rates, none of the current 
methods used to assess replications and an overall replication rate account for publication bias and 
underpowered studies. Thus, the current statistical methods used to assess replication may themselves 
be significantly impacting replication rates. 
 

1. When filling out the last page (scale 1-10) how did you approach replication of each study? 
a. On a binary scale-the study replicated or it did not. 
b. On a continuous scale-the study had a various ability to replicate (considered things like 

the sample size and population).  
c. Unsure 

 
2. When filling out the last page (scale 1-10) did you think about publication bias? 

d. Yes, and it impacted my responses 
e. Yes, but it did not impact my response 
f. No as I do not think it impacts replication rate 
g. No, as I did not think about it or did not know what it was. 
h. Unsure? 

 
3. When filling out the last page (scale 1-10) did you think about the quality of the original study 

(power, sample size, etc.)? 
a. Yes, and it impacted my responses 
b. Yes, but it did not impact my response 
c. No as I do not think it impacts replication rate 
d. No, as I did not think about it or did not know what it was. 
e. Unsure? 

 
4. When filling out the last page (scale 1-10) did knowing that there is a potential replication crisis 

affect how you determine what to put down?  
a. Yes, and it impacted my responses 
b. Yes, but it did not impact my response 
c. No as I do not think it impacts replication rate 
d. No, as I did not think about it or did not know what it was. 
e. Unsure? 

 
5. Do you think there needs to be a better method to assess if a study successfully replicated? 

a. Yes 
b. No 
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6. Would you be interested in increasing/improving replication rates/research in your research 
field? 

a. Definitely-I would like to start soon. 
b. Yes, but not right now. 
c. Not really, but I would suggest it to others. 
d. Not at all 

 
7. Do you feel there are barriers preventing replication research in your field? 

a. Yes 
b. No 

 
8. (only if answered Yes in Question 6) Which barriers are preventing replication research? (check 

all that apply) 
a. Publishing practices and standards 
b. Cost and/or Funding 
c. Time 
d. Other (Please describe in three words or less) 
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Page 7: Introduce Equivalence Studies (Part 2) 
 
As noted, on the previous pages, the current statistical methods used to assess replication may 
themselves be significantly impacting replication rates. Some factors that may impact the replication 
rates are dichotomizing replication, the presence of population bias, and underpowered original studies. 
When dichotomizing replication, replication rates are often over or underestimated since, for some 
studies, it is not clear whether the study simply replicated or not. In the presence of publication bias 
(where studies with statistically significant results having an increased likelihood of publication), an 
underpowered study makes a successful replication difficult to achieve since underpowered studies lead 
to inflated effect sizes. Though these factors can impact the replication rates, none of the current 
methods used to assess replication account for publication bias or underpowered studies. As a result, 
there is a need for new statistical methods to evaluate replications and may be a valuable step in 
addressing the replication crisis. Thus, another method for assessing replication is using equivalence 
study techniques.  
 

1. Equivalence studies: Examine the similarity between two treatments by testing whether two 
treatments do not differ from each other within a predetermined equivalence margin. When the 
entire interval of the treatment difference falls within the preset margin, equivalence between 
the two treatments is met.  
 

 

 

 

 

 

 

 
 

 
 
To assess replication continuously we extended equivalence study techniques. Using the difference in 
effect sizes between the original and replicated studies to assess replication, our equivalence margin 
was built around 0. Based on Cohen’s standard of small effect sizes we used plus or minus of 0.1 to 
determine the probability that the difference in effect sizes fall within the preset equivalence margin.  
 
The next few pages will provide the same study scenario as above with various results from original and 
replicated studies, now including the equivalence study results. Using the provided information and the 
current methods to access replication and equivalence studies, please evaluate each scenario's 
probability of successful replication from 0-100% (100% perfect replication). 
 

 

 

 

−∆ equivalence 

Margin 

+∆ equivalence 

Margin 
Difference in Effect 

Equivalent 

Not Equivalent 

Equivalent 

Equivalent 

Equivalent 

Not Equivalent 
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Page 8: Scenario 
 
Researcher A designed a randomized trial that tests whether a new drug improves the mobility of stage 
3 rheumatoid arthritis (RA) patients. Mobility was measured by the number of minutes a patient could 
walk on their own without assistance or help from others. All patients were at least 18 years of age, able 
to stand on their own, and did not have any other chronic diseases. Researcher A found evidence that 
the new drug improved the mobility of RA patients.  
 
Since this research could potentially enhance treatment and mobility of RA patients, researcher B 
wanted to check the validity and reliability of the results. Researcher B performed a direct replication of 
this study, by collecting new data and following the original study’s protocol and population.  
 
We will now provide you with multiple tables based on this scenario with different results from original 
and replicated studies and ask a few questions following each table.  
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The first set of results: 

 

1. Using the original and replicated study information from the above scenario, what is the 

likelihood from 0-100% (100% perfect replication), the study replicated?             . 

 
2. Provide the percentage each result contributed to your response above. This should add up to 

100%. 
i. P-value               

ii. Effect size confidence interval               
iii. Bayes factor               
iv. Equivalence Study               
v. Other (Please Specify)              

 

 

 

 

 

 

 

 

 

 Original Study Replication Study 

Study Design Randomized Control Trial Randomized Control Trial 

Population Stage 3 RA patients 18+ treated at 
Boston Hospital: Jan 2018-Jan 2019 

Stage 3 RA patients 18+ treated at 
Boston Hospital: Jan 2019-Jan 2020 

Statistical Test 
 

Null Hypothesis 
Alternative Hypothesis 

Two-sided Two-Tailed T-Test 
Equal Variance 

𝜇𝐶 = 𝜇𝑇 
𝜇𝐶 ≠ 𝜇𝑇 

Two-sided Two-Tailed T-Test 
Equal Variance 

𝜇𝐶 = 𝜇𝑇 
𝜇𝐶 ≠ 𝜇𝑇 

Sample Size 
Control (𝒏𝑪) 

Intervention (𝒏𝑻) 

 
25 patients 
25 patients 

 
55 patients 
55 patients 

Mean (SD) 
Control (𝝁𝑪 (𝑺𝑫𝑪)) 

Intervention (𝝁𝑻 (𝑺𝑫𝑻)) 

 
41.9 (13.8) 
55.9 (20.0) 

 
47.9 (16.3) 
54.7 (19.7) 

Mean Difference  -6.8 

DF 48 108 

T-Statistic (95% CI) -2.87 (-23.7, -4.2) -1.97 ( -13.6, 0.04) 

Cohen’s d -0.82 -0.38 

Effect Size r 0.38 0.19 

Difference in ES (r) 0.19 

P-Value 0.0061 0.0514 

Bayes Factor NA 7.5 

Equivalence Study Results Probability study replicated using difference in ES 

Margin: 0 ± 0.1  0.22 
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The second set of results: 

 

1. Using the original and replicated study information from the above scenario, what is the likelihood 

from 0-100% (100% perfect replication), the study replicated?             . 

 

2. Provide the percentage each result contributed to your response above. This should add up to 

100%. 

i. P-value               

ii. Effect size confidence interval               

iii. Bayes factor               

iv. Equivalence Study               

v. Other (Please Specify)              

 

 

 

 

 

 

 

 

 

 

 Original Study Replication Study 

Study Design Randomized Control Trial Randomized Control Trial 

Population Stage 3 RA patients 18+ treated at 
Boston Hospital: Jan 2018-Jan 2019 

Stage 3 RA patients 18+ treated at 
Boston Hospital: Jan 2019-Jan 2020 

Statistical Test 
 

Null Hypothesis 
Alternative Hypothesis 

Two-sided Two-Tailed T-Test 
Equal Variance 

𝜇𝐶 = 𝜇𝑇 
𝜇𝐶 ≠ 𝜇𝑇 

Two-sided Two-Tailed T-Test 
Equal Variance 

𝜇𝐶 = 𝜇𝑇 
𝜇𝐶 ≠ 𝜇𝑇 

Sample Size 
Control (𝒏𝑪) 

Intervention (𝒏𝑻) 

 
126 patients 
126 patients 

 
298 patients 
298 patients 

Mean (SD) 
Control (𝝁𝑪 (𝑺𝑫𝑪)) 

Intervention (𝝁𝑻 (𝑺𝑫𝑻)) 

 
26.6 (13.3) 
34.1 (13.8) 

 
34.7 (15.0) 
36.8 (10.8) 

DF 250 594 

T-Statistic (95% CI) -4.4 (-10.9, -4.2) -2.0 (-4.2, -0.01) 

Cohen’s d -0.56 -0.16 

Effect Size r 0.27 0.08 

Difference in ES (r) 0.19 

P-Value <.0001  0.0492 

Bayes Factor NA 2.6 

Equivalence Study Results Probability study replicated using difference in ES 

Margin: 0 ± 0.1  0.073 
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The third set of results: 

 

1. Using the original and replicated study information from the above scenario, what is the likelihood 

from 0-100% (100% perfect replication), the study replicated?             . 

 

2. Provide the percentage each result contributed to your response above. This should add up to 

100%. 

ii. P-value               

iii. Effect size confidence interval               

iv. Bayes factor               

v. Equivalence Study              
vi. Other (Please Specify)              

 
 
 
 
 
 
 
 
 
 
 
 

 Original Study Replication Study 

Study Design Randomized Control Trial Randomized Control Trial 

Population Stage 3 RA patients 18+ treated at 
Boston Hospital: Jan 2018-Jan 2019 

Stage 3 RA patients 18+ treated at 
Boston Hospital: Jan 2019-Jan 2020 

Statistical Test 
 

Null Hypothesis 
Alternative Hypothesis 

Two-sided Two-Tailed T-Test 
Equal Variance 

𝜇𝐶 = 𝜇𝑇 
𝜇𝐶 ≠ 𝜇𝑇 

Two-sided Two-Tailed T-Test 
Equal Variance 

𝜇𝐶 = 𝜇𝑇 
𝜇𝐶 ≠ 𝜇𝑇 

Sample Size 
Control (𝒏𝑪) 

Intervention (𝒏𝑻) 

 
45 patients 
45 patients 

 
153 patients 
153 patients 

Mean (SD) 
Control (𝝁𝑪 (𝑺𝑫𝑪)) 

Intervention (𝝁𝑻 (𝑺𝑫𝑻)) 

 
25.6 (9.8) 

21.5 (13.1) 

 
30.1 (11.8) 
27.4 (9.8) 

DF 88 304 

T-Statistic (95% CI) 1.70 (-0.7, 9.0) 2.2 (0.2, 5.1) 

Cohen’s d 0.36 0.25 

Effect Size(ES)  r 0.18 0.13 

Difference in ES (r) 0.05 

P-Value 0.0937 0.0315 

Bayes Factor NA 3.1 

Equivalence Study Results Probability study replicated using difference in ES 

Margin: 0 ± 0.1  0.68 
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The fourth set of results: 

 

1. Using the original and replicated study information from the above scenario, what is the likelihood 

from 0-100% (100% perfect replication), the study replicated?             . 

 

2. Provide the percentage each result contributed to your response above. This should add up to 

100%. 

ii. P-value               

iii. Effect size confidence interval               

iv. Bayes factor               

v. Equivalence Study              
vi. Other (Please Specify)              

 

 

 

 

 

 

 

 

 

 

 Original Study Replication Study 

Study Design Randomized Control Trial Randomized Control Trial 

Population Stage 3 RA patients 18+ treated at 
Boston Hospital: Jan 2018-Jan 2019 

Stage 3 RA patients 18+ treated at 
Boston Hospital: Jan 2019-Jan 2020 

Statistical Test 
 

Null Hypothesis 
Alternative Hypothesis 

Two-sided Two-Tailed T-Test 
Equal Variance 

𝜇𝐶 = 𝜇𝑇 
𝜇𝐶 ≠ 𝜇𝑇 

Two-sided Two-Tailed T-Test 
Equal Variance 

𝜇𝐶 = 𝜇𝑇 
𝜇𝐶 ≠ 𝜇𝑇 

Sample Size 
Control (𝒏𝑪) 

Intervention (𝒏𝑻) 

 
72 patients 
72 patients 

 
144 patients 
144 patients 

Mean (SD) 
Control (𝝁𝑪 (𝑺𝑫𝑪)) 

Intervention (𝝁𝑻 (𝑺𝑫𝑻)) 

 
32.9 (6.6) 

33.5 (12.0) 

 
36.3 (10.8) 
35.7 (14.8) 

DF 142 286 

T-Statistic (95% CI) -0.34 (-3.8, 2.6) 0.44 (-2.3, 3.7) 

Cohen’s d -0.06 0.05 

Effect Size (ES) r 0.029 0.026 

Difference in ES r 0.003 

P-Value 0.7322 0.6628 

Bayes Factor NA 4.0 

Equivalence Study Results Probability study replicated using difference in ES 

Margin: 0 ± 0.1  0.83 
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The fifth set of results: 

 

1. Using the original and replicated study information from the above scenario, what is the 

likelihood from 0-100% (100% perfect replication), the study replicated?             . 

 

2. Provide the percentage each result contributed to your response above. This should add up to 

100%. 

i. P-value               

ii. Effect size confidence interval               

iii. Bayes factor               

iv. Equivalence Study              

v. Other (Please Specify)              

 
 
 
 
 
 
 
 
 
 
 
 

 Original Study Replication Study 

Study Design Randomized Control Trial Randomized Control Trial 

Population Stage 3 RA patients 18+ treated at 
Boston Hospital: Jan 2018-Jan 2019 

Stage 3 RA patients 18+ treated at 
Boston Hospital: Jan 2019-Jan 2020 

Statistical Test 
 

Null Hypothesis 
Alternative Hypothesis 

Two-sided Two-Tailed T-Test 
Equal Variance 

𝜇𝐶 = 𝜇𝑇 
𝜇𝐶 ≠ 𝜇𝑇 

Two-sided Two-Tailed T-Test 
Equal Variance 

𝜇𝐶 = 𝜇𝑇 
𝜇𝐶 ≠ 𝜇𝑇 

Sample Size 
Control (𝒏𝑪) 

Intervention (𝒏𝑻) 

 
65 patients 
65 patients 

 
130 patients 
130 patients 

Mean (SD) 
Control (𝝁𝑪 (𝑺𝑫𝑪)) 

Intervention (𝝁𝑻 (𝑺𝑫𝑻)) 

 
24.5 (8.9) 
29.0 (9.6) 

 
25.7 (3.7) 
26.6 (4.1) 

DF 128 258 

T-Statistic (95% CI) -2.77 (-7.73, -1.29) -1.6 (-1.7, 0.18) 

Cohen’s d -0.49 -0.20 

Effect Size r 0.24 0.099 

Difference in ES (r) 0.141 

P-Value 0.0064 0.1009 

Bayes Factor NA 1.3 

Equivalence Study Results Probability study replicated using difference in ES 

Margin: 0 ± 0.1  0.29 
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The six set of results:  

 
1. Using the original and replicated study information from the above scenario, what is the 

likelihood from 0-100% (100% perfect replication), the study replicated?             . 

 

2. Provide the percentage each result contributed to your response above. This should add up to 

100%. 

i. P-value               

ii. Effect size confidence interval               

iii. Bayes factor               

iv. Equivalence Study              

v. Other (Please Specify)              

 

 

 

 

 

 

 Original Study Replication Study 

Study Design Randomized Control Trial Randomized Control Trial 

Population Stage 3 RA patients 18+ treated at 
Boston Hospital: Jan 2018-Jan 2019 

Stage 3 RA patients 18+ treated at 
Boston Hospital: Jan 2019-Jan 2020 

Statistical Test 
 

Null Hypothesis 
Alternative Hypothesis 

Two-sided Two-Tailed T-Test 
Equal Variance 

𝜇𝐶 = 𝜇𝑇 
𝜇𝐶 ≠ 𝜇𝑇 

Two-sided Two-Tailed T-Test 
Equal Variance 

𝜇𝐶 = 𝜇𝑇 
𝜇𝐶 ≠ 𝜇𝑇 

Sample Size 
Control (𝒏𝑪) 

Intervention (𝒏𝑻) 

 
93 patients 
93 patients 

 
253 patients 
253 patients 

Mean (SD) 
Control (𝝁𝑪 (𝑺𝑫𝑪)) 

Intervention (𝝁𝑻 (𝑺𝑫𝑻)) 

 
24.9 (9.6) 
28.5 (7.6) 

 
24.6 (11.2) 
26.3 (9.6) 

DF 184 504 

Mean Difference  -8 

T-Statistic (95% CI) -2.04 (-2.8, -2.4) -2.02 (-3.7, -0.10) 
Cohen’s d -0.30 -0.18 
Effect Size r 0.15 0.089 
Difference in ES (r) 0.061 

P-Value 0.0424 0.0434 

Bayes Factor NA 8.9 
Equivalence Study Results Probability study replicated using difference in ES 
Margin: 0 ± 0.1  0.74 
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Page 9: Comparison 

1. In the future, what approach would you select or suggest when determining whether your 

research fields research replicates or not?  

a. P-values 

b. ES 

c. Bayes Factors 

d. Equivalence studies methods 

e. Other: (Please describe in 3 words or less)                             

 

2. Do you feel there are barriers preventing replication research in your field? 

a. Yes 

b. No 

 

3. (only if answered Yes in Question 6) Which barriers are preventing replication research? (Select 

all that apply) 

a. Publishing practices and standards 

b. Cost and/or Funding 

c. Time 

d. Other (Please describe in three words or less) 

 

 

 

Page 10: Thank you! 

 

This survey is now complete. Thank you for your participation and for completing the survey.  

 

Feel free to leave any additional comments or suggestions below or reach out at richardsar@vcu.edu. 

 



Chapter 9

Appendix D: R Code relevant to
Chapter 1

For all the code a seed of 3250 was used.
##################Assessing Replication-Cleaned Code ####################
#First run Master code from RPP data: https://osf.io/vdnrb/

###############################################################################
#Assessing Replication-P-value#
###############################################################################
Rep_pvalues<-read.csv(’rpp_data_cleaned.csv’)

####Figure 1.1####
plot(Rep_pvalues$T_pval_USE..O., main=’P-values Original vs. Replicated’, xlab = ’Study’, ylab
=’P-Values’)
points(Rep_pvalues$T_pval_USE..R., col=2)
legend("topright", inset=.1, title="Study", c("Original","Replicated"),pch = "o", col = c(1, 2),
horiz=TRUE)
abline(h=c(.05,.01,.005, .001), col=c(1,3,4,6))

####Table 1.2####
#p<0.05#;
#percent based on P-value#
Rep_pvalues$P_ori_.05<-ifelse(Rep_pvalues$T_pval_USE..O. >= .06, c("No"), c("Yes"))
(count_O_.05<-table(Rep_pvalues$P_ori_.05) ) #97%
Rep_pvalues$P_rep_.05<-ifelse(Rep_pvalues$T_pval_USE..R. >= .05, c("No"), c("Yes"))
(count_R_.05<-table(Rep_pvalues$P_rep_.05) ) #36%

#Percent Replicated#
Rep_pvalues$replicate_05[Rep_pvalues$P_ori_.05==’Yes’ & Rep_pvalues$P_rep_.05==’Yes’] <-’Yes’
Rep_pvalues$replicate_05[Rep_pvalues$P_ori_.05==’No’ & Rep_pvalues$P_rep_.05==’No’] <-’Yes’
Rep_pvalues$replicate_05[Rep_pvalues$P_ori_.05==’Yes’ & Rep_pvalues$P_rep_.05==’No’] <-’No’
Rep_pvalues$replicate_05[Rep_pvalues$P_ori_.05==’No’ & Rep_pvalues$P_rep_.05==’Yes’] <-’No’
table(Rep_pvalues$replicate_05) #overall=37%

originalsign<-subset(Rep_pvalues, P_ori_.05==c(’Yes’))
(replicated_05<-table(originalsign$P_rep_.05)) #of sig= 36%

originalnon_sign<-subset(Rep_pvalues, P_ori_.05==c(’No’))
(replicated_05_non<-table(originalnon_sign$P_rep_.05)) #of non=67%

#p<=0.01#;
#Based on p-value#
Rep_pvalues$P_ori_.01<-ifelse(Rep_pvalues$T_pval_USE..O. > .01, c("No"), c("Yes"))
(count_O_.01<-table(Rep_pvalues$P_ori_.01) ) #58%

Rep_pvalues$P_rep_.01<-ifelse(Rep_pvalues$T_pval_USE..R. > .01, c("No"), c("Yes"))
(count_R_.01<-table(Rep_pvalues$P_rep_.01) ) #29%

#Percent Replicated#
Rep_pvalues$replicate_01[Rep_pvalues$P_ori_.01==’Yes’ & Rep_pvalues$P_rep_.01==’Yes’] <-’Yes’
Rep_pvalues$replicate_01[Rep_pvalues$P_ori_.01==’No’ & Rep_pvalues$P_rep_.01==’No’] <-’Yes’
Rep_pvalues$replicate_01[Rep_pvalues$P_ori_.01==’Yes’ & Rep_pvalues$P_rep_.01==’No’] <-’No’
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Rep_pvalues$replicate_01[Rep_pvalues$P_ori_.01==’No’ & Rep_pvalues$P_rep_.01==’Yes’] <-’No’
table(Rep_pvalues$replicate_01) #overall=43%

originalsign<-subset(Rep_pvalues, P_ori_.01==c(’Yes’))
replicated_01<-table(originalsign$P_rep_.01) #of sig= 34%

originalnon_sign<-subset(Rep_pvalues, P_ori_.01==c(’No’))
replicated_01_non<-table(originalnon_sign$P_rep_.01) #of non=72%

#p<=0.005#;
#Based on P-value#
Rep_pvalues$P_ori_.005<-ifelse(Rep_pvalues$T_pval_USE..O. > .005, c("No"), c("Yes"))
count_O_.005<-table(Rep_pvalues$P_ori_.005) #48%

Rep_pvalues$P_rep_.005<-ifelse(Rep_pvalues$T_pval_USE..R. > .005, c("No"), c("Yes"))
count_R_.005<-table(Rep_pvalues$P_rep_.005) #25%

#Percent Replicated#
Rep_pvalues$replicate_005[Rep_pvalues$P_ori_.005==’Yes’ & Rep_pvalues$P_rep_.005==’Yes’] <-’Yes’
Rep_pvalues$replicate_005[Rep_pvalues$P_ori_.005==’No’ & Rep_pvalues$P_rep_.005==’No’] <-’Yes’
Rep_pvalues$replicate_005[Rep_pvalues$P_ori_.005==’Yes’ & Rep_pvalues$P_rep_.005==’No’] <-’No’
Rep_pvalues$replicate_005[Rep_pvalues$P_ori_.005==’No’ & Rep_pvalues$P_rep_.005==’Yes’] <-’No’
table(Rep_pvalues$replicate_005) #overall=63%

originalsign<-subset(Rep_pvalues, P_ori_.005==c(’Yes’))
replicated_005<-table(originalsign$P_rep_.005) #of sig= 37.5%

originalnon_sign<-subset(Rep_pvalues, P_ori_.005==c(’No’))
replicated_005_non<-table(originalnon_sign$P_rep_.005) #of non-87%

#p<=0.001#;
#Based on P-value#
Rep_pvalues$P_ori_.001<-ifelse(Rep_pvalues$T_pval_USE..O. > .001, c("No"), c("Yes"))
count_O_.001<-table(Rep_pvalues$P_ori_.001) #33%

Rep_pvalues$P_rep_.001<-ifelse(Rep_pvalues$T_pval_USE..R. > .001, c("No"), c("Yes"))
count_R_.001<-table(Rep_pvalues$P_rep_.001) #20%

#Percent Replicated#
Rep_pvalues$replicate_001[Rep_pvalues$P_ori_.001==’Yes’ & Rep_pvalues$P_rep_.001==’Yes’] <-’Yes’
Rep_pvalues$replicate_001[Rep_pvalues$P_ori_.001==’No’ & Rep_pvalues$P_rep_.001==’No’] <-’Yes’
Rep_pvalues$replicate_001[Rep_pvalues$P_ori_.001==’Yes’ & Rep_pvalues$P_rep_.001==’No’] <-’No’
Rep_pvalues$replicate_001[Rep_pvalues$P_ori_.001==’No’ & Rep_pvalues$P_rep_.001==’Yes’] <-’No’
table(Rep_pvalues$replicate_001) #overall=75%

originalsign<-subset(Rep_pvalues, P_ori_.001==c(’Yes’))
replicated_001<-table(originalsign$P_rep_.001) #of sig= 42%

original_non_sign<-subset(Rep_pvalues, P_ori_.001==c(’No’))
replicated_001_non<-table(original_non_sign$P_rep_.001) #of non=91%
###############################################################################
#Assessing Replication-Confidence Interval Metric#
###############################################################################
#Run Master RPP code first;
qnorm(0.95) ; qnorm(0.975) ; qnorm(0.995); qnorm(0.9975); qnorm(0.9995)

####Table 1.3####
#90% CI#
ci.lb90 <- fis.r-qnorm(.95)*sei.r
ci.ub90 <- fis.r+qnorm(.95)*sei.r

#Original ES in Replicated CI#
tmp <- in.ci <- rep(NA, length(ci.lb90))

for(i in 1:length(fis.r)) {
if (is.na(fis.o[i]) == TRUE) {

tmp[i] <- NA
} else if (any(is.na(c(ci.lb90[i], ci.ub90[i])) == TRUE)) {

tmp[i] <- NA
} else if (fis.o[i] > ci.lb90[i] & fis.o[i] < ci.ub90[i]) {

tmp[i] <- TRUE
} else { tmp[i] <- FALSE }

}
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# Select only studies with test statistic t or F and df1 = 1
dat <- data.frame(ID = MASTER$ID, stat = as.character(MASTER$T_Test.Statistic..O.), df1 =
MASTER$T_df1..O., tmp)
sub <- subset(dat, (dat$stat == "F" & dat$df1 == 1) | dat$stat == "t" | dat$stat == "r")
in.ci[sub$ID] <- sub$tmp

# Store results for other statistics
in.ci[c(22,43,46,64,132,140,143)] <- FALSE
in.ci[c(12,13,17,50,55,80,86,117,139,142,73,84,104,165)] <- TRUE

noNA90 <- in.ci[is.na(in.ci) == FALSE] # Remove NAs
sum(noNA90)/length(noNA90) #46.3%

#Replicated ES in Original CI
tmp <- in.ci <- rep(NA, length(ci_o.lb90))
for(i in 1:length(fis.o)) {

if (is.na(fis.r[i]) == TRUE) {
tmp[i] <- NA

} else if (any(is.na(c(ci_o.lb90[i], ci_o.ub90[i])) == TRUE)) {
tmp[i] <- NA

} else if (fis.r[i] > ci_o.lb90[i] & fis.r[i] < ci_o.ub90[i]) {
tmp[i] <- TRUE

} else { tmp[i] <- FALSE }
}

#Select only studies with test statistic t or F and df1 = 1
dat <- data.frame(ID = MASTER$ID, stat = as.character(MASTER$T_Test.Statistic..R.), df1 =
MASTER$T_df1..R., tmp)
sub <- subset(dat, (dat$stat == "F" & dat$df1 == 1) | dat$stat == "t" | dat$stat == "r")
in.ci[sub$ID] <- sub$tmp

