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VIRGINIA COMMONWEALTH UNIVERSITY

Abstract
Functional Monitoring for Run-Time Assurance of a Real-Time Cyber Physical

System

by Matthew GELBER

As cyber-physical systems (CPS) become more integrated into everyday life, the

security of these systems must also be considered during their development due to

their ever-increasing importance. With the growth of physical components in the

system, more autonomous control requirements, and increased dependence on proper

functionality, verifying system safety and correct operation becomes increasingly

difficult. CPS have become more complex through the combination of additional

hardware and the resulting interconnected software in many layers, each requiring

unique security solutions. One example of such a safety-critical CPS embedded

system is the Flight Control System (FCS) of an Unmanned Aerial System (UAS).

An FCS consists of many complex sensors which provide aircraft state information

to a central processor to execute the autopilot flight control firmware. Developers of

the FCS for these aircraft are dependent on a diverse supply chain for the sensors

and processors used in these systems, and they cannot always ensure the trusted

delivery of their verified firmware updates to the end user. In addition, the complex

sensors necessary in an FCS may wear down and fail over time. These factors

lead to system vulnerabilities from various types of cyber-attacks and physical faults

of the sensors on a UAS. An architecture of a real-time functional monitor and

associated detection techniques for run-time assurance has been developed to detect

such cyber-attacks and sensor data faults in a UAS FCS. The results are demonstrated

using an FPGA-based Hardware-in-the-Loop Simulation testbed for simulating attacks

and the attack detection algorithms to provide the user with information regarding

these sensor attacks and faults.
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Chapter 1

Introduction

Complex cyber-physical systems (CPS) are computer systems that observe specific

aspects of the physical environment to determine proper controls of a larger mechanism

or system. One such component of the cyber-physical system architecture is an

embedded system. CPS are all around us in smart home systems (from home assistants

to robot vacuums), medical devices, and autonomous ground and air vehicles, to name

a few. CPS operate in the physical world, using computing control systems in the cyber

world, and are comprised of both cyber and physical components that work together to

ensure proper operation in the physical world. CPS use sensors to measure the physical

characteristics of a system and/or environment, computing systems to perform the data

collection and analysis, and control algorithms to provide actuation commands used

to control or change the physical attributes of the system. Cyber-physical systems are

also typically safety-critical systems meaning that the correct and safe operation is vital,

otherwise any malfunction of a CPS can result in system failure, system damage, and

possibly harm to the people in, near, or around the system. One example of such a

safety-critical CPS is the Flight Control System (FCS) of an Unmanned Aerial System

(UAS).

Many applications of UAS have recently gained increased attention, such as package

delivery [1, 2, 3], Urban Air Mobility [4, 5, 6], structural inspection[7, 8], and facility

inspection [9]. All the UAS applications mentioned have safety-critical roles and require

the use of autonomous control systems.

CPS have become more complex through the combination of additional hardware
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and more interconnected software. The increase in software complexity is a result of the

expansion of use-cases for autonomous control CPS, which requires new capabilities

[10]. For example, software can be a pre-programmed control algorithm, like PID loops,

or a neural network Machine Learning (ML) based control algorithm. ML based control

algorithms offer improved performance but also increase complexity and difficulty of

verification of safety during run-time. These ML systems are commonly considered

a black-box component. Any black-box component requires monitoring to ensure

accuracy and compliance to specifications to detect run-time violations and unexpected

behaviors [11].

These complex CPS help minimize the impact of natural disturbances on the

system, but generally do not address man-made disturbances such as cyber-attacks and

physical attacks. Both of these attacks can result anywhere between system (physical)

malfunction and failure to complete mission (total system) failure [12]. A UAS FCS uses

information from various complex sensors to make actuation commands for a specific

task. Most FCS do not have any built-in data validation or data verification, and thus

must trust the sensors’ values. This reliance leads to physical attacks on a sensor being

an exploitable method for disrupting a system through data manipulation [13].

Because of the aforementioned characteristics, the UAS FCS is susceptible to

cyber-attacks. Network, firmware, and sensor attacks are just a few categories of such

cyber-attacks [14, 15]. Network attacks include denial of service, man-in-the-middle,

false data injection, and replay attack. Firmware attacks include code injection, false

data injection, and direct firmware modification of the controller. Sensor attacks include

supply chain modification of the sensor’s firmware, addition of a back door, false data

injection, sensor spoofing, walk-off, and expansion of typical noise margin. An example

FCS architecture showing the system level overview, as well as the potential locations

and types of vulnerabilities to cyber-attacks, is shown in Figure 1.1.

An FCS typically has three main components: the sensors, the main processor,

and the communication system. The sensors measure information about the aircraft’s

state and external environment such as position, velocities, accelerations, angular
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FIGURE 1.1: High Level Abstraction of a UAS FCS Architecture

rates, ambient temperature, and air pressure. The micro-controller, or main processor,

contains control algorithms for the aircraft. This software consists of low-level drivers

for retrieving information from the sensors and providing that information to the

autopilot controller. The autopilot processes the sensor data, taking into account any

predetermined control algorithm tuning parameters and other aircraft limits for use

by the navigational algorithms. The navigational algorithms provide proper actuation

outputs to guide the vehicle in the desired direction to perform a specific mission, if one

is provided. The last component of an FCS is the data communication between the FCS

and a Ground Control Station (GCS). The aircraft state, status, tuning parameters, and

commands are transmitted over a wireless network between an operator at a GCS and

the UAS.

Many of the common components of an FCS, such as the firmware, sensors,

actuators, and communication, contain vulnerabilities that can be introduced during

the manufacturing process, in the distribution chain, or at run-time through physical

access or from other vulnerable components. These vulnerabilities lead to the attempted

exploitation of such by way of human’s malicious intent to disrupt a system. Malicious

intent is based on manipulating hardware or software, or intentionally interfering with

the supply chain by introducing unsecured or corrupted firmware at the manufacturing,
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distribution, assembly, or programming stage of any component. The communication

between the main processor and its sensors and actuators is also open to vulnerabilities

as is the navigational, control, and lower-level driver firmware of the main processor.

Corrupted firmware, for example, can interfere with the communication protocol, such

as between a sensor and the main processor running the control algorithms, or the

sensor data itself could be manipulated through false data injection [16].

One common method used for ensuring proper CPS system behavior is through

Run-Time Assurance, or RTA. RTA is based on a simplex architecture by combining

Run-Time Verification (RV) with the Run-Time Monitor [17]. Run-Time Verification

is the combination of the three main verification techniques (theorem proving, model

checking, and testing) to be used during system run-time to look for evidence of the

satisfaction or violation of a system property [18]. Run-Time Monitors use the detection

information from the verification to determine if a simpler, back-up control algorithm

should be used.

RTA is becoming increasingly more prevalent in the domain of autonomous

systems as the most useful approach for enforcing safety of cyber physical systems

[19]. Architectures of RTA monitors vary widely in their structure, which allows

for greater usability and flexibility of such monitoring architectures. A CPS with

run-time implemented monitoring typically consists of sensors, actuators, preset

mission requirements, and a control algorithm which can be complex code or driven by

machine learning. RTA can be used to ensure that the control algorithm (1) provides

the correct actuation outputs based on sensor inputs, (2) ensure sensor values are

accurate based on predetermined thresholds or compared with duplicated sensors, (3)

the actuators perform the desired response based on the control algorithm used, and (4)

that the entirety of system components work together to fulfill mission requirements.

1.1 Contributions

The research discussed herein focuses on the development of a functional monitoring

architecture in support of Run-Time Assurance running in real-time on a CPS based
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process, specifically the Flight Control System of a UAS. To illustrate the high-level

design of a functional monitor, Figure 1.2, adapted from [16], is displayed below. In this

diagram, this simplified functional monitor contains the sensor data, communications

processing, and the output actuator commands. These values are observed by the data

validation block, which can represent any monitoring architecture or framework.

FIGURE 1.2: High-Level Functional Monitor Design

Functional monitoring is the process of continually observing a specific set of system

inputs and any other accessible internal values to ensure that the expected outputs are

being performed. If the actual outputs differ from expected ones, the typical functional

monitoring architecture would provide information to the user about the anomaly.

Depending on how robust and thorough the monitors are, they could even provide

more detailed information on where the errors occurred. The functional monitor

architecture developed in this research is intended to be placed between the sensors

and the autopilot block of the high level abstraction of Figure 1.1. One of the biggest

challenges in developing a functional monitor based upon the run-time assurance

architecture is determining the system operational boundaries, which typically involve

specific domain knowledge. Based on the review of existing Run-Time Assurance

architectures (as discussed next in Chapter 2), there is no known method for analytically

determining the boundaries of such a system.
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The goals of this research are to determine those system boundaries and detection

thresholds of a UAS through data collection, data analysis, and empirical modeling

to classify both how the system bounds can be determined and what data is required

to define the bounds. While existing physics-based aircraft dynamic models exist, no

detailed aerodynamics model exists for a specific UAS flying with the VCU-developed

Aries FCS. There are many instances where empirically determining boundaries for a

Run-Time Assurance-based monitor in the absence of a simple but accurate dynamics

model is helpful. As in this case, when a developer of a complex CPS does not have

a detailed system model but still needs to characterize the limits of an autonomous

system, an empirical approach must be used. More specifically, this research focuses

on creating a functional monitoring architecture based on empirical models derived

from observed system behavior. This method will be used to determine the system

boundaries for use in a run-time implemented functional monitor in support of RTA.

1.2 Organization

This dissertation is organized as follows. Chapter 2 presents a literature review

of run-time assurance monitors, the run-time verification framework, and existing

methodologies for using run-time assurance with cyber-physical systems. A

cyber-security testbed developed for the testing and verification of the work described

herein in Chapter 3. The simulated walk-off attack methodologies implemented on

the cyber-security testbed and used for testing the detection algorithms is discussed

in Chapter 4. The main work of this dissertation is the development of the functional

monitoring architecture as a subcomponent of Run-Time Assurance in Chapter 5, along

with descriptions of its individual components are presented. The results from the

implementation and testing of the monitoring architecture are presented in Chapter 6.

Lastly, the conclusion and future work are discussed in Chapter 7.
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Chapter 2

Background and Related Work

In safety critical cyber-physical systems, the cost and time required to verify safety

has increased in recent years driven by the increase in system complexity. Since the

construction of a CPS can vary widely, the resulting complexity of the safety assurance

process is increased. Existing methods of ensuring CPS safety of both the software

and hardware utilizes Verification and Validation (V&V). The V&V approach of safety

assurance requires comprehensive testing of as many system states of software and

hardware as possible at design time to determine the safety of a system. This process is

not feasible with the ever-increasing complexity of both hardware and software and

the quantity of components within a CPS. At the same time, the addition of these

components to a complex CPS can significantly improve system performance when they

are fully functional and accurate.

In addition, comprehensive testing for V&V to obtain a high-level of safety

assurance is difficult. Typical model-based designs using traditional V&V approaches

for safety focus on designing specifically for correctness of verification. Any design

time models and testing simulations must consider the run-time characteristics and

environments the safety specifications are designed to handle in order to accelerate the

Verification and Validation process of such systems. These characteristics have driven

the development of run-time architectures for online, real-time system analysis.
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2.1 Simplex Overview

Most examples of Run-Time Assurance, including most of the existing work reviewed,

are built on a form of the Simplex Architecture, also referred to as the switching

strategies architecture [20, 21, 22, 23]. The primary focus of Simplex is to utilize

simplicity to manage system complexity. Simplex works by monitoring the function

of advanced autonomous control systems to predict violations of safety properties

while maintaining lower development costs and increased system reliability. These

predictions are based on predetermined boundaries in sufficient time to switch to a

safer control algorithm.

The Simplex Architecture consists of a complex controller, safety controller, and

decision module, as shown in Figure 2.1 (adapted from [24]). All three of these

components receive sensor data about the external environment for use in triggering

control actions (e.g., actuator commands), which are then sent to the plant, (e.g.,

the Unmanned Aerial System). The complex controller refers to the main software

controlling the system, e.g., the UAS FCS (i.e., the autopilot). Some examples of Simplex

for use in performing Run-Time Assurance of an FCS are shown in [19, 25, 26]. The

safety controller is a simpler, more reliable, control algorithm that is tested at design

time to be used to return a system to and maintain a safe state. The decision module is

a component that decides which controller to use based on specified system operating

requirements.

Current research involving the Simplex Architecture identifies two types of

approaches, the application level and the system level [24]. The typical method of a

Simplex-based architecture is the application level. During operation of Simplex at the

application level, only the function of the application itself is monitored. Thus, safe

handling of any bugs in the main software of the micro-controller or operating system

is not guaranteed.

During operation of Simplex at the system level, software bugs in the main processor

can be handled correctly if the proper hardware/software setup is used. System level

Simplex monitoring is similar to the application level in that a safety controller and
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FIGURE 2.1: Simplex Architecture Logical View

decision module are used, with the unique distinction being in the location of the

decision module component. In system level Simplex, dedicated hardware is used for

the decision module, versus in the typical application level Simplex design, the decision

module is part of the main system hardware.

The use of a dedicated hardware decision module in the system level method is

based on the need for it to be isolated from any existing software bugs present in the

main system. The goals of the system level approach are to not only ensure system

safety from data errors but also protect from software bugs or other errors of the

operating system and main control processing unit.

Implementing the decision module in dedicated hardware may increase system cost

and power consumption, but it may also help maintain, or increase, system performance

over the alternative approach. In addition, it does provide for more effective monitoring

of system temporal properties. When implementing the Simplex Architecture, the entire

design process can be conducted in a similar fashion to hardware/software co-design

techniques. One such method under development which utilizes both the system and

application level methodologies is the System Level Simplex Architecture discussed

in [24] which is based on the application level architecture using components of the

Architecture, Analysis, and Design Language (AADL) Simplex approach [27].



Chapter 2. Background and Related Work 10

2.2 Run-Time Assurance

Run-Time Assurance (RTA) is an important addition to CPS to ensure full system

safety. RTA is a control-based framework where a complex, high-performance control

algorithm runs as normal but is supervised by a monitor. The monitor that looks for

specific system behavior and switches the control algorithm to a simpler algorithm with

known limits if the system behavior goes outside some predetermined bounds [28].

The inputs and outputs of any, or all system components, are observed

through RTA to formally verify specified behavior or system state during operation.

Run-time architectures require determining the boundaries of system behavior and

its characteristics at run-time. The result is the relocation of system analysis to these

newly developed run-time architectures. With the complexity of perception and control

of complex CPS, RTA is designed to maintain safe system operation of required, but

unverifiable, functional components when comprehensive V&V processes cannot be

used. These RTA-based architectures are used to accurately detect system problems

and then initiate a switch to a safer fallback control method to maintain safe operation.

The application of RTA to the FCS of an Unmanned Aerial System that is capable of

autonomous flight is useful in analyzing: (1) system modes of operation that are only

achievable in flight, (2) decisions by the autonomous control algorithm, (3) decisions

based on ever-changing mission requirements, and (4) unexpected interactions between

the vehicle and environment.

Run-Time Assurance frameworks are used to ensure safe operation of complex CPS

that use advanced control algorithms and increasing numbers of complex sensors when

these system components cannot be fully verified. The system contains a baseline

control algorithm that can be reverted to by the advanced controller if deemed necessary

during run-time by the RTA framework to maintain system safety and stability to

minimize system loss. This baseline control algorithm is simple enough that it can be

verified offline using comprehensive testing of V&V techniques. Run-Time Assurance

is the basis for online safety certification of complex flight control systems, which was

originally developed by Lockheed Martin and Barron Associates [25].
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Utilizing RTA provides for online verification methods to ensure system safety

through an analysis of the outputs of an unverified controller. RTA removes the need

to redesign the control architecture every time any system subcomponent is added or

changed. Another benefit is that unlike verification complexity, which increases as

the main controller grows in complexity, safety verification with RTA does not require

modifications, thus not increasing its complexity [19].

The authors of [29] develop an RTA model based on the Simplex Architecture. Their

model utilizes a black and white-box approach for ensuring correct system behavior

and optimal performance of an AI-based system. Their RTA model is designed for

any CPS with a controller that uses AI in the form of machine learning. The black-box

component is used to detect when a system is on a failure trajectory and switch to a

known safer, and likely less effective, backup control algorithm. The white-box in this

implementation is for predicting if the AI-based controller is uncertain of the proper

action to take, thus potentially leading to an unsafe system state. When this condition

is detected, the white-box switches to a backup controller, possibly saving the system

from reaching the unsafe state altogether.

It is discussed in the work of [29] how this approach only works if no decision by

the controller can lead to complete system failure, and if the safer controller is needed,

the algorithm must be previously fully verified. This RTA method was tested on traffic

light control of a small traffic grid, extended to a water treatment testbed [30], and to a

hardware-in-the-loop smart city environment to determine the scalability and flexibility

of this RTA approach. Throughout the testing, the authors of [29] aimed to determine

the effects of communication delays, sensor malfunctions, and incomplete information

on the performance of the RTA Architecture.

2.3 Run-Time Verification with Respect to Run-Time Assurance

When discussing the higher-level topic of Run-Time Assurance methodologies, an

understanding of Run-Time Verification and how it fits into the RTA picture is required

[17]. Run-Time Verification (RV) is a component of RTA where program verification is
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used to validate individual segments of a program’s execution or functionality against

a specification. The formal methodology of RV replaces offline program validation

and model-checking, which have become less viable in larger applications and have

a limited scope of verifiable properties. Run-Time Verification is tailored to analyzing

the system implementation during online runtime and can be paired with a form of

temporal logics to ensure specification compliance.

The purpose of RV applications is to verify that the system execution at run-time

exhibits the same safety properties as could be verified by offline methods, such as

V&V. This online verification is different from the online operations, depending on the

architecture used for the RV application. The RV monitors can perform the same error

detection as is usually conducted offline, except the monitor can have an additional

component that serves as a decision maker. This decision maker can switch a system’s

control algorithm to a safer algorithm to guide the system back towards a safe state that

is within the bounds of the safety property [31].

Run-Time Verification is typically used for continuous monitoring and analysis of

a system for recovery potential based on specified boundary conditions. It is based on

the original idea of program checking used to determine the accuracy of a program at

run-time. Program checking has resulted in the development of run-time monitoring

being usable for monitoring the system in real-time in instances where design-time

verification is not possible. The main goal of the resulting Run-Time Verification is to

detect run-time problems by providing a dynamic method for system analysis [32].

Run-Time Verification monitors are component based, meaning that simpler tests

are conducted to check if a specific trace complies with a specific safety property

resulting in the minimization, or removal all together, of offline comprehensive

testing. The elimination of pre-deployment testing can be helpful in situations where

comprehensive testing is not possible, either because of system complexity or lack of

domain knowledge. Conducting comprehensive verification of such systems is difficult

due to the innumerable combinations of system states and functional traces.

When utilizing methods such as system trace, a success or failure flag is typically
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reported based on whether the trace satisfies a safety property specification or not.

Run-Time Verification has roots within program profiling where a normal and abnormal

execution are run to analyze similarities and differences between the two results. The

analysis of the results from this testing assume that the cause of any differences are from

abnormal conditions and can be viewed as a precursor for runtime execution analysis

[33].

The high-level architecture commonly used for RV is composed of a software

monitor to observe the program’s functionality, which is then compared to the system’s

run-time elements to verify safety requirements or safety specifications. The safety

requirements are usually written using a form of temporal logic, state machines, or

another plain English method of property specification. The inclusion of temporal

specifications in RV requires model checking algorithms for use in certifying a system

model from temporal logic-based properties [34]. In the typical temporal logic approach

to system verification, algorithms are designed to check if the system generated

state-based event trace complies with its corresponding safety property. This method

relies on testing if the system as a whole falls within a set of safety properties. Although

the name of RV alludes to its only use being online at run-time, RV can also be used

offline during implementation, development, or any pre-deployment stage to monitor

recorded simulations of the system to detect any errors.

Monitoring and verification methods are used in ongoing research for specifically

designed RV with identified uses of debugging, testing, behavior analysis and recovery,

safety property monitoring, and an overall understanding of system usage and

operation. The application of these tools, such as run-time monitoring, is made possible

by the concept that any system can be broken down into a series of events or system

states, all of which have some operation characteristics that allow for transitioning

between these states. It is these transitions that pave the way for processing with

formalized specification [35], development of behavioral models, and algorithm and

statistical analyses [36].

Run-Time Verification is commonly used when integrating untrustworthy hardware
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components, which contain their own dedicated, proprietary firmware, with an existing

system. The theoretical RV approaches discussed within [37, 38, 39, 40, 41] are

based upon architecting frameworks for specifying run-time properties by integrating

existing RV monitors that use a form of temporal logic for semantic monitoring of

safety properties [42, 43]. The Property Specification Language model checking is

another method used to create a version of temporal logic to include time-based and

regular expression-based formal verification techniques [44]. This extension on formal

verification is achieved by expanding the use of monitors within finite execution traces

and improving the property classification with respect to run-time monitoring.

The analysis of existing verification methodologies shows that most algorithms

contain a monitor to check for variations of the system state then update a flag when

a new observation fails a particular specification model. Current research of Run-Time

Verification encompasses three main categories which work in conjunction with each

other to ensure overall system safety and performance:

• Algorithms for ensuring adherence to property specifications of a system trace

• Instrumenting the system to collect trace data

• How this information supports detection, mitigation, and feedback used by

another part of the system for switching states, provided to an observer through

an alarm or flag, or a combination of the two

When analyzing the system trace and generating the algorithm that fits the required

property, it is of vital importance to ensure that the correct observations are made,

and sufficient data is collected. Too much data or incorrect trace analysis can produce

increased overhead as a result of the addition of a monitoring architecture. The

observations of system trace show the sequence of events including some history of

performance and are typically combined into specifications such as regular expressions,

temporal logic, and state transition analysis.

Continuing with the idea of ensuring accurate observations during system trace

analysis, it is important to maintain adherence between the proper specification
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language and the desired safety property. The specification language alone provides a

key insight into the type of traces being observed based on whether it is focusing solely

on the system state changes, the values of any variables within each state and how they

change, or some combination of the two as this integration would require additional

properties. Due to the focus on safety properties, methods of analysis are centered

around the transitions between two and only two states, or potentially a single state,

leading to more application specific algorithms for determining property coherence.

The system recovery mechanisms and feedback are significant in preserving system

functionality. The information gathered from the trace observations and safety

properties are used to create a method with which to inspect performance to initiate

a switch of control algorithms if the feedback received does not match the desired

properties. An inaccuracy in these decisions can result in a false positive or false

negative, leading to an unwarranted controller switch, reducing the performance, or

not switching when necessary, causing a system failure.

