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Abstract

IMPROVING THE PERFORMANCE, ENERGY EFFICIENCY AND SECURITY

OF GPUS

By Xin Wang, PH.D. VIRGINIA COMMONWEALTH UNIVERSITY

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2023.

Director: Wei Zhang, Ph.D., Ruixin Niu, Ph.D.,

Professor, Department of Computer Engineering

The work in this dissertation achieves to enhance the performance, energy-

efficiency, and security of the GPUs. We noticed that, as the demand of hardware

resources keeps rising in GPUs, the energy consumption becomes unaffordable and

places barriers for further performance boost. To resolve this issue, we have pro-

posed several novel GPU micro-architectures that are able to assist the GPUs to

execute in an energy-efficient manner. They also provide the potential for further

performance enhancement in GPUs. Firstly, we proposed a GPU register packing

scheme that stores multiple narrow-width operands to a single register to save reg-

ister file resources. The unoccupied registers then can be turned off to save leak-

age energy consumption or used to accommodate additional threads to improve the

performance. Secondly, we presented a drowsy register file mechanism which can

improve the energy-efficiency by putting the unused register into a low power state.

Thirdly, we introduced a GPU computing units power-gating strategy by noticing the

considerable idleness of the computing units. The power-gating strategy achieves a

x



remarkable overall GPU energy reduction. Finally, in order to raise awareness about

the GPU’s vulnerability to side-channel attacks among the researchers, we presented

our research on attacking the AES algorithms that are deployed onto the GPUs and

discussed appropriate countermeasures.

There are four projects in this dissertation.

First, we propose OWAR, an Operand-Width-Aware Register packing mecha-

nism for GPU energy saving. We first notice that a large percentage of computed

results actually has fewer significant bits compared to the full width of a 32-bit reg-

ister for many GPGPU applications. OWAR utilizes a GPU register packing scheme

to dynamically exploit narrow-width operands and pack multiple operands into a sin-

gle full width register, thereby saving RF resources. In order to efficiently use RF,

OWAR then employs a power gating method to shut down unused register sub-arrays

for reducing dynamic and leakage energy consumption of RF. The register operation

to narrow width operands is able to be completed with fewer number of RF accesses

and therefore the dynamic energy is further reduced. Finally, by observing that RF

resource is still insufficient to enable all thread level parallelism (TLP) and the lack of

RF resources can hurt performance by limiting the occupancy of GPU threads, with

the help of RF usage optimized by register packing, OWAR allows GPUs to support

more TLP through assigning additional thread blocks on SMs (Streaming Multipro-

cessors) for GPGPU applications that suffer from the deficiency of register resources.

The extra TLP opens opportunities for hiding more memory latencies and achieving

better performance. The GPGPU’s energy consumption then naturally decreases due

to the reduction in execution duration. We evaluate OWAR using a batch of repre-

sentative GPU benchmarks. The experimental results shows that compared to the

baseline without optimization, OWAR can reduce the GPGPU’s total energy up to

29.6% and 9.5% on average. In addition, OWAR achieves performance improvement

xi



up to 1.97X and 1.18X on average.

Next, we work on the drowsy technique to reduce the RF leakage energy con-

sumption. We introduce three drowsy policies and evaluate their effectiveness on

leakage energy reduction. In the first drowsy policy called immediate sleep (Drowsy-

IS), registers keep staying in the drowsy mode unless they are accessed and then

they are put into the drowsy mode again immediately to minimize the leakage energy

consumption. The second policy named temporary awake (Drowsy-TA) holds the

registers in the normal mode for a certain period after being accessed to wait for the

next access. The registers are placed into the drowsy mode until that period expires

without any access activity. Thirdly, we propose an adaptive policy which identifies

the re-access interval (Drowsy-RI) for each register at run-time and let registers wait

for the predicted intervals before putting them into the drowsy mode. The experi-

mental results show that compared to the baseline RF, Drowsy-IS achieves 91.7% RF

leakage energy reduction on average at the cost of 4.4% performance degradation.

Drowsy-TA leads to only negligible performance overhead, and 82.8% leakage energy

reduction. By balancing the energy saving and the performance overhead, Drowsy-RI

saves more RF leakage energy (87.3%) than Drowsy-TA along with less performance

degradation (2.7%) than Drowsy-IS.

Thirdly, we examine the distribution and the length of execution units idle cy-

cles for several typical GPGPU applications to direct the energy-saving strategies to

capture potential execution units power-gating opportunities. We record the idle du-

rations of the execution units for SMs (Streaming Multiprocessors) including integer

units and floating units in SPs (Streaming Processors) and SFUs (Special Function

Units). Second, based on the observation of idleness, we study the effectiveness of

the execution units power-gating on the leakage energy saving with two simple poli-

cies, the immediate power-gating (IPG) and idle detect power-gating (ID-PG). We

xii



examine the polices with various parameter settings in order to offer insights on pos-

sible gains and losses from the power-gating techniques to enable smarter strategies

in future research. The experimental results show that both policies can achieve sat-

isfactory leakage energy saving on execution units. The immediate power-gating can

reduct the execution units leakage energy by 84.3% when the break even time is set

to 5 cycles and the idle detect power-gating can save 67.1% of the total execution

units leakage energy even if the break even time goes up to 20 cycles. 3)

Finally, we propose two Side-Channel Attacks (SCAs) to demonstrate that ig-

noring security issues and naively moving security services onto GPUs can expose

adversaries fatal vulnerabilities to thieve critical information. First, we proposed to

leverage a profiling-based side-channel attack (pSCA) to expose GPUs’ side-channel

vulnerability and the weakness of security services provided by GPUs. Our results

show that GPUs are particularly vulnerable to profiling-based side-channel attacks

and need to be protected against side-channel threats. Especially, for AES-128, the

proposed method can recover all key bytes in less than 1 minute, outperforming all

prior SCAs we know. Aiming at protecting GPUs against these SCAs, the Ran-

domized Coalescing (RCoal) techniques are proposed with proven effectiveness on

security improvement. However, our pSCA is still able to rebuild the secure key of a

GPUsupported AES algorithm under the RCoal protection in a reasonable duration

without the detailed information of the RCoal configuration. Second, we propose a

Profiling-Assisted Correlation-based Side-Channel Attack (pacSCA) to demonstrate

that the private information processed by GPUs is under serious risk before the secu-

rity issues are properly addressed. We further prove that our pacSCA can still achieve

information leakage even though the Rcoal techniques have been applied which is a

state-of-the-art countermeasure to the side-channel attacks. The results show that

the proposed SCA can reveal the secure key of the AES-128 algorithm in less than 6

xiii



seconds. With the guard of the Rcoal techniques, the pacSCA can obtain the secure

key in less than 17 minutes. The purpose of this study is to arouse further researches

on GPU side-channel threats and corresponding countermeasures.
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CHAPTER 1

INTRODUCTION

1.1 Background

GPUs which served as graphic-oriented computation platform are now trans-

forming to the general-purpose applications such as computation-intensive and data-

parallel scientific computing programs [1, 2, 3]. Modern GPUs also called general-

purpose graphics processing units (GPGPUs) are equipped with a large number of

computation units enabling to process thousands of threads or more concurrently

by following a single instruction multiple data (SIMD) pattern. The software layer

which is supported by GPU fitted programming environment such as NVIDA devel-

oped CUDA [4] and AMD provided OpendCL [5] utilizes the GPU’s hardware to

accelerate the applications tremendously. There are a wide range of existing paral-

lelizable applications formerly running on CPUs can be tailored to GPUs for signif-

icant performance benefit. CUDA programming language allows the programmer to

define the paralleled portion of an application as several kernels, each consisting of

thousands of threads that execute in parallel [4]. One GPGPU application usually

contains multiple CUDA kernels organized as a group of thread blocks, also called

concurrent thread array (CTA). A thread block can be formed as one-dimensional,

two dimensional or three-dimensional thread index based on the data structures, such

as a vector, matrix or volume computation domain. The sub-level of the thread block

called warp contains 32 threads with consecutive thread IDs. A warp is executed in

a single instruction multiple-threads (SIMT) style, where all 32 threads in the same

warp execute the same instruction working on different data fragments. Moreover, in
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the SIMT execution style, only one PC is handled and a single instruction is fetched

and decoded for each warp. However, threads in the same warp can access different

memory address and follow different control flow paths. The cooperation of software

support and hardware features allow GPU to overlap long latency by utilizing warps

in a thread blocks conserving stalled warps context and switching a oldest ready warp.

As a result, the performance of paralleled applications can be significantly boosted

on GPGPUs.

Keeping increasing the computing units and enlarging the capacity of RF can

help boost GPU performance. However, The downside of GPUs achieving ultra high

throughput in exchange of the high demand on hardware resources is that energy effi-

ciency turns out to be an issues. With the scaling up of GPGPU’s execution units and

register files willing to host more thread contexts, both dynamic and leakage energy

of GPGPUs keep increasing and become unaffordable. Thus, we need to explore new

techniques to exploit and manage the GPU hardware resources, e.g. execution unit,

registers and etc., more efficiently to achieve further performance improvement with-

out involving additional resources. Moreover, the hardware resources are demanded

for peak performance requirement, however unfortunately many applications can not

take full advantage of them leaving a great portion of components in idle wasting

energy and thus hurting the energy-efficiency [6, 7, 8, 9, 10, 11]. Operating the GPU

components in energy-efficient ways can also offer the opportunities of supporting

more hardware resources and thus boosting performance.

Taking advantage of the high throughput offered by GPUs, the security ser-

vices such as cryptographic application have been increasingly deployed on GPUs to

enjoy remarkable performance boosting [12, 13, 14, 15, 16, 17]. Unfortunately pri-

mary existing studies concentrate on taking care of identifying vulnerabilities based

on mainstream security computing platforms such as CPUs and FPGAs, while the
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vulnerabilities exposed on the promising GPU-based security systems have not been

thoroughly explored leaving severe vulnerabilities for adversary to pull down the whole

security system. Recently, an increasing number of studies have been conducted to

explore the security vulnerabilities on GPUs and propose corresponding countermea-

sures making effort on building a secure environment for GPU computing. Early

researches focus on utilizing the software flaws of GPU programming model to leak

confidential information [18, 19, 20, 21, 22]. Or, to be more specific, most of these

works reveal that GPU drivers don’t automatically erase data residing in GPU mem-

ory hierarchies including shared memory, global memory, local memory and registers

after deallocation leading to enormous risk of leaking sensitive data through reallo-

cating the same memory space to the adversary’s program [18, 19, 20, 21].

1.2 GPU Register File Narrow-Width Operands Packing

The first topic is about GPU register file (RF) management. The main aim of

this work is to propose a GPU RF management mechanism that offers an energy

efficiency by taking advantage of narrow-width operands. Inspired by the narrow-

width-aware register packing research on CPUs, we design a GPU register packing

scheme called Operand-Width-Aware Register Packing (OWAR) which takes into

account of characteristics of GPU’s miroarchitecture and RF organization. This novel

technique first applies the register packing and register usage prediction methods to

dynamically identify narrow-width operands, pack them into a single register and

predict the shrunken register usage for the on-coming thread blocks. By register

packing and usage prediction, the remaining RF space increases and the demand

of future thread blocks on register resources decreases. As a result, more registers

become unutilized. OWAR will then turn off the sub-arrays that contain no in-

use registers to save both dynamic and leakage energy. Combined with a renaming
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table, OWAR is able to map multiple architectural registers that store narrow-width

operands to a single physical register in run-time. Consequently, OWAR offers the

illusion that extra RF space is available and make the SMs to host more thread blocks.

For GPU kernels whose occupancy of threads is limited by RF resources, OWAR then

can provides additional TLP that plays a role in hiding memory latencies to improve

performance.

1.3 GPU Register File Drowsy Management

The second research topic is about breaking the energy constraint through drowsy

RF, which provides an energy efficient way to operate GPGPUs’ register file. We

introduce three drowsy policies and evaluate their effectiveness on leakage energy

reduction. In the first drowsy policy called immediate sleep (Drowsy-IS), registers

keep staying in the drowsy mode unless they are accessed and then they are put into

the drowsy mode again immediately to minimize the leakage energy consumption.

The drawback is that the additional cycles are required to re-active registers from

the drowsy mode for each access which may lead to significant performance degra-

dation. By noticing that some registers are re-accessed in high frequency, to avoid

re-activation penalty. The second policy named temporary awake (Drowsy-TA) holds

the registers in the normal mode for a certain period after being accessed to wait

for the next access. The registers are placed into the drowsy mode until that period

expires without any access activity. The leakage energy will be wasted if no re-access

occurs during the waking cycles. Finally, we propose an adaptive policy which iden-

tifies the re-access interval (Drowsy-RI) for each register at run-time and let registers

wait for the predicted intervals before putting them into the drowsy mode. The

Drowsy-RI is running a performance/energy tradeoff according to the characteristic

of re-access intervals. The Drowsy-RI applies TA policy to the registers with short
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access interval for the purpose of re-activation penalty elimination. For the registers

not being accessed in the long term, IS policy is employed to save leakage energy.

1.4 GPU Execution Units Power-Gating Strategies

Thirdly, we explore the idleness pattern of execution units for different GPU

workloads and try to discover the inherent opportunities for power-gating on energy-

efficiency enhancement without any re-schedule techniques. The focus of this work is

to analyze the inborn natures of the execution units idleness and to show the power

of traditional power-gating strategies on GPU leakage energy saving. The goal of

this research is to guide to the future GPU energy studies regarding to execution

units power-gating. The advantage of conducting a study on original pattern is that

no additional microarchitecture involvement except basic counters makes the GPU

architecture unchanged and also avoid hardware overhead. In additional, the results

depict a good enough energy-saving although no complicated strategies are applied.

1.5 GPU Side-Channel Attacks

The last topic is to discover the vulnerabilities of GPGPU architecture and

discuss corresponding countermeasure. We propose two GPU side-channel attacks,

profiling-based side-channel attack (pSCA) and profiling-assisted correlation-based

side-channel Attack (pacSCA). Both SCAs can reveal the secure key of the AES-128

algorithm running on GPGPUs. We first propose a novel profiling-based side-channel

attack that information leaked from GPU performance profiling can be extracted

when executing on an SIMT-based GPU to fully recover the encryption secret key.

Our profiling-based strategy accomplish straightforward key recovery procedure by

sampling the exact number of unique cache line requests during the run-time and

simply checking all 256 possibilities for each byte of all 16-byte AES key to determine
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the correct answer. As compared to the existing SCAs, the number of samples and

time needed for recovering the key are dramatically reduced while the accuracy can

be always guaranteed. Moreover, the profiling-based side-channel attack has great

scalability, as the profiling time only increases slightly with no additional samples

required when the length of the AES key scales up. We further propose a profiling-

assisted correlation-based side-channel attack. By comparison, pacSCA outperforms

pSCA on the total key recovery time and is more powerful to resist both hardware

and software defense mechanisms.

1.6 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 briefly introduces

the GPU architecture and GPGPU programming model. Chapter 3, Chapter 4,

Chapter 5 and Chapter 6 introduce the four studies included in this dissertation

work. The objective of these four research topics is to establish a high-performance,

energy-efficient, and highly secure GPU computing environment. The mechanisms

proposed in Chapter 3, Chapter 4 and Chapter 5 attempt to improve the energy-

efficiency of the GPUs. Moreover, the schemes discussed in Chapter 3 and Chapter

5 can also help the performance. Furthermore, Chapter 6 exposes the vulnerability

of modern GPUs to the side-channel attacks and proposes several countermeasures

to protect the applications running on the GPUs. Specifically, Chapter 3 introduces

the GPU register file narrow-width operands packing technique and how it can help

the GPU performance and energy-efficiency. Chapter 4 illustrates the three drowsy

policies which manage the GPU register file in an energy-efficient style. Chapter 5

describes a novel power-gating strategy which shutdown the spared GPU execution

units to achieve leakage energy saving. Chapter 6 introduces two GPU side-channel

attacks and the countermeasures are also discussed. Finally, Chapter 7 concludes the
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dissertation.
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CHAPTER 2

GPU ARCHITECTURE AND GPUGPU PROGRAMMING MODEL

2.1 GPU Architecture

We evaluate our schemes on the GPU architecture that follows the Fermi ar-

chitecture [23]. Figure 1 shows the overview of a typical Fermi GPU architecture.

It consists of 15 GPU cores called Streaming Multiprocessors (SMs) where each SM

core contains 32 single instruction multiple data execution units, 16 load/store units

and 4 special function units (SFUs). Each SM core owns two warp schedulers and

two instruction dispatch units, enabling to issue two independent instructions from

two different warps. The 32 execution units are assigned to two shader processors

(SP) each containing 16 execution lanes called SIMT lanes. Since the execution units

are operating at double clock frequency of the SMs, 32 threads can then be running

upon a single SP concurrently. All SMs have their own private L1 data cache, read-

only texture cache, constant cache and software-managed shared memory(scratchpad

memory). Total size of L1 cache and shard memory is 64KB and they can be con-

figure to 16KB L1 cache and 48KB shared memory and vice verse through software.

The read-only texture cache loads data from off-chip texture memory and is designed

to identify the spatial locality of memory access patterns. The read-only constant

cache works with the off-chip constant memory and is utilized to optimize the data

sharing among all the threads in a warp. All SMs share an on-chip unified L2 cache

partitioned into 6 tiles and an off-chip global memory. The SMs and the shared L2

cache are connected via an on-chip network. The private L1 cache per SM and shared

L2 cache and global memory cooperate to perform fast memory accesses. Although
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GPU architecture inherits similar memory hierarchy from CPU architecture, GPU

caches result in much smaller size and much higher bandwidth than CPU caches.

Moreover, Unlike CPUs which primarily count on caches to reduce memory latency,

GPUs rely on massive TLP to hide memory latency and increase throughput. To sup-

port fast and low-cost context switching for massive concurrently running threads,

a large number of registers are necessary in GPUs. The massive TLP supported by

a large size of register files contribute most performance enhancement and achieve

high throughput. On the other hand, the functionality of GPU caches on boosting

performance is more like a complement instead of an essential.

Fig. 1. Baseline GPU Architecture

2.2 CUDA Programming Model

Both GPUs evaluated in this work are CUDA supported. CUDA programming

language allows the programmer to define C functions as several kernels which con-
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Fig. 2. Grid of Thread Blocks[4]

sist of thousands of threads that are executing in parallel [4]. Each thread within a

CUDA kernel is marked with a assigned unique thread ID which is accessible through

the built-in threadIdx variable. GPGPU applications always contain multiple kernels

that contain a group of thread blocks. A thread block is formed by one-dimensional,

two-dimensional or three-dimensional thread index allowing a vector, matrix or vol-

ume computation domain as illustrated by Figure 2. Every 32 Threads within the

same thread block with consecutive thread IDs are grouped as a warp. A warp is

executed in a single instruction multiple-threads (SIMT) way and has only one PC

(Program Counter). The warps in a thread blocks allow GPU to overlap long latency

by conserving stalled warps context and switching a oldest ready warp. The NVIDA

officially set limitation for the number of threads running concurrently on a SM. For

Fermi architecture, up to 48 active warps or 8 thread blocks can be hosted per SM,
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this is in total 1536 active threads per SM. On the other hand, each thread consumes

a portion of hardware resources such as register files and shared memory to support

the execution environment and conserve execution data and the available hardware

resources of a SM also limit the number of concurrent threads per SM.

