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One of the main problems of a supervised deep learning approach is

that it requires large amounts of labeled training data, which are not

always easily available. This PhD dissertation addresses the above-

mentioned problem by using a novel unsupervised deep learning face

verification system called UFace, that does not require labeled train-

ing data as it automatically, in an unsupervised way, generates train-

ing data from even a relatively small size of data. The method starts

by selecting, in unsupervised way, k-most similar and k-most dissim-

ilar images for a given face image. Moreover, this PhD dissertation

proposes a new loss function to make it work with the proposed

method. Specifically, the method computes loss function k times

for both similar and dissimilar images for each input image in order

to increase the discriminative power of feature vectors to learn the

inter-class and intra-class face variability. The training is carried out

based on the similar and dissimilar input face image vector rather

than the same training input face image vector in order to extract

face embeddings.

The UFace is evaluated on four benchmark face verification datasets:

Labeled Faces in the Wild dataset (LFW), YouTube Faces dataset

(YTF), Cross-age LFW (CALFW) and Celebrities in Frontal Profile

in the Wild (CFP-FP) datasets. The results show that we gain an

accuracy of 99.40%, 96.04%, 95.12% and 97.89% respectively. The

achieved results, despite being unsupervised, is on par to a similar

but fully supervised methods.

Another, related to face verification, area of research is on face anti-

spoofing systems. State-of-the-art face anti-spoofing systems use ei-

ther deep learning, or manually extracted image quality features.
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However, many of the existing image quality features used in face

anti-spoofing systems are not well discriminating spoofed and gen-

uine faces. Additionally, State-of-the-art face anti-spoofing systems

that use deep learning approaches do not generalize well.

Thus, to address the above problem, this PhD dissertation proposes

hybrid face anti-spoofing system that considers the best from image

quality feature and deep learning approaches. This work selects and

proposes a set of seven novel no-reference image quality features

measurement, that discriminate well between spoofed and genuine

faces, to complement the deep learning approach. It then, proposes

two approaches: In the first approach, the scores from the image

quality features are fused with the deep learning classifier scores

in a weighted fashion. The combined scores are used to determine

whether a given input face image is genuine or spoofed. In the second

approach, the image quality features are concatenated with the deep

learning features. Then, the concatenated features vector is fed to

the classifier to improve the performance and generalization of anti-

spoofing system.

Extensive evaluations are conducted to evaluate their performance on

five benchmark face anti-spoofing datasets: Replay-Attack, CASIA-

MFSD, MSU-MFSD, OULU-NPU and SiW. Experiments on these

datasets show that it gives better results than several of the state-

of-the-art anti-spoofing systems in many scenarios.
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Chapter 1

Introduction

Face recognition has been an active area of research in the past

several decades. Initially, it was a branch of artificial intelligence

endowing robots with visual perception. Now, it became a part of a

general discipline of computer vision [1].

In contrast to general computer vision, face recognition is confined to

the narrow band of visible light for which surveillance and biometrics

authentication can be performed [2]. Biometrics is the term used to

describe human characteristics metrics such as iris, fingerprint or

face [3]. These metrics are used for identification and verification

of individuals, and access control of individuals. Face has become

the preferred metric simply because it is a natural characteristic of

identity, and its non-intrusive nature provides convenience and ease

of verification [3]. For example, using a fingerprinting system, the

individual is required to interact with the system by placing a finger

under a fingerprint reader. Thus, this PhD dissertation focuses on

face recognition, since in contrast, using the individual’s face as a

metric does not require any physical intervention.

The development of a face recognition system has different stages.

Firstly, all images must be captured by a camera and then be given

1
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to a face recognition application for further processing. Compared to

the human visual system, the camera is the eye, and the processing

software is the brain of the application. To acquire the image, the

camera uses light reflecting off an object and transmits the light

intensity to its built-in sensors. The sensors then convert each of

their cell intensities to a value in the range of 0-255, where a grid

of numbers in this range becomes the final representation of the

captured image [4].

1.1 Motivation

1.1.1 Face Recognition

The human visual system interprets the object as a human face ef-

fortlessly [5]. It has no problem interpreting the subtle variation of

translucency and correctly segmenting the object as a human face

from its background. The human eye and brain can extract detailed

information from the image using an existing pattern of recognition

from years of experience and evolution. Furthermore, the human

vision system captures objects in three dimensions with contextual

properties such as depth, color, shape, and appearance. However,

these properties are all lost when the camera captures an image, and

its data reach a face recognition system. Given camera data as a two-

dimensional grid of numbers, a face recognition system must recover

the lost contextual information by inverting the camera acquisition

process from unknown and insufficient information. The recovery of

lost contextual properties, the visual reconstruction of an image, and

its interpretation from insufficient information are the reasons that

make face recognition challenging.
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Recently, several face recognition systems have been proposed and

some major advances have been achieved. But, the state-of-the-art

face recognition systems such as [6–19] are supervised ones, which

requires labeled training data. But, in practice, it is costly to get

labeled training data.

1.1.2 Face Anti-Spoofing

The other challenge we address in this PhD dissertation is the spoof-

ing attack issue in face recognition systems. As long as there are face

verification mechanisms in place, fraudsters will always find a way

to get around them. One such method is face spoofing, in which

a fraudster attempts to deceive a facial recognition system by dis-

playing a spoof face to the camera. Face spoofing means using a

target person’s fake face and simulating facial biometrics to steal

their identity.

Thus, the need for reliable identification and verification methods

is a fundamental requirement in many applications such as border

control, financial transactions, and computer security. The authen-

tication methods such as tokens, ID cards, passwords, and Personal

Identification Numbers (PINs) are the most widely used tools to

authenticate people and protect data and systems. These methods

provide an adequate level of security but, unfortunately, they suffer

from different drawbacks. For instance, the tokens and the ID cards

can be easily stolen or lost, and the passwords can be forgotten,

guessed or hacked by the attackers.

Another alternative for recognizing and authenticating people is the

use of biometric information. Biometric systems aim to recognize

people based on their physiological characteristics such as face, voice,
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fingerprint, and iris [20, 21]. Because these biometric traits are

unique for each individual, they ensure a good level of security.

With system and hardware prices dropping and reliability and con-

venience going up, many biometric systems started to be deployed in

real-world applications such as mobile device authentication, identity

card management, and security portal verification.

But, the deployment of biometric systems has arisen new challenges.

Among these different issues and challenges, the vulnerability against

spoofing attacks has drawn a significant level of attention. Many

studies (e.g., [22–24]) have shown that most of the existing biomet-

ric systems are vulnerable to spoofing attacks. In [25], six commer-

cial face authentication systems were successfully spoofed using face

images downloaded from social media websites. Compared to other

modalities, face recognition systems are more susceptible to spoofing

attacks. Because of the explosion of the social media websites and

the improvement of the camera resolutions and print quality, it is

easy to get face images or videos of a target person. Using these

images and videos, someone can easily gain an illegitimate access to

the systems by presenting them either on printed paper or replayed a

video clip on display devices in front of the face recognition camera.

Indeed, recent studies have revealed that the performance of the

state-of-the-art methods degrades drastically under the real-world

variations (e.g., illumination and camera device variations) [26–30],

which indicates that more robust face anti-spoofing methods are

needed to reach the deployment levels of the face biometric systems.
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1.2 Objectives and Proposed Contributions

This PhD dissertation includes five main objectives: the first three

are for the case of face recognition system as described below in 1.2.1

and the remaining two are for the case face anti-spoofing system as

described below in 1.2.2, which are organized in a sequential manner,

where one objective flows into and motivates the next one.

The five main objectives are as follows.

1.2.1 The Proposed Novel Unsupervised Deep Learning System for

Face Verification System

Here, the three main research objectives are motivated by the draw-

back and limitations of existing supervised systems. Most of the ex-

isting state-of-the-art face recognition systems often rely on a large

amount of labeled training data, which are not always available. To

address this problem, an unsupervised deep learning face verification

system, called UFace, is proposed.

Objective 1: The proposed novel system using K most sim-

ilar images using autoencoder network.

In the first objective, we propose a new loss function to make use

of k most similar face images for face verification and applied it to

an autoencoder network. First in unsupervised way, it generates

the k most similar images to each input image from large unlabeled

data. Then, using k most similar images, it trains the autoencoder.

During the training, autoencoder tries to reconstruct similar face

images instead of the same training face images. In this way, the

network learns face variability in an implicit way. Further details

are stated in chapter 3, section 3.2.
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Objective 2: The Proposed novel system using K most sim-

ilar and K most dissimilar images using autoencoder net-

work.

In the second objective, to improve the performance of the first ob-

jective, we propose the use of k dissimilar face images in addition

to k most similar face images and applied to autoencoder network.

Firstly, in unsupervised way, it generates the k most similar and k

dissimilar images for each input image from large unlabeled data.

Then, using k most similar and dissimilar images, it trains the au-

toencoder. In addition, this work proposes new loss function. Fur-

ther details are outlined in chapter 3, section 3.2.

Objective 3: The Proposed novel system using Siamese net-

work.

In the third objective, again, to improve the performance of the

above two objectives, we make use of the k most similar face images

along with the dissimilar face images and applied it to the triple-

branch Siamese network. Using these training pairs, we train a triple-

branch Siamese network using triplet loss, which is aimed to extract

unsupervised face embeddings. Unlike in typical deep neural network

training, it computes the loss function k times for similar images and

k times for dissimilar images for each input image. In the testing

phase, we extract face embeddings and then score them using cosine

scoring. Their performance is evaluated using four benchmark face

verification datasets. One of the biggest advantages of the proposed

system is that it uses much less training data and does not require

labeled data. Further details are described in chapter 3, section 3.3.
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1.2.2 The Proposed Novel Face Anti-Spoofing System

Face spoofing attack’s goal is to obtain fraudulent access to a biomet-

ric system. Most of the state-of-the-art face anti-spoofing systems

use either deep learning, or image quality feature measurements or

hand-crafted features extracted from face images as input to a clas-

sical classifier.

Many of the existing image quality feature measurements used in face

anti-spoofing systems are not well discriminating between spoofed

and genuine faces. Likewise, the state-of-the-art deep learning-based

face anti-spoofing system do not generalize well.

Therefore, we felt that there is a potential improvement can be

achieved by considering the best out of those two approaches (i.e.,

image quality feature measurements and deep learning).

Thus, two additional main research objectives are proposed to im-

prove the poor generalization and performance issues that most of

state-of-the-art face anti-spoofing system suffers.

Objective 4: A novel face anti-spoofing system by fusing

the proposed image quality features measurement with deep

learning method at the classification score level.

In the fourth objective, we identify and introduce the most signifi-

cant set of seven no-reference image quality features measurement.

Thus, this PhD dissertation proposes a novel system, called FASS,

that uses the identified image quality features measurement as in-

put to random forest classifier, which results are fused in a weighted

fashion with the results of a deep learning classifier to improve the

performance and generalization of anti-spoofing system. Further de-

tails are stated in chapter 4, section 4.2. We perform extensive
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experiments comparing the proposed system with state-of-the-art

anti-spoofing systems on five benchmark face anti-spoofing datasets:

Replay-Attack, CASIA-FASD, MSU-MFSD, Oulu-NPU and SiW.

Objective 5: A novel face anti-spoofing system by fusing

the proposed image quality features measurement with deep

learning method at the feature level.

In the last and fifth objective, we address the issue of face spoofing

attack by proposing a novel system that concatenate the proposed

image quality features measurement with the deep features obtained

after removing the last layer of VGG network. The combined feature

vector is fed into the classifier to get the decision score to determine

whether a given input face image is genuine or spoofed. Further

details are discussed in chapter 4, section 4.3. We perform extensive

experiments comparing the proposed method with state-of-the-art

anti-spoofing systems on two benchmark face anti-spoofing datasets:

Oulu-NPU and SiW.

Some of the main contributions are as follows:

• Proposes a novel training method that does not explicitly require

a labeled training dataset.

• Proposes a novel an unsupervised face recognition system called

UFace, that uses the k most similar and k most dissimilar images

of the original input face image.

• Proposes a novel algorithm to select similar and dissimilar im-

ages for each dataset in an unsupervised manner.

• Proposes a novel technique to significantly increase a size of

training data for the applications where only small datasets ex-

ist. For example, having only 100 training images with k =
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10 similar/dissimilar images, results in 100*K + 100*K training

images.

• Proposes a novel autoencoder and Siamese training methods

that tries to reconstruct similar face images instead of using the

same original input face images.

• Proposes new loss functions called UFace MSE and UFace Loss,

to make use of the most similar/dissimilar images.

• Introduces a novel set of seven no-reference image quality fea-

tures measurement, to be used in face anti-spoofing system, that

discriminate well between spoofed and genuine faces.

• Introduces a novel hybrid face anti-spoofing systems, called FASS

and HDLHC.

• Introduces a novel system that fuses the scores in a weighted

fashion from classifier that uses the proposed set of seven image

quality features measurement and the classifier that uses the

deep features based on ResNet-50 network.

• Introduces a novel system that concatenates the features ex-

tracted from the proposed seven image quality features measure-

ment and deep learning features extracted by VGG network.

• Improves the generalization of anti-spoofing system.

1.3 Organization of the PhD Dissertation

This section provides a brief outline to the flow of the upcoming

chapters starting from chapter one.

Chapter 1 presents the background of the topic, research problems,

objectives, and contributions of this PhD dissertation.
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Chapter 2 provides background concerning the concepts and methods

that are used in this research. It briefly reviews face recognition and

spoofing attacks. It also reviews the state-of-the-art approaches.

After this, some recent developments and trends in face recognition

and face spoofing attacks are briefly discussed.

In Chapter 3, we avoid the supervised DNN training by using only

unsupervised autoencoder and Siamese network. In this chapter, we

explain our proposed unsupervised autoencoder: firstly, using only

the k most similar images, then, secondly also using both k most

similar and dissimilar images approach. The unsupervised selection

of k most similar and dissimilar images algorithm is also discussed

in this chapter. We also describe our CNN based Siamese network

which is trained using the k most similar and dissimilar face images

pairs. The performance of the proposed approach is also evaluated

on face verification benchmark datasets.

Chapters 4 focus on the poor generalization and performance is-

sue of face anti-spoofing methods and investigate the importance of

image quality features in addition to deep learning approaches for

improving the performance of the face anti-spoofing system. It also

describes how the image quality features are selected.

Finally, Chapters 5 provides conclusion remarks and future work.



Chapter 2

Background and Related Works

The humans can easily and successfully perform face recognition task

using their eyes. However, the automatic human face recognition

still far from optimal. In this chapter, a detailed view of the hu-

man face recognition methods is presented. Researchers introduced

variant algorithms will be described. It also provides an overview

of the face recognition process such as preprocessing, face detection,

feature extractions and classification. The main purpose of the fea-

tures extraction is to reduce the image dimension by selecting the

most significant features with retaining the relevant information and

should be diverse enough among classes for good classification per-

formance. However, the strength of the features extraction methods

relies on strong preprocessing approaches. The extracted features

can be used to classify and to recognize patterns that are present in

the source images. Therefore, the preprocessing and feature extrac-

tion processes are the key point of the classification performance.