Another area of active research in run-time monitoring is based on the importance of

the feedback from the decisions in ensuring the data being analyzed from the run-time

observations of the system is accurate. It is critical that this data is properly compared

with prerecorded trace data to determine to what effect a property violation will have

on the performance and how much the recovery controller can correct the problem. The

feedback and switching methods vary slightly from the previous categories of RV in

that, instead of specification languages for monitoring safety properties, more specific

algorithms for safety property analysis are created and used to account for the ability of

concurrent executions.

When attempting to conduct verification on analog and mixed signal systems,

random behavior can be exhibited, making the verification difficult. Research

conducted in [45] attempts to use statistical properties to determine a confidence

measurement and error margins for system accuracy during RV. Challenges identified

in verifying such systems include overall complexity, how specific the property is, how

many resources the verification computation requires, and how random the behavior is
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as a result of using analog devices. These challenges create an RV implementation that

is computationally intensive in both time and resources [45].

To maintain a high level of safety, a separate but purpose-built monitor is used

to ensure safety goals are met and that the behavior is as expected. The basic

architecture of the monitor is to analyze system variables and behaviors to compare

against specifications for accurate run-time operation. The authors of [46] analyzed

the usefulness of designing a monitor specifically to evaluate what conditions produce

false positives or false negatives. They concluded that for the monitor in question to

prevent false responses, the conditions must be previously noted and incorporated into

the safety specification, which is not as feasible in a complex system with continuously

changing states.

Run-time monitors can be used in any industry including automotive applications.

In [47], another monitoring framework for use in offline and online processes was

developed for fault detections based on formal specifications. This framework analyzes

the relationship between system behavior and formal properties to draw connections

between the run-time characteristics and possible faults. The faults identified are ones

that cause a variation in system characteristics and performance from typical operation

caused by hardware degradation, externally induced bit flipping, or both intentional

and unintentional supply chain errors.

A difficulty in run-time detection of safety-critical system issues identified in [48]

is from the increased complexity as a result of systems being more distributed and

reactive. The objective of distinguishing between the source of the fault versus a result

of the fault is a difficult task. The authors aimed to develop a systematic approach for

fault detection of both source and result in distributed systems during run-time through

the use of automatically created monitors from temporal logic specifications.

The authors of [48] note that simply using temporal logic-based properties does

not account for every event sequence encountered during run-time. Their approach

is based on reactive applications which are defined as systems with hard software

deadlines where the environment dictates system needs. For example, in a flight control
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application, the sensors produce values based on the environment which are then used

by the main processor to respond dynamically. The approach theorized must also take

into account that safety properties, typically created from hazard and risk assessments

from the system designers, are regarded as lookup tables between the cause and result

and do not account for every real-world scenario. Minimization of overhead was also

considered to ensure the system’s normal execution is not affected by the monitors and

the system would be mostly unaware of the addition of any software unless mitigation

is deemed necessary.

In contrast to [48], detecting an error as well as diagnosing the origin are both simply

considered faults in the work of [49] where no distinction is made between what caused

a fault and the result of that fault. In the work of [50], identifying faults is conducted

for use in system recovery and repair of the components. This method is described

as a comprehensive behavioral model encompassing normal and faulty behavior and

the interaction between these two states. Development of a comprehensive model is

a difficult task since system behavior is continuously changing, which results in some

fault identification being left out. Utilizing the system models, run-time monitors are

created from deduction of system operation between normal operation and error filled

operation to gain an understanding of its behavior. Another example of which includes

the discrete event fault detection [51, 52].

A few categories and implementations of Run-Time Verification were researched

and are discussed below. These categorizations include feedback and recovery

controller switching in Section 2.3.1, the effects of timing and induced system overhead

in Section 2.3.2, implementations of distributed monitors in Section 2.3.3, and challenges

to Run-Time Verification and Run-Time Assurance in Section 2.3.4.

2.3.1 Feedback and Recovery Switching

The feedback information obtained from an RV monitor and the control algorithm for

switching to a recovery mechanism is arguably the most important part of the run-time

monitoring architecture, thus how a safety violation is handled is an important area of
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research. The main question is how to develop a recovery mechanism that accurately

switches controllers to return a system to a safe state from an unsafe state as needed

with minimal design-time verification being conducted.

When designing the switching component of a monitor, the goal is to maximize how

much the advanced control logic is used without losing any performance or safety. The

purpose of the switching component is to monitor online, during run-time, the system

operation and performance of the control algorithm and flag for a switch to a baseline

controller if necessary based on predetermined boundary conditions. One method used

in modeling the switching system is through analyzing the various system states, such

as present, target, safe, and unsafe [53, 54].

Existing research in the area of feedback and recovery focuses on at what point

during operation to switch to a backup control method. While it is beneficial to

determine if a system has crossed some predetermined threshold and is no longer

operating within specified bounds, there is limited focus on how those boundaries

are created. One such example is in [55] where the monitoring method is designed

to ensure safe operation of a controller that includes black-box components based on

predetermined safety bounds. These safety bounds were determined by the authors as

the subset of states that are within the expected operation of the system. The recovery

controller, utilizing the bounds as a safety envelope, selects the necessary controller

based on the state of the system which was tested and can ensure the system remains in

a safe state.

To ensure safety of autonomous systems that include complex black-box like

components for the control algorithm and potentially the perception layer as well, new

monitoring techniques must be developed as existing methods were not developed with

this level of complexity in mind. Proper functionality of any black-box like component

is crucial to system performance, therefore a monitoring architecture for system inputs

and outputs to detect incorrect behavior must be developed. The most comprehensive

monitoring architecture would have complete system access including input/output,

internal states, all data signals, and system resources to compare data against trusted
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values, sources, and components, thus designating any component as trusted becomes

an even more difficult task.

2.3.2 Timing and Delays

When monitoring architectures are added to a CPS, delays are introduced in the

normal operation of the system. The timing impacts on both hardware and software

interaction must be taken into account. There are various methods that can be used to

help minimize such timing issues which are system dependent and include multiple

processes or cores, process synchronization, and hardware timing can be considered.

Any additional system configurations can also potentially result in extra inter-system

communication overhead, which also needs to be taken into account.

With the addition of Run-Time Verification into a system, the extra time required for

the monitor to check system variables and perform its analysis at run-time can result

in increased overhead costs. Some existing research analyzes the trade-off between

accuracy and monitoring overhead reduction with the hypothesis that in some cases

lowering the detection accuracy of execution events to allow the monitor to perform its

analysis may be worth the reduced system performance [56].

When attempting to detect timing violations, there is a tradeoff between detection

speed and resource utilization. As noted by [57], to provide early detections, a high

amount of computation resources are required, which may be infeasible for a specific

implementation. The authors discussed a theoretical approach for efficient monitoring

algorithms for timing requirements using Real-Time Logic to detect violations in a

minimal amount of time. The algorithm used was implemented in the Java Run-Time

Timing-Constraint Monitor (JRTM) for use with any Java application to monitor system

timing requirements.

The goal of the JRTM is to collect timing information from the system during

run-time for verification with predetermined timing constraints and if a violation is

detected, a flag is raised. The benefits to this system include separation of the monitor

from the main system being monitored, to reduce any interference and introduction
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of timing violations simply by this addition of the monitor, and minimization of overall

overhead by limiting the amount of shared resources between the monitor and the main

system.

One commonly noted challenge of conducting run-time monitoring is the potential

overhead created by the addition of such a system. Depending on the implemented

method of RV, the overhead is either negligible, i.e., as detached from the main

processing as possible, or significant enough to cause a slow down in the system

being monitored, leading to missed software deadlines and stale data used for critical

decisions. Some common sources of monitoring overhead include how many locations

of the main process are being monitored, how many monitors are processing similar

data, and the execution resources utilized in monitoring.

Research on optimizing monitors to reduce overhead is theorized in [58] through

analyzing the effects of assertion, temporal, and sequencing properties in a software

health management approach. This work contains conceptual architectures but

no implementable method, thus lacking experimental results towards their goal of

determining if monitor optimization results in improved error detections.

Based on existing research on various styles of temporal logics and the RV

frameworks that use those variants, the researchers of [31] attempted to develop a

more generalized rule-based temporal logic methodology, called EAGLE, utilizing

recursive equations for describing monitoring logics with the intention of creating a

logic that encompasses the ideas of formal logics including interval, future, past-time,

and statistics-based, along with finite traces, state machines, and regular expressions.

The idea behind interval logic is that a predefined logical formula can be evaluated

within the current run-time interval such that the formula is satisfied by an interval

sequence formula creating the assumption that it will hold true over the entire interval.

Interval logic is a high-level framework for describing temporal relationships instead

of individual state-based properties where a violation can be identified at any given

time. Typical temporal logics do not provide information about an entire computation,

only specific behaviors. Details of the entire computation are important when timing
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requirements are being analyzed, as those are typically represented in terms of interval

durations [59, 60].

Past-time temporal logics methods differ from typical present-time temporal logics

in that the present property satisfaction is based on past data from starting time to the

present [61, 62]. Future-time temporal logics create inferences on what the expected

states are based on the present information [62, 63, 64]. Finite traces are developed

based on the idea that a path of a finite state graph is guaranteed to satisfy the safety

properties of the formula used to generate the graph, as long as the finite execution of a

system ends in an accept state and all properties were satisfied along the path trace [65,

66]. Lastly, regular expressions are useful in describing performance patterns succinctly

and have many characteristics that allow for extensive patterns and are scalable [67].

The researchers of the EAGLE framework determined that the logic required was

expensive and resulted in undecidable satisfiability, therefore resulting in the creation

of a modified version where satisfiability checking is decidable which would allow

for proper verification during run-time. The subsequent implementation to fulfill the

requirement of satisfiable checking is the RULER framework [68], based upon EAGLE.

The goal of this improved implementation is to develop a lower-level rule-based system

using simpler logic for monitoring than EAGLE, since RULER’s logic was designed to

encompass the benefits of pairing RTA with any form of temporal logic.

A major component of CPS that makes it useful in real-world daily applications is

its responsive nature where it reacts to external stimuli in the environment to create

desired outputs or results within a timely manner [69]. Typical CPS are not designed to

be free of faults, resulting in lack of functionality. This results in the need for a method

to ensure correctness when faults are present. Work conducted by [70] analyzes the

variability of the physical environment when timing constraints are not met, leading

to unexpected outputs and undesired system run-time behavior based upon prior

work of a generalized methodology for formally specifying run-time requirements in

time-sensitive systems [28, 71].
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2.3.3 Distributed Monitors

Run-Time Verification can also be applied to distributed CPS such as in the work of

[70] and the evaluation of which are analyzed in [72]. It has a benefit over standard

validation techniques on distributed systems since RV is not as time and resource

intensive. A difficulty of implementing RV on a distributed system is that typical

distributed CPS do not have a central clock for time syncing among all subsystems.

The researchers of [28, 71] expanded their work to include an analysis of distributed

systems, which come with their own challenges of collecting information from multiple

processes and the lack of clock synchronization across distributed platforms. The

architecture records system performance as an event trace with the design requirements

and expected system safety properties being monitored online using real-time logics

against the event trace. If a property violation is detected by the monitor, all other

monitors are notified, and the process institutes an adequate recovery option to

maintain system safety. The monitoring framework is built specifically for distributed

systems where each processor contains one monitor where a processor provides events

to its dedicated monitor which can attempt to perform time synchronization with a

specific algorithm and send the information about a property violation to the other

monitors.

One example of the lack of a central clock causing difficulties is when attempting

to use the timestamps from sensor data as a point of comparison, which can result in

an inaccurate timeline of events. As a result of time-based sensor data comparisons

not being the best option for data comparison, the proposed RV method uses the

Satisfiability Modulo Theory approach [72]. The author’s goal was to determine if

the formula is satisfiable by creating written based properties, i.e., the safety property

being monitored, by treating states as booleans and values as numerical while utilizing

temporal operators such as until and eventually. Analyzing these written-based

monitoring properties allows RV to provide information only when the safety property

is fully satisfied. This is beneficial in that less information is transferred among multiple

monitors.
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An example method of distributed run-time monitoring is the SOTER framework

containing RTA modules for each component, with as many as needed running in

parallel [73]. The modules are designed with a high-performance controller for the

data in question, a low-performance controller of safety-verified programming, and

the desired safety specification. SOTER is another example that uses the Simplex

Architecture as the basis for its design. The goal of this system is to minimize

the limitations between system complexity and safety requirements employing a

combination of design-time verification as well as environment verification at run-time

utilizing the same switching methodology to a safer controller as necessary.

Another example of distributed run-time monitoring is the multilevel runtime

monitoring of [74, 75]. The run-time monitors are implemented using Simulink to detect

and mitigate system failures and attacks that are missed during the offline verification

process. The authors claim that a single monitor is insufficient for detecting system

failures, leading to the development of the multilevel architecture. This multilevel

framework contains multiple unique monitors strategically placed in a CPS to provide

a more comprehensive detection result.

2.3.4 Disadvantages and Challenges

With the many uses of RV for monitoring and maintaining safe system states, it

isn’t without its drawbacks. One such disadvantage to using RV as described in

current research is in handling the additional temporal overhead created with the

implementation of the three category RV approach [32].

The three categories of the Run-Time Verification approach to safety and

performance are through system trace, system observation, and feedback and recovery

analysis as previously discussed. The process of implementing correct trace observation

methods, implementing temporal logic-based safety properties, and analyzing the data

for recovery and feedback to the user and system can result in a less safe system. This

decreased safety is attributed to these components reducing the performance of the
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normal system as compared to before the monitor was incorporated, depending on the

specific method of implementation.

The real-time nature of the subcomponent of CPS in question within this research,

embedded systems, results in complex causes of errors and anomalies [76]. The

efficiency of a run-time monitor is important so as not to disturb the standard operation

and introduce delays into a system. The time to conduct the switch is crucial to the

safety and reliability of the system’s performance if the monitor has correctly identified

a property failure and initiated a recovery mechanism. If the additional temporal

overhead is unavoidable, this must be taken into account when designing the RV system

and its respective safety properties.

One known difficulty of RV is that offline testing tends to be more predictable,

organized, and can be restarted whenever needed. Online monitoring is constantly

changing and cannot be reset since the environment creates situations which cannot be

simulated and the addition of RV can introduce behavioral changes. The efficiency of

RV comes into question when these unexpected behaviors are added into the system as

temporal properties are typically based on infinite system paths, thus the monitoring

algorithms must attempt to account for known and unknown behavior of the finite data

collected.

Some other difficulties that come with monitoring during run-time are a result of

the variations in system control algorithms, specifically machine learning or adaptive

algorithms, and codebase size. Systems with large codebases result in a higher

likelihood of errors, which has led to a simpler controller used for providing the bare

minimum requirements to maintain system safety [17].

Run-Time monitors require efficiency within the areas of safety property checking,

reducing overhead of the monitoring algorithms, handling uncertainties within the

system, what feedback information to provide, and how to develop the recovery

controller. In order for these aspects to even be considered a possibility, selecting

which safety properties to monitor is fundamental. Typically, overall system accuracy

is analyzed by RV, which is also looked at during offline verification as well and
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often cannot provide any additional information when done online. This leads to the

requirement for the development of distinct properties that must be satisfied during

development and which are checked at run-time.

The high-level assurance and verification framework consists of two main categories

of safety properties, the assurance properties that are satisfied through Run-Time

Assurance and then the monitoring properties that are monitored by the RV model and

recovery components of the framework. The assurance properties are mostly focused on

system safety, accuracy, and performance and are considered more as a metric of future

system state than components that are directly monitored. Monitoring properties differ

from assurance properties in that they are based on data being directly monitored from

a past system state.

The monitor provides information, including alarms or flags, about the system to a

switching controller which is part of the recovery component with the goal of avoiding

a safety property violation. In other words, to detect a failure of an assurance property, a

corresponding monitoring property must fail first to indicate that an assurance property

violation is close to occurring and should be avoided if possible. Most existing research

maintains the separation of these two categories of properties with no suggestions on

combining, or even translating between, monitoring and assurance properties.

2.4 Boundary Determination

RTA architectures utilize a set of boundaries to verify performance and correctness of

a system to ensure maximum operation potential by maintaining safety constraints

and proper backup controller operation. In an autonomous control system utilizing

RTA for safety verification, the boundaries must first be determined by analyzing the

relationships between input and output states and with the known environment.

These relationships can be used to develop a bounding algorithm through

mathematical techniques to create a system model describing the environment and

system boundaries. Once the model is created, its constraints can be verified offline

using existing formal verification methods. The boundary analysis method has two
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major considerations, the first being the scope of input and output state relationship

analysis and their significance in providing useful information for monitoring an

adaptive system, and the second that all potential failure modes must be accounted for.

An ongoing focus of current research is the development of bounding algorithms that

result in a provable boundary and development of a complete safety property domain

of the boundaries.

The development of boundaries through mathematical models to ensure compliance

with all potential system states is computationally intensive and difficult even for

offline calculation, depending on the dataset involved. Once the boundary models

are generated, the monitor component of RV can then be created with the appropriate

conditions to switch from the main, complex, control algorithm to the safer control

algorithm. Ideally, the models and conditions to switch can be verified for correctness

and reused for other parts of the system. One drawback to any mathematical

methodology is that software overhead to analyze the data and initiate the switch is

typically not accounted for in the mathematical models.

2.5 Design Time Formal Verification

Over the years, development of formal methods for analysis and validation of real-time

systems has allowed for the construction of system specification properties through

mathematical formalisms. While formal proofs for property specification are limited

in scope and do not always provide a complete picture of offline system behavior,

they can indicate some level of trust in particular components of a system. The lack

of completeness of formal proofs is due mostly to the advances in system hardware

and software, resulting in increased software complexity, as well as ensuring all aspects

of the system behavior are tested is time-consuming and expensive financially and in

computational resources.

Formal verification is not a commonly used method since correctness verification

conducted in an offline system does not guarantee correctness during run-time. The

divergence in correctness is categorized as design verification and implementation
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verification, where adherence to formalisms in the design does not guarantee adherence

to the implementation. In an attempt to bridge this gap, testing predetermined inputs

on the implementation can help provide some system confidence, but is still unable to

assure full confidence of all possible input combinations. As a result, offline verification

of any system is a difficult task, all while not providing confidence in the entire system,

leading to the rise in research into online Run-Time Verification techniques to monitor

continuous aspects of a system while it is performing its designated task.

The ensuing run-time assurance framework developed by the authors of [77] is

the Monitoring and Checking (MaC) framework utilizing Java bytecode. The MaC

framework is used to ensure adherence to formal specifications of a system during

run-time to create specifications of low-level events from high-level events and the

development of code for low-level event detection.

The methodology starts with a filter having inputs of low-level data and timestamps,

which are used later, then passes the data to an event generator to convert the data into

high-level events. The first two stages of the filter and event generator are components

of the monitor. The generated events are then forwarded to the checking component,

where events are compared with the requirements for consistency. The goals of the

MaC architecture ensure correctness of the system during run-time in terms of the

formal requirements through monitoring specific states and checking against formal

specifications [78].

Initially, the MaC framework was designed around systems with fixed safety

properties, referred to as hard real-time systems. The authors of [79] aim to expand

this architecture to soft real-time systems using probabilistic models to verify system

correctness. One such example of soft real-time systems, or more specifically a

flexible system that allows for data to miss specific deadlines, that is under research

in [79] is a wireless sensor network. In the wireless sensor network, data is

transmitted and received at varying frequencies, sometimes even being repeated if no

acknowledgements occur depending on the network protocol used. The constraints on

the system behavior fall into the probabilistic category instead of concrete deadlines
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requiring to be met. One notable aspect of MaC is that extra implementation is required

for it to be inserted into the system, potentially introducing errors or timing issues

during run-time that were not present during offline testing before any such Run-Time

Verification method, such as MaC, is added.

In contrast to most RV applications designed around ensuring correctness of

computation with quantifiable property specifications, the extension of MaC, RT-MaC,

adds verification for timeliness and reliability through quantitative time-based temporal

logic specifiers and probabilistic models [80]. The addition of time-based components

to system verification allows for time constraints, such as maximum time spent, when

comparing system functionality with safety properties.

The difficulty in designing such an RV method is that the systems can diverge

from its requirements based on several external factors, such as incorrect data packet

format or signal loss, resulting in the combination of run-time system checking as

well as the added assurance with probabilistic models that can help increase system

confidence. Run-Time Verification typically is only able to track a single function trace

for each model. This is where the probabilistic model checking is beneficial in providing

improvements to a system with recurring events, such as any system that has a task

scheduler [79].

Some current RV research utilizes models based on probability for predicting safety

specification satisfaction of system behavior. Probability based Run-Time Verification

methods using statistical models is one way the RV framework can be used for

monitoring system performance [45, 46, 79, 81]. Another method is models with hidden

states for detection of unobservable states, i.e., when a state cannot be determined from

a series of unique inputs [82]. While many methods for run-time monitoring exist and

have been applied to various systems, the uncertainty of complicated systems, e.g.,

UAVs, continues to be an area of safety concern for system developers. By incorporating

model-based detections and methods to ensure a system can continue in the presence

of a violation, such as the switching algorithms, is one area to review for uncertainty of

a system.
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Run-Time Verification for use is in continuous system performance observation

of individual components to detect violations of safety properties with the goal of

increased accuracy is considered by the authors of [81]. The approach specifies the

properties with probability-based metrics of property satisfaction style monitors of the

system for real-time monitoring and provide feedback for detection of safety property

violation. One difficulty identified is that most of the systems in question have infinite

possibilities of the control system output, therefore detecting violations must be done

carefully on specific aspects of the system.

At present, most existing RV architectures require the addition of code to emit

specific values that are of interest to the monitor. Typically, this extra code modifies

the run-time aspects of the system, creating different run-time behaviors than in normal

operation and potentially causing timing or general system errors. The requirement of

efficiency in system trace monitoring during run-time has resulted in the development

of various Java-based RV tools, such as Java PathExplorer, Java Monitoring and

Checking, and Monitoring Oriented Programming [63, 78, 83, 84], to implement formal

specifications such as temporal logics that have history for use in predictability of states

and regular expressions [35, 42, 61, 77, 85].