Although a single warp only maintains one PC, threads in the same warp can

access different memory address or follow different control flow paths. To take care

of all 32 memory accesses initiated by threads in the same warp which may point to

different addresses, a coalescing unit accepts all these memory requests and assign

them to different cache lines according to their address. Memory requests with ad-

dresses located at the same cache line then can be merged generating unique cache

line requests which then are forwarded to L1 cache controller for further processing.

The cache line request if finds the data in L1 cache turns out to be a L1 cache hit and

requested data can be immediately returned. In case of a L1 cache miss, the status of

cache miss is forwarded to MSHR (miss-status holding registers) to check if the same

request from another warp is already issued and still in progress. If the same request

exists in the MSHRs, a entry to the MSHR corresponding to the requested cache line

is allocated to make sure that returned cache line is offered to both warps. If the

request does’t exist in the MSHRs, a new MSHR entry is dispatched to store the miss-

ing cache line status. Unlike CPUs which are capable of dealing with complex branch

prediction logic, GPUs follow simple logic only and are unable to predict branches for

the purpose of supporting overwhelming multi-threading. Since no branch prediction

supported in GPUs, the execution paths are controlled independently for each thread

by an active mask vector, where the active mask vector will tell whether the branch

instruction is taken or not taken for all the threads in a warp and direct them to

different paths. The threads with the corresponding bit being set in the active mask

vector will be executed and retired, while other threads with reset bits will discard
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the execution results. The taken and not-taken paths are executed sequentially and

all the threads will be joined at the convergence point automatically.
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CHAPTER 3

GPU REGISTER FILE NARROW-WIDTH OPERANDS PACKING

3.1 Introduction

Taking advantage of the ability of processing multiple data in parallel, GPUs

have been increasingly used to accelerate general purpose applications like compute-

intensive data-parallel scientific computing programs [1, 2, 3]. GPGPUs execute

hundreds or even thousands of threads concurrently to ensure high throughput. To

support massive number of simultaneous threads and rapidly context switching be-

tween these threads, a huge number of compute units and a large RF are inevitable.

GPU design trend shows that GPU performance improvement continues to rely on

increasing the hardware resources and operating them at higher frequency to ac-

commodate a greater number of high performance active threads. Indeed, keeping

enlarging the capacity of RF and increasing computing resources can help boost GPU

performance. Unfortunately, persistently accumulating hardware resources negatively

exposes GPUs under extremely pressure of power consumption and chip area [24, 25,

26]. In particular, RF with the design of massive high leakage transistors has be

demonstrated to contribute significantly to GPU’s total energy consumption. Thus,

we need to explore new techniques to exploit and manage GPU registers more effi-

ciently.

Since RF is one of the largest structures on the GPU chip, we propose a GPU

register packing scheme which takes into account the GPU microarchitecture and

GPU RF organization. This novel technique dynamically detects and profiles narrow-

width operands to pack multiple narrow-width operands into a single register and
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predicts the packed register usage. Based on the profiling, a smaller register usage

is predicted for the on-coming thread blocks. As a result, more registers become

unutilized. OWAR will then turn off the sub-arrays that contain no in-use registers

to save both dynamic and leakage energy. Combined with a renaming table, OWAR

is able to map multiple architectural registers that store narrow-width operands to

a single physical register in run-time. Consequently, OWAR offers the illusion that

extra RF space is available and make the SMs to host more thread blocks. For

GPU kernels whose occupancy of threads is limited by RF resources, OWAR then

can provides additional TLP that plays a role in hiding memory latencies to improve

performance.

3.2 Related Work

The narrow-width operand packing technique is first employed on CPUs, es-

pecially multi-threaded CPU processors to mitigate RF pressure. By noticing that

many operands called narrow-width operands have fewer significant bits compared to

the full width of a 32-bit register, several work [27, 28, 29, 30, 31] propose to detect

them and merge multiple narrow-width operands. The narrow-width operand packing

technique is then designed to save power consumption [29] and improve performance

[28, 29] as well as register file reliability [30, 31].

To the best of our knowledge, there are no GPU-exclusive register packing tech-

nique existing so far. However several work has introduced similar techniques [32, 33,

34, 7]. Observing that the register values of threads within the same warp are similar,

Lee et al.[32] presents Warped-Compression, a warp-level register compression scheme

which removes data redundancy of register values through register compression to en-

able power reduction opportunities. This technique saves 25% of the total register file

power consumption. Tan et al. [33] proposed the Narrow-Width-Aware register write
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back method which combines two narrow-width writes to share data bus resource and

hence enhance the performance. Gilani et al. [34] notice that many operands require

considerably fewer bits for accurate representation and computations. They propose

a sliced GPU architecture which is much alike the method designed for CPUs in [27].

Their approach that improves performance of the GPU up to 15% by dual-issuing

instructions to two 16-bit execution slices.

Fig. 3. Width Distribution

3.3 GPU Register Packing

3.3.1 Motivation

We study the operand width across 17 GPU benchmarks. We classify the operand

widths into three levels: 8-bit, 16-bit and 32-bit. Figure 3 shows the width distribution

of values written into registers. On average, 45.3% of all values consume only 8 bits

of a full 32-bit register, 16.1% of all values can be represented by only 16 bits and

the remaining 38.6% needs a full-size register with 32 bits. Obviously, using 32-bit

registers to store all the operands of different width can be a significant waste of
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RF resource. The evaluation results provide us an evidence of opportunities to save

plenty of RF space by packing narrow-width operands into a single 32-bit register.

While the narrow-width packing techniques are successful for CPUs, they can

not be directly used on GPUs due to the fundamental architectural and register file

differences between CPU and GPU. Unlike CPUs which utilize large caches to reduce

memory access latency and only limited register files to maintain contexts of tens of

threads at most, GPUs are throughput-oriented and need to support tens of thou-

sands of concurrent threads, which have much larger register files to provide efficient

context switching between massive active threads. Taking advantage of GPU’s RF

organization and inspired by work in [35], we develop a narrow-width packing mech-

anism. [35] discover a significant amount of value similarity in the register file which

indicates that values of an operand for all 32 threads within a warp are quite similar.

This finding allows a thread-level packing to uniformly pack all 32 threads register

values into a relatively small register space. For instance, if the operand stored in a

register R0 is less than or equal to 16 bits for each thread within the same warp, the

register space required to store all 32 operands then can be reduced from 1024 bits

(32*32) to 512 bits (16*32). All 32 thread registers in a warp are mapped on consec-

utive banks with the same entry index. In the context of the RF design, accessing a

single bank entry can read 256 bits data which may contain 8 operand values with

full 32-bit size each, 16 operand values with 16-bit size each, or 32 operand values

with 8-bit size each.

We evaluate the minimum number of registers used (called register usage in the

dissertation) when taking into account the narrow-width operands and find that this

number for all warps from thread blocks within the same CUDA kernel barely changes.

Figure 4 shows that only 0.13 mispredictions per thousand threads on average across

17 GPU benchmarks. The largest misprediction of register usage ratio is 0.15% for
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Fig. 4. Register usage Miss Prediction Ratio

benchmark nw, indicating only 1.5 mispredictions per thousand threads. Based on

this finding, we propose to dynamically profile the register file usage after narrow-

width operands packing for in-flight thread blocks to predict future usage which is

taken as a guideline for scheduling incoming thread blocks.

3.3.2 Overview

Figure 5 illustrates an overview of the GPU register packing approach. Block 1

(Section 3.3.3) involves dynamically detecting narrow-width operands and profiling

operand width boundaries at write back stage. Block 2 (Section 3.3.4) illustrates a

table for thread-level packing and register usage prediction. Block 3 (Section 3.3.5)

is the renaming table based register reallocation mechanism that maps architectural

registers to physical registers and corrects the register value width by assigning the

size-increased register with large space, in case of mispredictions.
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Fig. 5. Overview of the GPU Register Packing Approach

3.3.3 Detecting and Profiling Narrow-Width Operands Dynamically

The narrow-width operands are detected at the write-back stage by using 32

zero detection logic units [27] as shown in Figure 5. The 32 zero detection logic units

are required for 32 threads within the same warp. Each unit inspects one operand

width from a single thread and outputs a 2-bit operand width indicator. We classify

all operand widths into three levels, 8-bit, 16-bit and 32-bit. Therefore only 2 bits

are necessary to represent all cases. Specifically, we define that ”01” represents 8-bit

operand, ”10” represents 16-bit operand and ”11” represents 32-bit operand. All the

outputs from 32 zero detection logic units then are compared to find the upper bound

width of 32 values which can guarantee sufficient bits for all operands. The upper

bound width is forwarded to thread-level packing table with register index in the form

of profiling information.
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3.3.4 Register Packing and Register Usage Prediction

As shown in Figure 5, a thread-level packing table (TLPT) is added to each SM

to store all narrow-width information provided by the narrow-width detecting stage.

When the TLPT receives an operand width from the narrow-width detecting logic, it

makes a comparison between the newcomer and the current maintained operand width

and it only keeps the width that is wider. The TLPT also provides misprediction

information to the renaming table and we will discuss this later in Section 3.3.4. In

NVIDIA Fermi architecture, each thread can use up to 63 registers. In this case,

the TLPT has 63 entries and each entry is indexed by a register id and holds 2 bits

data indicating the bit width of the value stored in the corresponding register. For

example, ”10” in entry 5 shows that 16 bits are sufficient for all 32 values stored in

register #5. The total TLPT size per SM is calculated by Equation 3.1 below.

TLPT Size = (#Entry ×# bit per entry)

= 63× 2 bits = 126 bits

(3.1)

When a GPU program starts running, the TLPT is empty and it will be filled

dynamically during run-time. The TLPT keeps itself updated with the widest width

(i.e. upper bound) fed by the narrow-width detecting and profiling stage for all

registers. When all threads in a thread block are completed for the first time, the

register usage per thread after register packing can be predicted by adding the sizes of

all packed registers together. This register usage prediction is sent to the thread block

scheduler to loosen the register file constraint for incoming thread blocks scheduling.

A misprediction occurs when the TLPT notices that a current computing result can’t

be written back due to the insufficient size of the target register. A mechanism taking

care of misprediction will be introduced in Section 3.3.5.
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3.3.5 A Renaming Table to Address Misprediction

The register renaming is conventionally used on CPUs to eliminate the false

data dependencies due to the reusing of architectural registers among several sequen-

tial instructions. The false data dependencies can be eliminated through renaming

the registers for certain instructions. The renaming table in CPUs offers additional

instruction level parallelism (ILP) which can be utilized to improve performance.

However, the renaming table in [36] is applied in an opposite way. Instead of dupli-

cating reused architectural registers which is consuming more physical registers, [36]

achieves to reduce the number of physical registers without losing the architectural

register space. Inspired by work in [36], we leverage register renaming technique to

build an virtual view that the total number of architectural registers exceeds the ca-

pacity of physical registers so that the GPU application performance which is limited

by the RF resources can be promoted.

As shown in Figure 5, a renaming table is added to the GPU RF to hold all

mapping information. In GPU RF, 32 full size 32-bit registers are grouped into a

warp register, each for a thread in the same warp. In the baseline architecture,

each SM has a 128KB register file which is divided into 32 banks and each bank

has 128 256-bit wide entries. To access a physical warp register, 4 entries from

consecutive banks with same index should be visited. In our design, the renaming

table operates registers in the warp level to cooperate with GPU RF. Each entry of

the renaming table is indexed by global architectural id. The global architectural

id can be simply derived with corresponding warp id, local architectural register id

and the total number of architectural registers used by a thread. The content of a

renaming table entry includes two data fields, 10 bits physical warp register address

(for a 128KB register file, there are 1024 warp registers in total and each warp register
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is 128 bytes) and 4 bits for a bit-mask, which compose of reallocation details for one

architectural warp register. The 4-bit mask in a renaming table entry which denotes

4 entries from consecutive banks with same index is used to identify the location of an

architectural warp register within a physical warp register. Originally, an architectural

warp register can only be one-to-one mapped to a physical warp registers. However,

the renaming table enables to map multiple architectural registers to a single physical

register or even to discrete banks of a physical warp register. For example, 2 16-bit

architectural warp registers can be assigned to a physical warp register and a 16-bit

architectural warp registers can be mapped to two RF bank entries which are not

necessary to be contiguous in a physical warp register, whose first half is mapped to

the second entry of a physical warp register and second half is stored in the last entry

indicated by a 4-bit mask,“0101”. Moreover, a bank entry availability vector per SM

(The size is 4096 bits, since the total number of physical warp registers per SM is 1024

and each physical warp register contains 4 bank entries according to the baseline RF

architecture) is required and each bit is used to indicate if a corresponding bank entry

of a physical warp register is assigned to an architectural warp register or remains

unused [36].

Using a renaming table with 2048 entries, the GPU RF with 1024 physical warp

registers can support up to 2048 architectural warp registers if the sufficient narrow-

width operands can be discovered during the run-time. Keeping increasing the num-

ber of entries of renaming table can potentially provide even more architectural warp

registers, however, its effectiveness highly depends on the amount of narrow-width

operands which is varied for different GPU applications and the hardware overhead

raises meanwhile which can lead to a great waste in case of a lack in narrow-width

operands. All 17 benchmarks we examined in this work earns a 47% average reduction

on RF resources from register packing, thereby we propose to configure the renam-
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ing table with 2048 entries (twice of the number of total physical registers) to meet

the requirement of most applications and avoid unnecessary hardware overhead and

resource waste. The total size of the renaming table and the bank entry availability

vector is calculated by Equation 3.2 below.

Renaming Table + Availability V ector =

#Entry ×# bit per entry +#Bank entry

= 2048× 14 bits+ 4096 bits = 32768 bits

(3.2)

As shown in Figure 5, when writing back results to RF, the width of computing

results are first examined by the narrow-width detecting logic and then forwarded to

the TLPT. The detected width is compared to the width maintained by the TLPT

which will keep the width unchanged if the newly detected width is narrower than

or the same with the old one. On the other hand, the TLPT updates the width of

corresponding register and inform the renaming table with a new width as a mispre-

diction message if the newly detected width is wider. In case of a misprediction, the

renaming table attempts to re-map the width-mismatched architectural register to

another physical register with sufficient free entries. Whether there is a mispredciton

or not, after visiting the renaming table, the physical warp register address and the

data field indicator (a 4-bit mask) of the corresponding architectural warp register

can be retrieved, which direct the bank arbitrator to write the computing result to

certain entries of the target physical register. Reading RF is quite straightforward

without considering the misprediction.

22



3.3.6 Handling Redundant Registers

Due to employing register packing technique, OWAR is able to meet the archi-

tectural register usage and at the same time lower the demand on physical register

resources. Consequently, a great portion of GPU RF can be saved and is left to be

underutilized resulting in energy inefficiency and resource waste. In this work, we

explore two candidates for handling redundant registers.

Running beyond the limit: Instead of turning off the redundant hardware re-

sources, we propose to fully utilize them to attempt performance improvement. The

performance of many GPU applications is prevented from further improvement by the

limitation of hardware resources, especially the number of registers. Since OWAR of-

fers additional RF resources, SM is able to host more co-running threads which can

enhance the ability of hiding memory latencies and hence contributes to better per-

formance. The overall energy consumption is then reduced due to the shortened

execution time. The power gating method can be added to further reduce the energy

consumption, however the benefits from power gating drop off as most sub-arrays

that could be shut down, are reused by excess threads.

Power gating: We apply a traditional coarser-grained sub-array power gating [37].

GPU RF is partitioned horizontally into several sub-arrays. Taking advantage of

register renaming, the in-service physical registers can be concentrated in certain sub-

arrays, making the rest of sub-arrays, if any, unoccupied. To save energy consumption,

the spared sub-arrays are then power gated. An in-active sub-array will wake up only

when active sub-arrays run out of free registers. Under circumstance of sufficient

architectural register supply, the sub-array level power gating scheme shuts down

excessive hardware resources to avoid energy waste at little cost of performance loss.
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3.3.7 Overheads of OWAR

The total hardware overheads of OWAR are composed primarily of three compo-

nents, a TLPT, a renaming table and a bank availability indicator. The TLPT size

is 16 bytes and the size of the renaming table is 28672bits = 3.5KB as calculated

in Equation 3.1 and 3.2, respectively. According to the baseline RF organization,

the total number of bank entries is 4096. Thus, the size of the bank availability

indicator is 4096bits = 0.5KB (Each bit indicates the status of a bank entry, 0 for

free, 1 for unused). The hardware cost of OWAR implementation ends up totaling

126 + 28672 + 4096 = 32894bits ≈ 4KB accounting for 3% of GPU RF size. The

energy consumption of the additions are included into GPU’s total energy model

and are described in Section 3.4. We also take performance overhead caused by sub-

array wake-up delay into consideration. Whenever a new sub-array is required to

be re-activated from power gated status, the pipeline is stalled until the sub-array is

completely ready for service. The sub-array wake-up penalty is conservatively set to

one cycle by default, although it is proven to be less than one cycle by calculation

using CACTI-P [37].

3.4 Experimental Results of Performance-Orientated OWAR

3.4.1 Performance Improvement

To allow more thread blocks to run on SM concurrently, we loosen the constraints

of maximum number of thread blocks and warps. All benchmarks we evaluated are

grouped into three levels based on how their performance is improved by register

packing: (1) hotspot, b+tree, backprop, bfs, srad1, dwt2d, srad2 and gaussian

(Obvious improvement). (2)lud, nw, hybridsort, pathfiner, cfd, particlefilter

and kmeans (Slight improvement, below 5%). (3) 2MM and 2DCONV (Negative effect).
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Fig. 6. IPC Improvement

Figure 6 shows the IPC improvement of 17 benchmarks. Performance of benchmarks

in Group 1 is enhanced significantly by up to 96.2% and 43.8% on average. The IPC

improvement for benchmarks in Group 2 is limited to 1.7% only. For 2MM and 2DCONV

in Group 3, our scheme degrades the performance by 7%.

Fig. 7. Active # Warps per SM Increase Rate

By examining Figure 7 that shows the increase rate of the number of active

warps on SM and Figure 8 that depicts the difference of the number of warps after

employing register packing, we can draw that the IPC improvement of our scheme
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Fig. 8. Active Warps per SM w/o Register Packing

roughly follows two rules: (1) The more additional warps that are scheduled on

SM, the higher the chances to achieve more performance improvement, because the

additional active warps on SM offer more TLP to hide memory latency. (2) The

performance of kernels with a small number of warps on SM is easier to be enhanced by

register packing, because there are abundant memory latencies left to be hidden due

to the lack of TLP originally. While most performance improvement can be explained

by using these two rules, there are several exceptions. For example, backprop has

equal number of warps with b+tree before register packing and the warp increase

rate of backprop is triple of that of b+tree after register packing, however, it has

less significant improvement than b+tree. Another exception is pathfiner in Group

2 which only gains 1.5% performance improvement with 300% warps increase. We

will explain these exceptions as well as the reason for performance degradation of

two benchmarks in Group 3 by including cache resource contention. The rest of the

benchmarks in Group 2 show either low warp increase rate or relatively large number

of initial warps, leading to moderate performance improvement. On average, the warp

number increase rate is 140.8%, 47.5% and 42.5% for Group 1, Group 2, and Group
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3 respectively and the initial warp number on SM for each group is 20.5, 28.9 and 36.

