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Abstract

Alcohol use disorder is known to have significant genetic components that contribute to
an individual’s susceptibility to the disease. Mouse models are commonly used to study the
mechanisms underlying alcohol use disorder, with C57BL/6J (B6) and DBA/2J (D2) being two
of the more prominently used inbred strains. Research in the Miles Laboratory has used these
two strains, and genetic panels of mice derived from them, to identify potential genes associated
with variance in ethanol-related behaviors using quantitative trait loci (QTL) analysis. For
example, Ninein (Nin) was identified as a potential candidate gene for the anxiolytic effects of
ethanol, discovered because it resides in the confidence interval for a QTL and shows mRNA
expression differences between B6 and D2 mice. This differential expression was identified
using counts of RNA-Seq reads that have been aligned to a reference genome, specifically the B6
reference genome. Due to the known genetic differences between the two strains, it is possible
that the D2 samples could benefit from being aligned to a D2 genome instead of the B6. This
would lead to better results overall due to improved read alignment and identification of novel
splicing events that might be seen in D2 mice. To test this hypothesis, a dataset consisting of
deep (150 million reads) sequencing of RNA from nucleus accumbens of both B6 and D2 mice
was used for multiple bioinformatics analyses (differential expression, gene ontology, semantic
similarity, differential exon utilization, splice site location, and alternative splicing) with both B6
aligned D2 counts and D2 aligned D2 counts. End results of each analysis were then compared
for significant differences in outcomes. The results of this analysis show that when aligning D2
samples to the D2 genome a majority of differentially expressed genes and differentially utilized
exons are retained from the B6 aligned analysis while many new genes and exons are identified

that are unique to the D2 aligned analysis.
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Chapter 1: Introduction and Background

Introduction

Alcohol Use Disorder

Alcohol Use Disorder (AUD) describes the spectrum of problematic alcohol consumption
that affects over 29 million people in the United States (SAMHSA, 2021). AUD includes
increased alcohol consumption over time and binge alcohol consumption, though it encompasses
any kind of problematic alcohol use. All forms of AUD relate to the inability to regulate or stop
alcohol use despite external pressures such as negative social, health, or occupational
consequences. AUD also leads to multiple alcohol-related end-organ diseases, affecting virtually
every organ system, including such prevalent problems as fetal alcohol syndrome and alcoholic
liver disease. It is estimated that 140,000 people die from AUD every year (SAMHSA, 2021),
and alcohol use costs the United States $249 billion annually, with $28 billion of that coming
only from healthcare costs (Sacks et al., 2015). Furthermore, less than 10% of people suffering
from AUD in the past year received any form of treatment for it (Han et al., 2021), thus
highlighting the need for improved understanding of the disorder so as to develop new
therapeutic agents. The study of AUD has revealed it to have a genetic component, with twin
studies being used to estimate that 50% of the risk of developing AUD is due to genetic factors
(Kranzler et al., 2019). Single nucleotide polymorphism (SNP) based estimates are closer to
12%, and it is believed that AUD’s genetic heritability is a result of many genes having small

effects (Kranzler et al., 2019). Very few variants that cause changes to protein structure and
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function have been identified, and variants that regulate gene expression have been put forward
as a potential mechanism that affects these complex traits. Alcohol produces long lasting cellular
changes in the brain, and it is these changes that can eventually lead to AUD (Egervari et al.,
2019) However, studying gene expression in the human brain is difficult due to the complexity
of the human brain, and the scarcity of human brain tissue. Because of these limitations, model

organisms are used instead.

Mus musculus as a model organism and its use in AUD research

Model organisms have been extensively studied and have well-characterized genetic,
physiological, and behavioral traits. One of the more commonly used model organisms for AUD
research is the house mouse, Mus musculus. Mice make appealing model organisms due to their
genetic, physiological, anatomical, and reproductive similarities to humans, as well as more
practical reasons such as the relative ease of caring for them in a laboratory environment and the

vast wealth of tools and resources available for working with mice (Garcia-Garcia, 2020).

Inbred mice are defined as being the product of at least 20 generations of brother X sister
mating, with all individuals being derived from a single breeding pair. Inbred mice have several
traits that make them ideal for research purposes. They are isogenic, and homozygous at each
genetic locus. They have very unified phenotypes due to this stability. Due to this, inbred strains
have very well documented traits, allowing for specific strains of mice to be selected for specific
types of research (Blake et al., 2021). In AUD research, the C57BL/6J and DBA/2J inbred
strains of mice are commonly used. This is due to several of the known traits that differ between
the two strains being ideal for alcohol research, including their high variance in baseline ethanol

consumption, with C57 consuming much more alcohol voluntarily than D2, and .
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C57BL/6J, more commonly referred to as C57 or B6, are the most widely used inbred
strain. They are often used as a background strain for behavioral genetic studies in alcohol
research due to their facile self-administration of high amounts of alcohol. B6 mice were the
DNA source for the first high quality draft sequence of the mouse genome and thus were the first
strain to have their genome sequenced (Waterston et al., 2002). Due to this, their genome is one
of the most well studied, and is widely used as the standard alignment sequence for genomic
analyses. As Figure 1.1 shows, they are particularly useful for alcohol research as they

voluntarily consume large quantities of alcohol (L€ et al., 1994).

DBA/2], or D2, are the oldest of all inbred strains. They are used as a contrast to B6 mice
in alcohol research, as they do not voluntarily consume large amounts of alcohol (L& et al.,
1994). Because they are so often used, the behavioral and genetic differences between the two

strains are well documented, especially when it comes to alcohol research. He et al. (1997)
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performed an examination of these differing traits and their genetic components.
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Figure 1.1. Alcohol intake (g/kg) by C57BL/6, BALB/c (another inbred strain of mice), and

DBA/2 mice during the I-h daily access to alcohol solution. The concentration of alcohol

solution was 3% wi/v for the first 8 days, 6070 for the next 12 days, and 12070 for the remaining

16 days. N = 17-18 mice per strain. Vertical lines indicate positive or negative halves of the SEs.

Figure and description from L€ et al. (1994).

RNA-Sequencing

RNA-Sequencing is a technique used to measure gene expression in cells or tissues. The

output of RNA-Sequences is a series of reads that represent the expression levels of individual

genes. These reads are often short and fragmented, which makes it difficult to know where they
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came from in the genome. In order to utilize these reads, they must be aligned to a reference
genome. A reference genome must be a high quality, well-annotated representation of the
genome. Through the alignment process, the locations that the reads originated in the genome
can be identified. Once the reads are aligned, the total reads that overlap between the sample and
the reference genome are counted, which quantifies the expression level of each gene in the

sample (Martin & Wang, 2011).

Previous research and inspiration for this study

Miles laboratory studies have included extensive genome-level expression studies (Kerns
et al., 2005a) (Agarwalla et al., 2020) and behavioral genetic analyses across the B6, D2 and
recombinant (BXD) mice. Behavioral genetic analysis across the BXD recombinant inbred panel
was used to identify genetic quantitative trait loci (QTL) modulating the anxiety-reducing actions
of ethanol (Putman et al., 2016). Microarray gene expression across the BXD mice was further
used to identify possible candidate genes for the QTL (Wolen & Miles, 2012). This analysis has
recently shown that the gene Ninein (Nin), located within a highly significant behavioral
quantitative trait locus (QTL) contributing to the anxiolytic-like properties of ethanol, was
differentially expressed between B6 and D2 mice and that there was possible differential exon
utilization for Nin expression between the two strains (Putman et al., 2016). Ninein is a gene
that codes for a microtubule binding protein that is important in axonal development and is
known to interact with Gsk3p. (Srivatsa et al., 2015). It was suggested to be a possible candidate

gene for alcohol’s anxiolytic effects (Putman et al., 2016).

Statement of significance
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The B6 genome has been used as the reference genome for the majority of mouse studies,
and virtually all RNA-Seq analysis, as it is the highest quality and best annotated genome
available. However, there are known genetic differences between the B6 and D2 genomes. In
addition to the research done in the Miles laboratory, initial sequencing efforts of the D2 genome
have identified over five million single-nucleotide polymorphism and insertion/deletion
differences between B6 and D2 mice (Doran et al., 2016). These genetic differences may lead to
lower quality alignment when sequencing data from D2 are aligned to the B6 reference genome,
compared to when data from B6 are aligned to the same reference. Which in turn may lead to biased
results for downstream analyses. In particular, this difference may complicate studies on differential

exon utilization.

Roadmap and Hypothesis for this study

The genetic variation and differential expression shown between the two strains provides
a basis for the hypothesis that aligning D2 mice to their own genome will show a significant

difference in outcomes when compared with aligning D2 mice to the B6 genome.

Using a recent deep-sequencing RNA-Seq dataset obtained in the Miles laboratory for B6
and D2 mice, | analyzedseveral kinds of bioinformatics studies between B6 and D2 reads
aligned to the B6 reference genome versus results using D2 reads aligned to a recently derived
D2 reference genome. The analyses to be performed are differential expression, gene ontology,
differential exon utilization, and differences in splicing. If there are significant differences in
results using D2 aligned D2 samples compared to the results using the B6 aligned D2 samples,
then this will allow for better analyses by aligning to the D2 genome instead of the B6. If there
are significant effects caused by aligning to the D2 genome, that also opens more avenues of
research into other strains of mice.
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Specific Aims

This project has two specific aims, both furthering the overall goal of comparing analyses
run with D2 aligned D2 samples to those run with B6 aligned D2 samples. First, there will be a
comparison of differential gene expression and gene ontology between the two strains of mice
and an analysis of how aligning the D2 mice to their own genome changes those results. This
will further the understanding of the effect alignment has on the results of gene expression
analyses. The gene ontology will be used to compare the results of the two differential
expression analyses at a functional level, and a semantic similarity analysis will continue that

goal to further compare the semantic groupings of gene ontology categories.