Using the performance trace of a program to compare against preset properties to

determine if any errors have occurred during operation is not a novel concept. Prior

work on trace analysis has been conducted by the NASA Ames Research Center as part

of the PathExplorer project. PathExplorer, along with many other Run-Time Verification

approaches, are paired with a form of temporal logic for specification generation in

systems with infinite trace possibilities, such as an operating system or control system

for an autonomous application [61, 86, 87].

Some other publicly available tools that utilize forms of temporal logic for program

and system accuracy are that of the Temporal Rover Project [85, 88] and Java PathFinder

[63, 89]. In these two examples, temporal logic is used to express properties as program

annotations and then replace those properties with executable code and other tools such

as the Monitoring and Checking Toolset previously discussed.
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The Temporal Rover Project focuses on the development of two efficient algorithms

for verifying safety formulas using past-time logic through a rewriting-based approach

followed by code synthesis from the safety formula. The goals of these algorithms are

to analyze execution traces during run-time for error detection such as deadlocks, data

race conditions, noncompliance with formal specifications, and errors in multi-threaded

execution. Other unstudied aspects, in addition to the lack of scalability, are creating

fault tolerance in the system through safety specifications and initiating recovery actions

for a system being monitored with the safety algorithms. The algorithms developed

are designed with a specific use case in mind, analyzing only a single execution trace

and are not scalable. The non-scalability results in only being able to prove individual

past-time logical safety properties are correct, since proving correctness of the entire

system is not possible.

The Monitoring Oriented Programming (MOP) variation of run-time monitoring

developed by [84] focuses on ensuring system reliability as a fundamental baseline

in system implementation. The framework utilizes various methods for automatically

generating monitors from preset properties and checks those against normal system

operation to analyze the behavior for property violation and validation during run-time.

Two instances of the MOP framework are introduced for verification and run-time

monitoring; JavaMOP, for Java-based programs implemented in software, and BusMOP,

for PCI bus analysis implemented in hardware.

JavaMOP Monitoring Oriented Programming as designed by [84] is based upon a

high-level logic component consisting of logic plugins and a logic plugin manager.

The logic plugins are used for generating the monitoring pseudocode based on the

logic being used which is sent to the logic plugin manager having both a transmitter

and receiver component. The manager receives a request from the specific MOP

implementation which indicates the target programming language and issues a request

to a specific logic plugin. The data received from the plugin is transmitted to the

MOP Framework in use which requested it for use in the implementation. This

specifically designed MOP Framework is split into a language translator which converts
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the pseudocode from the plugin manager to usable, implementable, code which is

then used in conjunction with formulas extracted from the initial safety property.

Lastly, each MOP architecture contains a user interface for interactions with other MOP

Frameworks.

The benefit of MOP is that it is a generic run-time monitoring architecture

for combining logical specification properties with the implementation suited for

comparisons during runtime [90]. The toolset can then generate pseudo-coded monitors

of the specifications to be used by another level of the framework to create programming

language specific code. The purpose of creating pseudocode first is to ensure that MOP

remains as generic as possible and can be used on a system in various programming

languages. Monitoring Oriented Programming differs from other runtime monitoring

implementations such as Aspect Oriented Programming, AOP, in that AOP is based

more on monitoring specific system traces, whereas MOP is designed for a more

automatic and generic approach through the use of logical plugins to allow for

translation between various logical formalisms and various programming languages.

The MOP and other existing RV methods typically presume that all possible system

states are accessible to the monitor, which is not always feasible with the software

reliability and development expense of allowing access to all system variables.

BusMOP Another location of system faults comes from hardware degradation or

manufacturing defects, which can lead to software unpredictability and unknown

system state transitions and need to be considered when analyzing the accuracy of

model observations. While RV architectures have been developed for various industries

and applications, the monitoring components that slowly degrade over time is one such

application that is not commonly reviewed in the literature.

Along with the embedded component of cyber-physical systems becoming more

complex, developers are shifting focus by using more Commercial-Off-The-Shelf

(COTS) components due to their continual development by the manufacturer which

minimizes the development time and cost of custom components. One problem of

COTS having continual development and updates from third parties is that they are
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considered black-box components. A drawback to black-box components is that correct

functionality of a specific part, which should be considered at design time to meet

formal requirements, is not guaranteed and difficult to verify its accuracy. This can

be as a result of many factors including manufacturer reluctance to provide component

specifications, details of non-standard implementation for a more application specific

design, or malicious modification of drivers by a third party.

An attempt at creating a run-time monitor for COTS components was conducted in

[91] based upon prior work of the MOP framework. The component’s specifications

are compared with its observable characteristics during runtime and if any violations

are detected, a recovery mechanism is initiated to return a safe system state. The

challenges with run-time monitor development of COTS components are that they

contain unknown hardware and software aspects, and the location of any potential fault

is difficult to determine.

The developed method, BusMOP, attempts to analyze the interaction between the

hardware and software of the black-box component as well as the communication

with the rest of the system. Typical run-time monitors introduce overhead through

analyzing the current system variables and comparing the current system state with

specifications. To eliminate overhead from the monitor, BusMOP performs bus sniffing,

so no execution time is added to the main system and the comparisons are conducted on

dedicated FPGA hardware to ensure no unnecessary system delays are created. One of

the major benefits to this approach is not only the addition of negligible overhead, but

also the main system requires no modifications and is unaware of the monitor unless

a recovery mechanism is requested by BusMOP. The run-time monitor was created in

the FPGA hardware to ensure the speed of processing matches the speed of modern

COTS components due to their extremely optimized nature. The usefulness of this

monitor variation is not illustrated with any data, and only states theoretically and

algorithmically that the method developed will detect variations in COTS components

with degradation.

Degradation of any system hardware component can result in uncertainty of that
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component leading to incorrect values, thus incorrect system state, which can become

complete failure. The work conducted in [82] looks to expand the typical RV techniques

utilizing model-based estimation to monitor safety specifications of cyber-physical

systems with hardware uncertainty and hardware failures. This work aims to utilize

the hidden state approach to minimize a common difficulty in creating a RV technique

of the high cost of being able to access all system states. Temporal logic is again used

in this implementation, as is commonly used in many RV architectures, to create the

formal specifications as well as a probabilistic approach where the monitor computes

the probability that the safety property is satisfied. The research concluded that the

validations were successful on a limited system model and were not perfect in detecting

the simulated plant model-based degradation.

2.6 Hierarchical Monitoring Architectures

Each run-time monitor implementation may have some similarities among certain

components, each one is mostly unique in at least one of the following areas including

the focus and goals for verification, type of system being verified, design requirements,

and how the monitoring components are architected. A hierarchical monitoring

architecture developed in [92] maintains some similarities with other run-time monitors

reviewed in that the main focus is to develop the monitor that switches to a safe recovery

controller, or state, if a violation of a predetermined safety property occurs. Safety

property is defined as comparing monitored function outputs to sensors and physical

components to create a holistic system view using handwritten formal specifications

based on aviation regulations. Formal temporal logics for monitoring are used in

the R2U2, the Responsive, Realizable, and Unobtrusive Unit, [93], RTLola [94], and

falsification [95] of temporal logic frameworks. The hierarchical approach is split into

five levels from the lowest layer of abstraction to the highest and shown below in Figure

2.2: item-level, system-level, aircraft-level, mission-level, and operation-level.
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FIGURE 2.2: Mapping of the Monitoring Property Hierarchy to the
HECAD Architecture

2.6.1 Embedded Cyber Attack Architecture

The existing research into hierarchical monitoring from [92] closely resembles the ideas

of HECAD, Hierarchical Embedded Cyber Attack Detector [16, 96, 97, 98]. HECAD,

as developed, is a hierarchical architecture to secure a CPS from malicious attacks at

every level of the system without impacting system functionality and performance.

HECAD is a purpose designed run-time monitor for the FCS of an Unmanned Aerial

System, UAS. HECAD is designed to monitor every component and all communication

within a system in real-time with the capability to isolate a potentially compromised

subsystem to prohibit any incorrect data from being processed by the main processor.

Cyber-attack detections are achieved in HECAD through passively monitoring specific

on-board sensors and components to not introduce additional vulnerabilities to the CPS

through the inclusion of HECAD in the system.

The HECAD architecture is divided into four main subsystems: hardware resource

integrity monitor (HRIM), information integrity monitor (I2M), functional integrity

monitor (FIM), and execution integrity monitor (EIM). The HRIM functions as a bus

protocol monitor between the autopilot and on-board sensors. Parsing and verifying
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the integrity of the data received from the HRIM is done by the I2M consisting of

sensor sniffers. The FIM monitors the functional integrity of the system as a whole to

verify that it behaves according to its specifications. Lastly, firmware vulnerabilities

are taken into consideration with the EIM. For purposes of the research developed

herein, which is based on the ideas of the FIM, it is assumed that the HRIM and I2M are

fully implemented to provide their respective contribution to the higher-level monitor,

specifically the functional integrity monitors.

Some similarities and differences between the monitoring hierarchy described in

[92] and HECAD [16] were analyzed. The item-level closely resembles the HRIM

and I2M of HECAD in ensuring sensors are operating properly providing complete

and accurately formed data. The system-level and aircraft-level resemble the FIM

and EIM although the scope of the system-level and aircraft-level both encompass the

properties that the FIM and EIM are intended to monitor as well. The mission-level

focuses on the feasibility of the mission requirements and the operation-level ensures

operation constraints can be maintained which are both not found within the HECAD

architecture. The hierarchies, their flow of data, and their respective mapping of

comparable components is displayed in Figure 2.2.

A benefit to the functional monitor being a component of HECAD is that no software

modifications are required on the CPS being monitored, in this research the FCS. The

monitor proposed by [26], while complex and allows monitoring of all parts of the

system, i.e. the sensor inputs, actuator outputs, and outer- and inner-loop control

algorithms, requires software modifications to attach the monitor to all levels of system

abstraction for data collection. While connecting the monitor to every component

provides access to more data and many layers of data abstraction and can result in

a more detailed determination of where and when exactly the system state left its

predetermined operating bounds, degradation of performance and additional points

of failure are likely introduced. Having an embedded monitor that is isolated from

the main processing of the CPS ensures that system performance is unchanged, and no

additional sources of error are introduced.
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2.6.2 Importance of Accurate Sensors

Cyber-Physical Systems are a result of the combination of cyber based control and

computing systems with the physical world sensors and actuators. The control systems

require sensor and actuation data to be received and sent, respectively, for proper

control, which introduces additional sources of attacks [75].

The term cyber-attack is typically used to identify any such malicious attack where

the attacker does not need physical access to any equipment of the CPS and can use

methods such as GPS satellite spoofing or Denial-of-Service and replay attacks on

wireless based communication. This differs from the physical attacks where an attacker

has physical access to a system to degrade the system through various means such as

uploading malicious firmware at any point between sensor manufacturing and actual

installation or programming into the CPS, altering actuation surfaces, or even removal

of sensors altogether.

For the UAS application, autopilot systems require physical sensors for

understanding of the environmental conditions and aircraft state. Information from

various sensors is used to make actuation commands for a specific task. Most UAS

do not have any built-in data validation or data verification and trust that the sensors

record the correct values. This leads to physical attacks being an exploitable method for

disrupting a system through data manipulation.

One of the most complex sensors used in a UAS FCS is the Global Positioning

System (GPS) receiver. The GPS receiver uses RF signals received from orbiting GPS

satellites, along with very complex calculations, to determine the position and altitude

of the UAS for navigation purposes. In order to disrupt the GPS receiver’s functionality,

an attacker can produce alternate RF signals to confuse, or “spoof” the GPS receiver.

These real-world scenarios of GPS spoofing are based on hijacking satellite signals by

providing a stronger, more local, signal to send incorrect GPS data to the receiver to trick

the system into producing an incorrect GPS location [99, 100, 101, 102]. If used on a UAV,

this can potentially result in the UAV altering its course in an attempt to go back to a

target location, and if implemented correctly, could result in the aircraft moving into the
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airspace of the person spoofing the signal for retrieval of the system. In the real-world,

GPS signal spoofing is difficult due to the complexity of the GPS system and regulations

controlling RF emissions. In addition to GPS signal spoofing, the complex algorithms

used in the GPS receiver can be modified to provide incorrect or corrupted data. The

GPS in this research is virtual so these types of spoofing and data manipulation can be

simulated in order to mimic real-world GPS spoofing and other GPS attacks.

Another sensor whose data is vital for the proper interpretation of the movement

of an autonomous UAS is the Inertial Measurement Unit, commonly referred to as the

IMU. An IMU typically consists of a 3-axis accelerometer, a 3-axis gyroscope and a 3-axis

magnetometer. Acceleration and rotational rate data is provided by the IMU to the

autopilot controller for use in determining the aircraft’s attitude (roll, pitch, and yaw)

and movement over time. By manipulating these values, the calculation of the aircraft’s

orientation can be modified, leading the control software to believe that the aircraft is

angled in a particular attitude requiring a correction, even if the aircraft is not physically

in that attitude.
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Chapter 3

Cyber-Security Testbed

The FCS cyber-security testbed described in [103] is an enabling technology that

has been developed for implementation of the research presented herein. The

construction and use of the testbed is not the main contribution of this dissertation

but is presented in support of the development of the functional monitor. The

testbed utilizes a real-time flight control system operating a fixed-wing aircraft via a

hardware-in-the-loop simulation (HILS).

The testbed makes use of two Digilent Zybo Z7-20 Field Programmable Gate Array

(FPGA) SoCs boards, one which performs the hardware-in-the-loop connection between

the aircraft simulator and the flight control system, and the other which implements

an embedded cyber-attack detector based on the HECAD architecture. These boards

feature a Zynq-7000 System on a Chip (SoC) with Programmable Logic (PL) and a

dual-core ARM Cortex A9 Processing System (PS) with the ability to run embedded

Linux (Petalinux+Ubuntu). The PS of both ZYNQ SoCs runs a variation of Ubuntu 20.04

built for an armhf image for the embedded petalinux platform. To develop the PL, the

Xilinx Vivado toolset was used to create the complete block design architectures for the

testbed. Interaction between the FCS implemented in the PS and the sensor interfaces

implemented in the PL was achieved using custom AXI cores, Xilinx AXI IP cores, and

GPIO in the block designs. The custom AXI cores were used to ease the workload

of the ARM processor in the PS, allowing for faster data access, higher accuracy, and

eliminating the need for software interrupts.

The main processing component of the testbed is a modified version of the
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VCU-developed Aries Flight Control System (FCS) [104, 105]. This modified version

is unique in that it has seven new connections to attach to the PMOD interfaces of the

Digilent Zybo boards. The connections for the sensors between the HILS and Aries

are direct pass-through to the HECAD implementation to allow the HECAD board to

“monitor” the data between the sensors (whether the data be from physical sensors in

flight or the constructed sensor data from the flight simulator) and the main processor.

The modified Aries FCS also does not include the physical sensor interfaces, as seen

in the center of the hardware setup of Figure 3.1. These sensor interfaces are replaced

with sensor buses connected to the HILS implementation to allow the sensor data to be

derived from the aircraft simulator as described below.

FIGURE 3.1: Testbed Hardware Setup

3.1 Hardware-in-the-Loop Simulation (HILS)

One board is dedicated to the hardware-in-the-loop simulation (HILS) interface [106],

as shown on the right of the hardware setup figure. The HILS interface connects

to the open source FlightGear aircraft simulation through the simulator’s built-in

Ethernet communication. The aircraft state data is received into HILS through this

Ethernet interface through the Processing System (PS). A virtual sensor for each sensor

typically used in the VCU-developed Aries FCS was implemented in the Programmable



Chapter 3. Cyber-Security Testbed 40

Logic (PL) to imitate the appropriate sensor communication. This virtual sensor

implementation means that no software modifications need to be made to the FCS,

resulting in the FCS operating exactly as though it were in flight. The in-flight data

is processed by the HILS PS and is converted to raw sensor data in the byte form and

is stored in the same register locations in the PL, exactly as a real sensor would store

the data. The method of implementation of the virtual sensors makes this setup a true

hardware-in-the-loop simulation.

The Aries FCS has complete access to the data registers within the PL of the HILS in a

read only direction through the PMOD 12-pin connections on the Zybo board. The Aries

FCS retrieves the raw virtual sensor data utilizing the same communication protocol of

each sensor typically used in real-world flight as is already part of the low-level drivers

of the FCS. For example, the real airspeed sensor uses I2C for communications to the

FCS, so the virtual sensor implements the I2C protocol in order for the FCS to not notice

any difference in the source of data.

The code within the HILS PS has read and write access to the full set of data

registers of the FPGA hardware. Each virtual sensor implemented along with its

respective communication protocol is described in Table 3.1. The sensors include

airspeed, barometer, battery current, GPS, magnetometer, and inertial measurement

unit (IMU) sensors. The communication protocols implemented include I2C, UART,

and SPI for the virtual sensors and SBUS for communications with the aircraft’s servo

actuators.

Once the FCS calculates the appropriate actuator outputs, the HILS board receives

those actuator commands from the FCS via the SBUS, and sends them back to the

simulator through the Ethernet interface to “fly” the aircraft. During the simulation,

the FCS also communicates with the Ground Control Station (GCS), as is typically done

during normal flight operation, to allow an operator to control the aircraft’s parameters

and monitor the aircraft’s flight.

UDP sockets are used to implement the communications between the flight

simulator (i.e., FlightGear Flight Simulator) and the HILS interface. The PS receives
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Virtual Sensors Communication Protocol
Airspeed I2C

Barometer I2C
Battery Current I2C

GPS UART
Magnetometer I2C

IMU SPI

Actuation Communication Protocol
User input SBUS

Autopilot output SBUS

TABLE 3.1: Virtual Sensors, Actuation, and their Corresponding
Communication Protocols

a data packet containing information about the aircraft’s state and updates the

corresponding virtual sensor data. Another packet containing the current control

surfaces information is also received by the PS. During the normal autopilot operation of

the FCS, the sensor data is read from the FPGA and the controls packet is updated with

new control signal values from the FCS and sent back to the flight simulator. The flight

simulator is run with the specific UDP protocol, ports, and IP address of the FPGA, so

the data packets can be sent and received correctly [107].

All aircraft dynamics and control data from FlightGear is parsed and converted to

the correct format, with any necessary computations and unit conversions, and then

stored into the specific data registers and offsets for each of the virtual sensors. The FCS

runs in full autonomous autopilot mode, with the ability for the user to fly the simulator

in other flight modes as well. The user input for control of the aircraft in any mode other

than autopilot through a joystick, or an RC transmitter signal, is implemented in the PS

through the SBUS protocol.

3.2 Hierarchical Embedded Cyber Attack Detector (HECAD)

In addition to the HILS board and the Aries FCS, the second Zynq SoC-based FPGA

board in the testbed implements HECAD and is connected to the monitor side of the

FCS as shown on the left of Figure 3.1. The same method of how the HILS board stores
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data in the PL was implemented in reverse on the HECAD board. To do this, HECAD

implements sensor sniffers, described below, that retrieve the sensor data from the HILS

PL. The data is then stored in the HECAD PL and converted back into human-readable

information for further processing.

It is important to note that HECAD does not have the ability to modify any sensors’

values, it is a stand-alone embedded monitor and does not affect the normal operation of

the FCS. HECAD monitors the data buses of the Aries FCS, displays any user specified

data, and performs attack detections based on predetermined detection algorithms. The

process for determining the detection algorithms is part of the research described within

this dissertation.

The points of interest of potential cyber-attacks and the overall high-level system

architecture of the FCS cyber-security testbed developed in [103] is illustrated in Figure

3.2.

FIGURE 3.2: FCS Cyber-Security Testbed Architecture

Similar to the virtual sensors that are implemented in the PL on HILS, HECAD
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incorporates the same sensors listed in Table 3.1 as sensor sniffers. The sensor sniffer

updates its internal registers any time that register’s data in the virtual sensor appears

on the bus, be it from the master writing the corresponding register in the sensor sniffer,

or the master reading that register’s contents. This is unlike the virtual sensors where

data is only written to by the master and read from if the master attempts a data

read. The exact behavior varies per sensor, but generally the master first sends the

address of the first register to be written or read. The sniffer captures that address

in its register pointer and then any subsequent bytes in the transaction, regardless of

direction, are saved into the internal registers of the sniffer. After each byte, the pointer

is incremented, so that transactions of arbitrary length are supported. The sensor

sniffers also implement the AXI Bus protocol, so that the contents of any sensor sniffer

can be read whenever needed by the PS, as though they were a variable in RAM.

With access to the previously mentioned data, the aircraft state information, and the

predefined detection algorithms, HECAD can parse and analyze specified data to locate

any anomalies in the sensor values. HECAD is also interfaced with the GCS to provide

the user with any desired information relating to the data anomalies, including specific

values or plain text messages. In addition to information sent to the GCS, HECAD

has full logging capabilities. The logging system includes sensor, aircraft state, debug

values, values within the detection algorithms, and information related directly to the

error detections. The logged data is saved to a comma-separated value file for analysis

and graphing.

To display how lightweight the HILS and HECAD hardware implementations are,

the post-implementation design report from Vivado was run. The FPGA utilization

of the HILS implementation is shown below in Table 3.2 and the results for HECAD

shown in Table 3.3. This data indicates that, except for I/O pins, the HILS and HECAD

implementations use less than one quarter of the Zybo’s FPGA resources.
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Resource Utilization Available Utilization %
LUT 8637 53200 16.23%

LUTRAM 95 17400 0.55%
FF 8966 106400 8.43%
IO 40 125 32.00%

BUFG 2 32 6.25%
MMCM 1 4 25.00%

TABLE 3.2: HILS FPGA Utilization Data

Resource Utilization Available Utilization %
LUT 4790 53200 16.23%

LUTRAM 128 17400 0.55%
FF 6443 106400 8.43%
IO 42 125 32.00%

BUFG 2 32 6.25%
MMCM 1 4 25.00%

TABLE 3.3: HECAD FPGA Utilization Data
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Chapter 4

Experiment Development and

Study-Space Design

The simulated attack methodologies discussed within this chapter were implemented

on the cyber-attack testbed described in Chapter 3. These simulated attacks are the

experiments used to test the effectiveness of the Functional Monitoring Architecture

developed within this dissertation. The processes for the development of the various

attacks are discussed below. The goals of these attacks are to manipulate the aircraft’s

flight while avoiding detection by the existing autopilot algorithm. A method of attacks

utilizing the walk-off process is just one method used for creating the simulated attack

scenarios used to challenge the functional monitor.

In order to begin developing and implementing detections, simulated cyber-attacks

were developed to test the effectiveness of the detection methodologies for each

implemented sensor of the FCS setup. A Systems-Theoretic Process Analysis (STPA)

[108, 109, 110] was conducted to determine the importance of the proper sensor values.