#Store results for other statistics
in.ci[c(22,43,46,64,132,140,143)] <- FALSE
in.ci[c(12,13,17,50,55,80,86,117,139,142,73,84,104,165)] <- TRUE

noNA90 <- in.ci[is.na(in.ci) == FALSE] # Remove NAs
sum(noNA90)/length(noNA90) #44.7%

cbind(ci.lb90, ci.ub90)

#CI Overlap
ci_o.lb90 <- fis.o-qnorm(.95)*sei.o
ci_o.ub90 <- fis.o+qnorm(.95)*sei.o

ranges90<-data.frame(ci_o.lb90,ci_o.ub90, ci.lb90, ci.ub90)
rng90 = cbind(pmin(ranges90[,1], ranges90[,2]), pmax(ranges90[,1], ranges90[,2]),

pmin(ranges90[,3], ranges90[,4]), pmax(ranges90[,3], ranges90[,4]))
ranges90$olap90 = (rng90[,1] <= rng90[,4]) & (rng90[,2] >= rng90[,3])
table(ranges90$olap90) #82.6%

#Compare Mean differences of CI’s;
mean(ci.ub90-ci.lb90, na.rm=T)
mean(ci_o.ub90-ci_o.lb90, na.rm=T)

#95 CI#
ci.lb95 <- fis.r-qnorm(.975)*sei.r
ci.ub95 <- fis.r+qnorm(.975)*sei.r

#Original ES in Replicated CI#
tmp <- in.ci <- rep(NA, length(ci.lb95))
for(i in 1:length(fis.r)) {

if (is.na(fis.o[i]) == TRUE) {
tmp[i] <- NA

} else if (any(is.na(c(ci.lb95[i], ci.ub95[i])) == TRUE)) {
tmp[i] <- NA

} else if (fis.o[i] > ci.lb95[i] & fis.o[i] < ci.ub95[i]) {
tmp[i] <- TRUE

} else { tmp[i] <- FALSE }
}

#Select only studies with test statistic t or F and df1 = 1
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dat <- data.frame(ID = MASTER$ID, stat = as.character(MASTER$T_Test.Statistic..O.), df1 =
MASTER$T_df1..O., tmp)
sub <- subset(dat, (dat$stat == "F" & dat$df1 == 1) | dat$stat == "t" | dat$stat == "r")
in.ci[sub$ID] <- sub$tmp

#Store results for other statistics
in.ci[c(22,43,46,64,132,140,143)] <- FALSE
in.ci[c(12,13,17,50,55,80,86,117,139,142,73,84,104,165)] <- TRUE

noNA95 <- in.ci[is.na(in.ci) == FALSE] # Remove NAs
sum(noNA95)/length(noNA95) #47.5%

cbind(ci.lb95, ci.ub95)

#Replicated ES in Original CI
tmp <- in.ci <- rep(NA, length(ci_o.lb95))
for(i in 1:length(fis.o)) {

if (is.na(fis.r[i]) == TRUE) {
tmp[i] <- NA

} else if (any(is.na(c(ci_o.lb95[i], ci_o.ub95[i])) == TRUE)) {
tmp[i] <- NA

} else if (fis.r[i] > ci_o.lb95[i] & fis.r[i] < ci_o.ub95[i]) {
tmp[i] <- TRUE

} else { tmp[i] <- FALSE }
}

#Select only studies with test statistic t or F and df1 = 1
dat <- data.frame(ID = MASTER$ID, stat = as.character(MASTER$T_Test.Statistic..R.), df1 =
MASTER$T_df1..R., tmp)
sub <- subset(dat, (dat$stat == "F" & dat$df1 == 1) | dat$stat == "t" | dat$stat == "r")
in.ci[sub$ID] <- sub$tmp

#Store results for other statistics
in.ci[c(22,43,46,64,132,140,143)] <- FALSE
in.ci[c(12,13,17,50,55,80,86,117,139,142,73,84,104,165)] <- TRUE

noNA95 <- in.ci[is.na(in.ci) == FALSE] # Remove NAs
sum(noNA95)/length(noNA95) #54.3%

#CI Overlap
ranges95<-data.frame(ci_o.lb95,ci_o.ub95, ci.lb95, ci.ub95)
rng95 = cbind(pmin(ranges95[,1], ranges95[,2]), pmax(ranges95[,1], ranges95[,2]),

pmin(ranges95[,3], ranges95[,4]), pmax(ranges95[,3], ranges95[,4]))
ranges95$olap95 = (rng95[,1] <= rng95[,4]) & (rng95[,2] >= rng95[,3])
table(ranges95$olap95) #92.3%

#Compare Mean differences of CI’s;
mean(ci.ub95-ci.lb95, na.rm=T)
mean(ci_o.ub95-ci_o.lb95, na.rm=T)

#99% CI
ci.lb99 <- fis.r-qnorm(.995)*sei.r
ci.ub99 <- fis.r+qnorm(.995)*sei.r

#Original ES in Replicated CI#
tmp <- in.ci <- rep(NA, length(ci.lb99))
for(i in 1:length(fis.r)) {

if (is.na(fis.o[i]) == TRUE) {
tmp[i] <- NA

} else if (any(is.na(c(ci.lb99[i], ci.ub99[i])) == TRUE)) {
tmp[i] <- NA

} else if (fis.o[i] > ci.lb99[i] & fis.o[i] < ci.ub99[i]) {
tmp[i] <- TRUE

} else { tmp[i] <- FALSE }
}

#Select only studies with test statistic t or F and df1 = 1
dat <- data.frame(ID = MASTER$ID, stat = as.character(MASTER$T_Test.Statistic..O.), df1 =
MASTER$T_df1..O., tmp)
sub <- subset(dat, (dat$stat == "F" & dat$df1 == 1) | dat$stat == "t" | dat$stat == "r")
in.ci[sub$ID] <- sub$tmp
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#Store results for other statistics
in.ci[c(22,43,46,64,132,140,143)] <- FALSE
in.ci[c(12,13,17,50,55,80,86,117,139,142,73,84,104,165)] <- TRUE

noNA99 <- in.ci[is.na(in.ci) == FALSE] # Remove NAs
sum(noNA99)/length(noNA99) #56.8%
cbind(ci.lb99, ci.ub99)

#Replicated ES in Original CI
ci_o.lb99<- fis.o-qnorm(.995)*sei.o
ci_o.ub99 <- fis.o+qnorm(.995)*sei.o
tmp <- in.ci <- rep(NA, length(ci_o.lb99))
for(i in 1:length(fis.o)) {

if (is.na(fis.r[i]) == TRUE) {
tmp[i] <- NA

} else if (any(is.na(c(ci_o.lb99[i], ci_o.ub99[i])) == TRUE)) {
tmp[i] <- NA

} else if (fis.r[i] > ci_o.lb99[i] & fis.r[i] < ci_o.ub99[i]) {
tmp[i] <- TRUE

} else { tmp[i] <- FALSE }
}

#Select only studies with test statistic t or F and df1 = 1
dat <- data.frame(ID = MASTER$ID, stat = as.character(MASTER$T_Test.Statistic..R.), df1 =
MASTER$T_df1..R., tmp)
sub <- subset(dat, (dat$stat == "F" & dat$df1 == 1) | dat$stat == "t" | dat$stat == "r")
in.ci[sub$ID] <- sub$tmp

#Store results for other statistics
in.ci[c(22,43,46,64,132,140,143)] <- FALSE
in.ci[c(12,13,17,50,55,80,86,117,139,142,73,84,104,165)] <- TRUE

noNA99 <- in.ci[is.na(in.ci) == FALSE] # Remove NAs
sum(noNA99)/length(noNA99) #69.1%

#CI Overlap
ranges99<-data.frame(ci_o.lb99,ci_o.ub99, ci.lb99, ci.ub99)
rng99 = cbind(pmin(ranges99[,1], ranges99[,2]), pmax(ranges99[,1], ranges99[,2]),

pmin(ranges99[,3], ranges99[,4]), pmax(ranges99[,3], ranges99[,4]))
ranges99$olap99 = (rng99[,1] <= rng99[,4]) & (rng99[,2] >= rng99[,3])
table(ranges99$olap99) #97.8%

#Compare Mean differences of CI’s;
mean(ci.ub99-ci.lb99, na.rm=T)
mean(ci_o.ub99-ci_o.lb99, na.rm=T)

#99.5% CI#
ci.lb995 <- fis.r-qnorm(.9975)*sei.r
ci.ub995 <- fis.r+qnorm(.9975)*sei.r

#Original ES in Replicated CI#
tmp <- in.ci <- rep(NA, length(ci.lb995))
for(i in 1:length(fis.r)) {

if (is.na(fis.o[i]) == TRUE) {
tmp[i] <- NA

} else if (any(is.na(c(ci.lb995[i], ci.ub995[i])) == TRUE)) {
tmp[i] <- NA

} else if (fis.o[i] > ci.lb995[i] & fis.o[i] < ci.ub995[i]) {
tmp[i] <- TRUE

} else { tmp[i] <- FALSE }
}
#Select only studies with test statistic t or F and df1 = 1
dat <- data.frame(ID = MASTER$ID, stat = as.character(MASTER$T_Test.Statistic..O.), df1 =
MASTER$T_df1..O., tmp)
sub <- subset(dat, (dat$stat == "F" & dat$df1 == 1) | dat$stat == "t" | dat$stat == "r")
in.ci[sub$ID] <- sub$tmp

#Store results for other statistics
in.ci[c(22,43,46,64,132,140,143)] <- FALSE
in.ci[c(12,13,17,50,55,80,86,117,139,142,73,84,104,165)] <- TRUE

noNA995 <- in.ci[is.na(in.ci) == FALSE] # Remove NAs
sum(noNA995)/length(noNA995) #66.3%
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cbind(ci.lb995, ci.ub995)

#Replicated ES in Original CI
ci_o.lb995 <- fis.o-qnorm(.9975)*sei.o
ci_o.ub995 <- fis.o+qnorm(.9975)*sei.o

tmp <- in.ci <- rep(NA, length(ci_o.lb995))
for(i in 1:length(fis.o)) {

if (is.na(fis.r[i]) == TRUE) {
tmp[i] <- NA

} else if (any(is.na(c(ci_o.lb995[i], ci_o.ub995[i])) == TRUE)) {
tmp[i] <- NA

} else if (fis.r[i] > ci_o.lb995[i] & fis.r[i] < ci_o.ub995[i]) {
tmp[i] <- TRUE

} else { tmp[i] <- FALSE }
}

#Select only studies with test statistic t or F and df1 = 1
dat <- data.frame(ID = MASTER$ID, stat = as.character(MASTER$T_Test.Statistic..R.), df1 =
MASTER$T_df1..R., tmp)
sub <- subset(dat, (dat$stat == "F" & dat$df1 == 1) | dat$stat == "t" | dat$stat == "r")
in.ci[sub$ID] <- sub$tmp

#Store results for other statistics
in.ci[c(22,43,46,64,132,140,143)] <- FALSE
in.ci[c(12,13,17,50,55,80,86,117,139,142,73,84,104,165)] <- TRUE

noNA995 <- in.ci[is.na(in.ci) == FALSE] # Remove NAs
sum(noNA995)/length(noNA995) #73.4%

#CI overlap
ranges995<-data.frame(ci_o.lb995,ci_o.ub995, ci.lb995, ci.ub995)
rng995 = cbind(pmin(ranges995[,1], ranges995[,2]), pmax(ranges995[,1], ranges995[,2]),

pmin(ranges995[,3], ranges995[,4]), pmax(ranges995[,3], ranges995[,4]))
ranges995$olap995 = (rng995[,1] <= rng995[,4]) & (rng995[,2] >= rng995[,3])
table(ranges995$olap995) #97.8%

#Compare Mean differences of CI’s;
mean(ci.ub995-ci.lb995, na.rm=T)
mean(ci_o.ub995-ci_o.lb995, na.rm=T)

#99.9% CI#
ci.lb999 <- fis.r-qnorm(.9995)*sei.r
ci.ub999 <- fis.r+qnorm(.9995)*sei.r

#Original ES in Replicated CI#
tmp <- in.ci <- rep(NA, length(ci.lb999))
for(i in 1:length(fis.r)) {

if (is.na(fis.o[i]) == TRUE) {
tmp[i] <- NA

} else if (any(is.na(c(ci.lb999[i], ci.ub999[i])) == TRUE)) {
tmp[i] <- NA

} else if (fis.o[i] > ci.lb999[i] & fis.o[i] < ci.ub999[i]) {
tmp[i] <- TRUE

} else { tmp[i] <- FALSE }
}

#Select only studies with test statistic t or F and df1 = 1
dat <- data.frame(ID = MASTER$ID, stat = as.character(MASTER$T_Test.Statistic..O.), df1 =
MASTER$T_df1..O., tmp)
sub <- subset(dat, (dat$stat == "F" & dat$df1 == 1) | dat$stat == "t" | dat$stat == "r")
in.ci[sub$ID] <- sub$tmp

#Store results for other statistics
in.ci[c(22,43,46,64,132,140,143)] <- FALSE
in.ci[c(12,13,17,50,55,80,86,117,139,142,73,84,104,165)] <- TRUE

noNA999 <- in.ci[is.na(in.ci) == FALSE] # Remove NAs
sum(noNA999)/length(noNA999) #72.6%
cbind(ci.lb999, ci.ub999)

#Replicated ES in Original CI

158



ci_o.lb999<- fis.o-qnorm(.9995)*sei.o
ci_o.ub999<- fis.o+qnorm(.9995)*sei.o

tmp <- in.ci <- rep(NA, length(ci_o.lb999))
for(i in 1:length(fis.o)) {

if (is.na(fis.r[i]) == TRUE) {
tmp[i] <- NA

} else if (any(is.na(c(ci_o.lb999[i], ci_o.ub999[i])) == TRUE)) {
tmp[i] <- NA

} else if (fis.r[i] > ci_o.lb999[i] & fis.r[i] < ci_o.ub999[i]) {
tmp[i] <- TRUE

} else { tmp[i] <- FALSE }
}

#Select only studies with test statistic t or F and df1 = 1
dat <- data.frame(ID = MASTER$ID, stat = as.character(MASTER$T_Test.Statistic..R.), df1 =
MASTER$T_df1..R., tmp)
sub <- subset(dat, (dat$stat == "F" & dat$df1 == 1) | dat$stat == "t" | dat$stat == "r")
in.ci[sub$ID] <- sub$tmp

#Store results for other statistics
in.ci[c(22,43,46,64,132,140,143)] <- FALSE
in.ci[c(12,13,17,50,55,80,86,117,139,142,73,84,104,165)] <- TRUE

noNA999 <- in.ci[is.na(in.ci) == FALSE] # Remove NAs
sum(noNA999)/length(noNA999) #81.9%

#CI Overlap
ranges999<-data.frame(ci_o.lb999,ci_o.ub999, ci.lb999, ci.ub999)
rng999 = cbind(pmin(ranges999[,1], ranges999[,2]), pmax(ranges999[,1], ranges999[,2]),

pmin(ranges999[,3], ranges999[,4]), pmax(ranges999[,3], ranges999[,4]))
ranges999$olap999 = (rng999[,1] <= rng999[,4]) & (rng999[,2] >= rng999[,3])
table(ranges999$olap999) #98.9%

#Compare Mean differences#
mean(ci.ub999-ci.lb999, na.rm=T)
mean(ci_o.ub999-ci_o.lb999, na.rm=T)

###############################################################################
#Assessing Replication-Bayes factors Metric#
###############################################################################
## first 5 lines from the reproducibility project code:https://osf.io/vdnrb/
MASTER <- read.csv("rpp_data.csv")[1:167, ]
colnames(MASTER)[1] <- "ID" # Change first column name to ID to be able to load .csv file
studies<-MASTER$ID[!is.na(MASTER$T_r..O.) & !is.na(MASTER$T_r..R.)] ##to keep track of which studies are
which
studies<-studies[-31] ##remove the problem studies (46 and 139)
studies<-studies[-80]

#Pull out the number of studies
orig<-MASTER$T_r..O.[studies]
rep<-MASTER$T_r..R.[studies]

##n of replications for analysis
N.R<-MASTER$T_N_R_for_tables[studies]

##n of original studies for analysis
N.O<-MASTER$T_N_O_for_tables[studies]

#extract p-values for the studies
p<-MASTER$T_pval_USE..R.[studies]

#prepare for running replications against original study posterior
bfRep<- numeric(length=95)

#Compute Bayes factors for Pearson’s correlation coefficient-used online code/resources
require("hypergeo")

#Step 1: Prior specification
priorRho <- function(rho, alpha=1) {

priorDensity <- 2ˆ(1-2*alpha)*(1-rhoˆ2)ˆ(alpha-1)
logNormalisationConstant <- -lbeta(alpha, alpha)
result <- exp(logNormalisationConstant)*priorDensity
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return(result)
}

priorRhoPlus <- function(rho, alpha=1) {
nonNegativeIndex <- rho >=0
lessThanOneIndex <- rho <=1
valueIndex <- as.logical(nonNegativeIndex*lessThanOneIndex)
myResult <- rho*0

myResult[valueIndex] <- 2*priorRho(rho[valueIndex], alpha)
return(myResult)

}

#Step 2: Built-up for likelihood functions
jeffreysApproxH <- function(n, r, rho) {

return(((1 - rhoˆ(2))ˆ(0.5*(n - 1)))/((1 - rho*r)ˆ(n - 1 - 0.5)))
}

# Step 3 Two-sided secondairy Bayes factor
bf10JeffreysIntegrate <- function(n, r, alpha=1) {

# Jeffreys’ test for whether a correlation is zero or not
if ( any(is.na(r)) ){

return(NaN)
}

# TODO: use which
if (n > 2 && abs(r)==1) {

return(Inf)
}

hyperTerm <- Re(hypergeo::hypergeo((2*n-3)/4, (2*n-1)/4, (n+2*alpha)/2, rˆ2))
logTerm <- lgamma((n+2*alpha-1)/2)-lgamma((n+2*alpha)/2)-lbeta(alpha, alpha)
myResult <- sqrt(pi)*2ˆ(1-2*alpha)*exp(logTerm)*hyperTerm
return(myResult)

}

# Step 4:One-sided preparation
mPlusMarginalBJeffreys <- function(n, r, alpha=1){

# Ly et al 2014
if ( any(is.na(r)) ){

return(NaN)
}
if (n > 2 && r>=1) {

return(Inf)
} else if (n > 2 && r<=-1){

return(0)
}

hyperTerm <- Re(genhypergeo(U=c(1, (2*n-1)/4, (2*n+1)/4),
L=c(3/2, (n+1+2*alpha)/2), z=rˆ2))

logTerm <- -lbeta(alpha, alpha)
myResult <- 2ˆ(1-2*alpha)*r*(2*n-3)/(n+2*alpha-1)*exp(logTerm)*hyperTerm
return(myResult)

}

bfPlus0JeffreysIntegrate <- function(n, r, alpha=1){
# Ly et al 2014
if ( any(is.na(r)) ){

return(NaN)
}
if (n > 2 && r>=1) {

return(Inf)
} else if (n > 2 && r<=-1){

return(0)
}

bf10 <- bf10JeffreysIntegrate(n, r, alpha)
mPlus <- mPlusMarginalBJeffreys(n, r, alpha)

if (is.na(bf10) || is.na(mPlus)){
return(NA)

}

160



myResult <- bf10+mPlus
return(myResult)

}

#Posteriors
estimationPosteriorU <- function(rho, n, r, alpha=1){

dataTerm <- (1-rhoˆ2)ˆ((n-1)/2)/((1-rho*r)ˆ((2*n-3)/2))*priorRho(rho, alpha)
hyperTerm <- Re(hypergeo(1/2, 1/2, (2*n-1)/2, 1/2+1/2*r*rho))
myResult <- dataTerm*hyperTerm
return(myResult)

}

estimationPosteriorNormalisationConstant <- function(n, r, alpha=1){
# The normalisation constant for the replication Bayes factor
integrand <- function(x){estimationPosteriorU(x, n, r, alpha)}
myResult <- integrate(integrand, -1, 1)$value
return(myResult)

}

estimationPosterior <- function(rho, n, r, alpha=1){
normalisationConstant <- estimationPosteriorNormalisationConstant(n, r, alpha)
myResult <- 1/normalisationConstant*estimationPosteriorU(rho, n, r, alpha)
return(myResult)

}

#Priors
repPrior <- function(rho, nOri, rOri){

estimationPosterior(rho, n=nOri, r=rOri)
}

repPriorU <- function(rho, nOri, rOri){
dataTerm <- (1-rhoˆ2)ˆ((nOri-1)/2)/((1-rho*rOri)ˆ((2*nOri-3)/2))
hyperTerm <- Re(hypergeo(1/2, 1/2, (2*nOri-1)/2, 1/2+1/2*rOri*rho))
myResult <- dataTerm*hyperTerm
return(myResult)

}

repPriorNormalisationConstant <- function(nOri, rOri){
# The normalisation constant for the replication Bayes factor
integrand <- function(x){repPriorU(x, nOri, rOri)}
myResult <- integrate(integrand, -1, 1)$value
return(myResult)

}

repPrior <- function(rho, nOri, rOri){
normalisationConstant <- repPriorNormalisationConstant(nOri, rOri)
myResult <- 1/normalisationConstant*repPriorU(rho, nOri, rOri)
return(myResult)

}

repPosteriorU <- function(rho, nOri, rOri, nRep, rRep){
# Unnormalised posterior for the replication Bayes factor
dataTerm <- (1-rhoˆ2)ˆ((nOri+nRep-2)/2)/((1-rho*rRep)ˆ((2*nRep-3)/2)*(1-rho*rOri)ˆ((2*nOri-3)/2))
hyperTerm <- Re(hypergeo(1/2, 1/2, (2*nOri-1)/2, 1/2+1/2*rOri*rho))
myResult <- dataTerm*hyperTerm
return(myResult)

}
#
repPosteriorNormalisationConstant <- function(nOri, rOri, nRep, rRep){

# The normalisation constant for the replication Bayes factor
integrand <- function(x){repPosteriorU(x, nOri, rOri, nRep, rRep)}
myResult <- integrate(integrand, -1, 1)$value
return(myResult)

}

repPosterior <- function(rho, nOri, rOri, nRep, rRep){
normalisationConstant <- repPosteriorNormalisationConstant(nOri, rOri, nRep, rRep)
myResult <- 1/normalisationConstant*repPosteriorU(rho, nOri, rOri, nRep, rRep)
return(myResult)

}

#Bayes Factors
repBfR0 <- function(rho=0, nOri, rOri, nRep, rRep){
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myResult <- repPrior(rho, nOri, rOri)/repPosterior(rho, nOri, rOri, nRep, rRep)
return(myResult)

}

options(scipen = 999)
for(i in 1:95){

bfRep[i]<- repBfR0(nOri=N.O[i],rOri=orig[i],nRep=N.R[i],rRep=rep[i])
}

#create dummy variables for BFs in the different categories
bf<-numeric(length=95)
for(i in 1:95){

if(bfRep[i]>=10){
bf[i]<-10

}
if(bfRep[i]<10 & bfRep[i]>=8){

bf[i]<-8
}
if(bfRep[i]<8 & bfRep[i]>=5){

bf[i]<-5
}
if(bfRep[i]<5 & bfRep[i]>=3){

bf[i]<-3
}
if(bfRep[i]<3 & bfRep[i]>=2.5){

bf[i]<-2.5
}
if(bfRep[i]<2.5 & bfRep[i]>=1){

bf[i]<-1
}
if(bfRep[i]<2.5) { #1<BF<3

bf[i]<-0
}

}

table(bf) #shows counts for each bin

####Figure 1.2####
bfRep[bfRep>10]<-10 #max out at 10
length(bfRep)
plot(bfRep, pch=19, main=’The Reproducibility Project: Replication Bayes Factors’, ylab=’Bayes Factor’,
xlab=’Study’)
abline(h=c(1,2.5,3,5,8, 10), col=c(5,1,2,3,4,6))

####Table 1.5####
#cutoff of 1#
bf1<-numeric(length=95)

for(i in 1:95){
if(bfRep[i]>1){

bf1[i]<-1
}
if(bfRep[i]<=1) {

bf1[i]<-0
}

}
table(bf1) #44.2%

#cutoff of 2.5#
bf25<-numeric(length=95)

for(i in 1:95){
if(bfRep[i]>=2.5){

bf25[i]<-1
}
if(bfRep[i]<2.5) {

bf25[i]<-0
}

}
table(bf25) #35.8%

#cutoff of 3#
bf3<-numeric(length=95)
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for(i in 1:95){
if(bfRep[i]>=3){

bf3[i]<-1
}
if(bfRep[i]<3) {

bf3[i]<-0
}

}
table(bf3) #33.6%

#cutoff of 5#
bf5<-numeric(length=95)

for(i in 1:95){
if(bfRep[i]>5){

bf5[i]<-1
}
if(bfRep[i]<=5) {

bf5[i]<-0
}

}
table(bf5) #29.5%

#cutoff of 8#
bf8<-numeric(length=95)

for(i in 1:95){
if(bfRep[i]>8){

bf8[i]<-1
}
if(bfRep[i]<=8) {

bf8[i]<-0
}

}
table(bf8) #25.3%

#cutoff of 10#
bf10<-numeric(length=95)

for(i in 1:95){
if(bfRep[i]>10){

bf10[i]<-1
}
if(bfRep[i]<=10) {

bf10[i]<-0
}

}
table(bf10) #24.2%

#Additional Code for Bayes Factor Metic vs Pvalue#
cor(Rep_pvalues$T_pval_USE..O.[1:95], bfRep)

#using an alpha cutoff of .05#
p05<-numeric(length=95)
for(i in 1:95){

if(p[i]<=.05){
p05[i]<-1

}
if(p[i]>.05) {

p05[i]<-0
}

}
table(p05)

#Using an alpha cutoff of .01#
p01<-numeric(length=95)
for(i in 1:95){

if(p[i]<=.01){
p01[i]<-1

}
if(p[i]>.01) {

p01[i]<-0
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}
}
table(p01)

#Using an alpha cutoff of .005#
p005<-numeric(length=95)
for(i in 1:95){

if(p[i]<=.005){
p005[i]<-1

}
if(p[i]>.005) {

p005[i]<-0
}

}
table(p005)

#Testing corrlations between pvlaue and bayes factors#
#BF>=10
cor(p005, bf10)
cor(p05, bf10)
cor(p01, bf10)

#BF >=5
cor(p005, bf5)
cor(p05, bf5)
cor(p01, bf5)