Second, I will be comparing differential exon utilization and alternative splicing between the two
strains, analyzing how aligning the D2 mice to their own genome changes those results. The
comparison will be using DexSeq (Differential EXon and Transcript analysis for RNA-Seq) to
compare exon utilization and alternative splicing, respectively. DexSeq is a computational
method for detecting differential exon usage in RNA-Seq data, and is an extension of differential
expression analysis, instead identifying differences in the usage of individual exons or groups of

exons between samples.

This will show the abundance of alternative splicing events, and will focus on specific
genes to showcase the differences in alternative splicing on a gene level caused by aligning D2
mice to the D2 genome. A gene ontology of the genes with differentially expressed exons will
also be performed. This ontology will determine the most specific functions of each gene with
differentially utilized exons, to further understand the differences caused by the change in

alignment.
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This research can lead to future studies to determine the impact of differential exon
utilization on the proteome. Analyses can be conducted to determine how many different protein-
coding sequence elements are derived when aligning to the D2 genome vs the B6 genome. Other
future goals include a deeper look into the alternative splicing and changes in splicing events
between the B6 and D2 aligned analyses, and a breakdown of the differentially utilized exons by
size and other factors to determine if there is a pattern in the exons missed or picked up by the

two analyses.
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Chapter 2: Sample and Data Preparation

Introduction

Sample preparation

The samples for this study were prepared before this study began, following the
procedures outlined in the methods section. The RNA-Seq data that came out of that work was
the inspiration for this project, as the deep sequencing allowed for a robust analysis of the

differences between the B6 and D2 strains.
Alignment and Count Generation using D2 genome

D2 alignments have been attempted before in the Miles Laboratory, but the relatively low
quality of the prior existing D2 sequence data and genome annotations has made them less
efficient than the consensus B6 annotations for RNA-Seq alignments. In some cases, the lower
quality of the D2 annotations made certain analyses impossible to perform with samples and
counts aligned to them. In this study a new high quality D2 genome sequence and annotation was
provided by Dr. Thomas Keane from the Sanger Center. This sequence and annotation are of a
high enough quality to allow for alignments at a similar level to those using the B6 genome. The
annotation initially had Ensembl IDs corresponding to the D2 genome, whereas the B6 aligned
counts had 1Ds corresponding the B6 genome. This issue was rectified using the annotation file,
which contained gene names mapped to the D2 IDs. These gene names were mined from the file
using a series of python scripts (Appendix 2 — ID Conversion Scripts), then converted to B6

Ensembl 1Ds, and mapped to the D2 IDs. The D2 IDs in the newly generated count files were
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then replaced with their corresponding B6 Ensembl IDs, in order to perform Deseq2 and DexSeq

analyses.

Methods and Materials

Sample Preparation

In initial studies conducted on ethanol regulation of Ninein gene expression by Jessica
Jurmain during the course of her M.S. thesis work in the Miles Laboratory (2020), eight-week
old male C57BI/6J and DBA/2J mice were obtained from Jackson Laboratories (Bar Harbor,
ME). The mice were housed in cages on ventilated racks with Teklad Sani-Chip bedding
(currently Envigo, Cumberland, VA) and cotton nesting material. Four mice were housed in each
cage. A 12-hour light dark cycle was maintained at all times and the mice were fed ad-libitum
with Teklad LM-485 7012 standard rodent chow and tap water. Two weeks after the mice had
arrived, they were given 0.9% saline, 1.8 g/kg or 4 g/kg ethanol via intraperitoneal injection and
then euthanized 4 hours later by cervical dislocation and decapitation. This was done to obtain
brain tissue from the nucleus accumbens for dissection and subsequent molecular studies. This
tissue was the source of RNA used for the RNA-Seq studies that form the basis of this work. All
procedures were approved by the Virginia Commonwealth University Institutional Animal Care

and Use Committee in accordance with National Institute of Health guidelines.

Immediately following decapitation, the entire brain was removed and microdissected as
described by Kerns et al. (2005). Briefly, the whole brain tissue was chilled on ice for 1 minute
in 1x phosphate buffer then dissected by sectioning and micropunch to isolate tissue from 7

regions of the brain, including the nucleus accumbens. The tissue samples were then placed in
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individual tubes, flash frozen using liquid nitrogen, and stored at -80 degrees Celsius until RNA

extraction.

RNA was extracted from the nucleus accumbens tissue using homogenization in STAT-

60 (Tel-test, Inc., Friendswood, TX, USA) and purified with a Qiagen RNeasy Mini Kit (Qiagen,
Redwood City, CA, USA). A ThermoFisher Nanodrop 2000 Spectrometer was used to assess
RNA concentration by measuring the UV-Vi’s absorbance at 260 nm. The sample quality was
assessed using Agilent Technologies Agilent RNA 6000 Nano Kit. Samples with RNA quality
indicator (RQI) values less than 7.0 were not used. The control samples (saline-treated) from B6
and D2 mice (n=5/strain) were then prepared for RNA-Sequencing at the VCU genomics core
facility by Emma Gnatowski in in the Miles Laboratory and provide the resource for the analysis

performed in this study.

D2 Annotation File Preparation

The annotation file provided by Dr. Keane was initially in GFF3 format. While this
format will work with STAR aligner (Dobin et al., 2013) for the generation of counts, the
SAMSORT (Danecek et al., 2021) and DexSeq (Anders et al., 2012) applications both require
GTF files. In order to convert the GFF3 file to a GTF file, a docker environment was created and
AGAT (Another Gtf/Gff Analysis Toolkit) (Dainat et al., 2020) was used to convert the GFF3
file to a GTF file. This worked for SAMSORT, but for DexSeq an additional step was required.
GTF files do not usually contain parent relationships for the genes and transcripts contained
within, but GFF3 files do. This causes the “Parent” attribute to conflict with the “gene ID” and
“transcript_ID” attributes. Removing the “Parent” attributes leaves the file with the same

attributes as a normal GTF file, which was needed to prepare the DexSeq counts.
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DESeq2 Count Generation

The following steps were performed using the VCU Group high performance computing
cluster. The FASTA file for the D2 genome taken from the European Nucleotide Archive

(https://www.ebi.ac.uk/ena/browser/view/GCA 921998315.2) was modified so that the headers

matched the chromosome names of the GFF3 file. Then STAR aligner was used to generate an
index file for the count generation process using the FASTA file and GFF3 file (Appendix 2:
submit02a_STAR_index.sh). Next, the samples were aligned to the D2 genome using STAR
aligner, generating BAM files (Appendix 2: submit02b_STAR.sh). The indexed BAM files were
then sorted with SAMSORT (Appendix 2: SortScript.sh). These sorted BAM files would be used
directly in the DexSeq count preparation, explained further in chapter 4. Feature counts would
then be generated for the Deseq2 analysis using the converted GTF file and the sorted, indexed

BAM files, explained further in chapter 3.

Results

D2 Annotation File Preparation

The initial GFF3 (Appendix 1: DBA_2J v3.2.gff3) file was successfully converted to a
GTF file using AGAT. The resulting file is DBA_2J v3.2_3 14 23.gtf (Appendix 1). It was
then successfully prepared for DexSeq analysis, with the resulting file being

DBA 2J) v3.2 3 14 23 filtered.gtf (Appendix 1).

Deseg2 Count Generation
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The headers of the FASTA file were successfully changed to match the GFF3 and GTF
file chromosome names (Appendix 1:
GCA 9219983152 FASTA Converted DZ_3 23 23.fasta). STAR aligner successfully
generated the index files (Appendix 1 — Index Files) followed by the BAM files (Appendix 1 —
BAM Files). Finally, SAMSORT successfully sorted the BAM files (Appendix 1 — Sorted Files).
MultiQC was run on the indexed BAM files to determine the percentage and number of uniquely
mapped reads, the STAR alignment scores, and gene counts of each sample (Figures 2.1, 2.2,
2.3). At this stage MulitQC was also performed on the generated feature counts used in the
DESeq?2 analysis. This was then compared to the MultiQC results of the B6 aligned B6 and B6

aligned D2 samples (Table 2.2) using a T-test.