The results from the STPA were used to influence the construction of various simulated

walk-off attacks. A generic set of losses and hazards of the aircraft based on the system

states during these simulated attacks were considered and are shown below. The losses

identified are displayed in Table 4.1. The hazards along with their corresponding losses

are shown in Table 4.2. The list of losses and hazards is not comprehensive, just a few

of the more significant ones have been identified.

The losses and hazards identified above are just a few that correspond to the overall
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Loss # Loss Description
L-1 Property Damage
L-2 Loss of life or injury
L-3 Loss of mission objectives
L-4 Loss of aircraft

TABLE 4.1: STPA: Losses

Hazard # Hazard Description Link to losses
H-1 Instability of aircraft L-1, L-2
H-2 Incorrect trajectory L-3, L-4
H-3 Aerodynamic stall L-1, L-2, L-3, L-4
H-4 Aircraft above the never exceed speed L-1, L-2, L-3, L-4
H-5 Motor burnout L-1, L-2, L-3, L-4

TABLE 4.2: STPA: Hazards

simulated attack results. A more detailed STPA was conducted on each of the simulated

airspeed, altitude, GPS, and IMU attacks to show exactly how this type of walk-off

attack can affect the aircraft’s operation in flight.

Loss Scenarios related to Airspeed Sensor Data:

• Unsafe Control Action 1 — Data provided by the airspeed sensor is not consistent

with change in GPS position over time when throttle output must be decided.

• Loss Scenario 1 — Data provided by the airspeed sensor is not consistent with

change in GPS position over time when throttle output must be decided because

of either a cyber-attack or sensor fault on the airspeed sensor and is no longer

functioning as expected. The autopilot will still provide the throttle output to

maintain the target airspeed, which can cause either the aircraft to lose airspeed,

stall, and crash or increase throttle to max and exceed a maximum safe airspeed.

Loss Scenarios related to Barometric Pressure Sensor Data:

• Unsafe Control Action 2 — Data provided by the barometer is not consistent

with reported GPS altitude over time when throttle and elevator outputs must

be decided.
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• Loss Scenario 2 — Data provided by the barometer is not consistent with reported

GPS altitude over time when throttle and elevator outputs must be decided

because of either a cyber-attack or sensor fault on the barometer and is no longer

functioning as expected. The autopilot requires accurate altitude data to stay

within any predefined altitude ceiling or to prevent a crash if the autopilot believes

it needs to descend. Either situation could lead to loss of the aircraft, either

through hitting the ground or flying to an unsafe altitude.

Loss Scenarios related to GPS Sensor Data:

• Unsafe Control Action 3 — Data provided by the GPS indicates a diversion from

the waypoint path.

• Loss Scenario 3 — Data provided by the GPS indicates a diversion from the

waypoint path because of either a cyber-attack, sensor spoofing, or general sensor

fault on the GPS. The autopilot requires accurate GPS data to maintain a set flight

path to complete the mission objective. The inaccuracy of GPS data can cause

the autopilot to issue actuation commands to guide the aircraft back on course,

resulting in the aircraft moving further away from the intended flight zone. This

can lead to loss of aircraft and loss of the mission objectives.

Loss Scenarios related to the IMU Data:

• Unsafe Control Action 4 — Data provided by the IMU indicates a component of

the aircraft’s orientation has diverted from the ideal value for a particular stage in

flight.

• Loss Scenario 4 — Data provided by the IMU indicates a component of the

aircraft’s orientation has diverted from the ideal value for a particular stage in

flight because of either a cyber-attack or sensor fault on the IMU. The inaccuracy

of the IMU in relation to an incorrect roll value can cause unintended turning of

the aircraft. This change in direction can result in loss of mission objective, as the

autopilot needs to correct for this change to attempt to return to the desired flight

path.
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• Loss Scenario 5 — Data provided by the IMU indicates a component of the

aircraft’s orientation has diverted from the ideal value for a particular stage in

flight because of either a cyber-attack or sensor fault on the IMU. The inaccuracy

of the IMU in relation to an incorrect pitch value would result in a similar loss to

Loss Scenario 2 related to the altitude data.

• Loss Scenario 6 — Data provided by the IMU indicates a component of the

aircraft’s orientation has diverted from the ideal value for a particular stage in

flight because of either a cyber-attack or sensor fault on the IMU. The inaccuracy

of the IMU in relation to an incorrect yaw value would result in a similar loss to

Loss Scenario 3 related to the GPS.

• Loss Scenario 7 — Data provided by the IMU indicates a component of the

aircraft’s orientation has diverted from the ideal value for a particular stage in

flight because of either a cyber-attack or sensor fault on the IMU. The inaccuracy

of the IMU in relation to any of the three axes could result in any number of

unknown issues. The losses could be loss of aircraft, mission objectives, loss of

life, and damage to property or people in the surrounding area.

The attacks developed modify the data being collected by the sensors in order to

achieve a specific goal. The data modification during a simulated attack will be referred

to as walk-off or data offset in this research. These simulated walk-off attacks are used

as examples of the effects of intentionally placed malicious firmware in a sensor and

how it can modify the reported values of sensors.

A walk-off attack involves the modification of the sensor data systematically to

achieve a specific attack objective while attempting to avoid detection. A few other

types of cyber and physical attacks exist including, interception, spoofing, falsification,

repudiation, and man-in-the-middle. Interception is a type of attack used to breach

the confidentiality of a system. One way in which an interception can be used is

in relation to communication between systems. A spoofing attack is one where a

malicious actor can create an untrusted, but similar, website for a firmware download,

for example. The firmware for a system component, such as a sensor, can be a modified
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version of the real firmware with added vulnerabilities specific to the attacker’s intent.

Falsification is an attack method in which incorrect data is achieved by either data

deletion, modification, or even being entirely unrelated to the original data. Falsification

is often paired with repudiation in which a system lacks the ability to properly log where

an error is coming from, resulting in that system unable to contradict which part of

the system the issue originated [111, 112]. Lastly, a man-in-the-middle style attack is

conducted by sniffing the data communication, interrupting the data transmission, and

re-transmitting outdated data.

An example of a walk-off attack might be applying a cumulative offset to a particular

sensor data value. To implement a simulated walk-off attack, the virtual sensor data,

from the aircraft’s state in FlightGear, is passed through a “simulated_attack” function

where the function parameter and return type are a data structure containing the

necessary data for each respective sensor.

An example pseudo-code implementation of the “simulated_attack” function for the

ms5611 barometric pressure sensor is shown below in Algorithm 1. The ms5611_data

data type is a structure containing two items of type double: (1) the air pressure and

(2) the ambient temperature in Celsius. Normally, this data would be generated from

readings of the physical environment by the sensor, but in this case, the data, such

as the barometric pressure, in pascals, is calculated from the information provided by

FlightGear. The input to the simulated attack function is the data for the specific sensor,

and the output is the data of the same type after modification from the function. First

the data is copied to a local variable with the same structure and then any variables

containing walk-off/offset values and any static variable for accumulators are created.

The main section of this function is executed once the simulated data attack is

initiated from the HILS board with a specific combination of switch positions and a

button press for activation by the user. The I/O of the FPGA was utilized in this method

to allow the user to implement any number of attacks at once by using the 4 switches

as a 4-bit binary value and separate buttons for activating or deactivating the attack

previously selected by the switches. If the attack is initiated, the accumulator variable
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Algorithm 1: This pseudo code function shows the general idea of how a sensor
data attack is conducted on the ms5611 barometric pressure sensor

1 function simulated_attack (ms5611_data _data);
Input : The structure containing the data for a specific sensor
Output: The same data type with any modifications

2

3 ms5611_data data_post_attack = _data;
4

5 //variables used in conducting a sensor data modification attack
6 double pressure_o f f set = −3 ∗ 3.65;
7 //-3 ft/sec * conversion factor to convert ft/sec to pascals/sec
8 static double pressure_o f f set_accumulator = 0.0;
9

10 if attack is active then
11 pressure_o f f set_accumulator += pressure_o f f set * 1

loop rate in Hz ;
12 data_post_attack.press_pa -= pressure_o f f set_accumulator;
13 else
14 pressure_o f f set_accumulator = 0.0;
15 //reset accumulator to clear attack
16 end
17 return data_post_attack;

is used to aggregate the offset value, which is typically assigned as a per second value,

multiplied by 1 over the loop rate of the function (200 Hz in the current HILS setup).

This accumulator value is then added or subtracted to the pressure value based on the

sign of the offset amount in this example. If no attack is initiated, the accumulator is held

at 0.0 and no modification is made to the sensor data. The data structure for that sensor

is returned from this function, and the virtual sensor registers in the PL are then set to

this “modified” data. The FCS processes the potentially modified data from the registers

resulting in the use of simulated sensor data that has been spoofed or attacked in some

way. The following sections describe the walk-off attacks that have been implemented

in the testbed.

4.1 Altitude Walk-Off

The altitude walk-off attack is completed by slowly changing the barometric pressure

that is reported by the virtual barometric pressure sensor to the FCS. This change can
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be either increasing or decreasing the reported barometric pressure, depending on the

desired effect. The FCS autopilot sees this pressure change as the aircraft changing

altitude and will adjust the throttle accordingly to counteract this “false” altitude

increase or decrease to maintain the target altitude. The indicated barometric altitude

from the FCS, the FCS altitude, and absolute altitude (from the GPS) during an altitude

walk-off attack are shown in Figure 4.1. As indicated in the figure, the barometric and

FCS reported altitudes, the blue dotted line and grey dashed line respectively, remain

at the set point of 200 feet. The orange long dashed line indicates when the altitude

walk-off attack was started in software.

At the point where the barometric pressure increase walk-off attack occurs, at a rate

of 3 ft/sec, the aircraft attempts to correct this change by descending, thus increasing

the barometric pressure. The rate of increase of actual pressure and decrease in reported

pressure are equalized, thus resulting in the FCS interpreting that it is remaining at

its set altitude. The green solid line shows the absolute altitude of the aircraft from

the GPS which indicates the aircraft is actually descending during the attack until it

eventually crashes. This behavior is also seen in the simulator during system run-time.

Over the run-time of this example altitude walk-off attack, the aircraft descends 200 feet

in approximately 65 seconds, which matches the walk-off rate of 3 ft/sec.

FIGURE 4.1: Comparison of Altitude Sources During Simulated Altitude
Attack
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4.2 Airspeed Walk-Off

Similar to the altitude walk-off attack method, the airspeed walk-off attack is completed

by slowly increasing or decreasing the ram air pressure, as measured in the actual

aircraft by a pitot tube, used in the airspeed calculation. In this example scenario, the

airspeed sensor value in the software was decreased at a rate of 2 pascals/sec. The slow

rate of walk-off at the target airspeed of 60 knots calculates to about 0.1 knots/sec. As

the cumulative walk-off starts to build up, the autopilot throttle begins to decrease very

shortly after the simulated attack is initiated to return the aircraft to the set airspeed.

In the graphs of Figure 4.2 below, the orange dashed lines indicate when the airspeed

walk-off occurred. Over the run-time, this results in the autopilot significantly dropping

the throttle at approximately 15,000 ms of runtime where the aircraft begins to lose some

altitude, as shown in the blue solid line of Figure 4.2a. The throttle, shown in Figure 4.2b,

is reduced completely at the 20,000 ms point where the altitude begins to decrease until

the aircraft crashes into the ground. In this situation, an actual aircraft might encounter

an aerodynamic stall, also resulting in a crash, but the flight dynamics of the simulated

aircraft in FlightGear do not allow for the simulation of an aerodynamic stall.

The effect of this attack on the ram air pressure data is shown in Figures 4.2c and

4.2d, respectively. The blue solid line in Figure 4.2c shows the airspeed pressure value

in pascals from the virtual sensor. This is converted from pascals to knots, as shown by

the solid blue line in Figure 4.2d.
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(A) Aircraft Altitude (B) Autopilot Throttle PWM Output

(C) Ram Air Pressure for Airspeed Measurement (D) Indicated Airspeed From Ram Air Pressure

FIGURE 4.2: Airspeed, Altitude, and Throttle Graphs During Simulated
Airspeed Attack

4.3 GPS Walk-Off

The GPS sensor provides vital information needed to allow the aircraft to fly

autonomously in autopilot mode. This sensor provides information about the aircraft’s

position and movement in 3D space, including latitude, longitude, altitude, heading,

and ground speed. By modifying specific components of the GPS data, a simulated

walk-off attack can be conducted to slowly alter the aircraft’s flight path.

The GPS walk-off was initially completed by incrementally applying an offset to

both the latitude and longitude values that were sent to the FCS. To determine the

feasibility of this approach, the walk-off was tested on the longitude axis. This was

conducted by applying an 1.0 ∗ 10−5 deg/sec (approximately 3 ft/sec) offset to the GPS

longitude value. As the offset is applied to the longitude value, the autopilot makes the

necessary corrections, typically through aileron and throttle adjustments, to guide the

aircraft back on course.
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Figure 4.3 compares the preset waypoint flight path (indicated with the black dashed

line), the autopilot’s indicated latitude versus longitude location (illustrated by the

blue solid line), and the actual aircraft location as a result of the walk-off of the GPS

data (shown by the grey dotted line). The indicated location and actual location both

start where the grey dot is displayed on the left-hand side. The aircraft flew in a

counterclockwise direction, indicated by the blue and grey arrows. These arrows also

show the end point at the end of run-time, when data collection was stopped. The

longitude and latitude axes are displayed in both degrees and feet for readability.

FIGURE 4.3: Flight Path with Longitude Walk-Off

Based on data obtained from Figures 4.4a and 4.4b, the attack run-time of the GPS

attack was approximately 730 seconds. Over the course of this run-time with an offset

of 3ft/sec, the longitude should have a walk-off of about 2,200 feet. Using the longitude

axis in feet of Figure 4.3, this walk-off distance can be seen between the starting point

shown by the grey circle and the endpoint by the grey arrow. The latitude and longitude

data were displayed separately in Figures 4.4a and 4.4b to show the effect of this

walk-off on the longitude axis and to illustrate that no latitude walk-off was conducted

in this test.

This first method tested was determined to not be appropriate for conducting a GPS

sensor walk-off, since it created mismatches of the vehicle’s ground speed and heading

measurement between the Kalman filter and GPS. This mismatch was an issue since
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(A) Longitude Comparison Showing Successful Walk-Off

(B) Latitude Comparison Showing no Walk-Off Performed

FIGURE 4.4: Latitude and Longitude States During Simulated GPS Attack

the normal FCS functionality already provided warnings of the error, and the goal of

the walk-off attacks is to be undetectable in normal operation by the FCS. To counter

this effect, the attack was redesigned to account for these issues by targeting a heading

walk-off and calculating the new corresponding latitude and longitude to maintain

ground speed. The goal of this improved walk-off algorithm is to cause the aircraft

to ultimately navigate to a desired target coordinate.

To spoof the GPS data in this simulated walk-off attack, the first step is to calculate

the target heading of the target coordinates based upon the current heading of the

aircraft. This heading difference is computed by first converting the latitude and

longitude values of the current coordinates of the aircraft and target coordinates into

radians, calculating the required quantities of X (Equation 4.1) and Y (Equation 4.2) to

be inputs into Equation 4.3 to obtain the heading angle between the two points, and



Chapter 4. Experiment Development and Study-Space Design 56

converting back to degrees. The difference between the target heading just calculated

and the current heading is taken to achieve the heading difference, which is used to

determine the proper direction the aircraft needs to turn. The heading difference is also

used to calculate the velocity of walking off the heading, latitude, and longitude using

a proportional controller. Lowering or raising the proportional gain can either slow

down or speed up the walk-off velocity as the idea is to induce a fast enough walk-off

to initiate a response from the autopilot to adjust the course but slow enough to not

be detected by the Kalman Filter and reported as a GPS data error. The attack velocity

is then scaled by the time between loops, dt, to obtain the desired heading offset that

needs to be applied to the current heading to achieve the new heading, Headingattack.

X = sin(longitudetarget − longitudeaircra f t) ∗ cos(latitudeaircra f t) (4.1)

Y =
(

cos(latitudeaircra f t) ∗ sin(latitudetarget)
)

−
(

sin(latitudeaircra f t) ∗ cos(latitudetarget) ∗ (longitudetarget − longitudeaircra f t)
)
(4.2)

Target Headingradians = atan2(X, Y) (4.3)

The latitude and longitude values must also be altered along with the heading

incrementally to avoid the flight controller from ignoring or filtering out these values

if a sudden change occurs. The new heading, with the attack offset applied from

the previous step, is utilized along with the reported ground speed from the GPS of

the aircraft to calculate a new latitude and longitude velocity. This new latitude and

longitude velocity is used to calculate the spoofed latitude and longitude values. For

the purposes of the following equations, the ground speed is converted into feet per

second and all angles are in radians. The latitude velocity, according to Equation 4.4,

first calculates the y-component of Headingattack and multiplies it with the ground speed

and the resulting value is divided by the conversion from feet of latitude per second
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to degrees per second (i.e., 1 degree is equivalent to 364,000 feet). A similar method

is applied to the longitude velocity of Equation 4.5 by calculating the x-component

of Headingattack and multiplying with ground speed, then converting from feet of

longitude per second to degrees of longitude per second. This conversion on the

longitude axis is dependent on the cosine component of the current latitude.

Vlat =
Ground speed f ps ∗ cos(Headingattack)

364000
(4.4)

Vlon =
Ground speed f ps ∗ sin(Headingattack)

364000 ∗ cos(Latitudecurrent)
(4.5)

The resulting latitude and longitude velocities, Vlat and Vlon, are multiplied with

dt, the time between two consecutive observations, to obtain the desired coordinate

degree walk-off amount. The calculated walk-off amount is then applied to the previous

latitude and longitude values, accordingly. The new values are then reported to the

flight control system as it would normally receive data from GPS messages, without

any knowledge the data has been manipulated causing the aircraft to slowly drifting off

course. As indicated by the graphs in Figure 4.5, the reported flight path of the aircraft

from the autopilot is indicated by the orange line, which closely follows the desired

waypoint path. The blue line indicates the actual flight path when the simulated GPS

walk-off attack is applied, showing that even early on in run-time, the aircraft drifts off

its pre-programmed course and begins to head to the target coordinate designated by

the attack, indicated by the red X.

In Figure 4.5a, once the aircraft reaches the desired attach coordinate, it begins to

circle the coordinate. This circling is a result of the interaction of the attack with the

autopilot control algorithm of the fixed-wing aircraft, as stopping fixed-wing aircraft in

mid-air at any coordinate is impossible. The same test with a square waypoint sequence

was conducted and the flight path is shown in Figure 4.5b. The shorter paths with

more turns create an interesting response from the simulated attack, with the aircraft’s

heading being adjusted by the autopilot to follow the preset waypoint path and walk-off
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attempting to keep up and readjust at the same time. The algorithm must continually

walk-off the GPS data to guide back to the target coordinates, resulting in a larger radius

and uneven shaped encircling of the target.

(A) GPS Walk-Off Attack Run for 15 Minutes

(B) GPS Walk-off Attack Run for 70 Minutes

FIGURE 4.5: Aircraft Flight Path During GPS Attacks

Some limitations of the GPS attack algorithm are dependent on the attack velocity

as well as the pre-programmed waypoint path shape and size. The attack performs as

intended for long distance waypoints, where the aircraft makes few turns. However,
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when the attack is activated while the aircraft is flying a short-distance waypoint

pattern, the attack will struggle to compensate for the constant turns, resulting in the

aircraft taking a noticeably longer amount of time to reach the target. Attempts to

mitigate this by increasing the attack velocity only during turns failed, as the attack

cannot alter the course of the aircraft fast enough to compensate for the turns. Testing

of values higher than 3.0° of change per second resulted in the aircraft crashing, so a

smaller velocity was applied instead. This is believed to be a result of the difference

between the yaw reported by the IMU and the heading reported by the GPS being too

far apart, resulting in the Kalman filter not knowing what the true heading of the aircraft

is.

4.4 IMU Walk-Off

The IMU sensor in use provides acceleration values in the units of G force in the x, y, and

z directions and roll, pitch, and yaw rates in radians per second. In order to simulate an

attack on the IMU sensor, the current accelerations and rotation rates must be rotated to

create proper new accelerations and rotation rates after a specific amount of roll, pitch,

or yaw walk-off is requested. This method allows for applying a walk-off to only one

axis or all three simultaneously. To apply the rotations, the standard three-dimensional

rotation matrix is used [113].

The simulated attack algorithm for the IMU takes as inputs the current gyroscope

rotation rates, accelerometer accelerations, and the desired roll (ϕ), pitch (θ), and yaw

(ψ) the attack is attempting to target. Using the rotation matrices, a new set of 3-axis

rotation rates and acceleration values are computed by applying the desired roll, pitch,

and yaw to the values reported from the flight simulator. These modified values are

then stored back into the registers for the IMU data, and are reported to the FCS in the

normal fashion that IMU would send its data.

The first IMU attack performed was a walk-off of the roll of the aircraft. While the

autopilot is conducting a waypoint sequence, the data from the IMU sensor is rotated

with a roll offset of 6 degrees. This value is small enough to cause a visible change in
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the data, yet maintain stable flight and avoid having the aircraft lose control and crash.

Figure 4.6 below shows the result of the roll angle reported by the autopilot in blue, the

actual roll angle from the flight simulator in grey, and the dashed orange line indicated

when the attack was initiated.

The waypoint sequence under test was set up in a square formation. The spikes in

the roll data occur during turns at the corners of the square. Before the attack is turned

on, the actual roll angle and autopilot’s reported roll angle are consistent, but after the

attack is initiated, the actual and reported angle quickly start varying from each other.

This difference can be seen in the long flat sections of the graph when the goal was to

fly straight and level as well as in the turns where the angles differ by a small amount.

FIGURE 4.6: IMU Walk-Off Attack on Roll Axis

The same waypoint sequence method of attack and was run when conducting a

pitch angle walk-off attack. As indicated in Figure 4.7, before the attack was initiated,

the autopilot reported pitch angle and actual pitch angles vary slightly as a result of the

autopilots constant corrections in pitch with minor airspeed and elevator adjustments.

Similar to the roll walk-off, when the pitch walk-off is started, the actual and reported

pitch angles diverge, creating the difference shown in Figure 4.7.