In this chapter, we also provide a general introduction to the different

attacks that can be launched against face recognition systems. Then,

we focus on the spoofing attacks and types of spoof attack detection

11
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systems to such kind of attacks. We also give an overview on the

state-of-the art face anti-spoofing methods.

Finally, this chapter also briefly explains the different evaluation met-

rics used in face verification and anti-spoofing detection systems for

assessing the performance of the countermeasure. At the end it also

explains the datasets used in this PhD dissertation.

2.1 Face Recognition

Among all biometric methods for human recognition, face recogni-

tion has been used more frequently. Face recognition is the main

biometric used by human beings. When two people meet each other,

their brains run a variety of biometrics based on height, age, hair

color and style, skin color, etc. However, the final decision of the

other person’s identity is made mainly based on his/her face; hence

face is assumed to be the part of the body that carries more infor-

mation than other parts.

Automatic face recognition has many commercial and security ap-

plications in identity recognition and has become one of the hottest

topics in image processing and pattern recognition since 1990. Avail-

ability of feasible technologies as well as the increasing request for

reliable security systems in today’s world has been a motivation for

many researchers to develop new methods for face recognition. Au-

tomatic recognition of human faces continues to attract researchers

from different areas such as computer vision, image processing, pat-

tern recognition, neural networks, and psychology and has been in-

creasingly accepted by the general public to be used in authentica-

tion, security and law enforcement.
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An automatic face recognition system is usually a procedure of four

main stages. In most cases these four stages are namely: preprocess-

ing, face detection, feature extraction and finally classification. The

input images obtained from image acquisition devices e.g., cameras,

might not be suitable for recognition due to noise or illumination con-

ditions. Therefore, first step is the preprocessing stage. Then faces

should be detected in input images. Some face detection methods

are presented in this chapter. Next step would be to extract features

in order to make a feature vector. These features must include dis-

tinctive information about each person to recognize the individual

based on these features. And finally, the last stage is the classifier

where we intend to recognize an unknown person by assigning a class

to its feature vector.

2.1.1 Face Identification vs. Verification

Biometric methods for face are used for either one of two the func-

tions: face identification or face verification, as shown in Figure 2.1.

In face identification, the goal is to identify an individual against

a database of previously collected individuals. In other words, sys-

tems which are designed for the purpose of identification will answer

the question: “Who the person is?”, as shown in Figure 2.1. It of-

ten takes place when users are not aware that it is happening; they

don’t participate in the process or directly benefit from it, and their

privacy is not protected. For example, a camera in a public place

could be matching faces that it spots on the street with a database

of criminals.

In the verification applications, on the other hand, we desire to verify

whether the individual is the person that they claim to be. Biometric



14 Chapter 2. Background and Related Works

methods designed for verification purposes answer the question: “Is

the person who he says he is?”, as shown in Figure 2.1 (image was

taken from [1]). It takes place when a user needs to verify their

identity or authenticate themselves. For example, if you want to

apply for a driver’s license or a credit card online, you need to prove

that it is genuinely you that is accessing your account and that you

are not an imposter that is attempting to impersonate you.

Figure 2.1: Example of face identification vs. verification

2.1.2 Preprocessing

The first step in most face recognition systems is preprocessing. The

input images acquired via still or video cameras might have noise.

Histogram equalization is the most common method used for im-

age enhancement when images have illumination variations [31, 32].

Even for images under controlled illumination, histogram equaliza-

tion improves the recognition results by flattening the histogram of

pixel intensities of the images. The proposed Gamma intensity cor-

rection method in [33] used it for illumination normalization along

with histogram equalization. They also presented a region-based
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method for equalizing histogram and gamma locally in small por-

tions of an image in their work.

Face images often contain background clutter that reduces the ac-

curacy of face detection and facial recognition systems. To improve

this, preprocessing methods are needed to remove the unneeded data

from an input image before image recognition. Image cropping re-

moves unnecessary surrounding material from the images for some

specific reason. Image post-processing can help to extract relevant

data. For example, many extraction methods are used in face detec-

tion systems to ensure the face in the image crop is in the most suit-

able position. Image filtering algorithms reduce the effect of noise

on the image. As a result, image filtering improves the gray-level

coherence, background white-noise, and smoothness. In addition,

the regularized inverse auto-regressive (RIR) filter also results in a

sharpened output image. Image de-noising is the process of detect-

ing meaningful features in an image and enhancing them while sup-

pressing background noise. Examples of useful features to improve

include lines and edges and operations that can fill in gaps to create

a complete representation of an prove that it is genuinely you that

is accessing your account in the target image. Image filtering is any

modification that alters some characteristic of an input image to ob-

tain an altered output image. For example, spatial filtering modifies

the intensities of pixels. Spectral filtering changes properties like hue

and saturation. Other filters can refine temporal characteristics, like

motion blurriness.
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2.1.3 Face Detection

Face detection is the process of locating a face in an image. Detecting

faces in a photograph is easily solved by humans, although has his-

torically been challenging for computers given the dynamic nature of

faces. For example, faces must be detected regardless of orientation

or angle they are facing, light levels, hair color, facial hair, makeup,

age, and so on. Although many face detection algorithms existed be-

fore 2001, a major breakthrough in face detection appeared with the

Viola-Jones face detection method [34, 35]. Unlike previous face de-

tection methods that relied on pixel analysis, Viola-Jones devised an

algorithm called “Haar-classifier” that relied on Haar-like features.

The Haar classifier is a machine learning algorithm that is trained

with many positive and negative samples to detect objects in images.

More recently deep learning methods such as Multi-task Cascaded

Convolutional Networks (MTCNN) [36] have achieved state-of-the-

art results on standard benchmark face detection datasets. MTCNN

is a framework developed as a solution for both face detection and

face alignment. The process consists of three stages of convolutional

networks that are able to recognize faces and landmark location such

as eyes, nose, and mouth.

2.1.4 Feature Extraction

The main function of this step is to extract the features of the face

image which is detected in the detection step. This step represents

a face with a set of features that describes the prominent features of

the face image such as mouth, nose, and eyes with their geometry

distribution [37, 38]. Each face is characterized by its structure, size,

and shape, which allow it to be identified. Several techniques involve
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extracting the shape of the mouth, eyes, or nose to identify the face

using the size and distance [39]. The below techniques are widely

used to extract the face features.

Histogram of oriented gradients (HOG) [40] is one of the best de-

scriptors used for shape and edge description. The HOG technique

can describe the face shape using the distribution of edge direction

or light intensity gradient. The process of this technique is done

by dividing the whole face image into small regions; a histogram of

pixel edge direction is generated for each small region; finally, the

histograms of the small regions are combined to extract the feature

of the face image, [41, 42]. The magnitude of the gradient and the

orientation of each pixel in the small region are voted in nine bins

with the tri-linear interpolation. [40] proposed a combination of dif-

ferent histograms of oriented gradients (HOG) to perform a robust

face recognition system. This technique is named “multi-HOG”.

The authors create a vector of distances between the target and the

reference face images for identification. [43] proposed a novel face

recognition system based on the Laplacian filter and the pyramid

histogram of gradient (PHOG) descriptor.

Eigenface [44] is one of the popular methods used to extract feature

points of the face image. This approach is based on the principal

component analysis (PCA) technique. The principal components

created by the PCA technique are used as a face templates. The

PCA technique transforms several possibly correlated variables into

a small number of incorrect variables called “principal components”.

The purpose of PCA is for reducing the dimensionality of datasets,

increasing interpretability but at the same time minimizing infor-

mation loss. It does so by creating new uncorrelated variables that

successively maximize variance. PCA calculates the Eigenvectors of
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the covariance matrix and projects the original data onto a lower

dimensional feature space, which are defined by Eigenvectors with

large Eigenvalues. PCA has been used in face recognition, where the

Eigenvectors calculated are referred to as Eigenfaces.

Independent component analysis (ICA) [45] is a statistical and com-

putational technique used in machine learning to separate a multi-

variate feature into its independent non-Gaussian components. ICA

assumes that the observed data is a linear combination of indepen-

dent, non-Gaussian features. The goal of ICA is to find a linear

transformation of the data that results in a set of independent com-

ponents, which allows the analysis of independent components. It

is determined that they are not orthogonal to each other. In ad-

dition, the acquisition of images from different sources is sought in

uncorrelated variables, which makes it possible to obtain greater effi-

ciency, because ICA acquires images within statistically independent

variables.

The authors in [46] proposed a hybrid approach which is combining

Gabor wavelet and linear discriminant analysis (HGWLDA) for face

recognition. The grayscale face image is approximated and reduced

in dimension. The authors have convolved the grayscale face image

with a bank of Gabor filters with varying orientations and scales.

After that, a subspace technique 2D-LDA is used to maximize the

inter-class space and reduce the intra-class space. To classify and

recognize the test face image, the k-nearest neighbor (k-NN) classifier

is used.

Scale invariant feature transform (SIFT) [47, 48] is an algorithm

used to detect and describe the local features of an image. This

algorithm is widely used to link two images by their local descriptors,
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which contain information to make a match between them. The

main idea of the SIFT descriptor is to convert the image into a

representation composed of points of interest. These points contain

the characteristic information of the face image. The four steps of the

algorithm is: (1) detection of the maximum and minimum points in

the space-scale, (2) location of characteristic points, (3) assignment

of orientation, and (4) a descriptor of the characteristic point. A

framework to detect the key-points based on the SIFT descriptor was

proposed by [47], where they use the SIFT technique in combination

with a Kepenekci approach for the face recognition.

The authors in [49] propose Gabor filters are spatial sinusoids lo-

cated by a Gaussian window that allows for extracting the features

from images by selecting their frequency, orientation, and scale. To

enhance the performance under unconstrained environments for face

recognition, Gabor filters are transformed according to the shape

and pose to extract the feature vectors of face image combined with

the PCA in the work of [49]. The PCA is applied to the Gabor

features to remove the redundancies and to get the best face im-

ages description. Finally, the cosine metric is used to evaluate the

similarity.

The authors in [50] propose Local binary pattern (LBP) is a great

general texture technique used to extract features from any object.

It has widely performed in many applications such as face recog-

nition [39], facial expression recognition, texture segmentation, and

texture classification. The LBP technique first divides the facial im-

age in spatial arrays. Next, within each array square, pixel matrix

is mapped across the square. The pixel of this matrix is a threshold

with the value of the center pixel as a reference for thresholding to

produce the binary code. If a neighbor pixel’s value is lower than the
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center pixel value, it is given a zero; otherwise, it is given one. The

binary code contains information about the local texture. Finally,

for each array square, a histogram of these codes is built, and the

histograms are concatenated to form the feature vector.

The authors in [51] propose a fast face recognition system based on

LBP, pyramid of local binary pattern (PLBP), a rotation invariant

local binary pattern (RI-LBP). [52] have introduced a deep learn-

ing based technique, called local binary pattern network (LBPNet),

to extract hierarchical representations of data. The LBPNet main-

tains the same topology as the convolutional neural network (CNN).

[53] have implemented a method that helps to solve face recognition

issues with large variations of parameters such as expression, illumi-

nation, and different poses. This method is based on two techniques:

LBP and K-NN techniques. Owing to its invariance to the rotation of

the target image, LBP become one of the important techniques used

for face recognition. [54] proposed a variant of the LBP technique

named “multiscale local binary pattern (MLBP)” for features’ ex-

traction. Another LBP extension is the local ternary pattern (LTP)

technique [55], which is less sensitive to the noise than the original

LBP technique. This technique uses three steps to compute the dif-

ferences between the neighboring ones and the central pixel. [56]

develop a local quantized pattern (LQP) technique for face repre-

sentation. LQP is a generalization of local pattern features and is

intrinsically robust to illumination conditions. The LQP features use

the disk layout to sample pixels from the local neighborhood and ob-

tain a pair of binary codes using ternary split coding. These codes

are quantized, with each one using a separately learned codebook.

FaceNet [6] is a unified system for face verification, recognition, and

clustering. This method aims to extract an embedding vector for
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each input image using a trained CNN network. The network is

trained so that the square L2 distance of all embedding vectors in the

embedding space simulates the similarity between the inputs; that is,

faces of the same identity have a small distance while faces of different

identities have a large distance. To achieve this kind of discriminative

feature, this approach employs the triplet loss function. The FaceNet

model is trained using 200M training faces of 8M different persons.

In 2014, Facebook introduced DeepFace model [7]. DeepFace model

was based on the Softmax loss function.

Softmax based models calculate the distance between the distribu-

tion of the output (ground truth) and the original distribution. Then,

it normalizes a vector of logits (output of last FC layer) to be a prob-

ability distribution. The problem with these models is that they do

not enforce separation between classes. To solve this issue, [57] in-

troduced a discriminative feature learning approach for deep face

recognition, this approach was based on a new loss function based

on Softmax loss function called the center loss.

The center loss aims to calculate the center of each class and pe-

nalizes the distance between the feature and its corresponding class

center. This can achieve intra-class compactness and inter-class dis-

parity. However, measuring the center point for each class is com-

putationally expensive because we need to calculate the distance

between all features to find the center.

The authors in [58] introduced SphereFace, a deep Hypersphere Em-

bedding for face recognition; this model is based on the Softmax loss

function with some modifications. The author of SphereFace claims

that features learned by Softmax loss have an intrinsic angular dis-

tribution. SphereFace utilizes this angular distribution by imposing
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a discriminative constrain in a hypersphere manifold, allowing the

intra-class and inter-class feature to be controlled by a parameter

m. This method is called Angular Softmax ”A-Softmax”. The de-

cision boundaries can significantly affect the feature distribution, so

the basic idea is to manipulate decision boundaries to produce an

angular margin.

The authors in [15] introduced CosFase, which is like SphereFace.

CosFace adopted the idea of utilizing softmax natural angular dis-

tribution but introduced another angular margin technique called

Large Margin Cosine Loss that can better maximize inter-class vari-

ance and minimize intra-class variance. This model only emphasizes

correct classification but does not enforce discriminative features. To

introduce the margin, CosFace implements the same idea of manip-

ulating decision boundaries to produce angular margin.

The authors in [13] introduced ArcFace, an Additive Angular Margin

Loss for Deep Face Recognition. Similar to SphereFace and CosFase,

ArcFace utilizes Softmax natural angular distribution but introduces

another angular margin technique. The authors of ArcFace pro-

posed an Additive Angular Margin Loss function further to improve

the face recognition model’s discriminative power and stabilize the

training process. Now the prediction depends only on the angle be-

tween the weight and the feature. The learned embedding features

are distributed on a hypersphere of a radius s. And to intensify the

intra-class compactness and inter-class disparity, an angular margin

penalty m is added.
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2.2 Face Anti-spoofing

Since deployment of face recognition systems is growing year after

year, people are becoming more familiar with their use in daily life.

Consequently, security weaknesses of face recognition systems are

getting better known to the general public. As shown in Figure 2.2,

(image was taken from [59]), there are nine different point where

someone can compromise the security of a face recognition system.

Figure 2.2: Different points of attacking a face recognition system.