#BF >=3
cor(p005, bf3)
cor(p05, bf3)
cor(p01, bf3)

#Extra Bayes Factor plots
barplot(table(bf)); hist(bf); plot(bf)

###############################################################################
#Assessing Replication-Mitigated Bayes factors Metric#
###############################################################################
#Calculate Mitigated Bayes factors using Guan/Vandekerckdoves code/models
MitigatedBF<-read.csv(’mitigatedBF.csv’)

####Figure 1.3####
par(mfrow = c(1, 1))
plot(MitigatedBF$BFO, pch=19, col=4, ylim=c(0, 25), xlim=c(0,75), xlab=’Study’, ylab=’Bayes Factor’,
main=’Standard and Mitigated Bayes Factors-Original and Replicated’)
points(MitigatedBF$BFM, col=2, pch=19)
points(MitigatedBF$BFR, col=1, pch=19)
legend("topleft", inset=.01, c("Standard Original","Mitgated Original","Replicated"),pch = 19, col = c(4,
2, 1), horiz=TRUE)

####Table 1.7####
#Original Bayes Factors
MitigatedBF$BFO_1<-ifelse(MitigatedBF$BFO <= 1, c("No"), c("Yes"))
countBFO_1<-table(MitigatedBF$BFO_1) #>1=43.1%

MitigatedBF$BFO_25<-ifelse(MitigatedBF$BFO < 2.5, c("No"), c("Yes"))
countBFO_25<-table(MitigatedBF$BFO_25) #>=2.5=13.9%

MitigatedBF$BFO_3<-ifelse(MitigatedBF$BFO < 3, c("No"), c("Yes"))
countBFO_3<-table(MitigatedBF$BFO_3) #>=3=8.3%

MitigatedBF$BFO_5<-ifelse(MitigatedBF$BFO < 5, c("No"), c("Yes"))
countBFO_5<-table(MitigatedBF$BFO_5) #>=5=5.6%

MitigatedBF$BFO_8<-ifelse(MitigatedBF$BFO < 8, c("No"), c("Yes"))
countBFO_8<-table(MitigatedBF$BFO_8) #>=8=5.6%

MitigatedBF$BFO_10<-ifelse(MitigatedBF$BFO < 10, c("No"), c("Yes"))
countBFO_10<-table(MitigatedBF$BFO_10) #>=10=5.6%

#Mitigated Bayes Factors
MitigatedBF$BFM_1<-ifelse(MitigatedBF$BFM <= 1, c("No"), c("Yes"))
countBFM_1<-table(MitigatedBF$BFM_1) #>10=25.4%
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MitigatedBF$BFM_25<-ifelse(MitigatedBF$BFM < 2.5, c("No"), c("Yes"))
countBFM_25<-table(MitigatedBF$BFM_25) #>=2.5=6.9%

MitigatedBF$BFM_3<-ifelse(MitigatedBF$BFM < 3, c("No"), c("Yes"))
countBFM_3<-table(MitigatedBF$BFM_3) #>=3=5.6%

MitigatedBF$BFM_5<-ifelse(MitigatedBF$BFM < 5, c("No"), c("Yes"))
countBFM_5<-table(MitigatedBF$BFM_5) #>=5=5.6%

MitigatedBF$BFM_8<-ifelse(MitigatedBF$BFM < 8, c("No"), c("Yes"))
countBFM_8<-table(MitigatedBF$BFM_8) #>=8=5.6%

MitigatedBF$BFM_10<-ifelse(MitigatedBF$BFM < 10, c("No"), c("Yes"))
countBFM_10<-table(MitigatedBF$BFM_10) #>=10=5.6%

#Replicated Bayes Factors
MitigatedBF$BFR_1<-ifelse(MitigatedBF$BFR <= 1, c("No"), c("Yes"))
countBFR_1<-table(MitigatedBF$BFR_1) #>1=20.8%

MitigatedBF$BFR_25<-ifelse(MitigatedBF$BFR < 2.5, c("No"), c("Yes"))
countBFR_25<-table(MitigatedBF$BFR_25) #>=2.5=11.1%

MitigatedBF$BFR_3<-ifelse(MitigatedBF$BFR < 3, c("No"), c("Yes"))
countBFR_3<-table(MitigatedBF$BFR_3) #>=3=8.3%

MitigatedBF$BFR_5<-ifelse(MitigatedBF$BFR < 5, c("No"), c("Yes"))
countBFR_5<-table(MitigatedBF$BFR_5) #>=5=4.2%

MitigatedBF$BFR_8<-ifelse(MitigatedBF$BFR < 8, c("No"), c("Yes"))
countBFR_8<-table(MitigatedBF$BFR_8) #>=8=2.8%

MitigatedBF$BFR_10<-ifelse(MitigatedBF$BFR < 10, c("No"), c("Yes"))
countBFR_10<-table(MitigatedBF$BFR_10) #>=10=2.8%

#Original Bayes Factors RR1
#BF>1
MitigatedBF$replicate_BF1[MitigatedBF$BFO_1==’Yes’ & MitigatedBF$BFR_1==’Yes’] <-’Yes’
MitigatedBF$replicate_BF1[MitigatedBF$BFO_1==’No’ & MitigatedBF$BFR_1==’No’] <-’Yes’
MitigatedBF$replicate_BF1[MitigatedBF$BFO_1==’No’ & MitigatedBF$BFR_1==’Yes’] <-’No’
MitigatedBF$replicate_BF1[MitigatedBF$BFO_1==’Yes’ & MitigatedBF$BFR_1==’No’] <-’No’
table(MitigatedBF$replicate_BF1) #58.3

#BF>=2.5
MitigatedBF$replicate_BF25[MitigatedBF$BFO_25==’Yes’ & MitigatedBF$BFR_25==’Yes’] <-’Yes’
MitigatedBF$replicate_BF25[MitigatedBF$BFO_25==’No’ & MitigatedBF$BFR_25==’No’] <-’Yes’
MitigatedBF$replicate_BF25[MitigatedBF$BFO_25==’No’ & MitigatedBF$BFR_25==’Yes’] <-’No’
MitigatedBF$replicate_BF25[MitigatedBF$BFO_25==’Yes’ & MitigatedBF$BFR_25==’No’] <-’No’
table(MitigatedBF$replicate_BF25) #83.3%

#BF>=3
MitigatedBF$replicate_BF3[MitigatedBF$BFO_3==’Yes’ & MitigatedBF$BFR_3==’Yes’] <-’Yes’
MitigatedBF$replicate_BF3[MitigatedBF$BFO_3==’No’ & MitigatedBF$BFR_3==’No’] <-’Yes’
MitigatedBF$replicate_BF3[MitigatedBF$BFO_3==’No’ & MitigatedBF$BFR_3==’Yes’] <-’No’
MitigatedBF$replicate_BF3[MitigatedBF$BFO_3==’Yes’ & MitigatedBF$BFR_3==’No’] <-’No’
table(MitigatedBF$replicate_BF3) #91.7%

#BF>=5
MitigatedBF$replicate_BF5[MitigatedBF$BFO_5==’Yes’ & MitigatedBF$BFR_5==’Yes’] <-’Yes’
MitigatedBF$replicate_BF5[MitigatedBF$BFO_5==’No’ & MitigatedBF$BFR_5==’No’] <-’Yes’
MitigatedBF$replicate_BF5[MitigatedBF$BFO_5==’No’ & MitigatedBF$BFR_5==’Yes’] <-’No’
MitigatedBF$replicate_BF5[MitigatedBF$BFO_5==’Yes’ & MitigatedBF$BFR_5==’No’] <-’No’
table(MitigatedBF$replicate_BF5) #93.1%

#BF>=8
MitigatedBF$replicate_BF8[MitigatedBF$BFO_8==’Yes’ & MitigatedBF$BFR_8==’Yes’] <-’Yes’
MitigatedBF$replicate_BF8[MitigatedBF$BFO_8==’No’ & MitigatedBF$BFR_8==’No’] <-’Yes’
MitigatedBF$replicate_BF8[MitigatedBF$BFO_8==’No’ & MitigatedBF$BFR_8==’Yes’] <-’No’
MitigatedBF$replicate_BF8[MitigatedBF$BFO_8==’Yes’ & MitigatedBF$BFR_8==’No’] <-’No’
table(MitigatedBF$replicate_BF8) #94.4%

#BF>=10
MitigatedBF$replicate_BF10[MitigatedBF$BFO_10==’Yes’ & MitigatedBF$BFR_10==’Yes’] <-’Yes’
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MitigatedBF$replicate_BF10[MitigatedBF$BFO_10==’No’ & MitigatedBF$BFR_10==’No’] <-’Yes’
MitigatedBF$replicate_BF10[MitigatedBF$BFO_10==’No’ & MitigatedBF$BFR_10==’Yes’] <-’No’
MitigatedBF$replicate_BF10[MitigatedBF$BFO_10==’Yes’ & MitigatedBF$BFR_10==’No’] <-’No’
table(MitigatedBF$replicate_BF10) #94.4%

#Mitigated Bayes Factors RR1
#MBF>1
MitigatedBF$replicate_BF1[MitigatedBF$BFM_1==’Yes’ & MitigatedBF$BFR_1==’Yes’] <-’Yes’
MitigatedBF$replicate_BF1[MitigatedBF$BFM_1==’No’ & MitigatedBF$BFR_1==’No’] <-’Yes’
MitigatedBF$replicate_BF1[MitigatedBF$BFM_1==’No’ & MitigatedBF$BFR_1==’Yes’] <-’No’
MitigatedBF$replicate_BF1[MitigatedBF$BFM_1==’Yes’ & MitigatedBF$BFR_1==’No’] <-’No’
table(MitigatedBF$replicate_BF1)

#MBF>-2.5
MitigatedBF$replicate_BF25[MitigatedBF$BFM_25==’Yes’ & MitigatedBF$BFR_25==’Yes’] <-’Yes’
MitigatedBF$replicate_BF25[MitigatedBF$BFM_25==’No’ & MitigatedBF$BFR_25==’No’] <-’Yes’
MitigatedBF$replicate_BF25[MitigatedBF$BFM_25==’No’ & MitigatedBF$BFR_25==’Yes’] <-’No’
MitigatedBF$replicate_BF25[MitigatedBF$BFM_25==’Yes’ & MitigatedBF$BFR_25==’No’] <-’No’
table(MitigatedBF$replicate_BF25) #75.0%

#MBF>=3
MitigatedBF$replicate_BF3[MitigatedBF$BFM_3==’Yes’ & MitigatedBF$BFR_3==’Yes’] <-’Yes’
MitigatedBF$replicate_BF3[MitigatedBF$BFM_3==’No’ & MitigatedBF$BFR_3==’No’] <-’Yes’
MitigatedBF$replicate_BF3[MitigatedBF$BFM_3==’No’ & MitigatedBF$BFR_3==’Yes’] <-’No’
MitigatedBF$replicate_BF3[MitigatedBF$BFM_3==’Yes’ & MitigatedBF$BFR_3==’No’] <-’No’
table(MitigatedBF$replicate_BF3) #87.5%

#MBF>=5
MitigatedBF$replicate_BF5[MitigatedBF$BFM_5==’Yes’ & MitigatedBF$BFR_5==’Yes’] <-’Yes’
MitigatedBF$replicate_BF5[MitigatedBF$BFM_5==’No’ & MitigatedBF$BFR_5==’No’] <-’Yes’
MitigatedBF$replicate_BF5[MitigatedBF$BFM_5==’No’ & MitigatedBF$BFR_5==’Yes’] <-’No’
MitigatedBF$replicate_BF5[MitigatedBF$BFM_5==’Yes’ & MitigatedBF$BFR_5==’No’] <-’No’
table(MitigatedBF$replicate_BF5) #91.7%

#MBF>=8
MitigatedBF$replicate_BF8[MitigatedBF$BFM_8==’Yes’ & MitigatedBF$BFR_8==’Yes’] <-’Yes’
MitigatedBF$replicate_BF8[MitigatedBF$BFM_8==’No’ & MitigatedBF$BFR_8==’No’] <-’Yes’
MitigatedBF$replicate_BF8[MitigatedBF$BFM_8==’No’ & MitigatedBF$BFR_8==’Yes’] <-’No’
MitigatedBF$replicate_BF8[MitigatedBF$BFM_8==’Yes’ & MitigatedBF$BFR_8==’No’] <-’No’
table(MitigatedBF$replicate_BF8) #93.1%

#MBF>=10
MitigatedBF$replicate_BF10[MitigatedBF$BFM_10==’Yes’ & MitigatedBF$BFR_10==’Yes’] <-’Yes’
MitigatedBF$replicate_BF10[MitigatedBF$BFM_10==’No’ & MitigatedBF$BFR_10==’No’] <-’Yes’
MitigatedBF$replicate_BF10[MitigatedBF$BFM_10==’No’ & MitigatedBF$BFR_10==’Yes’] <-’No’
MitigatedBF$replicate_BF10[MitigatedBF$BFM_10==’Yes’ & MitigatedBF$BFR_10==’No’] <-’No’
table(MitigatedBF$replicate_BF10) #94.4%

#Original Bayes Factor RR2
MitigatedBF$BFO_1a<-ifelse(MitigatedBF$BFO <= 1 & MitigatedBF$BFR <= 1, c("No"), c("Yes"))
countBFO_1a<-table(MitigatedBF$BFO_1a) #52.8

MitigatedBF$BFO_25a<-ifelse(MitigatedBF$BFO < 2.5 & MitigatedBF$BFR < 2.5, c("No"), c("Yes"))
countBFO_25a<-table(MitigatedBF$BFO_25a) #20.8%

MitigatedBF$BFO_3a<-ifelse(MitigatedBF$BFO < 3 & MitigatedBF$BFR < 3, c("No"), c("Yes"))
countBFO_3a<-table(MitigatedBF$BFO_3a) #14.3%

MitigatedBF$BFO_5a<-ifelse(MitigatedBF$BFO < 5 & MitigatedBF$BFR <5 , c("No"), c("Yes"))
countBFO_5a<-table(MitigatedBF$BFO_5a) #8.3%

MitigatedBF$BFO_8a<-ifelse(MitigatedBF$BFO < 8 & MitigatedBF$BFR <8 , c("No"), c("Yes"))
countBFO_8a<-table(MitigatedBF$BFO_8a) #6.9

MitigatedBF$BFO_10a<-ifelse(MitigatedBF$BFO < 10 & MitigatedBF$BFR <10 , c("No"), c("Yes"))
countBFO_10a<-table(MitigatedBF$BFO_10a) #6.9%

#Mitgated Bayes Factor RR2
MitigatedBF$BFM_1a<-ifelse(MitigatedBF$BFM <= 1 & MitigatedBF$BFR <= 1, c("No"), c("Yes"))
countBFM_1a<-table(MitigatedBF$BFM_1a) #36.1%

MitigatedBF$BFM_25a<-ifelse(MitigatedBF$BFM < 2.5 & MitigatedBF$BFR < 2.5, c("No"), c("Yes"))
countBFM_25a<-table(MitigatedBF$BFM_25a) #15.3%
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MitigatedBF$BFM_3a<-ifelse(MitigatedBF$BFM < 3 & MitigatedBF$BFR < 3, c("No"), c("Yes"))
countBFM_3a<-table(MitigatedBF$BFM_3a) #11.1%

MitigatedBF$BFM_5a<-ifelse(MitigatedBF$BFM < 5 & MitigatedBF$BFR <5 , c("No"), c("Yes"))
countBFM_5a<-table(MitigatedBF$BFM_5a) #8.3%

MitigatedBF$BFM_8a<-ifelse(MitigatedBF$BFM < 8 & MitigatedBF$BFR <8 , c("No"), c("Yes"))
countBFM_8a<-table(MitigatedBF$BFM_8a) #6.9%

MitigatedBF$BFM_10a<-ifelse(MitigatedBF$BFM < 10 & MitigatedBF$BFR <10 , c("No"), c("Yes"))
countBFM_10a<-table(MitigatedBF$BFM_10a) #6.9%

###############################################################################
#Assessing Replication-Meta-Analysis Metric#
###############################################################################
library(meta); library(metasens)

View(cbind(Rep_pvalues$Meta.analytic.estimate..Fz.,Rep_pvalues$Meta.analysis.significant))
table(Rep_pvalues$Meta.analytic.estimate..Fz.) #68.0%

#Plot Meta-analytic Estimates
par(mfrow = c(1, 1))
plot(Rep_pvalues$Meta.analytic.estimate..Fz., ylim=c(0,1), main=’Meta-analysis estimates’, ylab =
’p-values’, xlab=’Studies’)

####Methodological Limitations####
#first run the Master code and meta analysis code for res

### Meta-analysis of null model
res <- rma(yi = final$yi, sei = final$sei, method = "REML")
### Meta-analysis of null model-original only
res <- rma(yi = final$fis.o, sei = final$sei.o, method = "REML")
### Meta-analysis of null model-replication studies only
res <- rma(yi = final$fis.r, sei = final$sei.r, method = "REML")
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Chapter 10

Appendix E: R Code relevant to
Chapter 2

###############################################################################
#Expectation Plots of Equivalence Replication Metric#
###############################################################################
#This code is only for the plots in the dissertation: Figure 2.2
#Varying N’s-using original n for the bounds and replicated n for overlap
#Bounds with +-.1
R_o<-rep(c(-.5, -.3, -.1, .1, .3, .5),16)
R_r<-seq(from=-.95, to=.95, by=.02)
n24=rep(24,96)
n40=rep(40,96)
n55=rep(55,96)
n75=rep(75,96)
n90=rep(90,96)
n100=rep(100,96)
n150=rep(150,96)
n250=rep(250,96)
n500=rep(500,96)
lower20=rep(.1-.1,96)
upper20=rep(.1+.1,96)

#lower<-ifelse(R_o<0, R_o+(.2*R_o), R_o-(.2*R_o))
#lower20<-ifelse(lower<=-1,-.99999,lower)
#rm(lower)
#upper<-ifelse(R_o<0,R_o-(.2*R_o),R_o+(.2*R_o))
#upper20<-ifelse(upper>1,.99999,upper)
#rm(upper)

Test_20_ori<-as.data.frame(cbind(n24, n40, n55, n75, n90, n100, n150, n250, n500, R_o, R_r, lower20,
upper20))

TOST_corr_bounds<-function(n, r, lb, ub, plot = TRUE, verbose = TRUE){
#Determine correlation interval using z critcal values
(z_r<-(log((1+r)/(1-r))/2))
(z_lb<-(log((1+lb)/(1-lb))/2))
(z_ub<-(log((1+ub)/(1-ub))/2))

LL_prob<-pnorm((z_lb-z_r)/sqrt(1/((n)-3)))
UL_prob<-pnorm((z_ub-z_r)/sqrt(1/((n)-3)))

CI<-UL_prob-LL_prob

print(round(CI*100, digits = 20))
}

CI_ori_24<-0
for (i in 1:96){

CI_ori_24[i]<-TOST_corr_bounds(n=Test_20_ori$n24[i], r=Test_20_ori$R_r[i], lb=Test_20_ori$lower20[i],
ub=Test_20_ori$upper20[i])
}

CI_ori_40<-0
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for (i in 1:96){
CI_ori_40[i]<-TOST_corr_bounds(n=Test_20_ori$n40[i], r=Test_20_ori$R_r[i], lb=Test_20_ori$lower20[i],

ub=Test_20_ori$upper20[i])
}

CI_ori_55<-0
for (i in 1:96){

CI_ori_55[i]<-TOST_corr_bounds(n=Test_20_ori$n55[i], r=Test_20_ori$R_r[i], lb=Test_20_ori$lower20[i],
ub=Test_20_ori$upper20[i])
}

CI_ori_75<-0
for (i in 1:96){

CI_ori_75[i]<-TOST_corr_bounds(n=Test_20_ori$n75[i], r=Test_20_ori$R_r[i], lb=Test_20_ori$lower20[i],
ub=Test_20_ori$upper20[i])
}

CI_ori_90<-0
for (i in 1:96){

CI_ori_90[i]<-TOST_corr_bounds(n=Test_20_ori$n90[i], r=Test_20_ori$R_r[i], lb=Test_20_ori$lower20[i],
ub=Test_20_ori$upper20[i])
}

CI_ori_100<-0
for (i in 1:96){

CI_ori_100[i]<-TOST_corr_bounds(n=Test_20_ori$n100[i], r=Test_20_ori$R_r[i], lb=Test_20_ori$lower20[i],
ub=Test_20_ori$upper20[i])
}

CI_ori_150<-0
for (i in 1:96){

CI_ori_150[i]<-TOST_corr_bounds(n=Test_20_ori$n150[i], r=Test_20_ori$R_r[i], lb=Test_20_ori$lower20[i],
ub=Test_20_ori$upper20[i])
}

CI_ori_250<-0
for (i in 1:96){

CI_ori_250[i]<-TOST_corr_bounds(n=Test_20_ori$n250[i], r=Test_20_ori$R_r[i], lb=Test_20_ori$lower20[i],
ub=Test_20_ori$upper20[i])
}

CI_ori_500<-0
for (i in 1:96){

CI_ori_500[i]<-TOST_corr_bounds(n=Test_20_ori$n500[i], r=Test_20_ori$R_r[i], lb=Test_20_ori$lower20[i],
ub=Test_20_ori$upper20[i])
}

EQ_original_20<-cbind(Test_20_ori, CI_ori_24, CI_ori_40, CI_ori_55, CI_ori_75, CI_ori_100, CI_ori_150,
CI_ori_250, CI_ori_500)

par(mfrow=c(1,1))
png("ES_1.png", width = 2000, height = 1200) #opens png
plot(Test_20_ori$R_r, CI_ori_24, ylim=c(0, 100),xlim=c(-1, 1), ylab=c(’Expected Probability’), xlab=c("ES
Range"), col="black", type=’l’,lwd=5, lty=1,main=’Expectation using 0.1 ± 0.1 for EQ Margin’)
points(Test_20_ori$R_r,CI_ori_55,col="gray44", type=’l’,lwd=5)
points(Test_20_ori$R_r,CI_ori_90, col="darkgray", type=’l’,lwd=5)
points(Test_20_ori$R_r,CI_ori_150, col="gray85", type=’l’,lwd=5)
points(Test_20_ori$R_r,CI_ori_250, col="cornsilk3", type=’l’,lwd=5)
points(Test_20_ori$R_r,CI_ori_500, col="darkgoldenrod4", type=’l’,lwd=5)
legend("topright", legend=c("n=24", "n=55", "n=90", "n=150", "n=250","n=500"),

lty = 1:1, lwd=5,title="*Average Sample Size", cex=2.0,
col = c("black", "gray44","darkgray", "gray85","cornsilk3", "darkgoldenrod4"))

legend("bottomright", legend="*Harmonic Mean", cex=1.0, bg="transparent")
dev.off()

#use the .05 eq bounds#
#average n#;’
diff<-seq(from=-.95, to=.95, by=.02)
n24=rep(24,96); n40=rep(40,96)
n55=rep(55,96); n75=rep(75,96)
n90=rep(90,96); n100=rep(100,96)
n150=rep(150,96); n250=rep(250,96); n500=rep(500,96)
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Test_samples<-as.data.frame(cbind(n24, n40, n55, n75, n90, n100, n150, n250, n500, diff))

TOST_corr_bounds<-function(n, r, lb, ub, plot = TRUE, verbose = TRUE){
#Determine correlation interval using z critcal values
(z_r<-(log((1+r)/(1-r))/2))
(z_lb<-(log((1+lb)/(1-lb))/2))
(z_ub<-(log((1+ub)/(1-ub))/2))

LL_prob<-pnorm((z_lb-z_r)/sqrt(1/((n)-3)))
UL_prob<-pnorm((z_ub-z_r)/sqrt(1/((n)-3)))

CI<-UL_prob-LL_prob
print(round(CI*100, digits = 20))

}

CI_24_05<-0
for (i in 1:96){

CI_24_05[i]<-TOST_corr_bounds(n=Test_samples$n24[i], r=Test_samples$diff[i], lb=-.05, ub=.05)/100
}
CI_40_05<-0
for (i in 1:96){

CI_40_05[i]<-TOST_corr_bounds(n=Test_samples$n40[i], r=Test_samples$diff[i], lb=-.05, ub=.05)/100
}
CI_55_05<-0
for (i in 1:96){

CI_55_05[i]<-TOST_corr_bounds(n=Test_samples$n55[i], r=Test_samples$diff[i], lb=-.05, ub=.05)/100
}
CI_75_05<-0
for (i in 1:96){

CI_75_05[i]<-TOST_corr_bounds(n=Test_samples$n75[i], r=Test_samples$diff[i], lb=-.05, ub=.05)/100
}
CI_90_05<-0
for (i in 1:96){

CI_90_05[i]<-TOST_corr_bounds(n=Test_samples$n90[i], r=Test_samples$diff[i], lb=-.05, ub=.05)/100
}
CI_100_05<-0
for (i in 1:96){

CI_100_05[i]<-TOST_corr_bounds(n=Test_samples$n100[i], r=Test_samples$diff[i], lb=-.05, ub=.05)/100
}
CI_150_05<-0
for (i in 1:96){

CI_150_05[i]<-TOST_corr_bounds(n=Test_samples$n150[i], r=Test_samples$diff[i], lb=-.05, ub=.05)/100
}
CI_250_05<-0
for (i in 1:96){

CI_250_05[i]<-TOST_corr_bounds(n=Test_samples$n250[i], r=Test_samples$diff[i], lb=-.05, ub=.05)/100
}
CI_500_05<-0
for (i in 1:96){

CI_500_05[i]<-TOST_corr_bounds(n=Test_samples$n500[i], r=Test_samples$diff[i], lb=-.05, ub=.05)/100
}

EQ_n_05<-cbind(Test_samples, CI_24_05, CI_40_05, CI_55_05, CI_75_05, CI_90_05, CI_100_05, CI_150_05,
CI_250_05, CI_500_05)

#####use the .1 eq bounds#####
######using average n########;’
diff<-seq(from=-.95, to=.95, by=.02)
n24=rep(24,96); n40=rep(40,96); n55=rep(55,96)
n75=rep(75,96); n90=rep(90,96); n100=rep(100,96)
n150=rep(150,96); n250=rep(250,96); n500=rep(500,96)

Test_samples<-as.data.frame(cbind(n24, n40, n55, n75, n90, n100, n150, n250, n500, diff))

TOST_corr_bounds<-function(n, r, lb, ub, plot = TRUE, verbose = TRUE){

#Determine correlation interval using z critcal values
(z_r<-(log((1+r)/(1-r))/2))
(z_lb<-(log((1+lb)/(1-lb))/2))
(z_ub<-(log((1+ub)/(1-ub))/2))

LL_prob<-pnorm((z_lb-z_r)/sqrt(1/((n)-3)))
UL_prob<-pnorm((z_ub-z_r)/sqrt(1/((n)-3)))
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CI<-UL_prob-LL_prob
print(round(CI*100, digits = 20))