The average IPC improvement across 17 benchmarks is 20.5%.

3.4.2 Cache Impact on Register Packing Performance

GPUs rely on the massive threading to hide the latency of memory access. How-

ever, running with the maximum thread-level parallelism (TLP) does not necessarily

lead to the optimal performance due to the excessive thread contention for cache re-

source. We classify the negative impact of cache resource contention into two aspects,

L1 cache miss increase and L1 reservation fails. In the case of heavy cache resource

contention, L1 cache miss increase leads to more accesses to lower level memory hi-

erarchy and thus larger memory access latencies. The L1 reservation fail is another

source of L1 access penalty. The limited L1 cache resources such as miss-status hold-

ing registers(MSHRs) which are always fully captured by overwhelming access misses

can lead to heavy contentions between threads. GPUs can only have limited cache

misses in-flight. The status of on-going cache misses is stored in MSHRs. When a

memory request is generated due to an L1 cache miss, the status of cache miss is

forwarded to MSHR to check if the same request from another warp is already issued

and still in progress. If the same request exists in the MSHRs, an entry to the MSHR

corresponding to the requested cache line is allocated to make sure that the returned

cache line is offered to both warps. If the request does not exist in the MSHRs, a new

MSHR entry is dispatched to store the missing cache line status. Since both MSHR

entries and entries to the same MSHR are limited, MSHR full occurs when no new

MSHR entry can be allocated or no new entry to a specific MSHR can be allocated.

An active warp is stalled under both situations aforementioned and it keeps retrying

the next cycles until an empty MSHR entry is available. The increase of the frequency

of MSHR full can introduce more stall cycles and lead to performance degradation.
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In one sense, the frequency of reservation fail is an indicator of cache contention.

The increase rate of L1 cache misses is shown in Figure 10 and Figure 11 depicts the

increase of L1 reservation fails per kilo instructions.

The benchmark pathfinder in Group 2 gains only 1.5% performance improve-

ment despite 300% increase of additional warps, because the global miss rate of

pathfinder is only 0.85% (as shown in Figure 9) leaving very few memory latencies to

be hidden. For benchmark pathfiner, although 96 more warps can be scheduled on

SM and the negative impact from cache resource contention is minimal (the number

of both L1 misses and reservation fails is nearly unchanged), the 32 original warps are

already sufficient for latency hiding, thus there is no room to improve performance of

pathfinder by scheduling additional warps on SM.

Fig. 9. Global Cache Miss Rate

Our register packing scheme can reduce the number of L1 reservation fails for

gaussian and nw instead of increasing for the rest of benchmarks, as shown in Figure

11. Due to cache locality, when scheduling more warps on SM, more cache misses

from different warps requesting for the same data can be assigned to the same MSHR.

The number of L1 reservation fails is then reduced as MSHRs are more efficiently
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used by merging more cache misses to the same MSHR, contributing to performance

improvement for some benchmarks like gaussian and nw.

Fig. 10. L1 Cache Misses Increase Rate

Fig. 11. L1 Cache Reservation Fail Increase Per kilo Instructions

In most cases, the increased cache contention including L1 misses and reservation

fails hurt the performance of our register packing approach. For backprop in Group

2, the L1 cache misses increase rate is 7.2% compared to -0.57% for b+tree which

explains why the performance of backprop is improved less than that of b+tree even

with a larger increase of the number of warps. Register packing helps particlefilter
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Table 1. Energy consumption of renaming table compared to RF

RF Renaming table

Leakage power 9.75 mW 0.08mW

Dynamic energy per read 53.6 pJ 0.61 pJ

Dynamic energy per write 57.0 pJ 0.63 pJ

execute more warps concurrently (from 24 warps to 40 warps); however, the sharply

increased L1 reservation fails as shown in Figure 11 diminish the benefit from register

packing, leading to minimal performance improvement. Moreover, the two bench-

marks 2MM and 2DCONV in Group 3 which are under the pressure of both L1 cache

misses and reservation fails suffer from our scheme. Their performance is reduced by

5.2% and 8.8% respectively.

3.4.3 Power Consumption

The power parameters of renaming table and RF calculated by CACTI [38] are

listed in Table 1. The leakage energy of the renaming table only accounts for 0.79%

of RF leakage energy. The dynamical energy spending on the write or read of the

renaming table slightly increases the total RF dynamic energy (1.13% increase for

read, 1.10% increase for write). Thus it can be seen that the energy overhead intro-

duced by renaming table is negligible in comparison to the energy consumption of RF.

Thus, power consumption will be naturally reduced if GPU applications can finish

executing earlier. Figure 12 shows power consumptions reduction of our register pack-

ing scheme. The power consumption is reduce by 6% on average for all benchmarks

in Group 1. particlefilter is the only benchmark that consumes more power in

Group 2 as a consequence of heavy cache contention. The rest benchmarks in Group

2 achieve 1.5% power consumption reduction on average. Due to the performance
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degradation, the power consumption is increased by 3.1% and 4.2% respectively for

2MM and 2DCONV in Group 3. For all 17 benchmarks, the power consumption is slightly

reduced by 2.5%.

Fig. 12. Power Consumption Reduction

3.5 Experimental Results of Energy-Efficiency-Orientated OWAR

We evaluated two OWAR based GPU RF management approaches, OWAR-

PG (OWAR w/ power gating) and OWAR-TO-PG (OWAR w/ thread overrun and

power gating). OWAR-PG focuses on reducing RF energy consumption by shutting

down spared RF resources. OWAR-TO-PG attempts to improve the energy efficiency

through making the most use of the additional RF resources freed by OWAR. And the

power gating is reserved by OWAR-TO-PG to further reduce the energy consumption.

We compared the energy improvement of these two schemes with the baseline (w/o

OWAR). We also measured the performance improvement of OWAR-TO-PG.
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Fig. 13. Reduction in physical register usage

3.5.1 RF Utilization

As aforementioned in Section 3.3, OWAR is able to split a physical register up

to four parts and assign them to multiple architectural registers containing narrow-

width results. Although the architectural register usage per warp stays the same,

the corresponding physical register usage is significant reduced by OWAR. As shown

in Figure 13, OWAR can achieve up to 70.8% off the original register usage per

warp and the average reduction for all evaluated benchmarks is 40.3%. The register

usage reduction results in high under-utilization of RF resources. During the run-

time, we sample the number of in-service registers periodically and take the average

of all samples as an estimation of the RF utilization of an application. Figure 20

shows the GPU RF utilization rates for 17 benchmarks by using RF management

approach proposed in this work. With no optimization, 77.9% of total RF is used on

average. As expected, the RF utilization rate drops sharply to 45.7% when OWAR-

PG is employed, indicating that a great number of registers which are supposed

to be used, are now saved by OWAR. The large idle portion of RF can be power

gated by OWAR-PG for the purpose of saving RF’s dynamic and leakage energy.
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Unlike OWAR-PG, OWAR-TO-PG dedicates to improve the RF utilization and the

performance by increasing the capacity of concurrent threads. Provided that the

performance is boosted, the improvement of energy efficiency is then applied not

just to RF, but to all the components included in GPU. Consequently, OWAR-TO-

PG contributes to a higher RF utilization (81.1% on average) compared to baseline.

Even though RF is further exploited by OWAR-TO-PG, for some benchmarks like

bfs, gaussian and nw, there are still considerable unused registers remaining, which

thereby can be power gated to enable more RF energy savings.

Fig. 14. GPU RF utilization of Baseline, OWAR-PG, OWAR-TO-PG

3.5.2 Reducing the Number of RF Bank accesses

Based on our baseline RF architecture, accessing to a single bank entry can only

fetch eight 32-bit register values and reading an operand for a warp instruction needs

to access up to four banks in the absence of RF optimization. Through the help of

OWAR, fewer bank accesses are necessary to collect all values from RF, for example

one access for 8-bit width data, two accesses for 16-bit width data, if the desired data

can be represented with narrowed width and is stored in packed registers. We keep
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the trace of accesses to narrow-width values and record the total number of RF bank

accesses for each benchmark. As shown in Figure 15, both OWAR-PG and OWAR-

TO-PG have the power to complete register operations with minimal number of bank

accesses and thus reduce overall bank accessing times. The benchmark pathfiner

represents the most significant reduction (28.6%, OWAR-PG and OWAR-TO-PG

achieve the same result). On average, the total number of RF bank accesses is reduced

by 13.1% for OWAR-PG and OWAR-TO-PG. In addition, it’s reasonable to assume

that the reduction should benefit energy efficiency by lowering RF dynamic energy

consumption.

Fig. 15. Normalized number of RF bank accesses

3.5.3 Performance Overhead and Energy Saving

Performance overhead: We evaluate the performance overhead of sub-array re-

activation. We assume that it takes one cycle to completely reactivate a sub-array

from power gated status. As shown in Figure 16, the performance of only a few

(b+tree, backprop, lud and hybirdsort) among 17 benchmarks is negatively af-

fected by sub-array re-activation latency. Most of the benchmarks maintain their
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performance. The reason is that the sub-array re-activation barely happens during

application execution, resulting in negligible performance overhead. Unlike other

benchmarks, The execution cycle of benchmark 2DCONV is reduced instead because

the overhead cycle unintentionally alleviates the high pressure of cache resource con-

tention. The performance overhead caused by sub-array re-activation is only 0.2% on

average as shown in Figure 16 for all benchmarks except 2DCONV.

Fig. 16. Sub-array re-active overhead

Energy reduction: First, we focus on evaluating the efficacy of OWAR-PG and

OWAR-TO-PG on RF energy reduction. Figure 25 represents the dynamic, leak-

age and total RF energy of two OWAR schemes, respectively. RF dynamic savings

are generated by RF accessing frequency reduction and sub-array level power gat-

ing. OWAR-PG and OWAR-TO-PG produce similar reduction in the number of RF

accesses, while OWAR-PG is better at power gating due to sufficient free registers.

Thus, OWAR-PG can save more RF dynamic energy than OWAR-TO-PG (OWAR-

PG: 15.7%, OWAR-TO-PG: 13.0%). Similarly, OWAR-PG achieves more RF leakage

energy reduction than OWAR-TO-PG (OWAR-PG: 44.4%, OWAR-TO-PG: 23.1%).

Overall, for the purpose of RF energy saving only, OWAR-PG is better than OWAR-
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(a) RF dynamic energy

(b) RF leakage energy

(c) Total RF energy

Fig. 17. RF energy reduction.
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(a) GPU dynamic energy

(b) GPU leakage energy

(c) Total GPU energy

Fig. 18. GPU energy reduction.
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TO-PG (OWAR-PG: 33.7%, OWAR-TO-PG: 18.9%), for the reason that OWAR-PG

can save more RF energy through power gating.

Second, we examine the power of OWAR-PG and OWAR-TO-PG in reducing

GPU’s total energy. Figure 18 illustrates that OWAR-TO-PG is the better option

in case that performance is significantly improved. In contrast, OWAR-TO-PG is

less powerful than OWAR-PG if it results in only limited performance benefit. Gen-

erally speaking, OWAR-TO-PG outperforms OWAR-PG in overall energy reduction

(OWAR-TO-PG: 9.5%, OWAR-PG: 4.8%), because the former can not only reduce

the energy consumption of RF but also that of other components in GPU owing to

the performance improvement, while the latter only reduces the energy consumption

of RF.

3.6 An Application Scenario of OWAR: Build Energy-Efficient GPU Com-

puting Environment for Machine Learning Algorithms

Machine learning algorithms can gain a dramatic speedup from GPU’s massive

threading ability. More and more domains such as social media, automotive vehicles,

medical, consumer electronics, have applied the machine learning algorithms to an-

alyze the big-database and reveal hidden knowledge from abstract information. The

databases that machine learning algorithms typically work on are increasing expo-

nentially due to the highly developed internet, information and sensing technologies.

Consequently, machine learning algorithms which are high computational complexity

and data intensive are usually running for a long period on CPUs, since CPUs are

designed for more general-purpose applications. Instead, machine learning algorithms

are gradually deployed on GPGPU computing platforms for the performance accel-

eration. Owing to GPGPU’s nature of hosting massive threads and its redundant

floating-point operation units and high memory bandwidth, it is a great fit to ac-
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commodate machine learning algorithms which are constructed with lots of matrix

multiplications. However, the energy consumption on GPGPU has become a con-

cern for machine learning algorithms. We observed that RF occupancies of modern

machine learning algorithms are relatively low leaving a great waste of GPU’s RF

leakage energy. Furthermore, we found that the data maintained by the RF contains

a large fraction of narrow-width operands for machine learning algorithms. Therefore,

we propose to use OWAR to improve the energy efficiency of GPGPUs for machine

learning algorithms.

We evaluated the energy-efficiency improvement of the register packing scheme

with 5 popular machine learning algorithms, AlexNet [39], Vgg-16 [40], ResNet [41],

SqueezeNet [42] and SparseCNN [43]. AlexNet, a well-known convolutional neu-

ral network (CNN), has gained prominence for its effectiveness in image recognition

tasks. The Vgg architecture serves as the foundation for revolutionary models in ob-

ject recognition. As a deep neural network, VggNet not only exceeds baseline perfor-

mance on numerous tasks and datasets beyond ImageNet but also remains one of the

most widely adopted image recognition architectures to this day. The original ResNet

architecture, known as ResNet-34, consisted of 34 weighted layers. It introduced a

groundbreaking approach to incorporating additional convolutional layers into a CNN

while mitigating the vanishing gradient problem. This was achieved through the uti-

lization of shortcut connections, where certain layers are bypassed, transforming a

conventional network into a residual network. SqueezeNet is a convolutional neural

network that incorporates specific design strategies to effectively minimize the num-

ber of parameters. One of its notable techniques involves the implementation of fire

modules, which utilize 1x1 convolutions to ”squeeze” the parameters. By employ-

ing this approach, SqueezeNet achieves parameter reduction while maintaining the

network’s performance and capabilities. SparseCNN is demonstrated to decrease pa-
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(a) Operands Width for RF Write Accesses

(b) Operands Width for RF Read Accesses

Fig. 19. Operands Width Distribution in Machine Learning Algorithms.

rameter redundancy and computational complexity with negligible recognition loss by

utilizing a sparse decomposition technique. For all these machine learning models, the

convolution layers demand the highest computational resources owing to the inten-

sive floating-point matrix multiplication. Therefore, we applied the register packing

mechanism to the kernel of convolution layers for the evaluation.

40



3.6.1 Characteristic Analysis of Machine Learning Algorithms on RF Uti-

lization and Energy Comsumption

Narrow-Width Operands: Figure 19a shows the width of operands for RF write

accesses. Overall, Only 18.98% of the operands use the full size of a 32-bit regis-

ter. For RF read accesses, the percentage is 22.16% as shown in Figure 19b. The

rest of operands can be all represented with less bits. The significant content of

narrow-width operands in machine learning algorithms implies that the narrow-width

operands packing technique is a great fit for saving RF resources and also the energy

consumption.

Fig. 20. GPU RF utilization of Baseline andRegister Packing in Machine Learning

Algorithms.

RF Utilization Figure 20 depicts the GPU RF utilization rates achieved through

the implementation of register packing RF management. Without any optimization,

only half of the RF (49.09%) is utilized approximately on average. As expected, with

register packing employed, the RF utilization rate further drops to 27.43%, indicating

that registers that would have otherwise been used are now saved through register

packing. The idle portion of the RF can be power gated to conserve dynamic and
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Table 2. Factors to Limit the Number of Concurrent Threads
Algorithms Limitation

AlexNet Shared Memory Per SM

ResNet Maximum Number of CTAs Per SM

Vgg-16 Maximum Number of Register Per SM

SqueezeNet Maximum Number of CTAs Per SM

SparseCNN Maximum Number of Threads Per SM

leakage energy.

Table 2 depicts the factors that prevent the concurrency. Only for Vgg-16, the

number of concurrent threads on a SM is limited by the register resource and the RF

utilization patio (72.92%) is the highest among all five machine learning algorithms

accordingly. For other applications, a SM can not execute additional threads due

to the restriction of the shared memory or maximum number of CTAs/threads per

SM. Therefore, the RF resource is not fully utilized leaving a great waste of leakage

energy.

Fig. 21. Total RF Energy Breakdown

Baseline RF Energy Consumption: Figure 21 shows the GPU RF’s dynamic and

leakage energy for five applications. The leakage energy dissipation contributes most

of the total RF energy consumption, which is 75.14% on average.The narrow-width
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operand packing is able to reduce both dynamic and leakage energy. Obviously, we

can expect that the reduction of RF leakage energy is much more considerable than

RF dynamic energy saving, since the leakage energy is the majority of the total RF

energy and the leakage energy wasting on the vacant RF banks can be thoroughly

eliminated by the power-gating method. The percentage of RF energy in GPU’s total

energy is given in Figure 22. On average, the RF is responsive to 18.29% of the total

GPU energy. The fact indicates that it is meaningful to pursue an energy-efficient

RF management as it plays a prominent part in improving the energy-efficiency of

the entire GPU.

Fig. 22. Percentage of RF Energy over GPU’s Total Energy

3.6.2 Performance Overhead

To assess the performance impact of sub-array re-activation during the applica-

tion of register packing, we consider a one-cycle duration for complete reactivation

from a power-gated state. As illustrated in Figure 23, the performance overheads re-

sulting from sub-array are minimal. The SqueezeNet contributes the most significant

performance degradation among all five applications and the overhead on performance
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is 3.17% which is still negligible. For the other four applications, the performance

overhead are all under 1%. On average, the register packing scheme only introduces

0.73% more execution cycles. Figure 24 shows that the miss prediction rate is very

low (0.69% on average), which illustrates that the predicted RF usage is pretty accu-

rate and the power-gated RF banks are barely reactivated. The low miss prediction

rate also explains the insignificant performance overhead in Figure 23.

Fig. 23. Normalized performance of Baseline and Register Packing

Fig. 24. Miss Prediction Rate of Register Packing
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3.6.3 Energy Reduction

In Section 3.6.1, we highlighted that the GPU RF consumes a significant amount

of energy, accounting for 18.29% of the total GPU energy consumption (as depicted in

Figure 22). Also, we demonstrate that leakage energy constitutes a substantial por-

tion of the total energy consumed by the RF (75.14% for leakage energy and 24.86%

for dynamic energy) as illustrated in Figure 21. Consequently, reducing leakage en-

ergy is crucial for enhancing RF energy efficiency. Our evaluation focuses on assessing

the effectiveness of the RF narrow-width operand packing scheme in reducing RF en-

ergy consumption. Figure 25a presents the dynamic, leakage, and total RF energy

consumption for the five machine learning applications. RF dynamic energy savings

are achieved through reduced RF access frequency and RF leakage energy reduction

is accomplished by power gating at the sub-array level, which are implemented via

register packing management. The register packing approach demonstrates a RF dy-

namic energy reduction of 15.1% and a RF leakage energy reduction of 69.97% on

average. The total RF energy is reduced by up to 64.34% and 58.05% on average.