These attacks can be divided into direct attacks and indirect attacks

[59]. The direct attacks are performed outside the face recognition

system (point 1) and they consist of presenting face artifacts in front

of the sensor. According to the ISO/IEC JTC1 SC37 standard [60]

an artifact or Presentation Attack Instrument (PAI) is ”an artificial

object or representation presenting a copy of biometric character-

istics or synthetic biometric patterns”. The direct attacks are also

known as spoofing attacks or Presentation Attacks (PA) [60]. Con-

trary to the direct attacks, the indirect attacks are performed inside

the biometric systems. These attacks can be done by intercepting the

biometric sample captured by the sensor and replacing it with a fake
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sample (point 2), overriding the feature extractor module by chang-

ing their functionality (point 3), replacing the extracted features

of the captured face with pre-computed features of the target face

(point 4), overriding the matcher to output a required score (point 5),

replacing the reference template with the attacker template (point

6), modifying the template in the communication channel (point 7),

changing the output score (point 8), or finally, by overriding the deci-

sion module to output the intended decision (point 9). Among these

different attacks, the spoofing attacks have gained a wide interest

from the biometric community because: it is easy to create an arti-

fact and present it in front of a face recognition camera; t does not

require any knowledge about the operational details of the biometric

system; and it does not need any hacking or advanced programming

skills. Therefore, we focus on direct attacks. For the indirect attacks,

the security can be increased using different measures [61] that in-

clude but are not limited to firewalls, anti-virus, intrusion detection

and encryption.

2.2.1 Spoofing Attacks

The biometric data used in the creation of the face spoofing attacks

can be 2D cut photo, 3D images, or video sequences as shown in

Figures 2.3 (image was taken from [62]) and 2.4 (image was taken

from [63]). Face recognition systems rely on data which are personal

in nature but, nevertheless, are already public. Using good camera

devices, someone can easily capture face images or video sequences

of a target person from distance without his/her permission. More-

over, with the increase of the internet utilization, many people are

sharing their pictures and videos in the social media websites, such

as Facebook and Twitter, and personal or professional web-pages.
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Thus, it is easy to download these images or videos and use them to

create face artifacts.

Figure 2.3: The left top four images represent the low quality videos, the left bottom are
the normal quality videos, and the right are the high quality videos. For each quality,
from left to right are genuine, warped photo attack, cut photo attack and video attack.

The 2D face images can be printed using a high-quality printers on

glossy photo papers to create print attacks [28, 62, 64] or displayed on

electronic display devices to generate photo display attacks [64]. The

attacks based on the 2D images retain only the face appearance and

they have no sign of liveness. To give some level of liveness to these

attacks, the attacker may hold the spoofed face image in his/her hand

and try to move it in a way to simulate the real face movements (e.g.,

translating, rotating, or warping) [62, 64]. Furthermore, to simulate

the eye blinking, the eye regions can be cut, and the attacker hides

behind the cutting pictures and exhibits eye-blinking through the

holes [62]. In the case of photo display attacks, the 2D images can

be animated using image processing software then replayed on the

display devices. It is obvious that the real face movements are differ-

ent from these artificial movements. However, the motion detection

methods are not perfect, and these artificial movements can increase

the error of the face spoofing attack methods based on motion anal-

ysis.

To include both the appearance and the liveness of the real faces,

in a more sophisticated way, video sequences of the targeted faces
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are used. These videos are first replayed on display devices, such as

laptops, tablets, smart-phones, then presented in front of the face

recognition camera. The quality of display attacks depends mainly

on two factors: the quality of face images or videos and the quality

of the display devices.

The print and the display attack instruments can be presented in

front of the camera using fixed or hand support. Fixed support is

more appropriate for presenting the video display attacks as it pre-

vents from the creation of other motions different from the motions

of the real faces. On the other hand, hand support is suitable for

presenting print attacks and photo display attacks as it gives them

some level of liveness.

The use of print and display attacks is only restricted to the face

recognition systems operating in an unsupervised scenario (i.e., the

recognition process is not assisted by an agent). Thus, to spoof the

recognition systems operating on a supervised scenario (e.g. the face

recognition systems in the airports), more sophisticated attacks are

needed. The best choice for spoofing this kind of systems is the use

of 3D mask attacks, Figure 2.4.

Nowadays, with the advancement in the 3D printing technology, it

is easy to create 3D mask of a targeted face from its 3D images.

Getting images of this kind is quite hard compared to the 2D images

as more advanced devices (e.g., 3D scanner) and user cooperation

are needed. However, it is easy to get 3D masks by just getting a set

of 2D face images (usually, two images, frontal and profile images).

The materials used in the creation of these 3D masks have a big

impact on the quality of the attacks.
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Figure 2.4: Sample face images of 3D mask attacks

There are several ways of detecting spoofing attack. Below we will

review three of them namely hardware based, image quality based,

and deep learning based.

2.2.2 Hardware Based Methods

The hardware-based methods use advanced materials to differenti-

ate between the real and the fake face samples. Using a 3D cameras

[22] or multispectral cameras [65, 66], we can get additional useful

information about the depth and the reflectance proprieties of the

observed faces. Thermal cameras can also be used to detect the

print attacks, replay attacks, and even some plastic surgery [65, 66].

Surgical operations usually cause alteration in blood vessel flow that

can be seen as cold spots in the thermal domain. Recently, light field

cameras capable of rendering multiple depth images in a single cap-

ture [67], and optical filter systems providing horizontal and vertical
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light polarization measurements [68] have shown promising results

in print and video-replay attack detection.

In addition to the difficulty of integrating these additional hardware

devices into existing face recognition systems and the high cost of

some advanced materials, the hardware-based methods are powerless

for detecting some kind of attacks under some circumstances. For in-

stance, the depth and the thermal cameras are useless against the 3D

masks attacks. It is known that thermal radiation can pass through

materials, which causes problems when thermal information is used

against wearable mask attacks [65]. The hardware-based techniques

have also difficulties in capturing the reflectance disparities between

genuine faces and 3D masks due to the 3D shape and a variety of

artificial materials [65].

2.2.3 Image Quality Feature Based Methods

There are several ways of extracting hand-crafted features, one of

them is using image quality features. Below we will review the most

known image quality feature-based methods for face anti-spoofing

detection.

Presenting a spoofed human face requires plastic, photo paper, print-

ing paper, and other media with qualities that differ from a real face’s

facial features and skin materials. There is a variance in the reflec-

tion quality of materials, such as picture paper and display screens.

Both of which exhibit specular reflections but no living faces. Most

of the picture quality after spoofed face differs from that of a living

face, such as color distribution distortion and blurring of the spoofed

face image, even though the spoofed of the face manufacturing pro-

cess is high. Image quality-based techniques use the variance among
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reflection and image distortion qualities to distinguish genuine and

spoofed faces.

The authors in [69, 70] introduced a new facial spoof detection

method based on Image Quality Assessment (IQA), assuming that

a spoofing image captured in a photo or video replay attack should

have a different quality than a genuine sample, as it was captured

twice instead of once for genuine faces, [71]. Eighteen and twenty-

five image quality measures were adopted in [69, 70], respectively, to

assess the image quality using scores extracted from single images.

Then, the image-quality scores were combined as a single feature vec-

tor and fed into a Quadratic Discriminant Analysis (QDA) classifier

to perform facial spoofing attack detection. The major advantage of

the IQA-based methods is that it is not a application specific method,

so this is a “multi-biometric” method that can also be employed for

iris or fingerprint-based anti-spoof detection.

The authors in [28] also proposed an IQA-based method, using anal-

ysis of image distortion, for facial anti-spoof detection. [28] method

analyzes the image chromaticity and the color diversity distortion

in the HSV (Hue, Saturation and Value) space. The idea here is to

detect imperfect/limited color rendering of a printer or LCD screen.

The image distortion feature (which consists of a specular reflec-

tion feature [72], blurriness feature [73, 74], a chromatic moment

feature [75] and a color diversity feature) is fed into SVM. The pro-

posed method has shown a promising generalization performance

when compared with other image quality based anti-spoof detection

methods.
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2.2.4 Deep Learning Based Methods

Deep learning-based algorithms have been effectively applied to vari-

ous disciplines, including video, speech recognition, medical imaging

applications, security, anomaly, and so on.

Deep learning in the machine learning field achieved numerous per-

formances in the computer vision and the processing of human lan-

guage applications [76–80]. Deep learning is driven by understanding

how the human brain processes information. The brain is organized

as a deep architecture with several layers that process the infor-

mation among many levels of non-linear transformation and repre-

sentation [81]. Deep learning learns the hierarchy, structure, and

pattern of the features from the lower level features using multilevel

of hidden layers of non-linear transformations [79]. Very complex

functions can be learned with enough such transformations. The

higher layers of representation increase aspects of the inputs that

are important for discrimination and suppress irrelative variation for

any object recognition. For human face recognition, higher layers

of representation amplify features of the inputs that are significant

for discrimination and subdue irrelative features [82]. The first layer

learns the low-level features such as curves, edges, and point from the

image pixels. The low-level features are combined in the following

layers to produce higher features; for example, points and combined

into lines and curves then they combined into shapes and more com-

plex shapes. Once this is done, the deep neural network delivers a

probability that these high-level features contain a particular object

or scene. The main goal of deep learning is to automatically learn

the most discriminative features from the raw data without human

involvement. Convolutional Neural Networks (CNN), Auto-encoder
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(SA), Recurrent Neural Network (RNN), and Deep Belief Network

(DBN) are the popular models for deep learning. [83, 84].

More recently, deep learning based methods are used to detect spoof-

ing attack. Researchers studying these methods focus on designing

an appropriate neural network so as to learn the best features rather

than to design the features themselves (as is the case with most

hand-crafted features presented above).

The first attempt to use Convolutional Neural Networks (CNNs)

for detecting spoofing attacks was claimed in [27]. In this method,

AlexNet [85] is used for learning the features that best discriminate

spoofing attacks. It was the first time that CNNs were proven to be

effective for automatically learning features for face anti-spoofing.

This method has surpassed almost all the existing state-of-the-art

methods for photo and video replay attacks. It showed the potential

of deep CNNs for face anti-spoofing. Later, more and more CNN-

based methods were explored for facial anti-spoofing.

The authors in, [86] proposed an end-to-end framework based on

AlexNet [85], namely CaffeNet, for facial anti-spoofing. The pro-

posed CNN was pretrained on ImageNet [79] and WebFace [87] to

provide a reasonable initialization and fine-tuned using the existing

face anti-spoofing databases. More specifically, two separate CNNs

are trained, respectively from aligned face images and enlarged im-

ages including some background. Finally, a voting fusion is used

to generate a final decision. Just like Yang et al.’s method [27],

the proposed CNN-based method has surpassed the state-of-the-art

methods in face anti-spoofing.

The authors in, [88] proposed to train a deep CNN based on VGG-

Face [8] for facial anti-spoofing. As in [86], the CNN was pretrained



32 Chapter 2. Background and Related Works

on massive datasets and fine-tuned on the facial spoofing database.

Furthermore, the features extracted from the different layers of the

CNN were fused to a single feature and fed into an SVM for facial

anti-spoofing. Principal component analysis (PCA) and the so-called

part features are used to reduce the feature dimension. To obtain

part features, the mean feature map in a given layer is firstly cal-

culated. Then, the critical positions in the mean feature map are

selected, in which the values are higher than 0.9 times the maximum

value in the mean feature map. Finally, the values of the critical po-

sitions on each feature map are selected to generate the part feature.

The concatenation of all part features of all feature maps is used as

the global part feature. Then, PCA is applied on the global part fea-

ture to further reduce the dimension. Finally, the condensed part fea-

ture is fed into an SVM to discriminate between genuine and spoofed

faces. Benefiting from using a deeper CNN based on VGG-Face, the

proposed method has achieved state-of-the-art performances in both

intra-dataset and cross-dataset scenarios for detecting face spoofing

attacks.

The authors in, [89] proposed to estimate the noise of a given spoof

face image to detect photo/video replay attacks. In this work, the

spoof image was regarded as the summation of the genuine image

and image-dependent noise introduced while generating the spoof

image. Since the noise of a genuine image was assumed as zero in this

work, a spoof image can be detected by thresholding the estimated

noise. A GAN framework based on CNNs, De-Spoof Net (DS Net),

was proposed to estimate the noise. However, as there is no noise

ground-truth, instead of assessing the quality of noise estimation,

the authors de-noise the spoof images and assess the quality of the

recovered (de-noised) image using Discriminative Quality Net (DQ
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Net) and Visual Quality Net (VQ Net). Besides, by fusing different

losses for modelling different noise patterns in DS Net, the proposed

method has shown a superior performance compared to other state-

of-the-art deep facial anti-spoofing methods such as in [90].

The authors in, [91] proposed Deep Pixelwise Binary Supervision

(DeepPixBiS), based on DenseNet [92], for facial anti-spoofing. In-

stead of only using the binary cross-entropy loss of the final output

as in [86], DeepPixBiS also uses during training a pixel-wise binary

cross-entropy loss based on the last feature map. Each pixel in the

feature map is annotated as 1 for a genuine face input and as 0 for a

spoof face input. In the evaluation/test phase, only the mean value of

pixels in the feature map is used as the score for facial anti-spoofing.

DenseNet and the proposed pixel-wise loss forcing the network to

learn the patch-wise feature, DeepPixBiS showed a promising anti-

spoofing performance for face spoofing attacks.

The authors in, [93] proposed to use NAS to design a neural net-

work for estimating the depth map of a given RGB image for fa-

cial anti-spoofing. The gradient-based DARTS [94] and Pc-DARTS

[95] search methods were adopted to search the architecture of cells

forming the network backbone for facial anti-spoofing. Three levels

of cells (low-level, mid-level and high-level) from the three blocks of

CNNs in [90] were used for the search space. Each block has four lay-

ers, including three convolutional layers and one max-pooling layer,

and is represented as a Directed Acyclic Graph, with each layer as a

node.

The authors in, the image depth information is crucial for determin-

ing the face’s validity as the face in real life is three-dimensional,

whereas the face attacked by photographs and screens is flat. The
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depth map differs from the real face, even if the face is deformed.

A two-channel CNN-based face anti-spoofing method was proposed

in this study [96]. Spatial characteristics of faces, such as texture

and depth, are essential, but temporal factors are even more crit-

ical for anti-spoofing. Examining a human face from a time and

space viewpoint can provide more helpful information and enhance

classification performance.

The authors in, A unique approach is presented [97] that reformu-

lates the Generalized Presentation Attack Detection (GPAD) prob-

lem from the standpoint of anomaly detection. A deep metric learn-

ing model was provided. A triplet focal loss is a regularization for a

novel loss called ‘metric-SoftMax.’ It guides the learning process to-

wards more discriminating feature representations in an embedding

space. Finally, the benefits of deep anomaly detection architecture

are proven by introducing a few-shot posterior probability calcula-

tion that does not require any classifier to be trained on the learned

features.