}
CI_24_1<-0
for (i in 1:96){

CI_24_1[i]<-TOST_corr_bounds(n=Test_samples$n24[i], r=Test_samples$diff[i], lb=-.1, ub=.1)/100
}
CI_40_1<-0
for (i in 1:96){

CI_40_1[i]<-TOST_corr_bounds(n=Test_samples$n40[i], r=Test_samples$diff[i], lb=-.1, ub=.1)/100
}
CI_55_1<-0
for (i in 1:96){

CI_55_1[i]<-TOST_corr_bounds(n=Test_samples$n55[i], r=Test_samples$diff[i], lb=-.1, ub=.1)/100
}
CI_75_1<-0
for (i in 1:96){

CI_75_1[i]<-TOST_corr_bounds(n=Test_samples$n75[i], r=Test_samples$diff[i], lb=-.1, ub=.1)/100
}
CI_90_1<-0
for (i in 1:96){

CI_90_1[i]<-TOST_corr_bounds(n=Test_samples$n90[i], r=Test_samples$diff[i], lb=-.1, ub=.1)/100
}
CI_100_1<-0
for (i in 1:96){

CI_100_1[i]<-TOST_corr_bounds(n=Test_samples$n100[i], r=Test_samples$diff[i], lb=-.1, ub=.1)/100
}
CI_150_1<-0
for (i in 1:96){

CI_150_1[i]<-TOST_corr_bounds(n=Test_samples$n150[i], r=Test_samples$diff[i], lb=-.1, ub=.1)/100
}
CI_250_1<-0
for (i in 1:96){

CI_250_1[i]<-TOST_corr_bounds(n=Test_samples$n250[i], r=Test_samples$diff[i], lb=-.1, ub=.1)/100
}
CI_500_1<-0
for (i in 1:96){

CI_500_1[i]<-TOST_corr_bounds(n=Test_samples$n500[i], r=Test_samples$diff[i], lb=-.1, ub=.1)/100
}
EQ_n_1<-cbind(Test_samples, CI_24_1, CI_40_1, CI_55_1, CI_75_1, CI_90_1, CI_100_1, CI_150_1, CI_250_1,
CI_500_1)
png("Expectations.png", width = 2500, height = 1500) #opens png
par(mfrow=c(1,2), mar=c(5,6,4,1)+.1)
plot(Test_samples$diff,CI_24_05, ylim=c(0.0, 1.0), ylab=c(’Expected Probability’), xlab=c("Difference in
Original and Replicated Effect Sizes"), col="black", lty=1, lwd=5, type=’l’, main=’Expectated Probability
using 0 ± 0.05 for EQ Margin’, cex.main=3.0, cex.lab=2.5, cex.axis=2.5)
points(Test_samples$diff,CI_55_05,col="gray44", type="l", lwd=5)
points(Test_samples$diff,CI_90_05, "darkgray", type="l",lwd=5)
points(Test_samples$diff,CI_150_05, col="gray85", type="l",lwd=5)
points(Test_samples$diff,CI_250_05, col="cornsilk3", type="l",lwd=5)
points(Test_samples$diff,CI_500_05, col="darkgoldenrod4", type="l",lwd=5)
legend("topright", legend=c("n=24", "n=55", "n=90", "n=150", "n=250","n=500"),

lty = 1:1, lwd=5,title="*Average Sample Size", cex=3.5,
col = c("black", "gray44","darkgray", "gray85","cornsilk3", "darkgoldenrod4"))

legend("bottomright", legend="*Harmonic Mean", cex=1.5, bg="transparent")
plot(Test_samples$diff,CI_24_1, ylim=c(0.0, 1.0), ylab=c(’Expected Probability’), xlab=c("Difference in
Original and Replicated Effect Sizes"), col="black", lty=1, lwd=5, type=’l’, main=’Expectated Probability
using 0 ± 0.1 for EQ Margin’, cex.main=3.0, cex.lab=2.5, cex.axis=2.5)
points(Test_samples$diff,CI_55_1,col="gray44", type="l", lwd=5)
points(Test_samples$diff,CI_90_1, "darkgray", type="l",lwd=5)
points(Test_samples$diff,CI_150_1, col="gray85", type="l",lwd=5)
points(Test_samples$diff,CI_250_1, col="cornsilk3", type="l",lwd=5)
points(Test_samples$diff,CI_500_1, col="darkgoldenrod4", type="l",lwd=5)
legend("topright", legend=c("n=24", "n=55", "n=90", "n=150", "n=250","n=500"),

lty = 1:1, lwd=5,title="*Average Sample Size", cex=3.5,
col = c("black", "gray44","darkgray", "gray85","cornsilk3", "darkgoldenrod4"))

legend("bottomright", legend="*Harmonic Mean", cex=1.5, bg="transparent")
dev.off()
###############################################################################
#Simulation Criteria Assessment#
###############################################################################
library(metafor); library(psychometric); library(magrittr)
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### Meta-analysis of null model
res <- rma(yi = final$yi, sei = final$sei, method = "REML")
res <- rma(yi = final$fis.o, sei = final$sei.o, method = "REML")

###############################################################################
#Assessing Pub Bias and Power-Funnel Plots#
###############################################################################
####Figure 2.2####
funnel(res, level=c(90, 95, 99),legend=T,

shade=c("white", "gray", "darkgray"),
refline=0, main = "Funnel plot based on original studies")

####Figure 2.3####
#Trim-and-fill analysis
taf <- trimfill(res)
funnel(taf, legend=T, level=c(90, 95, 99), shade=c("white", "gray", "darkgray"), refline=0, main = "Trim
and Fill funnel plot based on original studies")
tf1 <- trimfill(res)
summary(tf1); funnel(tf1)

###############################################################################
#Assessing Pub Bias and Power-Formal Tests#
###############################################################################
#Begg’s Rank Test
ranktest(res) #strong correlation means publication bias---0.3025

#Egger’s Regression Test
regtest(res)

###############################################################################
#PET_PEESE#
###############################################################################
### PET-PEESE

#PET model
fit_PET <- lm(fis.o ˜ sei.o, weights = 1/sei.oˆ2, data = final)
summary(fit_PET)
z2r(summary(fit_PET)$coefficients["(Intercept)", "Estimate"])

#PEESE model
fit_PEESE <- lm(fis.o ˜ I(sei.oˆ2), weights = 1/sei.oˆ2, data = final)
summary(fit_PEESE)
z2r(summary(fit_PEESE)$coefficients["(Intercept)", "Estimate"])

###############################################################################
#Assessing Pub Bias and Power-P-curve#
###############################################################################
#Fill in online app: http://www.p-curve.com/app4/

###############################################################################
#Assessing Pub Bias and Power-Z-curve#
###############################################################################
####Converting the correlation coefficients to Cohen’s d
library(zcurve)

#The Reproducibility Project data;
MASTER <- read.csv("rpp_data.csv")[1:167,]
colnames(MASTER)[1] <- "ID" # Change first column name to ID to be able to load .csv file
MASTER$N..O.[75]<-substr(MASTER$N..O.[75], 0, 2)
MASTER$N..O.[MASTER$N..O.=="X"]<-"NA"
MASTER$N..O.<-as.numeric(as.character(MASTER$N..O.))
#How many more subjects did replication have as compared to original
MASTER$N..R.-MASTER$N..O.
MASTER$N..R.
summary(MASTER$N..R.-MASTER$N..O.)
data<-MASTER[!is.na(MASTER$T_pval_USE..O.) & !is.na(MASTER$T_pval_USE..R.),]
summary(data$N..R.-data$N..O.)
write.csv(data, ’99_practices.csv’, row.names = F)

studies<-data$ID
Corr_coeff<-cbind(studies,data$T_r..O., data$T_r..R.)
colnames(Corr_coeff)<-c("Studies", "Corr_O", "Corr_R")
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Corr_coeff<-data.frame(Corr_coeff)
Corr_coeff2 <- Corr_coeff[-45,]
summary(Corr_coeff2)

###Original###
##Convert to z##
R_z_o<-as.numeric()
for(i in 1:nrow(Corr_coeff2)) {

R_z_o[i]<-fisherz(Corr_coeff2$Corr_O[i])
}
R_z<-cbind(Corr_coeff2$Corr_O, R_z_o)

##Replicated##
Corr_coeff3 <- Corr_coeff2[-48,]

##Convert to z##
R_z_r<-as.numeric()
for(i in 1:nrow(Corr_coeff3)) {

R_z_r[i]<-fisherz(Corr_coeff3$Corr_R[i])
}

#z-Curve with computed zscores
fit.EM2 <- zcurve(R_z_o)
summary(fit.EM2, all = T)
plot(fit.EM2, main = "OSC Computed (with EM)", annotation = T, CI = T)

#now used preloaded zscores and code from RPP from zcurve package
OSC.z

# fit an EM z-curve (with disabled bootstrap due to examples times limits)
m.EM <- zcurve(OSC.z, method = "EM", bootstrap = FALSE)
# a version with 1000 boostraped samples would looked like:
m.EM <- zcurve(OSC.z, method = "EM", bootstrap = 1000)
# or KD2 z-curve (use larger bootstrap for real inference)
m.D <- zcurve(OSC.z, method = "density", bootstrap = FALSE)

# inspect the results
summary(m.EM)
summary(m.D)

#plots the results--no needed
plot(m.EM); plot(m.D)

#increase the maximum number of iterations and change alpha level
ctr1 <- list(

"max_iter" = 9999,
"alpha" = .10)

m1.EM <- zcurve(OSC.z, method = "EM", bootstrap = FALSE, control = ctr1)

# set seed for reproducibility
set.seed(666)
x<-OSC.z
fisherz2r(OSC.z)

####Figure 2.4####
# fit the EM method
fit.EM <- zcurve(OSC.z)
summary(fit.EM, all = T)
plot(fit.EM, main = "OSC Z-Curve (with EM)", annotation = T, CI = T)
#bind computed and z-curve package z-scores to check
cbind(R_z_o, OSC.z)

###############################################################################
#Aim 1a-Combined Metric#
###############################################################################
#Run 1000 Simulations with set samples and True Effect Size=0 (type 1 error: 0.05) and n*2.5#
###functions to load
datagen <- function(n, rho) {

X1 = rnorm(n); X2 = rnorm(n)
Z = cbind(X1, rho*X1+sqrt(1-rhoˆ2)*X2)
return(Z)

}
#http://r.789695.n4.nabble.com/generate-two-sets-of-random-numbers-that-are-correlated-td3736161.html
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#https://math.stackexchange.com/questions/446093/generate-correlated-normal-random-variables

###Lower confidence interval;
Lower_CI<-function(r,n){

z_r=log((1+r)/(1-r))/2
L=z_r-(1.96/sqrt(n-3))
LCI<-((exp(2*L)-1)/(exp(2*L)+1))
return(LCI)

}
Upper_CI<-function(r,n){

z_r=log((1+r)/(1-r))/2
U=z_r+(1.96/sqrt(n-3))
UCI<-((exp(2*U)-1)/(exp(2*U)+1))
return(UCI)

}

##Rerun for various ES and power combinations
#Example: ES=.1 power=.2-should funcionalize
##true Effect Size
r1<-c()

#Original Studies
r_orig<-c(); n_orig<-c(); tstat_orig<-c(); p_val_orig<-c()
LCI_r_orig<-c(); UCI_r_orig<-c(); LCI_r_rep<-c(); UCI_r_rep<-c(); CI_replicated<-c()

#Replication Studies
r_rep<-c(); n_rep<-c(); tstat_rep<-c(); p_val_rep<-c()

for (i in 1:1000){
##true r;
r1[i]<-.1

###generate original Study;
#original n
n_orig[i]<-pwr.r.test(r=.1, power=.2)$n

#Sampling
data<-datagen(n_orig[i], r1[i])
group1o<-data[,1]
group2o<-data[,2]

#r based on original sample
r_orig[i]<-cor(group1o, group2o)
LCI_r_orig[i]<-Lower_CI(r_orig[i], n_orig[i])
UCI_r_orig[i]<-Upper_CI(r_orig[i], n_orig[i])

#T statistic
tstat_orig[i]<-cor.test(group1o, group2o, var.equal=T)$statistic

#P-value
p_val_orig[i]<-cor.test(group1o, group2o, var.equal=T)$p.value

###generate replicated study;

#replicated sample size- n_original*2.5 ;
n_rep[i]=n_orig[i]*2

#Sampling
data<-datagen(n_rep[i], r1[i])
group1r<-data[,1]
group2r<-data[,2]

#r based on sample
r_rep[i]<-cor(group1r, group2r)
LCI_r_rep[i]<-Lower_CI(r_rep[i], n_rep[i])
UCI_r_rep[i]<-Upper_CI(r_rep[i], n_rep[i])
CI_replicated[i]<-between(r_orig[i], LCI_r_rep[i], UCI_r_rep[i])

#T statistic
tstat_rep[i]<-cor.test(group1r, group2r, var.equal=T)$statistic

#P-value
p_val_rep[i]<-cor.test(group1r, group2r, var.equal=T)$p.value
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}
Data_ES1_pow20<-data.frame(n_orig, n_rep, r1, r_orig, r_rep,; p_val_orig, p_val_rep,
LCI_r_rep, UCI_r_rep, CI_replicated, Simulated$BF_replicated)

Data_ES1_pow20$sign_orig<-ifelse(p_val_orig<0.05, 1, 0)
Data_ES1_pow20$sign_rep<-ifelse(p_val_rep<0.05, 1, 0)
Data_ES1_pow20$replicated_p<-ifelse(Data_ES1_pow20$sign_orig==Data_ES1_pow20$sign_rep, 1,0)
Data_ES1_pow20$overall_replicated<-ifelse(Data_ES1_pow20$CI_replicated==TRUE | Data_ES1_pow20$replicated_p
| Data_ES1_pow20$BF_replicated==1, 1,0)

table(Data_ES1_pow20$replicated_p)
table(Data_ES1_pow20$CI_replicated)
table(Data_ES1_pow20$BF_replicated)
table(Data_ES1_pow20$overall_replicated)

###############################################################################
#Aim 1b-Equivalence Replication Metric-Single Studies#
###############################################################################
####Libraries to load-
library(truncnorm);library(pwr);
library(truncdist); library(dplyr)

###functions to load
datagen <- function(n, rho) {

X1 = rnorm(n); X2 = rnorm(n)
Z = cbind(X1, rho*X1+sqrt(1-rhoˆ2)*X2)
return(Z)

}

#####No Delta####
#Function for-Bounds using Original ES
Original_replicated_0_bias<-function(ES, P, lb, ub, Bias) {

#Original Studies
r_orig<-c(); n_orig<-ceiling(pwr.r.test(r=ES, power=P)$n)

r1<-c(); n_orig<-c(); tstat_orig<-c(); p_val_orig<-c()
lower20<-c();upper20<-c(); lower50<-c(); upper50<-c();

#Replication Studies
r_rep<-c(); n_rep<-c()
tstat_rep<-c(); p_val_rep<-c()

for (i in 1:1000){
#original study;
r1[i]<-ES

#original study;
n_orig[i]<-pwr.r.test(r=ES, power=P)$n

#Sampling
data<-datagen(n_orig[i], r1[i])
group1o<-data[,1]; group2o<-data[,2]

#r based on original sample
r_orig[i]<-cor(group1o, group2o)

lower20[i]<- r_orig[i]-(.2*r_orig[i])
if (lower20[i]<=-1)
{lower20[i]= -.9999}

upper20[i]<- r_orig[i]+(.2*r_orig[i])
if (upper20[i]>=1)
{upper20[i]= -.9999}

lower50[i]<- r_orig[i]-(.5*r_orig[i])
if (lower50[i]<=-1)
{lower50[i]= -.9999}

upper50[i]<- r_orig[i]+(.5*r_orig[i])
if (upper50[i]>=1)
{upper50[i]= -.9999}
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#T statistic
tstat_orig[i]<-cor.test(group1o, group2o, var.equal=T)$statistic

#P-value
p_val_orig[i]<-cor.test(group1o, group2o, var.equal=T)$p.value

###generate replicated study;

#replicated sample size- n_original*2.5 ;
n_rep[i]=n_orig[i]*2

#Sampling
data<-datagen(n_rep[i], r1[i])
group1r<-data[,1]
group2r<-data[,2]

#r based on sample
r_rep[i]<-cor(group1r, group2r)

#T statistic
tstat_rep[i]<-cor.test(group1r, group2r, var.equal=T)$statistic

#P-value
p_val_rep[i]<-cor.test(group1r, group2r, var.equal=T)$p.value

}

Data_ES_pow<-data.frame(n_orig, n_rep, r1, r_orig, r_rep,
p_val_orig,p_val_rep, lower20, upper20,
lower50, upper50)

Data_ES_pow$sign_orig<-ifelse(p_val_orig<0.05, 1, 0)
Data_ES_pow$sign_rep<-ifelse(p_val_rep<0.05, 1, 0)
Data_ES_pow$replicated_p<-ifelse(Data_ES_pow$sign_orig==Data_ES_pow$sign_rep, 1,0)
Data_ES_pow$replicated_p2<-ifelse(Data_ES_pow$sign_orig==1 & Data_ES_pow$sign_rep==1, 1,0 )
100*(nrow(Data_ES_pow[(Data_ES_pow$replicated_p2==1),])/nrow(Data_ES_pow[(Data_ES_pow$sign_orig==1),]))
Sign<-Data_ES_pow[which(Data_ES_pow$sign_orig==1),]
NonSign<-Data_ES_pow[which(Data_ES_pow$sign_orig==0),]
NonSign<-NonSign%>% sample_frac(Bias)

Data_ES_pow_bias<-rbind(Sign, NonSign)

#Determine correlation interval using z critcal values
z_r<-(log((1+(Data_ES_pow_bias$r_rep))/(1-(Data_ES_pow_bias$r_rep)))/2)
z_lb<-(log((1+lb)/(1-lb))/2)
z_ub<-(log((1+ub)/(1-ub))/2)

LL_prob<-pnorm((z_lb-z_r)/sqrt(1/(median(Data_ES_pow_bias$n_rep-3))))
UL_prob<-pnorm((z_ub-z_r)/sqrt(1/(median(Data_ES_pow_bias$n_rep-3))))

rep_prob_median<-median(round(abs(UL_prob-LL_prob),3), na.rm = TRUE)
rep_prob_mean<-mean(round(abs(UL_prob-LL_prob),3), na.rm = TRUE)
return(rep_prob_median)
#return(rep_prob_mean)

}

##Function for Bounds centered around 0
Replicated_0_bias<-function(ES, P, lb, ub, Bias) {

#Original Studies
r_orig<-c(); n_orig<-ceiling(pwr.r.test(r=ES, power=P)$n)

r1<-c(); n_orig<-c(); tstat_orig<-c(); p_val_orig<-c()
lower20<-c();upper20<-c(); lower50<-c(); upper50<-c();

#Replication Studies
r_rep<-c(); n_rep<-c()
tstat_rep<-c(); p_val_rep<-c()

for (i in 1:1000){
#original study;
r1[i]<-ES

176



#original study;
n_orig[i]<-pwr.r.test(r=ES, power=P)$n

#Sampling
data<-datagen(n_orig[i], r1[i])
group1o<-data[,1]; group2o<-data[,2]

#r based on original sample
r_orig[i]<-cor(group1o, group2o)

lower20[i]<- r_orig[i]-(.2*r_orig[i])
if (lower20[i]<=-1)
{lower20[i]= -.9999}

upper20[i]<- r_orig[i]+(.2*r_orig[i])
if (upper20[i]>=1)
{upper20[i]= -.9999}

lower50[i]<- r_orig[i]-(.5*r_orig[i])
if (lower50[i]<=-1)
{lower50[i]= -.9999}

upper50[i]<- r_orig[i]+(.5*r_orig[i])
if (upper50[i]>=1)
{upper50[i]= -.9999}

#T statistic
tstat_orig[i]<-cor.test(group1o, group2o, var.equal=T)$statistic

#P-value
p_val_orig[i]<-cor.test(group1o, group2o, var.equal=T)$p.value

###generate replicated study;

#replicated sample size- n_original*2.5 ;
n_rep[i]=n_orig[i]*2

#Sampling
data<-datagen(n_rep[i], r1[i])
group1r<-data[,1]
group2r<-data[,2]

#r based on sample
r_rep[i]<-cor(group1r, group2r)

#T statistic
tstat_rep[i]<-cor.test(group1r, group2r, var.equal=T)$statistic

#P-value
p_val_rep[i]<-cor.test(group1r, group2r, var.equal=T)$p.value

}

Data_ES_pow<-data.frame(n_orig, n_rep, r1, r_orig, r_rep,
p_val_orig,p_val_rep, lower20, upper20,
lower50, upper50)

Data_ES_pow$sign_orig<-ifelse(p_val_orig<0.05, 1, 0)
Data_ES_pow$sign_rep<-ifelse(p_val_rep<0.05, 1, 0)
Data_ES_pow$replicated_p<-ifelse(Data_ES_pow$sign_orig==Data_ES_pow$sign_rep, 1,0)
Data_ES_pow$replicated_p2<-ifelse(Data_ES_pow$sign_orig==1 & Data_ES_pow$sign_rep==1, 1,0 )
100*(nrow(Data_ES_pow[(Data_ES_pow$replicated_p2==1),])/nrow(Data_ES_pow[(Data_ES_pow$sign_orig==1),]))
Sign<-Data_ES_pow[which(Data_ES_pow$sign_orig==1),]
NonSign<-Data_ES_pow[which(Data_ES_pow$sign_orig==0),]
NonSign<-NonSign%>% sample_frac(Bias)

Data_ES_pow_bias<-rbind(Sign, NonSign)
#Determine correlation interval using z critcal values
r<- Data_ES_pow_bias$r_rep- Data_ES_pow_bias$r_orig
(z_r<-(log((1+r)/(1-r))/2))
(z_lb<-(log((1+lb)/(1-lb))/2))
(z_ub<-(log((1+ub)/(1-ub))/2))

LL_prob<-pnorm((z_lb-z_r)/sqrt(1/((Data_ES_pow_bias$n_orig+Data_ES_pow_bias$n_rep)-3)))
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UL_prob<-pnorm((z_ub-z_r)/sqrt(1/((Data_ES_pow_bias$n_orig+Data_ES_pow_bias$n_rep)-3)))

rep_prob_median<-median(round(abs(UL_prob-LL_prob),3), na.rm = TRUE)
rep_prob_mean<-mean(round(abs(UL_prob-LL_prob),3), na.rm = TRUE)
return(rep_prob_median)
#return(rep_prob_mean)

}

#####Delta˜N(0, 0.05)####
#Bounds center around Original ES
Original_realistic05_0_bias<-function(ES, P, lb, ub, Bias) {

#addition
z_orig<-c()
addition_z<-c()
true_z<-c()
true_r<-c()
#Original Studies
r_orig<-c(); n_orig<-ceiling(pwr.r.test(r=ES, power=P)$n)

r1<-c(); n_orig<-c(); tstat_orig<-c(); p_val_orig<-c()
lower20<-c();upper20<-c(); lower50<-c(); upper50<-c();

#Replication Studies
r_rep<-c(); n_rep<-c()
tstat_rep<-c(); p_val_rep<-c()

for (i in 1:1000){
#original study;
r1[i]<-ES
z_orig[i]<-0.5*(log(1+r1[i])-log(1-r1[i]))

addition_z[i]<-rnorm(n=1, mean=0, sd=.05)
true_z[i]<-z_orig[i]+addition_z[i]

true_r[i]<-(exp(2*true_z[i])-1)/(exp(2*true_z[i])+1)

#original study;
n_orig[i]<-pwr.r.test(r=true_r[i], power=P)$n

#Sampling
data<-datagen(n_orig[i], true_r[i])
group1o<-data[,1]; group2o<-data[,2]

#r based on original sample
r_orig[i]<-cor(group1o, group2o)

lower20[i]<- r_orig[i]-(.2*r_orig[i])
if (lower20[i]<=-1)
{lower20[i]= -.9999}

upper20[i]<- r_orig[i]+(.2*r_orig[i])
if (upper20[i]>=1)
{upper20[i]= -.9999}

lower50[i]<- r_orig[i]-(.5*r_orig[i])
if (lower50[i]<=-1)
{lower50[i]= -.9999}

upper50[i]<- r_orig[i]+(.5*r_orig[i])
if (upper50[i]>=1)
{upper50[i]= -.9999}

#T statistic
tstat_orig[i]<-cor.test(group1o, group2o, var.equal=T)$statistic

#P-value
p_val_orig[i]<-cor.test(group1o, group2o, var.equal=T)$p.value

###generate realistic05 study;

#realistic05 sample size- n_original*2.5 ;
n_rep[i]=n_orig[i]*2
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#Sampling
data<-datagen(n_rep[i], r1[i])
group1r<-data[,1]
group2r<-data[,2]

#r based on sample
r_rep[i]<-cor(group1r, group2r)

#T statistic
tstat_rep[i]<-cor.test(group1r, group2r, var.equal=T)$statistic

#P-value
p_val_rep[i]<-cor.test(group1r, group2r, var.equal=T)$p.value

}

Data_ES_pow<-data.frame(n_orig, n_rep, r1, r_orig, r_rep,
p_val_orig,p_val_rep, lower20, upper20,
lower50, upper50)

Data_ES_pow$sign_orig<-ifelse(p_val_orig<0.05, 1, 0)
Data_ES_pow$sign_rep<-ifelse(p_val_rep<0.05, 1, 0)
Data_ES_pow$replicated_p<-ifelse(Data_ES_pow$sign_orig==Data_ES_pow$sign_rep, 1,0)
Data_ES_pow$replicated_p2<-ifelse(Data_ES_pow$sign_orig==1 & Data_ES_pow$sign_rep==1, 1,0 )
100*(nrow(Data_ES_pow[(Data_ES_pow$replicated_p2==1),])/nrow(Data_ES_pow[(Data_ES_pow$sign_orig==1),]))
Sign<-Data_ES_pow[which(Data_ES_pow$sign_orig==1),]
NonSign<-Data_ES_pow[which(Data_ES_pow$sign_orig==0),]
NonSign<-NonSign%>% sample_frac(Bias)

Data_ES_pow_bias<-rbind(Sign, NonSign)

#Determine correlation interval using z critcal values
z_r<-(log((1+(Data_ES_pow_bias$r_rep))/(1-(Data_ES_pow_bias$r_rep)))/2)
z_lb<-(log((1+lb)/(1-lb))/2)
z_ub<-(log((1+ub)/(1-ub))/2)

LL_prob<-pnorm((z_lb-z_r)/sqrt(1/(median(Data_ES_pow_bias$n_rep-3))))
UL_prob<-pnorm((z_ub-z_r)/sqrt(1/(median(Data_ES_pow_bias$n_rep-3))))

rep_prob_median<-median(round(abs(UL_prob-LL_prob),3), na.rm = TRUE)
rep_prob_mean<-mean(round(abs(UL_prob-LL_prob),3), na.rm = TRUE)
#return(rep_prob_median)
return(rep_prob_mean)