These same steps were performed on the B6 mouse samples that were aligned to the B6
genome, successfully generating BAM files (Appendix 1 — BAM Files). RNA-Seq samples were
aligned to release 108 of the B6 reference genome using STAR aligner (Dobin et al., 2013) on
the VCU group server. The B6 reference genome (https://ftp.ensembl.org/pub/release-
110/fasta/mus_musculus/dna/Mus_musculus.GRCm39.dna.primary_assembly.fa.gz) and
annotation (https://ftp.ensembl.org/pub/release-
110/gtf/mus_musculus/Mus_musculus.GRCm39.110.gtf.gz) were taken from Ensembl
(European Microbiology Laboratory - European Bioinformatics Institute, Cambrige, UK). The
D2 samples were then aligned to a D2 reference genome (Assembly GCA 921998315.2) taken
from the European Nucleotide Archive

(https://www.ebi.ac.uk/ena/browser/view/GCA 921998315.2) and annotation

(DBA_2J v3.2.9ff3) provided by Dr. Thomas Keane. The resulting BAM files were checked for
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quality using MultiQC, and compared to the MultiQC results of the B6 alignments (Tables 1 &

2)

Table 2.1: D2 aligned D2 samples MultiQC results showing uniquely mapped reads, both
alignment percentage and millions of reads (M) and the assignments of feature counts in

percentage assigned and millions of reads assigned.

Sample Name % M _% _M
Assigned | Assigned | Aligned | Aligned

D11IN_S1 001 72.80% 111 | 93.60% 139.1

D13N_S8 001 71.60% 103 | 92.80% 127.1

D22N_S7_001 72.40% 108.4 | 94.10% 139.4

D32N_S10_001 | 72.10% 107.6 | 93.90% 133.7

D34N_S6_001 72.60% 99.2 | 94.70% 141.8

Average 72.3% 105.84 | 93.82% | 136.22
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Figure 2.1: STAR alignment scores of D2 aligned D2 samples, in millions of reads.
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STAR: Gene Counts
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Figure 2.2: STAR gene counts of D2 aligned D2 samples, in millions of reads.
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featureCounts: Assignments
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Figure 2.3: MultiQC of feature counts of D2 aligned D2 samples, showing the number of

assigned features and the number of unassigned features with the reason they were not assigned.

29




Table 2.2: B6 aligned B6 and D2 samples showing uniquely mapped reads, both alignment

percentage and millions of reads (M) and the assignments of feature counts in percentage

assigned and millions of reads assigned.

Sample % M % M
Name Assigned | Assigned | Aligned | Aligned
B14N_S9 74.40% 111.5| 92.90% 133.6
B21N_S5 74.90% 104 | 91.60% 124.1
B24N_S3 75.40% 97 | 90.20% 114.4
B31N_S4 74.60% 101.4 | 90.90% 120.9
B32N_S2 75.90% 108.2 | 92.00% 127.5
D11IN_S1 75.00% 116.8 | 92.50% 138.7
D13N_S8 73.60% 108.7 | 92.40% 131.6
D22N_S7 74.40% 114.3 | 92.40% 136.9
D32N_S10 | 74.20% 113.2 | 91.60% 136.2
D34N_S6 74.60% 104.4 | 91.20% 124.9
B6 75.04% 104.42 | 91.52% 124.1
Average
D2 74.36% 111.48 | 92.02% | 133.66
Average
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STAR: Alignment Scores
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Figure 2.4. STAR alignment scores of B6 aligned B6 and D2 samples, in millions of reads.
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Figure 2.5. STAR gene counts of B6 aligned B6 and D2 samples, in millions of reads.
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featureCounts: Assignments
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Figure 2.6. MultiQC of feature counts of B6 aligned B6 and D2 samples, showing the number of

assigned features and the number of unassigned features with the reason they were not assigned.
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Discussion

The D2 aligned D2 samples showed significantly less percentage and total number of
uniquely mapped reads assigned with 72.3% compared to 74.36% in the B6 aligned D2 (p <
0.0001) and 105.84 million compared to 111.48 million total reads in the B6 aligned D2 (p <
0.0001). However, the D2 aligned D2 showed significantly more percentage of reads aligned
with 93.82% compared to 92.02% in the B6 aligned D2 (p = 0.0272). The difference between the
total reads aligned between D2 aligned D2 and B6 aligned D2 was not significant, with 136.22
million compared to 133.66 million total reads aligned (p = 0.5354). STAR aligner suggests that
80-90% alignment is acceptable, and their benchmark for experimental data is 94% aligned
(Dobin et al., 2013). These results fall inside that window, and therefore the alignment
percentage is acceptable. The alignment results are also higher than those used in previous
differential gene expression studies that were aligning to the B6 genome (Bottomly et al., 2011),
(Mortazavi et al., 2008), and with a significantly higher alignment percentage this should
improve results of analyses done using these counts. The D2 alignment did produce a lower
percentage of assigned reads than the B6 aligned. This could be due to several reasons, such as
the complexity of the genomic regions or genetic variation between the samples and the D2
reference genome, though the most likely reason is that the D2 reference genome is less
complete than the B6 reference genome. Regions that aren’t well represented in the D2 reference
genome would cause their associated reads to be assigned at a lower rate or not at all. However,
the % assignment is still high. There is no guideline for what an acceptable assignment
percentage is, however, being within 2% of the B6 aligned results is good enough to proceed.

The benefits of aligning to the D2 genome, such as increasing the future analyses’ ability to

34



detect SNPs and small indels, and potential allele specific expression differences outweigh the

slight decrease in assignment percentage moving forward.
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Chapter 3: Differential Expression Analysis and Gene Ontology

Introduction

The process of information taken from a gene being used to create a functional product is
called gene expression. This leads to the related phenotypes being shown in the resulting
organism, and therefore in any kind of genetic research understanding gene expression is
extremely important. Gene expression is tightly regulated (Ptashne & Gann, 1997) as any
dysregulation can quickly lead to disease (Esteller, 2007). Differential gene expression is when a
gene in two or more samples has a statistically significant difference in expression levels, or read
counts (Anjum et al., 2016). RNA-seq data is commonly used to identify differentially expressed

genes (Li & Xie, 2013) by their read counts.

Deseg?2 is an R package developed by Love et al. (2014) that performs differential
expression analysis on RNA-seq feature count data using a negative-binomial (Gamma-Poisson)
distribution. The input data required are some form of gene identifier, Ensembl 1Ds were used in
this study, and read counts for each sample. It goes through three steps to perform the analysis,
first normalizing the data by estimating size factors, then estimating the dispersion, then running
the negative binomial test. The relevant output of the analysis are p-values indicating whether a
gene is significantly (p < 0.05) differentially expressed between the sample groups, and a
log2fold change, indicating the magnitude of the differential expression (Love et al., 2014).
Deseq?2 is used in this analysis to compare 5 B6 aligned B6 samples and 5 B6 aligned D2
samples, then again to compare those same 5 B6 aligned B6 samples with 5 D2 aligned D2

samples, resulting in a list of significantly differentially expressed genes between the two strains.
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B6 and D2 mice are known to have differential expression of genes between them and
previous analyses have been run aligning to the B6 genome as it was the only available mouse
genome (Bottomly et al., 2011). Being able to align the D2 mice to their own genome allows for
a differential expression analysis to be performed with more accurate results, as aligning to the
D2 genome will account for genetic variation (SNPs, indels) specific to that strain. In addition,
reliance on a single reference genome can cause bias in downstream analyses. It can also result
in the analysis missing important genetic variants if they occur in regions not present in the

reference genome (Kim et al., 2019).

Gene ontology (GO) categorizes genes based on the function of their products. There are
three main categories, biological processes, molecular function, and cellular components. Each
category contains a hierarchy of terms, with the most specific terms at the bottom and broader
terms at the top. Genes are associated with the most specific term that accurately describes their
products. GO is particularly useful when comparing genes across species or, in this case, strains
within a species, as it allows for a comparison of function in a set of genes (Ashburner et al.,
2000). In this study, gene ontology is used to compare the functions of the significantly
differentially expressed genes between B6 and D2 samples, and between the B6 and D2 aligned

analyses.

Revigo is a tool that was developed by Supek et al. (2011) that is designed to take an
input of gene ontology terms and their significance levels in the form of p-values and return a
reduced, clustered visualization of those terms based on their semantic content. This quantifies
how much the terms share a common meaning, and uses SimRel to assign a score to each based
on their semantic similarity, with scores of .9 or higher indicating high similarity. This reduces

the number of gene ontology terms into larger categories, making for easier visualization and
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comparison. SimRel is a functional similarity measure used to compare two GO terms with each
other (Shlicker et al., 2006) (Figure 3.1). It is based on SimRes, Resnik’s semantic similarity
algorithm (Resnik, 2011) and SimLin, Lin’s semantic similarity (Lin, 1998). Resnik’s method
focuses on the most informative common ancestor of the GO terms, and Lin’s approach adds a
focus on the shared information between the two terms. SimRel combines these approaches to

incorporate relevance similarity (Schlicker et al., 2006).

2 *log p(MI1A)
log p(t1) +log p(12)

sim(t,, 1, ) = * (1= p(MIA))

Figure 3.1. SimRel algorithm. t1, t> refer to the gene ontology terms being compared, which are
the most specific terms possible for each gene. p(t1) and p(t2) refer2 to the probability of those
terms being found in the GO dataset, and p(MIA) refers to the probability of finding the common
ancestors of terms ty and t2 in the GO dataset. This is then weighted with 1-p(MIA) because the
relevance of a term decreases with increasing probability. Equation taken from Schlicker et al.,

2006

This section of the study focuses on comparing the differential gene expression between
the two strains using Deseq2, then generating GO terms using ToppFun and reducing them for
visualization with Revigo. This analysis will be run twice, once using B6 aligned D2 samples
and once using D2 aligned D2 samples. The results of both analyses will then be compared using
2 tailed t-test to determine if there is a significant difference in the magnitude of the LFCs of

filtered significantly differentially expressed genes (p < 0.05, FDR 0.1) and list comparison to
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determine the changes in differentially expressed genes identified when aligning D2 samples to
the D2 genome. GO terms will then be compared using list comparison and Revigo clustering to
determine if aligning the D2 samples to the D2 genome causes a significant difference in the

functions of those genes’ products.

