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ABSTRACT

Enabling machines to learn measures of human activity from bioelectric signals has many ap-
plications in human-machine interaction and healthcare. However, labeled activity recognition
datasets are costly to collect and highly varied, which challenges machine learning techniques
that rely on large datasets. Furthermore, activity recognition in practice needs to account for
user trust - models are motivated to enable interpretability, usability, and information privacy.

The objective of this dissertation is to improve adaptability and trustworthiness of machine
learning models for human activity recognition from bioelectric signals. We improve adaptability
by developing pretraining techniques that initialize models for later specialization to unseen users.
We further expand adaptability with models that pretrain from unlabeled data, and can support
transfer learning to both new users and new tasks. We address the need for improved trust with
an engineering-informed approach to integrated explainability and reduced model complexity.
We also investigate training dataset privacy, another component of trustworthy model building,
with methods to evaluate information leakage in our neural representation extraction models.

The intersection of adaptability and trustworthiness is especially critical for human activity
recognition from bioelectric signals. Modeling human physiology has broad applications across
many domains and, due to its highly personalized nature, must meet high expectations of trust.
These are met in part when users can maintain privacy and understand how the system using
their data operates. Further heightening the need for trustworthy systems is the variability
in bioelectric sensor data, which can often uniquely identify different users and their system
configurations apart from others. It is this same variability that makes generalized machine
learning models for human activity recognition from bioelectric signals challenging. Aspects like
varying electrode locations, skin salinity, power-line noise, all conflate with the wide diversity of
human behavior and physiology to make adaptability difficult.

In order to address these challenges, we present an interpretable convolutional model for
the task of speech detection from neural signals measured with electrocorticography, and we
validate that it discovered features consistent with current neuroscience literature. We use a
transfer learning approach to adapt hand-pose recognition models to new users with commod-
ity electromyography devices, without the need for expensive pre-processing used in prior work.
We develop an approach for self-supervised learning from stereotactic electoencephalogram sig-
nals, enabling adaptation to unseen tasks and users from unlabeled data. Finally, in order to
understand privacy risks, we assess information leakage using re-identification and membership
inference attacks against our neural representation learning methodology.

Our work, as applied to existing and emerging human-computer interfaces, demonstrates
that machine learning can be made to both support human well-being and adapt to our com-
plexity, without abandoning pursuit of user trust.

vi



CHAPTER 1

INTRODUCTION

The continuous delivery of bioelectric sensor readings enables low-latency monitoring and decision-
making in healthcare, industry, and every-day life. Compared with other modalities such as video,
bioelectric sensor signals are often a cost-effective and more personalized method to recognize
activities, intent, or even treatment response.

However, information-rich streams of bioelectric data can be challenging to use in practice.
Training data of labeled human activities, aligned with their bioelectric signals, are expensive
to collect and are therefore often small. These smaller datasets make it difficult to develop
general-purpose models without over-fitting. Models are further challenged with feature drift
from new participants, evolving activities, and possibly modified sensor configurations. The
resulting distribution discrepancies across small datasets motivate focus on adaptable models
that account for these issues - models capable of adapting to new participants, new classification
tasks, and new sensor positions.

While adaptability is important for predictive performance, models must also cultivate trust
by supporting privacy-conscious use-cases, addressing information leakage, and implementing
interpretable processes. Trustworthy systems are also usable, meaning that they support human
autonomy, with locally executable solutions that do not need to transmit sensitive data to third-
party systems. To aid in validation, troubleshooting, and improved trust, methods should strive
to be interpretable. When providing personal data to a database for model training, users risk
information leakage and possible re-identification, which should be both measured and mitigated
to improve trust.

In this dissertation, our objective is to improve adaptability and trust of human activity
recognition models. We improve adaptability with transfer learning and self-supervised learning.
Transfer learning takes advantage of prior source data to better adapt to new target data, while
self-supervised learning leverages unlabeled data to establish an adaptable model.