Furthermore, we examine the effectiveness of the register packing approach in reduc-

ing the total energy dissipation of the GPU. Figure 25b illustrates that GPU RF

narrow-width operand packing technique yields the considerable reduction in overall

energy dissipation, with potential energy savings of up to 14.14% and an average of

10.71%.
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(a) RF Energy Reduction

(b) GPU Energy Reduction

Fig. 25. Energy reduction of Register Packing.
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CHAPTER 4

GPU REGISTER FILE DROWSY MANAGEMENT

4.1 Introduction

Owing to the large size of the GPU RF which is composed of thousands of high

leakage transistors, a considerable fraction of GPU’s total energy is consumed by

RF [44, 45]. We compared RF energy consumption to the total energy of GPUs by

evaluating a batch of representative GPU benchmarks. 15.7% of the GPU’s total

energy belongs to RF for the benchmarks evaluated in this work. The fact shows

us the opportunity to improve the overall energy efficiency of GPUs by reducing

the energy consumed by RF. Moreover, the GPU RF utilization rate is only 79.5%,

indicating that a large number of registers are actually idle in run-time, leading to

a waste of leakage energy. The low utilization of GPU RF is also reported in [46,

47, 48]. We propose to leverage the drowsy technique and power-gate the unused

registers to avoid this energy inefficiency.

The drowsy technique was first proposed to reduce leakage energy of CPU caches

[49]. CPUs typically utilize large caches to overcome the long-term latency from

memory accesses and register files in CPUs only maintain execution states for one or

a small number of threads. Therefore, CPUs have much larger caches than register

files. By comparison, GPUs can tolerate memory latency by rapidly switching among

many threads. The GPU pipelines are filled with massive executable threads to

eliminate stalls. Thus, the register file in the GPU is normally kept large enough to

store execution contexts of massive threads.

Inspired by the research of drowsy techniques in conventional CPUs, we propose
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to apply the drowsy technique to reduce the RF leakage energy consumption. A

drowsy policy for GPU register file which is similar to Drowsy-IS has been studied

in [7]. This method will simply awake a register from the drowsy mode when it is

accessed. The register will go back to the drowsy mode when the requested data has

been provided or the writeback stage has been fulfilled. For the applications with

a long register file re-access interval, the leakage energy can be significantly reduced

with negligible performance degradation. In the case of a great number of short re-

access intervals, however, the performance overhead may grow substantially due to

the additional cycles generated by re-activating drowsy registers.

To mitigate the performance and potential energy overheads, we propose Drowsy-

TA, letting the register wait for a fix number of cycles (i.e., the awake interval) before

putting registers into the drowsy mode. Accessing registers during this awake interval

is free of re-activation latency, therefore performance overhead can be alleviated. The

main role of Drowsy-TA is to trade a small amount of the RF energy reduction for

overall performance improvement. The worst case in Drowsy-TA happens when a

register is only accessed beyond the duration of the awake interval and hurts the

energy efficiency without any performance gain.

To strike the balance between performance and energy reduction for the drowsy

RF, we also propose the Drowsy-RI, aiming at predicting the re-access intervals for

each register and apply different drowsy strategies to registers in terms of the length

of predicted awake interval. In case of a short re-access interval, a register is supposed

to stay awake for a short period to receive the next access. On the other hand, since

it is inefficient to wait for an access which will not come during the awake interval,

a register is put back into the drowsy mode immediately if the re-access distance is

longer than the awake interval.
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4.2 Related Work

The drowsy technique was first proposed for CPUs to reduce the leakage energy

of caches [49]. Large caches of CPUs utilized to cover long memory access latencies

consume a large fraction of the total CPU energy, making it important to use cache

leakage management techniques such as drowsy caches. In GPUs, however, caches

are typically small while RF is much larger, thus we propose to exploit drowsy RF

to solve severe energy problem in GPUs. There is a prior study on drowsy RF in

GPUs [7]. This work employed a simple drowsy policy, which is putting registers

into the drowsy mode immediately after a register read or write to save RF leakage

energy. However, we find that GPGPU benchmarks have quite different RF access

intervals, and a simply policy as used in [7] may result in moderate or even significant

performance overheads, which can also affect the overall GPU energy consumption.

Thus, we study and evaluate other drowsy policies to try to reduce the performance

degradation while maximizing the RF and/or GPU energy savings. Another work

exploits drowsy technique to save RF energy proposed in [50]. They divide each bank

in the RF into several pieces, for instance 4 partitions. The first partition in each bank

is assumed to be frequently accessed and only features drowsy mode to ensure quick

response, while the rest partitions are power gated at the beginning of the execution

and will only be activated when they are informed by wake up instructions inserted

during compiler time. Their schemes achieve significant RF leakage energy saving.

The drowsy technique are also studied to reduce the leakage energy of GPU

caches [51, 52, 53]. [51] proposed the periodic drowsy method which periodically puts

entire cache into the drowsy mode to achieve the leakage energy saving of the GPU

hybrid SPM-cache. The technique proposed in [52, 53] reduces static power of L1

data cache by placing cache blocks into the the drowsy mode immediately after each
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access.

4.3 Leakage Energy Reduction Using Drowsy RF

4.3.1 Drowsy-IS: An Aggressive Drowsy Policy

Power gating unallocated registers: As aforementioned in Section 4.1, a segment

of RF may stay idle and never be accessed during run-time for most applications,

offering an opportunity to saving leakage energy. By analyzing register allocation

information retrieved from the compile time, the unallocated registers can then be

located at the beginning of execution and it is safe to power gate these registers for

energy saving.

Immediately putting register in the drowsy mode: Drowsy-IS implements

a similar policy with [7] to place registers in the drowsy state immediately after a

register access for maximum leakage energy saving. The timing of waking up a register

is when it is accessed (write or read). After the writeback stage is completed or the

operands are provided, the target register returns to the drowsy mode instantly.

Drowsy-IS is supported by the tri-modal switch proposed in [54], which allows a

register to keep in one of the three states: operational, power gated, and drowsy. The

power gated registers consume only negligible leakage energy. The downside of power

gating, however, is that a register will lose all maintained data. As compared to power

gated mode, more energy are needed to keep registers in the drowsy state, although

the leakage energy consumption is still very low (about 10% to 20% of operational

state [49, 7]) and the data are completely reserved. By using the tri-modal switch, the

unallocated registers are power gated at the beginning of the execution and during

run-time, registers are leaving or returning to the drowsy state according to the signal

generated by the RF arbitrator. After receiving requests from the operand collector
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units, the RF arbitrator decides registers to be written or read and informs the tri-

modal switches to wake up corresponding registers. In addition, each access to register

in the drowsy mode experiences a re-activation delay of certain cycles (one or two

cycles [49, 7]).

4.3.2 Drowsy-TA: Temporal Awake for a Fixed Interval

By observing that a large amount of re-accesses occur within a short time period,

Drowsy-TA forces the registers to stay in the operational state for a preset number

of cycles in order to avoid repeated re-activation penalty. Obviously, using a long-bit

counter for each warp register can result in a significant hardware overhead. This

problem can be resolved by using a hierarchical counter mechanism [55] where a sin-

gle global cycle counter is set up to provide the ticks for much smaller warp register

counters. The global counter is usually hardware free, because most processors are

already equipped with fine-grained counters for common usage. Moreover, the hard-

ware overhead of additional warp register counters is minimal, because they tick at a

much coarser level than the global counter and only need one or at most a few bits.

In our scheme, a 1-bit counter for a warp register is sufficient and in total 1024 1-bit

counters are added to the 128 KB RF with 1024 warp registers. Each time a register

is accessed, the corresponding counter is reset to zero. The counter is incremented

to one at the preset number of cycles. At the same time, the associated register is

placed into the drowsy mode. In the Drowsy-TA scheme, the re-activation penalty

is successfully avoid if a register accessed again before it returns to drowsy mode.

In case of a re-access interval beyond the preset number of cycles, the re-activation

penalty paid. This, however, is expected to be rare because for most benchmarks,

the re-access intervals are mainly below 512 or even 128 cycles.
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Fig. 26. The prediction accuracy of Drowsy-RI

4.3.3 Drowsy-RI: Balancing between Energy and Performance

Drowsy-RI manages registers with different drowsy strategies according to their

respective length of re-access intervals. If a register is re-accessed very soon, Drowsy-

RI keeps it awake to receive next accessing by avoiding the activation latency. The

leakage energy spending on waiting is also small due to the short re-access interval.

On the other hand, if a register will not be accessed for a long time, Drowsy-RI will put

it into the drowsy mode instantaneously. Drowsy-RI manages to predict the re-access

interval by adding a 1-bit counter and an indicating bit to each warp register. The

indicating bit represents the prediction for the re-access interval. ”1” indicates that

the next accessing comes within a preset number of cycles. ”0” stands for that the next

accessing arrives after the preset period expires. The 1-bit counter is incremented in

case of a miss-prediction and decremented if the prediction is correct. The indicating

bit reverses whenever the counter overflows. The fundamental idea of Drowsy-RI is

to change prediction at the moment of two consecutive miss-predictions. Figure 26

describes the prediction accuracy of Drowsy-RI. On average, Drowsy-RI succeeds to

predict 59.3% of re-access intervals and the accurate rate is over 80.4% for bfs.
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4.4 Evaluation Results

4.4.1 Performance Overhead

We evaluated three drowsy policies studied in this work and compare them with

the baseline (w/o drowsy RF). Drowsy-IS focuses on maximizing the leakage energy

reduction. Drowsy-TA attempts to reduce the performance overhead significantly.

Drowsy-RI adapts the re-access intervals to balance RF leakage reduction and per-

formance degradation.

As shown in Figure 27a, Drowsy-IS results in 4.4% additional execution cycles

on average as compared to baseline. Two of the evaluated benchmarks, lud and

pathfiner exhibit severe performance degradation. The reason is that the frequencies

of register accesses in those benchmarks are much higher than other benchmarks. The

large amount of latencies generated by re-activating registers from the drowsy state

can not be completely hidden and thus the performance is degraded significantly.

Figure 27c depicts that lud and pathfiner have more register accesses per cycle

than the rest of benchmarks.

Figure 27b shows that the performance degradation with 1 (default) and 2 cycles

re-activation latency. As we can see, when the re-activation latency increases to 2 cy-

cles, the average performance degradation of the Drowsy-IS is increased dramatically

to 13.6% on average, which can also lead to significant energy overhead. Although

GPUs typically can hide latencies by switching between massive executable threads,

frequently waking registers from drowsy state could lead to a great number of delay

cycles and applications will suffer from performance degradation if latencies can not

be fully hidden.

Luckily, the performance overhead becomes negligible when Drowsy-TA is ap-

plied with 128 and 512 awaking cycles. Ideally, Drowsy-RI can eliminate as many re-
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(a) Normalized performance of three policies

(b) Performance degradation with 1 and 2 cycles re-activation
latency

(c) Register accessing times per cycle

Fig. 27. Performance results for different drowsy policies
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activation latencies as Drowsy-TA does. However, due to mispredictions, Drowsy-RI

is only able to partially identify short re-access intervals, and thus results in medium

performance overhead of 2.7% on average, which is 1.8% lower than Drowsy-IS but

2.5% higher than Drowsy-TA.

4.4.2 Leakage Energy Reduction

Figure 28 shows the RF leakage energy reduction of the three policies. Two

aspects contribute to the total RF leakage energy saving. One is the power gating

of unallocated registers at the beginning of the execution and another is to place

registers into the drowsy state at run-time. As expected, Drowsy-IS achieves the

most RF leakage energy reduction among the three policies, which is up to 94.0%

and 91.7% on average.

Fig. 28. RF leakage energy reduction

For Drowsy-TA, since part of the opportunities to save leakage energy is wasted

by keeping each register awake for a fixed period whether the register is re-accessed

or not, it leads to less RF leakage reduction. Drowsy-TA with an awake interval of

128 cycles reduces leakage energy up to 90.9% and 82.8% on average. The reduction
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rate decreases to 66.6% on average if the awake interval is increased to 512 cycles.

In particular, Drowsy-TA (512 cycles) dramatically weakens the ability of energy

reducing for bfs. By examining re-access pattern of bfs, we find that 99.8% of

register re-accesses in bfs arrive within 512 cycles, thus almost all allocated registers

are put into the operational mode during the entire execution. In this case, power

gating unallocated register becomes the only source of energy saving for bfs.

As expected, Drowsy-RI results in a RF leakage reduction between the Drowsy-

IS and Drowsy-TA schemes. More specifically, Drowsy-RI saves 4.3% more leakage

energy than Drowsy-TA (128 cycles) and is worse than Drowsy-IS (4.5% less energy

saving). Furthermore, Drowsy-RI decreases the performance overhead compared to

Drowsy-IS as described in Section 4.4.1.

Fig. 29. RF dynamic energy increasing

The main overhead of drowsy technique contains two parts, the additional dy-

namic energy and execution cycles spent on re-activating registers from the drowsy

mode. As shown in Figure 29, Drowsy-IS leads to 2.7% more RF dynamic energy on

average. Referring to the normalized number of accesses to registers in the drowsy

mode shown in Figure 30, Drowsy-TA and Drowsy-RI decrease the number of accesses
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Fig. 30. The normalized number of accesses to registers in drowsy mode

to the drowsy mode registers. Therefore, the dynamic energy overhead is reduced to

less than 2% for Drowsy-TA (128 cycles) and Drowsy-RI and 1% for Drowsy-TA

(512 cycles). Even though Drowsy-IS shows a slightly higher dynamic RF energy in-

creasing than other policies, the overwhelming power of RF leakage energy reduction

makes it the best choice to reduce total RF energy (49.5% on average shown in Figure

31).

Fig. 31. RF energy reduction
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Fig. 32. GPU energy reduction

The performance overhead can also negatively affect the energy reduction of en-

tire GPU (due to the increased execution time). To reduce the total GPU energy, the

RF energy reduction must be larger than the energy overheads due to the increased ex-

ecution time. Figure 32 shows the total GPU energy reduction. For most benchmarks,

Drowsy-TA (128 cycles) is the best in reducing the total GPU energy due to its low

performance overhead and decent RF energy reduction. Although Drowsy-TA (512

cycles) has even lower performance overhead, its poor ability in RF energy reducing

limits the overall GPU energy saving. For benchmarks which are experiencing severe

performance degradation under Drowsy-IS, such as lud and pathfinder, the total

energy consumption of GPU is sharply increased. On the other hand, for benchmarks

whose performance barely changes under different drowsy policies like bfs, Drowsy-IS

is able to effectively improve GPU energy efficiency via the RF energy reduction. On

average, Drowsy-TA (128 cycles), Drowsy-RI and Drowsy-IS reduce the GPU energy

by 7.0%, 6.0% and 5.6%, respectively.
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CHAPTER 5

GPU EXECUTION UNITS POWER-GATING STRATEGIES

5.1 Introduction

We examine the underutilization of three execution units in 10 GPGPU bench-

marks. The results show a great waste of execution resources. As shown in Figure

33, the integer units stay idle during around 61% of the total execution time and the

floating point units are unused in 92% of execution cycles. SFUs are free in 75% of the

execution period. The remarkable leakage energy consumption and the low utiliza-

tion of execution units convince us to power-gate spared execution units intelligently

and help GPUs to relieve the serious energy dissipation issue. We propose to uncover

the inherent opportunities for the power-gating on the energy-efficiency enhance-

ment without involving any re-schedule techniques. Researches in [7, 56] depend on

re-scheduling instructions to reconstruct the instruction sequences and intentionally

generate long idle durations. Unlike actively utilizing re-schedule techniques in the

previous studies, this work focuses on analyzing the existing idleness of the execution

units with respect to the default instruction sequences. According to the inherent

idleness, we explore appropriate power-gating strategies to save GPGPU leakage en-

ergy. This work is to guide the future GPU energy studies regarding the execution

units power-gating. Instead of involving additional microarchitectures for complex

re-scheduling logic, only basic counters are required for the proposed method which

is then applicable with low hardware overhead. Besides the power-gating strategies,

the idleness pattern also inspires us to increase the number of integer units in an SM

for performance and energy efficiency improvement.

59



Fig. 33. The Underutilization rate of execution units

5.2 Related Work

GPGPUs are becoming promising platforms for accommodating parallelizable

compute-intensive applications. Indeed, the support of a massive number of execu-

tion units and abundant bandwidth enable GPGPUs to provide an extremely high

throughput by concurrently executing thousands of threads; however, the energy ef-

ficiency can become an urgent concern if the GPGPUs attempt to further improve

the performance. Moreover, the great amount of execution units are responsible to a

considerable portion of the total energy consumption and they unfortunately produce

many idle cycles resulting energy wasting. Many researchers have studied GPGPU’s

energy-efficiency [57, 7, 9, 58, 34, 59, 60, 56]. Most of the researches discovered the

underutilization of various GPU components such as register files and execution units

and proposed to power gating the idle resources for energy saving. [57] propose to

shut down unused fragments or putting them into the low power modes to reduce

leakage energy consumption of GPU register files. [58] implements the power-gating

at the SM level granularity. They monitor the activity of entire SMs and shut down
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the unoccupied SMs to improve energy-efficiency. Some other solutions operate the

power-gating at a much finer granularity [7, 56]. They explore the idleness of the exe-

cution units and design strategies to apply power-gating down to per SIMT lane and

minimize the leakage energy wasting. By comparison, this work studies the inherent

idleness of the integer and floating point units of SP as well as the SFU. To reduce

GPU leakage energy dissipation, we have studied two different policies operating the

power-gating adaptively and efficiently on different execution units.

5.3 Power-gating Strategies

Power-gating technique has been widely demonstrated to be effective on the leak-

age energy reduction. In this work, we use the traditional power-gating strategies to

save execution units leakage energy on GPGPUs. We operate the power-gating at

a fine granularity and shut down the integer unit and floating point unit per SIMT

lane individually. The four SFUs in an SM are also able be power-gated separately.

tbreak even, twakeup and tidle detect are three parameters related to the execution units

power-gating technique. The tbreak even represents the least number of cycles the

power-gated mode should last. The leakage energy saving during tbreak even is equal

to the energy overhead of turning off and on the execution units. As long as the

power-gated mode lasts longer than tbreak even, the leakage energy reduction is at-

tained; otherwise, the energy overhead of the power-gating exceeds the insufficient

saving and negatively affects the energy efficiency instead. The twakeup is the number

of cycles spent on waking up execution units. These extra cycles can lead to nega-

tive performance impact. Both tbreak even and twakeup can be calculated by using the

formulas in [61] and vary with parameters of circuit components. The typical value

of tbreak even lies between 9 to 19 cycles and twakeup is from 3 to 9 cycles [61]. In this

work, the evaluation starts with tbreak even of 10 cycles and twakeup of 3 cycles and
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continues with other tbreak even (5 and 20 cycles).