Methods

Differential Gene Expression

The paired end counts generated in the previous step were run through a differential
expression analysis using Deseg2 (Bioconductor) as described by Love et al. (2014). First the B6
counts that were aligned to the B6 genome were compared to D2 counts that were aligned to the
B6 genome in terms of log2fold change (LFC) using Deseq2. This showed to what degree each
gene was differentially expressed between the two genomes. Then, B6 counts that were aligned
to the B6 genome were compared to D2 counts that were aligned to the D2 genome in terms of
log2fold change. Finally, the significantly differentially expressed genes from each comparison
were compared to each other using a two tailed t-test to determine if there was a significant
difference in LFC between the two sets of differentially expressed genes, then using
rnact.crg.eu’s list comparison feature to determine the differences in which genes were

differentially expressed.

Genes with median counts of less than 1 across all 10 samples were filtered out of the
data. The counts were normalized using Deseg2’s median of ratios method (Love et al., 2014),
and pairwise correlation values were calculated for these samples. These were visualized using a
hierarchal heatmap of correlation data created using pHeatmap. The pairwise correlation values

for all samples were visualized using multiple scatterplots. A principal component analysis of the
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variance was run on the top 500 and top 10,000 genes by counts. Then the differential expression
between the strains was calculated using Deseq2. The data was filtered again, taking only genes
that were significant at p = 0.05 and filtered using an FDR of 0.05, again using Deseq2. These
were visualized using both a volcano plot made with GGplot2 and a heatmap made with

pHeatmap.

Gene Ontology and Semantic Similarity Analysis

The filtered, significantly differentially expressed genes from the previous step were used
to run a gene ontology analysis using ToppFun (ToppGene, Cincinnati Children’s Hospital
Medical Center, Cincinnati, Ohio, USA). The results of this gene ontology in the biological
process, cellular component, and molecular function categories were then put through Revigo’s
semantic similarity analysis as described in Supek et al. (2011) to better visualize the groupings
of genes inside those categories. Scatterplots were created using the GGPlot2 R package and

treemaps were created using the treemap R package.

This was repeated for the comparison of B6 counts aligned to the B6 genome to D2

counts that were aligned to the D2 genome.

Comparison of Results

The resulting differentially expressed genes from both the analysis using B6 aligned D2
and the analysis using D2 aligned D2 were compared using simple list comparison metrics. The
differentially expressed genes were compared in both number and name, with similarity being
measured by how many genes were differentially expressed in both comparisons and by which
genes were differentially expressed. The gene ontology results were compared to each other

directly, with the total number in each category being compared as well as how similar the
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individual genes’ functions were. This was accomplished by comparing the names directly and
seeing what percentage of overlap there was between the two studies. The positive and negative
sets of LFC values was determined to have significantly unequal variance (p < 0.05) and as such
the t-tests used were Welch’s t-tests, assuming unequal variance. Running a 2 tailed t-test on the
significantly expressed genes from each analysis with positive LFC values, and a 2 tailed t-test
on the significantly expressed genes from each analysis with negative LFC values. These were
separated as the overall average of LFCs from both analyses was nearly zero, and as such would
not be a good comparison. Finally, the Revigo results were compared, to see if the gene ontology

results fell into similar or different broad categories.

Results

Aim la — Differential Gene Expression

Differential Gene Expression Between B6 Aligned B6 and B6 Aligned D2

The initial correlation data of the counts showed that the two strains were closely related,
with a minimum correlation value of .992. There was also clear delineation between B6 and D2,
with each sample having significantly higher correlation with samples of the same strain than
samples of the other strain (Figure 3.2). The principal component analysis of the top 10,000 most
abundant genes by counts showed that strains were clustered together by 80% variance (Figure
3.3). However, both Figure 3.2 and Figure 3.3 indicate that 2 B6 samples showed slight variance
compared to the other B6 samples in terms of correlation and PC2 grouping. We elected to not
exclude these from further analysis since their overall correlation was more similar to B6 than

D2 samples, and they clustered tightly with B6 samples on hierarchical clustering and principal

41



component analysis (PC2). A MA plot of genes with differential expression (FDR < 0.05) was
used to visualize results, showing the log10 fold-change (LFC) of all genes plotted versus the
mean of normalized counts (Figure 3.4). 6,210 genes were differentially expressed (D2 vs. B6),
with 3,257 having a positive log2fold change and 2,953 having a negative LFC. A positive LFC
indicates that the gene showed higher expression in the D2 strain than the B6 strain. A heatmap
of LFCs by genotype was generated to show the differences in LFC for each gene and each
individual (Figure 3.5), with positive LFC values indicating higher expression in D2 mice. The
top 20 differentially expressed genes exhibited no bias towards either positive or negative LFC
(Figure 3.6), suggesting adequate normalization of the data and no systematic errors biasing the

analysis.
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B6 Aligned Heatmap of Correlation Data
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Figure 3.2. Heatmap of count correlation data of the B6 aligned analysis. B6 and D2 correlate
more with themselves than with each other. There are no major outliers. The overall high levels
of correlation between B6 and D2 (.992 to 1) shows clear separation between two closely related

strains. Two samples, B24N and B32N, showed slightly lower correlations with the other B6

samples but still clustered tightly with the remaining B6 samples.
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Principal Component Analysis of the Top 10,000 Most Abundant Genes, B6 Aligned

Analysis
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Figure 3.3. Principal component analysis of the top 10,000 most abundant genes. Substrains are
clustered together along the X axis (PC1) while some variation between samples within a strain

are differentiated on the Y axis (PC2).
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B6 Aligned Log2Fold Change by Mean of Normalized Counts
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Figure 3.4. MA plot of the LFC against the mean of normalized counts for all genes. Blue
indicates genes that were significantly differentially expressed between the two strains (FDR

<0.05) and grey indicates genes that were not significantly differentially expressed.
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Figure 3.5. Heatmap of hierarchical cluster analysis of differentially expressed genes between
B6 aligned B6 and B6 aligned D2 and the log2fold changes (LFCs) of each gene. A positive LFC
(Red) indicates higher expression in D2. The 2-dimensional cluster analysis reveals robust

consistency across the samples for differential expression analysis.
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Top 20 Significant DE Genes
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Figure 3.6. Top 20 significantly differentially expressed genes and their normalized counts in
each strain. 12 genes have positive LFC values, and 8 have negative LFC values for D2

expression versus B6 expression.
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Differential Gene Expression Between B6 Aligned B6 and D2 Aligned D2

Principal Component Analysis of the Top 10,000 Most Abundant Genes
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Figure 3.7. Principal component analysis of the top 10,000 most abundant genes when using the

D2 aligned D2 counts. Substrains are clustered together along the X axis.
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Log2Fold Change by Mean of Normalized Counts
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Figure 3.8. MA plot of the LFC against the mean of normalized counts for all genes. Blue
indicates genes that were significantly differentially expressed between the two strains (FDR

<0.05) and grey indicates genes that were not significantly differentially expressed.
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Heatmap of LFC of Results
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Figure 3.9. Heatmap of hierarchical cluster analysis of differentially expressed genes between
B6 aligned B6 and D2 aligned D2 and the log2fold changes (LFCs) of each gene. A positive
LFC (Blue) indicates higher expression in D2. The 2-dimensional cluster analysis reveals robust

consistency across the samples for differential expression analysis.
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Top 20 Significant DE Genes
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Figure 3.10. Top 20 significantly differentially expressed genes and their normalized counts in

each from the D2 aligned analysis.
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Comparison of Results

The comparison of results from the B6 aligned D2 analysis and the D2 aligned D2
analysis has been sorted into groups containing only significantly differentially expressed genes.
These genes were further sorted by LFC, with positive and negative Log2Fold being compared
separately. This is because while the overall LFC of the D2 aligned analysis was significantly
higher (B6 aligned D2 = 0.0274, D2 aligned D2 = 0.3270, p < 0.0001), the QC performed
showed that the distribution was still even (Figure 3.8). With an even distribution of positive and
negative LFCs, the two sets of positive and two sets of negatives were compared to each other to
better illustrate the differences between the two comparisons. Positive LFCs indicate increased
expression in D2 mice. These analyses have two parts, the comparison of which genes are
differentially expressed in each analysis focusing on unique differentially expressed genes, and

the comparison of overall LFCs.

The comparison of the negative LFCs showed that 85.05% (2770/3257) of the genes that
were significantly differentially expressed in the analysis using B6 aligned D2 samples were also
differentially expressed in the analysis using D2 aligned D2 samples (Figure 3.11). The analysis
using D2 aligned D2 samples showed significantly more unique genes being differentially
expressed than in the B6 aligned analysis (2544/487). The significantly differentially expressed
genes with negative LFCs were significantly different in their average LFC (p <0.0001) with the
D2 aligned results have a greater magnitude than the B6 aligned results (D2 aligned average

negative LFC = -2.5930, B6 aligned average negative LFC = -0.9810).