Chapter 3

An Unsupervised Deep Learning

Face Verification System

Face recognition is a technology that identifies or verifies a person

from an image or video [98]. Generally, face verification is used to

access an application, system or service. The task is to compare a

given face to another face and verify whether it is a match. In other

words, given any two face images, the face verification algorithm

decides if they are of the same person or not. Unlike other verifica-

tion methods such as using passwords or fingerprints, biometric face

verification uses dynamic patterns that make this approach one of

the safest and most effective ones. Face recognition is also used in

forensics and transaction authentication.

Deep neural networks have been successfully used in different appli-

cations such as speaker verification [99, 100] and image recognition

[101, 102]. In addition to artificial neural networks, spiking neural

networks have been successfully used for image recognition [103, 104].

It was shown that using deep neural networks for face verification

[6–19] significantly improved accuracy when compared with other

face verification systems [105–110]. The Facenet [6] face verification

35
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system was developed by Google; it used a Siamese network [111]

trained on a labeled dataset with 200M faces. It achieved an accu-

racy of over 98% on LFW [112] and over 95% on YTF [113], two

benchmark face verification datasets. To achieve that result, it used

a huge, labeled dataset, with 200M faces, for training. DeepFace [7]

was developed by Meta. It used 3D face modeling and a nine-layer

network with about 120 million parameters and was trained on 4.4M

labeled face images. On the LFW dataset, it achieved an accuracy

of over 97%. DeepFace was extended in [9] and, by using much more

training data—over 500M faces—improved its performance on LFW

to over 98%. Another face verification system, VGG Face, was de-

veloped at Oxford [8], used 37 convolutional layers and was trained

on 2.6M labeled face images. It achieved accuracies comparable to

Facenet and DeepFace on LFW, and over 97% on the YTF dataset.

In [10], another face verification system was proposed using marginal

loss, which was trained on a 4M labeled dataset, and achieved an ac-

curacy of over 99% on LFW and over 95% on YTF. ArcFace [13]

used an additive angular margin loss and obtained over 99% accu-

racy on LFW, over 98% on both YTF and CFP-FP, and over 95%

on CALFW. GroupFace [14] used multiple group-aware representa-

tions and achieved over 99%, 97%, 96% and 98% on the LFW, YTF,

CALFW and CFP-FP datasets, respectively. However, both Arc-

Face and GroupFace required labeled training data of 5.8M samples.

MegaFace [114] deployed a magnitude-aware margin on ArcFace loss

to improve intra-class compactness and achieved over 96% and 98%

on CALFW and CFP-FP datasets, respectively. CurricularFace [16]

used an adaptive curriculum learning loss and achieved over 99% on

LFW, over 96% on CALFW and 98% on CFP-FP datasets. Both

CurricularFace and MegaFace required about 3.8M labeled training
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data. MDCNN [115] is composed of two advanced deep learning

neural network models and achieved over 99% and 94% on the LFW

and YTF datasets, respectively, using a 1M labeled training dataset.

PSO AlexNet TL [116] used transfer learning and achieved an ac-

curacy of over 99% on the LFW dataset. Ref. [117] used data aug-

mentation and achieved over 99% and 96% on the LFW and YTF

datasets, respectively.

Semi-supervised learning methods with deep neural networks use

two main approaches: (1) consistency regularization-based meth-

ods [118] and (2) proxy label-based methods [119]. The consistency

regularization-based methods use a regularization term in the objec-

tive function to enable consistency while training on a large amount

of unlabeled data; this constrains model predictions to be invariant

to input noise. Ref. [118] developed an Unsupervised Domain Adap-

tation method with advanced data augmentation methods such as

rand-augment and back-translation. The proxy label-based methods

first assign proxy labels to unlabeled data (pseudo-labels) and then

train unlabeled and labeled data based on proxy and ground-truth

labels. Ref. [119] introduced a FixMatch method that first generates

pseudo-labels using the model’s predictions on weakly augmented

unlabeled images.

Several methods were proposed to learn features from unlabeled

data, which can significantly reduce the high cost of annotating

large-scale data. For example, Ref. [120] introduced DeepCluster, a

clustering method that jointly learns the parameters of a neural net-

work and the cluster assignments of the resulting features. Ref. [121]

proposed learning image features by training ConvNets to recognize

the 2D rotation that is applied to the image it receives as input.

Ref. [122] proposed Spatial-Semantic Patch Learning, which involves
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two stages in training. First, three auxiliary tasks, consisting of a

Patch Rotation Task, a Patch Segmentation Task and a Patch Clas-

sification Task, are jointly developed to learn the spatial-semantic

relationship from large-scale unlabeled facial data. Ref. [123] pro-

posed to enhance face recognition with a bypass of self-supervised 3D

reconstruction. Ref. [124] proposed a face frontalization framework

combined with 3DMorphableModel that only adopts front images

for training. The authors in [125] proposed a fully trained gener-

ative adversarial network to generate realistic and natural images.

In [126, 127], the authors proposed face synthesis and pose-invariant

face recognition using generative adversarial network. PCA feature

transform, Correlation Alignment [128] and Unsupervised Domain

Adaptation for Face Recognition in Unlabeled video [117] methods

were proposed to extract features using RFNet. The adaptation was

achieved by distilling knowledge from the network to a video adapta-

tion network through feature matching, performing feature restora-

tion through synthetic data augmentation and learning a domain-

invariant feature through a domain adversarial discriminator.

All the above-described methods, as is true for most other deep neu-

ral networks, require large amounts of labeled training data, which

are not available in many domains. Moreover, in many real-world

applications, sufficient labels can be difficult to collect. As a result,

the performance of these methods greatly degrades.

To address this problem, we propose an unsupervised deep learning

face verification system using k most similar and k most dissimilar

images, called UFace. The k most similar and k most dissimilar im-

ages is calculated for a given face image. UFace does not require

labeled data and, importantly, uses only about 200 K unlabeled face
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images. However, based on the experimental result, UFace substan-

tially improves the results of unsupervised methods because it takes

into account the similar and dissimilar face images to extract distinct

features.

UFace was evaluated on four benchmark face recognition datasets:

LFW, YTF, CALFW and CFP-FP. The experimental results of

UFace provide accuracies that are comparable with state-of-the-art

methods such as ArcFace, GroupFace, MegaFace, Marginal Loss and

VGG Face.

3.1 The Proposed Preprocessing Method

UFace first performs two preprocessing tasks, as shown in Figure 3.3.

The first processing step is to detect a face from a given image using

Multi-Task Cascaded Convolutional Neural Network (MTCNN) [36],

which locates a face in a given image and draws a bounding box

around it (see Figure 3.1b). It provides coordinates of the lower left

corner of the bounding box plus its width and height then resizes

the image size to 112 by 112 pixels.

(a) Sample face images from CelebA
dataset

(b) The same images after using the
MTCNN model

Figure 3.1: Sample images after MTCNN was used for face detection.
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Secondly, it generates embedding vectors using the pre-trained Facenet

model [6]. Then, we find the k most similar and k most dissimilar

images for each image in the preprocessing phase. Note that Facenet

is used here just to help calculate the cosine similarity/dissimilarity

between images during the preprocessing stage, i.e., we did not use

Facenet to train our models.

Algorithm 1 calculates the cosine similarity between a given image

and all other remaining images in a dataset. Next, a threshold is

used to select the k most similar and k most dissimilar images for

each input image from the training dataset. To select the k most

similar and k most dissimilar images, we experimented with different

threshold values on validation set and empirically decided to use the

optimal threshold (i.e., one that resulted in the highest accuracy).

The optimal threshold value was found to be 0.6 for the most similar

images and 0.2 for the most dissimilar images. In this way, we make

sure any of the similar images are not the same as the dissimilar

images.

Note that the value of k varies from image to image since a face can

have a different number of most similar images. On average, however,

we discovered that there are about 11 similar and dissimilar images

for each image. In total, we created about 4M training pairs (both

for the similar and dissimilar pairs) for all images in the CelebA

dataset (which has only about 200k images). The selection of the

threshold value that is used to select the similar and dissimilar images

is described in detail in the experimental section.

Note that we used the Facenet pre-trained model only to calculate

the cosine similarity between images during the pre-processing phase.

However, the UFace training methods do not require to use Facenet
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Algorithm 1 To select the k most similar and k most dissimilar images for
each image in a dataset.

Require: The thresholds ths and thd, and m training images x
Ensure: k most similar (x̃is) and k most dissimilar images (x̃id) for each image in a
dataset, 1 ≤ i ≤ m, 1 ≤ p ≤ k and 1 ≤ n ≤ k
for i← 1 to N , N ← length(m) do

for j ← 1 to N , N ← length(m) do
if i ̸= j

x̃ij = cosine(xi, xj)
end

end
Select k most similar images above the ths=0.6, x̃is and randomly select k most

dissimilar images below the thd=0.2, x̃id
end

and do not require explicitly labeled training data, as described in

the training section.

3.2 The Proposed Autoencoder Training Method

Note that the preprocessing and evaluation modules for both the

autoencoder and Siamese networks are the same.

The state-of-the-art methods such as ArcFace [13], Facenet [6], Group-

Face [14], CosFace [15], MegaFace [114], DeepFace [7], VGG Face [8]

and Marginal Loss [10] require a very large amount of labeled data,

which are difficult to obtain in many applications other than face

images. For example, Facenet used about 200M training images.

To address this problem, we propose an unsupervised deep learning

face verification system using k most similar and k most dissimilar

images, called UFace. To demonstrate the performance of UFace,

we started using only k most similar images and the autoencoder

network for verification. Next, we used both the k most similar and

the k most dissimilar images with autoencoder. Since the latter gave
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better results than just using k most similar images, in the Siamese

network we used both k most similar and k most dissimilar images.

Classical Autoencoder Training: An autoencoder is an unsu-

pervised neural network used in situations when no labeled data are

available [129]. It is a feedforward neural network where the output

(the compressed version of the input) is trained to be almost the same

as the input. Autoencoders were successfully used in feature extrac-

tion [130], dimensionality reduction [131], image denoising [132] and

image inpainting [133]. Autoencoder compresses high-dimensional

input data, such as an image, into a lower-dimensional (compressed)

representation and is trained to recreate the original input from its

output. The difference between the reconstructed and the input im-

age is the reconstruction error. The network is trained to minimize

this error to find the best lower-dimensional representation, called

the embedded vector. The autoencoder (AE) consists of (see Figure

3.2a) an encoder and decoder.

Encoder: The encoder part of the network maps the original input

image into its lower-dimensional representation h.

h = g((w ∗ x) + b) (3.1)

where w is a weight matrix between the input x and hidden layers,

b is the bias and g is a nonlinear activation function.

Decoder: The decoder reconstructs the original input data from its

encoded representation. In the decoding process, the AE maps h

back to the original input approximation x̂.

x̂ = f((ŵ ∗ h) + b̂) (3.2)
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where ŵ is a weight matrix between the output of the encoder and

hidden layers, x̂ is the output data, b̂ is bias and f is a nonlinear

activation function.

The Mean Square Error (MSE) measures the reconstruction error

[134, 135]. The classical training is carried out by minimizing the

average squared difference between the output value and the input

value, as shown in Equation (3.3):

MeanSquaredError(MSE) =
1

m

m∑
t=1

(x̂− x)2 (3.3)

where x is the original input and x̂ is the predicated value.

To make a fair comparison of the classical AE system with UFace,

we developed our own classical AE system. Both systems are devel-

oped exactly in the same way except how the reconstruction error

is computed. The classical AE system computes the reconstruction

error with one original input image, whereas UFace computes the re-

construction error with k most similar and k most dissimilar images.

UFace Autoencoder Training: The UFace method is first demon-

strated using only similar images. It trains the autoencoder to re-

construct k most similar images of the input image. Then, UFace is

demonstrated using both similar and dissimilar images. It trains the

autoencoder to reconstruct the k most similar and k most dissim-

ilar images of the input image rather than the single input image,

as is the case with classical autoencoder training. UFace uses the k

most similar and k most dissimilar images of the input image during

calculation of the reconstruction error, which is backpropagated to

update the network weights.
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State-of-the-art methods such as Facenet [6], Fusion [9], DeepFace

[7], VGG Face [8] and Marginal Loss [10] require a very large amount

of labeled data, which may be hard to obtain in many applications

other than face images. For example, Facenet used about 200M

labeled training images.

To address this problem, we propose a novel training method that

does not explicitly require a labeled training dataset. It trains the

autoencoder to reconstruct the k most similar images of the input

image rather than the single input image, as is the case with the

classical autoencoder training. The new method uses the k most

similar and k most dissimilar images of the input image during the

calculation of the reconstruction error, which is backpropagated to

update the network weights.

The autoencoder is trained by minimizing the loss function between

the reconstructed image x̂ and the k most similar and k most dis-

similar images of the original input image x for all images in the

dataset.

The used training mechanism consider intra-person and inter-person

face variabilities (k number of times), while in the classical autoen-

coder training mechanism, the loss function is computed only once.

The value of k varies from image to image. In the first iteration, as

shown in Equation (3.4), once the first input image is reconstructed

it calculates the mean square error between the reconstructed im-

age and the first kth most similar/dissimilar images (for the case

of dissimilar images, it takes the negative value of the MSE). After

calculating the error, it backpropagates the error to update the net-

work parameters. In the second iteration, it continues training the

same first input image and computes the mean square error with the
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second kth most similar/dissimilar images, and it continues training

in the same way using the remaining kth most similar/dissimilar im-

ages. Once training for the first input image is completed, it starts

training for the second input image in the same way and continues

for all images in the dataset. UFace calculation of the error is shown

in Equation (3.4). The total number of training images is calculated

as the sum of f(j), where f(j) is the function that outputs the total

number of k most similar and k most dissimilar images in the train-

ing dataset. Since UFace computes the reconstruction errors 2k (k

for the similar and k for the dissimilar images) times for each input

face image, it accounts for face variabilities.

Figure 3.2: The proposed architectures used for training with autoencoder a) and with
Siamese network b).
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UFace MSE =
1∑m

i=1 f(j)

m∑
i=1

f(j)∑
j=1

(x̂i − x̃j)
2 (3.4)

UFace MSE is the UFace loss function, where m is the number

of training images, f(j) is the function that represents the variable

number of k most similar images for the input image xi, x̃j is most

similar images for input image xi and x̂i is the reconstructed image

for the input image xi. Note that, for the case of dissimilar images,

we take the negative of it since it will be maximized.

3.3 The Proposed Siamese Network Training Method

The architectures of the UFace system are shown in Figures 3.3, 3.2

and 3.4, which includes the three modules: preprocessing, training

and evaluation, respectively.

Figure 3.3: UFace preprocessing steps.

The UFace training method on Siamese network using both similar

and dissimilar images is shown in Figure 3.2. It has three branches,

each of which is the CNN encoder followed by the L2-normalization

layer. The branches share the same weights. Branches for training
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are fed by an anchor (input image), similar images and dissimilar

images. The output of the CNN encoder is known as image embed-

ding. After the L2-normalization layer, the UFace loss function—

UFace Loss (Equation (3.5))—is computed as the error between the

embeddings of similar and dissimilar images and the anchor. The loss

function reduces deviation between the anchor and similar faces and

increases deviation between the anchor and dissimilar faces. While

training a model to classify, it optimizes the weights to minimize the

loss function, i.e., to reduce the difference between similar faces and

increase the difference between dissimilar faces. During the training

phase, every input consists of 3 images of faces. Two images are of

the same person (one image is considered as anchor and the second

is a similar image), and the third is of a different person (dissimilar).