}

#Bounds center around 0
realistic05_0_bias<-function(ES, P, lb, ub, Bias) {

#addition
z_orig<-c()
addition_z<-c()
true_z<-c()
true_r<-c()
#Original Studies
r_orig<-c(); n_orig<-ceiling(pwr.r.test(r=ES, power=P)$n)

r1<-c(); n_orig<-c(); tstat_orig<-c(); p_val_orig<-c()
lower20<-c();upper20<-c(); lower50<-c(); upper50<-c();

#Replication Studies
r_rep<-c(); n_rep<-c()
tstat_rep<-c(); p_val_rep<-c()

for (i in 1:1000){
#original study;
r1[i]<-ES
z_orig[i]<-0.5*(log(1+r1[i])-log(1-r1[i]))

addition_z[i]<-rnorm(n=1, mean=0, sd=.05)
true_z[i]<-z_orig[i]+addition_z[i]

true_r[i]<-(exp(2*true_z[i])-1)/(exp(2*true_z[i])+1)

#original study;
n_orig[i]<-pwr.r.test(r=true_r[i], power=P)$n
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#Sampling
data<-datagen(n_orig[i], true_r[i])
group1o<-data[,1]; group2o<-data[,2]

#r based on original sample
r_orig[i]<-cor(group1o, group2o)

lower20[i]<- r_orig[i]-(.2*r_orig[i])
if (lower20[i]<=-1)
{lower20[i]= -.9999}

upper20[i]<- r_orig[i]+(.2*r_orig[i])
if (upper20[i]>=1)
{upper20[i]= -.9999}

lower50[i]<- r_orig[i]-(.5*r_orig[i])
if (lower50[i]<=-1)
{lower50[i]= -.9999}

upper50[i]<- r_orig[i]+(.5*r_orig[i])
if (upper50[i]>=1)
{upper50[i]= -.9999}

#T statistic
tstat_orig[i]<-cor.test(group1o, group2o, var.equal=T)$statistic

#P-value
p_val_orig[i]<-cor.test(group1o, group2o, var.equal=T)$p.value

###generate realistic05 study;

#realistic05 sample size- n_original*2.5 ;
n_rep[i]=n_orig[i]*2

#Sampling
data<-datagen(n_rep[i], r1[i])
group1r<-data[,1]
group2r<-data[,2]

#r based on sample
r_rep[i]<-cor(group1r, group2r)

#T statistic
tstat_rep[i]<-cor.test(group1r, group2r, var.equal=T)$statistic

#P-value
p_val_rep[i]<-cor.test(group1r, group2r, var.equal=T)$p.value

}
Data_ES_pow<-data.frame(n_orig, n_rep, r1, r_orig, r_rep,

p_val_orig,p_val_rep, lower20, upper20,
lower50, upper50)

Data_ES_pow$sign_orig<-ifelse(p_val_orig<0.05, 1, 0)
Data_ES_pow$sign_rep<-ifelse(p_val_rep<0.05, 1, 0)
Data_ES_pow$replicated_p<-ifelse(Data_ES_pow$sign_orig==Data_ES_pow$sign_rep, 1,0)
Data_ES_pow$replicated_p2<-ifelse(Data_ES_pow$sign_orig==1 & Data_ES_pow$sign_rep==1, 1,0 )
100*(nrow(Data_ES_pow[(Data_ES_pow$replicated_p2==1),])/nrow(Data_ES_pow[(Data_ES_pow$sign_orig==1),]))
Sign<-Data_ES_pow[which(Data_ES_pow$sign_orig==1),]
NonSign<-Data_ES_pow[which(Data_ES_pow$sign_orig==0),]
NonSign<-NonSign%>% sample_frac(Bias)

Data_ES_pow_bias<-rbind(Sign, NonSign)
#Determine correlation interval using z critcal values
r<- Data_ES_pow_bias$r_rep- Data_ES_pow_bias$r_orig
(z_r<-(log((1+r)/(1-r))/2))
(z_lb<-(log((1+lb)/(1-lb))/2))
(z_ub<-(log((1+ub)/(1-ub))/2))

LL_prob<-pnorm((z_lb-z_r)/sqrt(1/((Data_ES_pow_bias$n_orig+Data_ES_pow_bias$n_rep)-3)))
UL_prob<-pnorm((z_ub-z_r)/sqrt(1/((Data_ES_pow_bias$n_orig+Data_ES_pow_bias$n_rep)-3)))

rep_prob_median<-median(round(abs(UL_prob-LL_prob),3), na.rm = TRUE)
rep_prob_mean<-mean(round(abs(UL_prob-LL_prob),3), na.rm = TRUE)
#return(rep_prob_median)

180



return(rep_prob_mean)
}

####Delta˜N(0, 0.15)####
#Bounds centered around original ES
Original_realistic15_0_bias<-function(ES, P, lb, ub, Bias) {

#addition
z_orig<-c()
addition_z<-c()
true_z<-c()
true_r<-c()
#Original Studies
r_orig<-c(); n_orig<-ceiling(pwr.r.test(r=ES, power=P)$n)

r1<-c(); n_orig<-c(); tstat_orig<-c(); p_val_orig<-c()
lower20<-c();upper20<-c(); lower50<-c(); upper50<-c();

#Replication Studies
r_rep<-c(); n_rep<-c()
tstat_rep<-c(); p_val_rep<-c()

for (i in 1:1000){
#original study;
r1[i]<-ES
z_orig[i]<-0.5*(log(1+r1[i])-log(1-r1[i]))

addition_z[i]<-rnorm(n=1, mean=0, sd=.15)
true_z[i]<-z_orig[i]+addition_z[i]

true_r[i]<-(exp(2*true_z[i])-1)/(exp(2*true_z[i])+1)

#original study;
n_orig[i]<-pwr.r.test(r=true_r[i], power=P)$n

#Sampling
data<-datagen(n_orig[i], true_r[i])
group1o<-data[,1]; group2o<-data[,2]

#r based on original sample
r_orig[i]<-cor(group1o, group2o)

lower20[i]<- r_orig[i]-(.2*r_orig[i])
if (lower20[i]<=-1)
{lower20[i]= -.9999}

upper20[i]<- r_orig[i]+(.2*r_orig[i])
if (upper20[i]>=1)
{upper20[i]= -.9999}

lower50[i]<- r_orig[i]-(.5*r_orig[i])
if (lower50[i]<=-1)
{lower50[i]= -.9999}

upper50[i]<- r_orig[i]+(.5*r_orig[i])
if (upper50[i]>=1)
{upper50[i]= -.9999}

#T statistic
tstat_orig[i]<-cor.test(group1o, group2o, var.equal=T)$statistic

#P-value
p_val_orig[i]<-cor.test(group1o, group2o, var.equal=T)$p.value

###generate realistic05 study;

#realistic05 sample size- n_original*2.5 ;
n_rep[i]=n_orig[i]*2

#Sampling
data<-datagen(n_rep[i], r1[i])
group1r<-data[,1]
group2r<-data[,2]
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#r based on sample
r_rep[i]<-cor(group1r, group2r)

#T statistic
tstat_rep[i]<-cor.test(group1r, group2r, var.equal=T)$statistic

#P-value
p_val_rep[i]<-cor.test(group1r, group2r, var.equal=T)$p.value

}

Data_ES_pow<-data.frame(n_orig, n_rep, r1, r_orig, r_rep,
p_val_orig,p_val_rep, lower20, upper20,
lower50, upper50)

Data_ES_pow$sign_orig<-ifelse(p_val_orig<0.05, 1, 0)
Data_ES_pow$sign_rep<-ifelse(p_val_rep<0.05, 1, 0)
Data_ES_pow$replicated_p<-ifelse(Data_ES_pow$sign_orig==Data_ES_pow$sign_rep, 1,0)
Data_ES_pow$replicated_p2<-ifelse(Data_ES_pow$sign_orig==1 & Data_ES_pow$sign_rep==1, 1,0 )
100*(nrow(Data_ES_pow[(Data_ES_pow$replicated_p2==1),])/nrow(Data_ES_pow[(Data_ES_pow$sign_orig==1),]))
Sign<-Data_ES_pow[which(Data_ES_pow$sign_orig==1),]
NonSign<-Data_ES_pow[which(Data_ES_pow$sign_orig==0),]
NonSign<-NonSign%>% sample_frac(Bias)

Data_ES_pow_bias<-rbind(Sign, NonSign)

#Determine correlation interval using z critcal values
z_r<-(log((1+(Data_ES_pow_bias$r_rep))/(1-(Data_ES_pow_bias$r_rep)))/2)
z_lb<-(log((1+lb)/(1-lb))/2)
z_ub<-(log((1+ub)/(1-ub))/2)

LL_prob<-pnorm((z_lb-z_r)/sqrt(1/(median(Data_ES_pow_bias$n_rep-3))))
UL_prob<-pnorm((z_ub-z_r)/sqrt(1/(median(Data_ES_pow_bias$n_rep-3))))

rep_prob_median<-median(round(abs(UL_prob-LL_prob),3), na.rm = TRUE)
rep_prob_mean<-mean(round(abs(UL_prob-LL_prob),3), na.rm = TRUE)
#return(rep_prob_median)
return(rep_prob_mean)

}

#Bounds centered around 0
realistic15_0_bias<-function(ES, P, lb, ub, Bias) {

#addition
z_orig<-c()
addition_z<-c()
true_z<-c()
true_r<-c()
#Original Studies
r_orig<-c(); n_orig<-ceiling(pwr.r.test(r=ES, power=P)$n)

r1<-c(); n_orig<-c(); tstat_orig<-c(); p_val_orig<-c()
lower20<-c();upper20<-c(); lower50<-c(); upper50<-c();

#Replication Studies
r_rep<-c(); n_rep<-c()
tstat_rep<-c(); p_val_rep<-c()

for (i in 1:1000){
#original study;
r1[i]<-ES
z_orig[i]<-0.5*(log(1+r1[i])-log(1-r1[i]))

addition_z[i]<-rnorm(n=1, mean=0, sd=.15)
true_z[i]<-z_orig[i]+addition_z[i]

true_r[i]<-(exp(2*true_z[i])-1)/(exp(2*true_z[i])+1)

#original study;
n_orig[i]<-pwr.r.test(r=true_r[i], power=P)$n

#Sampling
data<-datagen(n_orig[i], true_r[i])
group1o<-data[,1]; group2o<-data[,2]
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#r based on original sample
r_orig[i]<-cor(group1o, group2o)

lower20[i]<- r_orig[i]-(.2*r_orig[i])
if (lower20[i]<=-1)
{lower20[i]= -.9999}

upper20[i]<- r_orig[i]+(.2*r_orig[i])
if (upper20[i]>=1)
{upper20[i]= -.9999}

lower50[i]<- r_orig[i]-(.5*r_orig[i])
if (lower50[i]<=-1)
{lower50[i]= -.9999}

upper50[i]<- r_orig[i]+(.5*r_orig[i])
if (upper50[i]>=1)
{upper50[i]= -.9999}

#T statistic
tstat_orig[i]<-cor.test(group1o, group2o, var.equal=T)$statistic

#P-value
p_val_orig[i]<-cor.test(group1o, group2o, var.equal=T)$p.value

###generate realistic05 study;

#realistic05 sample size- n_original*2.5 ;
n_rep[i]=n_orig[i]*2

#Sampling
data<-datagen(n_rep[i], r1[i])
group1r<-data[,1]
group2r<-data[,2]

#r based on sample
r_rep[i]<-cor(group1r, group2r)

#T statistic
tstat_rep[i]<-cor.test(group1r, group2r, var.equal=T)$statistic

#P-value
p_val_rep[i]<-cor.test(group1r, group2r, var.equal=T)$p.value

}
Data_ES_pow<-data.frame(n_orig, n_rep, r1, r_orig, r_rep,

p_val_orig,p_val_rep, lower20, upper20,
lower50, upper50)

Data_ES_pow$sign_orig<-ifelse(p_val_orig<0.05, 1, 0)
Data_ES_pow$sign_rep<-ifelse(p_val_rep<0.05, 1, 0)
Data_ES_pow$replicated_p<-ifelse(Data_ES_pow$sign_orig==Data_ES_pow$sign_rep, 1,0)
Data_ES_pow$replicated_p2<-ifelse(Data_ES_pow$sign_orig==1 & Data_ES_pow$sign_rep==1, 1,0 )
100*(nrow(Data_ES_pow[(Data_ES_pow$replicated_p2==1),])/nrow(Data_ES_pow[(Data_ES_pow$sign_orig==1),]))
Sign<-Data_ES_pow[which(Data_ES_pow$sign_orig==1),]
NonSign<-Data_ES_pow[which(Data_ES_pow$sign_orig==0),]
NonSign<-NonSign%>% sample_frac(Bias)

Data_ES_pow_bias<-rbind(Sign, NonSign)
#Determine correlation interval using z critcal values
r<- Data_ES_pow_bias$r_rep- Data_ES_pow_bias$r_orig
(z_r<-(log((1+r)/(1-r))/2))
(z_lb<-(log((1+lb)/(1-lb))/2))
(z_ub<-(log((1+ub)/(1-ub))/2))

LL_prob<-pnorm((z_lb-z_r)/sqrt(1/((Data_ES_pow_bias$n_orig+Data_ES_pow_bias$n_rep)-3)))
UL_prob<-pnorm((z_ub-z_r)/sqrt(1/((Data_ES_pow_bias$n_orig+Data_ES_pow_bias$n_rep)-3)))

rep_prob_median<-median(round(abs(UL_prob-LL_prob),3), na.rm = TRUE)
rep_prob_mean<-mean(round(abs(UL_prob-LL_prob),3), na.rm = TRUE)
#return(rep_prob_median)
return(rep_prob_mean)

}

####delta˜N(0, 0.50)####
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#Bounds center around original ES
Original_realistic5_0_bias<-function(ES, P, lb, ub, Bias) {

#addition
z_orig<-c()
addition_z<-c()
true_z<-c()
true_r<-c()
#Original Studies
r_orig<-c(); n_orig<-ceiling(pwr.r.test(r=ES, power=P)$n)

r1<-c(); n_orig<-c(); tstat_orig<-c(); p_val_orig<-c()
lower20<-c();upper20<-c(); lower50<-c(); upper50<-c();

#Replication Studies
r_rep<-c(); n_rep<-c()
tstat_rep<-c(); p_val_rep<-c()

for (i in 1:1000){
#original study;
r1[i]<-ES
z_orig[i]<-0.5*(log(1+r1[i])-log(1-r1[i]))

addition_z[i]<-rnorm(n=1, mean=0, sd=.5)
true_z[i]<-z_orig[i]+addition_z[i]

true_r[i]<-(exp(2*true_z[i])-1)/(exp(2*true_z[i])+1)

#original study;
n_orig[i]<-pwr.r.test(r=true_r[i], power=P)$n

#Sampling
data<-datagen(n_orig[i], true_r[i])
group1o<-data[,1]; group2o<-data[,2]

#r based on original sample
r_orig[i]<-cor(group1o, group2o)

lower20[i]<- r_orig[i]-(.2*r_orig[i])
if (lower20[i]<=-1)
{lower20[i]= -.9999}

upper20[i]<- r_orig[i]+(.2*r_orig[i])
if (upper20[i]>=1)
{upper20[i]= -.9999}

lower50[i]<- r_orig[i]-(.5*r_orig[i])
if (lower50[i]<=-1)
{lower50[i]= -.9999}

upper50[i]<- r_orig[i]+(.5*r_orig[i])
if (upper50[i]>=1)
{upper50[i]= -.9999}

#T statistic
tstat_orig[i]<-cor.test(group1o, group2o, var.equal=T)$statistic

#P-value
p_val_orig[i]<-cor.test(group1o, group2o, var.equal=T)$p.value

###generate realistic05 study;

#realistic05 sample size- n_original*2.5 ;
n_rep[i]=n_orig[i]*2

#Sampling
data<-datagen(n_rep[i], r1[i])
group1r<-data[,1]
group2r<-data[,2]

#r based on sample
r_rep[i]<-cor(group1r, group2r)

#T statistic
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tstat_rep[i]<-cor.test(group1r, group2r, var.equal=T)$statistic

#P-value
p_val_rep[i]<-cor.test(group1r, group2r, var.equal=T)$p.value

}

Data_ES_pow<-data.frame(n_orig, n_rep, r1, r_orig, r_rep,
p_val_orig,p_val_rep, lower20, upper20,
lower50, upper50)

Data_ES_pow$sign_orig<-ifelse(p_val_orig<0.05, 1, 0)
Data_ES_pow$sign_rep<-ifelse(p_val_rep<0.05, 1, 0)
Data_ES_pow$replicated_p<-ifelse(Data_ES_pow$sign_orig==Data_ES_pow$sign_rep, 1,0)
Data_ES_pow$replicated_p2<-ifelse(Data_ES_pow$sign_orig==1 & Data_ES_pow$sign_rep==1, 1,0 )
100*(nrow(Data_ES_pow[(Data_ES_pow$replicated_p2==1),])/nrow(Data_ES_pow[(Data_ES_pow$sign_orig==1),]))
Sign<-Data_ES_pow[which(Data_ES_pow$sign_orig==1),]
NonSign<-Data_ES_pow[which(Data_ES_pow$sign_orig==0),]
NonSign<-NonSign%>% sample_frac(Bias)

Data_ES_pow_bias<-rbind(Sign, NonSign)

#Determine correlation interval using z critcal values
z_r<-(log((1+(Data_ES_pow_bias$r_rep))/(1-(Data_ES_pow_bias$r_rep)))/2)
z_lb<-(log((1+lb)/(1-lb))/2)
z_ub<-(log((1+ub)/(1-ub))/2)

LL_prob<-pnorm((z_lb-z_r)/sqrt(1/(median(Data_ES_pow_bias$n_rep-3))))
UL_prob<-pnorm((z_ub-z_r)/sqrt(1/(median(Data_ES_pow_bias$n_rep-3))))

rep_prob_median<-median(round(abs(UL_prob-LL_prob),3), na.rm = TRUE)
rep_prob_mean<-mean(round(abs(UL_prob-LL_prob),3), na.rm = TRUE)
#return(rep_prob_median)
return(rep_prob_mean)

}

#Bounds center around 0
realistic5_0_bias<-function(ES, P, lb, ub, Bias) {

#addition
z_orig<-c()
addition_z<-c()
true_z<-c()
true_r<-c()
#Original Studies
r_orig<-c(); n_orig<-ceiling(pwr.r.test(r=ES, power=P)$n)

r1<-c(); n_orig<-c(); tstat_orig<-c(); p_val_orig<-c()
lower20<-c();upper20<-c(); lower50<-c(); upper50<-c();

#Replication Studies
r_rep<-c(); n_rep<-c()
tstat_rep<-c(); p_val_rep<-c()

for (i in 1:1000){
#original study;
r1[i]<-ES
z_orig[i]<-0.5*(log(1+r1[i])-log(1-r1[i]))

addition_z[i]<-rnorm(n=1, mean=0, sd=.5)
true_z[i]<-z_orig[i]+addition_z[i]

true_r[i]<-(exp(2*true_z[i])-1)/(exp(2*true_z[i])+1)

#original study;
n_orig[i]<-pwr.r.test(r=true_r[i], power=P)$n

#Sampling
data<-datagen(n_orig[i], true_r[i])
group1o<-data[,1]; group2o<-data[,2]

#r based on original sample
r_orig[i]<-cor(group1o, group2o)

lower20[i]<- r_orig[i]-(.2*r_orig[i])
if (lower20[i]<=-1)
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{lower20[i]= -.9999}

upper20[i]<- r_orig[i]+(.2*r_orig[i])
if (upper20[i]>=1)
{upper20[i]= -.9999}

lower50[i]<- r_orig[i]-(.5*r_orig[i])
if (lower50[i]<=-1)
{lower50[i]= -.9999}

upper50[i]<- r_orig[i]+(.5*r_orig[i])
if (upper50[i]>=1)
{upper50[i]= -.9999}

#T statistic
tstat_orig[i]<-cor.test(group1o, group2o, var.equal=T)$statistic

#P-value
p_val_orig[i]<-cor.test(group1o, group2o, var.equal=T)$p.value

###generate realistic05 study;

#realistic05 sample size- n_original*2.5 ;
n_rep[i]=n_orig[i]*2

#Sampling
data<-datagen(n_rep[i], r1[i])
group1r<-data[,1]
group2r<-data[,2]

#r based on sample
r_rep[i]<-cor(group1r, group2r)

#T statistic
tstat_rep[i]<-cor.test(group1r, group2r, var.equal=T)$statistic

#P-value
p_val_rep[i]<-cor.test(group1r, group2r, var.equal=T)$p.value

}
Data_ES_pow<-data.frame(n_orig, n_rep, r1, r_orig, r_rep,

p_val_orig,p_val_rep, lower20, upper20,
lower50, upper50)

Data_ES_pow$sign_orig<-ifelse(p_val_orig<0.05, 1, 0)
Data_ES_pow$sign_rep<-ifelse(p_val_rep<0.05, 1, 0)
Data_ES_pow$replicated_p<-ifelse(Data_ES_pow$sign_orig==Data_ES_pow$sign_rep, 1,0)
Data_ES_pow$replicated_p2<-ifelse(Data_ES_pow$sign_orig==1 & Data_ES_pow$sign_rep==1, 1,0 )
100*(nrow(Data_ES_pow[(Data_ES_pow$replicated_p2==1),])/nrow(Data_ES_pow[(Data_ES_pow$sign_orig==1),]))
Sign<-Data_ES_pow[which(Data_ES_pow$sign_orig==1),]
NonSign<-Data_ES_pow[which(Data_ES_pow$sign_orig==0),]
NonSign<-NonSign%>% sample_frac(Bias)

Data_ES_pow_bias<-rbind(Sign, NonSign)
#Determine correlation interval using z critcal values
r<- Data_ES_pow_bias$r_rep- Data_ES_pow_bias$r_orig
(z_r<-(log((1+r)/(1-r))/2))
(z_lb<-(log((1+lb)/(1-lb))/2))
(z_ub<-(log((1+ub)/(1-ub))/2))

LL_prob<-pnorm((z_lb-z_r)/sqrt(1/((Data_ES_pow_bias$n_orig+Data_ES_pow_bias$n_rep)-3)))
UL_prob<-pnorm((z_ub-z_r)/sqrt(1/((Data_ES_pow_bias$n_orig+Data_ES_pow_bias$n_rep)-3)))

rep_prob_median<-median(round(abs(UL_prob-LL_prob),3), na.rm = TRUE)
rep_prob_mean<-mean(round(abs(UL_prob-LL_prob),3), na.rm = TRUE)
#return(rep_prob_median)
return(rep_prob_mean)

}

####Code for Figures 2.3-2.5 and 6.1-6.3####
library(lattice)
library(RColorBrewer)
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#####Max and No Delta#####
setwd("Z:/Home/Biostatistics/richardsar/Dissertation/Completed Aims/AIM 1b/Simulations")
####Load Data
All_data<-read.csv(’No_delta_plot_data.csv’)
summary(All_data)

All_data$Power<-as.numeric(sub("%", "",All_data$Power))
All_data$Bias.f<-as.factor(All_data$Bias)
All_data$Bounds.f<-as.factor(All_data$Bound)
All_data$ES.f<-as.factor(All_data$ES)

###Full Data####
stripParams <- list(cex=1.5, lines=1.5)
png("No_Delta.png", width = 2000, height = 1200) #opens png
xyplot(All_data$Rep_Prob˜All_data$Power|All_data$ES.f*All_data$Bounds.f,groups=All_data$Bias.f,

auto.key = TRUE, main="Scatterplots by ES",par.strip.text = stripParams,
par.settings = list(strip.background=list(col="gray")),
ylab="Replication Rate", xlab="Power (%)", type=’b’)

dev.off() #closes plot
summary(All_data)
###Subset data-Keep ES-.1, .3, .5, Bounds-Zero+1, ES+1
attach(All_data)
Sub_data <- All_data[ which((ES.f==’0.1’ |ES.f==’0.3’ |ES.f==’0.5’) & (Bounds.f==’ES_1’ |
Bounds.f==’Zero_1’)),]
png("No_Delta_Sub.png", width = 1800, height = 800) #opens png
xyplot(Sub_data$Rep_Prob˜Sub_data$Power|Sub_data$ES.f*Sub_data$Bounds.f,groups=Sub_data$Bias.f,

auto.key = TRUE, main="Scatterplots by Bounds and Effect Size",par.strip.text = stripParams,
par.settings = list(strip.background=list(col="gray")),
ylab=" Mean Replication Probability", xlab="Power (%)", type=’b’, cex.main=3.5, cex.lab=2.9,

cex.axis=2.9)
dev.off() #closes plot

#####Max and delta(0, .05)#####
####Load Data
All_data05<-read.csv(’delta05_plot_data.csv’)
summary(All_data05)

All_data05$Power<-as.numeric(sub("%", "",All_data05$Power))
All_data05$Bias.f<-as.factor(All_data05$Bias)
All_data05$Bounds.f<-as.factor(All_data05$Bound)
All_data05$ES.f<-as.factor(All_data05$ES)

###Full Data 05####
png("Delta05_Mean.png", width = 2000, height = 1200) #opens png
xyplot(All_data05$Mean_Rep_Prob˜All_data05$Power|All_data05$ES.f*All_data05$Bounds.f,groups=All_data05$Bias.f,

auto.key = TRUE, main="Scatterplots by ES",
ylab=" Mean Replication Probability", xlab="Power (%)", type=’b’)

dev.off() #closes plot

png("Delta05_Med.png", width = 2000, height = 1200) #opens png
xyplot(All_data05$Med_Rep_Prob˜All_data05$Power|All_data05$ES.f*All_data05$Bounds.f,groups=All_data05$Bias.f,

auto.key = TRUE, main="Scatterplots by ES",
ylab="Replication Probability (Median)", xlab="Power (%)", type=’b’)

dev.off() #closes plot

###Subset data-Keep ES-.1, .3, .5, Bounds-Zero+1, ES+1
attach(All_data05)
Sub_data <- All_data05[ which((ES.f==’0.1’ |ES.f==’0.3’ |ES.f==’0.5’) & (Bounds.f==’ES_1’ |
Bounds.f==’Zero_1’)),]
png("Delta05_Sub_Mean.png", width = 1800, height = 800) #opens png
xyplot(Sub_data$Mean_Rep_Prob˜Sub_data$Power|Sub_data$ES.f*Sub_data$Bounds.f,groups=Sub_data$Bias.f,

auto.key = TRUE, main="Scatterplots by Bounds and Effect Size",par.strip.text = stripParams,
par.settings = list(strip.background=list(col="gray")),
ylab=" Mean Replication Probability", xlab="Power (%)", type=’b’, cex.main=3.5, cex.lab=2.9,

cex.axis=2.9)
dev.off() #closes plot

png("Delta05_Sub_Median.png", width = 1800, height = 800) #opens png
xyplot(Sub_data$Med_Rep_Prob˜Sub_data$Power|Sub_data$ES.f*Sub_data$Bounds.f,groups=Sub_data$Bias.f,

auto.key = TRUE, main="Scatterplots by Bounds and Effect Size",par.strip.text = stripParams,
par.settings = list(strip.background=list(col="gray")),
ylab="Replication Probability", xlab="Power (%)", type=’b’, cex.main=3.5, cex.lab=2.9,

cex.axis=2.9)
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dev.off() #closes plot