The comparison of positive LFCs showed that 89.84% (2316/2934) of the genes that
were significantly differentially expressed in the analysis using B2 aligned D2 samples were also

differentially expressed in the analysis using D2 aligned D2 samples (Figure 3.12). The analysis
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using D2 aligned D2 samples showed significantly more unique genes being differentially
expressed than in the B6 aligned analysis (2544/487). The significantly differentially expressed
genes with positive LFCs were significantly different in their average LFC (p < 0.0001) with the
D2 aligned results have a greater magnitude than the B6 aligned results (D2 aligned average

positive LFC = 3.1672, B6 aligned average positive LFC = 1.1465).
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Significantly DE Genes
Negative LFC

ed DE Genes

D2

Figure 3.11. Comparison of significantly differentially expressed genes with negative LFCs

resulting from differential expression analyses using B6 aligned D2 samples (Red) and D2

aligned D2 samples (Blue). 487 genes were found to be differentially expressed only in the
analysis using B6 aligned D2, and 2,544 genes were found to be differentially expressed only in

the analysis using D2 aligned D2.
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Significantly DE Genes
Positive LFC

Figure 3.12. Comparison of significantly differentially expressed with positive LFCs genes

resulting from differential expression analyses using B6 aligned D2 samples (Red) and D2

aligned D2 samples (Blue). 618 genes were found to be differentially expressed only in the
analysis using B6 aligned D2, and 3147 genes were found to be differentially expressed only in

the analysis using D2 aligned D2.
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Gene Ontology and Semantic Similarity

B6 Aligned D2 Analysis

The gene ontologies of the significantly differentially expressed genes with negative
LFCs are shown below, followed by those with positive LFCs. The analysis was run using
ToppFun using probability density function to calculate the p value. An FDR correction of 0.05
was used and a gene limit of 3 was set to filter the data. Revigo’s semantic similarity analysis
was used to cluster and visualize the gene ontology results in the biological processes, molecular
function and cellular component categories as scatterplots (Figures 3.13, 3.15, 3.17) and as tree
maps (Figures 3.14, 3.16, 3.18). It is important to keep in mind when reading these scatterplots
that the axes have no intrinsic meaning. Revigo uses Multidimensional Scaling (MDS) to reduce
the dimensionality of a matrix of the GO terms pairwise semantic similarities. This may lead to
the result being non-linear, though semantically similar groups will be clustered together. When
repeating this analysis, keep in mind that the clusters may appear in different sections of the plot,

but the same terms will be clustered together.
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B6 Aligned Semantic Similarity of Biological Processes
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Figure 3.13. Scatterplot of the semantic similarity analysis performed on the biological
processes results from the significantly differentially expressed genes from the analysis using B6
aligned D2 samples. Color indicates the log base 10 of the p value output during the ToppFun
analysis, with blue indicating the most significantly differentially expressed genes. The size of
each point (log_size) indicates the log base 10 of the number of annotations for GO Term ID in

selected species in the EBI GOA database.
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Figure 3.14. Treemap of the semantic similarity analysis performed on the biological processes

results from the significantly differentially expressed genes from the analysis using B6 aligned

D2 samples. Gene ontology categories are grouped by semantic similarity with closely related

categories being clustered together.
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B6 Aligned Semantic Similarity of Molecular Functions
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Figure 3.15. Scatterplot of the semantic similarity analysis performed on the molecular function
results from the significantly differentially expressed genes from the analysis using B6 aligned
D2 samples. Color indicates the log base 10 of the p value output during the ToppFun analysis,

with blue indicating the most significantly differentially expressed genes. The size of each point

(log_size) indicates the log base 10 of the number of annotations for GO Term ID in selected

species in the EBI GOA database.
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B6 Aligned Significant LFC Semantic Similarity of Molecular Functions
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Figure 3.16. Treemap of the semantic similarity analysis performed on the molecular function
results from the significantly differentially expressed genes from the analysis using B6 aligned
D2 samples. Gene ontology categories are grouped by semantic similarity with closely related

categories being clustered together.
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B6 Aligned Semantic Similarity of Cellular Components
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Figure 3.17. Scatterplot of the semantic similarity analysis performed on the cellular component

processes results from the significantly differentially expressed genes from the analysis using B6

aligned D2 samples. Color indicates the log base 10 of the p value output during the ToppFun

analysis, with blue indicating the most significantly differentially expressed genes. The size of

each point (log_size) indicates the log base 10 of the number of annotations for GO Term ID in

selected species in the EBI GOA database.
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B6 Aligned Significant LFC Semantic Similarity of Cellular Components
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Figure 3.18. Treemap of the semantic similarity analysis performed on the cellular component
results from the significantly differentially expressed genes from the analysis using B6 aligned
D2 samples. Gene ontology categories are grouped by semantic similarity with closely related

categories being clustered together.

D2 Aligned D2 Analysis

The gene ontologies of the significantly differentially expressed genes with negative
LFCs are shown below, followed by those with positive LFCs. The analysis was run using
ToppFun using probability density function to calculate the p value. An FDR correction of 0.05

was used and a gene limit of 3 was set to filter the data. Revigo’s semantic similarity analysis
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was used to cluster and visualize the gene ontology results in the biological processes, molecular
function, and cellular component categories as scatterplots (Figures 3.19, 3.21, 3.23) and as tree

maps (Figures 3.20, 3.22. 3.24).
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D2 Aligned LFC Semantic Similarity of Biological Processes
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Figure 3.19. Scatterplot of the semantic similarity analysis performed on the biological
processes results from the significantly differentially expressed genes from the analysis using D2
aligned D2 samples. Color indicates the log base 10 of the p value output during the ToppFun
analysis, with blue indicating the most significantly differentially expressed genes. The size of
each point (log_size) indicates the log base 10 of the number of annotations for GO Term ID in

selected species in the EBI GOA database.
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D2 Aligned Significant LFC Semantic Similarity of Biological Processes
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Figure 3.20. Treemap of the semantic similarity analysis performed on the biological processes
results from the significantly differentially expressed genes from the analysis using D2 aligned
D2 samples. Gene ontology categories are grouped by semantic similarity with closely related

categories being clustered together.
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D2 Aligned Semantic Similarity of Molecular Functions
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Figure 3.21. Scatterplot of the semantic similarity analysis performed on the molecular function
results from the significantly differentially expressed genes from the analysis using D2 aligned
D2 samples. Color indicates the log base 10 of the p value output during the ToppFun analysis,

with blue indicating the most significantly differentially expressed genes. The size of each point

(log_size) indicates the log base 10 of the number of annotations for GO Term ID in selected

species in the EBI GOA database.
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D2 Aligned Significant LFC Semantic Similarity of Molecular Functions
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Figure 3.22. Treemap of the semantic similarity analysis performed on the molecular function
results from the significantly differentially expressed genes from the analysis using D2 aligned
D2 samples. Gene ontology categories are grouped by semantic similarity with closely related

categories being clustered together.
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D2 Aligned Semantic Similarity of Cellular Components
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Figure 3.23. Scatterplot of the semantic similarity analysis performed on the cellular component
results from the significantly differentially expressed genes from the analysis using D2 aligned
D2 samples. Color indicates the log base 10 of the p value output during the ToppFun analysis,

with blue indicating the most significantly differentially expressed genes. The size of each point

(log_size) indicates the log base 10 of the number of annotations for GO Term ID in selected

species in the EBI GOA database.
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D2 Aligned Significant LFC Semantic Similarity of Cellular Components
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Figure 3.24. Treemap of the semantic similarity analysis performed on the cellular component
results from the significantly differentially expressed genes from the analysis using D2 aligned
D2 samples. Gene ontology categories are grouped by semantic similarity with closely related

categories being clustered together.
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Discussion

Alignment

Aligning D2 reads to the D2 genome produced a higher alignment percentage than aligning them
to the B6 genome (Table 2). This will lead to more accurate gene quantification, increased
sensitivity of the analysis with respect to genes and transcripts with low expression, and a
reduction in background noise from unaligned reads (Oshlack et al., 2010). This again is
promising, as it serves to show that there is a benefit to aligning to the D2 reference genome,

though determining the scope and scale of that benefit is still in progress.
Differential expression and comparison of results

Results of the differential expression analyses have shown that the differential expression
between B6 aligned B6 and B6 aligned D2 is significant (Figure 3.5.) This is in keeping with the
results found by Putman et al. (2016) and Kearns et al. (2005), and show that the basis for this
study is well founded. By analyzing the resulting LFCs, there was a lack of bias in expression
direction, with similar numbers of genes having positive and negative LFCs (Figures 3.11 and
3.12). The top 20 most significantly differentially expressed genes showed this same trend,
indicating that the analysis was run correctly. If there was a significant bias towards positive or
negative LFC values, then that would indicate a problem either in sample preparation, leading to
one set of mice to have consistently higher or lower gene expression, or a problem in the analysis

itself such as during normalization.

The analysis run using D2 aligned D2 samples showed similar quality control metrics
(Figures 3.7-3.8) as the B6 aligned (Figures 3.2-3.4). There was a lack of bias in expression
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direction observed in the resulting LFCs, and the top 20 most significantly differentially
expressed genes again showing no bias towards positive or negative LFC (Figure 3.10). This
indicates that the D2 aligned D2 samples are meeting the same quality control metrics as the B6
aligned D2 samples, and the comparison between the two sets of results can be done with

confidence in the preparation and setup of the analyses.