The UFace Loss (using both k similar and k dissimilar images) loss

is computed as

N∑
i=1

f(j)∑
j=1

(d(f(xai )− f(xsj))− d(f(xai )− f(xdj))) + α (3.5)

where f(x) takes x as an input and returns an embedding vector, i

denotes the ith input, j denotes the jth similar and dissimilar images

for the ith input image, a is an anchor image, s is a similar image, d

is a dissimilar image, N is the number of training data and f(j) is the

function that represents the variable number of k most similar and k

most dissimilar images for the input image xi. The α is a margin that

is enforced between positive and negative pairs. It ensures that the

model does not make the embeddings equal each other to trivially

satisfy the above inequality.

Minimizing the above equation means minimizing the first term (dis-

tance between anchor and similar image) and maximizing the second
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term (distance between anchor and dissimilar image).

As shown in Figure 3.2b, in UFace Siamese training, the network

uses three branches: the anchor, k most similar faces of the anchor

and k most dissimilar faces of the anchor. First, the three branches

are fed into the CNN network using 112 by 112 pixel images. The

CNN encodes the pixel values and provides face embedding vector.

Then, the loss between the embedding of the anchor and similar and

dissimilar faces is computed. By Equation (3.5), for each anchor

image, the loss function is computed 2 times k, where k is the most

similar and k dissimilar images with the anchor.

Figure 3.4: Architecture used for the proposed method evaluation.

3.4 Evaluation Method

As shown in Figure 3.4, the goal of face image verification is to

decide if two face images belong to the same person or not. Given a

pair of input face images, we first use MTCNN to detect faces from

the given images. Then, image embeddings are extracted using any
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encoder branch of the network for the pairs of test images. Cosine

similarity is computed between the two embedding vectors. If the

cosine similarity is above the given threshold value, the two images

belong to the same person, and not otherwise.

3.5 Datasets

UFace was trained on the CelebA dataset and its performance was

tested on four benchmark datasets: LFW, YTF, CALFW and CFP-

FP.

CelebA [136] is a dataset that has over 200K images of 10,177 celebri-

ties, which include pose variations and background clutter; it was

used for training UFace.

The Labeled Faces in the Wild dataset (LFW) [112] contains 13,233

images of 5,749 people. For testing, the database is randomly (uni-

formly) split into 10 subsets. Next, 300 matched (of the same person)

pairs and 300 mismatched (of different persons) pairs are randomly

chosen within each subset. In other words, for testing, 3000 (10 ×
300) matched and 3000 mismatched pairs [112] were used.

The YouTube Faces dataset (YTF) [113] of face videos contains 3425

videos of 1595 people collected from YouTube, with an average of

two videos per person. The shortest clip duration is 48 frames and

the longest is 6070 frames. The average length of a video clip is

181 frames. For testing, 5K video pairs are randomly chosen and

prepared, half of which are pairs of videos of the same person and

half are of different people. Thus, for testing, 5K pairs of static

images with 2500 of them of the same person and 2500 not of the

same person [113] were used.
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Cross-age LFW (CALFW) [137] is a newer version of LFW in which

3000 similar face pairs at different ages and 3000 dissimilar face pairs

of the same gender are present to reduce the influence of attribute

differences between similar/dissimilar pairs. Thus, for testing, 6K

pairs of face images were used.

Celebrities in Frontal Profile in the Wild (CFP-FP) [138] is another

face verification benchmark dataset with 7000 face images, of which

3500 are same person pairs and 3500 are different person pairs. Thus,

for testing, 7K pairs of face images were used.

3.6 Experimental Setup

The Keras deep learning library [139] was used to train the model.

It is trained for 100 epochs or until the error is not decreasing, using

a batch size of 100 images. It uses backpropagation with stochastic

gradient descent (SGD), momentum of 0.91, weight decay of 0.00001

and a logarithmically decaying learning rate from 10−2 to 10−8. The

dimension of the input images is 112 by 112 pixels.

In order to select the best threshold value, which is used to select the

number of similar and dissimilar images for each image, we selected

about 10% of the images from the training set and selected the similar

and dissimilar images using different threshold values (i.e., from 0.1

to 0.7). We used about 10% of the images as a validation set to tune

the threshold value. Thus, all cosine distance scores less than the

threshold values were considered as dissimilar images and all cosine

distance scores greater than the threshold values were considered as

similar images. For example, if we take the threshold values of 0.6

and 0.2, all cosine distances less than 0.2 are considered as dissimilar
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and all cosine distance scores above 0.6 are considered as similar

images.

The reason for selecting two different threshold values is to choose

similar and dissimilar images correctly. The threshold values were

optimized experimentally by changing their values from 0.1 to 0.9

and choosing the ones that resulted in the highest accuracy on the

validation dataset; the threshold 0.6 was chosen for the similar im-

ages and threshold 0.2 for the dissimilar images (to a given image).

After computing the most similar and dissimilar images for each

threshold value, we have trained different models (i.e., one model for

each threshold value). After training the model, we computed the

accuracy of each model on other 1K datasets that were selected from

the validation set.

Using threshold values of 0.6 and 0.2 gives us the highest accuracy.

Thus, we selected 0.6 and 0.2 as threshold values for similar and dis-

similar images, respectively, and selected the most similar/dissimilar

images on the remaining 180K training images. Note that we used

two threshold values, one to select the similar images and the other

to select the dissimilar images; thus, we can reduce the possibility of

dissimilar images being selected as similar images and vice versa. A

total 10% of the training dataset was used for validation in order to

select the best threshold values.

The training was performed using the CelebA [136] dataset. First,

the face is detected, including the bounding box around the face.

Then, the cosine similarity for each face against the remaining faces

in the training dataset is computed. Then, the threshold values

are chosen experimentally to select the k most similar and k most

dissimilar images for each image.
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The autoencoder is a fully connected feed-forward network consist-

ing of 3 hidden layers. As shown in Figure 3.2a, the encoder and

decoder are symmetrical. The encoder input and decoder output

each have 112 by 112 neurons. The second layer in both the encoder

and decoder has 800 neurons. The output of the encoder has 300

neurons, which determines the size of the embedding vector.

The Siamese network has 3 branches, each of which is the CNN

encoder followed by the L2-normalization layer. The CNN encoder

block is a Resnet100 architecture [129]. It consists of five main layers

where each layer contains convolutional and identity blocks. The

first layer contains max-pooling, and the last layer contains average

pooling. The five layers are followed by two fully connected layers

of 800 and 300 neurons, respectively. The CNN encoder encodes the

input images (112 by 112) into a 300-dimensional image embedding

vector. Note that in addition to convolutional, identity and max-

pooling layers, it also uses batch normalization [140] and dropout

[84].

3.7 Experimental Results of the Proposed Autoencoder vs

Classical Autoencoder

In Table 3.1, * represents the classical autoencoder, ** represents

the modified autoencoder with k most similar images, and *** rep-

resents the modified autoencoder with both k most similar and k

most dissimilar images.

As it is shown in Table 3.1, UFace using autoencoder provides better

results than the one based on classical autoencoder training. Note

that we use classical autoencoder training as the baseline system.
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Table 3.1 shows that the baseline accuracies are 92.76%, 89.97%,

89.22% and 91.88% on LFW, YTF, CALFW and CFP-FP datasets,

respectively. It is compared with two UFace models: UFace autoen-

coder training method using only the k most similar images and

UFace autoencoder training using both the k most similar and k

most dissimilar images.

From Table 3.1, we see that UFace using autoencoder that uses

only the k most similar images results in 95.81%, 93.24%, 92.63%

and 95.13% accuracies on the LFW, TYF, CALFW and CFP-FP

datasets, respectively. The improvements over the classical autoen-

coder represent a 3.05%, 3.24%, 3.41% and 3.25% improvement on

the LFW, YTF, CALFW and CFP-FP datasets, respectively.

Table 3.1: Accuracy of the classical and the two proposed autoencoder training method.

Model LFW YTF CALFW CFP-FP

UFace(*) 92.76 89.97 89.22 91.88

UFace(**) 95.81 93.24 92.63 95.13

UFace(***) 96.42 93.92 93.08 95.78

Next, we assess the impact of using also the k most dissimilar images.

Table 3.1 shows that using both the k most similar and k most dis-

similar images results in 96.42%, 93.92%, 93.08% and 95.78% accura-

cies on the LFW, YTF, CALFW and CFP-FP datasets, respectively.

Thus, using dissimilar images, in addition to the similar images, re-

sults in a slight improvement over using only the similar images (i.e.,

96.42% vs. 95.81% on LFW, 93.92% vs. 93.24% on YTF, 93.08% vs.

92.63% on CALFW and 95.78% vs. 95.13% on CFP-FP). If we com-

pare the UFace autoencoder method that uses both the similar and

dissimilar images with the classical autoencoder training method, it

provides us 3.66%, 3.95%, 3.86% and 3.9% improvement on LFW,

YTF, CALFW and CFP-FP datasets, respectively. Thus, the results

reported in Table 3.1 show the advantage of UFace demonstrated on
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an autoencoder network that uses both the k most similar and k

most dissimilar images.

3.8 Experimental Results of the Proposed Siamese Net-

work

In addition to demonstrating UFace training using the autoencoder

network, we also demonstrated UFace training using the Siamese

network and compared the performance of the UFace with different

state-of-the-art face verification systems.

3.8.1 Labeled Faces in the Wild dataset (LFW) Dataset

Table 3.2 shows a comparison of UFace with the state-of-the-art

methods. Note that we compare our best result with the state-of-

the-art systems that use both supervised and unsupervised training,

whereas the UFace training does not explicitly required labeled data.

Table 3.2: Comparison of the proposed Siamese network (UFace) results with the state-
of-the-art methods on LFW dataset.

Model Training data size Labeled/Unlabeled Accuracy (%)

Fusion 500M Labeled 98.37 [9]

Facenet 200M Labeled 99.63 [6]

UniformFace 6.1M Labeled 99.80 [141]

ArcFace 5.8M Labeled 99.82 [13]

GroupFace 5.8M labeled 99.85 [14]

CosFace 5M Labeled 99.73 [15]

DeepFace-ensemble 4.4M Labeled 97.35 [7]

Marginal Loss 4M Labeled 99.48 [10]

CurricularFace 3.8M Labeled 99.80 [16]

RegularFace 3.1M Labeled 99.61 [142]

AFRN 3.1M Labeled 99.85 [143]

VGG Face 2.6M Labeled 98.95 [8]

Stream Loss 1.5M Labeled 98.97 [144]

COCO - Labeled 99.78 [145]

UFace 200K Unlabeled 99.40
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Although most of the methods such as ArcFace, GroupFace, Marginal

Loss and CosFace have slightly better accuracy than UFace, UFace is

trained on a much smaller dataset (about 200K images) while most

of the state-of-the-art methods use millions of training images.

UFace with Siamese network achieves an accuracy of 99.40%, which

is on par both with the state-of-the-art supervised and unsupervised

systems. For example, the ArcFace used 5.8M labeled images to

achieve 99.82% accuracy, whereas UFace accuracy is 99.40% but re-

quired only about 200 K images for training.

3.8.2 YouTube Faces dataset (YTF) Dataset

Similarly, we compare the UFace with Siamese network using similar

and dissimilar images with state-of-the-art supervised and unsuper-

vised systems on the YTF dataset. In Table 3.3, VGG Face [8] used

2.6 M labeled training data and achieved slightly over 97% accuracy.

In [10], the authors used marginal loss and a labeled 4M training

dataset to achieve a comparable result with Facenet [6], which used

200M labeled training data and achieved over 95% accuracy. The

drawback of these methods, however, is that they require a huge,

labeled dataset for training. On the other hand, UFace uses much

less and unlabeled training data to achieve over 96% accuracy. Al-

though, if we compare the UFace Siamese with both the state-of-

the-art supervised and unsupervised systems on YTF, its accuracy

(i.e., 96.04%) is slightly better than some of the supervised systems,

better than the unsupervised systems and almost close to state-of-

the-art methods such as ArcFace, GroupFace, CostFace and VGG

Face.
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Table 3.3: Comparison of the proposed Siamese network (UFace) results with the state-
of-the-art methods on YTF test dataset.

Model Training data size Labeled/Unlabeled Accuracy (%)

Facenet 200M Labeled 95.12[6]

UniformFace 6.1M Labeled 97.70 [141]

ArcFace 5.8M labeled 98.02 [13]

GroupFace 5.8M labeled 97.80 [14]

CosFace 5M labeled 97.60 [15]

DeepFace-single 4.4M labeled 91.40 [7]

Marginal Loss 4M labeled 95.98 [10]

RegularFace 3.1M Labeled 96.70 [142]

AFRN 3.1M Labeled 97.70 [143]

NAN 3M labeled 95.70 [146]

VGG Face 2.6M labeled 97.30 [8]

Stream Loss 1.5M labeled 96.40 [144]

UFace 200K unlabeled 96.04

3.8.3 Cross-age LFW (CALFW) and Celebrities in Frontal Profile in

the Wild (CFP-FP) Datasets

Table 3.4: Comparison of the proposed Siamese network (UFace) results with the state-
of-the-art methods on CALFW test dataset.

Model Training data size Labeled/Unlabeled Accuracy (%)

ArcFace 5.8M Labeled 95.45[13]

GroupFace 5.8M labeled 96.20 [14]

CurricularFace 3.8M labeled 96.20 [16]

MegaFace 3.8M labeled 96.15 [114]

UFace 200K unlabeled 95.12

In addition to LFW and YTF, the results of UFace have been com-

pared against both state-of-the-art supervised and unsupervised sys-

tems on the CALFW and CFP-FP datasets. Table 3.4 and 3.5 show

that UFace’s results are close to those of ArcFace. However, the re-

sults of the UFace are a bit lower than the GroupFace, CurriculaFace

and MegaFace models. If we compare our best results with both su-

pervised and unsupervised ones, Table 3.5 shows that our results are

on par with the state-of-the-art unsupervised systems.

The UFace has the following advantages over the state-of-the-art

systems.
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• Firstly, while the UFace does not explicitly require labeled train-

ing data, the state-of-the-art methods do.

• Secondly, the UFace requires only about 200K training data,

whereas the state-of-the-art use a minimum of 3.8M and maxi-

mum of 5.8M.

• Thirdly, the training time of UFace is much less than that of the

state-of-the-art ones because of the amount of training data.

• Lastly, the results of UFace are comparable to the state-of-the-

art methods.

Table 3.5: Comparison of the proposed Siamese network (UFace) results with the state-
of-the-art methods on CFP-FP dataset.