####Max and delta(0, .15)####

####Load Data
All_data15<-read.csv(’delta15_plot_data.csv’)
summary(All_data15)

All_data15$Power<-as.numeric(sub("%", "",All_data15$Power))
All_data15$Bias.f<-as.factor(All_data15$Bias)
All_data15$Bounds.f<-as.factor(All_data15$Bound)
All_data15$ES.f<-as.factor(All_data15$ES)

###Full Data 15####
png("Delta15_Mean.png", width = 2000, height = 1200) #opens png
xyplot(All_data15$Mean_Rep_Prob˜All_data15$Power|All_data15$ES.f*All_data15$Bounds.f,groups=All_data15$Bias.f,

auto.key = TRUE, main="Scatterplots by ES",
ylab=" Mean Replication Probability", xlab="Power (%)", type=’b’)

dev.off() #closes plot

png("Delta15_Med.png", width = 2000, height = 1200) #opens png
xyplot(All_data15$Med_Rep_Prob˜All_data15$Power|All_data15$ES.f*All_data15$Bounds.f,groups=All_data15$Bias.f,

auto.key = TRUE, main="Scatterplots by ES",
ylab="Replication Probability (Median)", xlab="Power (%)", type=’b’)

dev.off() #closes plot

###Subset data-Keep ES-.1, .3, .5, Bounds-Zero+1, ES+1
attach(All_data15)
Sub_data <- All_data15[ which((ES.f==’0.1’ |ES.f==’0.3’ |ES.f==’0.5’) & (Bounds.f==’ES_1’ |
Bounds.f==’Zero_1’)),]

png("Delta15_Sub_Mean.png", width = 1800, height = 800) #opens png
xyplot(Sub_data$Mean_Rep_Prob˜Sub_data$Power|Sub_data$ES.f*Sub_data$Bounds.f,groups=Sub_data$Bias.f,

auto.key = TRUE, main="Scatterplots by Bounds and Effect Size",par.strip.text = stripParams,
par.settings = list(strip.background=list(col="gray")),
ylab=" Mean Replication Probability", xlab="Power (%)", type=’b’, cex.main=3.5, cex.lab=2.9,

cex.axis=2.9)
dev.off() #closes plot

png("Delta15_Sub_Median.png", width = 1800, height = 800) #opens png
xyplot(Sub_data$Med_Rep_Prob˜Sub_data$Power|Sub_data$ES.f*Sub_data$Bounds.f,groups=Sub_data$Bias.f,

auto.key = TRUE, main="Scatterplots by Bounds and Effect Size",
ylab="Replication Probability (Median)", xlab="Power (%)", type=’b’)

dev.off() #closes plot
###############################################################################
#Aim 1c: Equivalence Replication Metric: Real Data#
###############################################################################
Used functions from 1b code-but dropped bias. Put in RPP original and replicated ES, sample size, and
various bounds. Master data set is located on OSF:https://osf.io/ezcuj

####Boxplot####
#Saved all results from RPP using the EQ method above as Cleaned Combined Methods
Combined_Results<-read.csv(’Cleaned Combined Methods.csv’)
Combined_Results2 = subset(Combined_Results, select = -c(X0_1_0_O, X0_5_0_O, X0_1_0_R, X0_5_0_R, X20_O_D,
X50_O_D, X0_1_O_D) )

library(tidyr)
data_long <- gather(Combined_Results2, metric, ability, X20_O_R:X0_5_0_D, factor_key=TRUE)
data_long
label=c("20% Original to Replicated","50% Original to Replicated","Original pm 0.1 to Replicated", "0 pm
0.1 to Difference","0 pm 0.5 to Difference")
boxplot((data_long$ability)/100˜data_long$metric,names=label, main=’Equivalence Method Results\n The
Reproducibility Project Data’,xlab=’Method Approach Selection’, cex.lab=2.0,

ylab = "", cex.main=2.0, cex.axis=1.55)
title(ylab=’Replication Probability’, line = 2.4, cex.lab=2.0)

#Pull out only significance based on pvalue studies
Combined_Results3 <- Combined_Results2[ which(Combined_Results2$P_value_O<=0.05), ]
mean(Combined_Results2$X20_O_R, na.rm=TRUE); mean(Combined_Results3$X20_O_R, na.rm=TRUE)
mean(Combined_Results2$X50_O_R, na.rm=TRUE); mean(Combined_Results3$X50_O_R, na.rm=TRUE)
mean(Combined_Results2$X0_1_O_R, na.rm=TRUE);mean(Combined_Results3$X0_1_O_R, na.rm=TRUE)
mean(Combined_Results2$X0_1_0_D, na.rm=TRUE); mean(Combined_Results3$X0_1_0_D, na.rm=TRUE)
mean(Combined_Results2$X0_5_0_D, na.rm=TRUE); mean(Combined_Results3$X0_5_0_D, na.rm=TRUE)
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Chapter 11

Appendix F: R Code relevant to
Chapter 3

###############################################################################
#Aim 2a: Meta-Analysis#
###############################################################################
library(’grid’); library(metafor); library(pwr); library(’Replicate’)

###functions to load
datagen <- function(n, rho) {

X1 = rnorm(n); X2 = rnorm(n)
Z = cbind(X1, rho*X1+sqrt(1-rhoˆ2)*X2)
return(Z)

}

####No Delta####
#ES=0.1#

#power of 0.4;
##true Effect Size
r_orig<-.1
n_orig<-pwr.r.test(r=.1, power=.4)$n

#Replication Studies
r_rep<-c(); n_rep<-c()
power_r<-seq(from = .1, to = .99, by=.09)

for (i in 1:10){
###generate replicated study;

#replicated sample size- original with power .8
n_rep[i]=pwr.r.test(r=r_orig, power=power_r[i])$n

#Sampling
data<-datagen(n_rep[i], r_orig)
group1r<-data[,1]
group2r<-data[,2]

#r based on sample
r_rep[i]<-cor(group1r, group2r)

}

Data_ES1pow40<-data.frame(r_orig,n_orig,
r_rep, n_rep)

Data_ES1pow40$fis.o <- 0.5*log((1 + Data_ES1pow40$r_orig) / (1 - Data_ES1pow40$r_orig))
Data_ES1pow40$fis.r <- 0.5*log((1 + Data_ES1pow40$r_rep) / (1 - Data_ES1pow40$r_rep))
yi <- numeric()
for(i in 1:length(Data_ES1pow40$fis.o)) {

if(is.na(Data_ES1pow40$fis.o[i]) == TRUE | is.na(Data_ES1pow40$fis.r[i]) == TRUE) { Data_ES1pow40$yi[i]
<- NA }

else if(Data_ES1pow40$fis.o[i] < 0 & Data_ES1pow40$fis.r[i] < 0) { Data_ES1pow40$yi[i] <-
Data_ES1pow40$fis.o[i]*-1-Data_ES1pow40$fis.r[i]*-1 }

else if(Data_ES1pow40$fis.o[i] < 0 & Data_ES1pow40$fis.r[i] > 0) { Data_ES1pow40$yi[i] <-
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Data_ES1pow40$fis.o[i]*-1+Data_ES1pow40$fis.r[i] }
else { Data_ES1pow40$yi[i] <- Data_ES1pow40$fis.o[i]-Data_ES1pow40$fis.r[i] }

}

### Standard errors original and replication study
Data_ES1pow40$sei.o <- sqrt(1/(Data_ES1pow40$n_orig-3))
Data_ES1pow40$sei.r <- sqrt(1/(Data_ES1pow40$n_rep-3))

Data_ES1pow40$sei <- sqrt(1/(Data_ES1pow40$n_orig-3) + 1/(Data_ES1pow40$n_rep-3))
layout(matrix(c(1,2,3,3), 2, 2, byrow = TRUE))
(MAo_ES1p40<-rma(yi = fis.o, sei = sei.o,data =Data_ES1pow40, method = "FE"))
forest(MAo_ES1p40)
(MAr_ES1p40<-rma(yi = fis.r, sei = sei.r,data =Data_ES1pow40, method = "FE"))
forest(MAr_ES1p40)
(MA_ES1p40<-rma(yi = yi, sei = sei,data =Data_ES1pow40, method = "FE"))
forest(MA_ES1p40)
#funnel(MA_ES1p40, main = "#funnel plot based on difference original and replication study")

in.ci <- es.meta <- se.meta <- ci.lb.meta <- ci.ub.meta <- pval.meta <- numeric()

for(i in 1:length(Data_ES1pow40$fis.o)) {
tmp <- rma(yi = c(Data_ES1pow40$fis.o[i], Data_ES1pow40$fis.r[i]), sei = c(Data_ES1pow40$sei.o[i],

Data_ES1pow40$sei.r[i]), method = "FE")
es.meta[i] <- tmp$b[1]
se.meta[i] <- tmp$se
ci.lb.meta[i] <- tmp$ci.lb
ci.ub.meta[i] <- tmp$ci.ub
pval.meta[i] <- tmp$pval

if(pval.meta[i] < 0.05) { in.ci[i] <- 1
} else { in.ci[i] <- 0 }

}

sum(in.ci)/length(in.ci) # Proportion of times the null hypothesis of no effect is rejected

#power of 0.9;
##true Effect Size
r_orig<-.1
n_orig<-pwr.r.test(r=.1, power=.9)$n

#Replication Studies
r_rep<-c(); n_rep<-c()
power_r<-seq(from = .1, to = .99, by=.09)

for (i in 1:10){
###generate replicated study;

#replicated sample size- original with power .8
n_rep[i]=pwr.r.test(r=r_orig, power=power_r[i])$n

#Sampling
data<-datagen(n_rep[i], r_orig)
group1r<-data[,1]
group2r<-data[,2]

#r based on sample
r_rep[i]<-cor(group1r, group2r)

}

Data_ES1pow90<-data.frame(r_orig,n_orig,
r_rep, n_rep)

Data_ES1pow90$fis.o <- 0.5*log((1 + Data_ES1pow90$r_orig) / (1 - Data_ES1pow90$r_orig))
Data_ES1pow90$fis.r <- 0.5*log((1 + Data_ES1pow90$r_rep) / (1 - Data_ES1pow90$r_rep))
yi <- numeric()
for(i in 1:length(Data_ES1pow90$fis.o)) {

if(is.na(Data_ES1pow90$fis.o[i]) == TRUE | is.na(Data_ES1pow90$fis.r[i]) == TRUE) { Data_ES1pow90$yi[i]
<- NA }

else if(Data_ES1pow90$fis.o[i] < 0 & Data_ES1pow90$fis.r[i] < 0) { Data_ES1pow90$yi[i] <-
Data_ES1pow90$fis.o[i]*-1-Data_ES1pow90$fis.r[i]*-1 }

else if(Data_ES1pow90$fis.o[i] < 0 & Data_ES1pow90$fis.r[i] > 0) { Data_ES1pow90$yi[i] <-
Data_ES1pow90$fis.o[i]*-1+Data_ES1pow90$fis.r[i] }

else { Data_ES1pow90$yi[i] <- Data_ES1pow90$fis.o[i]-Data_ES1pow90$fis.r[i] }
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}

### Standard errors original and replication study
Data_ES1pow90$sei.o <- sqrt(1/(Data_ES1pow90$n_orig-3))
Data_ES1pow90$sei.r <- sqrt(1/(Data_ES1pow90$n_rep-3))

Data_ES1pow90$sei <- sqrt(1/(Data_ES1pow90$n_orig-3) + 1/(Data_ES1pow90$n_rep-3))
layout(matrix(c(1,2,3,3), 2, 2, byrow = TRUE))
(MAo_ES1p90<-rma(yi = fis.o, sei = sei.o,data =Data_ES1pow90, method = "FE"))
forest(MAo_ES1p90)
(MAr_ES1p90<-rma(yi = fis.r, sei = sei.r,data =Data_ES1pow90, method = "FE"))
forest(MAr_ES1p90)
(MA_ES1p90<-rma(yi = yi, sei = sei,data =Data_ES1pow90, method = "FE"))
metafor::forest(MA_ES1p90, main= "Forest Plot of Difference in Effect Sizes \n from Original to Replicated
Study \n Original ES=0.1", top = 3)

#funnel(MA_ES1p90, main = "#funnel plot based on difference original and replication study")

in.ci <- es.meta <- se.meta <- ci.lb.meta <- ci.ub.meta <- pval.meta <- numeric()

for(i in 1:length(Data_ES1pow90$fis.o)) {
tmp <- rma(yi = c(Data_ES1pow90$fis.o[i], Data_ES1pow90$fis.r[i]), sei = c(Data_ES1pow90$sei.o[i],

Data_ES1pow90$sei.r[i]), method = "FE")
es.meta[i] <- tmp$b[1]
se.meta[i] <- tmp$se
ci.lb.meta[i] <- tmp$ci.lb
ci.ub.meta[i] <- tmp$ci.ub
pval.meta[i] <- tmp$pval

if(pval.meta[i] < 0.05) { in.ci[i] <- 1
} else { in.ci[i] <- 0 }

}

sum(in.ci)/length(in.ci) # Proportion of times the null hypothesis of no effect is rejected

####Repeat for ES=.3 and 0.5

####plots
layout(matrix(c(1,2,3,3), 2, 2, byrow = TRUE))
metafor::forest(MA_ES1p90, main= "Original ES=0.1", top = 3, xlab="", line = -1)
mtext(side=1,"Observed Outcome",padj=3)
metafor::forest(MA_ES3p90, main= "Original ES=0.3", top = 3, xlab="", line = -1)
mtext(side=1,"Observed Outcome",padj=3)
metafor::forest(MA_ES5p90, main= "Original ES=0.5", top = 3,xlab="", line = -1)
mtext(side=1,"Observed Outcome",padj=3)

mtext("Forest Plot of Difference in Effect Sizes from Original to Replicated Study\n Original Power=90%",
# Add main title

side = 3,
line = -3.1,
outer = TRUE)

#Mixed Efffect Meta-analysis-Appendix
(MA_ES1p40<-rma(yi = yi, sei = sei,data =Data_ES1pow40, method = "REML"))
(MA_ES1p90<-rma(yi = yi, sei = sei,data =Data_ES1pow90, method = "REML"))
(MA_ES3p40<-rma(yi = yi, sei = sei,data =Data_ES3pow40, method = "REML"))
(MA_ES3p90<-rma(yi = yi, sei = sei,data =Data_ES3pow90, method = "REML"))

####Delta˜N(0, 0.05)####
#ES=0.1#

#power of 0.4;
##true Effect Size
r_orig<-.1
n_orig<-pwr.r.test(r=.1, power=.4)$n

r_rep<-c(); n_rep<-c(); z_orig<-c(); addition_z<-c(); true_z<-c(); true_r<-c()
power_r<-seq(from = .2, to = .99, by=.08)

for (i in 1:10){
###generate replicated study;
z_orig[i]<-0.5*(log(1+r_orig)-log(1-r_orig))
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addition_z[i]<-rnorm(n=1, mean=0, sd=.05)
true_z[i]<-z_orig[i]+addition_z[i]

true_r[i]<-(exp(2*true_z[i])-1)/(exp(2*true_z[i])+1)
#replicated sample size- original with power .8
n_rep[i]=pwr.r.test(r=r_orig, power=power_r[i])$n

#Sampling
data<-datagen(n_rep[i], true_r)
group1r<-data[,1]
group2r<-data[,2]

#r based on sample
r_rep[i]<-cor(group1r, group2r)

}

Data_ES1pow40<-data.frame(r_orig,n_orig,
r_rep, n_rep)

Data_ES1pow40$fis.o <- 0.5*log((1 + Data_ES1pow40$r_orig) / (1 - Data_ES1pow40$r_orig))
Data_ES1pow40$fis.r <- 0.5*log((1 + Data_ES1pow40$r_rep) / (1 - Data_ES1pow40$r_rep))
yi <- numeric()
for(i in 1:length(Data_ES1pow40$fis.o)) {

if(is.na(Data_ES1pow40$fis.o[i]) == TRUE | is.na(Data_ES1pow40$fis.r[i]) == TRUE) { Data_ES1pow40$yi[i]
<- NA }

else if(Data_ES1pow40$fis.o[i] < 0 & Data_ES1pow40$fis.r[i] < 0) { Data_ES1pow40$yi[i] <-
Data_ES1pow40$fis.o[i]*-1-Data_ES1pow40$fis.r[i]*-1 }

else if(Data_ES1pow40$fis.o[i] < 0 & Data_ES1pow40$fis.r[i] > 0) { Data_ES1pow40$yi[i] <-
Data_ES1pow40$fis.o[i]*-1+Data_ES1pow40$fis.r[i] }

else { Data_ES1pow40$yi[i] <- Data_ES1pow40$fis.o[i]-Data_ES1pow40$fis.r[i] }
}

### Standard errors original and replication study
Data_ES1pow40$sei.o <- sqrt(1/(Data_ES1pow40$n_orig-3))
Data_ES1pow40$sei.r <- sqrt(1/(Data_ES1pow40$n_rep-3))

Data_ES1pow40$sei <- sqrt(1/(Data_ES1pow40$n_orig-3) + 1/(Data_ES1pow40$n_rep-3))
layout(matrix(c(1,2,3,3), 2, 2, byrow = TRUE))
(MAo_ES1p40<-rma(yi = fis.o, sei = sei.o,data =Data_ES1pow40, method = "FE"))
forest(MAo_ES1p40)
(MAr_ES1p40<-rma(yi = fis.r, sei = sei.r,data =Data_ES1pow40, method = "FE"))
forest(MAr_ES1p40)
(MA_ES1p40<-rma(yi = yi, sei = sei,data =Data_ES1pow40, method = "FE"))
forest(MA_ES1p40)
#funnel(MA_ES1p40, main = "#funnel plot based on difference original and replication study")

in.ci <- es.meta <- se.meta <- ci.lb.meta <- ci.ub.meta <- pval.meta <- numeric()

for(i in 1:length(Data_ES1pow40$fis.o)) {
tmp <- rma(yi = c(Data_ES1pow40$fis.o[i], Data_ES1pow40$fis.r[i]), sei = c(Data_ES1pow40$sei.o[i],

Data_ES1pow40$sei.r[i]), method = "FE")
es.meta[i] <- tmp$b[1]
se.meta[i] <- tmp$se
ci.lb.meta[i] <- tmp$ci.lb
ci.ub.meta[i] <- tmp$ci.ub
pval.meta[i] <- tmp$pval

if(pval.meta[i] < 0.05) { in.ci[i] <- 1
} else { in.ci[i] <- 0 }

}

sum(in.ci)/length(in.ci) # Proportion of times the null hypothesis of no effect is rejected

#power of 0.9;
##true Effect Size
r_orig<-.1
n_orig<-pwr.r.test(r=.1, power=.9)$n

#Replication Studies
r_rep<-c(); n_rep<-c(); z_orig<-c(); addition_z<-c(); true_z<-c(); true_r<-c()
power_r<-seq(from = .2, to = .99, by=.08)

for (i in 1:10){
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###generate replicated study;
z_orig[i]<-0.5*(log(1+r_orig)-log(1-r_orig))

addition_z[i]<-rnorm(n=1, mean=0, sd=.05)
true_z[i]<-z_orig[i]+addition_z[i]

true_r[i]<-(exp(2*true_z[i])-1)/(exp(2*true_z[i])+1)
#replicated sample size- original with power .8
n_rep[i]=pwr.r.test(r=r_orig, power=power_r[i])$n

#Sampling
data<-datagen(n_rep[i], true_r)
group1r<-data[,1]
group2r<-data[,2]

#r based on sample
r_rep[i]<-cor(group1r, group2r)

}

Data_ES1pow90<-data.frame(r_orig,n_orig,
r_rep, n_rep)

Data_ES1pow90$fis.o <- 0.5*log((1 + Data_ES1pow90$r_orig) / (1 - Data_ES1pow90$r_orig))
Data_ES1pow90$fis.r <- 0.5*log((1 + Data_ES1pow90$r_rep) / (1 - Data_ES1pow90$r_rep))
yi <- numeric()
for(i in 1:length(Data_ES1pow90$fis.o)) {

if(is.na(Data_ES1pow90$fis.o[i]) == TRUE | is.na(Data_ES1pow90$fis.r[i]) == TRUE) { Data_ES1pow90$yi[i]
<- NA }

else if(Data_ES1pow90$fis.o[i] < 0 & Data_ES1pow90$fis.r[i] < 0) { Data_ES1pow90$yi[i] <-
Data_ES1pow90$fis.o[i]*-1-Data_ES1pow90$fis.r[i]*-1 }

else if(Data_ES1pow90$fis.o[i] < 0 & Data_ES1pow90$fis.r[i] > 0) { Data_ES1pow90$yi[i] <-
Data_ES1pow90$fis.o[i]*-1+Data_ES1pow90$fis.r[i] }

else { Data_ES1pow90$yi[i] <- Data_ES1pow90$fis.o[i]-Data_ES1pow90$fis.r[i] }
}

### Standard errors original and replication study
Data_ES1pow90$sei.o <- sqrt(1/(Data_ES1pow90$n_orig-3))
Data_ES1pow90$sei.r <- sqrt(1/(Data_ES1pow90$n_rep-3))

Data_ES1pow90$sei <- sqrt(1/(Data_ES1pow90$n_orig-3) + 1/(Data_ES1pow90$n_rep-3))
layout(matrix(c(1,2,3,3), 2, 2, byrow = TRUE))
(MAo_ES1p90<-rma(yi = fis.o, sei = sei.o,data =Data_ES1pow90, method = "FE"))
forest(MAo_ES1p90)
(MAr_ES1p90<-rma(yi = fis.r, sei = sei.r,data =Data_ES1pow90, method = "FE"))
forest(MAr_ES1p90)
(MA_ES1p90<-rma(yi = yi, sei = sei,data =Data_ES1pow90, method = "FE"))
metafor::forest(MA_ES1p90, main= "Forest Plot of Difference in Effect Sizes \n from Original to Replicated
Study \n Original ES=0.1", top = 3)

#funnel(MA_ES1p90, main = "#funnel plot based on difference original and replication study")

in.ci <- es.meta <- se.meta <- ci.lb.meta <- ci.ub.meta <- pval.meta <- numeric()

for(i in 1:length(Data_ES1pow90$fis.o)) {
tmp <- rma(yi = c(Data_ES1pow90$fis.o[i], Data_ES1pow90$fis.r[i]), sei = c(Data_ES1pow90$sei.o[i],

Data_ES1pow90$sei.r[i]), method = "FE")
es.meta[i] <- tmp$b[1]
se.meta[i] <- tmp$se
ci.lb.meta[i] <- tmp$ci.lb
ci.ub.meta[i] <- tmp$ci.ub
pval.meta[i] <- tmp$pval

if(pval.meta[i] < 0.05) { in.ci[i] <- 1
} else { in.ci[i] <- 0 }

}

sum(in.ci)/length(in.ci) # Proportion of times the null hypothesis of no effect is rejected

###Run for ES=0.3 and 0.5

####plots
layout(matrix(c(1,2,3,3), 2, 2, byrow = TRUE))
metafor::forest(MA_ES1p90, top = 3, xlab="")
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mtext(side=1,"Observed Outcome",padj=3)
mtext(side=3,"Original ES=1",padj=0)
metafor::forest(MA_ES3p90, top = 3, xlab="")
mtext(side=1,"Observed Outcome",padj=3)
mtext(side=3,"Original ES=3",padj=0)
metafor::forest(MA_ES5p90,top = 3, xlab="")
mtext(side=1,"Observed Outcome",padj=3)
mtext(side=3,"Original ES=5",padj=0)

mtext(expression(paste(bold("Forest Plot of Difference in Effect Sizes from Original to Replicated Study
Original Power=90%"))), # Add main title

side = 3,
line = -2.5,
outer = TRUE)

#Mixed Efffect Meta-analysis-Appendix
(MA_ES1p40<-rma(yi = yi, sei = sei,data =Data_ES1pow40, method = "REML"))
(MA_ES1p90<-rma(yi = yi, sei = sei,data =Data_ES1pow90, method = "REML"))
(MA_ES3p40<-rma(yi = yi, sei = sei,data =Data_ES3pow40, method = "REML"))
(MA_ES3p90<-rma(yi = yi, sei = sei,data =Data_ES3pow90, method = "REML"))

###############################################################################
#Aim 2b: EQ Replication Metric-Multiple Studies#
###############################################################################

##load packages
library(pwr); library(mvtnorm)
library(tmvtnorm); library(truncnorm); library(truncdist)
library(EnvStats); library(DescTools)

#load datagen function#
datagen <- function(n, rho) {

X1 = rnorm(n); X2 = rnorm(n)
Z = cbind(X1, rho*X1+sqrt(1-rhoˆ2)*X2)
return(Z)

}

####maximum Replication Probabilities####;
#Bounds centered around original ES+-
Maximum<-function(ES, P, Bound){

r_orig<-ES
n<-ceiling(pwr.r.test(r=ES, power=P)$n)
replicates<-c(ES, ES)
sigma <- diag(2)
sigma[1,1] <- 1/(n-3)
sigma[2,2] <- 1/(n-3)

rep_prob<-round(ptmvnorm(lowerx=c(ES-Bound, ES-Bound), upperx=c(ES+Bound, ES+Bound), mean=replicates,
sigma=sigma, lower = c(-1, -1), upper = c(1,1)),3)

return(rep_prob)
}

#Bounds centered around original ES+-%
Maximum2<-function(ES, P, Bound){

r_orig<-ES
n<-ceiling(pwr.r.test(r=ES, power=P)$n)
replicates<-c(ES, ES)
sigma <- diag(2)
sigma[1,1] <- 1/(n-3)
sigma[2,2] <- 1/(n-3)

rep_prob<-round(ptmvnorm(lowerx=c(ES-(ES*Bound), ES-(ES*Bound)), upperx=c(ES+(ES*Bound), ES+(ES*Bound)),
mean=replicates, sigma=sigma, lower = c(-1, -1), upper = c(1,1)),3)

return(rep_prob)
}

###Bounds centered around 0;
Maximum3<-function(ES, P, Bound){

r_orig<-ES
n<-ceiling(pwr.r.test(r=ES, power=P)$n)
replicates<-c(ES, ES)
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Means<-c(ES-ES, ES-ES)
sigma <- diag(2)
sigma[1,1] <- 1/(n-3)
sigma[2,2] <- 1/(n-3)

rep_prob<-round(ptmvnorm(lowerx=c(0-Bound, 0-Bound), upperx=c(0+Bound, 0+Bound), mean=Means,
sigma=sigma, lower = c(-1, -1), upper = c(1,1)), 3)

return(rep_prob)
}

####Perfect Replications####
#Bounds centered around Original ES+-
Perfect<-function(ES, P, Bound){

r_orig<-ES; n_orig<-ceiling(pwr.r.test(r=ES, power=P)$n)
#Replication Studies
r_rep<-c(); n_rep<-c(); power_r<-c(P, P)

for (i in 1:length(power_r)){

###generate replicated study;
#replicated sample size- orig*2
n_rep[i]= n_orig*2

#Sampling---using datagen function to eventual generate r_reps
data<-datagen(n_rep[i], r_orig)
group1r<-data[,1]
group2r<-data[,2]