To improve trust, this work’s experiments address interpretrability, usability, and privacy.
We construct engineering-informed deep neural networks for a time-series data modality to enable
interpretable models that are more usable on personal devices. The resulting model provides
insights into what parts of the frequency spectrum it utilizes for its task, while greatly reducing
model complexity for potential deployment on resource-constrained systems. We also research
the privacy risks of our method for learning neural representations using novel patient-centered
information leakage experiments. In Figure 1, we illustrate the model life-cycle for our domain,
and the objectives our methods will address in this dissertation.

1.1 Motivations

Machine Learning (ML) systems [!, 2, 3] interacting with human physiology are faced with
sensitive and highly variable inputs [1, 5, 6]. Different users perform tasks in ways that suit
their physiology, and supporting hardware systems vary in their capabilities. These realities of
the implicit variance in such systems create distribution discrepancies that leak information and
confound common data-driven learning approaches. Successful methods must adapt to these
changes, often optimizing models per unique user and configuration. However, per-user models
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require extensive data collection and training time before a user can use their model. These
methods avoid the issue of generalizing information from many individuals and their respective
configurations.

We frame the Human Activity Recognition (HAR) modeling workflow and highlight the
areas our work contributes in Figure 1. While many HAR modalities exist |7, &], this dissertation
targets bioelectric sensor data and its unique challenges [5]. In this dissertation, we assume a
provider builds or otherwise prepares a model that can be deployed to a user’s local system.
Models are prepared by generalizing information from a training set population, but may again
undergo further specialization once deployed. Our adaptability goals refer to both successful
specialization (i.e., adaptation to a new domain) as well as successfully generalizing from broader
dataset definitions (i.e., adaptation from several domains) [9].

In order to broaden application, adoption, and ethical use, providers of human activity
recognition also must pursue trustworthy models that are interpretable and are usable on com-
modity hardware for local and private computation. As adoption grows, so will large stores of
labeled and unlabeled data. Increased coverage and dataset robustness will improve models, but
these models may still leak user information. Before release, providers of ML solutions should
closely inspect their models and may consider steps to mitigate risks of implicit information
leakage [10]. This is especially important for more trustworthy deployments, in which a user is
provided control over their model, since an adversarial user may use this autonomy to extract
information about the training dataset.

1.1.1 Adaptable Generalization and Specialization

ML systems must generalize from a training procedure to their intended application - this
adaptation is foundational [!, 2|. In ideal scenarios, generalization is obtained with common
modeling approaches and simple regularization to prevent over-fitting. However, for systems
that commonly face underlying distribution discrepancy, model construction is motivated to
consider generalization more closely [11]. With more data, larger models can be built that capture
more complexity, but when data size is reduced, discrepancies make generalization difficult.
In these scenarios, applying a more significant prior through informed model designs can help
make better use of both smaller datasets and larger datasets alike [12]. From larger, possibly
unlabeled datasets, models must learn general forms of the data domain, ones that are able to
translate to downstream tasks of interest. This is common in the domain of natural language
processing [13, 14]. Even with robust generalization, some amount of specialization to a new
user or perhaps configuration can greatly improve predictive performance. However, this user-
specific specialization procedure should occur locally to improve privacy and trust [15]. Local
systems have additional restrictions since they are often resource constrained platforms [16]. The
importance of autonomy and privacy are discussed in our background in Chapter 2, Subsections
2.1.2 and 2.1.3. We discuss methods for ML trust and adaptability as part of Subsection 2.4.

1.1.2 Trustworthy Contribution and Use

Intelligent recognition systems for human activity must reduce risks and improve adoption
through trustworthy approaches [15]. Trust has many facets, but our work is focused on inter-
pretability|17, 18], privacy [19, 19, 20, 21], and usability |15, 22, 23] in Artificial Intelligence (AI).
More trustworthy systems enable insight into what information drives prediction. Interpretable
systems also allow expert to validate findings from previous work or make novel discoveries. As
illustrated in Figure 1, the need for interpretability exists both when generalizing from large
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cohorts and specializing to specific tasks. Both scenarios can improve trust through explainable
processes. Information-rich sensor data, collected over time, provides significant detail on the
individual. Of course, without this detail, data-driven solutions for activity recognition may
not be viable. Given this sensitive data, models and systems can more easily maintain trust by
simply not requiring that the data leave the user’s own systems. Practically, this requires models
that can be adapted to the new user and deployed, all within a trusted consumer-grade edge
system. Any system that requires a database of many users’ data, or a large enterprise system,
will undermine user trust [19] and require resources for data transmission. Still, the entangle-
ment of sensitive attributes with causal signals may be discernible from the model itself [24]. An
adversary may rightfully request access to a model, then use this access to infer an individuals
membership in a dataset [25, 26, 27]. For instance, an adversary may be seek to determine if
an individual has a particular disease by determining if their data was used in the dataset to
train a model released for treatment evaluation. Existing research and policy development on
trustworthy Al is further reviewed in Section 2.1.