While the yaw walk-off was conducted in the same method as roll and pitch, a

difference response to the attack was observed. As seen in Figure 4.8, before the attack
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FIGURE 4.7: IMU Walk-Off Attack on Pitch Axis

was started, the actual yaw angle and autopilot reported yaw angle differ slightly as a

result of data measurements for this value coming from the IMU and GPS which are

then combined by the Kalman filter to create a proper yaw measurement. When the

attack is initiated on the yaw value, the data from the IMU begins to differ significantly

enough from the data reported by the GPS, which results in the Kalman filter putting a

heavier emphasis on the GPS data. Eventually, the Kalman filter changes its weights for

yaw determination such that it fully relies on the GPS data to calculate the yaw value.

FIGURE 4.8: IMU Walk-Off Attack on Yaw Axis
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To illustrate the effects that IMU roll walk-offs have on the FCS, data from the

aircraft’s flight in both autonomous autopilot and stabilized flight modes was collected

and is shown below in the graphs of Figure 4.9. For the purposes of these observations,

the IMU roll walk-off was conducted in the same method as previously described with

an offset value of 10.0°. In stabilized flight mode, the FCS was set to maintain level flight,

i.e., 0.0° roll and pitch angle, without reference to the aircraft’s flight path with respect to

the GPS coordinates. In contrast, the primary goal of the FCS in autonomous autopilot

mode is to follow the waypoint navigation sequence, even if that means changing the

orientation of the aircraft to a non-level orientation.

Figure 4.9a on the left-hand side shows a comparison of the latitude and longitude

GPS coordinates reported by the FCS, and Figure 4.9b on the right-hand side displays

the reported roll value. In both graphs, the data collected during autonomous autopilot

flight is indicated by the solid line, data collected during stabilized flight indicated by

the dotted line, and for the GPS comparison graph the intended flight path of the aircraft

shown by the dashed line.

When the IMU roll walk-off attack was applied to the FCS while it was in stabilized

flight mode, the aircraft begins to turn to the right (a negative roll angle), eventually

flying in circles if left long enough, since a positive 10.0° roll offset is applied to the IMU

data being provided to the FCS. The resulting turn induced on the aircraft is due to the

stabilization controller receiving the IMU data indicating the aircraft is rolling to the

left, thus commanding the aircraft’s control surfaces to roll the aircraft in the opposite

direction to maintain level flight. Since the aircraft did not actually have a positive roll,

and only the manipulated sensor data indicated that it did, the result is that the aircraft

physically rolls in the direction commanded by the FCS to return the reported roll of the

aircraft to level. As seen in the graph on the right, the corresponding roll value reported

by the FCS remains approximately 0.0°, as this is the target angle for the stabilization

controller. The result is that the aircraft turns to the right as a result of an IMU roll

walk-off to the left during stabilized mode.

The effects of the IMU roll walk-off attack are exhibited differently during
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(A) Comparison of GPS Coordinates

(B) Comparison of Roll Values

FIGURE 4.9: A Comparison of IMU Roll Walk-Off Response in Both
Autonomous Autopilot and Stabilized Flight Modes

autonomous autopilot flight. In autonomous autopilot mode, the flight path of the

aircraft even with the roll offset maintains the intended course, as indicated by the

dashed line in Figure 4.9a on the left. This reaction does not reflect the reported roll

value from the FCS, shown in Figure 4.9b by the solid line on the right, which is the

opposite of the offset applied (i.e., the offset of +10.0° is applied, but the reported roll

angle is -10.0°).

When the attack is initiated, the roll from the IMU sensor begins to change, but the
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aircraft has not physically changed orientation. As a result, the autopilot continually

makes minor corrections to the proper axis. The FCS assumes the output actuations

induced the intended effect, in this case rolling the aircraft the opposite direction, to

return it to “level”. Leveling the aircraft causes the reported roll value to change and

stabilize on the negative of the attacked offset. In order to force the aircraft off course

during an autopilot flight, the offset value must be greater than the maximum roll angles

programmed into the FCS which would result in the autopilot controller being unable

to compensate for the offset to bring the aircraft back on course.

In summary, when applying a small roll offset to the IMU data during autonomous

autopilot mode, the aircraft maintains level flight and continues following its intended

course by reporting a roll offset of the negative value of the offset. However, during

stabilized flight, the reported roll angle is 0.0° but the aircraft physically begins rolling,

changing the flight path. These two different responses to the same simulated attack

make for a more complicated model to detect this type of walk-off attack.
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Chapter 5

Functional Monitor Architecture and

Implementation

FCS Architecture

The methods for simulated attacks introduced in Chapter 4 show the effectiveness

of data manipulation in altering the flight of a UAS and the resulting difficulties of

detecting such variations. This chapter describes the process for development of the

Functional Monitor Architecture and the work conducted for creating the methods to

perform detections on the FCS.

An important aspect to keep in mind when developing detection algorithms is

understanding how the information from the sensors, input commands, and output

actuations are used and interpreted within the Flight Control System. To better

understand the interconnections of the operations of the FCS, the high-level functional

block diagram of the FCS was constructed as shown below in Figure 5.1.

The two main components of the FCS functional block diagram are the Peripheral

Drivers and the Kalman Filter. To provide additional information related to the outputs

of the peripheral drivers (i.e., the sensors), a zoomed in view of the peripherals, their

respective outputs, and the data flow is shown in Figure 5.2. As shown in the figure, all

the sensor data, except the altitude from the GPS, is fed directly into the Kalman Filter.

The purpose of consulting this diagram of the flow of data between the sensors and the

Kalman filter is to ensure that any values being compared for detecting sensor anomalies

are not all affected by the Kalman Filter. For example, to compare the vertical velocity
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FIGURE 5.1: FCS High-Level Block Diagram

data of the aircraft, the derivative of the altitude sensor can be used in comparison with

the vertical component of the velocity from the Kalman Filter. This is possible since only

one of these observations is a computed estimate from the Kalman Filter.

FIGURE 5.2: Zoomed In View of the FCS Peripheral Drivers

Next, a zoomed in view of the Kalman Filter is shown in Figure 5.3. The Kalman

Filter takes the data from the sensors to compute its outputs of the aircraft’s position,
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velocity, acceleration, orientation, and airspeed, and the current wind speed. These

values are part of the aircraft state estimate. The results are fed to the Aries FCS API,

which is visible on the GCS and accessible by the Aries autopilot control algorithm.

FIGURE 5.3: Zoomed In View of the FCS Kalman Filter

These diagrams were created to verify exactly how each value is used in the FCS

data flow. The diagrams also ensure that no potentially unverified data is used as a

point of comparison without an understanding of how it interacts with the autopilot

software. The goals of this research are to define the operating bounds of the Aries FCS

through Hardware-in-the-loop Simulation based on flight simulation data to analyze

what effects the inputs have on the system outputs. It should also be noted that

fixed-wing flight simulation has been used for existing data collection and will continue

to be used in the development of the functional monitors.

Functional Monitoring Architecture
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The high-level functional monitoring architecture in support of the Run-Time

Assurance Framework developed is shown below in Figure 5.4. This architecture is

integrated into the FCS based on the implementation information previously described

in Chapter 5. In the figure, the functional monitors receive the actuator outputs from

the autopilot, the raw sensor data (as displayed by the sensors/peripherals block of

the FCS high-level diagram of Figure 5.1), the mission requirements, and all data the

FCS typically sends to the GCS. The functional monitor’s outputs consist of sensor or

value confidence information or flags relating to the detection of an error on a particular

sensor. These outputs can either be sent to the user via the GCS or to the Context Aware

Monitor described in [109]. The primary focus of the functional monitors described

in this research are intended to monitor and detect problems with the sensor data,

which can be caused by cyber-attacks in the form of data corruption, malicious firmware

attacks, data spoofing, or by sensor failure or sensor noise.

FIGURE 5.4: High-Level Block Diagram of the Functional Monitor
Architecture

In addition to the detection of sensor attacks, the construction of the architecture

allows for functional monitoring at a higher system level. This capability would include

the analysis of waypoint message errors from man-in-the-middle attacks, such as a

flight path being changed maliciously, or denial-of-service attacks, where the FCS could

be flooded with messages to limit critical communication between the FCS and GCS.

The implementation of monitors for the higher system level function, such as checking
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against mission requirements, is out of the scope of the research described herein.

As shown in Figure 5.4, the functional monitor has 3 main components: the model,

decision, and detection blocks.

• Model Block — this component is where the empirically based models, the

construction of which are described in Chapter 5.1, live within the functional

monitor

– Input: any of the required inputs shown to the left of the figure depending

on the purpose of the model which can include the actuator outputs,

sensor/peripheral data, mission requirements, and data from the FCS

– Output: the post-model calculation based on the inputs

– Interaction: model output is sent directly to the decision block

• Decision Block — this component implements the various metrics tested,

discussed in Chapter 5.2, that provide information on the comparison of data

– Input: model output, any of the inputs on the left side of the diagram as

needed for the necessary comparisons

– Output: the selected values from any of the metrics tested

– Interaction: receives data from the model, sends its calculation to the

detection block

• Detection Block — this component uses the results from the decision metrics along

with the bounds/threshold to provide detection information of a particular sensor

if it detects a variation in that sensor’s data if the value goes outside the threshold

– Input: decision block output, the respective boundary or threshold

depending on which metric the data from the decision block was calculated

with

– Output: a detection result of a model or specific sensor
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– Interaction: receives data from the decision block and compares with the

bounds/threshold, as discussed in Chapter 5.3, to provide vital information

to the end user

The operating bounds and thresholds are calculated from the results of the decision

metrics collected during a normal flight simulation when no simulated attacks were

conducted. This method ensures the values calculated are independent of the type of

simulated attack conducted.

5.1 System Models used in the Functional Monitor

FIGURE 5.5: Simplified Functional Monitor Architecture with Model
Emphasized

The first component of the real-time functional monitor is the model, as emphasized

in the simplified block diagram of the Functional Monitor Architecture in Figure 5.5.

The models are used as a standard for the normal system functionality, against which

the actual system function can be compared during runtime. For this research, the

models are derived from empirical data collected during flight simulations of the VCU

Aries FCS. The goal of the system is to be usable in an application where the developer

likely does not have domain knowledge of aircraft dynamics or the ability to collect data

from real flights. In an actual application, the data would likely be collected, or verified,

using actual aircraft data from flight testing. However, that process of data collection is

out of the scope of this research.

The limitation of the empirical modeling approach utilized is that the data is

representative of the FCS used in within this research. The purpose of the introduction
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of empirical modeling is to provide the general framework to use when developing

models for the FCS of an UAS. The success of the empirical process tested is based upon

the accuracy of the resulting detections achieved by the functional monitor when these

models are implemented.

The empirical modeling approach is different from theoretical and data-driven

modeling. Theoretical modeling focuses on what type of relationships exist whereas

empirical modeling described the specifics of those relationships that are not based

on formal logic. Data-driven modeling is commonly used when referring to machine

learning when a set of observations are used to develop a characterization of a system.

Data-driven modeling is unlike empirical modeling which is based upon a more

scientific process for model creation from state observation [114].

The creation, usability, and testing of the functional monitor models is described

below. The results observed are unique to the FCS under test, but the process for

collecting the data and converting it into the model is not specific to the Aries FCS

platform and is intended to inform the general model development process for other,

similar monitoring applications.

In order to develop detections for the sensors in use, three different models were

identified to encompass a majority of the system operation. These models include an

energy model, heading model, and turn radius model. First, the energy model is built

upon an expansion of the effect the system input of throttle has on the output energy of

the system, specifically the airspeed and vertical velocity. Second, the heading model is

based upon determining the heading from the magnetometer for later comparison with

the GPS. Lastly, the turn radius model is a computed indication of if the aircraft is or is

not in a turn.

Each empirical relationship represents a single model. Multiple model blocks can

be combined in a single Functional Monitor as needed. The relationships that can

be obtained from flight data can be used to detect faults or cyber-attacks on a few

of the main sensors, including airspeed, barometer, GPS, and IMU. The design of

the functional monitor within this research is not based upon any common operating
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procedures or limits, but those could be utilized to support the detection process. Based

on the design of the models, the common operating limits such as the never exceed

speed or maneuvering speed could be used as reference points in providing detections.

5.1.1 Development of the Energy Model

Proof of Viability of the Energy Model

The development of an energy model for the aircraft was conducted by collecting

in-flight data of normal aircraft flight in the simulator. Initially, data was collected

with the throttle fixed at 100.0%, for repeatability, and the pitch of the aircraft changed

to determine the relationship between airspeed and the change in altitude (vertical

velocity). The pitch values are not included in this relationship and are only used to

collect the necessary flight characteristics of the aircraft in order to develop a model

independent of pitch. The data obtained from this test was graphed as shown in

Figure 5.6 and a line of best fit applied, as represented by the standard form 2nd degree

polynomial in Equation 5.1, where x is the airspeed and y is the vertical velocity. The

corresponding coefficients are displayed in Table 5.1.

FIGURE 5.6: Graph of Vertical Velocity versus Airspeed Taken at 100.0%
Throttle

y = −0.029x2 + 2.2252x − 27.112 (5.1)
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C2 C1 C0

-2.90E-2 2.23 -2.71E1

TABLE 5.1: Coefficients for Equation 5.1

Using a fixed throttle value of 100.0% for this data collection of the input energy to

output observations allowed for development of a “proof of concept.” The relationship

is defined as a representation of how certain outputs are affected by the input, and how

they relate to each other by mathematical equations, variations in specific data during a

simulated airspeed attack are exhibited.

Complete Energy Model Development

The relationship between the input throttle (i.e., energy into the system) and

specified outputs of airspeed and vertical velocity (energy out of the system) was used

in the development of a more encompassing model of system function. The data

that was initially collected for the 100.0% throttle flight was expanded to display the

relationship between airspeed and vertical velocity at a wider range of throttle inputs.

The data collection is used to create empirical models of the throttle, airspeed, vertical

velocity relationship to narrow down the location of a cyber-attack and hopefully

accurately detect an attack. The relationships are based on the idea of energy into

the system should be equal to energy out of the system. For example, if there is no

energy input (i.e., the throttle is idle), but there is energy output from the system (i.e.,

the aircraft is gaining altitude), this clearly indicates that there is an error in the data

that is reporting system functionality.

The first steps in determining what the previously mentioned model would look

like were to collect the remaining fixed-wing flight simulation data. The goal of the

energy model is to look at the relationship between airspeed and change in altitude

(i.e., vertical velocity) and how those are affected by varying throttle ranges. The data

was collected during stabilized flight by fixing the throttle at a set value and adjusting

the pitch of the aircraft in order to create vertical velocity to see the effects this change

has on the airspeed. In other words, at the same throttle value, if some motor thrust is
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used to generate a vertical velocity, less can be used to create airspeed. These tests were

conducted as similarly as possible for every 10.0% of throttle to collect the remaining

data for determining the correlation between input and output energy until the aircraft

can no longer maintain altitude from the given throttle input.

This data was graphed as a 3D plot in the graphs of Figure 5.7. To better illustrate

the relationship, the 3D plot was initially graphed as individual data points, with a

top-down view showing vertical velocity versus airspeed only in Figure 5.7a and a side

view with the z-axis of throttle in Figure 5.7b. This data was collected over multiple

simulation runs with the aircraft in stabilized mode.

(A) Vertical Velocity vs Airspeed Discretized by
Throttle % (top view)

(B) Vertical Velocity vs Airspeed Discretized by
Throttle % (side view)

FIGURE 5.7: 3D Graphs of Vertical Velocity vs. Airspeed vs. Throttle

To process the data and generate the best fit equation, the Python Curve Fit function

from the SciPy Optimize library was used [115]. The Curve Fit function first takes

in the name of a function call that contains the general form of the equation with

each corresponding coefficient desired, an array of the input data, and an array of the

collected output data. In this situation, the input data are the throttle percent (x) and

airspeed (y) values and the output, or expected results, is the vertical velocity (z) data.

This particular Python library uses a non-linear least squares regression in producing

its outputs.

The least squares regression algorithm is a statistical method used for determining
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a line of best fit of an unknown dependent variable from a set of known independent

variables. The goal is to minimize the sum of the squared differences between the result

of the best fit function at each data point and the actual result from the data, then to

predict the dependent variable behavior when a new set of inputs that may not have

been a part of the fit data is seen. The non-linear least squares variant is an extension of

the least squares regression method for use with a larger data set and when the function

to be fit is a polynomial of degree of two or greater [116, 117].

The coefficients produced from the Python Curve Fit non-linear least squares

regression as previously described were written into an equation format as shown in

its standard form in Equation 5.2 and the coefficients in Table 5.2. In the equation, x is

the throttle percentage, y is the airspeed directly from the airspeed sensor, and z is the

resulting calculated vertical velocity from this model. The x and y inputs from the data

used to generate the best fit equation were fed back in to see how close the calculated

vertical velocity is to the original data. The original points, as red points, along with the

calculated values, graphed as a 3D surface in black, are shown in Figure 5.8.

z = C22x2y2 + C21x2y + C20x2

+ C12xy2 + C11xy + C10x

+ C02y2 + C01y + C00

(5.2)

Cxy C∗2 C∗1 C∗0

C2∗ 3.00E-6 -2.08E-4 3.47E-3
C1∗ -4.56E-4 4.07E-2 -6.12E-1
C0∗ -6.73E-3 -4.60E-2 6.37

TABLE 5.2: Coefficients for Equation 5.2

After initial testing of the data produced from Equation 5.2 of the model collected

during stabilized flight, it was determined that the results contained a continually

varying error from the expected value when the aircraft was flying under autopilot

control. This was found to be the result of the autopilot continually corrected the pitch

and throttle of the aircraft for level flight, thus affecting its airspeed. These throttle

and airspeed values applied into the stabilized energy model equation resulted in
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(A) Corner View of All Axes (B) Front View with Throttle Into The Page

FIGURE 5.8: 3D Graphs of the Throttle, Airspeed, Vertical Velocity
Relationship from Stabilized Flight

continuously changing vertical velocity values that did not match the expected behavior

of the aircraft.

A similar process was used to recollect the aircraft’s relevant airspeed and vertical

velocity values associated with specific throttle percentages by setting the target

airspeed and maximum climb rate over the maximum achievable so that the autopilot

would always request full throttle. The maximum throttle percent was adjusted for

each 10.0% stage (since autopilot was engaged, 30.0% throttle could be included in this

test run) and the aircraft was commanded to climb and descend while the maximum

pitch angle allowed was limited to get the same type of data from autopilot flight as

the stabilized flight. The resulting 3D graphs for the autopilot collected data are shown

below in Figure 5.9 with the collected data points in green and the surface plotted from

the equation in grey. The surface comes from the best fit equation expanded from the

coefficients in table 5.3 based on the standard form of Equation 5.3. Just like the equation

generated from the stabilized flight data, x is the throttle percentage and y is the airspeed

directly from the airspeed sensor, and z is the resulting calculated vertical velocity from

this model.
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z = C23x2y3 + C22x2y2 + C21x2y + C20x2

C13xy3 + C12xy2 + C11xy + C10x

C03y3 + C02y2 + C01y + C00

(5.3)

Cxy C∗3 C∗2 C∗1 C∗0

C2∗ 0.00 1.82E-6 -1.59E-4 2.85E-3
C1∗ -3.37E-6 2.02E-4 5.96E-3 -1.00E-1
C0∗ -3.62E-5 -1.07E-2 5.03E-1 -5.66

TABLE 5.3: Coefficients for Equation 5.3

(A) Corner View of All Axes (B) Front View with Throttle Into The Page

FIGURE 5.9: 3D Graphs of the Throttle, Airspeed, Vertical Velocity
Relationship From Autopilot Flight

Another value provided by the curve fit function is the covariance of the computed

parameters from the best fit algorithm. Initially the covariance was in the range of

1.0 ∗ 1021 indicating a significant amount of over-fitting. Many iterations of the output

equation format and corresponding graph (to ensure the equation maintained closeness

to the input data) as well as the corresponding covariance values from each equation

were examined. The input data was also reviewed to determine if any of the values

provided any indication of the cause of the over-fitting. It was found that due to the

method in which the data was collected, there were multiple test runs that provided

similar data for the same vertical velocities and airspeed values. After the data was

improved to remove values with significant similarities and the curve fit rerun, the
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covariance was reduced to the range of 7.0 ∗ 108. The final and simplest equation that

still maintained closeness with the original data and had reduced covariance is written

below in standard form by Equation 5.4 with the coefficients in Table 5.4. The improved

result was then graphed in the same manner as the previous equations and is seen below

in Figure 5.10, with the data points in blue and the surface of the best fit equation in

yellow. To illustrate the accuracy of the calculations of Equation 5.4 versus the original

observations, the average error across the surface is -0.08 ft/sec.

z = C03y3 + C11xy + C01y + C10 (5.4)

Cxy C∗3 C∗2 C∗1 C∗0

C2∗ — — — —
C1∗ — — 4.94E-3 -4.49E-2
C0∗ -1.68E-4 — 2.28E-1 —

TABLE 5.4: Coefficients for Equation 5.4

(A) Corner View of All Axes (B) Front View with Throttle Into The Page

FIGURE 5.10: 3D Graphs of the Throttle, Airspeed, Vertical Velocity
Relationship From Autopilot Flight — Corrected Model

To demonstrate the accuracy and provide a visual representation of why the energy

model required a few variations, each of the calculated z values (vertical velocity) from

the three equations previously discussed are shown below in Figure 5.11. In the graph,

the black line in the background maintaining close to 0.0 is the actual vertical velocity

reported by the FCS during a short normal flight. Based upon the airspeed and throttle
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percent during this flight, each of the energy models were used to calculate a resulting

vertical velocity. The green line shows the results from Equation 5.2, the red line shows

the results from Equation 5.3 after the airspeed input was increased to the 3rd order,

and lastly the blue line represents the output of Equation 5.4 after the over-fitting was

reduced.

FIGURE 5.11: Comparison of the Calculated versus Actual Vertical
Velocity

The ability of the energy model to indicate a difference in indicated versus actual

vertical velocity during an attack was also verified. The graph showing this test is

seen below in Figure 5.12. Similar to the previous graph, the black line represents

the indicated vertical velocity from the FCS, the blue line indicates the output from

the energy model, and the orange dashed line represents when a simulated altitude

attack was initiated. This graph proves the energy model is effective in providing useful

information that the dynamics of the aircraft based upon the input energy, throttle, and

airspeed of the aircraft. During this simulated attack, the autopilot does not indicate any

change in altitude whereas the energy model does indicate a change in altitude which

is accurate of the aircraft’s physical movements.