#r based on sample
r_rep[i]<-cor(group1r, group2r)
power_r[i]<-round(pwr.r.test(r=r_rep[i], n= n_rep[i])$power)

}

Original_study<-cbind(1, r_orig,n_orig, power=P)
colnames(Original_study) <- c("Study", "R", "N", "Power")
replicated_studies<-cbind(2, r_rep, n_rep, power_r)
colnames(replicated_studies) <- c("Rep", "R", "N", "Power")
ES1<-as.data.frame(rbind(Original_study, replicated_studies))

#####Probability of replication
##replicates;
replicates<-c(ES1$R[2],ES1$R[3])

#sigma matrix;
sigma <- diag(2)
sigma[1,1] <- (1/(n_orig-3))
sigma[2,2] <- (1/(n_orig-3))

#replication rate;
rep_prob<-round(ptmvnorm(lowerx=c(ES-Bound, ES-Bound), upperx=c(ES+Bound, ES+Bound), mean=replicates,

sigma=sigma, lower = c(-1, -1), upper = c(1,1)),3)
return(rep_prob)}

#Bounds centered around Original ES+-%
Perfect2<-function(ES, P, Bound){

r_orig<-ES; n_orig<-ceiling(pwr.r.test(r=ES, power=P)$n)
#Replication Studies
r_rep<-c(); n_rep<-c(); power_r<-c(P, P)

for (i in 1:length(power_r)){
###generate replicated study;
#replicated sample size- orig*2
n_rep[i]= n_orig*2

#Sampling---using datagen function to eventual generate r_reps
data<-datagen(n_rep[i], r_orig)
group1r<-data[,1]
group2r<-data[,2]

#r based on sample
r_rep[i]<-cor(group1r, group2r)
power_r[i]<-round(pwr.r.test(r=r_rep[i], n= n_rep[i])$power)
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}

Original_study<-cbind(1, r_orig,n_orig, power=P)
colnames(Original_study) <- c("Study", "R", "N", "Power")
replicated_studies<-cbind(2, r_rep, n_rep, power_r)
colnames(replicated_studies) <- c("Rep", "R", "N", "Power")
ES1<-as.data.frame(rbind(Original_study, replicated_studies))

#####Probability of replication
##replicates;
replicates<-c(ES1$R[2],ES1$R[3])

#sigma matrix;
sigma <- diag(2)
sigma[1,1] <- (1/(n_orig-3))
sigma[2,2] <- (1/(n_orig-3))

#replication rate;
rep_prob<-round(ptmvnorm(lowerx=c(ES-(ES*Bound), ES-(ES*Bound)), upperx=c(ES+(ES*Bound), ES+(ES*Bound)),

mean=replicates, sigma=sigma, lower = c(-1, -1), upper = c(1,1)),3)
return(rep_prob)

}

#Bounds centered around 0
Perfect3<-function(ES, P, Bound){

r_orig<-.1; n_orig<-ceiling(pwr.r.test(r=ES, power=P)$n)

#Replication Studies
r_rep<-c(); n_rep<-c(); power_r<-c(P, P)
diff_ES<-c()

for (i in 1:length(power_r)){
###generate replicated study;
#replicated sample size- orig*2
n_rep[i]= n_orig*2

#Sampling---using datagen function to eventual generate r_reps
data<-datagen(n_rep[i], r_orig)
group1r<-data[,1]
group2r<-data[,2]

#r based on sample
r_rep[i]<-cor(group1r, group2r)
power_r[i]<-round(pwr.r.test(r=r_rep[i], n= n_rep[i])$power)

diff_ES[i]<-r_orig-r_rep[i]
}

Original_study<-cbind(1, r_orig,n_orig, power=.9)
colnames(Original_study) <- c("Study", "R", "N", "Power")
replicated_studies<-cbind(2, r_rep, n_rep, power_r)
colnames(replicated_studies) <- c("Rep", "R", "N", "Power")
diff_studies<-cbind(2, diff_ES, ((n_orig+n_rep)/2), power=.9)
colnames(replicated_studies) <- c("Diff", "R", "N", "Power")
ES1<-as.data.frame(rbind(Original_study, replicated_studies, diff_studies))

#####Probability of replication
##replicates;
replicates_diff<-c(ES1$R[4],ES1$R[5])

#sigma matrix;
sigma <- diag(2)
sigma[1,1] <- (1/((n_orig+ n_rep[2])-3))
sigma[2,2] <- (1/((n_orig+ n_rep[2])-3))

#replication rate;
rep_prob<-round(ptmvnorm(lowerx=c(0-Bound, 0-Bound), upperx=c(0+Bound, 0+Bound), mean=replicates_diff,

sigma=sigma, lower = c(-1, -1), upper = c(1,1)),3)
return(rep_prob)}

####Delta˜N(0,0.05)
#Bounds centered around Original ES+-
Realistic05<-function(ES, P, Bound) {
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r_orig<-c()
z_orig<-c()
addition_z<-c()
true_z<-c()
true_r<-c()
n_orig<-ceiling(pwr.r.test(r=ES, power=P)$n)

#Replication Studies
r_rep<-c(); n_rep<-c(); power_r<-c()

for (i in 1:2) {
r_orig[i]<-ES
z_orig[i]<-0.5*(log(1+r_orig[i])-log(1-r_orig[i]))
addition_z[i]<-rnorm(n=1, mean=0, sd=.05)
true_z[i]<-z_orig[i]+addition_z[i]
true_r[i]<-(exp(2*true_z[i])-1)/(exp(2*true_z[i])+1)

###generate replicated study-orignal r plus delta with power;
n_rep[i]<-n_orig*2

#Sampling
data<-datagen(n_rep[i], true_r[i])
group1r<-data[,1]
group2r<-data[,2]

#r based on sample
r_rep[i]<-cor(group1r, group2r)
power_r[i]<-pwr.r.test(r=r_rep[i], n=n_rep[i])$power

}

Original_study<-cbind(1, r_orig,n_orig, power=.9)
colnames(Original_study) <- c("Study", "R", "N", "Power")
replicated_studies<-cbind(2, r_rep, n_rep, power_r)
colnames(replicated_studies) <- c("Rep", "R", "N", "Power")
ES1<-as.data.frame(rbind(Original_study,replicated_studies))

#####Probability of replication
##replicates;
replicates<-c(ES1$R[3],ES1$R[4])
#, ES1$R[8],ES1$R[9],ES1$R[10])
#sigma matrix;
sigma <- diag(2)
sigma[1,1] <- (1/sqrt(ES1$N[4]-3))
sigma[2,2] <- (1/sqrt(ES1$N[4]-3))

rep_prob<-round(ptmvnorm(lowerx=c(ES-Bound, ES-Bound), upperx=c(ES+Bound, ES+Bound), mean=replicates,
sigma=sigma, lower = c(-1, -1), upper = c(1,1)),3)

return(rep_prob)
}

#Bounds centered around Original ES+-%
Realistic05_<-function(ES, P, Bound) {

r_orig<-c()
z_orig<-c()
addition_z<-c()
true_z<-c()
true_r<-c()
n_orig<-ceiling(pwr.r.test(r=ES, power=P)$n)

#Replication Studies
r_rep<-c(); n_rep<-c(); power_r<-c()

for (i in 1:2) {
r_orig[i]<-ES
z_orig[i]<-0.5*(log(1+r_orig[i])-log(1-r_orig[i]))
addition_z[i]<-rnorm(n=1, mean=0, sd=.05)
true_z[i]<-z_orig[i]+addition_z[i]
true_r[i]<-(exp(2*true_z[i])-1)/(exp(2*true_z[i])+1)

###generate replicated study-orignal r plus delta with power;
n_rep[i]<-n_orig*2

#Sampling

197



data<-datagen(n_rep[i], true_r[i])
group1r<-data[,1]
group2r<-data[,2]

#r based on sample
r_rep[i]<-cor(group1r, group2r)
power_r[i]<-pwr.r.test(r=r_rep[i], n=n_rep[i])$power

}

Original_study<-cbind(1, r_orig,n_orig, power=.9)
colnames(Original_study) <- c("Study", "R", "N", "Power")
replicated_studies<-cbind(2, r_rep, n_rep, power_r)
colnames(replicated_studies) <- c("Rep", "R", "N", "Power")
ES1<-as.data.frame(rbind(Original_study,replicated_studies))

#####Probability of replication
##replicates;
replicates<-c(ES1$R[3],ES1$R[4])
#, ES1$R[8],ES1$R[9],ES1$R[10])
#sigma matrix;
sigma <- diag(2)
sigma[1,1] <- (1/sqrt(ES1$N[4]-3))
sigma[2,2] <- (1/sqrt(ES1$N[4]-3))

rep_prob<-round(ptmvnorm(lowerx=c(ES-(ES*Bound), ES-(ES*Bound)), upperx=c(ES+(ES*Bound), ES+(ES*Bound)),
mean=replicates, sigma=sigma, lower = c(-1, -1), upper = c(1,1)),3)

return(rep_prob)
}

#Bounds centered around 0
Realistic05_3<-function(ES, P, Bound) {

r_orig<-c()
z_orig<-c()
addition_z<-c()
true_z<-c()
true_r<-c()
n_orig<-ceiling(pwr.r.test(r=ES, power=P)$n)

#Replication Studies
r_rep<-c(); n_rep<-c(); power_r<-c()
diff_ES<-c(); diff_true<-c()

for (i in 1:2) {
r_orig[i]<-ES
z_orig[i]<-0.5*(log(1+r_orig[i])-log(1-r_orig[i]))
addition_z[i]<-rnorm(n=1, mean=0, sd=.05)
true_z[i]<-z_orig[i]+addition_z[i]
true_r[i]<-(exp(2*true_z[i])-1)/(exp(2*true_z[i])+1)

###generate replicated study-orignal r plus delta with power;
n_rep[i]<-n_orig*2

#Sampling
data<-datagen(n_rep[i], true_r[i])
group1r<-data[,1]
group2r<-data[,2]

#r based on sample
r_rep[i]<-cor(group1r, group2r)
power_r[i]<-pwr.r.test(r=r_rep[i], n=n_rep[i])$power
diff_ES[i]<-r_orig[i]-r_rep[i]
diff_true[i]<-true_r[i]-r_rep[i]

}

Original_study<-cbind(1, r_orig,n_orig, power=.9)
colnames(Original_study) <- c("Study", "R", "N", "Power")
replicated_studies<-cbind(2, r_rep, n_rep, power_r)
colnames(replicated_studies) <- c("Rep", "R", "N", "Power")
diff_studies<-cbind(2, diff_ES, ((n_orig+n_rep)/2), power=.9)
colnames(replicated_studies) <- c("Diff", "R", "N", "Power")
ES1<-as.data.frame(rbind(Original_study, replicated_studies, diff_studies))

#####Probability of replication
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##replicates;
replicates_diff<-c(ES1$R[5],ES1$R[6])

#sigma matrix;
sigma <- diag(2)
sigma[1,1] <- (1/((3*n_orig)-3))
sigma[2,2] <- (1/((3*n_orig)-3))

#replication rate;
rep_prob<-round(ptmvnorm(lowerx=c(0-Bound, 0-Bound), upperx=c(0+Bound, 0+Bound), mean=replicates_diff,

sigma=sigma, lower = c(-1, -1), upper = c(1,1)),3)
return(rep_prob)}

####Delta˜N(0, 0.15)####
#Bounds centered around Original ES+-
Realistic15<-function(ES, P, Bound) {

r_orig<-c()
z_orig<-c()
addition_z<-c()
true_z<-c()
true_r<-c()
n_orig<-ceiling(pwr.r.test(r=ES, power=P)$n)

#Replication Studies
r_rep<-c(); n_rep<-c(); power_r<-c()
for (i in 1:2) {

r_orig[i]<-ES
z_orig[i]<-0.5*(log(1+r_orig[i])-log(1-r_orig[i]))
addition_z[i]<-rnorm(n=1, mean=0, sd=.15)
true_z[i]<-z_orig[i]+addition_z[i]
true_r[i]<-(exp(2*true_z[i])-1)/(exp(2*true_z[i])+1)

###generate replicated study-orignal r plus delta with power;
n_rep[i]<-n_orig*2

#Sampling
data<-datagen(n_rep[i], true_r[i])
group1r<-data[,1]
group2r<-data[,2]

#r based on sample
r_rep[i]<-cor(group1r, group2r)
power_r[i]<-pwr.r.test(r=r_rep[i], n=n_rep[i])$power

}

Original_study<-cbind(1, r_orig,n_orig, power=.9)
colnames(Original_study) <- c("Study", "R", "N", "Power")
replicated_studies<-cbind(2, r_rep, n_rep, power_r)
colnames(replicated_studies) <- c("Rep", "R", "N", "Power")
ES1<-as.data.frame(rbind(Original_study,replicated_studies))

#####Probability of replication
##replicates;
replicates<-c(ES1$R[3],ES1$R[4])
#, ES1$R[8],ES1$R[9],ES1$R[10])
#sigma matrix;
sigma <- diag(2)
sigma[1,1] <- (1/sqrt(ES1$N[4]-3))
sigma[2,2] <- (1/sqrt(ES1$N[4]-3))

rep_prob<-round(ptmvnorm(lowerx=c(ES-Bound, ES-Bound), upperx=c(ES+Bound, ES+Bound), mean=replicates,
sigma=sigma, lower = c(-1, -1), upper = c(1,1)),3)

return(rep_prob)
}

#Bounds centered around Original ES+-%
Realistic15_<-function(ES, P, Bound) {

r_orig<-c()
z_orig<-c()
addition_z<-c()
true_z<-c()
true_r<-c()
n_orig<-ceiling(pwr.r.test(r=ES, power=P)$n)

199



#Replication Studies
r_rep<-c(); n_rep<-c(); power_r<-c()
for (i in 1:2) {

r_orig[i]<-ES
z_orig[i]<-0.5*(log(1+r_orig[i])-log(1-r_orig[i]))
addition_z[i]<-rnorm(n=1, mean=0, sd=.15)
true_z[i]<-z_orig[i]+addition_z[i]
true_r[i]<-(exp(2*true_z[i])-1)/(exp(2*true_z[i])+1)

###generate replicated study-orignal r plus delta with power;
n_rep[i]<-n_orig*2

#Sampling
data<-datagen(n_rep[i], true_r[i])
group1r<-data[,1]
group2r<-data[,2]

#r based on sample
r_rep[i]<-cor(group1r, group2r)
power_r[i]<-pwr.r.test(r=r_rep[i], n=n_rep[i])$power

}

Original_study<-cbind(1, r_orig,n_orig, power=.9)
colnames(Original_study) <- c("Study", "R", "N", "Power")
replicated_studies<-cbind(2, r_rep, n_rep, power_r)
colnames(replicated_studies) <- c("Rep", "R", "N", "Power")
ES1<-as.data.frame(rbind(Original_study,replicated_studies))

#####Probability of replication
##replicates;
replicates<-c(ES1$R[3],ES1$R[4])
#, ES1$R[8],ES1$R[9],ES1$R[10])
#sigma matrix;
sigma <- diag(2)
sigma[1,1] <- (1/sqrt(ES1$N[4]-3))
sigma[2,2] <- (1/sqrt(ES1$N[4]-3))

rep_prob<-round(ptmvnorm(lowerx=c(ES-(ES*Bound), ES-(ES*Bound)), upperx=c(ES+(ES*Bound), ES+(ES*Bound)),
mean=replicates, sigma=sigma, lower = c(-1, -1), upper = c(1,1)),3)

return(rep_prob)
}

#Bounds centered around 0
Realistic15_3<-function(ES, P, Bound) {

r_orig<-c()
z_orig<-c()
addition_z<-c()
true_z<-c()
true_r<-c()
n_orig<-ceiling(pwr.r.test(r=ES, power=P)$n)
#Replication Studies
r_rep<-c(); n_rep<-c(); power_r<-c()
diff_ES<-c(); diff_true<-c()

for (i in 1:2) {
r_orig[i]<-ES
z_orig[i]<-0.5*(log(1+r_orig[i])-log(1-r_orig[i]))
addition_z[i]<-rnorm(n=1, mean=0, sd=.15)
true_z[i]<-z_orig[i]+addition_z[i]
true_r[i]<-(exp(2*true_z[i])-1)/(exp(2*true_z[i])+1)

###generate replicated study-orignal r plus delta with power;
n_rep[i]<-n_orig*2

#Sampling
data<-datagen(n_rep[i], true_r[i])
group1r<-data[,1]
group2r<-data[,2]

#r based on sample
r_rep[i]<-cor(group1r, group2r)
power_r[i]<-pwr.r.test(r=r_rep[i], n=n_rep[i])$power
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diff_ES[i]<-r_orig[i]-r_rep[i]
diff_true[i]<-true_r[i]-r_rep[i]

}

Original_study<-cbind(1, r_orig,n_orig, power=.9)
colnames(Original_study) <- c("Study", "R", "N", "Power")
replicated_studies<-cbind(2, r_rep, n_rep, power_r)
colnames(replicated_studies) <- c("Rep", "R", "N", "Power")
diff_studies<-cbind(2, diff_ES, ((n_orig+n_rep)/2), power=.9)
colnames(replicated_studies) <- c("Diff", "R", "N", "Power")
ES1<-as.data.frame(rbind(Original_study, replicated_studies, diff_studies))

#####Probability of replication
##replicates;
replicates_diff<-c(ES1$R[5],ES1$R[6])

#sigma matrix;
sigma <- diag(2)
sigma[1,1] <- (1/((3*n_orig)-3))
sigma[2,2] <- (1/((3*n_orig)-3))

#replication rate;
rep_prob<-round(ptmvnorm(lowerx=c(0-Bound, 0-Bound), upperx=c(0+Bound, 0+Bound), mean=replicates_diff,

sigma=sigma, lower = c(-1, -1), upper = c(1,1)),3)
return(rep_prob)}

####Delta˜N(0, 0.5)####
#Bounds centered around Original ES+-
Realistic5<-function(ES, P, Bound) {

r_orig<-c()
z_orig<-c()
addition_z<-c()
true_z<-c()
true_r<-c()
n_orig<-ceiling(pwr.r.test(r=ES, power=P)$n)

#Replication Studies
r_rep<-c(); n_rep<-c(); power_r<-c()

for (i in 1:2) {
r_orig[i]<-ES
z_orig[i]<-0.5*(log(1+r_orig[i])-log(1-r_orig[i]))
addition_z[i]<-rnorm(n=1, mean=0, sd=.5)
true_z[i]<-z_orig[i]+addition_z[i]
true_r[i]<-(exp(2*true_z[i])-1)/(exp(2*true_z[i])+1)

###generate replicated study-orignal r plus delta with power;
n_rep[i]<-n_orig*2

#Sampling
data<-datagen(n_rep[i], true_r[i])
group1r<-data[,1]
group2r<-data[,2]

#r based on sample
r_rep[i]<-cor(group1r, group2r)
power_r[i]<-pwr.r.test(r=r_rep[i], n=n_rep[i])$power

}

Original_study<-cbind(1, r_orig,n_orig, power=.9)
colnames(Original_study) <- c("Study", "R", "N", "Power")
replicated_studies<-cbind(2, r_rep, n_rep, power_r)
colnames(replicated_studies) <- c("Rep", "R", "N", "Power")
ES1<-as.data.frame(rbind(Original_study,replicated_studies))

#####Probability of replication
##replicates;
replicates<-c(ES1$R[3],ES1$R[4])
#, ES1$R[8],ES1$R[9],ES1$R[10])
#sigma matrix;
sigma <- diag(2)
sigma[1,1] <- (1/sqrt(ES1$N[4]-3))
sigma[2,2] <- (1/sqrt(ES1$N[4]-3))
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rep_prob<-round(ptmvnorm(lowerx=c(ES-Bound, ES-Bound), upperx=c(ES+Bound, ES+Bound), mean=replicates,
sigma=sigma, lower = c(-1, -1), upper = c(1,1)),3)

return(rep_prob)
}

#Bounds centered around Original ES+-%
Realistic5_<-function(ES, P, Bound) {

r_orig<-c()
z_orig<-c()
addition_z<-c()
true_z<-c()
true_r<-c()
n_orig<-ceiling(pwr.r.test(r=ES, power=P)$n)

#Replication Studies
r_rep<-c(); n_rep<-c(); power_r<-c()

for (i in 1:2) {
r_orig[i]<-ES
z_orig[i]<-0.5*(log(1+r_orig[i])-log(1-r_orig[i]))
addition_z[i]<-rnorm(n=1, mean=0, sd=.5)
true_z[i]<-z_orig[i]+addition_z[i]
true_r[i]<-(exp(2*true_z[i])-1)/(exp(2*true_z[i])+1)

###generate replicated study-orignal r plus delta with power;
n_rep[i]<-n_orig*2

#Sampling
data<-datagen(n_rep[i], true_r[i])
group1r<-data[,1]
group2r<-data[,2]

#r based on sample
r_rep[i]<-cor(group1r, group2r)
power_r[i]<-pwr.r.test(r=r_rep[i], n=n_rep[i])$power

}

Original_study<-cbind(1, r_orig,n_orig, power=.9)
colnames(Original_study) <- c("Study", "R", "N", "Power")
replicated_studies<-cbind(2, r_rep, n_rep, power_r)
colnames(replicated_studies) <- c("Rep", "R", "N", "Power")
ES1<-as.data.frame(rbind(Original_study,replicated_studies))

#####Probability of replication
##replicates;
replicates<-c(ES1$R[3],ES1$R[4])
#, ES1$R[8],ES1$R[9],ES1$R[10])
#sigma matrix;
sigma <- diag(2)
sigma[1,1] <- (1/sqrt(ES1$N[4]-3))
sigma[2,2] <- (1/sqrt(ES1$N[4]-3))

rep_prob<-round(ptmvnorm(lowerx=c(ES-(ES*Bound), ES-(ES*Bound)), upperx=c(ES+(ES*Bound), ES+(ES*Bound)),
mean=replicates, sigma=sigma, lower = c(-1, -1), upper = c(1,1)),3)

return(rep_prob)
}

#Bounds centered around 0
Realistic5_3<-function(ES, P, Bound) {

r_orig<-c()
z_orig<-c()
addition_z<-c()
true_z<-c()
true_r<-c()
n_orig<-ceiling(pwr.r.test(r=ES, power=P)$n)

#Replication Studies
r_rep<-c(); n_rep<-c(); power_r<-c()
diff_ES<-c(); diff_true<-c()

for (i in 1:2) {
r_orig[i]<-ES
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z_orig[i]<-0.5*(log(1+r_orig[i])-log(1-r_orig[i]))
addition_z[i]<-rnorm(n=1, mean=0, sd=.5)
true_z[i]<-z_orig[i]+addition_z[i]
true_r[i]<-(exp(2*true_z[i])-1)/(exp(2*true_z[i])+1)
###generate replicated study-orignal r plus delta with power;
n_rep[i]<-n_orig*2

#Sampling
data<-datagen(n_rep[i], true_r[i])
group1r<-data[,1]
group2r<-data[,2]

#r based on sample
r_rep[i]<-cor(group1r, group2r)
power_r[i]<-pwr.r.test(r=r_rep[i], n=n_rep[i])$power
diff_ES[i]<-r_orig[i]-r_rep[i]
diff_true[i]<-true_r[i]-r_rep[i]

}

Original_study<-cbind(1, r_orig,n_orig, power=.9)
colnames(Original_study) <- c("Study", "R", "N", "Power")
replicated_studies<-cbind(2, r_rep, n_rep, power_r)
colnames(replicated_studies) <- c("Rep", "R", "N", "Power")
diff_studies<-cbind(2, diff_ES, ((n_orig+n_rep)/2), power=.9)
colnames(replicated_studies) <- c("Diff", "R", "N", "Power")
ES1<-as.data.frame(rbind(Original_study, replicated_studies, diff_studies))

#####Probability of replication
##replicates;
replicates_diff<-c(ES1$R[5],ES1$R[6])

#sigma matrix;
sigma <- diag(2)
sigma[1,1] <- (1/((3*n_orig)-3))
sigma[2,2] <- (1/((3*n_orig)-3))

#replication rate;
rep_prob<-round(ptmvnorm(lowerx=c(0-Bound, 0-Bound), upperx=c(0+Bound, 0+Bound), mean=replicates_diff,

sigma=sigma, lower = c(-1, -1), upper = c(1,1)),3)
return(rep_prob)}

####Figures-3.5, 3.6, 7.1-7.8####

library(lattice)
library(RColorBrewer)
library(plyr)

#All ES+-0.5#
#Load Data
All_dataES05<-read.csv(’All_data05.csv’)
All_dataES05<-na.omit(All_dataES05)
summary(All_dataES05)
names(All_dataES05)

All_dataES05$Power<-as.numeric(sub("%", "",All_dataES05$Power))
All_dataES05$Bound.f<-as.factor(All_dataES05$Bound)
All_dataES05$ES.f<-as.factor(All_dataES05$ES)
All_dataES05$Type.f<-as.factor(All_dataES05$Type)
All_dataES05$Type.f<-mapvalues(All_dataES05$Type.f, from = c("Max", "N_05", "N_15", "N_5", "Perfect"), to
= c("Max", "Delta˜N(0,0.05)", "Delta˜N(0,0.15)", "Delta˜N(0,0.5)", "No Delta"))
All_dataES05$Type.f<-factor(All_dataES05$Type.f, levels =c("Max", "No Delta", "Delta˜N(0,0.05)",
"Delta˜N(0,0.15)", "Delta˜N(0,0.5)"))
summary(All_dataES05)

#Full Data 05#
png("ES__05.png", width = 1800, height = 800) #opens png
xyplot(All_dataES05$Mean.Rep.Prob˜All_dataES05$Power|All_dataES05$ES.f,groups=All_dataES05$Type.f,

auto.key = TRUE,
ylab="Mean Replication Probability", xlab="Power (%)", type=’b’)

dev.off() #closes plot

##All ES+-0.1##
#Load Data
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All_dataES1<-read.csv(’All_data1.csv’)
All_dataES1<-na.omit(All_dataES1)
summary(All_dataES1)
names(All_dataES1)