1.1.3 Application: Human Activity Recognition from Bioelectric Signals

The primary goal of human activity recognition is to provide actionable insights by monitor-
ing sensor data continuously. In pursuit of improved performance, popular Deep Learning (DL)
[28] architectures are applied to sensor data for activity recognition [29]. Architectures such
as a Convolutional Neural Network (CNN) [30, 31, 32|, Recurrent Neural Network (RNN) [33],
or a combination [34, 35, 36] have been used to classify activities from sensors. These models
achieve state-of-the-art results, but often require upwards of hundreds of thousands of learnable
parameters. To reduce processing overhead, some efforts use general-purpose model reduction
techniques [37] or avoid raw data entirely[38]. Furthermore, DL classification models borrowed
from other domains, such as CNNs designed for image classification, do not leverage the unique
characteristics of sensor data for HAR. Sensor data evenly sampled over time yields a time-series
dataset, a data modality whose covariance and assumptions diverge from image data. We in-
troduce HAR through the lens of Human Computer Interaction (HCI) and discuss the domain’s
challenges further in Section 2.2. General DL methods which we apply throughout this work
are outlined in Section 2.3, with additional discussion of methodologies relevant to trust and
adaption in Section 2.4.
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1.2 Goals and Contributions

Objective: Improve adaptability and trust of machine learning for human activity recog-
nition systems.

1. Goal: Improve interpretability and reduce complexity by learning engineering-informed
models.
Contribution: SincIEEG uses Sinc-Net to improve performance and provide insights for
neural speech decoding
e Reduce complexity with engineering-informed model design
e Enable interpretability with engineering-informed model design
e Validate discovery of task-relevant spectral features captured directly from data by

an interpretable model

2. Goal: Improve inter-person adaptation using transfer learning across individuals
Contribution: SincEMG uses transfer learning and Sinc-Net layers to reduce parameters
and improve performance

e Leverage transfer learning to reduce model size and improve performance for activity
recognition on raw sensor data.

e Visualize models adapting to unseen users during fine-tuning

e Achieve 10x reduction in number of learned parameters with comparable or superior

accuracy

3. Goal: Enable adaptation from unlabeled data with self-supervised pretraining
Contribution: Brain2Vec architecture for self-supervised pretraining from neural data,
applied to neural speech decoding.

e self-supervised learning of neural representations from unlabeled data
e Demonstrate learned representations with fine-tuning classification tasks of a neural

signals using pretrained Brain2Vec models

4. Goal: Characterize neural representations and their privacy risks to individuals
Contribution: Grid search of brain2vec across varied pretraining cohorts and two sim-
ulated privacy attack experiments.

e Hyperparameter changes vary pretraining performance, but have less impact on fine-
tuning performance
e Neural representations produced by brain2vec can support person re-identification

e Shadow modeling membership inference attacks appear feasible, but inconsistent
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1.3 Organization of this Dissertation

The remainder of this dissertation is organized as follows:

e Chapter 2 provides background on the concepts of trustworthiness, human activity recog-
nition, and machine learning. Includes work from [16].

e Chapter 3 introduces Multi-SincNet, an explainable method of machine learning applied
to bioelectric neural signals for speech detection. Includes work from [39] [10].

e Chapter 4 presents a transfer learning method that uses Multi-SincNet to pretrain from
many users commodity electromyographic signal data. Includes work from [11]

e Chapter 5 introduces brain2vec, a methodology that learns from unlabeled neural signals
to later adapt to new users and new classification tasks with labeled data. We perform
an extended hyperparameter search across different participant cohort sizes and perform
experiments to assess the risk of inforamtion leakage. Includes work from [12].

e Chaper 6 concludes this work with discussion of recent developments and direction for
future efforts.