Model Training data size Labeled/Unlabeled Accuracy (%)

ArcFace 5.8M Labeled 98.27[13]

GroupFace 5.8M labeled 98.63 [14]

CurricularFace 3.8M labeled 98.37 [16]

Dyn-ArcFace 5.8M labeled 94.25 [147]

MegaFace 3.8M labeled 98.46 [114]

CircleLoss 5.8M labeled 96.02 [148]

UFace 200K unlabeled 97.89

3.9 Summary

The state-of-the-art deep learning methods for face verification usu-

ally require large amounts of labeled data for training. However, it

is not always easy to obtain such data. To address this problem, we

propose a novel unsupervised deep learning face verification system

(UFace) that uses k most similar and k most dissimilar images to a

given image that are selected from unlabeled data.

UFace’s performance was evaluated using both the autoencoder ap-

proach and Siamese networks approach. As Siamese networks per-

formed much better than the autoencoder, they were used for all the
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presented comparisons with state-of-the-art algorithms. Unlike in

the classical neural network training, UFace computes its loss func-

tion k times with the similar images and k times with the dissimilar

images (for a total of 2xk times) for each input image. UFace is eval-

uated on four benchmark face verification datasets, namely, Labeled

Faces in the Wild (LFW), YouTube Faces (YTF), Cross-age LFW

(CALFW) and Celebrities in Frontal Profile in the Wild (CFP-FP).

Its performance using the Siamese network achieved accuracies of

99.40%, 96.04%, 95.12% and 97.89%, respectively, which are com-

parable with the state-of-the-art methods even though UFace uses

much less data for training.

Additional advantage of UFace is that it can be used for verifica-

tion of other types of images in domains where labeled data are not

available at all.



Chapter 4

Face Anti-Spoofing System Using

Image Quality Features and Deep

Learning Approach

Face recognition is one of the most widely used biometric authenti-

cation methods but the vulnerability to spoofing attacks limits its

usability and confidence [102], [103], [149].

Face recognition is used in a range of applications which require

robustness to changes in the environment and resilience to circum-

vention, which is known as spoofing. Spoofing is defined as an attack

where a fraudster tries to gain access to the system by masquerading

as a valid user/employee [150]. Its goal is to fool biometric measures

by presenting to the sensor (most often a camera) a manufactured

artifact, such as a photograph or video to impersonate a valid user.

Since such attacks are very frequent, they became a major concern

for the designers and users of face recognition systems. As a con-

sequence, spoofing is an active field of research as measured by a

multitude of publications [151–155]; dissertations [156–159]; books

59
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[63, 160–162] and standards [163]. There are also international com-

petitions that seek to evaluate performance of the developed coun-

termeasures [164–166]

Most of the early works on face anti-spoof detection methods focus on

liveness detection. The authors in [167] introduced a liveness detec-

tion method using an eye blinking-based liveness detection method.

Whereas the authors in [168] proposed face spoofing detection us-

ing mouth localization and motion analysis technique. The authors

in [169] proposed a liveness detection method using an optical flow

field which is generated by movements of two-dimensional planes

and three-dimensional objects. Based on intrinsic biological differ-

ences between genuine and spoof traits, different color changes of face

videos due to the thermogram or the facial blood flow [170] features

are derived for spoofing attack detection.

More recently, Convolutional neural networks (CNN) that are able

to automatically find the best features present in the images (for

labeled data) were successfully used for detecting spoofing face im-

ages, as well as for fingerprint, and iris [171–173]. The authors in

[27] were the first to employ CNN for spoofing attack detection.

In [174], a semi-supervised learning was used for detecting a spoof-

ing attack using a few labeled data points. Spatiotemporal anti-

spoof network (STASN) was proposed in [175] to detect spoofing

attacks. In [176] the authors used a bipartite auxiliary supervision

network (BASN) for detecting spoofing attacks. In [177] an approach

called bi-directional feature pyramid network was proposed for de-

tecting spoofing attacks. In [178] authors proposed a method based

on stimulating eye movements using visual stimuli with randomized

trajectories. In [179] a head-detection algorithm and deep neural
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network were used for detecting a spoofing attack. In [180] a hy-

brid unsupervised and semi-supervised domain adaptation network

for cross-scenario face spoofing attack was used. [91] introduced a

CNN based framework with a densely connected network trained us-

ing both binary and pixelwise binary supervision (DeepPixBiS) for

detecting spoofing attacks. [181] proposed a method for face anti-

spoofing that estimates depth information from multiple RGB frames

and proposed a supervised method to efficiently encode spatiotem-

poral information in a spoofing attack. It included two modules:

optical flow-guided feature block and convolutional-gated recurrent

unit modules, designed to extract short-term and long-term motion

to discriminate between living and spoofing faces. [175] proposed

a face anti-spoofing model with a spatiotemporal attention mech-

anism fusing global temporal and local spatial information. [182]

proposed Bilateral Convolutional Networks (BCN) that was able to

capture intrinsic material-based patterns via aggregating multi-level

bilateral macro- and micro- information. [183] proposed a patch-

wise motion parameterization method, which explores the under-

lying motion difference between the facial movements re-captured

from a planar screen and those from a real face. The authors in

[182] were inspired by human material perception to design a novel

network for learning intrinsic material-based patterns for attack de-

tection. The authors in [184] used meta-pattern learning, instead

of just using manually extracted features, to create a hybrid model

to address spoofing attack detection. The authors in [185] proposed

an anti-spoofing method based on one-class multiple kernel learn-

ing. The authors in [63] described methods to detect 3D facial mask

attack. The authors in [186] proposed a face anti-spoofing method
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using an ensemble of vision transformer features, where an ensem-

ble of local features are extracted from the intermediate blocks of a

vision transformer. The authors in [187] proposed local binary pat-

tern and convolutional neural network based feature fusion model

for detecting spoof face attacks. The authors in [188] proposed an

anti-spoofing method based on fusing an optical flow and texture

features. The authors in [189] explored face spoofing attacks based

on light detection and ranging sensors against light variation.

Even when there are identity verification mechanisms in place, fraud-

sters always find a way to get around them. One such method is face

spoofing, in which a fraudster attempts to deceive a facial recognition

system by displaying a spoof face to the camera.

The most popular means of spoofing is to put on a valid user’s mask

and present it to the biometric verification system, which is referred

to as a mask attack. Another method is to get hold of and print

a photo of a user and present it to the camera, which is known as

print attack. Another type of spoofing is a replay-attack, when the

system is presented with the screen of a device on which a recorded

video of a valid user is played.

One approach to detect a spoofing attack is to analyze the presented

spoofing image and identify in it the key features, called image qual-

ity (IQ) features, and use them to determine whether the presented

image is genuine or spoofed; as there is a voice quality measurements

[190]. [69] used 25 such IQ features to distinguish between genuine

and spoofed images of a user. In [191] 18 IQ features were used for

detecting a spoofing attack and achieved better performance than

the one reported in [69]. In [28] an image distortion method (IDA)

was used for detecting a spoofing attack, which is based on four face
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IQ features, namely, blurriness, color diversity, specular reflection,

and chromatic moments.

Figure 4.1: The proposed FASS system.

A very different approach to detect spoofing attack is to use deep

learning on the presented images instead of manually extracted image

quality features and then using some classifier, like those used in

[28, 69, 191].

Indeed, recent studies have revealed that the performance of the

state-of-the-art face anti-spoofing methods degrades under the real-

world variations (e.g., illumination and camera device variations)

[63, 192–195], which indicates that more robust face anti-spoofing

methods are needed to reach the deployment levels of the face bio-

metric systems.

Face anti-spoofing methods that utilize hand-crafted image features

are using standard machine learning classifiers such as Random For-

est (RF) or SVM to determine whether the detected facial image

is genuine or spoofed. On the other hand, deep learning methods

detect the spoofing attack by self-learning the global key features.

In this PhD dissertation, we take advantage of the two approaches,

and proposed concatenating both at feature and score level.
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In this dissertation, the first proposal is called Face Anti-Spoofing

System Using Image Quality Features and Deep Learning (FASS),

that combines a spoofing detection method based on a small number

of image quality features with a spoofing detection method based on

deep learning at the confidence score level.

The second proposal is called Hybrid Face Anti-Spoofing Method

Concatenating Deep Learning and Hand-Crafted Features (HDLHC),

which concatenates deep features which are extracted through sev-

eral layers (before the classification layer) with the hand-crafted im-

age quality features to improve detection accuracy (whether it is a

genuine or spoofed image).

Since deep learning based and manual extracted based features com-

plement each other, their combination will be able to better gener-

alize and improve the spoofing attack detection.

4.1 The Proposed Method

Two approaches have been proposed namely FASS (Figure 4.1) and

HDLHC (Figure 4.5). In the first approach (FASS), the scores ob-

tained from the deep learning classifier is fused in a weighted manner

with the scores obtained from the classifier based on image quality

features. In the second approach (HDLHC), the features obtained

using the deep learning method (VGG) is concatenated with the

hand-crafted image quality features. Then, the concatenated feature

vector fed to the classifier.
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4.1.1 The Proposed Image Quality Feature Measurements

There are two main methods for assessing the quality of a presented

image features. One uses the so-called full-reference (FR) and the

other uses No-Reference (NR). FR method requires access to the

genuine, called reference, image of a valid user and also access to

the presented, possibly spoofed, image. Thus, it compares the gen-

uine image with the presented (spoofed) image. In contrast, the NR

method is based on using only the presented images. In this work,

we only focus on selecting NR image quality features as quite often

the reference images are not available.

The authors in [69] proposed a binary classification system to detect

spoofing attacks for three biometric modalities (Iris, Fingerprint,

and Face), using 25 IQ features. Among them only BIQI, NIQE,

JQI and HLFI features are the NR features. In [191] the authors

used 18 IQ features for face anti-spoofing, with HLFI being the only

NR feature. [28] proposed a face spoof detection method using four

quality features, all of them were NR features.

Table 4.1: List of the twelve No-Reference (NR) Image Quality (IQ) feature measure-
ments.

NR IQ Features Name Reference

Blind Image Quality Index (BIQI) [196]
Naturalness Image Quality Estimator (NIQE) [197]
High-Low Frequency Index (HLFI) [198]
Reflection [72]
Blurriness [73, 74]
Chromatic Moment [75]
Color [75, 199]
Blind/Referenceless Image Spatial QUality Evaluator (BRISQUE) [200]
Gradient-Magnitude map and Laplacian-of-Gaussian based Blind
Image Quality Assessment (GM-LOG-BIQA) [201]
HDR Image GRADient based Evaluator - 1 (HIGRADE-1) [202]
Robust BRISQUE index (Robustbrisque) [197]
Distortion Identification-based Image Verity and INtegrity Evaluation
(DIIVINE) [203]
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In Table 4.1, we have selected and listed 12 NR quality features. To

check if these 12 features can be further be reduced, we use the min-

Redundancy max-Relevance (mRmR) [204] measure, see Equation

4.1. It uses mutual information to define relevance and redundancy

of features as it seeks to find a set of features that jointly have the

maximal statistical dependency on the classification label and mini-

mum redundancy with respect to the selected features. Equation 4.1

shows how its values are computed for each feature. The best feature

is the one with the highest score, second best with the second highest

score, etc. The output is a vector of scores for all 12 features. Im-

portantly, we need to take into account that mRmR scoring heavily

depends on the data used. Thus, to get a more reliable assessment

of the goodness of the features we decided to calculate the mRmR

on three datasets, namely, Reply-Attack, CASIA-MFSD and MSU-

MFSD to determine the overall importance of features for detecting

a spoofing attack.

Next, for the same datasets, in order to determine their ordered

combinations (i.e., the first best feature, the first two best together,

the first three best together, etc.) we use a measure called ACER,

defined in Equation 4.4.

scorei(f) =
relevance(f |target)

redundancy(f |features selected until i− 1)
(4.1)

APCER =
FP

(TN + FP )
(4.2)

BPCER =
FN

(FN + TP )
(4.3)
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where FP is false positive, TN is true negative, TP is true positive,

and FN is false negative.

ACER =
(APCER +BPCER)

2
(4.4)

The results of using mRmR and ACER measures

For the Replay-Attack dataset, the order of best features, according

to mRmR, is: Blurriness, Color, GM-LOG-BIQA, BRISQUE, Re-

flection, HLFI, BIQI, Robustbrisque, Chromatic Moment, DIIVINE,

HIGRADE-1, and NIQE, which is shown in Figure 4.2.

Figure 4.2: ACER value as it changes with adding additional features for the Replay-
Attack dataset.

Notice that after the seventh feature, the error rate goes slightly up

before slightly going down when 10 features are used. We thus choose

the first seven features, namely, Blurriness, Color, GM-LOG-BIQA,

BRISQUE, Reflection, HLFI and BIQI.

For the CASIA-MFSD dataset, the mRmR order of feature is: Blur-

riness, Color, HLFI, BRISQUE, GM-LOG-BIQA, Reflection, BIQI,
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Chromatic Moment, Robustbrisque, HIGRADE-1, NIQE and DI-

IVINE, shown in Figure 4.3.

Figure 4.3: ACER value as it changes with adding additional features for the CASIA-
MFSD dataset.

We see that after the first 5 features are combined, namely, Blur-

riness, Color, HLFI, BRISQUE, and GM-LOG-BIQA, ACER value

remains the same, thus we chose these five features.

For the MSU-MFSD dataset, the mRmR order of features is: Blur-

riness, Color, BRISQUE, GM-LOG-BIQA, BIQI, Reflection, HLFI,

Chromatic Moment, HIGRADE-1, Robustbrisque, NIQE and DI-

IVINE, shown in Figure 4.4.

We see that the ACER remains about the same after using the first

six features: Blurriness, Color, BRISQUE, GM-LOG-BIQA, BIQI

and Reflection.

The combined list of best features from the above experiments is

Blurriness, Color, GM-LOG-BIQA, BRISQUE, Reflection, HLFI,

and BIQI. These seven features are described below for the con-

venience of the reader.
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Figure 4.4: ACER value as it changes with adding additional features for the MSU-
MFSD dataset.

Blurriness, for short distance spoof attacks, spoof faces are often

defocused in mobile phone cameras. The reason is that the spoofing

medium (printed paper and screen) usually is of limited size, and

the attacker must place them close to the camera to obscure the

boundaries of the attack medium. As a result, spoof faces are de-

focused, and the resulting image blur can be used as indication for

anti-spoofing [73, 74].

Color is an important difference between genuine and spoof faces is

the color diversity, as genuine faces have richer colors. This diversity

fades out in spoof faces due to the color reproduction loss during

image/video recapture [75].

GM-LOG-BIQA defines local spatial contrast features that char-

acterize various perceptual image structures related to luminance

discontinuities. The Gradient Magnitude (GM) captures the local

changes of luminance, while the Laplacian of Gaussian (LOG) is

sensitive to local intensity contrast and BIQA is blind image qual-

ity assessment which means it doesn’t require a reference image to

measure the quality of the image [201].
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BRISQUE is a Blind/Referenceless Image Spatial Quality Estima-

tor. Its features are derived from the empirical distribution of locally

normalized luminance values and their products under a spatial natu-

ral scene statistic and they follow a Gaussian-like distribution. These

features are then used in support vector regression to map image fea-

tures to an image quality score [197].

Reflection degrade the quality of face images / videos by obstruct-

ing the background scenes. The existence of a reflection component

in an image will not only change the color of the object surface but

also destroy its edge contour, but the saturated reflection will also

lead to the complete loss of image texture information, which pro-

vides a good clue for anti-spoofing tasks [205].