The analysis run using D2 aligned D2 samples found significantly more significantly
differentially expressed genes (p < 0.05) than the analysis run using the B6 aligned D2 samples,
with 10,778 differentially expressed genes found in the D2 aligned D2 sample compared to 6,191
in the B6 aligned D2 analysis. In both the positive and negative LFCs a large amount of overlap
was seen between the results of the two analyses (Figures 3.11 and 3.12). However, the D2
aligned results showed significantly more uniquely differentially expressed genes in both
positive and negative directions (3,147 and 2,544 respectively). The D2 aligned average negative
LFC was -2.5930 and the B6 aligned average negative LFC was -0.9810. The D2 aligned
average positive LFC was 3.1672, and B6 aligned average positive LFC was 1.1465 This, along
with the very high overlap of the B6 aligned results, where 85.05% (Negative LFC) and 89.84%
(Positive LFC) were seen to be differentially expressed in the same direction as the D2 aligned
results, shows that when aligning to the D2 genome there is a significant increase in the total
number of differentially expressed genes while retaining a majority of the differentially

expressed genes seen in the B6 aligned analysis.

This indicates that aligning to the D2 genome provides a 74.26% increase in significantly
differentially expressed genes with negative LFCs and a 109.20% increase in significantly
differentially expressed genes with positive LFCs. The total increase in significantly

differentially expressed genes identified is 90.17%.
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Gene ontology and semantic similarity

The gene ontology categories across both analyses showed similar levels of significance,
with most sitting between -2.5 and -5 on a log10 scale of the p values. There were a few outliers,
but the outliers were more significant than the average, with no low significance outliers. This
indicates that the gene ontology categories can be considered reliable indications of the functions

of the genes involved.

When comparing the categories between the B6 aligned analysis and the D2 aligned
analysis, there is a low amount of overlap in the semantic clusters. There were overlaps, for
example in the biological processes, gliogenesis showed the same amount of differentially
expressed genes in both analyses. However, none of the other categories overlapped, which is
likely at least partially caused by the large increase in differentially expressed genes in the D2
aligned analysis. This theme continues throughout the analyses, with there being some overlap
but not overlap completely. One important category seen in the D2 aligned results that was not
seen in the B6 aligned data was ribosomal protein gene expression. Categories such as
“translation at synapse”, “translation at postynapse”, etc. This suggests that the D2 RNA-seq data
shows a decrease in expression of the expression of ribosomal MRNAs when analyzed with the
D2 alignment. Decreased ribosomal protein expression reflects a decreased capacity for protein
translation, so this could be a biologically relevant difference discovered by aligning to the D2

genome that would not have been identified while aligning to the B6 genome.
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Chapter 4: Differential Exon Utilization and Alternative Splicing

Introduction

Differential exon utilization occurs when exons within a gene are included in or excluded
from the final RNA transcripts produced by a cell when compared between two experimental
groups. DEXSeq (Anders et al., 2012) is an R/Bioconductor package that uses a statistical
method to test for differential exon usage in RNA-seq data. It uses generalized linear models to
do this, and takes biological variation into account to control false discoveries. It also identifies

differences in splicing and translation.

DEXSeq requires exon count data which is prepared using scripts provided in the
package. To generate this count data, RNA-Seq data, a genome fasta file, and an annotation GTF
file are required. Indexed BAM files are generated first, using the fasta file and the annotation,
then the annotation needs to be flattened for use with DEXSeq. These exon counts are then used

in DEXSeq’s analysis of differential exon utilization.

Gene ontology can be run on the genes with differentially utilized exons, providing an
understanding of their functions. These GO categories reflect the functions of the genes with
differentially utilized exons, and when comparing results of multiple analyses Revigo can be

used to reduce the data and make visualization easier.

This study is running two different DEXSeq analyses, one using B6 aligned D2 samples
and one using D2 aligned D2 samples. This will allow for a comparison using Welch’s t-tests

and direct list comparison of the genes with differentially utilized exons, as well as a comparison
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of the exons. The LFCs of both analyses will be used to compare the magnitude of the

differentially expressed exons, broken in to positive and negative LFC groups.

Methods

Count Data Preparation

The RNA-Seq data was prepared for DexSeq analysis using the VCU Group Server on
the VIPBG Cluster System First the GTF file converted in the previous chapter (See chapter 2)
needed to be flattened for use with DexSeq (Bioconductor) (Anders et al., 2012). The script
dexseq_prepare_annotation.py (Appendix 2) requires a GTF file as input. However, the process
of converting the GFF3 file to a GTF file left certain attributes that were not compatible with the
conversion script. With the aid of Dr. Mikhail Dozmorov, the specific attribute (parent) causing
errors was identified and removed. The parent attribute is part of GFF3 files, indicating the
parent transcript for each entry. It is not present in GTF files, and was not removed by AGAT in
the conversion to GTF. Removing it does not change the function of the annotation file, but
allows it to function in the dexseq_prepare_annotation.py. The resulting GTF file
(DBA 2J v3.2 3 14 23 filtered.gtf) was then run through the aforementioned script, resulting
in a flattened GFF file (DBA_2K v3.2_flattened.gff). This flattened file was then used with the
script dexseq_count.py, to generate the dexseq counts. The BASH script used to run this on the
VCU group server was DexSeqCounts.sh. The B6 aligned counts (both B6 and D2) were

previously prepared using the same sample data by Emma Gnatowski.
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DexSeq Analysis

DexSeq was run using R version 4.3.1 (DEXSeq_Analysis_script.R) on the B6 aligned
B6 and the B6 aligned D2 counts, and the significant results (FDR of 0.1) analyzed for
expression patterns and gene ontology. This was repeated using B6 aligned B6 counts and D2

aligned D2 counts.

Gene Ontology Analysis

The gene ontology of the genes showing differential exon utilization was run using
ToppFun using a probability density function to calculate p values, then filtering for a false

discovery rate of 0.05 and gene limits of 3 or more.

Comparison of Results

The results of both DexSeq analyses were then compared to each other using direct
comparisons to determine the total number of differentially utilized exons and differentially
expressed genes, and t-tests to determine differences in the magnitude of those changes,
measured by LFC. The LFC comparison was broken down into positive and negative LFC
groups, as the overall average for both analyses was nearly zero. The gene ontology categories
were compared using Revigo to reduce the number of categories and cluster by semantic terms.
Lastly, specific genes of import were taken to use as examples of how aligning to the D2 genome
can improve differential exon utilization results. The genes chosen for this were Ninein, Gabra2,
and Gsk3b. These genes were chosen both for their import in ongoing AUD research and for

how the D2 alignment affected them.
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Results

Count Data Preparation

The GTF and count data files were successfully prepared, leading to the generation of

count data (Appendix 1, B6 Aligned DexSeq Counts, D2 Aligned DexSeq Counts).

B6 Aligned DexSeq Analysis

21,223 significantly (p < 0.05, FDR 0.1) differentially utilized exons were identified in
the B6 aligned DexSeq analysis. There were 6,650 genes with differentially utilized exons. There
were 10,566 exons with positive LFC indicating higher expression in D2, and 10,652 with
negative LFC. These exons had an average positive LFC of 0.8323 and an average negative LFC

of -1.2138.
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B6 Aligned Analysis Hierarchical Heatmap of Correlation Data
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Figure 4.1. Heatmap of B6 aligned D2 correlation data. There are 10 samples used as input, but
20 columns used in this analysis. The first 10 correspond to the number of reads mapping to out
exonic regions, and the last 10 correspond to the sum of the counts mapping the rest of the exons
from the same gene on each sample. Samples 1-5 are B6 counts, specifically B14, B21, B24,
B31, and B32, and samples 6-10 are D2 counts, specifically D11, D13, D22, D32, and D34. 11-

15 are B6, the same samples, and 16-20 are D2 aligned, the same samples.
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B6 Aligned Analysis LFC vs Mean Expression
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Figure 4.2. LFC of differentially expressed exons compared to mean expression for the analysis

using B6 aligned D2 samples. Red indicates significantly differentially expressed genes.
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D2 Aligned DexSeq Analysis

81,206 significantly (p < 0.05, FDR 0.1) differentially utilized exons were identified in
the D2 aligned DexSeq analysis. There were 13,521 genes with differentially utilized exons.
43,775 of the exons had a positive LFC and 37,089 had a negative LFC. The average positive

LFC was 1.5800 and the average negative LFC was -1.3011.
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D2 Aligned Analysis Hierarchical Heatmap of Correlation Data
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Figure 4.3. Heatmap of D2 aligned D2 correlation data. There are 10 samples used as input, but
20 columns used in this analysis. The first 10 correspond to the number of reads mapping to out
exonic regions, and the last 10 correspond to the sum of the counts mapping the rest of the exons
from the same gene on each sample. Samples 1-5 are B6 counts, specifically B14, B21, B24,
B31, and B32, and samples 6-10 are D2 counts, specifically D11, D13, D22, D32, and D34. 11-

15 are B6, the same samples, and 16-20 are D2 aligned, the same samples.
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D2 Aligned Analysis LFC vs Mean Expression
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Figure 4.4. LFC of differentially expressed exons compared to mean expression for the analysis

using D2 aligned D2 samples. Red indicates significantly differentially expressed genes.
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Gene Ontology — B6 Aligned