Collaboration Background: The ideation, design, and implementation of the work sup-
porting Section 3.3 [10] & Section 5.2 [12] were completed in close collaboration with then PhD
candidate Srdjan Lesaja from the department of biomedical engineering. Each of these two
supporting works are published with equal contribution from both myself and Srdjan Lesaja.

Our research resulting in SincIEEG (ch. 3, sec. 3.3) stemmed from discussion about the
intersection of our interests in adaptable yet parsimonious solutions to human-machine inter-
facing. My claims in this work are the interpretability and reduced complexity of the resulting
engineering-informed model. Srdjan claims reduced pre-processing and per-patient adaptability
of what are typically expert-derived features.

Our continuing research has resulted in brain2vec (ch. 5, sec. 5.2) as a method to leverage
more recent self-supervised pretraining techniques for sequential data. My claims in Section
5.2 are the adaptability from unlabeled data using self-supervised learning. Srdjan claims the
encoding of spatial information and biologically inspired hidden-unit encoding.
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Provider Experience

Adaptable Pretraining Trustworthy Contribution
Learn from a variety of users and configurations Increase trust when contributing to pretraining
Objectives: Objectives:
. Generalize from labeled or unlabeled data . Reduce pretraining information leakage
. Generalize from multiple users . Increase model interpretability

(N
@M‘“\ ® e

(2) Inspection

(1) Pretraining

User Experience

Adaptable Fine-Tuning

Accommodate new users, tasks, or configurations

Trustworthy Deployment

Increase willingness to rely on the solution

Objectives: Objectives:
. Specialize to new and unseen users . Reduce model complexity
° Specialize to new and unseen tasks ° Increase model interpretability

(3) Fine Tuning

Fig. 1. Workflow illustration that represents our approach to providing human activity
recognition, highlighting our objectives in each area. First, in step (1), a provider
of a activity recognition model pretrains their model on collected data. Ideally,
this phase is capable of utilizing labeled or unlabeled data, and is capable of learn-
ing from multiple users and their configurations. The intention is to capture more
information in pretraining phase, such that fine tuning for a new user or config-
uration can happen more quickly or with less data. Next, in step (2) users and
experts are made aware of what the model has learned and any unexpected biases.
Steps may be taken to debias the model in order to avoid information leakage to
adversarial end-users. Steps (1) and (2) may happen together in practice, for in-
stance, when a model is regularized during pretraining to avoid learning unwanted
biases. Finally, step (3) outlines objectives for deployment to a new user - that
the system must adapt to these users, their configurations, and potentially brand
new tasks. Reduced complexity allows better usability on commodity systems and

interpretability allows users and experts to validate the models learned processes.



CHAPTER 2

BACKGROUND

This chapter discusses the prior work and concepts necessary to motivate and support this
dissertation. The contributions presented in later chapters are all ML.-based methods - methods
in which the approach tunes or approximates a solution without human guidance, typically using
data or simulated environments. ML is one of the primary approaches to implementing modern
notions of Al, which are systems that behave with at least the skill-level of a human, but require
no human assistance. Therefore, in this work ML and Al will be nearly synonymous: ML will
be used when referring to practical approaches that learn from data, while AI will be used more
generally to refer to the potential universe of automated solutions that don’t require humans.

We begin the chapter with an outline of the recent efforts to define and establish trustworthy
AT in Section 2.1. Aspects of trustworthy Al that our methods contribute within ML approaches
- interpretability, privacy, and usability - are highlighted in more detail. We then introduce HAR
in Section 2.2, beginning with a brief overview of human-machine interaction and continuing
with a focus on signals collected from bioelectric sensors and their underlying challenges. In
Section 2.3, we review fundamental concepts of deep learning, the primary ML method used in
our contributions. Our final background section, Section 2.4, discusses ML methods related to
our work on improved trust and adaptability relevant to this dissertation. Chapters 3, 4, and 5
include detailed discussion of our contributions’ relevant methodologies.