Other curve fits were run to further reduce the covariance, but these resulted in the

model having too much error from the original data. This error rendered it unusable for
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FIGURE 5.12: Comparison of the Calculated versus Actual Vertical
Velocity During an Altitude Attack

the purposes of detecting variations in the aircraft data during runtime. The resulting

cause of the over-fit was determined to be a result of the nature of the input data being

specific to the aircraft in which the model is designed for. The focus of the work lies in

developing a method to achieve a model specific to whatever aircraft is in use, not for

making a one size fits all equation. This uniqueness of data can result in the possibility

of using an over-fit data set.

The first best fit equation from the autopilot data only went to the second order

for both the airspeed and throttle input. The vertical velocity calculated from that

equation was much improved for all flight types over the data recorded during the

stabilized flight. One issue that still remained was a small inherent error that maintained

a constant delta when the aircraft was flying straight and level, which didn’t track the

ascents and descents correctly. The best fit was rerun with the airspeed going to the

third degree, as seen in Equation 5.3, and the calculated vertical velocity was perfectly

locked in to the expected values.

The need for increasing the order of airspeed was determined from an analysis of

the typical aircraft physics equations. Power is equivalent to force times velocity, where

velocity is the airspeed of the aircraft, as shown in Equation 5.5. The power in this
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example is the total force Ftotal the aircraft experiences. The total force is the combination

of the aerodynamic drag power Pdrag and the power of the change in gravitational

potential energy P∆PE displayed in Equation 5.6.

P = F ∗ V (5.5)

Ptotal = Pdrag + P∆PE (5.6)

Broken down into its individual components, Equation 5.7 shows that Pdrag is the

drag force FD times velocity. The change in gravitational potential energy power is

the derivative with respect to height of the standard potential energy equation of mgh,

as shown on the left-hand side of Equation 5.8. In this equation, m is the mass of the

aircraft, g is the acceleration due to gravity, and h is the altitude. The resulting derivative

is shown on the right-hand side of Equation 5.8, where Vvertical is the vertical velocity.

Ptotal = (FD ∗ v) + (m ∗ g ∗ Vvertical) (5.7)

d
dh

(m ∗ g ∗ h) ⇔ m ∗ g ∗ Vvertical (5.8)

Next, the standard aerodynamic drag force equation is defined below in Equation

5.9. In this drag force equation, Cd is the drag coefficient, ρ is the air density, A is the

cross-sectional area of the aircraft, and v is the airspeed. As a result, it is indicated that

aerodynamic drag is proportional to the square of velocity.

FD =
1
2
∗ Cd ∗ ρ ∗ A ∗ v2 (5.9)

Equation 5.7 is solved for Vvertical to obtain the relationship in Equation 5.10. The

solved equation indicates that vertical velocity is a function of the drag force times

velocity, where drag force is a function of velocity squared. This relationship proves the

correlation between vertical velocity to airspeed cubed is proportional. Since airspeed
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is the velocity component in equations described, Equation 5.10 is expanded with the

substitution of the drag force equation, shown by Equation 5.11.

Vvertical =
Ptotal − (FD ∗ v)

m ∗ g
(5.10)

Vvertical =
Ptotal − ( 1

2 ∗ Cd ∗ ρ ∗ A ∗ v3)

m ∗ g
(5.11)

To illustrate these variations, the airspeed and vertical velocity relationship, defined

by Equation 5.1, details the energy model of the functional monitoring architecture in

Figure 5.4. The input for this specific model is airspeed in knots and the output is the

calculated vertical velocity based on the equation.

The idea of the energy model came about from the plan of attempting to detect

attacks and data faults independent of the GPS sensor. Through the development of a

model based upon the aircraft’s energy state, airspeed and altitude errors can both be

identified, thus fulfilling the objective of error detection in the absence of GPS data. One

caveat is that in order to determine which of the two sensors, altitude or airspeed, is the

cause of the error, the GPS data must be used, with the assumption that it is accurate, to

provide a point of comparison for the altitude and airspeed data.

5.1.2 Development of the Heading Model

When determining the scope of the empirical model for analysis of the GPS data for

any variations, taking into account what data the GPS sensor typically provides is vital.

Specifically, this data includes latitude, longitude, altitude, heading, and ground speed

of the aircraft. A portion of the magnetometer (i.e., compass) data is used to calculate

the model for analyzing GPS data walk-offs. The calculation used for this model first

required using the magnetic declination table to calculate the specific declination value

at the current latitude and longitude of the aircraft. Then the heading based upon

the magnetometer sensor (commonly abbreviated as mag) was computed based on

Equation 5.12 below. The arc tan of the Y and X mag values was calculated, multiplied
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by -1 to obtain the correct orientation, and converted from radians to degrees. The

computed heading based on the mag data is added to the magnetic declination to obtain

a calculated heading value.

Computed Headingmag = −1 ∗ atan2(Ymag, Xmag) ∗
180.0

π
(5.12)

Flight data was collected, as was conducted with the energy model, to show the

effectiveness of the heading model calculation during a normal flight and one with a

GPS walk-off attack being conducted. First, in Figure 5.13, the heading reported by

the GPS is shown by the black line and the heading calculated from the above model

based on the mag data is shown in blue. As seen here, the model agrees with the actual

heading when no attack is being conducted. Figure 5.14 shows the same comparison of

data except when a GPS walk-off attack was initiated as shown by the orange dashed

line. The graph shows an obvious disagreement between the two heading values,

indicating that this model will also be useful in providing data for attack detection

analysis.

FIGURE 5.13: Comparison of the Calculated versus Actual Heading
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FIGURE 5.14: Comparison of the Calculated versus Actual Heading
During a GPS Walk-Off

5.1.3 Development of the Turn Radius Model

To review the two models so far, the energy model considers altitude and airspeed, and

the heading model applies to the GPS data. When development began on detecting

a walk-off of the IMU sensor, it was found that the pitch walk-off affects the altitude,

thus being detectable by the energy model, and the yaw walk-off affects heading, being

detectable with the heading model. This created the need for another model, as neither

of the existing models could detect the roll walk-off of the IMU. The typical physics of

an aircraft in terms of roll is that when no other changes occur to the aircraft’s control

surfaces, a roll in either direction will cause the aircraft to turn, resulting in a change in

the heading.

The main goal with this new model was to determine if the data provided by the

sensors and FCS indicate a turn and if the indicated roll from the FCS corresponds to

the change in aircraft heading. To develop this empirical model, the idea of calculating

the turning radius of the aircraft, as presented in [118] was used. The equation used

to calculate the turning radius of the aircraft is described below by Equation 5.13. The

numerator of the equation is the airspeed in meters per second from the airspeed sensor
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as the velocity of the aircraft. This value is then divided by the rate of change of the

aircraft’s yaw. The yaw value is provided by the FCS and the derivative of which is

computed and converted to radians. The resulting value is the turning radius of the

aircraft.

Turning Radius =
Airspeedm/s

Yaw Raterad/s
(5.13)

The turning radius model has two main observable features. The first being if there

is minimal change in the aircraft’s heading, the denominator will be relatively small.

The small change in heading would result in a significantly large radius, indicating a

roll angle of close to 0.0. Second, as the yaw rate increases, i.e., the roll angle increases

inducing a turn of the aircraft, the radius becomes much smaller.

The graphs of Figure 5.15 illustrate the process of the turning radius calculation from

a flight with no attacks running. In the upper left-hand corner, Figure 5.15a shows

the roll angle of the aircraft during this test flight as reported by the FCS. As seen

here, there is one turn (i.e., change in heading) that occurred. Figure 5.15b shows the

corresponding calculated turning radius during this flight based on the rate of change

of the yaw provided by the FCS. This graph shows that when the roll is fairly steady,

the turning radius is significantly large. The continual changes from large negative to

large positive numbers are due to the minor corrections made by the autopilot, resulting

in large swings in the calculated turning radius. It is also shown that when the roll

increases for the turn, this increases the yaw rate, thus lowering the scale of the turning

radius.

This same process and calculation method was used to display the usefulness of

the turn radius model during a roll walk-off attack in both the autopilot and stabilized

flight modes. The implementation of this testing was completed utilizing the method

previously discussed in Chapter 4.4. During this autopilot flight, a roll attack of +10.0°

was tested. The corresponding difference between the actual roll angle of the aircraft,

the grey line, and the reported roll from the FCS, the blue line, is shown in Figure 5.16a.

As is true in all graphs displaying a simulated attack, the orange dashed line indicates
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(A) Roll Angle During (B) Calculated Turning Radius

FIGURE 5.15: Turn Radius Model Example During Normal Flight

when the attack was initiated.

Over the runtime for this attack, initially due to the nature of the autopilot

attempting to re-level the aircraft based on incorrect information, some minor

adjustments are made to the aircraft. These adjustments result in large changes in the

yaw rate and thus a small turning radius, as indicated early on in Figure 5.16b. As

runtime continues and the roll value levels off, the turning radius begins to increase

to the scale of indicating that the aircraft is not turning. This phenomenon is accurate

based on the way in which the autopilot corrects the IMU walk-off attack in the roll axis.

The key difference here to be reviewed is that based on the physical flight characteristics

seen in the simulator along with the raw yaw data. The data indicated by the turning

radius calculation exhibits no change in the aircraft’s heading. The roll angle from the

FCS indicates that there should be a change in heading. This difference leads to the

method of using this model for detections, which will be discussed in more detail in

Chapter 5.4.

The results observed during a stabilized flight when the IMU roll walk-off was

active, as shown below in Figure 5.17, exhibit the opposite effect as that observed during

the autopilot flight. The comparison of the roll values between the actual and indicated

by the FCS are shown in Figure 5.17a. To summarize the effect of this attack during a

stabilized flight, as the roll value is walked-off, the main processing of the FCS attempts

to re-level the aircraft. The result is the aircraft rolling the opposite direction of the

walk-off value. The FCS interprets the final result as a level aircraft, when instead it is



Chapter 5. Functional Monitor Architecture and Implementation 87

(A) Roll Angle Comparison Between the Actual and
Indicated Values

(B) Corresponding Turning Radius Calculated from
the FCS Data

FIGURE 5.16: Turn Radius Model Example During IMU Roll Walk-Off in
the Autopilot Flight Mode

actually holding at the negative of the roll walk-off value. In flight, this induces a turn

of the aircraft. The resulting turn should create a change in yaw rate, thus result in a low

turning radius, indicating the aircraft is in fact changing its heading. This phenomenon

is shown in the turning radius calculation of Figure 5.17b. Again, the important factors

to note here are that the turning radius indicates the aircraft is changing its heading.

The assumption from this observation is that the roll must have diverged from 0.0°, but

the FCS continues to report a roll of around 0.0° which shows no indication of turning.

(A) Roll Angle Comparison Between the Actual and
Indicated Values

(B) Corresponding Turning Radius Calculated from
the FCS Data

FIGURE 5.17: Turn Radius Model Example During IMU Roll Walk-Off in
the Stabilized Flight Mode
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5.1.4 Summary of Model Creation

The three models developed cover a broad range of different observations of the

in-flight data. The energy model can be used to identify a variation in any altitude

or airspeed based error including from the altitude sensor, airspeed sensor, and IMU

pitch data. The heading model can be used for identifying variations in the GPS data

and IMU yaw. Of the sensors implemented, this leaves variation detection of the IMU

roll, which was accomplished by the turn radius model. The models discussed were

initially tested for one simulated walk-off attack at a time.

Each model showed promising results for the specific sensor intended, with the

difficulty being that the energy model can show a variation of the airspeed or altitude

sensor but is unable to determine which sensor exactly without other information. The

idea is to use the models in combination to test the possibility of determining which

sensor is likely at fault through the use of how much a particular model results in a

positive detection when appropriate. This process will be discussed further in Chapter

5.4.

5.2 Decision Metrics used in the Functional Monitor

FIGURE 5.18: Simplified Functional Monitor Architecture with Decision
Emphasized

The decision block of the functional monitor implements a decision metric based

upon a mathematical method for analyzing a difference between input observations.

Figure 5.18 emphasizes the location of the decision block in the overall Functional
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Monitor Architecture in development. The decision metrics are intended to play a

significant role in the detection of variation in the data caused by cyber-attacks and

physical sensor faults on the FCS. To determine the efficacy of the models discussed in

section 5.1 for cyber-attack detection, an error indicator metric was developed and is

discussed in this chapter.

In addition to the error indicator metric, run-time implementations of a few

statistical based metrics, extended from the work presented in [119], are evaluated

below. Throughout the search for methods used to identify variations, drifting, and

errors within sensor data, a few common statistical methods were reviewed. The

methods were selected based on their usefulness for providing key information of

data variance when limited points of comparison are available. The methods tested

include cumulative sum, exponentially weighted moving average, xbar and range,

and correlation coefficient. The metric definitions and how they are implemented are

described below. All the metrics are implemented such that they are calculated during

run-time of the functional monitoring system to provide real-time results to the user.

The results can also be used for offline analysis of the effectiveness of each method in

providing usable and quantifiable error margins.

Flight simulation data was collected both without an attack, and during the time a

simulated attack was initiated, to demonstrate the usefulness of each of the following

decision metrics under test. Following each metric description are a series of graphs

to illustrate a portion of the types of results each metric provides. For the purposes

of displaying such results, the input data to each metric is a variation of altitude-based

data and will be explained in more detail for each method. The specific values calculated

from a metric are in either blue or grey, depending on if there are one or two calculated

values in a single graph. In the graphs that have a simulated attack present, the orange

dashed line represents when the simulated attack was started. The simulated attack run

for the purposes of this data collection is the altitude walk-off attack as described in

Chapter 4.1.
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5.2.1 Error Indicator Metric

The error indicator metric is based on the scale of the error, along with what the error

can indicate over time. First, the error, E, is calculated as shown in Equation 5.14, where

X is the specific sensor value in question, to determine how far away a value is from

the expected state. EM of Equation 5.15 is the magnitude of the error as calculated from

Equation 5.14. Next, ET (as shown in Equation 5.16) is helpful in determining how long

a value stays incorrect due to this value having "memory" and accumulating over time.

Lastly, E∆ (as shown in Equation 5.17) provides information on the rate of change and

direction based upon the current and previous error values.

E = Xactual − Xcalculated (5.14)

EM = |E| (5.15)

ET + = E ∗ dt (5.16)

E∆ =
E − Eprev

dt
(5.17)

The graphs within Figure 5.19 display the results of the error indicator metrics

during a normal flight. The data used for the calculations displayed by the graphs

consist of the vertical velocity as reported by the FCS as the Xactual value and the

calculated vertical velocity from the energy model (as discussed in Chapter 5.1.2) as

the Xcalculated value. The left-most graph shows the EM error (as calculated by Equation

5.15) in Figure 5.19a representing the absolute value of the difference between the actual

and calculated value. As seen here, the error remains close to 0.0 as would be expected

based on the accuracy of the energy model. As a result, the ET value in Figure 5.19b

(as calculated by Equation 5.16) shows how the error builds up over time, which in

this case is minimal. The rightmost graph in Figure 5.19c below displays the E∆ error

(as calculated by Equation 5.17). This value represents the rate of change of the value

providing insight into if and how much a value is changing over each time time-step.

The next set of graphs are aligned in the same order as the graphs of Figure 5.19
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(A) EM (B) ET (C) E∆

FIGURE 5.19: Error Indicator Metrics During a Normal Flight

above to provide a side-by-side comparison between each value in normal flight and

with a simulated attack running. As seen in Figure 5.20a, the EM value showing

a difference between the actual and calculated values accurately show a difference

between these values. This difference is reflected by the increasing ET graph in Figure

5.20b showing the error is maintained over the run-time. Lastly, Figure 5.20c displays

the E∆ of the metric. Of the values created from the error indicator metrics, the value

found to be the most important is the average of the E∆. Before the attack was initiated,

the average rate of change was 0.00379. During the whole run-time the attack was

active, the average value for E∆ was 0.0209. It was noted that the faster a walk-off

attack was applied, the greater the rate of change was. This difference shows how this

method could be used during a simulated attack.

(A) EM (B) ET (C) E∆

FIGURE 5.20: Error Indicator Metrics During a Simulated Attack

This method isn’t without its limitations. The rate of change of the error is only

useful when the error has a continuous change, such as a continual data walk-off attack.

One of the implemented attacks is based on walking-off the value until a set point is

reached and then maintaining that offset. A maintained offset will have a rate of change

of around 0.0 which would be reflected in the E∆ graph, thus having a value that is

not indicative of an error. Figure 5.21 displays such a scenario, where the error builds
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up before leveling off at a predefined difference. This error is seen in Figure 5.21a.

The corresponding E∆ in Figure 5.21c accurately displays the described response of no

variation in the value, with the average value of -0.00541 when an attack was actively

running. The ET value representing the total change over the whole system run-time did

not prove to be useful, as any small error can build up even when no attack is running.

The cumulative nature of the ET value results in an unknown scale of the value when

an attack occurs. Thus, the need for the continued research into other methods that are

sensitive to data variations that hold a constant value instead of a continual walk-off.

(A) EM of Vertical Velocities (B) ET of Vertical Velocities (C) E∆ of Vertical Velocities

FIGURE 5.21: Data During Walk-Off and Hold at Constant ∆ During
Airspeed Attack

5.2.2 Cumulative Sum

Cumulative sum (CUSUM) is a statistical measure based on aggregating the values of

a sequence of past and present data to calculate positive or negative deviations from a

predetermined target value [120, 121]. The features of CUSUM allow for detecting both

positive and negative out-of-control values of a particular parameter under constant

change. CUSUM is the more favorable option for applications where small shifts in the

process average must be detected.

The first component of the CUSUM requires a standard deviation, denoted σ, of

the specified data in question. In all metrics that utilize standard deviation, this same

method was used. It is important to note the method used is only an estimate, not a

true standard deviation, as it is calculated during run-time in a single pass, whereas the

typical standard deviation requires a two-pass method. The standard deviation function

used is shown in Equation 5.18. To calculate σ, each on pass the sample of data, X, is
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obtained and added into an accumulated variable, HistorySum. The same sample, X, is

squared then accumulated into HistorySquared Sum. The total number of samples are also

counted. In the standard deviation equation, the accumulated sum is squared and then

subtracted by the squared sum from each pass divided by the total samples minus one.

σX =
HistorySquared Sum − (HistorySum)

2

Number o f Samples − 1
(5.18)

Next, the deviation factor Z, at each iteration n, is calculated using the past and

present deviations within the data in question, is not a cumulative value, and is

calculated at each pass through the cumulative sum function. As shown in Equation

5.19, the current sample Xn and the current average of all sample values X are calculated

and subtracted from each other, then divided by the standard deviation of X as

calculated in the previous step. The Zn is used as a way of normalizing the data around

the target in-control value, then scaling by the standard deviation. This method of

normalization removes the need for incorporating a target value into the set of CUSUM

equations. Not including a target value, in this case 0.0, was useful for all use cases of

cumulative sum since the input value is already centered around 0.0.

Zn =
Xn − X

σX
(5.19)

Lastly, for the calculation, the high and low CUSUM factors are calculated. First,

run-time data was collected of the deviation factor to determine what scale Zn falls

within to determine a range of usable reference values K f actor. Below in Equations 5.20

and 5.21 are the formulas for calculating the high and low CUSUM factors, respectively.

These factors, as seen in both equations, utilize its respective previous value, Chigh/lown−1 ,

then either add, for Chigh, or subtract, for Clow, the Zn value calculated from Equation

5.19. Next, the K f actor is subtracted from the result of the first operation. The value

calculated from the previous addition and subtractions is then compared with 0.0 to

determine the max between the two values, which is then stored as the final result to

the CUSUM factor value. The reference value can also be considered a sensitivity factor
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based on the structure of the high and low factor equations. If K is too large, the resulting

high and low factors would be 0.0 for the entire run-time, and if K is too small, every

minor change in Z would result in a spike in the resulting factors values.

Chighn = max[0.0, CHighn−1 + Zn − K f actor] (5.20)

Clown = max[0.0, CLown−1 − Zn − K f actor] (5.21)

To demonstrate the type of results the cumulative sum method provides for Chighn

and Clown , the calculated values from a data collection of a normal flight and a flight with

the same simulated attack as used for the error indicator metric were tested. Figure 5.22

shows both of these results. Figure 5.22a on the left shows the high and low values based

on the same input observations of the vertical velocity, as reported by the FCS, and the

calculated vertical velocity, from the energy model. The difference between these two

values was the input Xn. At first glance, the usability of the cumulative sum is unclear

based on the graph during normal flight. When the simulated attack was run, the high

and low values continue to not be conclusive indicators of the error, as seen in Figure

5.22b.

(A) Normal Flight (B) Simulated Attack

FIGURE 5.22: Cumulative Sum Metric

The inconclusive results obtained from the high and low calculations led to more

through analysis of the intermediate values within the CUSUM process. Upon this

analysis, the single-pass standard deviation and the running average of the sample data,
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Xn, were reviewed and discovered to potentially have usable detection results. The

values achieved by the standard deviation calculation of Equation 5.18 are shown below

in Figure 5.23. In the first graph, Figure 5.23a, the standard deviation of the data sample,

the difference between the two aforementioned values remains relatively flat around 0.0.

The change in the graph can be equated to an aircraft turn, but it is important to note

the value does return to approximately 0.0. When the simulated attack was initiated,

the standard deviation of the data immediately begins to change as seen in Figure 5.23b

where the orange dashed line indicates the attack was activated.

(A) Normal Flight (B) Simulated Attack

FIGURE 5.23: Standard Deviation of the Input Data

The other value that showed potential in attack detection was the running average

of the data sample and as shown in Figure 5.24. Since the sample was based on the

difference between two values that should ideally be very similar, the overall average

should remain around 0.0 as long as nothing has caused variation in the data. The

running average during a normal flight, in Figure 5.24a, is shown to be very small, as

would be expected. When the simulated attack beings, the average over the runtime

begins to deviate from 0.0 within the first few seconds, as seen in Figure 5.24b.
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(A) Normal Flight (B) Simulated Attack

FIGURE 5.24: Running Average of the Input Data

5.2.3 Exponentially Weighted Moving Average

Exponentially Weighted Moving Average (EWMA) is another statistical method tested

for its usability in detecting sensor errors. EWMA is unique in that it is used for

monitoring the averages of data within a specific process based on a predefined weight

to place more emphasis on present data or historical values. The closer the weight is

to 1, the more emphasis present data has on the resulting output. The weight, λ, is

calculated with Equation 5.22 where N is the number of historical values that influence

the current calculation [122].