B6 Aligned Biological Processes
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Figure 4.5. Scatterplot of the semantic similarity analysis performed on the biological processes

results from the genes with significantly differentially utilized exons from the analysis using B6

aligned D2 samples. Color indicates the log base 10 of the p value output during the ToppFun

analysis, with blue indicating the most significantly differentially expressed genes. The size of

each point (log_size) indicates the log base 10 of the number of annotations for GO Term ID in

selected species in the EBI GOA database.
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B6 Aligned Significant DexSeq Semantic Similarity of Biological Processes
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Figure 4.6. Treemap of the semantic similarity analysis performed on the biological processes
results from the genes with significantly differentially utilized exons from the analysis using B6
aligned D2 samples. Gene ontology categories are grouped by semantic similarity with closely

related categories being clustered together.
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B6 Aligned Molecular Functions
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Figure 4.7. Scatterplot of the semantic similarity analysis performed on the molecular function

results from the genes with significantly differentially utilized exons from the analysis using B6

aligned D2 samples. Color indicates the log base 10 of the p value output during the ToppFun

analysis, with blue indicating the most significantly differentially expressed genes. The size of

each point (log_size) indicates the log base 10 of the number of annotations for GO Term ID in

selected species in the EBI GOA database.
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B6 Aligned Significant DexSeq Semantic Similarity of Molecular Functions
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Figure 4.8. Treemap of the semantic similarity analysis performed on the molecular function

results from the genes with significantly differentially utilized exons from the analysis using B6

aligned D2 samples. Gene ontology categories are grouped by semantic similarity with closely

related categories being clustered together.
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B6 Aligned Cellular Components
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Figure 4.9. Scatterplot of the semantic similarity analysis performed on the cellular component

results from the genes with significantly differentially utilized exons from the analysis using B6

aligned D2 samples. Color indicates the log base 10 of the p value output during the ToppFun

analysis, with blue indicating the most significantly differentially expressed genes. The size of

each point (log_size) indicates the log base 10 of the number of annotations for GO Term ID in

selected species in the EBI GOA database.
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B6 Aligned Significant DexSeq Semantic Similarity of Cellular Components
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Figure 4.10. Treemap of the semantic similarity analysis performed on the cellular component

results from the genes with significantly differentially utilized exons from the analysis using B6

aligned D2 samples. Gene ontology categories are grouped by semantic similarity with closely

related categories being clustered together.
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Gene Ontology — D2 Aligned

D2 Aligned Biological Processes
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Figure 4.11. Scatterplot of the semantic similarity analysis performed on the biological

processes results from the genes with significantly differentially utilized exons from the analysis

using D2 aligned D2 samples. Color indicates the log base 10 of the p value output during the

ToppFun analysis, with blue indicating the most significantly differentially expressed genes. The

size of each point (log_size) indicates the log base 10 of the number of annotations for GO Term

ID in selected species in the EBI GOA database.
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D2 Aligned Significant DexSeq Semantic Similarity of Biological Processes
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Figure 4.12. Treemap of the semantic similarity analysis performed on the biological processes

results from the genes with significantly differentially utilized exons from the analysis using D2

aligned D2 samples. Gene ontology categories are grouped by semantic similarity with closely

related categories being clustered together.
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D2 Aligned Molecular Functions
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Figure 4.13. Scatterplot of the semantic similarity analysis performed on the molecular function
results from the genes with significantly differentially utilized exons from the analysis using D2
aligned D2 samples. Color indicates the log base 10 of the p value output during the ToppFun
analysis, with blue indicating the most significantly differentially expressed genes. The size of
each point (log_size) indicates the log base 10 of the number of annotations for GO Term ID in

selected species in the EBI GOA database.

90



D2 Aligned Significant DexSeq Semantic Similarity of Molecuar Functions
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Figure 4.14. Treemap of the semantic similarity analysis performed on the molecular function

results from the genes with significantly differentially utilized exons from the analysis using D2

aligned D2 samples. Gene ontology categories are grouped by semantic similarity with closely

related categories being clustered together.
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D2 Aligned Cellular Components

semantic space x

-101

semantic space y

Figure 4.15. Scatterplot of the semantic similarity analysis performed on the cellular component
results from the genes with significantly differentially utilized exons from the analysis using D2
aligned D2 samples. Color indicates the log base 10 of the p value output during the ToppFun
analysis, with blue indicating the most significantly differentially expressed genes. The size of
each point (log_size) indicates the log base 10 of the number of annotations for GO Term ID in

selected species in the EBI GOA database.
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Figure 4.16. Treemap of the semantic similarity analysis performed on the cellular component

results from the genes with significantly differentially utilized exons from the analysis using D2

aligned D2 samples. Gene ontology categories are grouped by semantic similarity with closely

related categories being clustered together.

Comparison of Results

The first comparison is the number of exons found to have differential utilization, and the

number of genes connected to those exons. In the B6 aligned analysis, there were 21,223

differentially utilized exons. Of those, 14,245 (67.12%) were also differentially utilized in the D2

analysis, with 6,978 (32.88%) being unique to the B6 aligned DexSeq analysis. Of the 81,206

differentially utilized exons identified in the D2 aligned DexSeq, 66,961 (82.46%) were unique

to the D2 aligned analysis.
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The B6 aligned analysis showed 6,650 genes with differentially utilized exons. 5,828
(87.64%) of those were also identified in the D2 aligned analysis, with 822 (12.36%) being
unique to the B6 aligned analysis. The D2 aligned analysis had 7,693 (56.90%) unique genes

identified only in the D2 aligned analysis.

The magnitudes of the LFCs were broken into positive and negative groups in order to
compare them using a t-test. The average positive LFC was had a significantly larger magnitude
in the D2 aligned analysis (p < 0.0001), and the average negative LFC also had a significantly

larger magnitude in the D2 aligned analysis (p = 0.0021).

94



Differentially Utilized Exons
DexSeq

Figure 4.17. Comparison of significantly differentially utilized exons between the B6 aligned D2

analysis (red) and the D2 aligned D2 analysis (green).
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Differentially Expressed Genes
DexSeq

Figure 4.18. Differentially expressed genes identified during the DexSeq analysis. This
represents genes only, not exons. Green represents the D2 aligned D2 analysis, and red the B6

aligned D2.

Comparison of Gene Ontology

The semantic similarity analysis run using Revigo shows that there is a large amount

overlap in the clustered categories between the B6 aligned and D2 aligned analyses. An analysis
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of the individual gene ontology terms was used to quantify this, with 49% or more terms

overlapping in each category (Table 4.1).

Table 4.1. Number of gene ontology terms in each category for each analysis (B6 aligned and
D2 aligned). Overlap is the number of terms found in both sets of results, with percentages for

each.

DexSeq Gene Ontology Terms and Overlap

B6 Aligned |D2 Aligned |Overlap % Overlap (B6) |% Overlap (D2)
Biological Processes 973 1665 829 85.20 49.79
Molecular Function 134 140 82 61.19 58.57
Cellular Component 285 380 243 85.26 63.95

Comparison of Specific Genes

The three specific genes chosen as examples show three different effects from the D2
aligned analysis. Ninein is a gene that has been shown to have differential exon utilization by
other studies done in the Miles laboratory. The D2 aligned analysis (Figure 4.20) identified two
of the differentially utilized exons (34, 41) that were identified in the B6 aligned analysis (Figure
4.19) with one exon being unique to the B6 aligned analysis (16). However, exon 41, while
remaining significant, went from showing higher utilization in B6 in the B6 aligned analysis to
showing higher utilization D2 in the D2 aligned analysis. The D2 aligned analysis also identified

several unique exons (10, 30, 33, 37, 43, 53) that were not identified in the B6 aligned analysis.

Gabra2 is a gene that has a known differential splicing event between the B6 and D2
strains (Cite, Add specific exon). The D2 aligned analysis (Figure 4.22.) showed the same
differentially utilized exons (4, 11, 12, 13, 14, 16, 17, 20, 21) as the B6 aligned analysis (Figure
4.21.) with one exception that was found only in the B6 aligned analysis (10). Two unique exons

found only in the D2 aligned analysis (7, 8).
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Gsk3b was not found to have differential exon utilization in the B6 aligned analysis, but
was found to have 5 differentially utilized exons (3, 9, 10, 11, 14) in the D2 aligned analysis

(Figure 4.23).
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Figure 4.19. B6 aligned DEXSeq splicing event analysis for Ninein. Exons 16 and 41 showed
low utilization in both strains, and were determined to be retained introns using a BLAST search.