2.1 Trustworthy Artificial Intelligence

It is common to make decisions based on the assessment of someone or something else -
whether it be a street light or an investment broker, the delegation of critical tasks is a cornerstone
of everyday life. We trust these external systems to help manage tasks, often implicitly through
our choice to use them. As many likely experience, higher risk scenarios may require increased
trust in whatever is providing the assistance [13]. In addition to more clear requirements, such
as having high accuracy, trust is also made up of less clear drivers, like the ethics or social norms
it should abide [141]. However nebulous, these requirements of trust can be met, of course, by
autonomous computer systems - a human element is not a prerequisite for other humans to form
trust. For example, a person who is blind trusts their guide dog and a person with movement
disabilities may rely on a cane or wheel-chair.

The importance of trust in computer systems was recognized early in the modern era by
the national academies [15]. Today, advanced autonomous solutions are now commonplace, with
growing concerns about their ability to manage risk or their potential to cause direct harms. For
example, some researchers argue that delegating work to Al is a systemic risk that threatens to
destabilize economies |16, 17]. Work has also highlighted the risks with generative Al, including
its potential to insert malicious code when utilized for code creation [18]. Researchers also
illustrated the negative opinions on the trustworthiness of delegating research tasks to an Al
[19]. Others have offered potential regulatory frameworks for their use in high-risk applications
by decomposing the challenge across the roles in the “value chain” [50].

In order to characterize trust, researchers consider the factors behind the decision to take
on risk at the discretion of another, possibly autonomous, system [51]. For instance, systems
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may be reliable - i.e., performing correctly, reporting confidences, etc. - but this does not grant
trust from the user. Other factors, such accountability and performance likely also influence
our formation of trust. Improving these aspects makes a system more trustworthy - defined
as the ability to have a “firm belief in the reliability, truth, or ability of someone or something"
[15]. Under the frameworks in [13], an appropriate level of trust is established through assurances
indicated to users. They argue that much of trustworthy Al research is actually oriented towards
improving these indicators of trust. Therefore, trust is context and assurance specific, and will
vary between users, and therefore should be measured through Trust-Related Behavior (TRB) -
behaviors indicating a willingness to delegate risk to the AI. It has also been recognized in [52]
that trust of autonomous systems is entangled in how it relates to various institutions, such as
regulators, vendors, and users - and that clear steps are needed to begin establishing the complex
relationships that will support trustworthy Al

The growing use of Al systems has motivated several governing organizations to propose
principles of trustworthy and ethical operation of such systems. These efforts are forward looking,
attempting to help guide future endeavors towards results that share today’s secular principles.
While some existing laws do address information privacy [53, 54|, proposals related to AI trust
recognize that Al and automated systems bring new challenges. Figure 2 highlights three recent
such proposals, which we briefly discuss in chronological order.

(a) Ethics Guidelines for (b) Value-based Al Principles (c) Al Bill of Rights
Trustworthy Al Organisation for Economic Co-operation U.S. White House, 2022

European Commission, 2019 and Development, 2019

K Human agency and overs& K Inclusive growth, sustainabm e Safe and Effective Systens

development and well-being

e Robustness and safety e Algorithmic Discrimination
e Human-centered values and Protections
e Privacy and data governance fairness
e Data Privacy

e Transparency e Transparency and

explainability o Notice and Explanation
e Diversity, non-discrimination

and fairness e Robustness, security and e Human Alternatives,

safety K Consideration, and FaIIbay

e Societal and environmental

well-being & Accountability /
k Accountability /

Fig. 2. Outline of three recent frameworks for trustworthy and ethical Artificial Intelligence

(AI). In bold are areas in which our work contributes, these general areas include:

interpretability (Section 2.1.1), usability (Section 2.1.2), and privacy (Section 2.1.3)