HLFI is a High-Low Frequency Index, which uses local gradients

as a blind metric to detect blur and noise. It is sensitive to the

sharpness of the image, which is done by computing the difference

between the power in the lower and upper frequencies of the Fourier

Spectrum [198].

BIQI is Blind Image Quality Indices which is a two-step no-reference

image quality measurement. Given a distorted image, the first step

performs the wavelet transform and extracts features for estimation

of the presence of image distortions, and it evaluates the quality of

the image across these distortions by applying support vector regres-

sion on the wavelet coefficients [196].

4.2 Score Level Fusion

The proposed approach consists of several parts and is depicted in

Figure 4.1:
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1. Extraction of image quality features from the face images.

2. Using these features as input to an SVM and Random Forest

(RF) classifiers to determine if a face image is a genuine or a

spoofed face.

3. Using ResNet50 deep neural network to do the similar classifi-

cation.

4. Merging classification confidence scores of both classifiers to

make a final determination whether the presented face is genuine

or spoofed.

5. If it is a genuine face, it proceeds into the next part of the face

verification system [206].

The FASS system (see Figure 4.1) fuses the results of the SVM and

random forest (RF) classifiers (separately) that uses the selected

above seven NR quality features with the result of the ResNet50

algorithm that operates directly on raw input images for detecting a

face spoofing attack.

The confidence scores of two classifiers are combined in a weighted

fashion according to Equation 4.5.

The fused confidence score is calculated as follows:

FS = (α ∗Θx ) + ((1− α) ∗Θy ) (4.5)

where FS is the fused confidence score, Θx is ResNet-50 confidence

score, Θy is SVM or Random Forest (RF) confidence score and α is

the weight parameter. After checking α values ranging from 0.1 to

0.9, we found that the best results were obtained for α=0.75, which

is then used in all experiments.
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4.3 Feature Level Fusion

As it is shown in Figure 4.5, the proposed method is based on fus-

ing features found by deep learning (not understandable to humans)

with hand-crafted features derived from genuine face images. We

use 1000 deep features that are extracted by the VGG deep learn-

ing network. These are the ones just before they are input to the

classification layer and enhance them by adding seven hand-crafted

multi-dimensional image quality features which we identified previ-

ously in [207]. The seven features form a 453-dimensional vector.

Face detection

Blurriness

Color

GM-LOG-BIQA

BRISQUE

Reflection

HLFI

BIQI

VGG

Sensor
Concatenated

Features (1453)

Spoofing
Attack

Detection
?

No

Yes

Reject

Approve

Extracted
Features (1000)

Fully Connected
Classification

Layer 

Will continue to the next step of
face verification system

Hand-Crafted
Features Extraction

Figure 4.5: The proposed HDLHC system.

Thus, the input to the classification layer of VGG is a 1453-dimensional

feature vector. This final feature vector is fed into a fully connected

classification layer. During training, binary cross-entropy loss func-

tion is minimized to update the network weights. Once the network

is trained, it is evaluated on two datasets, namely, Oulu-NPU [208]

and SiW [90].

The deep neural network block is inspired by the VGG architecture

[76]. It consists of three main blocks, where each block contains

two convolutional and one max-pooling layer. The output of the
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last max-pooling layer feature vector is concatenated with the seven

hand-crafted features, which is followed by the fully connected clas-

sification layer.

4.4 Experimental Setup

The Pytorch library [209] was used for implementing the FASS sys-

tem. All experiments were run for 100 epochs or until the vali-

dation error stopped decreasing, whichever was sooner, and using a

batch size of 100. Stochastic gradient descent with momentum (0.9),

weight decay (5E − 4) and a logarithmically decaying learning rate

(initialized to 10−2 and decaying to 10−8) were used.

Five face spoofing datasets, namely, Replay-Attack [64], CASIA-

FASD [62], MSU-MFSD [28], Oulu-NPU [208] and SiW [90] were

used to evaluate FASS and compare its results with the state-of-the-

art results. Multi-Task Cascaded Convolutional Neural Network [36]

was used to detect faces from the video frames. The face images of

all five datasets were resized to the size 224 × 224 pixels for computa-

tional efficiency. We used data partitions into the train-validate-test

as detailed in the data descriptions below.

4.5 Datasets

Five face anti-spoofing benchmark datasets, namely, Replay-Attack

[64], CASIA-FASD [62], MSU-MFSD [28], Oulu-NPU [208] and SiW

[90], were used.

Replay-Attack dataset consists of 1200 video clips of photo and

video spoof attempts of 50 users, under different lighting conditions.
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Training set has 60 genuine and 300 spoof users. Validation set has

60 genuine and 300 spoof images. Test set has 80 genuine and 400

spoof images.

CASIA-MFSD contains 50 users video clips under different resolu-

tions and light conditions. Three spoof face attacks are implemented,

which include warped photo attack, cut photo attack and video at-

tack. The dataset contains 600 video clips, in which 120 videos for

training, 120 videos for validation and 360 videos for testing are used.

MSU-MFSD dataset has 280 video clips of genuine and spoof faces

from 35 users. Two cameras with different resolutions (720×480 and

640×480) were used to record the videos from the 35 users. The 280

videos were divided into training (60 videos), validation (60 videos)

and testing (160 videos) datasets, respectively.

Oulu-NPU dataset consists of 4950 video clips and has four testing

protocols: Protocol 1 evaluates the effect of the illumination varia-

tions; Protocol 2 evaluates the effect of spoofing attack instrument

variations; Protocol 3 evaluates the effect of camera device varia-

tions; and Protocol 4 is a combination of the three protocols. For

all protocols, the 4950 video clips were divided into three disjoint

subsets for training, validation and testing, namely, 1800, 1350 and

1800, respectively.

SiW dataset has genuine and spoof videos from 165 users. It has

three protocols. The first protocol evaluates the generalization of

the face attack detection under different face poses and expressions.

The second protocol evaluates the generalization capability on cross-

medium of the same spoof type. The third protocol evaluates the

performance on an unknown attack. We used 45, 45 and 75 users for

training, validation and testing, respectively.



4.6. Evaluation metrics 75

4.6 Evaluation metrics

Performance of biometric verification systems depends on accuracy

of acceptance/rejection of the analyzed image [210, 211]. The mea-

sures used are false acceptance rate (FAR), Equation 4.6, and false

rejection rate (FRR), Equation 4.7. FAR is the ratio of incorrectly

accepted spoofing attack faces, whereas FRR is the ratio of incor-

rectly rejected genuine faces. The commonly used metric in anti-

spoofing literature is Half Total Error Rate (HTER), Equation 4.8,

while Equal Error Rate (EER) is a value of HTER at which FAR

and FRR have the same values.

The other metrics used in ISO standard [212] are Attack Presen-

tation Classification Error Rate (APCER), Equation 4.2, Bona fide

Presentation Classification Error Rate (BPCER), Equation 4.3 and

Average Classification Error Rate (ACER) Equation 4.4. BPCER

(Equation 4.3) and APCER (Equation 4.2) measure genuine and

spoof classification error rates, respectively. ACER (Equation 4.4)

summarizes the two measures.

FAR =
FP

Spoof Samples
(4.6)

FRR =
FN

Genuine Samples
(4.7)

HTER =
(FRR + FAR)

2
(4.8)

where FP is false positive, and FN is false negative.
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Table 4.2: Comparison of the proposed Image Quality (IQ) feature measurements with
other image quality feature measurement based methods on Replay-Attack, CASIA-

MFSD and MSU-MFSD datasets.

Methods
No. of
IQ

Features

HTER (%) on
Replay-Attack

EER (%)
CASIA-MFSD

EER (%) on
MSU-MFSD

IDA [28] 4 7.41 13.3 8.58
Galbally [69] 24 15.2 - -

Costa-Pazo [191] 18 5.28 - -
FASS with RF 7 4.32 7.02 6.51

FASS with SVM 7 5.02 7.17 6.48

4.7 Experimental Results of the Proposed Method (FASS)

4.7.1 The Proposed Image Quality Feature Measurements on Replay-

Attack, CASIA- MFSD and MSU-MFSD Datasets

Table 4.2 compares FASS results with other algorithms that use dif-

ferent numbers of image quality features, namely, 4, 25 and 18 fea-

tures.

As it is shown in the Table, we compare our two proposed methods

(i.e., FASS with Random Forest (RF) and FASS with SVM) with

the other three algorithms in order to see the classification accuracy

of RF and SVM methods.

We notice in Table 4.2 that FASS performs better results than the

other systems on three datasets. FASS with RF and FASS with SVM

result in 18.18% and 4.9% HTER relative improvement when com-

pared with [191], respectively. Comparison with the CASA-MFSD

dataset, FASS with RF and FASS with SVM provide 47.2% and 46%

relative EER improvement over [28], respectively. Compared with

[28], FASS with RF and FASS with SVM gave 24.1% and 24.5%

relative EER improvement on the MSU-MFSD dataset, respectively.
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These results show that the selected seven no-reference image qual-

ity features are good for detecting face spoofing attacks. Both RF

and SVM classification methods provide more or less similar results.

While RF classification has the best results on Replay-Attack and

CASIA-MFSD dataset, SVM classification has the best result on

MSU-MFSD.

For the Replay-Attack dataset, only HTER results are reported in

the literature and, for CASIA-MFSD and MSU-MFSD datasets only

EER results are reported, thus we used them in our comparisons.

4.7.2 OULU-NPU Dataset

Table 4.6 shows the results of the FASS and other state-of-the-art

systems for anti-spoofing, for four different protocols on the OULU-

NPU dataset.

Similar to Table 4.2, our two methods (i.e., FASS with RF and FASS

with SVM) are compared with other reported results in terms of

accuracy.

From Table 4.6, we see that FASS gave the best APCER (Equa-

tion 4.2) value of all anti-spoofing systems on protocol 1. Compared

with DeepPixBiS, FASS shows 62.5% relative improvement. How-

ever, FASS is not as good using BPCER (Equation 4.3) and ACER

(Equation 4.4) measures as DeepPixBiS.

FASS with SVM gives the best ACER (Equation 4.4) value on pro-

tocol 2. Compared with FAS-TD, FASS with SVM shows 15.8%

relative ACER (Equation 4.4) improvement. It has almost the same

APCER (Equation 4.2) value as FAS-TD. However, it lags the STASN

on BPCER (Equation 4.3).
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Table 4.3: Comparison of the proposed method with the state-of-the-art methods using
four protocols on the OULU-NPU dataset.

Protocol Method APCER(%) BPCER(%) ACER(%)
1 GRADIANT [213] 1.3 12.5 6.9

DeepPixBiS [91] 0.8 0.0 0.4
STASN [175] 1.2 2.5 1.9
Auxiliary [90] 1.6 1.6 1.6
CPqD [213] 2.9 10.8 6.9
FaceDs [89] 1.2 1.7 1.5
MILHP [183] 8.3 0.8 4.6
BASN [176] 1.5 5.8 3.6
FAS-TD [181] 2.5 0.0 1.3
FASS with RF 0.3 0.5 0.6
FASS with SVM 0.3 1.5 0.9

2 DeepPixBiS [91] 11.4 0.6 6.0
Auxiliary [90] 2.7 2.7 2.7
GRADIANT [213] 3.1 1.9 2.5
STASN [175] 4.2 0.3 2.2
FAS-TD [181] 1.7 2.0 1.9
FaceDs [89] 4.2 4.4 4.3
MILHP [183] 5.6 5.3 5.4
BASN [176] 2.4 3.1 2.7
FASS with RF 2.1 0.7 1.7
FASS with SVM 1.8 1.3 1.6

3 DeepPixBiS [91] 11.7±19.6 10.6±14.1 11.1±9.4
FAS-TD [181] 5.9±1.9 5.9±3.0 5.9±1.0
GRADIANT[213] 2.6±3.9 5.0±5.3 3.8±2.4
FaceDs [89] 4.0±1.8 3.8±1.2 3.6±1.6
Auxiliary [90] 2.7±1.3 3.1±1.7 2.9±1.5
MILHP [183] 1.5±1.2 6.4±6.6 4.0±2.9
BASN [176] 1.8±1.1 3.6±3.5 2.7±1.6
STASN [175] 4.7±3.9 0.9±1.2 2.8±1.6
FASS with RF 1.9±1.7 1.2±1.2 1.7±0.3
FASS with SVM 2.0±1.4 1.8±1.3 1.9±0.6

4 DeepPixBiS [91] 36.7±29.7 13.3±14.1 25.0±12.7
GRADIANT [213] 5.0±4.5 15.0±7.1 10.0±5.0
Auxiliary [90] 9.3±5.6 10.4±6.0 9.5±6.0
FAS-TD [181] 14.2±8.7 4.2±3.8 9.2±3.4
STASN [175] 6.7±10.6 8.3±8.4 7.5±4.7
MILHP [183] 15.8±12.8 8.3±15.7 12.0±6.2
FaceDs [89] 5.1±6.3 6.1±5.1 5.6±5.7
FASS with RF 4.0±3.6 5.6±3.5 5.2±1.9
FASS with SVM 4.3±4.5 6.4±5.7 5.4±3.2

Using protocol 3, Table 4.6 shows that the FASS with RF system

gives the best ACER (Equation 4.4) value, however, it does not have

the best APCER (Equation 4.2) and BPCER (Equation 4.3) values.
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On protocol 4, FASS with RF gives the best APCER (Equation 4.2)

and ACER (Equation 4.4) values. However, FASS is not as good as

the FAS-TD system using BPCER (Equation 4.3) measure.

4.7.3 SiW Dataset

Table 4.4: Comparison of the proposed method with the state-of-the-art methods using
three protocols on the SiW dataset.

Protocol Method APCER(%) BPCER(%) ACER(%)
1 Auxiliary [90] 3.58 3.58 3.58

STASN [175] – – 1.00
FAS-TD [181] 0.96 0.50 0.73
BASN [176] - - 0.37
BCN [182] 0.55 0.17 0.36
FASS with RF 0.46 0.18 0.31
FASS with SVM 0.49 0.19 0.34

2 Auxiliary [90] 0.57±0.69 0.57±0.69 0.57±0.69
STASN [175] – – 0.28±0.05
FAS-TD [181] 0.08±0.14 0.21±0.14 0.15±0.14
BASN [176] - - 0.12±0.03
BCN [182] 0.08±0.17 0.15±0.00 0.11±0.08
FASS with RF 0.11±0.31 0.14±0.10 0.12±0.02
FASS with SVM 0.15±0.10 0.13±0.10 0.14±0.03

3 STASN [175] – – 12.10±1.50
Auxiliary [90] 8.31±3.81 8.31±3.80 8.31±3.81
FAS-TD [181] 3.10±0.81 3.09±0.81 3.10±0.81
BASN [176] - - 6.45±1.80
BCN [182] 2.55±0.89 2.34±0.47 2.45±0.68
FASS with RF 2.29±0.24 2.01±0.15 2.03±0.17
FASS with SVM 2.33±0.17 1.98±0.14 2.15±0.13

Similarly, we compared (Table 4.7) the FASS system on SiW dataset

on its 3 different protocols using two classifications (i.e., FASS with

RF and FASS with SVM).