Exon 33 was an alternative splicing even, showing higher utilization in both strains.
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Figure 4.20. D2 aligned DEXSeq splicing event analysis for Ninein. Exon 16 no longer shows

differential utilization, and there are multiple new significant events not shown in the B6 aligned

analysis. Exons 41 and 34 both show differential utilization, however exon 41 shows lower

utilization in B6 in the D2 aligned analysis compared to showing lower utilization in D2 in the

B6 aligned analysis.
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Figure 4.21. B6 aligned DEXSeq splicing event analysis for Gabra2. Gabra2 is has a well know
differential splicing event between B6 and D2, a single deleted base pair in an intron, located

between exon 3 and 4.
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Figure 4.22. D2 aligned DEXSeq splicing event analysis for Gabra2. Gabra2 is has a well know

differential splicing event between B6 and D2, located between exons 3 and 4. It can be seen that

the B6 and D2 aligned DexSeq analyses identified the same differentially utilized exons, with the

D2 aligned analysis identifying slightly more events.
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Figure 4.23. D2 aligned DexSeq analysis of Gsk3b. Gsk3b was not shown to have differential
exon utilization in the B6 aligned analysis, but the D2 aligned analysis identified several exons

that were differentially utilized.
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Discussion

Count Data Preparation

With the aid of Dr. Dozmorov, the DexSeq counts were generated using the D2 aligned
annotation provided by Dr. Keane. However, that annotation would not work for the DexSeq
analysis, so the B6 annotation was used. Because the count data was generated using D2 aligned
D2, and the resulting D2 Ensembl 1Ds were converted to their B6 counterparts, using the B6
annotation for the analysis is acceptable. In order to verify the validity of this step, a future
analysis using the D2 annotation with the B6 ensemble 1Ds converted to their D2 counterparts
should be run. The results of that should be very similar, though some variance is to be expected
when using a different annotation. For now, this is an acceptable method of using the D2 aligned

counts in DexSeq.

DexSeq Results — B6 Aligned and D2 Aligned

In both the B6 and D2 aligned analyses, the LFCs were evenly distributed between
positive and negative, with the D2 aligned analysis skewing slightly towards the positive. This
indicates that the analysis did not have significant bias towards either positive or negative LFC

that would affect the results or indicate an error in the analysis.

In both the B6 (Figure 4.1) and the D2 (Figure 4.3) aligned analysis, there is high
correlation between out exonic regions, with B6 and D2 correlating more to themselves than to
each other, though the correlation between the two is still quite high. There is low correlation
between the out exonic regions and the rest of the exons, though the “rest of the exons” correlate
strongly to each other. Interestingly one of the B6 samples correlates more strongly to the D2
than to the B6, though not enough to be an outlier. This is to be expected, as the samples are
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taken from the same species, and this indicates that it is possible to differentiate between closely
related substrains. The out exonic regions having low correlation with the rest of the exons also

indicates that the analysis was done correctly.

Comparison of Results

Similarly to the differential expression analysis, the D2 aligned analysis showed
significantly larger numbers of differentially utilized exons, and a correspondingly larger number
of genes with significantly differentially utilized exons. The retention among genes was as good
as the differential expression analysis, with 87.64% being identified in both the B6 and D2
aligned analyses. The exon overlap was much lower, at 67.12%, but with a much larger number
of unique differentially utilized exons. This indicates that the D2 aligned analysis does provide
an improvement in the identification of differentially utilized exons, though the lack of retention
from the B6 aligned analysis warrants further investigation. It may be related to the usage of the

B6 annotation with the D2 aligned counts, and this will be tested in the future.

The magnitude of the LFCs was higher in the D2 aligned analysis for both positive and
negative LFCs. This indicates that not only were more differentially utilized exons identified in
the D2 aligned analysis, those exons were also significantly more expressed or less expressed in
the D2 aligned analysis. This indicates potential improvement, as the analysis run using D2
aligned counts showed a significant difference from the B6 aligned counts. It is important to
quantify which analysis is “better”, however. Future analysis will look more into differential
exons and gene expression, specifically focusing on splicing events to determine this. Emma

Gnatowski has begun this analysis already. Another goal is to look more deeply into the exons

104



identified in both analyses, with a focus on the unique exons. If they follow a similar pattern to
the overlapping exons in size and LFC, then that removes a potential factor causing the D2
aligned analysis to identify them. Eventually all factors other than the D2 alignment will be

accounted for and a definitive answer will be found.
Comparison of Gene Ontology

The high amount of overlap is what was expected and is encouraging to see. Because the
D2 aligned analysis had much larger numbers of significant GO terms (Table 4.1.) while still
having high overlap with the B6 aligned analysis, it can be inferred that aligning to the D2
provides a noticeable change in the results while not losing results found in the B6 aligned

analysis.
Comparison of Specific Genes

The specific genes compared are either currently being studied in the Miles laboratory or,

in the case of Gabra2, have a known alternative splicing event.

With Ninein, the most interesting result is the flip of exon 41. In the B6 aligned analysis,
it showed higher utilization in the B6 samples, whereas in the D2 aligned analysis it showed
higher utilization in the D2 samples. This warrants further investigation, as this indicates not
only a significant change in the magnitude of the event, but a complete reversal in the direction.
The D2 aligned analysis also identified unique differentially utilized exons, and these should be
tested as described above to determine if there are any other factors causing these to be missed in

the B6 aligned analysis.

Gabra2 showed the same directionality of each change, and the D2 aligned analysis
identified several new differentially utilized exons. This is in keeping with the results seen
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before, and it is good to see that the differentially utilized exons from the B6 aligned analysis,
including a known deletion that occurred and became fixed in the B6 line, located in the intro
between exons 3 and 4 (Mulligan et al., 2019). This shows that the D2 aligned analysis is

successfully identifying differentially utilized exons, and not simply giving false positives.

With Gsk3b, it was not found to have differential exon utilization in the B6 aligned
analysis. The D2 aligned analysis did however find several exons with differential utilization.
This shows why aligning D2 mice to the D2 genome for these analyses is important, as it can

identify differentially expressed exons and genes that would have otherwise been missed.
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Appendix 1: Files and Data

These files are presented as either dropbox links or pathways to the file on the VIPBG

group server. The Dropbox links will take you to the folder where all of the listed files can be

found.

Dropbox Links

Data Preparation

Count Data Preparation

B6 Aligned Counts

D2 Aligned Counts

Differential Expression Analysis

Working Directory

Results

B6 Aligned

D2 Aligned

Comparisons

Differential Exon Usage Analysis

B6 Aligned DexSeq

D2 Aligned DexSeq

Comparison of Results
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https://www.dropbox.com/scl/fo/9dvdp5xoxvf6aoaforum5/h?rlkey=qppmsgxjeg2ev81mva7svodgm&dl=0
https://www.dropbox.com/scl/fo/o4ewfwvrl87ilok5g1k4r/h?rlkey=u42v3tplou1lhcmgkn0t9jk3z&dl=0
https://www.dropbox.com/scl/fo/bw61nxaxwujxzz71kgsr6/h?rlkey=z144d7gi2rjv7sl4ik9emd5zt&dl=0
https://www.dropbox.com/scl/fo/5h26xxwepmx3s6qo3n0n1/h?rlkey=w7nvkvorf2bm8bb2iafv9g9jt&dl=0
https://www.dropbox.com/scl/fo/qcskfpt619up199txosa1/h?rlkey=nwkar2jmvvgfbv3d5xl9fsdgk&dl=0
https://www.dropbox.com/scl/fo/456pnao8st0mnvryf8c2c/h?rlkey=nfc0wmpub4nqpgfved6zk5z55&dl=0

Paths to Group Server Files

/home/projects/MilesLab/teamshare/DZ_B6_Alignment/

/home/projects/MilesLab/teamshare/DZ_D2_Alignment/

/home/projects/MilesLab/teamshare/DZ_D2_Alignment_DexSeq/

/home/projects/MilesLab/teamshare/B6D2_DeepSeq/
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Appendix 2: Code

This appendix follows the same format as the previous. Dropbox links to folders that

contain the scripts used, and paths to the scripts on the group server.
Dropbox Links

Count Data Preparation

"C:\Users\zelif\Dropbox (MilesLab)\Miles and Dustin Z\Aim 1 - Differential
Exon, Differential Expression, Gene Ontology, and Transcript Level\Data
Preparation\Count Data

Preparation\commonkeys_first_step_of gene_ID_conversion.py"

"C:\Users\zelif\Dropbox (MilesLab)\Miles and Dustin Z\Aim 1 - Differential
Exon, Differential Expression, Gene Ontology, and Transcript Level\Data

Preparation\Count Data Preparation\Gene ID and Name extraction from gff3

script.py"

Differential Expression Analysis

"C:\Users\zelif\Dropbox (MilesLab)\Miles and Dustin Z\Aim 1 - Differential
Exon, Differential Expression, Gene Ontology, and Transcript Level\Differential

Expression Analysis\Code\DZ_DESeq2_B6_aligned_script_3 19 23.R"

"C:\Users\zelif\Dropbox (MilesLab)\Miles and Dustin Z\Aim 1 - Differential
Exon, Differential Expression, Gene Ontology, and Transcript Level\Differential

Expression Analysis\Code\GTF Conversion for DEX seq.py"

Differential Exon Utilization Analysis
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https://www.dropbox.com/scl/fo/s5r0asi4dfot0qpr44x2m/h?rlkey=vrxh7xaff129jnn0550izr9q0&dl=0
https://www.dropbox.com/scl/fo/0s7l38gu58zocer91ae3m/h?rlkey=0siqqe9f2pd8iqn8xvi49dyhw&dl=0
https://www.dropbox.com/scl/fo/bw61nxaxwujxzz71kgsr6/h?rlkey=z144d7gi2rjv7sl4ik9emd5zt&dl=0

Paths to Group Server Scripts

/home/projects/MilesLab/teamshare/DZ D2 _Alignment/scripts/

/home/projects/MilesLab/teamshare/DZ_D2_Alignment_DexSeq/
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