The power-gating decisions are made according to the threshold tidle detect. We

can tune the tidle detect to achieve the balance between the leakage energy reduction

and performance loss. A large tidle detect filters the short idleness of execution units to

avoid performance degradation, but consequently misses opportunities of saving ever

more leakage energy. We first evaluate with tidle detect of 0 cycles called immediate

power-gating (IPG). The IPG put execution units into power-gated mode immediately

as soon as they are not occupied. The IPG is capable to maximize the leakage energy

reduction if most of the idleness is longer than tbreak even; otherwise, the IPG could

hurt both energy efficiency and performance if a lot of short term idleness shows up.

Due to the various idleness patterns, the optimal tidle detect can be varied for different

execution units. In order to achieve further leakage energy saving, we examine the

variation of energy reduction with different tidle detect (2 and 5 cycles), called idle

detect power-gating (ID-PG). Based on how busy a certain type of execution unit is,

the length distribution of the execution unit idleness is different and tidle detect varies

accordingly.

Due to that the power-gating strategies studied in this work can be completely

supported by several simple counters and avoid complex microarchitecture and logic,

the hardware overhead is negligible. Moreover, the performance overhead that is

mostly caused by the wake-up latency twakeup is negligible as well. An issued instruc-

tion is not going to be executed immediately. Instead, several cycles are taken to re-

quest operands of the instruction from the register file and collect them in the operand

collector. The instruction is not forwarded to the execution unit until all operands

are ready in the operand collector. By noticing the time gap between the issues and

execution stage, the SIMT lanes that will be used to execute the instruction can be

woken up in advance right after the instruction has been issued. Getting operand

62



ready can typically take up to 10 cycles, which is longer than twakeup. Therefore,

twakeup successes to overlap itself with the period of fetching and collecting operands

and thus is not expected to have a negative impact on performance. Moreover, since

there is no warps and instructions rescheduling in our methods, the performance is

not influenced by any rescheduling policy. Overall, both hardware and performance

overheads of the power-gating strategies are negligible, which is also confirmed in our

experiments.

5.4 Evaluation Results

5.4.1 Leakage energy reduction for different types of execution units

Figure 34 shows that the leakage energy of integer units can be reduced up to

93% and 24.9% on average, when tbreak even = 10 and tidle detect = 0. For benchmarks

such as bfs, pathfinder, backprop and hotspot, the setting of tidle detect = 0 leads to

more leakage energy dissipation from integer units and thus hurts the energy efficiency.

This is because there are too many short-term idleness generating inevitable energy

overheads.

The portion of the idleness over 10 cycles for integer units is shown in Figure 35.

Compare to the other benchmarks, bfs, pathfinder, backprop and hotspot show

a smaller portion of idleness lying above 10 cycles (9.0%, 2.9%, 7.4% and 11.5% re-

spectively). bfs, pathfinder, backprop and hotspot fail to contribute to the energy

efficiency due to the lack of long-term idleness. What’s worse, the execution units are

frequently switching on and off resulting in the overwhelming energy overhead and

the degradation of the energy efficiency. As shown in Figure 34, integer units leakage

energy reduction is -28%, -22%, -44% and -22% for bfs, pathfinder, backprop and

hotspot respectively.
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Fig. 34. Leakage energy reduction for different types of execution units (tbreak even =

10, tidle detect = 0)

Fig. 35. The portion of the idleness below 5, 10 and 20 cycles for integer units

(tbreak even = 10, tidle detect = 0)
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(a) Integer units leakage reduction rate

(b) Floating point units leakage reduction rate

(c) SFUs leakage reduction rate

Fig. 36. Execution units leakage energy reduction rate for different idle detect time

(tidle detect = 0, 2, 5)
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As compared to the integer units, the power-gating works much better on reduc-

ing the leakage energy of floating point units and SFUs (83.9% and 49.5% leakage

energy saving for floating point units and SFUs are reduced respectively). Since 93%

of the idleness of SFUs is shorter than 10 cycles for backprop, the very high occur-

rences of short-term idle periods causes the leakage energy increasing of SFUs for

backprop.

5.4.2 Leakage energy reduction for different tidle detect

We next evaluate the power-gating strategies with different idle detect time

(tidle detect = 0, 2, 5 cycles). Figure 36a depicts that increasing tidle detect can improve

the integer units leakage energy saving, as more and more short-term idle intervals are

filtered by longer tidle detect and the energy overhead is compromised. When increasing

tidle detect from 0 to 5 cycles, the average leakage energy reduction boosts from 24.9%

to 37.2%. The breakdown of idleness for integer units is shown in Figure 37a. When

tidle detect increases from 0 to 2 cycles, the 2-cycle threshold can rejects to power-gate

as encountering 1 cycle idleness. The overhead can be remarkably removed owing

to that 23% of total idle durations on average is only 1 cycle. If further increasing

tidle detect to 5 cycles, even more short-term idleness with intervals of 2, 3 or 4 cycles

can be filtered. As shown in Figure 37a, 34% of total idleness on average is 2, 3 or 4

cycles and therefore the energy overhead can be further reduced.

Figure 36b and Figure 36c show that operating the power-gating with shorter

tidle detect can lead to better energy-efficiency for floating point units and SFUs. Figure

37b and Figure 37c explain that there are only limited number of short idle intervals

can be gated by tidle detect when it becomes longer. Specifically, setting tidle detect to

5 cycles can only remove the power-gating overhead from 2.5% (1 cycle) and 6.5%

(2-4 cycles) of the total idleness for floating point units. And, for SFUs, 26% more
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(a) Idleness breakdown of integer units

(b) Idleness breakdown of floating point units

(c) Idleness breakdown of SFU

Fig. 37. Idleness breakdown
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idleness can be found in total (9% 1 cycle idleness and 17% 2-4 cycles idleness). Once

the longer tidle detect is unable to dig more enough short-term idleness to optimize

the power-gating strategies, it wastes additional cycles on waiting the power-gating

decision rather than power-gates immediately to enhance the energy efficiency.

5.4.3 Sensitivity analysis of tbreak even

(a) Integer units leakage energy reduction
with different tbreak even

(b) Floating point units leakage energy
reduction with different tbreak even

(c) SFUs leakage energy reduction with
different tbreak even

(d) Overall leakage energy reduction of all
execution units with different tbreak even

Fig. 38. Leakage energy reduction with different tbreak even

As shown in Figure 38, the longer idle detect time becomes the optimal choice for

all execution units, when tbreak even goes up from 5 cycles to 20 cycles. Especially, the

power-gating technique achieves the most reduction of the leakage energy of floating

point units when 5 cycles idle detect time is chosen instead of 0 cycle. As raising

tbreak even, the energy budget of power-gating execution units increases. In this case,
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the energy overhead reduction from avoiding short-term idle periods exceeds the extra

energy paid on reaching the idle detect time.

Based on the results shown in Figure 38b, the evaluated power-gating schemes

are able to approach a satisfactory leakage energy saving of floating point units.

The average saving is very close to the ideal case. However, the increasing of the

break even time weakens the power of the power-gating and pulls the leakage energy

saving against the best case. Not surprisingly, the overall leakage energy saving

of all execution units follows a trend similar with the floating point leakage energy

reduction as represented in Figure 38d. As compared to the ideal case (85.5%, 82.4%

and 79.3%), 84.3%, 77.5% and 63.1% reduction of execution units leakage energy can

be reached for the break even time of 5, 10 and 20 cycles, respectively.

5.4.4 Add Green SP(s) for enhancement of both performance and energy

efficiency

According to the experimental results in Figure 33, the integer units are overall

demanding resources. Therefore, increasing the number of integer units in an SM can

relieve the pressure of integer computation and potentially improve the performance.

Moreover, by adding Green SPs which are dedicated to integer computations, more

normal SPs can yield to floating point computation. For the applications including

both integer and floating point computation, the waiting line of floating point units

might be cut down and the performance could be boosted. The energy overhead of

introducing more integer units can be negligible as only 0.1% of the total GPU energy

is consumed by the integer units. In this work, we evaluate the performance when

one or two Green SPs are added to an SM. Figure 39 shows the results. For the

applications working on integer computation only, the performance improvement is

slight. However, bfs and pathfinder enjoy a little benefit on the performance (1.8%
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and 5.2% improvement respectively) due to their extreme demand on integer units.

As shown in Figure 33, integer units are unoccupied during only 24.5% and 10.6%

of the total execution time for bfs and pathfinder respectively. For applications

including both integer and floating point computation, extra integer units can be

more helpful on boosting performance as the Green SPs can free the normal SPs to

the floating point computation and the floating point instructions that are stalled for

lack of normal SPs then can acquire the resources earlier. For example, extra integer

units eventually achieve 5.6% and 14.4% performance improvement for backprop and

hotspot that rely on both integer and floating point units.

Fig. 39. Normalized execution cycles w/ simple SP(s)
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CHAPTER 6

GPU SIDE-CHANNEL ATTACKS

6.1 Introduction

6.1.1 Brief Description of pSCA and pacSCA

Recent researches have found that the SCAs are practical and the secret infor-

mation can be revealed on GPUs [62, 63, 64, 65, 66, 67]. All these SCAs adopt a

correlation analysis based on a certain kind of relationship between the key-related

information (e.g. the number of unique cache lines in [66]) and observed matrix (e.g

the execution time in [66]) to recover the AES key. As one of the most typical SCAs

on GPUs, [66] successfully establishes the relationship between the execution time of

an AES encryption kernel and the AES encryption key by observing that the kernel

execution time is linearly proportional to the number of unique cache line requests

that is highly dependent on the encryption key. They then construct a side-channel

timing attack to recover all the 16 bytes AES secret key on a specific NVIDIA GPU

by using a statistical analysis [66]. To thwart this SCA, the work in [68] proposes the

Randomized Coalescing (RCoal) techniques to effectively protect GPUs with varied

performance overheads. To hide the relationship utilized by this SCA, the memory co-

alescing is randomized in several ways including the number of subwarps, the threads

assigned to each subwarp, or a combination of both. The introduced randomness is

shown to improve GPU security by making it much harder to discover the correlation

via the statistical analysis.

In this work, we propose two novel side-channel attacks that information leaked
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from GPU performance profiling can be extracted when executing on an SIMT-based

GPU to fully recover the encryption secret key. Unlike power and timing side-channel

attacks, instead of bridging the number of unique cache line requests with the key

via a differential of power consumption or execution time, our side-channel attacks

accomplish straightforward key recovery procedure by sampling the exact number of

unique cache line requests during the run-time and simply checking all 256 possibilities

for each byte of all 16-byte AES key to determine the correct answer. The number of

samples and time needed for recovering the key are dramatically reduced while the

accuracy can be always guaranteed. Moreover, the profiling-based side-channel attack

has great scalability, as the profiling time only increases slightly with no additional

samples required when the length of the AES key scales up.

We first propose a profiling-based side-channel attack (pSCA). Compared to

the prior work in [69] of GPU side-channel attack, for which only GPUs supporting

the execution of multiple kernels from different programs are vulnerable since the

spy program needs to implant malicious kernels to probe victim program; creating

contention between spy and victim programs is unnecessary for the attack proposed

in this work, which can be more generally applied to GPUs. Furthermore, instead

of profiling coarse-grained information or collecting only one sample for each kernel

executed, we propose a fine-grained profiling strategy which can break the limitation

of sample frequency set up by the profiling APIs and get more details during the

kernel execution for an efficient and accurate key recovery. We have implemented a

run-time profiling tool, which can sample two performance matrices, the number of

the memory load and memory store requests. Based on the two performance matrices,

the number of unique memory load requests in the last round encryption for each byte

except the first byte then can be determined. The 16-bytes AES key can be recovered

byte by byte. By calculating the number of unique memory load requests with 256
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possibilities of a single byte of the AES key and comparing to the profiled number, the

number of possibilities of corresponding byte key can be narrowed down. The number

of possibilities can be further decreased to 1 by repeating the same procedure with

different input data for several times. We further enhance pSCA to overcome RCoal

which can protect the GPUs from our original pSCA. Due to the two reasons: 1) the

possible number can be reversely computed with a guessed key value, a reverse table,

and the cipher-output which are all known by the attacker and 2) the exact number

of unique cache line requests can be sampled, simply checking all 256 possibilities

for each byte of all 16-byte AES key will determine the correct answer. For GPUs

protected by the RCoal techniques, indeed, the pSCA alone cannot crack the right

AES key directly because the sampled number has been obfuscated by the randomness

of the memory coalescing. However, we propose a boundary check mechanism to be

used with the pSCA to effectively crack the AES key with RCoal. To this end,

the RCoal guarded GPUs will still be unable to guarantee the security completely.

Moreover, the RCoal techniques increase the number of subwarps to improve the

security, which comes at the cost of the performance. Since the boundary-check

pSCA can successfully attack RCoal techniques with various number of subwarps,

including 2, 4, and 8, except for 16 though. Thus, to fully protect the system against

the pSCA with the boundary checking, the hardware designers will be forced to pick

the 16 subwaprs configuration, resulting in much larger performance loss for GPUs.

We then propose a Profiling-Assisted Correlationbased side-channel attack (pac-

SCA). Existing correlation-based side-channel attacks take advantage of the corre-

lation between the number of unique memory load requests and the execution time

[66] or power consumption [67] to recover the secure key. The weakness of these side-

channel attacks is that a large number of samples are needed to observe the weak

correlation making them fragile to defense strategies. As comparison, our profiling-
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assisted mechanism utilize a much stronger relationship which connects the number of

memory loads in the last round to the total amount of memory loads. The exploited

relationship delivers significant correlation and interacts with minimum noises. Nat-

urally, the demand on the number of samples for reconstructing the key is remarkably

reduced. Additionally, the scalability of the pacSCA is satisfactory as there is only a

slight increase on the number of samples with respect to scaling up the length of the

AES key. A run-time profiling tool has been developed to sample the total number

of memory load requests accurately. Through the correlation analysis on the profiled

traces, the secret information can then be extracted by the attacker. Since there is no

statistical analysis involved in the pSCA, the attack performance is not affected by

any noise and thus the success rate of the AES key recovery can be always guaranteed

to be 100%. By comparison, although the success rate can converge to 100% in case of

enough samples, the correlation analysis prevents the pacSCA to achieve the perfect

success rate. Moreover, the pSCA requires much smaller number of samples than the

pacSCA (9 samples for the pSCA vs. 10000 samples for the pacSCA). The downside

of the pSCA is that the detailed number of unique memory load requests for each load

instruction in the last round have to be profiled. Owing to the poor sample resolution,

the profiling tool needs to profile the same encryption case multiple times until all

details to form a sample are captured. Unlike the pSCA, the pacSCA only profiles the

total number of memory load requests which can be easily sampled at the end of each

encryption kernel. Consequently, the pSCA spends much longer time on getting a

sample than the pacSCA (1 sample every 4 seconds for pSCA vs. 10000 sample every

5 seconds for the pacSCA). Besides this, the pacSCA also outperforms the pSCA on

the total key recovery time (5 seconds for pacSCA vs. 4 seconds × 9 = 36 seconds

for the pSCA). Furthermore, the complexity and detailing of the profiling strategy

makes the pSCA fragile to both hardware and software defense mechanisms that can
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interrupt the profiling. On the other hand, due to the simplicity of the profiling tool

and the significant correlation, the pacSCA is able to survive from state-of-the-art

countermeasures such as the Rcoal [68].

6.1.2 AES GPU Implementation

Fig. 40. The operations of encryption rounds in AES.

The size of the basic encryption block in the AES algorithm is fixed to 128 bits.

According to the security requirement, the encryption key length can be tuned from

128 to 196 and 256 bits and the total encryption round is 10, 12, and 14 respectively.

In this study, we focus on the 128-bit AES which processes 10 encryption rounds.

Initially, the original 16-byte key is expanded into 160-byte round keys for 10 rounds

of operations. In the first round, the first round key is XORed with the 16-byte

plain-text to generate the initial state. The same operations composed of SubByte,
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ShiftRow, MixColumn, and AddRoundKey are executed in each encryption round

except the last round. The 10th (i.e. last) round, which skips MixColumn, only

contains SubByte, ShiftRow and AddRoundKey operations. Figure 40 shows the

operations of encryption rounds in AES. The LUT (Look Up Table) based AES

is one of the most classical implementations on many general-purpose computing

platforms, in which the SubByte, ShiftRow, MixColumn operations are completed by

four lookups to four different tables. Due to skipping the MixColumn operation, the

last round only visits one special T-table instead. To complete the encryption round,

the AddRoundKey operation is XORed with the corresponding round key at the end

of each round after table lookups. To take advantage of the high throughput, the

GPU implementation of the AES algorithm assigns one 16-byte block of the plain-

text to each thread for independent encryption. In this way, a warp consisting of

32 threads can work on 32 different blocks concurrently. Our GPU implementation

of the AES is the same as that used in [66]. Figure 41 depicts the AES algorithm

executing on a GPU.

Fig. 41. The GPU based AES implementation.
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6.1.3 The RCoal Techniques

To defend GPUs against SCAs successfully demonstrated in [62, 63, 64, 65, 66,

67], Kadam et al. [68] propose the RCoal techniques to enhance security at the

cost of the performance overhead that is tunable. The RCoal techniques randomize

the coalescing logic, making it hard for the attacker to guess the correct number of

coalesced accesses. Specifically, the size of the subwarp and the threads assigned to

each subwarp are randomized. Accordingly, they propose three coalescing randomiza-

tion strategies: fixed sized subwarp (FSS), random-sized subwarp (RSS), and random

threaded subwarp (RTS).

FSS separates a warp into several subwarps and applies the memory coalescing

independently within each subwarp. From the attacker’s point of view, the number of

subwarps is always 1. By hiding the real number of subwarps from the attacker, FSS

makes it impossible to directly profile or compute the correct number of coalesced

memory accesses and therefore mitigates the GPU’s vulnerabilities. Although FSS

increases the security, the subwarps with shrunken size waste the opportunities to op-

timize the memory accesses, resulting in an increased number of memory accesses and

hence performance loss. What’s worse, the number of subwarps is easy to be guessed

or measured by the attacker and in this case, FSS offers no security improvement

other than performance degradation.

To overcome the flaw of FSS, RSS is proposed to further randomize the subwarp

size. Unlike FSS that breaks up a warp into subwarps of a fixed size, RSS assigns

various number of threads to each subwarp and uses the skewed distribution to ran-

domly determine the subwarp sizes. Thus, the attacker cannot explore the correct

number of coalesced memory accesses without the details of both the number and

sizes of subwarps, which are difficult to be revealed.

77



To cooperate with FSS and RSS and involve even more randomness, the assign-

ment of threads to each subwarp is randomized in RTS. To be more specific, RTS

randomly reorders the threads in the original warp and reassigns them to each sub-

warp. Applying RTS with FSS or RSS (i.e., FSS+RTS and RSS+RTS) makes the

number of coalesced memory accesses even harder to be calculated by the attacker.

Kadam et al.’s research [68] shows that the RSS along with RTS outperforms

other three coalescing randomization schemes (FSS, RSS, and FSS+RTS) on security

enhancement and are demonstrated to enable 24 to 961 times improvement in the

security against the correlation timing attacks with 5% to 28% performance degra-

dation.