(a) Seven essentials for achieving trustworthy AI [55]: The European Commission
established an independent High-Level Expert Group (HLEG), which published their report in
April of 2019, after receiving input from over 50 experts in Al, civil society, and industry. The
group recognizes the wide range of issues globally that Al is poised to help solve, but found a
need for guiding principles to help ensure well-being and welfare of the people. The report first
recognizes three foundations for trustworthy Al - that Al be lawful, ethical, and robust. The
HLEG expanded on these foundations with seven key requirements for trustworthy Al, as shown
in Figure 2(1) and discussed by a member of the group in [50].
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Table 1. Summary of trustworthy principles and their associated perspectives [15]. In bold
are areas in which our work contributes, these general areas include: interpretabil-
ity (Section 2.1.1), usability / availability / autonomy (Section 2.1.2), and privacy
(Section 2.1.3)

Perspective Principles
Technical Accuracy, Robustness, Explainability
User Availability, Usability, Safety, Privacy, Autonomy
Social Law-abiding, Ethical, Fair, Accountable, Environmental-friendly
(b) Value-Based AI Principles [57]: An inter-governmental body, the Organisation for

Economic Co-operation and Development (OECD) was founded in 1961 to aid in evidence-based
global policies and standards. The group proposed both the five Value-based AI Principles high-
lighted here, as well as Recommendations for Policy Makers that adhere to the aforementioned
principles when enacting governing rules. The OECD’s principles are specific to Al, and are seen
as complimentary to previous reports addressing topics such as responsible business conduct and
data privacy.

(c) AI Bill of Rights [78]: The United States White House Office of Science and Technol-
ogy Policy published the Al Bill of Rights to guide the “design, use, and deployment of automated
systems to protect the American public in the age of artificial intelligence”. The office developed
this framework through input from industry stakeholders, technology developers, policy makers,
and direct input from the public and impacted communities. Though not a legal document as
the name suggests, the report outlines five principles along with a guide titled From Principles
to Practice for those seeking to align with these ideas in the field.

As regulatory frameworks emerge to guide the lawful development and use of Al, researchers
and developers must work to meet the demands of trustworthy services when seeking broad
adoption. Recent work distilled aspects of trustworthy Al into three different perspectives:
technical, user, and Social [15]. The principles that fall within each of these perspectives are
show in Table 1 and are clearly linked to the governmental principles illustrated in Figure 2.
The following subsections provide further examination of the trustworthy components we aim to
address in this dissertation.

2.1.1 Model Interpretability and Transparency

All surveyed frameworks for ethical and trustworthy Al include core principles in support
of autonomous systems that are interpretable and transparent: systems that provide some ratio-
nale behind outputs and their operations for producing outputs [18, 17]. Sometimes known as
Explainable Artificial Intelligence (XAI), prior work recognizes that interpretability is primarily
motivated as a means to improve trust in autonomous systems [59, 60|. Transparency as applied
to autonomous system is more wide-ranging, often with interpretability as a sub-factor, and re-
lates to deobfuscating details of the system in order to build trust in a certain cohort [61]. In
this section, we first define interpretability and its aspects before considering how it relates to
model transparency. We conclude this section with areas this dissertation contributes to trust
through interpretability.
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As noted in [62], terms like interpretability, explainability, intelligibilty, and understand-
ability have been used almost interchangeably in ML literature. However, interpretability and
explainability are the two key terms that appear most common in recent work. One distinction,
borrowed from Cynthia Rudin’s position paper [63], is that an interpretable model is inherently
interpretable by design, while an explainable one requires additional analysis to be performed
after the model is constructed in order to get an explanation of processes. More qualitative dis-
cussions in [64] argue that terms such as interpretability and explainability are poorly defined,
but the field should focus on the concept of helping a human understand something as being
interpretable. In their framing, explainations are simply the “...currency in which we exchange
beliefs”, a definition borrowed from psychology. Understanding allows people to form beliefs and
consider other abstract concepts, such as biases or concerns about privacy. Having motivation to
gain an understanding implies a lack of understanding, or an incompleteness of available descrip-
tions. For our work, we do not draw a specific distinction between terms such as interpretability
and explainability. Instead, we consider these terms synonymous for [64]’s description of sim-
ply helping people to understand how an ML model produces its outputs. In the remainder of
this section, we’ll review research to better understand the dimensions of interpretability as it
pertains to our work.