λ =
2

N + 1
, (whereN ≥ 1) (5.22)

The calculation of EWMA is shown below in Equation 5.23. This equation resembles

that of the typical low pass filter, but with a different method of determining the

weights. First, the weight is multiplied with the current data sample Xt. Next, the

calculated EWMA from the previous time step, EWMAt−1, is multiplied by the weight

subtracted from one. Lastly, the two resulting values are added together.

EWMAt = λ ∗ Xt + (1 − λ) ∗ EWMAt−1 (5.23)

This method also contains a component to calculate the variance of the calculated

EWMA statistic. This calculation follows Equation 5.24 where λ is the value calculated

previously and σX is the standard deviation of the input observation. The standard
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deviation of the value used in the variance calculation of the EWMA method is

calculated as described above in Equation 5.18 using a single-pass method to provide

an estimated standard deviation.

s2
EWMA =

λ

2 − λ
∗ σ2

X (5.24)

The last part of this statistic are the control limits. EWMA has control limits to

monitor when the data is within the appropriate range. The control limits use the target

value of EWMA, which in this case is 0.0, as no error should be present among the

values in question, and the square root of the variance from Equation 5.24. The upper

and lower bounds can be scaled by k, which gets multiplied to the root of the variance,

depending on the range of data that is acceptable as under control. Equations 5.25 and

5.26 show this calculation for the upper and lower control, respectively. If the calculated

EWMAt value from Equation 5.23 is within the upper and lower control limits, the

sample can be considered under control.

EWMAucl = E0 + k ∗
√

s2
EWMA (5.25)

EWMAlcl = E0 − k ∗
√

s2
EWMA (5.26)

Below is a set of graphs to demonstrate the effectiveness of the EWMA metric in

providing useful information when a variation within the data occurs. For the purposes

of the calculations, the value of N = 100 was used for how many observations to be

considered in the memory for the λ calculation. The data rate of the detection process

is 20Hz, meaning that 100 values is 5 seconds worth of data. Figure 5.25 shows the

graph of the calculated EWMAt values as calculated by Equation 5.23. The graph on

the left, Figure 5.25a shows the calculated EWMA during a normal flight. Again, the

input observation for Xt is the difference between the FCS reported vertical velocity

and the energy model calculated vertical velocity. Other than a likely turn that occurred

in the flight simulation during data collection, the EWMA remains close to 0.0.
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Figure 5.25b represents what happens to the calculated EWMA value during a

simulated attack. As seen in the graph, when this walk-off attack beings, indicated

by the orange dashed line, the moving average increases and eventually settles at some

value. The value it settles on is not unique and can change depending on the type of

attack or how much the attack affects the aircraft’s flight.

(A) EWMAt Normal Flight (B) EWMAt Simulated Attack

FIGURE 5.25: Variation from Exponentially Weighted Moving Average
Calculation

The exponentially weighted moving average process also contains a calculation for

the variance of the data, which is seen in the graphs of Figure 5.26. When no attack

is running, the variance of the input data remains low and returns low even after a

small variance is registered, as exhibited by Figure 5.26a. When the simulated attack

is initiated, the variance begins to increase significantly, the value of which going past

1.0 ∗ 105 within the first 60 seconds of the attack being initiated and growing rapidly, as

shown by the data of Figure 5.26b.

(A) Variance (s2
EWMA) Normal Flight (B) Variance (s2

EWMA) Simulated Attack

FIGURE 5.26: Exponentially Weighted Moving Average Calculation
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This large scale is a drawback of using variance for any error detections as the data

contained within this graph is very large when only a small error was present in the

data. If the variance was used on another simulated attack or even a different model

that has significantly diverged from the ideal value, this variance would grow too large

to be useful. A large variance can occur even when no attack is present, making this

method not as viable as others described, due to the unknown bounds of the scale the

variance results can have.

5.2.4 Xbar Control Charts

Another statistical measure considered was the Xbar control chart method. Xbar control

charts are used to observe the average value of a particular process when the subgroup

of data contains continuous data. There are three main types of Xbar control charts

which are selected depending on the data subgroup size: individual and moving

range, Xbar and standard deviation, and Xbar and range. Control limits are calculated

alongside each Xbar chart to determine if the process is within normal limits. When

the process average goes beyond the control limits, the process is not performing as

intended. In the context of the flight controller, a process going beyond the control

limits can mean the flight controller is experiencing a cyber-attack effecting one or more

sensors.

IMR Charts The individual and moving range (IMR) chart is the combination of the

individual chart and moving range chart. An individual chart, or I chart, is used for

displaying single data points and tracks the average and shifts in any process with data

collection occurs at regular time intervals. A moving range chart, or MR chart, is similar

in that it requires data collection at regular intervals but tracks the variation in data

points. The main use of IMR charts is when only one set of continuous data is available

to look for process behaviors, as all of these chart methods calculate upper and lower

controls [123].
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Xbar S Charts Next, Xbar and standard deviation (Xbar S) charts are typically reserved

for continuous data with subgroups of greater than ten. Xbar by definition is the

average of a single sample value from each subgroup. The S component is the standard

deviation of all the data of all subgroups. The combination of the Xbar and S charts

result in the analysis of the average and standard deviation over time but does require

the data to have a normal distribution [124].

Xbar R Charts The third method is the Xbar and range (Xbar R) charts which are used

when there are more than two but less than ten subgroups of continuous data. This

method, like Xbar S, starts with the average of one sample per subgroup, but instead

of using standard deviation for the second chart, the range of the data is used. This

range, R, is calculated by taking the maximum value of the set of values from each

subgroup and subtracting the minimum value. This combination creates an analysis

of the average value and range among the values over time and also requires normal

distribution [125].

Based on the use cases of the three statistical chart methods, the Xbar R was selected

due to the span of subgroup sizes that can be encompassed by the equations. In all

considered uses of this method, between two and four subgroups of data are either

readily available or can be calculated at run-time to feed into the typical set of Xbar

R equations. The other two methods, IMR and Xbar S, were not selected since the

applicable subgroup sizes did not match with the data available.

The equations and implementation of Xbar R are described below since Xbar R was

the approach chosen to compare its effectiveness against other statistical metrics. As

previously mentioned, X is calculated by taking the average of each value, one from

each subgroup. All the X values for all the data samples collected or iterations stored are

averaged together to calculate X. Next the range value is then computed for each data

collection, R, and all ranges are averaged together to get R. During the implementation

of this method, 50 samples of data were stored for the calculations resulting in X and

R are the averages of 50 values calculated by the per sample average and per sample

range, respectively.
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The first step in using the Xbar R equations is determine the subgroup size and

using the Xbar R control chart constants for determining the A2, D3, and D4 constants,

obtained from [124]. The first set of equations below, Equations 5.27 and 5.28 are

used for calculating the upper and lower control limits, defined as ucl and lcl, of X,

respectively. To solve these two equations, first the A2 value for the correct subgroup

size is selected from the constants table then multiplied with the average of the range

values, R. This value is then added to the average of the average X values, X, for the

upper control limit, or subtracted from X for the lower control limit.

Subgroup Size A2 D3 D4
2 1.880 0.000 3.267
3 1.023 0.000 2.574

TABLE 5.5: Constants for Xbar and Range Control Charts

Xucl = X + (A2 ∗ R) (5.27)

Xlcl = X − (A2 ∗ R) (5.28)

Similar to the control limits calculations of X, the range value also has its own set

of upper and lower control limits. To calculate the upper limit of range of Equation

5.29, Rucl , the table is again consulted for the proper value of the D4 constant then

multiplied with the average of the range values, R. The lower limit in Equation 5.30,

Rlcl , is calculated using the D3 constant and multiplying with R.

Rucl = D4 ∗ R (5.29)

Rlcl = D3 ∗ R (5.30)

Since the two main components of the Xbar and Range metric are the previously

described X and R values, these two values were graphed to view their results during

the run-time of both a normal and a simulated attack flight. First are the graphs of X
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in Figure 5.27. For the purposes of this initial test, the two values that were averaged

together at each time step, achieving the X, were the FCS vertical velocity and the energy

model vertical velocity. The averages from each time step were all averaged together

over 5 seconds of runtime to calculate the X, the same time segment of data used for the

EWMA metric for an accurate comparison.

In Figure 5.27a, it is seen that the average of the data over the most recent 5 second

time interval remains negligible when no attack is present. This low value is the

expected average as the average for the data was designed to be centered around 0.0 to

create a comparison for all methods. In the instance the altitude, airspeed, or any other

typically non-zero value is used for a comparison, the scale of those values would vary,

resulting in any detection method difficult to fit to all scenarios. When the simulated

attack is activated, Figure 5.27b shows the X change very quickly and clearly indicated

that a variation among the input data is present.

(A) Normal Flight (B) Simulated Attack

FIGURE 5.27: Xbar and Range Metric: X

The second component to the Xbar and Range method is the range. This range value

is based on tracking the difference between the least and greatest value among a data

sample as each time step. In this test, since only the two previously mentioned values

were used, the range R was just the difference between the two. Similar to X, R is based

on the average of all the range values over the last 5 seconds of runtime. Figure 5.28

shows the resulting data for the average range value in the two instances used for the

previous comparison.

The graph, represented by Figure 5.28a, shows the R of the data over the normal
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flight data collection, indicating a minimal error is present between the two input

observations. With the simulated attack, the average range begins to increase when

the variation in the data is present, as exhibited by Figure 5.28b.

(A) Normal Flight (B) Simulated Attack

FIGURE 5.28: Xbar and Range Metric: R

5.2.5 Correlation Coefficient

The last method considered and tested was the correlation coefficient. The focus of

correlation is to measure the strength and direction between two values of interest with

a linear relationship. While first thoughts indicated the relationships under test are

likely non-linear, this method was still implemented to determine if any values could be

of use. The correlation coefficient provides information on the regression of the data as it

changes with respect to the other input. The correlation is done by essentially applying

a line of best fit to the data. The resulting slope of that line is the resulting coefficient,

bounded between -1.0 and 1.0. A coefficient of 1.0 indicates a positive correlation,

meaning that the two observations are increasing at the same rate over time. A negative

correlation, indicated by a value of -1.0, indicates that as one point increases, the other

decreases. Lastly, if the coefficient is around 0.0, there is no correlation between the two

observations and that there are no commonalities between the driving forces that create

the results observed [126].

The calculation of the correlation coefficient, ρ, is a two-step process, first requiring

the calculation of the covariance between the two observations. Covariance is used

to evaluate the total variation between two random observations and their respective
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expected values. This is then used to determine if the relationship is proportional or

inverse, but does not specify any dependency between the observations [127].

To compute the covariance, as shown in Equation 5.31, the difference between each

sample X and the average of all collected samples X is computed for both observations.

These differences are multiplied together, then summed up from the beginning of

run-time to the most recent data point. This summation is then divided by the number

of values less 1 to compute the sample covariance instead of the population variance.

Cov(X1, X2) =
∑n

i=0

(
(X1i − X1) ∗ (X2i − X2)

)
N − 1

(5.31)

Next, the standard deviation of each observation is computed in the same

single-pass method as previously described by Equation 5.18. The correlation ρ with

respect to the two samples is then calculated by taking the covariance from Equation

5.31 and dividing it by the product of standard deviations of the two observations.

ρX1,X2 =
Cov(X1, X2)

σX1 ∗ σX2

(5.32)

In a similar method to the previous metrics, the covariance component of the

correlation metric and the correlation coefficient were graphed to determine if this

method was usable in providing unique features for proper data variation detections.

The input data for this test was the same as used previously, the vertical velocity from

the FCS as X1 and the energy model X2. The values were run through the corresponding

methods and equations as discussed for the correlation coefficient method. The

resulting covariance between X1 and X2 as calculated by Equation 5.31 is shown in

Figure 5.29. When no attack is running, the covariance shown in Figure 5.29a is very

minimal and is unclear if any useful information would be obtained when a simulated

attack is run. Figure 5.29b confirms this idea that even during an attack, there is an

initial spike in the covariance followed by a return to normal. This return leads to

the conclusion that looking at the covariance alone does not provide an indication the

sources of data contain an error.
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(A) Normal Flight (B) Simulated Attack

FIGURE 5.29: Covariance of X1 and X2

Next, the correlation coefficient with respect to the input data, ρX1,X2 , was graphed in

Figure 5.30 to determine if this method could provide any indications of data variations.

Figure 5.30a displays the ρ value during the data collection of a normal flight. As seen

in the graph, when the data should be maintaining the same value as each other, the

correlation coefficient is inconclusive of the intended observation. This inconclusiveness

is matched in the values during a simulated attack of Figure 5.30b. This proves that

both values provided during the calculation of the correlation coefficient metric are not

usable in providing any inference on issues within the run-time data.

(A) Normal Flight (B) Simulated Attack

FIGURE 5.30: Correlation Coefficient (ρ)

5.2.6 Summary of Control Limits

Of the statistical metrics discussed, the exponentially weighted moving average and

Xbar control charts both have specific methods for calculating upper and lower control

limits. The idea behind the control limits to be calculated on the data offline after all
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the values are available. This would provide for an accurate upper and lower bound

control limits to indicate if any value is outside the determined nominal range, that

would be considered inaccurate data. A calculation for the control limits was attempted

at run-time, but the result is that any change in the input data results in a change in the

control limit, ensuring that all values received are within range.

After reviewing the results of these control limits, two methods were tested to see if

adding an external factor onto the control limits could reduce how much it is affected by

sudden spikes in the data. These two methods were low pass filtering and averaging.

Running the control limits through a low pass filter and averaging the data over a

specific time segment did allow for sudden data anomalies to go outside the allowable

thresholds. This method became too specific to each implementation of the metric and

the scale of input data, resulting in abandoning the use of the run-time control limit

calculations. Other approaches to create a more uniform process for determining the

correct threshold for valid data were explored and will be discussed in Chapter 5.3.

5.3 Operating Bounds and Threshold Calculations from the

Decision Metrics

The results of the decision metrics collected during all flight scenarios, normal and

with various simulated attacks, to see if any distinguishable features could be identified

among these datasets. For the methods that had unique features, a repeatable method

to extract the boundaries was required. This limit on what constitutes normal aircraft

behavior is used by the detection mechanism, discussed in the next section, to detect if

a particular value has veered outside its expected behavior. The two techniques tested

for this purpose were the confidence interval and the prediction interval, which were

only usable when the decision metrics could be implemented, requiring a comparison

of data.
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5.3.1 Confidence Interval

The confidence interval, CI, was the first method used to determine the aforementioned

threshold. It is a statistical inference method to estimate the range that a set of

observations is likely to fall within, based upon specific calculated values from

previously observed data. The data collected during normal flight simulation test runs

of the metrics when no attacks were conducted was used in order to obtain the average

and standard deviation of the data in normal flight for use in calculating the CI. This

followed the method below in Equation 5.33 where X is the specific component of

a statistical metric used, z is the number of standard deviations that are considered

acceptable data, and N is the number of data samples in X. In implementing the CI, a

value of 3 was used for the number of acceptable standard deviations from the average

as 2 resulted in too narrow of a margin resulting in too many false detections [128].

CI = X ±
(

z ∗ σX√
N

)
(5.33)

Upon further data collection of the detection function testing and its effectiveness,

it became apparent that the CI equation created too narrow of margins to compensate

for the noise that can occur in the data from the recorded flight data. It was clear that

another method for determining the threshold for the values was required.

5.3.2 Prediction Interval

The prediction interval, PI, was tested and determined to provide a wider range of

acceptable data which reduced the false detections without jeopardizing the correct

detection rate. The PI is a method of statistical inference used to forecast the range

in which future variables of specific observations are most likely to remain within [129].

The calculation of the PI is similar to the CI in the values it requires: the average

X, the standard deviation σX, and the number of samples N of the observed data. The

difference is the method of calculation, as seen below in Equation 5.34. The standard

deviation is multiplied with a value dependent on the number of data samples used to



Chapter 5. Functional Monitor Architecture and Implementation 108

compute the average and standard deviation, and is then added to or subtracted from

the observation mean. Equations that provide a range of values are typically added and

subtracted with the mean of the data so that the maximum and minimum ranges are

scaled around the mean. This is helpful in instances where the data typically has some

inherent error that always shows in the average of the data, as is the case in most of the

aircraft simulation data under test.

PI = X ±
(

σX ∗
√

1 +
1
N

)
(5.34)

As an example to illustrate the difference between the calculated values from each

equation, assume the average value is X = 0.61 and the standard deviation is σX =

10.27. It should also be assumed that these values remain relatively similar when the

data size is increased. The data in Table 5.6 represents the calculated values of the

confidence interval and prediction interval at different sample sizes N. As seen in the

CI data, as the number of values in the observed data set used to calculate the average

and standard deviation increase, the value drops off significantly before beginning to

settle out on a particular value as N gets fairly large. On the other hand, the PI values

across the same set of data exhibit minimal variation even as the data set size changes

significantly. This leads to PI being a more stable solution for calculating the range of

acceptable data, since the input data size for each metric under test can vary. These

variations are dependent on how long the flight simulations are run and the rate at

which data was logged from the flight.

N CI PI
10 10.353 11.381
50 4.967 10.982
100 3.691 10.931
500 1.988 10.890
1000 1.584 10.885
5000 1.046 10.881

TABLE 5.6: Confidence Interval (CI) and Prediction Interval (PI)
Comparison against Different values of N
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5.3.3 Non-Mathematical Boundary/Threshold Method

Based on the architecture developed, the confidence and prediction intervals could

only be applied to the values obtained from the decision metrics. The metrics contain

observations from the energy and heading models. These two models are unique in

that the calculated results are estimates that are directly comparable with other sensor

or FCS computed values.

The turn radius model required a different implementation than the energy or

heading models, as previously mentioned in Chapter 5.1. Due to the scale of the

calculations and the type of value provided from the turn radius model, there is

no directly comparable value as part of the FCS or the sensors. As a result, the

decision metrics are not implementable regarding the turn radius model, therefore the

CI or PI calculation can not be performed. The threshold determination for the turn

radius is based upon the graph displaying the relationship between the roll angle and

corresponding scale of the turning radius, is illustrated by Figure 5.31. As can be seen,

as the roll angle increases, the turn radius drops rapidly. Accounting for noise in the roll

data caused by constant minor corrections from the autopilot controller, the turn radius

that corresponds to a roll angle of 2.0° was selected and tested, the results of which are

presented in Chapter 6.
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FIGURE 5.31: Turning Radius Calculation and Scale versus Indicated Roll
Angle from the FCS

5.4 Detection Algorithm used in the Functional Monitor

FIGURE 5.32: Simplified Functional Monitor Architecture with Detection
Emphasized

The last component of the real-time functional monitor is the detection block, the

location of which is emphasized in Figure 5.32. The detection block implements a

specific algorithm for conducting the attack detections, independent of which statistical

method is being used. The pseudo-code for the detection algorithm is shown below

in Algorithm 2. The function begins with the inputs of the current value of whichever

metric is being analyzed, the loop time dt, and a delay value for the detection. The delay

value is used to filter out sudden spikes in the data that return to normal within a few
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cycles. The values under observation must remain outside the threshold for a certain

amount of time before being considered an error.

In the first if block, the value is checked to see if it is above a preset threshold and

if the attack has not yet been flagged, followed by checking if this error has occurred

for the minimum time. If these conditions have been met, the attack is flagged, and

if not then the current duration counter is incremented. The else if is used to lower

the threshold to release the attack, resulting in fewer toggles between a detection flag

from true to false and vice versa. The else block is for releasing the attack and is also

dependent on the time the value goes back to within range before resetting the detection

flag. This code also has a runtime counter of the attack for later use to determine the

accuracy of the methods used.

The detection algorithm developed for the turn radius model is based on the turn

radius calculation and the roll angle from the FCS. The threshold is determined from

the data of Figure 5.31 to select a corresponding set of turn radius and roll angle. These

two values are used in combination and are compare against this selected value to see

if the specific value is above or below a threshold. For example, a threshold of 5.0 ∗ 105

m for the turn radius would correspond to approximately 1.5°. The detection algorithm

for these values would be used to ensure that the calculated turn radius from the model

matches the measured roll angle of the aircraft. If the turn radius is below the threshold,

but the roll is around 0.0°, this would indicate an error among the data. The resulting

detection of an inaccuracy between the magnitude of the aircraft’s roll and its turning

radius would be flagged as an attack on the IMU.

As previously mentioned in the model creation summary of Chapter 5.1, detections

of the pitch and yaw vary slightly from the roll detection, even though these three

measurements originate from the same sensor. When the pitch walk-off is applied, the

resulting correction of the angle by the autopilot induces either an increase or decrease

in altitude. This is detected by the energy model and is used in combination with the

FCS pitch and the vertical velocity in order to distinguish the pitch walk-off from an

airspeed or altitude walk-off. The values obtained during this simulated attack show
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Algorithm 2: This pseudo code function shows the general format for
conducting an attack detection algorithm

1 function run_detection (current_value, dt, min_delay);
2 if (abs(current_value) > threshold) && (detection_flag == False)) then
3 //determine if the value is above the threshold for a minimum amount of

time
4 if current_duration > min_delay then
5 detection_flag = True;
6 total_detected_duration += dt;
7 current_duration = 0.0;
8 else
9 current_duration += dt;

10 end
11 else if (abs(current_value) > (threshold*0.707)) && (detection_flag == True)) then
12 //for creating a lower threshold for value checking
13 detection_flag = True;
14 total_detected_duration += dt;
15 else
16 if (detection_flag == True) && (current_duration < min_delay)) then
17 detection_flag = True;
18 total_detected_duration += dt;
19 current_duration = 0.0;
20 else
21 //fully release detection flag
22 detection_flag = False;
23 current_duration = 0.0;
24 end
25 end
26 runtime_of_this_detection_algorithm += dt;
27 return;
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that while the FCS indicated pitch is negative, the aircraft is climbing and when the

pitch is positive, the aircraft is descending. Using this mismatch in what is physically

possible with the aircraft along with the energy model indicating an issue, the IMU

attack is flagged.

The yaw walk-off is partially registered by the heading model but not fully, meaning

that the detection rate from the heading model is less than 50.0% but not insignificant.

Another value is needed to differentiate between whether the detection is being flagged

by an error in the GPS or IMU is to analyze the error between the GPS heading and the

FCS indicated heading. If an error is present while the heading model detection rate is

low, the IMU attack is flagged. The error between these two values was not used for

simply detecting a GPS walk-off, as another metric was needed in order to accurately

determine which sensor exactly contained the data error.