6.2 Related Work

Jiang et al. [66, 63, 64] proposed several GPU side-channel attacks based on

correlation analysis which leverage the correlations between the execution time and

run-time state transactions of GPU microarchitectures such as caches and shared

memory to recover the last round key. The last round key leaked by the side-channel

attack then can be reversed to obtain the original AES key. During the last round

encryption of the T-Table based AES algorithm, table lookup actions which complete

the data transformation result in different memory access patterns decided by the last

round key leading to different execution cycles. The adversary bridges the execution

time and the last round key with the differences in memory access addresses to leak

useful information for AES key recovery. [63] presents a side-channel timing attack

depending on the shared memory bank conflicts. According to the SIMT execution

model, when loading data from shared memory, 32 threads in a warp generate 32

table lookups pointing to different shared memory addresses locating in different

banks. Consequently, the shared memory bank conflicts happen when accesses going
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to the same bank to affect the execution time. In the AES algorithm, the shared

memory address accessed by each thread depends on the last round key resulting in

diversity on the execution cycles of a load operation. The overall execution time of

the AES program also depends on the shared memory bank conflicts due to the T-

table accessing. This correlation of total execution time and the last round key is the

critical measurement to guess the original key. In [66], instead of shared memory bank

conflicts, they propose to use the number of unique memory requests after coalescing

to build the correlation, while [64] demonstrate a similar attack which focus on the

bank conflicts of GPU cache. Luo et al. [67] propose a power side-channel attack

on GPU to crack AES key. They implement a power estimation model to trace

the power consumption and remove the source of noises due to the asynchronous

execution between warps and SMs. The power traces then can be used to analyze

the correlation between the power consumption and the AES key bytes. However, all

these methods require much more samples and time than the profiling-based SCA.

6.3 Profiling-Based Side-Channel Attack

6.3.1 The Original pSCA

First, we find that due to no MixColumn operation, the last round can be sim-

ply performed by one table lookup (i.e., load instructions), XORing the round key

(i.e., logic instructions) and result write-back (i.e., store instructions). Among these

instructions, we only concern about load and store instructions, as they are relevant

to information leaking. In particular, the execution order and data dependencies

of load and store instructions provide the basis for our profiling based attack. To

generate and preserve one cipher-text byte, one load and one store instruction are

required to read the table and write back the byte generated. To generate the entire
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16 bytes block cipher-text, 16 load and 16 store instructions are executed alternately

and hence the store instruction is dependent on the previous load instruction because

it cannot be executed to store the cipher-text byte which has not yet been generated

by executing the load instruction preceding it.

Second, the memory request coalescing which is considered as an effective method

for GPU to reduce the number of memory accesses and enhance the throughput can

be a channel to leak key related information to attackers. In the GPU-based AES, a

warp with 32 threads can process 32 16-byte blocks simultaneously and a table lookup

initiating a memory load instruction generates 32 memory requests to fetch the data

from different addresses within the memory space where the table is stored. The size

of the table in the last round is 1024 bytes with 256 4-byte elements. A cache line

of the L1 cache in the GPU is typically 64 bytes and therefore 32 memory requests

generated by one load instruction can result in memory accesses varying from 1 (if all

32 threads request data locating in the same cache line) up to 16 (i.e., 16 consecutive

cache lines totally are necessary to serve the entire table) after coalescing. The number

of unique memory requests of one load instruction of 32 threads in a warp is highly

dependent on the table indexes which can be calculated with cipher-text byte and

corresponding round key using an inverse lookup table.

Third, we find that there are in total 66 memory store transactions when 32

threads in a warp process 32 16-byte blocks. Specifically, 2 of 66 memory store

transactions are caused by system calls at the end of the program. The remaining 64

transactions are used to store 32*16 bytes data for 32 threads and storing 32*1 bytes

costs 4 transactions. Therefore, the number of unique memory store request that can

be profiled ranges from 0 to 66.

We use the CUDA Profiling Tools Interface (CUPTI) to implement our own pro-

filing tool. The Event API of CUPIT allows to access multiple performance counters
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at the same time and therefore at one profiling point we can get two parameters (the

number of the memory load requests and the number of the memory store requests)

forming a pair. Due to the poor profiling rate, only one profiling point can be found

for a single run of the kernel. The profiling point may happen anywhere and of-

fers both valid and invalid information. To increase the profiling resolution, we keep

sending the same plain-text to the victim program so that it is able to profile the

same case under the same circumstance multiple times until the details to generate a

sample are all captured.

Fig. 42. The overview of the profiling strategy.

Figure 42 describes the scenario to determine the validity of a profiling point.

P denotes the total number of unique memory load requests before generating the

second cipher-text byte in the last round. {L2, L3, ..., L16} denotes a sample com-

posed of the numbers of unique load requests for 2nd to 16th load instructions in

the last encryption round. The profiling point that happens during the execution of

the store instruction (i.e., the gray regions) is valid, providing the total number of

unique memory load requests of previous load instructions. In the gray regions, the

number of memory store requests may change due to the ongoing store instruction.

However, the number of unique memory load requests remain constant because there

is no load instruction executing simultaneously. This is because the load instruction

before the store instruction has already been finished and the next load instruction
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should not start before the completion of the current store instruction. For exam-

ple, profiling in the first gray region pointed by the red arrow in Figure 42 can get a

performance counter pair (3200, 2), in which 3200 is the total number of unique mem-

ory load requests generated by the load instructions in previous encryption rounds

and the first load instruction in the last round whereas 2 is the number of unique

memory store requests initiated by the first store instruction. As aforementioned,

each store instruction costs 4 transactions and therefore, if only 1, 2 or 3 of 4 have

been completed, the store instruction is still under execution. In this case, P equals

to 3200. To summarize, for a performance counter pair (num load, num store), if

num store = a∗4+b and b = 1, 2 or 3, P+
∑a+1

i=2 Li = num load. By comparison, the

profiling point locating in the blue region is invalid since a load instruction is during

execution. We then can filter the performance counter pair (num load, num store),

if num store = 4 ∗ a. For two invalid performance counter pair, even they have the

same num store, num load may vary according to the profiling timing during the

execution of the same load instruction. By collecting all 16 valid numbers at the

right profiling points (i.e., {P, P + L2, P + L2 + L3, ..., P +
∑15

i=2 Li, P +
∑16

i=2 Li}),

the numbers of unique memory load requests for all 16 load instructions except for

the first one then can be recovered by calculating the differences between consecutive

numbers in {P, P + L2, P + L2 + L3, ..., P +
∑15

i=2 Li, P +
∑16

i=2 Li}. For example,

L16 = (P +
∑16

i=2 Li)− (P +
∑15

i=2 Li). However, the number of unique memory load

requests for the first cipher-text byte cannot be calculated directly based on profiling

because there is no store instruction preceding it as the boundary.

Figure 43 depicts the procedure to recover the entire 16-byte AES key. The exact

number of unique memory load requests in the last round encryption for generating

every cipher-text byte except the first byte then is already known by the attacker,

based on which the corresponding AES key bytes can be recovered one by one. To
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recover one key byte, using an inverse lookup table, the attacker checks all 256 guesses

of a single byte of the AES key by calculating and comparing to the profiled number.

The number of possibilities of the corresponding key byte can be narrowed down.

The number of possibilities can be further decreased to 1 case by repeating the same

procedure with different input data for several times, which must be the true key

byte. The profiling-based method can only recover the last 15 bytes of the AES key.

However, the attack can reveal the first key byte by checking at most 256 cases with

the same input if the later 15 key bytes are already known from profiling.

Fig. 43. Procedures to recover the entire 16-byte AES key

83



6.3.2 The Boundary Check pSCA

The RCoal technique cannot only thwart prior GPU based SCA attacks [62, 63,

64, 65, 66, 67], but also the original pSCA. This is because with RCoal, the exact

number of loads is hard to be derived due to the memory coalescing randomization,

making it impossible for the orginal pSCA to recover the AES key. To enhance

the pSCA (and hence to motivate the study of stronger protection mechanisms than

RCoal), we propose to determine the upper bound and lower bound of the number

of unique memory accesses to form a range that the actual number should locate

in. The range can be calculated by a possible value of a key byte and the encrypted

output. For one key byte, there are 256 cases and thus 256 ranges can be computed.

Moreover, by checking whether the profiled number is within the ranges or not, the

wrong guesses of this key byte can be eliminated. Since the range calculation is

related to the number of subwarps that is still unknown, we need to examine all the

cases including 2, 4, 8, and 16. It is unnecessary to check 1 and 32 because 1 subwarp

is the same with the normal problem without RCoal and 32 subwarps means that

the coalescing mechanism is completely disabled, thus the number of unique memory

requests is always 32.

Assuming the number of subwarps is 4 (we can use the same method to calculate

the range for other numbers of subwarps such as 2, or 8, but not 16), if the number

of memory requests accessing the same cache line is equal to or less than 4, these

requests can be allocated to different subwarps to maximize the total number of

memory requests. If the number of memory requests accessing the same cache line is

larger than 4, at least one memory request has to be assigned to a subwarp containing

the memory request that can be merged together. Furthermore, more than 4 memory

requests accessing the same cache line can only result in 4 unique memory requests
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always. With this strategy, we can calculate the upper bound.

To calculate the lower bound, the idea is to allocate as many memory requests

as possible, which can be coalesced into the same subwarp. The range derived from

a real key can guarantee to cover the profiled number, while the profile number may

lie out of bounds calculated with a false guess, which then is eliminated. Indeed,

with a single sample, a false guess may succeed to form a range holding the profiled

number of memory requests and remains to be considered a candidate of the real

key; however, it cannot guarantee this all the time for every sample. Therefore, with

enough samples and corresponding boundary checks, a false guess will be identified

and then filtered sooner or later. There are 256 guesses for each key byte and 256*16

guesses in total for the 16-byte AES key. The boundary check pSCA is responsible for

reducing 256*16 guesses to only 256 cases and the brute-force method exhausts them

to a single case, which is the correct AES key. Based on the experimental results,

the boundary check pSCA is capable to successfully exclude all other guesses and

result in 256 possibilities in the case of sufficient samples. In addition, according to

the results, the profiled number is never smaller than the lower bound, therefore the

calculation of lower bound can be skipped for simplification.

The boundary check pSCA follows two assumptions to calculate the upper bound

with a fixed number of subwarps (e.g. 2, 4 or 8): 1) the subwarp size is flexible in

order to hold as many as possible memory requests that cannot be coalesced to

approach the worst memory coalescing case; 2) a thread is free to be allocated to any

subwarp in order to avoid memory requests that can be merged together to achieve

the worst memory coalescing case. The flexibility on the subwarp size and thread

allocation leads to an ideal case that can be achieved to increase the number of unique

memory requests and hence weaken the memory coalescing mechanism. The RCoal

techniques including FSS, RSS, FSS+RTS and RSS+RTS, involve different kinds
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of memory coalescing randomness and increase various numbers of unique memory

requests. However, none of them is possible to generate the number of unique memory

requests exceeding the ideal case calculated with the corresponding key byte. In other

word, if any RCoal technique results in a number that is larger than the ideal case,

this guess of the corresponding key byte used to compute the ideal case is not the

real answer. Therefore, the boundary check mechanism is effective for all RCoal

techniques and hence it is unnecessary for the boundary check pSCA to know which

one is exactly chosen to protect GPUs.

6.4 Profiling-Assisted Correlation-based Side-Channel Attack

The GPU architectural vulnerability to side-channel attacks. The SIMT

execution style and the memory coalescing mechanism contribute to the performance

enhancement, however, negatively cause the vulnerability to side-channel attacks.

Following the SIMT execution manner, concurrent threads are able to execute an

unique instruction in parallel and to access different memory addresses. In order

to conserve the memory bandwidth, a coalescing unit is equipped to merge memory

requests accessing to the same memory addresses. The SIMT and memory coalescing

are exploited by malicious attackers to threaten the security. In the AES algorithm,

the number of coalesced memory accesses initiated by a memory load instruction

is highly related to the secure key. The attacker then can extract the confidential

information from the variation of the number of coalesced memory accesses.

The correlation analysis. Although the variation of the number of coalesced

memory accesses implies the secure key, the attacker cannot observe it directly. In-

stead, the attacker successes to perceive this variation through a correlation-based

side-channel, which exposes it through the variation of the observable metric, i.e.,

the total number of memory accesses in this work. To be specific, the number of
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coalesced accesses of a single load instruction makes contribution to the total number

of memory accesses of the entire program. Therefore the attacker can detect the vari-

ation statistically by a correlation analysis that constructs the relationship between

the number of memory accesses from a load instruction and the whole program.

Profiling tool assistance. The profiling tool we implemented in this work can

accurately capture the total number of memory accesses which is required to conduct

the correlation analysis. The CUDA Profiling Tools Interface (CUPTI) provides var-

ious APIs to build the profiling tool. Since the detailed number of coalesced memory

accesses for each load instruction is unnecessary for the pacSCA, the profiling tool

don’t have to struggle for a high sample resolution. Instead, our profiling tool can eas-

ily provide the total number of memory accesses accurately by taking a sample right

after the cypher-text is returned. To get enough traces, we make the AES program

contiguously working on different plain-texts.

Figure 44 shows the flow chart for the Profiling-Assisted Correlation-based Side-

Channel Attack. The size of the original and 10 round keys are fixed to 16 bytes

in the 128-bit AES algorithm. For one possible value (e.g., 128) of a key byte (e.g.,

key byte 0), a correlation coefficient b can be computed via the regression analysis

model as y = b ∗ x + c, where y is the profiled number of unique memory load

requests for the entire AES program, x is the guessed number of unique memory

load requests in the last round for the key byte 0 with guessed value 128, and c is a

constant. While the profiled number of unique memory load requests for the entire

AES program is obtained by the profiling tool, the corresponding guessed number of

unique memory load requests for key byte 0 in the last round can be computed with

the output (corresponding byte in the cipher-text, 0th byte in this case), inverse table

(a constant table known by the attacker), and the 128 (one possible case of key byte

0). Since there are in total 256 cases (from 0 to 255), 256 correlation coefficients will
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be calculated. By collecting enough number of samples, the real key byte value will

stand out other 255 cases by showing the largest correlation coefficients. Therefore,

the pacSCA is capable of recovering the 16-byte AES key byte by byte independently

in the same way.

Fig. 44. The flow chart for pacSCA.
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Table 3. Experimental results of pSCA

Tesla C2075 Quadro 2000

Key recovery done success:100 success:100
Recovery success rate 100% 100%
Profiling done success:676 success:656, fail:1
Profiling accuracy 100% 99.85%
The average profiling time 13814.99 ms 29837.02 ms
The average recovery time 93389.37 ms 196029.20 ms
The average inputs profiled 6.76 6.57

6.5 Evaluation Results of pSCA

6.5.1 Evaluation Results of Original pSCA

We implement a python script to control and complete the AES key cracking

procedure automatically and repeatedly which can also monitor the procedure and

finally output the results. Using this script, we have done systematic experiments

and verification. To simulate a attack as real as possible, we let the AES program

keep running and waiting data from outside. The adversary program keep sending

data to AES program for encryption and meanwhile launches the GPU profiling tool

to get samples. We have evaluated the profiling-based AES key recover on two GPU

platforms: NVIDIA Quadro 2000 and NVIDIA Tesla C2075.

To test the accuracy of the profiling tool and success rate of key recovering, we

recover the key 100 with different inputs. Table 3 shows the experimental results

for both GPU cards. Both recovery success rate and profiling accuracy are 100% for

NVIDIA Tesla C2075 while NVIDIA Quadro 2000 fails to get the correct number

of memory load requests only once. However, the success on the rest of 656 inputs

profiled results in 99.85% profiling accuracy. Although the profiling accuracy is not

100%, the recovery success rate can still achieve 100% since the inaccurate samples

can always be filtered by the profiling tool noticing the abnormal pattern. The rea-
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son for the profiling failure on NVIDIA Quadro 2000 is that this GPU card serves for

both general-purpose and graphics computing. Consequently, the profiling tool may

be misled by graphic computation tasks. This profiling failure can be easily avoided

by prohibiting other tasks running on GPU when initiating the profiling based side-

channel attack. NVIDIA Tesla C2075, which is dedicated to general-purpose comput-

ing, can always achieve 100% on both recovery success rate and profiling accuracy.

Fig. 45. The convergence speed of the number of possible key byte cases with the

increasing number of samples.

Figure 45 shows the convergence speed of the number of possible key byte cases

with respect to the increasing number of samples. Both GPU cards present the same

convergence trend that the number of cases drops from 256 to around 65 after profiling

one input and the convergence speed slows down afterward. Figure 46 presents the

distribution of the number of samples required to recover the entire AES key for 100

times. In most cases, information retrieved from 6 or 7 samples is enough to recover

all the key bytes on both GPU cards. On Tesla C2075, the largest number of samples

is 9 for a complete key recovery, while it is 8 on Quadro 2000. The average number

of samples is 6.76 and 6.57 for Tesla C2075 and Quadro 2000 respectively, which is

90



much smaller than the amounts needed by existing GPU side-channel attacks [66, 64,

63, 67].

Fig. 46. The distribution of the number of samples required to recover an entire AES

key.

We also evaluate the performance of the proposed attack as the length of the

AES key is increased to 192-bit and 256-bit as shown in Table 4. The extended AES

key does not increase the number of samples for the key recovery; however, the time

to profile one sample increases a little bit since it takes longer time to execute the

encryption kernel due to the additional encryption rounds. The scalability of the

profiling-based AES key recovery method is very good as the profiling time appear

to increase linearly with respect to extending the length of the AES key.

6.5.2 Evaluation Results of Boundary Check pSCA

The Boundary Analysis. We first record the boundaries calculated during the

AES key recovery. Figure 47 shows the average boundary as well as the profiled num-

ber of memory loads for four RCoal techniques (FSS, RSS, FSS+RTS and RSS+RTS)

with respect to the number of subwarps. FSS and FSS+RTS result in a similar num-
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Table 4. Scalability with longer AES keys

Profiling one sample Average samples

Tesla 128-bit 13814.99 ms 6.76
Tesla 192-bit 15011.62 ms 6.68
Tesla 256-bit 16825.12 ms 6.71
Quadro 128-bit 29837.02 ms 6.57
Quadro 192-bit 32521.45 ms 6.6
Quadro 256-bit 34651.12 ms 6.57

ber of memory loads on average, and so do RSS and RSS+RTS. Moreover, Figure 47

also depicts that the true number is closer to the boundary for FSS and FSS+RTS

than for RSS and RSS+RTS, implying that the false cases in FSS and FSS+RTS are

more likely to cross the boundary and thus are easier to identify. Therefore, FSS and

FSS+RTS may need a less number of samples to recover the AES key than the RSS

and RSS+RTS. In addition, with a larger number of subwarps, the upper bound goes

up sharply, implying that it becomes harder to reach the boundary.

Fig. 47. The average boundary and the profiled number of memory loads for four

RCoal techniques.