All_dataES1$Power<-as.numeric(sub("%", "",All_dataES1$Power))
All_dataES1$Bound.f<-as.factor(All_dataES1$Bound)
All_dataES1$ES.f<-as.factor(All_dataES1$ES)
All_dataES1$Type.f<-as.factor(All_dataES1$Type)
All_dataES1$Type.f<-mapvalues(All_dataES1$Type.f, from = c("Max", "N_05", "N_15", "N_5", "Perfect"), to =
c("Max", "Delta˜N(0,0.05)", "Delta˜N(0,0.15)", "Delta˜N(0,0.5)", "No Delta"))
All_dataES1$Type.f<-factor(All_dataES1$Type.f, levels =c("Max", "No Delta", "Delta˜N(0,0.05)",
"Delta˜N(0,0.15)", "Delta˜N(0,0.5)"))

#Full Data 1#
png("ES__1.png", width = 1800, height = 800) #opens png
xyplot(All_dataES1$Mean.Rep.Prob˜All_dataES1$Power|All_dataES1$ES.f,groups=All_dataES1$Type.f,

auto.key = TRUE,
ylab="Mean Replication Probability", xlab="Power (%)", type=’b’)

dev.off() #closes plot

##All ES+-0.3##
#Load Data
All_dataES3<-read.csv(’All_data3.csv’)
All_dataES3<-na.omit(All_dataES3)
summary(All_dataES3)
names(All_dataES3)

All_dataES3$Power<-as.numeric(sub("%", "",All_dataES3$Power))
All_dataES3$Bound.f<-as.factor(All_dataES3$Bound)
All_dataES3$ES.f<-as.factor(All_dataES3$ES)
All_dataES3$Type.f<-as.factor(All_dataES3$Type)
All_dataES3$Type.f<-mapvalues(All_dataES3$Type.f, from = c("Max", "N_05", "N_15", "N_5", "Perfect"), to =
c("Max", "Delta˜N(0,0.05)", "Delta˜N(0,0.15)", "Delta˜N(0,0.5)", "No Delta"))
All_dataES3$Type.f<-factor(All_dataES3$Type.f, levels =c("Max", "No Delta", "Delta˜N(0,0.05)",
"Delta˜N(0,0.15)", "Delta˜N(0,0.5)"))

###Full Data 3####
png("ES__3.png", width = 1800, height = 800) #opens png
xyplot(All_dataES3$Mean.Rep.Prob˜All_dataES3$Power|All_dataES3$ES.f,groups=All_dataES3$Type.f,

auto.key =TRUE,
ylab="Mean Replication Probability", xlab="Power (%)", type=’b’)

dev.off() #closes plot

##All ES 20%##
#Load Data
All_dataES20<-read.csv(’All_data20.csv’)
All_dataES20<-na.omit(All_dataES20)
summary(All_dataES20)
names(All_dataES20)

All_dataES20$Power<-as.numeric(sub("%", "",All_dataES20$Power))
All_dataES20$Bound.f<-as.factor(All_dataES20$Bound)
All_dataES20$ES.f<-as.factor(All_dataES20$ES)
All_dataES20$Type.f<-as.factor(All_dataES20$Type)
All_dataES20$Type.f<-mapvalues(All_dataES20$Type.f, from = c("Max", "N_05", "N_15", "N_5", "Perfect"), to
= c("Max", "Delta˜N(0,0.05)", "Delta˜N(0,0.15)", "Delta˜N(0,0.5)", "No Delta"))
All_dataES20$Type.f<-factor(All_dataES20$Type.f, levels =c("Max", "No Delta", "Delta˜N(0,0.05)",
"Delta˜N(0,0.15)", "Delta˜N(0,0.5)"))

#Full Data 20#
png("ES__20.png", width = 1800, height = 800) #opens png
xyplot(All_dataES20$Mean.Rep.Prob˜All_dataES20$Power|All_dataES20$ES.f,groups=All_dataES20$Type.f,

auto.key = TRUE, ylab="Mean Replication Probability", xlab="Power (%)", type=’b’)
dev.off() #closes plot

##All ES+-50%##
#Load Data
All_dataES50<-read.csv(’All_data50.csv’)
All_dataES50<-na.omit(All_dataES50)
summary(All_dataES50)
names(All_dataES50)
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All_dataES50$Power<-as.numeric(sub("%", "",All_dataES50$Power))
All_dataES50$Bound.f<-as.factor(All_dataES50$Bound)
All_dataES50$ES.f<-as.factor(All_dataES50$ES)
All_dataES50$Type.f<-as.factor(All_dataES50$Type)
All_dataES50$Type.f<-mapvalues(All_dataES50$Type.f, from = c("Max", "N_05", "N_15", "N_5", "Perfect"), to
= c("Max", "Delta˜N(0,0.05)", "Delta˜N(0,0.15)", "Delta˜N(0,0.5)", "No Delta"))
All_dataES50$Type.f<-factor(All_dataES50$Type.f, levels =c("Max", "No Delta", "Delta˜N(0,0.05)",
"Delta˜N(0,0.15)", "Delta˜N(0,0.5)"))

#Full Data 50#
png("ES__50.png", width = 1800, height = 800) #opens png
xyplot(All_dataES50$Mean.Rep.Prob˜All_dataES50$Power|All_dataES50$ES.f,groups=All_dataES50$Type.f,

auto.key = TRUE,
ylab="Mean Replication Probability", xlab="Power (%)", type=’b’)

dev.off() #closes plot

##All 0+-05##
#Load Data
All_data0_05<-read.csv(’All_data0_05.csv’)
All_data0_05<-na.omit(All_data0_05)
summary(All_data0_05)
names(All_data0_05)

All_data0_05$Power<-as.numeric(sub("%", "",All_data0_05$Power))
All_data0_05$Bound.f<-as.factor(All_data0_05$Bound)
All_data0_05$ES.f<-as.factor(All_data0_05$ES)
All_data0_05$Type.f<-as.factor(All_data0_05$Type)
All_data0_05$Type.f<-mapvalues(All_data0_05$Type.f, from = c("N_05", "N_15", "N_5", "Perfect"), to = c(
"Delta˜N(0,0.05)", "Delta˜N(0,0.15)", "Delta˜N(0,0.5)", "No Delta"))
All_data0_05$Type.f<-factor(All_data0_05$Type.f, levels =c("No Delta", "Delta˜N(0,0.05)",
"Delta˜N(0,0.15)", "Delta˜N(0,0.5)"))

#Full Data 05#
png("Zero__05.png", width = 1800, height = 800) #opens png
xyplot(All_data0_05$Mean.Rep.Prob˜All_data0_05$Power|All_data0_05$ES.f,groups=All_data0_05$Type.f,

auto.key = TRUE,
ylab="Mean Replication Probability", xlab="Power (%)", type=’b’)

dev.off() #closes plot

##All 0+-1##
#Load Data
All_data0_1<-read.csv(’All_data0_1.csv’)
All_data0_1<-na.omit(All_data0_1)
summary(All_data0_1)
names(All_data0_1)

All_data0_1$Power<-as.numeric(sub("%", "",All_data0_1$Power))
All_data0_1$Bound.f<-as.factor(All_data0_1$Bound)
All_data0_1$ES.f<-as.factor(All_data0_1$ES)
All_data0_1$Type.f<-as.factor(All_data0_1$Type)
All_data0_1$Type.f<-mapvalues(All_data0_1$Type.f, from = c("N_05", "N_15", "N_5", "Perfect"), to = c(
"Delta˜N(0,0.05)", "Delta˜N(0,0.15)", "Delta˜N(0,0.5)", "No Delta"))
All_data0_1$Type.f<-factor(All_data0_1$Type.f, levels =c("No Delta", "Delta˜N(0,0.05)", "Delta˜N(0,0.15)",
"Delta˜N(0,0.5)"))

#Full Data#
png("Zero__1.png", width = 1800, height = 800) #opens png
xyplot(All_data0_1$Mean.Rep.Prob˜All_data0_1$Power|All_data0_1$ES.f,groups=All_data0_1$Type.f,

auto.key = TRUE,
ylab="Mean Replication Probability", xlab="Power (%)", type=’b’)

dev.off() #closes plot

###All 0+-3##
#Load Data
All_data0_3<-read.csv(’All_data0_3.csv’)
All_data0_3<-na.omit(All_data0_3)
summary(All_data0_3)
names(All_data0_3)

All_data0_3$Power<-as.numeric(sub("%", "",All_data0_3$Power))
All_data0_3$Bound.f<-as.factor(All_data0_3$Bound)
All_data0_3$ES.f<-as.factor(All_data0_3$ES)
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All_data0_3$Type.f<-as.factor(All_data0_3$Type)
All_data0_3$Type.f<-mapvalues(All_data0_3$Type.f, from = c("N_05", "N_15", "N_5", "Perfect"), to = c(
"Delta˜N(0,0.05)", "Delta˜N(0,0.15)", "Delta˜N(0,0.5)", "No Delta"))
All_data0_3$Type.f<-factor(All_data0_3$Type.f, levels =c("No Delta", "Delta˜N(0,0.05)", "Delta˜N(0,0.15)",
"Delta˜N(0,0.5)"))

#Full Data##
png("Zero__3.png", width = 1800, height = 800) #opens png
xyplot(All_data0_3$Mean.Rep.Prob˜All_data0_3$Power|All_data0_3$ES.f,groups=All_data0_3$Type.f,

auto.key = TRUE,
ylab="Mean Replication Probability", xlab="Power (%)", type=’b’)

dev.off() #closes plot

#Subset Plots for paper
Sub_dataES1 <- All_dataES1[ which(All_dataES1$ES.f==’0.1’ |All_dataES1$ES.f==’0.3’
|All_dataES1$ES.f==’0.5’),]
png("Sub__dataES1.png", width = 1800, height = 500) #opens png
xyplot(Sub_dataES1$Mean.Rep.Prob˜Sub_dataES1$Power|Sub_dataES1$ES.f,groups=Sub_dataES1$Type.f,

auto.key = TRUE,
ylab="Mean Replication Probability", xlab="Power (%)", type=’b’)

dev.off() #closes plot

Sub_data0_1 <- All_data0_1[ which(All_data0_1$ES.f==’0.1’ |All_data0_1$ES.f==’0.3’
|All_data0_1$ES.f==’0.5’),]
png("Sub__data0_1.png", width = 1800, height = 500) #opens png
xyplot(Sub_data0_1$Mean.Rep.Prob˜Sub_data0_1$Power|Sub_data0_1$ES.f,groups=Sub_data0_1$Type.f,

auto.key = TRUE,
ylab="Mean Replication Probability", xlab="Power (%)", type=’b’)

dev.off() #closes plot
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Chapter 12

Appendix G: R Code relevant to
Chapter 4

###############################################################################
#Aim 3: Survey Examples-Generated the Survey on Survey Monkey#
###############################################################################
#Example 1-n=25#
##Original Study#
oc1<-c(15, 20, 20, 30, 30, 30, 30, 35, 35, 40, 40, 40, 40, 45, 45, 45, 50, 50, 53, 55, 55, 55, 60, 60, 70)
ot1<-c(20, 25, 35, 40, 44, 45, 45, 45, 45, 45, 49, 50, 50, 53, 55, 55, 55, 60, 70, 70, 80, 85, 90, 90, 96)
t.test(oc1, x2, alternative = "two.sided", paired = FALSE, var.equal = TRUE, conf.level = 0.95)
sd(oc1); sd(ot1)
##Replicated Study#
rc1<-c(25, 30, 20, 30, 30, 60, 60, 65, 65, 40, 40, 40, 40, 45, 45, 55, 50, 50, 53, 75, 75, 75, 80, 80, 70,
15, 20, 20, 30, 30, 30, 30, 35, 35, 40, 40, 40, 40, 45, 45, 45, 50, 50, 53, 55, 55, 55, 60, 60, 70, 50,
60, 60, 60, 60)
rt1<-c(50, 25, 35, 40, 44, 45, 45, 45, 45, 45, 49, 50, 50, 53, 55, 55, 55, 60, 70, 70, 80, 85, 90, 90, 96,
20, 25, 35, 40, 44, 45, 45, 45, 45, 45, 49, 50, 50, 53, 55, 55, 55, 60, 70, 70, 80, 85, 90, 90, 96, 20,
20, 35, 50, 60)
t.test(rc1, rt1, alternative = "two.sided", paired = FALSE, var.equal = TRUE, conf.level = 0.95)
sd(rc1); sd(rt1)

#Example 2-n=126#
##Original Study#
oc3<-c(10, 5, 5, 15, 15, 15, 10, 20, 20, 20, 20, 31, 32, 32, 31, 20, 25, 20, 21, 21, 21,
31, 21, 21, 75, 30, 30, 20, 15, 15, 15, 20, 25, 25, 35, 35, 25, 25, 19, 15, 25, 25, 25,
31, 25, 32, 32, 31, 12, 12, 35, 20, 25, 45, 45, 35, 25, 25, 85, 30, 30, 20, 15, 15, 15,
20, 25, 25, 35, 35, 25, 25, 31, 15, 32, 32, 31, 12, 12, 35, 20, 25, 45, 45, 35, 25, 25,
85, 30, 30, 20, 15, 15, 15, 20, 25, 25, 35, 35, 25, 25, 10, 15, 25, 25, 25, 31, 15, 32,
32, 31, 12, 12, 35, 20, 25, 45, 45, 35, 25, 25, 85, 30, 30, 20, 35)
ot3<-c(15, 20, 20, 30, 30, 30, 30, 35, 15, 40, 10, 35, 35, 35, 25, 45, 20, 15, 35, 20, 34,
45, 45, 35, 35, 35, 25, 45, 20, 15, 35, 20, 44, 45, 35, 60, 30, 10, 20, 25, 45, 20, 15, 35, 20, 44, 45,
45, 60, 20, 30, 40, 25, 45, 20, 15, 35, 20, 44, 45, 45, 60, 60, 60, 70, 35, 35, 35, 25, 45, 20, 15, 35,
35, 25, 45, 20, 15, 35, 20, 44, 45, 45, 35, 35, 35, 25, 45, 20, 15, 35, 20, 44, 45, 45, 60, 60, 60, 70,
25, 45, 20, 15, 35, 20, 44, 45, 45, 60, 60, 25, 45, 20, 15, 35, 20, 44, 45, 45, 35, 35, 35, 25, 45, 20,
15)
t.test(oc3, ot3, alternative = "two.sided", paired = FALSE, var.equal = TRUE, conf.level = 0.95)
sd(oc3); sd(ot3)
##Replicated Study#
rc3<-c(20, 25, 30, 35, 35, 35, 40, 35, 35, 35, 25, 45, 20, 15, 35, 20, 44, 45, 45, 35, 35, 25, 39, 45, 40,
40, 40, 20, 20, 90, 90, 88, 28, 28, 90, 10, 98, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 20, 25, 30,
35, 35, 35, 40, 35, 35, 35, 25, 45, 20, 15, 35, 20, 44, 45, 45, 35, 35, 25, 39, 45, 40, 40, 40, 20, 20,
90, 100, 98, 28, 28, 90, 10, 98, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 20, 25, 30, 35, 35, 35, 40,
35, 35, 35, 25, 45, 20, 15, 35, 20, 44, 45, 45, 35, 35, 25, 39, 45, 40, 40, 40, 20, 20, 90, 100, 98, 28,
28, 90, 10, 98, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35)
rt3<-c(15, 20, 20, 30, 30, 30, 30, 35, 85, 40, 40, 40, 15, 15, 35, 20, 25, 15, 15, 35, 25, 25, 19, 15, 40,
40, 40, 10, 10, 10, 10, 10, 30, 60, 10, 10, 10, 10, 40, 40, 40, 10, 10, 40, 40, 10, 40, 40, 40, 40, 40,
40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40,
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40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 15, 20, 20,
30, 30, 30, 30, 35, 85, 40, 40, 40, 15, 15, 35, 20, 25, 45, 45, 35, 25, 25, 39, 45, 40, 40, 40, 50, 30,
40, 50, 60, 30, 60, 50, 10, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40,
40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40,
40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 15, 20, 20, 30, 30, 30, 30,
35, 85, 40, 40, 40, 15, 15, 35, 20, 25, 45, 45, 35, 25, 25, 39, 45, 40, 40, 40, 50, 30, 40, 50, 60, 30,
60, 50, 10, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40,
40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40,
40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 58, 30)
t.test(rc3, rt3, alternative = "two.sided", paired = FALSE, var.equal = TRUE, conf.level = 0.95)
sd(rc3); sd(rt3)

#Example 3-n=45#
#Original Study#
oc4<-c(19, 20, 30, 26, 30, 30, 35, 25, 15, 20, 20, 26, 60, 30, 35, 15, 18, 25, 15, 29, 28, 26, 10, 30, 35,
15, 18, 25, 20, 25, 14, 13, 15, 25, 10, 15, 30, 25, 35, 40, 35, 35, 35, 25, 45)
ot4<-c(20, 12, 14, 13, 12, 25, 10, 15, 13, 15, 25, 10, 15, 30, 15, 20, 15, 14, 13, 15, 15, 10, 15, 20, 25,
20, 25, 14, 13, 15, 25, 10, 15, 30, 25, 20, 25, 14, 33, 32, 85, 40, 43, 40, 36)
t.test(oc4, ot4, alternative = "two.sided", paired = FALSE, var.equal = TRUE, conf.level = 0.95)
sd(oc4); sd(ot4)

##Replicated Study#
rc4<-c(15, 20, 15, 39, 40, 25, 29, 35, 10, 9, 19, 29, 32, 29, 20, 23, 32, 35, 40, 43, 20, 20, 35, 45, 45,
35, 35, 25, 19, 45, 30, 9, 9, 29, 32, 29, 30, 30, 32, 35, 40, 43, 30, 26, 15, 14, 20, 45, 45, 45, 35, 35,
25, 29, 35, 40, 9, 19, 29, 32, 29, 30, 33, 32, 45, 40, 43, 40, 31, 40, 44, 20, 25, 35, 35, 35, 35, 25, 9,
45, 5, 9, 19, 29, 32, 20, 10, 13, 32, 40, 40, 33, 30, 32, 35, 24, 20, 45, 45, 35, 15, 65, 35, 49, 35, 30,
9, 19, 19, 32, 19, 30, 33, 32, 85, 40, 33, 30, 36, 45, 34, 20, 35, 35, 35, 35, 25, 25, 30, 35, 10, 9, 9,
29, 32, 9, 30, 33, 32, 25, 20, 43, 40, 36, 7, 34, 20, 45, 45, 45, 35, 35, 25)
rt4<-c(15, 15, 15, 35, 25, 15, 20, 15, 30, 20, 21, 45, 25, 65, 35, 25, 29, 15, 10, 20, 25, 30, 25, 35, 35,
10, 35, 15, 15, 24, 45, 20, 35, 30, 20, 44, 45, 45, 35, 35, 25, 29, 25, 20, 20, 25, 30, 35, 35, 35, 10,
35, 15, 35, 25, 15, 20, 15, 30, 20, 41, 35, 25, 35, 35, 25, 39, 25, 40, 20, 25, 30, 35, 35, 35, 40, 35,
35, 35, 25, 45, 20, 15, 30, 20, 44, 15, 45, 35, 35, 25, 39, 45, 40, 20, 25, 30, 35, 35, 25, 20, 15, 25,
25, 25, 45, 20, 15, 20, 10, 34, 35, 35, 35, 35, 25, 29, 25, 30, 20, 25, 20, 25, 35, 35, 40, 35, 35, 35,
25, 5, 20, 15, 20, 20, 14, 25, 35, 35, 15, 25, 35, 25, 15, 20, 15, 30, 20, 14, 15, 15, 25, 35)
t.test(rc4, rt4, alternative = "two.sided", paired = FALSE, var.equal = TRUE, conf.level = 0.95)
sd(rc4); sd(rt4)

#Example 4-n=80#
##Original Study#
oc2<-c(20, 25, 30, 35, 35, 35, 40, 35, 35, 35, 25, 45, 20, 25, 30, 35, 35, 35, 40, 35, 35, 35, 25, 45, 20,
25, 30, 35, 35, 35, 40, 35, 35, 35, 25, 45, 20, 25, 30, 35, 35, 35, 40, 35, 35, 35, 25, 45, 20, 25, 30,
35, 35, 35, 40, 35, 35, 35, 25, 45, 20, 25, 30, 35, 35, 35, 40, 35, 35, 35, 25, 45)
ot2<-c(20, 25, 20, 25, 25, 25, 20, 25, 25, 25, 25, 50, 55, 30, 25, 25, 25, 30, 25, 25, 25, 25, 50, 55, 50,
55, 55, 55, 30, 25, 25, 25, 25, 50, 55, 50, 55, 55, 55, 30, 25, 25, 25, 25, 5, 35, 35, 25, 45, 20, 25, 30,
35, 35, 25, 50, 25, 25, 45, 35, 45, 20, 25, 30, 35, 35, 35, 40, 35, 35, 35, 45)
t.test(oc2, ot2, alternative = "two.sided", paired = FALSE, var.equal = TRUE, conf.level = 0.95)
sd(oc2); sd(ot2)

##Replicated Study#
rc2<-c(20, 25, 30, 35, 35, 35, 40, 35, 35, 35, 25, 45, 20, 15, 35, 20, 44, 45, 45, 35, 35, 25, 39, 45, 40,
40, 40, 50, 10, 50, 50, 50, 50, 50, 30, 50, 20, 25, 30, 35, 35, 35, 40, 35, 35, 35, 25, 45, 20, 15, 35,
20, 44, 45, 45, 35, 35, 25, 39, 45, 40, 40, 40, 50, 10, 50, 50, 50, 50, 50, 30, 50, 20, 25, 30, 35, 35,
35, 40, 35, 35, 35, 25, 45, 20, 15, 35, 20, 44, 45, 45, 35, 35, 25, 39, 45, 40, 40, 40, 50, 10, 50, 50,
50, 50, 50, 30, 50, 20, 25, 30, 35, 35, 35, 40, 35, 35, 35, 25, 45, 20, 15, 35, 20, 44, 45, 45, 35, 35,
25, 39, 45, 40, 40, 40, 50, 10, 50, 50, 50, 50, 50, 30, 50)
rt2<-c(15, 20, 20, 30, 30, 30, 30, 35, 85, 40, 40, 40, 15, 15, 35, 20, 25, 45, 45, 35, 25, 25, 39, 45, 40,
40, 40, 50, 30, 40, 50, 60, 30, 60, 50, 10, 15, 20, 20, 30, 30, 30, 30, 35, 85, 40, 40, 40, 15, 15, 35,
20, 25, 45, 45, 35, 25, 25, 39, 45, 40, 40, 40, 50, 30, 40, 50, 60, 30, 60, 50, 10, 15, 20, 20, 30, 30,
30, 30, 35, 85, 40, 40, 40, 15, 15, 35, 20, 25, 45, 45, 35, 25, 25, 39, 45, 40, 40, 40, 50, 30, 40, 50,
60, 30, 60, 50, 10, 15, 20, 20, 30, 30, 30, 30, 35, 85, 40, 40, 40, 15, 15, 35, 20, 25, 45, 45, 35, 25,
25, 39, 45, 40, 40, 40, 50, 30, 40, 50, 60, 30, 60, 50, 10)
t.test(rc2, rt2, alternative = "two.sided", paired = FALSE, var.equal = TRUE, conf.level = 0.95)
sd(rc2); sd(rt2)

#equivalence Study using different bounds#
install.packages("TOSTER")
library("TOSTER")
#medium effect original
TOSTtwo(m1=42.9 ,m2=55.9, sd1=13.8, sd2=20.0, n1=25, n2=25, low_eqbound_d=-.3, high_eqbound_d=.3, alpha =
0.05, var.equal = TRUE)

#medium effect replicate

208



TOSTtwo(m1=47.9 ,m2=54.7, sd1=16,3, sd2=19.7, n1=55, n2=55, low_eqbound_d=-.3, high_eqbound_d=.3, alpha =
0.05, var.equal = TRUE)

#large effect original
TOSTtwo(m1=42.9 ,m2=55.9, sd1=13.8, sd2=20.0, n1=25, n2=25, low_eqbound_d=-.5, high_eqbound_d=.5, alpha =
0.05, var.equal = TRUE)

#large effect original
TOSTtwo(m1=47.9 ,m2=54.7, sd1=16,3, sd2=19.7, n1=55, n2=55, low_eqbound_d=-.5, high_eqbound_d=.5, alpha =
0.05, var.equal = TRUE)

#small effect
TOSTtwo(m1=42.9 ,m2=55.9, sd1=13.8, sd2=20.0, n1=25, n2=25, low_eqbound_d=-.1, high_eqbound_d=.1, alpha =
0.05, var.equal = TRUE)

#small effect
TOSTtwo(m1=47.9 ,m2=54.7, sd1=16,3, sd2=19.7, n1=55, n2=55, low_eqbound_d=-.1, high_eqbound_d=.1, alpha =
0.05, var.equal = TRUE)

#Equivalence Study with .1 bigger or smaller from 0#
TOST_corr_bounds<-function(n, r, lb, ub, plot = TRUE, verbose = TRUE){

#Determine correlation interval using z critcal values
(z_r<-(log((1+r)/(1-r))/2))
(z_lb<-(log((1+lb)/(1-lb))/2))
(z_ub<-(log((1+ub)/(1-ub))/2))

LL_prob<-pnorm((z_lb-z_r)/sqrt(1/((n)-3)))
UL_prob<-pnorm((z_ub-z_r)/sqrt(1/((n)-3)))
Prob<-UL_prob-LL_prob

print(round(Prob, digits = 20))
}

###Study 1####;
n1a<-c(50, 110)
n1<-harmonic.mean(n1a)
r1<-0.38-.19

TOST_corr_bounds(n=n1, r=r1, lb=-.1, ub=.1)

###Study 2####;
n2a<-c(252, 596)
n2<-harmonic.mean(n2a)
r2<-0.27-0.08

TOST_corr_bounds(n=n2, r=r2, lb=-.1, ub=.1)

###Study 3####;
n3a<-c(90, 306)
n3<-harmonic.mean(n3a)
r3<-0.18-0.13

TOST_corr_bounds(n=n3, r= r3, lb=-.1, ub=.1)

###Study 4####;
n4a<-c(144, 288)
n4<-harmonic.mean(n4a)
r4<-0.029-0.026

TOST_corr_bounds(n=n4, r = r4, lb=-.1, ub=.1)

###Study 5####;
n5a<-c(130, 260)
n5<-harmonic.mean(n5a)
r5<-0.24-0.099

TOST_corr_bounds(n=n5, r = r5, lb=-.1, ub=.1)

###Study 6####;
n6a<-c(186, 506)
n6<-harmonic.mean(n6a)
r6<-0.15-0.089
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TOST_corr_bounds(n=n6, r=r6, lb=-.1, ub=.1)
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