During a simulated GPS walk-off, due to the change in heading in the aircraft, the

turn radius model begins to provide some positive detections, but the detection rate is

less than half but not insignificant. In order to identify if the GPS is the source of the

error, data from the exponentially weighted moving average from the heading model

detection algorithm and the turn radius model are used. The GPS attack is flagged if the

heading model provides a positive detection and the turn radius detection rate is below

50.0%.

If the energy model and resulting exponentially weighted moving average decision

metric flags an error, that indicates an error on either the airspeed or altitude sensor.

In order to determine which sensor is the cause, data from the GPS is used as a point

of comparison. If the error is indicated from either of the two sensors just mentioned,

and the altitude from the barometer and GPS are in agreement, then the error originated

from the airspeed sensor and is flagged accordingly. If the barometer and GPS altitude

are not in agreement after the metric had indicated an error, then the altitude sensor is

flagged.
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Chapter 6

Results

To test the effectiveness of the functional monitor and the techniques described herein,

many flight simulations were run and various combinations of the decision metrics, as

introduced in Chapter 5.2, were implemented. The data used for the decision metrics

included the calculations from the models of Chapter 5.1 and the corresponding sensor

or FCS data. The results from these tests were collected in log files of each flight and

analyzed with the threshold and detection algorithms, introduced in Chapters 5.3 and

5.4, respectively. The overall results of applying these techniques to detect cyber-attacks

or sensor faults on simulated aircraft operations are described in this chapter.

The functional monitor architecture described in Chapter 5 in support of Run-Time

Assurance showed the overall process that was used to implement the functional

monitors discussed in this dissertation. To provide a more detailed context of the

architecture, an example containing the components discussed in previous chapters is

shown below in Figure 6.1. The difference between this diagram and the previous is

that this diagram shows an example test case of the architecture, including labelling

each component and the specific values that were used.

For the model block, the energy model was tested, which takes the inputs

of the throttle percent from the actuator output block and the airspeed from the

sensor/peripherals block. The results from the model are then passed to the decision

metric block, in this case the exponentially weighted moving average (EWMA) was

implemented. The decision block requires a point of comparison from the FCS for

the value received from the model; in this case the vertical velocity. The output from
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FIGURE 6.1: Block Diagram of an Implemented Functional Monitor
Architecture

the decision metrics are then forwarded to the detection algorithm, which contains the

proper operating bounds for the value in question.

The detection algorithm then outputs information related to whether or not the

EWMA metric from the model indicates an error. In order to provide more details as

to which sensor is the cause of the issue, data from other sensors is fed to the detection

block to compare against. This comparison can provide a more accurate guess as to

the location of the error. It should be noted that the other sensor must be assumed to

be trustworthy in order to be used in this error location determination. This location

determination based on other sensor data was not part of the initial research goals, but

was included as a means to further the testing of the Functional Monitor architecture.

The graphs below within Figures 6.2 and 6.3 display the results of a few decision

metrics using the data from the energy model and heading model, respectively. The

graphs show the detection rate in percent of the decision metrics during four tested

flight scenarios, where the letters below correspond to the sub-figure letter:

(A) Normal flight: a standard waypoint sequence with no simulated walk-off attacks

(B) Airspeed walk-off: the airspeed sensor underwent a simulated walk-off attack

(C) Altitude walk-off: the altitude sensor underwent a simulated walk-off attack

(D) GPS walk-off: the GPS data underwent a simulated walk-off attack
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In each graph, the left-most column, labeled expected, displays the intended

detection rate based on the type of simulated walk-off attack and the models used. The

data collected for the purposes of this testing was retrieved from the log files when each

of the corresponding walk-offs were conducted.

6.1 Energy Model Results

First, Figure 6.2 shows the detection rates of the decision metrics based upon the energy

model discussed in Chapter 5.1.1. Each of the remaining columns of data represent a

different implementation of the decision metrics and are described in Table 6.1.

X-axis label Description
Expected This data is used to display what the detection rate should be (0% if

the model should not detect an attack and 100% if it should)
Method E-1 The E∆ from the error indicator metric based on the energy model

output and the FCS vertical velocity
Method E-2 The E∆ from the error indicator metric based on the single-pass

standard deviation of the energy model output result and the FCS
vertical velocity

Method E-3 The rate of change of the calculated standard deviation of the error
between the energy model output and the FCS vertical velocity

Method E-4 The rate of change of the running average of the error between the
energy model output and the FCS vertical velocity

Method E-5 The computed X from the Xbar and R metric based on the average
of the energy model output and the FCS vertical velocity from each
run cycle

Method E-6 The computed R from the Xbar and R metric based on the range of
the energy model output and the FCS vertical velocity from each
run cycle

Method E-7 The exponentially weighted moving average value calculation
based on the energy model output and the FCS vertical velocity

TABLE 6.1: Description for each column of the graphs and the detection
method represented in Figure 6.2

As seen in Figure 6.2a, the expected detection rate is 0.0% as no attacks were running.

All seven methods tested display detection rates of less than 10.0%. Any detection

during a normal flight is considered a false positive. Initially, all methods began
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showing promising results with having low false positive rates. Once the walk-offs

were initiated, certain models began to outperform the rest.

Since the energy model applies to both airspeed and altitude walk-offs, the

detections during the airspeed and altitude walk-offs of Figures 6.2b and 6.2c,

respectively, should all be indicating a significant detection rate. This was true of five

of the initial seven methods tested. The two values of importance used in the metrics

for the detection rate tested were the FCS and the energy model vertical velocities. The

E∆ of these values (Method E-1) and the derivative of the raw standard deviation of the

difference between these two values (Method E-3), both exhibit a near 0.0% detection

rate, indicating that these methods are not useful in detecting a sensor data error.

When the GPS walk-off was tested, the detections based upon the energy model

should all be close to 0.0% as seen in the first column of Figure 6.2d. No detections

should be registered by the energy model, which would lead to a 0.0% detection of any

issues among the input observations. Any detections shown here would be considered

false negatives. As seen in the graph, some decision metrics provide significant false

negatives due to the nature of the GPS walk-off affecting the aircraft’s overall flight,

potentially in all three axes. Since Method E-3 has already been ruled out due to its

lack of performance during the airspeed and altitude walk-offs, the next best metrics is

Method E-7.

As described in Table 6.1, this method is the implementation of the exponentially

weighted moving average calculation based upon the vertical velocities from the energy

model and FCS. The other methods not mentioned, E-2, E-4, E-5, and E-6, were all

ruled out as usable methods due to their significant false negative rates during the GPS

walk-off.
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(A) Normal Flight (B) Airspeed Walk-Off

(C) Altitude Walk-Off (D) GPS Walk-Off

FIGURE 6.2: Detection Rate Analysis from Energy Model

6.2 Heading Model Results

The next set of testing presented in Figure 6.3 shows the detection rates of the

decision metrics based upon the heading model discussed in Chapter 5.1.2. Each of

the remaining columns of data represent a difference implementation of the decision

metrics and are described in Table 6.2. The data collections from the heading model

and corresponding decision metrics used are similar is structure but vary in order and

implementation to the methods from the energy model that were previously discussed.

The two values of importance used in the metrics for the detection rate tested were

the GPS heading and the calculated heading from the heading model. As seen in Figure

6.3a, the expected detection rate is 0.0% as no attacks were running. Five of the seven

methods tested display detection rates of less than 10.0%. The rate of change of the

standard deviation based on the observations indicated, Method G-3, and the X value

from the Xbar and Range metric, Method G-4, have false positive rates of over 20.0%.

Both the airspeed and altitude walk-off should have a 0.0% detection rate from the
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X-axis label Description
Expected This data is used to display what the detection rate should be (0% if

the model should not detect an attack and 100% if it should)
Method G-1 The E∆ from the error indicator metric based on the heading from

heading model and the GPS heading
Method G-2 The rate of change of the running average of the error between the

heading from heading model and the GPS heading
Method G-3 The rate of change of the calculated standard deviation of the error

between the heading from heading model and the GPS heading
Method G-4 The computed X from the Xbar and R metric based on the average

of the heading from heading model and the GPS heading from each
run cycle

Method G-5 The computed R from the Xbar and R metric based on the range of
the heading from heading model and the GPS heading from each
run cycle

Method G-6 The E∆ from the error indicator metric based on the single-pass
standard deviation of the heading from heading model and the GPS
heading

Method G-7 The exponentially weighted moving average value calculation
based on the heading from heading model and the GPS heading

TABLE 6.2: Description for each column of the graphs and the detection
method represented in Figure 6.3

heading model, as illustrated by Figures 6.3b and 6.3c. Based upon the data presented

by these two graphs, some methods show false negative rates, leading to those not being

good for accurately detecting when there is an error with the GPS data. Other methods

that had low false positive rates under normal flight circumstances, continued to report

low to minimal false positive rates during the airspeed and altitude simulated attacks.

Lastly, the detections from the GPS walk-off attack are presented in Figure 6.3d. As

shown by the first column, the expected detection rate should be close to 100.0% as

the data observed should indicate an attack is occurring. Most of the methods have a

detection rate of over 90.0% leading to promising usability of a few different methods.

When all the detection rates are compared against each other and their expected

values, one method stands out for GPS walk-off detections. The exponentially weighted

moving average from the headings provided by the GPS and calculated from the

heading model, Method G-7, outperforms the other methods as the most accurate

among the flight scenarios tested. The result of the EWMA metric being the most
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accurate during the error detection testing is consistent among both the best for the

heading model and the energy model described earlier.

(A) Normal Flight (B) Airspeed Walk-Off

(C) Altitude Walk-Off (D) GPS Walk-Off

FIGURE 6.3: Detection Rate Analysis from Heading Model

6.3 Turn Radius Model Results

The process described above for the detection rate testing of the energy and heading

models compared the detection rates of the various decision metric methods. In

contrast, only one method was tested for the turn radius model. Similar to the other

methods, the goal was to determine the effectiveness of detecting errors among the

input data and the compared value used. In the detection algorithm for the turn

radius model, the calculated radius and the FCS indicated roll were compared with

the previously determined bounds (previously discussed in Chapter 5.3). The results of

the comparisons of this data from the model and FCS were tested to verify the detection

rate during the various simulated walk-off attacks previously tested against.
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The detection rate results are shown below in Figure 6.4. The items across the x-axis

are the simulated walk-off attack types of the turn radius model. As would be expected,

the results of this detection show a negligible to 0.0 detection rate during the normal

flight, airspeed walk-off, altitude walk-off, IMU pitch walk-off, and IMU yaw walk-off

scenarios. During the previously mentioned scenarios, the expected detection rate is

0.0%. Any detection occurring during these tests would be considered false-positive

detections.

FIGURE 6.4: Detection Rate Analysis of Turn Radius Model

Detections are shown in the GPS walk-off and IMU roll walk-off tests. The detection

rate from the turn radius model is ideally 100.0% as this is the scenario this model is

built for since it is not covered by either the energy or heading models. As seen by the

highest detection rate on the graph, the turn radius model provides for a greater than

90.0% detection rate during the IMU roll walk-off.

An unexpected value was the approximately 45% detection rate by the turn radius

model data on the GPS walk-off. This high false positive rate is because the GPS walk-off

targets the heading value, and the change in heading over time is one of the inputs to

the turn radius model. The combination of these factors leads to the possibility of false

positives which are seen in the data. As with all the detection methods discussed, a
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combination of positive detections along with taking the detection rate percentage into

account can achieve accurate sensor detections.

6.4 Results From The Fully Implemented Functional Monitor

After an analysis of the comparisons between the developed methods discussed

above and other decision and detection metrics discovered, all available metrics were

implemented into the run-time altogether. The four simulated walk-off attacks that were

discussed in Chapter 4 were conducted during one flight test with all detection systems

running simultaneously. The comprehensive results from the detection algorithms

implemented are shown in the graphs below. In the detection results displayed in the

graphs, except for the intentional delay included in the algorithm, there were no false

negatives exhibited by the functional monitors. While false positives can be annoying

to the end user, understanding how mission-critical false negatives are is crucial. The

detection algorithms encompass the sensor error detections of the airspeed sensor,

barometric pressure sensor, GPS, and IMU. In the following graphs, the simulated attack

is displayed by the solid black line and the detections from the corresponding algorithm

are displayed by the dotted black line.

The simulated airspeed walk-off attack and corresponding detections are shown in

Figure 6.5. As seen at the beginning of the graph, the simulated attack was initiated

early in the run-time, as indicated by the solid black line. The detection shows a few

instances of false positive data scattered throughout the run-time, but the algorithm

correctly detects the airspeed attack as seen when the black dotted line changes from

low to high and stays high for the duration of the simulated attack. The delay between

when the simulated airspeed attack was initiated and the attack was detected was 7.866

seconds.

In the next graph, Figure 6.6, the simulated altitude walk-off attack is conducted.

The methodology used for detecting the altitude provides for the least number of false

positives, as seen by the few spikes later in the runtime. Similar to the data of the

previous graph, the altitude detection accurately flags the barometric pressure sensor
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FIGURE 6.5: Simulated Airspeed Walk-off Attack and Functional Monitor
Detections

error for the duration of the altitude walk-off. The delay between when the simulated

altitude attack was initiated and the attack was detected was 7.366 seconds.

FIGURE 6.6: Simulated Altitude Walk-off Attack and Functional Monitor
Detections

The results of the simulated GPS walk-off are presented in Figure 6.7. The GPS

detections result in the most false positives, but these do not affect the overall detections,

as the false positives are still such an insignificant portion of the run-time. Due to the

method used for initiating the GPS error detection relying on the detection rate of two

models, the GPS detections exhibit a slightly longer delay before displaying a positive

detection, but it does remain high for the duration of the attack. The delay between the

initiation of the simulated GPS attack and the corresponding detection is a little longer

than the others, at 13.354 seconds.

Lastly, the IMU simulated walk-off attack data is shown in Figure 6.8. There are

three indicated attacks by the solid black line as the roll, pitch, and yaw walk-offs were

tested individually. The walk-offs were conducted in the order of roll, pitch, and then
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FIGURE 6.7: Simulated GPS Walk-off Attack and Functional Monitor
Detections

yaw. Since the three axes are all part of the same sensor and therefore should be flagged

as an error on the IMU sensor, the three walk-off attacks were graphed together. There

are a few false positive IMU sensor error detection early on in the runtime, but once

the roll walk-off was initiated, the detection algorithm jumped back and forth between

high and low for a short time before settling out on an accurate positive detection with

a delay of 25.45 seconds. Once the attack had taken place for a period of time, the

detection settled out and no longer demonstrated any uncertainty.

After the roll attack was disabled, the detection determination returned to low until

the pitch attack began. As expected, the detection method provided an accurate positive

detection and remained so until this attack was disabled. The delay for the detection on

the IMU for the pitch walk-off is 4.6 seconds. The last axis requiring simulated walk-off

tested was the yaw axis. As seen towards the end of run-time, when the yaw attack

was instituted, the corresponding detection algorithm provided the proper detection

and remained in the detected state of high for the duration of the yaw walk-off before

returning low once the attack was disabled. The delay of the yaw walk-off was recorded

as the shortest at 2.85 seconds.
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FIGURE 6.8: Simulated IMU Walk-off Attack and Functional Monitor
Detections
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Chapter 7

Conclusions and Future Work

Ensuring security of cyber-physical systems (CPS) is an ever-growing area of effort

as more security results in a more trustworthy system. The combination of both

an increased number of physical components and code complexity in typical CPS

results in the assurance of security and proper functionality becoming more difficult,

especially with a lack of known trustworthy components. This addition of more varied

components, often consisting of common-off-the-shelf sensors, comes with the difficulty

of an unverified supply chain. In an unverified supply chain, unauthorized access to

the components can lead to the insertion of dubious or malicious firmware or hardware

modifications.

The development of the functional monitor for the purposes of Run-Time Assurance

presented in this dissertation was completed and tested on the cyber-security testbed

architecture. The testbed layout consisted of the hardware-in-the-loop simulation

and the embedded cyber-attack detector for implementation of specific components

of the HECAD architecture as required. The HILS setup allowed for interfacing

between a flight simulator and the VCU Aries FCS for the implementation of the

simulated walk-off sensor attacks. The HECAD setup provided the platform for

implementation of the functional monitoring architecture. The components of the

functional monitoring architecture include the empirical models, decision metrics, and

the detection algorithms to provide information to the end user about the status of

various sensors used within the FCS.

The empirical models of the system were developed through inspection of various
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flight characteristics. The energy model was developed through analysis of the

attributes of the input throttle energy to the flight dynamics of airspeed and change in

altitude, then developing an equation to represent this relationship. The heading model

from the computation of physical heading from magnetometer data for analysis of GPS

accuracy. Lastly, the turn radius model was created from the airspeed versus change in

indicated heading for computing how much the aircraft is physically turning.

Significant work was carried out on the decision metrics. This work included

development of a metric for errors over time along with various statistical metrics

including cumulative sum, exponentially weighted moving average, xbar and range

control chats, and correlation coefficient. The detection methods also required

examination for determining the proper thresholds and system operating bounds.

The results achieved provided clear distinctions among the decision metrics

implemented. The threshold calculations yielded promising results of what constitutes

an error in the sensor data and what does not when combined with the detection

algorithm for flagging the error. When the full functional monitoring architecture

was constructed, the observed detections when running each of the simulated attacks

demonstrated the achievement of correct detections of the errors and determination of

the sensors in which the walk-off attack was occurring.

It should be noted that the simulated walk-off attacks were used as a means of

validation for the detection methods. The decision metrics are not based on the

simulated attacks developed. For the creation of any cyber-attack detection method,

the best possible detection was created while ignoring any specifics of the attacks.

The overall development of the system boundaries and thresholds for the detection

algorithm was done independent of the simulated attacks.

7.1 Future Work

A major goal of future work of the functional monitoring architecture would be to

optimize the threshold and bounds determination used in the detection algorithm. The

method introduced in this paper calculates a usable and repeatable value that provides
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accurate detections to keep the detection rate in the 90.0% percent range for positive

detections and below 10.0% false positives. Optimization could improve both the

false positive and accurate detection rate through more accurate determination of the

threshold curve.

One technique to utilize for this process would be to conduct a sweep of threshold

values from 0.0, which would consider all values out of range, to a value where no

values are in range. The graphs of this sweep, as shown below in Figure 7.1, are

an example of some preliminary results of this methodology. The “X” represents the

calculated threshold from the detection algorithm. The results can be used to identify

a more ideal threshold to enhance the detection rate. If the goal is to achieve a higher

detection rate, this would increase the false positive detection. If the goal is for a lower

false positive rate, the result would be a lower correct detection rate.

(A) Normal Flight (B) Generic Simulated Attack

FIGURE 7.1: Detection Threshold Sweeps

Another possibility of future work would be to incorporate actual data from sensors

failing due to age, instead of from a cyber-attack or physical fault. A process for

conducting accelerated aging on MEMS sensors along with an analysis of the failure

characteristics that can be seen in the data from these sensors is introduced in [130].

This data could be used to develop detection mechanisms for sensor errors introduced

by the normal sensor aging and wear-out process.
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Appendix A

Improved User Experience for the

Cyber-Security Testbed

Early on in the development of the software for both the HILS and HECAD systems,

transferring the updated software to the FPGA then having to recompile the code

each time and if there was an error, going back to fix it and starting the process over

again began taking a significant amount of time away from development progress. To

combat this added delay, a graphical user interface, GUI, was developed in Python

using the wxPython package [131]. Overall, the implementation of the GUI significantly

improved the usability of the cyber-security testbed and increased productivity. This

GUI was also shared with other users of the testbed with the appropriate options

available for improving and reducing the setup time of the process of utilizing the

testbed.

The GUI development was an incremental process in order to debug the process

of running scripts remotely over secure shell (ssh) and inside screen sessions. A

series of radio buttons, check boxes, buttons, and text displays were used during the

development process. The completed GUI is shown below in Figure A.1. In the

upper left-hand corner, the Flight Mode box has options to switch the method of flight

simulation between fixed-wing or multi-rotor, with certain buttons displaying for the

appropriate purpose depending on the selection. Since for the purposes of the research

within this document fixed-wing flight was used, the features will be described from the

context of having fixed-wing be the selected flight mode. Next, is the Other Function
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box in the lower left-hand side. In this box are the options to start FlightGear along

with the option to reset the FCS, which prior to the GUI was done by either physically

removing and replacing power or pressing a button on the HECAD FPGA which

required the HECAD software to be running.

FIGURE A.1: GUI Screenshot

In the center of the GUI are the two main boxes for easier development on the HILS

and HECAD FPGAs. At the top of each is a text box to input the IP address of the

hardware. Next are a series of check boxes for rebuilding the code, conducting a clean

and then full build from scratch of the software executable, enabling the GDB debugging

flag, and enabling data logging. For the data logging on the HECAD, a separate USB

device was used to minimize the number of read and write cycles on the main MicroSD

card containing the embedded Linux image. This allowed for expandable storage for

logging as the files can be fairly large depending on the logging rate. Since the logging

location is removable, the option to change where the log file saves from the default

location to a user specified location was also included. One issue that was found early

on when testing the algorithms implemented on HECAD was that the only uniqueness
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of the files was the timestamp included in the filename which made remembering what

was tested in each file difficult. The option to add a user specified description of the test

run was added into the GUI and is stored as the first line of the log file.

Below the configurable options in the HILS and HECAD boxes are two buttons,

one to update the code on the target device and the other to start the executable. The

update code button performs a time sync between the host machine and target so that

modification times of files are preserved when rebuilding code to save build time if the

most recent version of a file has already been compiled. This button is only available

if the developer mode check box in the bottom left-hand corner is selected. The start

buttons take the configured options and passes them to a python script on the target

machines over ssh as command line arguments, which are then processed by the python

script and the program executable is run in a screen session. A unique feature of this

python execution script is that if the screen session is already open, it preforms a ctrl+c

on the current program running and then restarts the executable with the user selected

options so that the user does not need to reattach to the screen session, which was a

frustration early on in the GUI development. The option to reboot either target device

was added to eliminate the need to log into the device and send a reboot command if

required.

On the right-hand side are the system status and stop processes boxes. The system

status was created by multi-threading the GUI process and another process to poll the

status of each of the subsystems in use to alert the user if something was wrong or

the code did not compile successfully by displaying the text of error for the status.

The buttons within the stop processes box can be used to completely end any running

processes, programs, or screens on either target device as labeled, or terminate the flight

simulator.
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