We can see, FASS with RF and FASS with SVM had 18.1% 10.9%

relative APCER (Equation 4.2) improvement when compared with

BCN, respectively. Similarly, FASS with RF had the best ACER

(Equation 4.4) result on protocol 1. FASS with SVM provided the

second-best ACER (Equation 4.4) value on protocol 1.
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On protocol 2, both of FASS’s performance using RF and SVM clas-

sification methods was not good in terms of APCER (Equation 4.2)

when compared with FAS-TD and BCN, however, FASS with SVM

was the best performing and FASS with RF is the second best per-

forming in terms of BPCER (Equation 4.3).

As it is shown in Table 4.7, FASS with RF gives us the best APCER

value (i.e., 2.29%) and the best ACER value (i.e., 2.03%). Similarly,

FASS with SVM had the best result on BPCER (1.98%)

Overall, FASS with RF compared with five state-of-the-art meth-

ods on this dataset performed almost the best in terms of ACER

(Equation 4.4) on all three protocols (0.31%, 0.12%, and 2.03% re-

spectively). These results show good generalization of FASS for vari-

ations of face pose and expression, and for different spoof mediums.

4.7.4 Cross-Dataset Testing between CASIA-MFSD and Replay-Attack

Datasets

Table 4.5: Comparison of the proposed method with the state-of-the-art methods using
cross-dataset between CASIA-MFSD and Replay-Attack.

Method
Train: CASIA-MFSD
Test: Replay-Attack

Train: Replay-Attack
Test: CASIA-MFSD

Motion-Mag [214] 50.1 47.0
LBP-TOP [26] 49.7 60.6
STASN [175] 31.5 30.9
Auxiliary [90] 27.6 28.4
FAS-TD [181] 17.5 24.0
LBP [199] 47.0 39.6
Spectral cubes [29] 34.4 50.0
BCN [182] 16.6 36.4
BASN [176] 23.6 29.9
FaceDs [89] 28.5 41.1
FASS with RF 9.1 24.5
FASS with SVM 9.7 25.6
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Table 4.5 shows the results of testing using HTER measure for cross-

dataset testing (trained on CASIA-MFSD but tested on Replay-

Attack dataset), and vice versa. We see that FASS with RF gives us

the best result when trained on CASIA-MFSD data and tested on

Replay-Attack data. FASS with RF provides us a 45.18% HTER rel-

ative improvement compared to BCN system. However, both FASS

with RF and FASS with SVM did not give the best results when

trained on Replay-Attack but evaluated on CASIA-MFSD dataset.

On average, however, they gave better results compared to the other

state-of-art system results. The results of Table 4.5 indicate that

FASS generalizes well, different from a different distribution.

While several face spoof detection techniques have been proposed,

their generalization abilities are still to be improved. We propose

an efficient face spoof detection system called FASS which is based

on fusing the scores of the two classifiers such as SVM/RF and

ResNet50.

4.8 Experimental Results of the Proposed Method (HDLHC)

4.8.1 Oulu-NPU Dataset

Table 4.6 compares the HDLHC method on the Oulu-NPU dataset

with several state-of-the-art methods. In protocol 1, HDLHCmethod

gives the best APCER and slightly worse ACER, but DeepPixBiS

gives the best BPCER and ACER. In protocol 2, HDLHC method

gives the best APCER and ACER whereas STASN has the best

BPCER. In protocol 3, HDLHC method gives the best ACER, but

worst APCER and BPCER. In protocol 4, HDLHC method gives the
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Table 4.6: Comparison of the proposed method (HDLHC) with the state-of-the-art meth-
ods on Oulu-NPU dataset.

Protocol Method APCER(%) BPCER(%) ACER(%)
1 GRADIANT [213] 1.3 12.5 6.9

DeepPixBiS [91] 0.8 0.0 0.4
STASN [175] 1.2 2.5 1.9
Auxiliary [90] 1.6 1.6 1.6
FaceDs [89] 1.2 1.7 1.5
MILHP [183] 8.3 0.8 4.6
BASN [176] 1.5 5.8 3.6
FAS-TD [181] 2.5 0.0 1.3
FASS with RF [207] 0.3 0.5 0.6
FASS with SVM [207] 0.3 1.5 0.9
HDLHC 0.2 0.8 0.5

2 DeepPixBiS [91] 11.4 0.6 6.0
Auxiliary [90] 2.7 2.7 2.7
GRADIANT [213] 3.1 1.9 2.5
STASN [175] 4.2 0.3 2.2
FAS-TD [181] 1.7 2.0 1.9
FaceDs [89] 4.2 4.4 4.3
MILHP [183] 5.6 5.3 5.4
BASN [176] 2.4 3.1 2.7
FASS with RF [207] 2.1 0.7 1.7
FASS with SVM [207] 1.8 1.3 1.6
HDLHC 1.6 0.7 1.2

3 DeepPixBiS [91] 11.7±19.6 10.6±14.1 11.1±9.4
FAS-TD [181] 5.9±1.9 5.9±3.0 5.9±1.0
GRADIANT[213] 2.6±3.9 5.0±5.3 3.8±2.4
FaceDs [89] 4.0±1.8 3.8±1.2 3.6±1.6
Auxiliary [90] 2.7±1.3 3.1±1.7 2.9±1.5
MILHP [183] 1.5±1.2 6.4±6.6 4.0±2.9
BASN [176] 1.8±1.1 3.6±3.5 2.7±1.6
STASN [175] 4.7±3.9 0.9±1.2 2.8±1.6
FASS with RF [207] 1.9±1.7 1.2±1.2 1.7±0.3
FASS with SVM [207] 2.0±1.4 1.8±1.3 1.9±0.6
HDLHC 1.8±2.3 1.1±3.3 1.5±1.4

4 DeepPixBiS [91] 36.7±29.7 13.3±14.1 25.0±12.7
GRADIANT [213] 5.0±4.5 15.0±7.1 10.0±5.0
Auxiliary [90] 9.3±5.6 10.4±6.0 9.5±6.0
FAS-TD [181] 14.2±8.7 4.2±3.8 9.2±3.4
STASN [175] 6.7±10.6 8.3±8.4 7.5±4.7
MILHP [183] 15.8±12.8 8.3±15.7 12.0±6.2
FaceDs [89] 5.1±6.3 6.1±5.1 5.6±5.7
FASS with RF [207] 4.0±3.6 5.6±3.5 5.2±1.9
FASS with SVM [207] 4.3±4.5 6.4±5.7 5.4±3.2
HDLHC 3.8±3.1 5.7±4.2 4.8±1.7
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best APCER and ACER. Note that protocol 4 evaluates all the Oulu-

NPU dataset variations, which is the most challenging and most sim-

ilar to real application scenarios. Our method achieves 4.8% ACER,

better than the state-of-the-art methods, showing that concatenat-

ing deep features with seven hand-crafted image quality features has

better performance and generalization ability.

4.8.2 SiW dataset

Table 4.7: Comparison of the proposed method (HDLHC) with the state-of-the-art meth-
ods on SiW dataset.

Protocol Method APCER(%) BPCER(%) ACER(%)
1 Auxiliary [90] 3.58 3.58 3.58

STASN [175] – – 1.00
FAS-DRL [215] 0.07 0.50 0.28
FAS-TD [181] 0.96 0.50 0.73
BASN [176] - - 0.37
BCN [182] 0.55 0.17 0.36
FASS with RF [207] 0.46 0.18 0.32
FASS with SVM [207] 0.49 0.19 0.34
HDLHC 0.47 0.17 0.32

2 Auxiliary [90] 0.57±0.69 0.57±0.69 0.57±0.69
STASN [175] – – 0.28±0.05
FAS-DRL [215] 0.08±0.17 0.13±0.09 0.10±0.04
FAS-TD [181] 0.08±0.14 0.21±0.14 0.15±0.14
BASN [176] - - 0.12±0.03
BCN [182] 0.08±0.17 0.15±0.00 0.11±0.08
FASS with RF [207] 0.11±0.31 0.14±0.10 0.12±0.02
FASS with SVM [207] 0.15±0.10 0.13±0.10 0.14±0.03
HDLHC 0.09±0.30 0.13±0.20 0.11±0.05

3 STASN [175] – – 12.10±1.50
FAS-DRL [215] 9.35±6.14 1.84±2.60 5.59±4.37
Auxiliary [90] 8.31±3.81 8.31±3.80 8.31±3.81
FAS-TD [181] 3.10±0.81 3.09±0.81 3.10±0.81
BASN [176] - - 6.45±1.80
BCN [182] 2.55±0.89 2.34±0.47 2.45±0.68
FASS with RF [207] 2.29±0.24 2.01±0.15 2.16±0.17
FASS with SVM [207] 2.33±0.17 1.98±0.14 2.15±0.13
HDLHC 2.27±0.14 1.99±0.16 2.13±0.18

Table 4.7 shows comparison of HDLHC method on SiW dataset with

the state-of-the-art methods. In protocol 1, HDLHC method gives
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the highest values for APCER and ACER, whereas BCN has the

best value of BPCER. In protocol 2, HDLHC method provides the

best BPCER and ACER values, whereas BCN has the best value of

APCER. In protocol 3, HDLHC method provides the best value for

APCER, BPCER and ACER. Overall, HDLHC method performs

most of the time as the best one in terms of ACER on all three

protocols. These results indicate good generalization of HDLHC

method for variations of spoof mediums.

4.9 Summary

Genuine face image and a spoof face image are very similar although

careful visual inspection can find small differences between the two.

It is thus reasonable to assume that the image quality features can

be identified and used to automatically distinguish between genuine

and spoof images.

Following this assumption, we identify and propose seven no-reference

face image quality features measurement to be used in spoof detec-

tion systems. These features are Blurriness, Color, GM-LOG-BIQA,

BRISQUE, Reflection, HLFI, and BIQI.

We then introduce a novel face anti-spoofing system called FASS,

that uses these no-reference image quality features as an input to

the SVM and RF classifiers. It also uses the original images as input

to the deep learning ResNet50 classifier and then combines their

results. While deep learning classifiers in general perform better than

classifiers that use image quality features extracted from images, the

results of FASS show that by fusing the outputs of different classifiers

that use different feature inputs improves the overall accuracy.
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This paper also introduces another novel face anti-spoofing system

called HDLHC that takes the advantage of the traditional hand-

crafted image quality features and deep learning. HDLHC method

uses the proposed manually extracted seven image quality features

in addition to the deep learning features. It leverages VGG net-

work which automatically extracts the deep features from the last

layer before the classification layer. It then concatenates the two

features and feeds into the classifier. Thus, the hand-crafted image

quality features complement deep learning features for better gener-

alization. The experimental results on Oulu-NPU and SiW datasets

demonstrate the superiority of the HDLHC method when compared

with the state-of-the-art methods.



Chapter 5

Conclusions

This chapter provides a summary of this PhD dissertation. The

proposed techniques are reviewed regarding the objectives discussed

in Chapter 1. Finally, suggestions for future works are described.

5.1 Conclusions

This PhD dissertation introduces five novel methods: an unsuper-

vised deep learning face verification method using an autoencoder

based network using only similar images, an unsupervised deep learn-

ing face verification method using an autoencoder based network us-

ing both similar and dissimilar images, an unsupervised deep learn-

ing face verification method using a Siamese based network using

both similar and dissimilar images, face anti-spoofing method using

image quality measurements and deep learning at score level and fi-

nally, face anti-spoofing method using image quality measurements

and deep learning at feature level.

State-of-the art deep learning methods for face verification usually

require large amounts of labeled data for training. However, it is

not always easy to obtain such data. To address this problem, we

86
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propose novel an unsupervised deep learning face verification system

called UFace. It does not require labeled training data as well as it

does not require a huge amount of training data. It uses both the

most k similar and k dissimilar images to a given image and then, it is

demonstrated using an autoencoder and Siamese networks. UFace is

evaluated on four benchmark face verification datasets, namely, La-

beled Faces in the Wild (LFW), YouTube Faces (YTF), Cross-age

LFW (CALFW) and Celebrities in Frontal Profile in the Wild (CFP-

FP). Its performance using the Siamese network achieved accuracies

of 99.40%, 96.04%, 95.12% and 97.89%, respectively, which are com-

parable with the state-of-the-art methods. Importantly, UFace uses

much less data for training. Additional advantage of UFace is that

it can be used for verification of other types of images in domains

where labeled data are not easily available.

As state-of-the-art face anti-spoofing systems are still fragile in de-

tecting spoofing attacks, we propose a novel face anti-spoof detection

system called FASS and HDLHC. Genuine face image and a spoof

face image are very similar although careful visual inspection can

find small differences between the two. It was thus, reasonable to

assume that the image quality features can be identified and used to

automatically distinguish between genuine and spoof images. Fol-

lowing this assumption, we identify and propose a novel set of seven

no-reference face image quality measurements and use them in FASS

and HDLHC. These image quality feature measurements are Blur-

riness, Color, GM-LOG-BIQA, BRISQUE, Reflection, HLFI, and

BIQI. FASS and HDLHC use these features as an input to the clas-

sical classifier such as SVM and Random Forest.

FASS also uses the original images as input to the deep learning

ResNet50 network and then it combines the scores of the classical
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classifier with the ResNet50 classifier in a weighted fashion. While

deep learning classifiers in general perform better than classifiers that

use image quality features extracted from images, the results of FASS

show that by fusing the outputs of different classifiers that use differ-

ent feature inputs improves the overall accuracy. FASS is evaluated

on the face anti-spoofing benchmark datasets such as Replay-Attack,

CASIA-MFSD, MSU-MFSD, OULU-NPU and SiW. FASS perform

better than several of the state-of-the-art systems during both intra-

datasets and extra-datasets testing scenarios. These results confirm

the usefulness of the identified seven no-reference image quality fea-

tures, which can be used by others in their anti-spoofing research.

HDLHC also use the deep features extracted from VGG network

in addition to the seven image quality features. It concatenates

both features and feed it to the classifier to distinguish between gen-

uine and spoofed faces. HDLHC is evaluated on two recent face

anti-spoofing benchmark datasets: OULU-NPU and SiW. The re-

sults show that HDLHC outperforms the state-of-the-art face anti-

spoofing methods in many scenarios.

5.2 Future Research Lines

The work performed in this PhD dissertation may be used as a guide

for future research lines in biometrics identity verification system and

other image recognition tasks where there are a limited number of

training data. The possible future research lines that can be contin-

ued from our work are outlined as follows:
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Firstly, the proposed unsupervised deep learning face verification

technique is successfully applied for face verification system. There-

fore, it is worth to explore the impact of the proposed technique to

verify some objects other than human being. Since face tracking and

face verification are close to each other and share some components,

the proposed technique can also be applied in face tracking systems.

Secondly, the proposed face anti-spoofing system using image quality

measurements and deep learning techniques can also be applied to

other biometric spoof detection methods such as fingerprint and iris.

Since the proposed image quality measurements are not application

specific, thus it is worth to try to apply the same techniques to detect

the spoofing attack on fingerprint and iris.
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