In order to confirm if all 255 false guesses for a key byte have been identified

and removed during rebuilding the AES key, we record boundaries coming from false

guesses and the profiled number of memory load requests when false guesses fail the
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boundary check. Whenever a guess fails the boundary check, it is then excluded and

will not be checked again. Therefore, the failure of the boundary check only happens

once for each false guess. As shown in Figure 48 (where the X-axle represents the

possible values of the second key byte except for the true value, e.g. 17 in this case.

The black line draws the profiled number of memory load requests and the blue and

green line record the upper bound and lower bound computed with the corresponding

wrong guesses.), the black line is always above the blue line for RSS+RTS with 2, 4,

and 8 subwarps, indicating that all 255 wrong guesses that result in upper bounds

even smaller than the real number of memory load requests fail the boundary check.

The real key byte value highlighted with the red dash line in Figure 48 is void in

this record of the boundary check failure, indicating that it survives every boundary

check and stands out of other wrong cases. Both the upper bound and the profiled

number keep approaching 32 when the number of subwarps increases from 2 to 8,

which again demonstrates that the wrong cases are harder to be eliminated through

boundary check with a large number of subwarps and hence the security is enhanced

accordingly (though not being able to thrwart our attack). As aforementioned and

also illustrated in Figure 48, the profiled number of memory loads has never exceeded

the lower bound, which therefore is unnecessary to be considered in the boundary

check mechanism.

The Boundary Check Mechanism . We evaluate the boundary check mech-

anism and Figure 49 shows the number of samples needed to recover the AES key

when RCoal is enabled. RSS (along with RTS) can offer the best security as compared

to FSS and FSS+RTS, according to the number of samples needed for the AES key

recovery. Indeed, the RCoal techniques can defend against the original pSCA and the

number of samples increases exponentially with respect as the number of subwarps

increases from 2 to 8. However, through collecting more samples, the AES key can
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(a) RSS+RTS with 2 subwarps

(b) RSS+RTS with 4 subwarps

(c) RSS+RTS with 8 subwarps

Fig. 48. RSS+RTS eliminates the false guesses of the second key byte through bound-

ary check.
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Fig. 49. The number of samples needed to recover the AES key when RCoal is enabled.

still be recovered by the boundary check pSCA (e.g., For RSS+RTS with 8 subwarps,

the AES key can be successfully rebuilt using around 430000 samples). The drawback

of the RCoal is that the performance overhead can be unaffordable. For 16 subwarps,

the upper bound can be less than 32 if more than half of the access pointing to the

same cache line and then it is still possible that the profiled number is large that

the upper bound to filter the corresponding false guesses. Hence, theoretically, the

boundary check pSCA still works for 16 subwarps in case of large enough sample size.

However, based on the evaluation of 16 subwarps with up to 1000000 samples, the

upper bound is always 32 for every guess of a key byte , showing that the condi-

tion that more than 16 of 32 accesses request the same cache line is extremely rare.

The profiled number is then impossible to fall out of upper bound to identify false

guesses. Therefore, we aggressively assume that Rcoal with 16 subwarps which offers

the best security can completely protect the GPU from the pSCA; however, it will

result in huge performance overhead (26% for plain-text with 32 lines and over 200%

for plain-text with 1024 lines as reported in [68]).

Based on the experimental results, the most secure RCoal method RSS, when

used with 2, 4, or 8 subwarps, can be cracked by the boundary check pSCA by col-
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lecting enough samples. To be more specific, our experiments show that around 150,

3000, and 430000 samples are needed for RSS with 2, 4, and 8 subwarps respectively.

The typical time spending on collecting one sample is 5 seconds and thus the bound-

ary check pSCA can recover the 16-byte AES key with around 12 minutes, 4 hours,

and 25 days when the AES algorithm is running on a RSS-enabled GPU with 2, 4,

and 8 subwarps respectively. Compared to the brute-force method which may take

1 billion years to crack the AES key even with a supercomputer [70], the boundary

check pSCA manages to significantly reduce the effort.

Fig. 50. The convergence of the number of entire AES key possibilities.

We further propose a two-stage recovery method to achieve even shorter recovery

duration. The boundary check pSCA can reveal the last 15 bytes of the AES key and

in other words, the number of possible cases starting from 28∗15 can be reduced to 1.

Instead of examining every possibility in a brute-force way, the boundary check pSCA

works on revealing each key byte value independently in parallel and therefore is much

more effective on excluding wrong cases. However, as shown in Figure 50, for RSS,

the number of possibilities is exponentially reduced using the first 320000 samples,

while the rest 110000 samples only eliminate a quite limited number of wrong guesses.
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By observing this, we divide the entire key recovery procedure into two stages. Stage

1 applies the boundary check pSCA to exclude most of the false guesses effectively

and Stage 2 uses a brute-force method to finally reach the correct AES key. The

switching point between these two stages is determined by comparing the effectiveness

on excluding wrong cases of two methods (the boundary check pSCA to brute-force).

The effectiveness can be quantitatively measured for the boundary check pSCA, which

is represented as the number of possibilities excluded per second (PEPS). The PEPS

of the boundary check pSCA is calculated every 10000 samples using the formula:

num excluded/(10000 ∗ sample time), where num excluded denotes the number of

entire AES key possibilities excluded by the last 10000 samples and sample time

represents the time to get one sample. On the other hand, verifying one case costs

5 milliseconds and PEPS is 200 for the brute-force method. Whenever PEPS of

the brute-force method is larger than the boundary check pSCA, the key recovery

procedure enters Stage 2. According to the results, the time spending on recovering

the AES can be further reduced from about 25 days to less than 14 days by the

two-stage strategy.

6.6 Evaluation Results of pacSCA

The pacSCA is evaluated on two GPU platforms: NVIDIA Quadro 2000 and

NVIDIA Tesla C2075.

According to the correlation results shown in Figure 51, the correct values of all

16 key bytes (highlighted with the red circles) stand out of other 255 possibilities.

To determine the accuracy of recovering the AES key, we collect the success rates

with respect to different amounts of samples. A success rate is calculated through

averaging over 100 trials with certain number of samples. Figure 52 shows the success

rates of recovering the 0th key byte, when the AES program is running at −O3 and
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−O0 optimization level respectively. For both optimization levels, the success rate

converges to 100% at around 10000 samples. By comparison, the SCA proposed

in [66] can only achieve 100% success rate till the number of samples raises up to

700000. As the high optimization level reorganizes the CUDA instructions to avoid

data dependency stalls and hide memory access latency, the relationship between the

execution time and the number of unique memory accesses is obscured. Consequently,

the performance of the SCA in [66] that leverages this relationship to constructs the

side-channel, is dramatically affected by compiler optimization levels. On the other

hand, since different optimization levels result in the same number of memory accesses

as long as the AES program is working on the same plain-text, the pacSCA delivers

similar performance in spite of the optimization levels as shown in Figure 52.

Fig. 51. Correlation analysis result of 10000 samples.
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Fig. 52. Success rate of 0th key byte.

Fig. 53. The Signal to Noise Ratio (SNR) for the pacSCA and the existing SCA in

[66].

As the success rate directly depends on the Signal to Noise (SNR) value and a

linear relationship exists between the SNR and the correlation, the efforts paid on

recovering a certain key byte can be indicated by the SNR value. As shown in Figure

53, with only 10000 samples, SNR values converge to 0.05 for all 16 key bytes in the

pacSCA. Moreover, only a slight variation are found among SNR values of different

key bytes. In contrast, the existing SCA [66] still results in much smaller SNR values

with huge variation spreading from 0.0064 to 0.0399 with up to 1000000 samples. This
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Fig. 54. Success rate of 0th key byte for 128-bit, 192-bit and 256-bit AES key.

result illustrates that the pacSCA needs a much smaller number of samples to reveal

the secure key than the existing SCAs as shown in Table 5. Due to the slight variation

of the SNR values, the pacSCA needs similar number of samples to recover each key

byte. The existing SCA, on the other hand, requires much larger number of samples

for some of the key bytes, while much smaller number for others. The downside is

that the overall number of samples depends on the worse case and a part of samples

are redundant for other cases. Most of existing SCAs utilize the execution time as a

measurable metric to observe the variation of the number of memory accesses. Since

the execution time is determined by comprehensive hardware and software factors,

the performance of these SCAs can be negatively affected by noises introduced by

various factors such as the optimization level, cache miss rates, the number of cache

bank conflicts and others that could vary the execution time. By comparison, the

pacSCA observes the variation of the total number of the memory accesses rather

than that of the execution time and thus it is immune to the noises and factors

mentioned above. Naturally, the pacSCA outperforms the existing SCAs. Enough

samples (10000 for the pacSCA) can be collected by the profiling tool in 5 seconds.
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The correlation analysis takes less than 1 second. Overall, the entire procedure of

revealing the AES key costs as short as 6 seconds.

Table 5. Comparison of existing GPU side-channel attacks
SCA Type Correlation Number of Samples

pacSCA Profiling

the total number of unique
memory requests relies on the
number of unique memory re-
quests in the last round

Only 10000 samples is required due to the strong rela-
tionship.

pSCA Profiling
No correlation analysis is re-
quired by this profiling-based
SCA

Less than 9 samples is required to shrink down 256 pos-
sibilities to a single case for all 16 key bytes values.

The collected samples contain 32-block encrypted
messages and associated timings. The number of unique
memory requests [66], cache bank conflicts [64] and
shared memory bank conflicts [63] which are associated
with the execution time can then be computed with the
encrypted data and corresponding round keys using an
inverse lookup table. The correlation coefficient which
represents the strength of this relationship is calculated
by a correlation analysis model for all 256 possible cases
of a single key byte. The value with the maximum
correlation coefficient is the right key. The correlation
analysis model needs a huge amount of the samples in
order to overcome noises and derive the right key with
the largest correlation coefficient. The necessary amount
of the samples to overcome noises varies for different
timing SCAs due to their differences on Signal to Noise
Ratios (SNRs). In particular, SCAs in [66], [64] and [63]
need 106, 105 and 107 samples, respectively.

[66] Timing
Execution time relies on the
number of unique memory re-
quests after coalescing

[64] Timing
Execution time relies on cache
access conflicts decided by the
accessed address of each thread

[63] Timing

Execution time relies on shared
memory conflicts decided by
the accessed address of each
thread

[67] Power

Power consumption depends
on the Hamming distance
which is calculated by the
power model with the corre-
sponding key value

With 10,000 power consumption traces (each contains the
encryption of 49,152 blocks of plain-text), the correct key
byte value stands out with the maximum correlation coef-
ficient [67]. To extract the whole last round key, the same
procedure needs to be repeated 16 times and 160,000
traces are necessary in total.

We also evaluate the performance of the pacSCA on revealing 192-bit and 256-bit

AES key. As shown in Figure 54, the success rates approach 100% with only 13000

and 17000 samples for 192-bit and 256-bit key, respectively. The slight increase in

the number of samples shows the good scalability of the pasSCA.

We also evaluate the pacSCA when the Rcoal is enabled. Figure 55 shows the

number of samples needed to recover the 128-bit AES key when RCoal is enabled.

Indeed, the RCoal techniques can defend against the pacSCA and the number of sam-

ples increases exponentially with respect as the number of subwarps increases from 1

to 16. However, through collecting more samples, the AES key can still be revealed by
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Fig. 55. The number of samples needed to reconstruct the AES key when RCoal is

enabled.

Fig. 56. Correlation analysis result of 2000000 samples for the pacSCA w/ RSS+RTS

defense.
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the pacSCA (e.g., For RSS+RTS with 16 subwarps, the AES key can be successfully

rebuilt using around 2000000 samples as shown in Figure 56). It is unnecessary to

check 32, since setting 32 subwarps is equivalent to disable the coalescing mechanism

resulting in 32 unique memory requests always. Based on the experimental results,

RSS+RTS can offer the best security as compared to FSS, FSS+RTS and RSS. To be

more specific, our experiments show that around 82000, 380000, 900000 and 2000000

samples are needed for RSS+RTS with 2, 4, 8 and 16 subwarps respectively. As

compared to the pacSCA without any defense mechanisms, RSS+RTS increases its

effort on collecting samples by 8.2-, 38-, 90- and 200-times. As aforementioned, our

profiling tool can collect 10000 samples every 5 seconds. The pacSCA is able to re-

covery the AES key in around 17 minutes (200× 5 seconds÷60 ≈ 17 minutes) on the

GPU protected by the most secure Rcoal defense mechnism (RSS+RTS with 16 sub-

warps). Our evaluation states that the GPU systems are still facing fatal side-channel

threats, although the state-of-the-art countermeasures such as the Rcoal techniques

are deployed.

6.7 Countermeasures

A straightforward way to completely hide the variation on the number of memory

load requests and close the opportunity for the propsoed attack to thieve the secure

key is to disable the memory coalescing mechanism, which however, may result in

substantial performance degradation. Kadam et al. [68] propose the Rcoal techniques

which can offer the security at the cost of the tuned performance overhead. However,

1. This technique is implemented by additional micro-architecture in GPUs leading

to hardware overhead;

2. Moreover, since it is hardware-based, the randomized memory coalescing has to
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be effective for all load instructions and may consequently result in significant

performance overhead;

3. Furthermore, the randomized coalescing technique can only improve GPU se-

curity instead of completely eliminating the threat of side-channel attacks.

We have demonstrate that the Rcoal can only degrade the performance of bound-

ary check pSCA and pacSCA. The GPUs are not completely protected by the Rcoal

from our two SCAs. Our future work will focus on developing more effective coun-

termeasures that introduce as low as possible hardware and performance overheads

and as well are able to offer flexible deployment and firm security.
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CHAPTER 7

CONCLUSIONS

This dissertation is dedicated to improving the performance, energy efficiency, and

security of GPUs. We have introduced multiple strategies designed to enable GPUs

to operate in an energy-efficient manner, while also offering opportunities for addi-

tional performance enhancements. Furthermore, with the intention of spotlighting

the susceptibility of GPUs to side-channel attacks, we conducted research on AES

algorithms deployed on GPUs and examined countermeasures. Altogether, this dis-

sertation comprises four projects.

7.1 GPU Register File Narrow-Width Operands Packing

By running with massive thread-level parallelism(TLP), GPUs achieve high through-

put as well as memory latency hiding. As a result, a large size of register file is

required to enable fast and low cost context switching between tens of thousands of

active threads. However, RF resources are still insufficient to enable all thread level

parallelism and the lack of register file resources can hurt performance by limiting oc-

cupancy of GPU threads. Inspired by observing that a large percentage of computed

results have fewer significant bits compared to the full width of a 32-bit register for

many GPGPU applications. We propose OWAR, a GPU register packing scheme to

dynamically exploit narrow-width operands and pack multiple operands into a single

full width register. OWAR utilizes the additional registers saved by register packing

to improve energy efficiency through power gating and thread overrun. The experi-

mental results shows that OWAR can reduce the GPGPU’s total energy up to 29.6%
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and 9.5% on average. In addition, OWAR achieves performance improvement up to

1.97X and 1.18X on average.

7.2 GPU Register File Drowsy Management

We study three RF leakage energy management techniques for GPUs. To save

as much leakage energy as possible, Drowsy-IS places a register into the drowsy mode

immediately after an access. The drawback is that the additional cycles are re-

quired to re-active registers from the drowsy mode for each re-access, which may lead

to performance degradation. To mitigate the re-activation penalty, we propose the

Drowsy-TA technique to hold the register in the active mode for a fixed period of time

before putting it into the drowsy mode. However, the leakage energy may be wasted

if no re-access occurs during the awake interval. Finally, we propose Drowsy-RI, an

adaptive policy to predict re-access interval and manage RF leakage accordingly at

run-time.

Our experimental results show that compared to the baseline RF, Drowsy-IS

achieves 91.7% RF leakage energy reduction on average at the cost of 4.4% perfor-

mance degradation. Drowsy-TA reduces RF leakage energy by 82.8% with negligible

performance degradation. Drowsy-RI saves more RF leakage energy (87.3%) than

Drowsy-TA along with less performance degradation (2.7%) than Drowsy-IS. In terms

of the total energy reduction, we find that Drowsy-TA (128 cycles) outperforms all

other three schemes, leading to 7.0% reduction of the total energy dissipation with

negligible performance overhead.

7.3 GPU Execution Units Power-Gating Strategies

The execution units power-gating strategies evaluated in this work are demon-

strated to achieve considerable saving on leakage energy dissipation and improve
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the GPU energy-efficiency. No additional microarchitecture with complex control

logic is required and both hardware and performance overheads are negligible due to

the simplicity. Through evaluating different parameter settings of the power-gating

strategies, we find that an idle detect time should be involved to identify and filter

short term idleness. On the other hand, the execution units can be put in the power-

gated mode as long as they are unoccupied to maximize the leakage energy saving,

if the overhead is affordable. For break even time down to 5 cycles, the immediate

power-gating can achieve 84.3% execution units leakage energy reduction, which is

almost the same with the ideal case (85.5%). For break even time up to 20 cycles,

the idle detect power-gating can reduce the execution units leakage energy by 63.1%.

7.4 GPU Side-Channel Attacks

In this work, we propose a novel profiling-based side-channel attack on GPUs

which leaks critical information to an adversary to fully recover the encryption secret

key. The profiling-based side-channel attack accomplishes the high resolution profil-

ing and is well scalable. The number of samples for recovering the key is dramatically

reduced and much smaller than all the existing GPU side-channel attacks. We demon-

strate this profiling-based side-channel attack on two Nvidia GPUs to recover 16-byte

AES keys in as short as 30 seconds with very high accuracy (approaching 100%).

We further propose to use a boundary check Profiling-based Side-Channel Attack

(pSCA) to overcome RCoal and to achieve the AES key recovery in a reasonable time.

For the RCoal protected GPUs, the original strategy of the pSCA cannot recovery

the AES key due to the randomness of memory coalescing. However, we apply a

boundary check mechanism to successfully enable the pSCA to rebuild the AES key

for RCoal methods with 2 to 8 subwarps. Consequently, in order to completely protect

the GPU against the pSCA, the hardware designers will have to utilize the subwarp
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configuration providing highest level security (i.e., 16 subwarps), which unfortunately

will lead to significant GPU performance loss. According to the results, the bounday

check pSCA achieves to rebuild the full 16-byte AES key in less than 14 day even

though the GPU is protected by the RSS scheme that is supposed to offer the best

security.

We finally propose a Profiling-Assisted Correlation-based Side-Channel Attack

on GPUs. Owing to the significant correlation exploited and the immunity to noises,

the number of samples is substantially reduced and is much smaller than all existing

GPU SCAs. By checking the effectiveness of the pacSCA on revealing 192-bit and

256-bit AES keys, the pacSCA is proven to be well scalable. We further prove that

the pacSCA can accomplish the information leakage even though a state-of-the-art

defense mechanisms has been deployed. The experimental results show that the

pacSCA can reveal the 128-bit AES key within 6 seconds. Under the protection of

the Rcoal techniques, the pacSCA can obtain the secure key in less than 17 minutes.

The purpose of this study is to arouse further researches on GPU side-channel threats

and corresponding countermeasures.

7.5 Future Work

GPU’s extensive threading capability can lead to a significant acceleration of ma-

chine learning algorithms. Various domains, including social media, automotive vehi-

cles, medicine, and consumer electronics, have embraced machine learning to extract

valuable insights from vast databases and abstract information. The scale of these

databases has expanded exponentially, driven by the advancement of the internet,

information technologies, and sensors. As a result of this growth, machine learning

algorithms, characterized by their high computational complexity and data intensity,

often experience extended execution times when running on CPUs. CPUs, being
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more suited for general-purpose tasks, are gradually being supplemented by GPGPU

computing platforms to leverage their performance-enhancing potential. The inher-

ent ability of GPGPUs to handle numerous threads, coupled with their abundant

floating-point operation units and high memory bandwidth, renders them well-suited

for accommodating machine learning algorithms that heavily involve matrix multi-

plications.

The widespread use of GPUs in AI computing platforms has sparked a significant

demand for further exploration into the GPU architectures specifically tailored for

machine learning algorithms. Our future research endeavors will be centered around

establishing a high-performance, energy-efficient, and highly secure GPU computing

environment for AI applications. Specifically, although we have demonstrated that

the register packing is still a convincing method to improve the energy-efficiency for

AI applications, it is unknown that how effective the drowsy register file scheme and

the computing units power-gating mechanism can be on reducing the energy con-

sumption of AI applications. One of our future work will focus on evaluating these

two works with AI applications and potentially making tailored adjustments. We

will also extend the drowsy register file research by exploring advanced strategies to

improve the prediction accuracy. Since the GPU cache locality of AI applications

can be quite different with other applications, the existing cache replacement policies

may not necessarily yield good results. As another part of our future work, we target

analyzing the pattern of accesses to different cache hierarchies for AI applications

and discovering specific policies to enhance the role of caches in improving the per-

formance of AI applications. Our studies in this dissertation have already proved the

vulnerabilities of the GPUs to the side-channel attacks and evaluated the limitation

of the existing countermeasures. In the future, we will work on novel countermeasures

which can deliver high security and low overhead so that the applications running on
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GPUs can be well protected.
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[15] Robert Szerwinski and Tim Güneysu. “Exploiting the power of GPUs for asym-

metric cryptography”. In: International Workshop on Cryptographic Hardware

and Embedded Systems. Springer. 2008, pp. 79–99.

112



[16] Svetlin A Manavski et al. “CUDA compatible GPU as an efficient hardware

accelerator for AES cryptography”. In: Signal Processing and Communications

2007 (2007).

[17] Deguang Le et al. “Parallel AES algorithm for fast data encryption on GPU”.

In: Computer Engineering and Technology (ICCET), 2010 2nd International

Conference on. Vol. 6. IEEE. 2010, pp. V6–1.

[18] Roberto Di Pietro, Flavio Lombardi, and Antonio Villani. “CUDA leaks: In-

formation leakage in GPU architectures”. In: arXiv preprint arXiv:1305.7383

(2013).

[19] Roberto Di Pietro, Flavio Lombardi, and Antonio Villani. “CUDA leaks: a de-

tailed hack for CUDA and a (partial) fix”. In: ACM Transactions on Embedded

Computing Systems (TECS) 15.1 (2016), p. 15.

[20] Sangho Lee et al. “Stealing webpages rendered on your browser by exploiting

GPU vulnerabilities”. In: 2014 IEEE Symposium on Security and Privacy (SP).

IEEE. 2014, pp. 19–33.

[21] Michael Patterson. “Vulnerability analysis of GPU computing”. In: (2013).

[22] Janis Danisevskis, Marta Piekarska, and Jean-Pierre Seifert. “Dark side of the

shader: Mobile gpu-aided malware delivery”. In: International Conference on

Information Security and Cryptology. Springer. 2013, pp. 483–495.

[23] C Nvidia. “Nvidia’s next generation cuda compute architecture: Fermi”. In:

Comput. Syst 26 (2009), pp. 63–72.

[24] Sunpyo Hong and Hyesoon Kim. “An integrated GPU power and performance

model”. In: ACM SIGARCH Computer Architecture News. Vol. 38. 3. ACM.

2010, pp. 280–289.

113



[25] Jingwen Leng et al. “GPUWattch: enabling energy optimizations in GPG-

PUs”. In: ACM SIGARCH Computer Architecture News. Vol. 41. 3. ACM.

2013, pp. 487–498.

[26] Jieun Lim et al. “Power modeling for GPU architectures using McPAT”. In:

ACM Transactions on Design Automation of Electronic Systems (TODAES)

19.3 (2014), p. 26.

[27] David Brooks and Margaret Martonosi. “Dynamically exploiting narrow width

operands to improve processor power and performance”. In: High-Performance

Computer Architecture, 1999. Proceedings. Fifth International Symposium On.

IEEE. 1999, pp. 13–22.

[28] Oguz Ergin et al. “Register packing: Exploiting narrow-width operands for

reducing register file pressure”. In: Proceedings of the 37th annual IEEE/ACM

International Symposium on Microarchitecture. IEEE Computer Society. 2004,

pp. 304–315.

[29] Masaaki Kondo and Hiroshi Nakamura. “A small, fast and low-power register

file by bit-partitioning”. In: High-Performance Computer Architecture, 2005.

HPCA-11. 11th International Symposium on. IEEE. 2005, pp. 40–49.

[30] Jie Hu, Shuai Wang, and Sotirios G Ziavras. “In-register duplication: Exploit-

ing narrow-width value for improving register file reliability”. In: Dependable

Systems and Networks, 2006. DSN 2006. International Conference on. IEEE.

2006, pp. 281–290.

[31] Jie Hu, Shuai Wang, and Sotirios G Ziavras. “On the exploitation of narrow-

width values for improving register file reliability”. In: IEEE transactions on

very large scale integration (VLSI) systems 17.7 (2009), pp. 953–963.

114



[32] Sangpil Lee et al. “Warped-compression: Enabling power efficient gpus through

register compression”. In: ACM SIGARCH Computer Architecture News. Vol. 43.

3. ACM. 2015, pp. 502–514.

[33] Jingweijia Tan, Zhi Li, and Xin Fu. “Soft-error reliability and power co-optimization

for GPGPUS register file using resistive memory”. In: Proceedings of the 2015

Design, Automation & Test in Europe Conference & Exhibition. EDA Consor-

tium. 2015, pp. 369–374.

[34] Syed Zohaib Gilani, Nam Sung Kim, and Michael J Schulte. “Power-efficient

computing for compute-intensive GPGPU applications”. In: High Performance

Computer Architecture (HPCA2013), 2013 IEEE 19th International Sympo-

sium on. IEEE. 2013, pp. 330–341.

[35] Daniel Wong, Nam Sung Kim, and Murali Annavaram. “Approximating warps

with intra-warp operand value similarity”. In: High Performance Computer

Architecture (HPCA), 2016 IEEE International Symposium on. IEEE. 2016,

pp. 176–187.

[36] Hyeran Jeon et al. “GPU register file virtualization”. In: Proceedings of the

48th International Symposium on Microarchitecture. ACM. 2015, pp. 420–432.

[37] Sheng Li et al. “CACTI-P: Architecture-level modeling for SRAM-based struc-

tures with advanced leakage reduction techniques”. In: Computer-Aided De-

sign (ICCAD), 2011 IEEE/ACM International Conference on. IEEE. 2011,

pp. 694–701.

[38] Steven JE Wilton and Norman P Jouppi. “CACTI: An enhanced cache access

and cycle time model”. In: IEEE Journal of Solid-State Circuits 31.5 (1996),

pp. 677–688.

115



[39] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classifica-

tion with deep convolutional neural networks”. In: Advances in neural infor-

mation processing systems 25 (2012).

[40] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks

for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[41] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceed-

ings of the IEEE conference on computer vision and pattern recognition. 2016,

pp. 770–778.

[42] Forrest N Iandola et al. “SqueezeNet: AlexNet-level accuracy with 50x fewer pa-

rameters and¡ 0.5 MB model size”. In: arXiv preprint arXiv:1602.07360 (2016).

[43] Baoyuan Liu et al. “Sparse convolutional neural networks”. In: Proceedings of

the IEEE conference on computer vision and pattern recognition. 2015, pp. 806–

814.

[44] Nilanjan Goswami, Bingyi Cao, and Tao Li. “Power-performance co-optimization

of throughput core architecture using resistive memory”. In: High Performance

Computer Architecture (HPCA2013), 2013 IEEE 19th International Sympo-

sium on. IEEE. 2013, pp. 342–353.

[45] Ehsan Atoofian. “Reducing shift penalty in domain wall memory through reg-

ister locality”. In: Proceedings of the 2015 International Conference on Com-

pilers, Architecture and Synthesis for Embedded Systems. IEEE Press. 2015,

pp. 177–186.

[46] Majid Namaki-Shoushtari et al. “ARGO: aging-aware GPGPU register file

allocation”. In: Proceedings of the Ninth IEEE/ACM/IFIP International Con-

116



ference on Hardware/Software Codesign and System Synthesis. IEEE Press.

2013, p. 30.

[47] Sparsh Mittal and Jeffrey S Vetter. “A survey of methods for analyzing and

improving GPU energy efficiency”. In: ACM Computing Surveys (CSUR) 47.2

(2015), p. 19.

[48] Nagesh B Lakshminarayana and Hyesoon Kim. “Spare register aware prefetch-

ing for graph algorithms on GPUs”. In: High Performance Computer Archi-

tecture (HPCA), 2014 IEEE 20th International Symposium on. IEEE. 2014,

pp. 614–625.

[49] Krisztián Flautner et al. “Drowsy caches: simple techniques for reducing leak-

age power”. In: Computer Architecture, 2002. Proceedings. 29th Annual Inter-

national Symposium on. IEEE. 2002, pp. 148–157.

[50] Chih-Chieh Hsiao, Slo-Li Chu, and Chiu-Cheng Hsieh. “An adaptive thread

scheduling mechanism with low-power register file for mobile GPUs”. In: IEEE

Transactions on Multimedia 16.1 (2014), pp. 60–67.

[51] Hao Wen and Wei Zhang. “Reducing cache leakage energy for hybrid SPM-

cache architectures”. In: Compilers, Architecture and Synthesis for Embedded

Systems (CASES), 2014 International Conference on. IEEE. 2014, pp. 1–9.

[52] Ehsan Atoofian and Ali Manzak. “Power-aware L1 and L2 caches for GPG-

PUs”. In: European Conference on Parallel Processing. Springer. 2014, pp. 354–

365.

[53] Ehsan Atoofian. “Reducing Static and Dynamic Power of L1 Data Caches

in GPGPUs”. In: Parallel & Distributed Processing Symposium Workshops

(IPDPSW), 2014 IEEE International. IEEE. 2014, pp. 798–804.

117



[54] Ehsan Pakbaznia and Massoud Pedram. “Design and application of multimodal

power gating structures”. In: Quality of Electronic Design, 2009. ISQED 2009.

Quality Electronic Design. IEEE. 2009, pp. 120–126.

[55] Stefanos Kaxiras, Zhigang Hu, and Margaret Martonosi. “Cache decay: exploit-

ing generational behavior to reduce cache leakage power”. In: ACM SIGARCH

Computer Architecture News 29.2 (2001), pp. 240–251.

[56] Qiumin Xu and Murali Annavaram. “PATS: pattern aware scheduling and

power gating for GPGPUs”. In: Proceedings of the 23rd international confer-

ence on Parallel architectures and compilation. ACM. 2014, pp. 225–236.

[57] Mohammad Abdel-Majeed, Daniel Wong, and Murali Annavaram. “Warped

gates: gating aware scheduling and power gating for GPGPUs”. In: Proceedings

of the 46th Annual IEEE/ACM International Symposium on Microarchitecture.

ACM. 2013, pp. 111–122.

[58] Po-Han Wang et al. “Power gating strategies on GPUs”. In: ACM Transactions

on Architecture and Code Optimization (TACO) 8.3 (2011), p. 13.

[59] Minsoo Rhu et al. “A locality-aware memory hierarchy for energy-efficient GPU

architectures”. In: Microarchitecture (MICRO), 2013 46th Annual IEEE/ACM

International Symposium on. IEEE. 2013, pp. 86–98.

[60] Yue Wang, Soumyaroop Roy, and Nagarajan Ranganathan. “Run-time power-

gating in caches of GPUs for leakage energy savings”. In: Design, Automation &

Test in Europe Conference & Exhibition (DATE), 2012. IEEE. 2012, pp. 300–

303.

118



[61] Zhigang Hu et al. “Microarchitectural techniques for power gating of execution

units”. In: Proceedings of the 2004 international symposium on Low power

electronics and design. ACM. 2004, pp. 32–37.

[62] Chao Luo et al. “Side-channel power analysis of a GPU AES implementation”.

In: 2015 33rd IEEE International Conference on Computer Design (ICCD).

IEEE. 2015, pp. 281–288.

[63] Zhen Hang Jiang, Yunsi Fei, and David Kaeli. “A novel side-channel timing

attack on GPUs”. In: Proceedings of the on Great Lakes Symposium on VLSI

2017. ACM. 2017, pp. 167–172.

[64] Zhen Hang Jiang and Yunsi Fei. “A novel cache bank timing attack”. In:

Proceedings of the 36th International Conference on Computer-Aided Design.

IEEE Press. 2017, pp. 139–146.

[65] Yiwen Gao et al. “Cache-Collision Attacks on GPU-Based AES Implemen-

tation with Electro-Magnetic Leakages”. In: 2018 17th IEEE International

Conference On Trust, Security And Privacy In Computing And Communi-

cations/12th IEEE International Conference On Big Data Science And Engi-

neering (TrustCom/BigDataSE). IEEE. 2018, pp. 300–306.

[66] Zhen Hang Jiang, Yunsi Fei, and David Kaeli. “A complete key recovery timing

attack on a GPU”. In: High Performance Computer Architecture (HPCA),

2016 IEEE International Symposium on. IEEE. 2016, pp. 394–405.

[67] Chao Luo et al. “Power Analysis Attack of an AES GPU Implementation”. In:

Journal of Hardware and Systems Security 2.1 (2018), pp. 69–82.

[68] Gurunath Kadam, Danfeng Zhang, and Adwait Jog. “RCoal: mitigating GPU

timing attack via subwarp-based randomized coalescing techniques”. In: 2018

119



IEEE International Symposium on High Performance Computer Architecture

(HPCA). IEEE. 2018, pp. 156–167.

[69] Hoda Naghibijouybari et al. “Rendered Insecure: GPU Side Channel Attacks

are Practical”. In: Proceedings of the 2018 ACM SIGSAC Conference on Com-

puter and Communications Security. ACM. 2018, pp. 2139–2153.

[70] Abdullah Al-Mamun et al. “Security analysis of AES and enhancing its secu-

rity by modifying S-box with an additional byte”. In: International Journal of

Computer Networks & Communications (IJCNC) 9.2 (2017).

120



Appendix A

PUBLICATION

1. Xin Wang and Wei Zhang. “Reducing GPU Energy Consumption by Packing

Narrow-Width Operands.” In: J. Comput. Sci. Eng. 15.4 (2021), pp. 135–147.

2. Xin Wang and Wei Zhang. “pacSCA: A Profiling-Assisted Correlation-based

Side-Channel Attack on GPUs”. In: 2020 IEEE 38th International Conference

on Computer Design (ICCD). IEEE. 2020, pp. 525–528.

3. Xin Wang and Wei Zhang. “Packing narrow-width operands to improve energy

efficiency of general-purpose GPU computing”. In: 2020 IEEE High Perfor-

mance Extreme Computing Conference (HPEC). IEEE. 2020, pp. 1–7.

4. Xin Wang and Wei Zhang. “GPGPU Functional Units Power Gating for Leak-

age Energy Reduction.” In: J. Comput. Sci. Eng. 14.3 (2020), pp. 102–111.

5. Xin Wang and Wei Zhang. “Exploring Time-Predictable and High-Performance

Last-Level Caches for Hard Real-Time Integrated CPU-GPU Processors”. In:

Journal of Computing Science and Engineering 14.3 (2020), pp. 89–101.

6. Xin Wang and Wei Zhang. “Execution Units Power-Gating to Improve En-

ergy Efficiency of GPGPUs”. In: 2019 International Conference on Internet

of Things (iThings) and IEEE Green Computing and Communications (Green-

Com) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE

Smart Data (SmartData). IEEE. 2019, pp. 711–718.

7. Xin Wang and Wei Zhang. “Cracking randomized coalescing techniques with

121



an efficient profiling-based side-channel attack to GPU”. In: Proceedings of the

8th International Workshop on Hardware and Architectural Support for Security

and Privacy. 2019, pp. 1–8.

8. Xin Wang and Wei Zhang. “An efficient profiling-based side-channel attack on

graphics processing units”. In: National Cyber Summit. Springer. 2019, pp.

126–139.

9. XinWang andWei Zhang. “Energy-Efficient DNN Computing on GPUs Through

Register File Management”. In: 2018 IEEE High Performance extreme Com-

puting Conference (HPEC). IEEE. 2018, pp. 1–7.

10. Xin Wang and Wei Zhang. “Packing Narrow-Width Operands to Improve GPU

Performance”. In: Journal of Computing Science and Engineering 12.2 (2018),

pp. 37–49.

11. Xin Wang and Wei Zhang. “Improving CPU and GPU Performance through

Sample-Based Dynamic LLC Bypassing”. In: Journal of Computing Science

and Engineering 12.2 (2018), pp. 50–62.

12. Xin Wang and Wei Zhang. “Drowsy Register Files for Reducing GPU Leakage

Energy”. In: Parallel and Distributed Systems (ICPADS), 2017 IEEE 23rd

International Conference on. IEEE. 2017, pp. 632–639.

13. Xin Wang and Wei Zhang. “Gpu register packing: Dynamically exploiting

narrow-width operands to improve performance”. In: 2017 IEEE Trustcom/Big-

DataSE/ICESS. IEEE. 2017, pp. 745–752.

14. Xin Wang and Wei Zhang. “A Sample-Based Dynamic CPU and GPU LLC By-

passing Method for Heterogeneous CPU-GPU Architectures”. In: 2017 IEEE

122



Trustcom/BigDataSE/ICESS. IEEE. 2017, pp. 753–760.

15. Xin Wang and Wei Zhang. “Cache locking vs. partitioning for real-time

computing on integrated CPU-GPU processors”. In: 2016 IEEE 35th Inter-

national Performance Computing and Communications Conference (IPCCC).

IEEE. 2016, pp. 1–8.

123



VITA

Xin Wang was born on June 15, 1985, in Wuhan, Hubei Province, China, and

is a Chinese citizen. He graduated from No.3 Middle School, Wuhan, China in 2004.

He received his Bachelor of Science degree in Electrical Engineering from Peking Uni-

versity, Beijing, China in 2008. He received a Master of Science degree in Underwater

Acoustics Engineering from Naval University of Engineering, Wuhan, China in 2010.

He was a Driver Development Engineer at Mitac Shanghai in 2012 and worked for

Shanghai BIO-TAG Corp. as a R&D Engineer from 2013 to 2015. He now is a

Firmware Engineer at Micron Technology.

124


	Improving the Performance, Energy Efficiency and Security of GPUs
	Downloaded from

	tmp.1691780379.pdf.6P2Hj