Work in [60] recognize a trade-off between level of interpretability - or human understanding
conveyable from “interpretable” descriptors - and the completeness of the explanations. As
the descriptors become more complete, they more faithfully represent the underlying processes.
However, these more complete descriptors meant for interpretability become more complex to
comprehend, decreasing the interpretability they are intended to provide.

For different tasks and systems, a solution may be interpretable either globally or locally.
In other words, approaches vary in what the interpretable method is able to describe in terms
of sample locality or specificity. A globally interpretable method is able to describe how it
operates in general for the inputs it receives. It is able to describe its broad rules and consid-
erations when determining outputs or decisions. In contrast, a locally interpretable methods
is able to describe how it arrived at a specific output for a specific input. It does not have to
describe all steps or considerations, but descriptions should be specific to the input and reduce

incompleteness. (4]
How models are explained can be categorized into explainability by design and post-
hoc explainability [22]. Models that are explainable or interpretable by design, sometimes

referred to as integrated interpretability, require only an analysis of the model’s structure
or learned parameters. However, this can limit the complexity of the model, and likely impact
the model’s performance [59]|. Post-hoc methods instead typically analyze inputs, intermediate
results, as well as outputs to aid in the interpretability of “black-box”, opaque models [22].
When developing solutions, the decision to rely on integrated or post-hoc explanations is not
always clear. For example, practitioners seeking trustworthy solutions may find that simplified
architectures require complex feature engineering for predication performance, making them still
difficult to interpret. The performance shortcoming of integrated interpretability highlights the
need for post-hoc predictions of complex models applied to unaltered input features [65].
Interpretability is valuable for trustworthiness within many contexts. For instance, when the
system is highly accurate, it may still help establish trust to review it’s criteria for insights into the
underlying processes [65]. Understanding that the model is utilizing correlations and mechanisms
previously validated as predictors can improve trust. However, even incorrect predictions can
maintain trust by providing a reasonable explanation for their output. Interpretability can also
enable negatively impacted individuals - people who feel that they are being unfairly disadvantage
by the system - to question, challenge, and possibly remedy outcomes |17, 15]|. Interpretability
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is not always required - perhaps ideally only in low-risk or well-understood problems should the
lack of interpretability be tolerated [61]. In some cases, it may seem reasonable, given that a
model is highly effective and has earned trust through demonstration, that interpretability is no
longer important [65].

Transparency is often related to interpretability, but with increased scope and recognition
of social mechanisms. Transparent systems are expected to disclose any aspect that supports a
model - including data collection, data storage, and attestation of regulatory compliance [22].
However, transparency is not always desirable, and may degrade trust in a system [(1]. These
properties arise as the people involved, their motivations, and their contexts change. Ultimately,
who benefits and what information the transparency provides primarily determines the impact of
transparency. Underlying many assumptions of transparency being desirable is the assumption
that the information is accurate. However, earlier work has even offered that scenarios in which
deception may improve trust [66]. For example, mutually beneficial lies might increase trust
from others whom considered the lie benevolent due to the outcome it generated.

Our work focuses on model interpretability, regardless of whether the interpretation is made
transparent to an end-user, to experts only, or just used by a developer to verify their work -
we assume that interpretability improves trust in Al solutions. In Chapter 3, we contribute
two separate methods for interpretable feature extraction from neural signals. Both methods
are globally interpretable, integrated solutions. We apply a similar approach in Chapter 4, but
within a transfer learning paradigm applied to Myoelectrocortography (EMG) data, illustrating
to experts and users the change in frequency spectrum when adapting to a new user.

2.1.2 Model Usability: Availability, Autonomy, and Reproducibility

Trustworthy modeling systems are expected to achieve usability. Concepts of model usability
are broad, but focus on the capabilities afforded to the user, and any conditions restricting use.
Properties of usability include availability and autonomy - that model systems should be easy
to use, and prepared to produce output whenever they are needed [14] [I5]. The ability to
interrogate a model or autonomous solution - assessing its operations closely - is important for
building trust [61] with other developers and experts. Finally, it has long been understood that
usability and security are often at odds - increased usability implies a reduction in the restrictions
that may aid security [15].

Importantly, there is no clear formal definition of usability, and instead may be highly
context dependent, relying on expected social norms [11]. For our work, we define usability as
the ability to execute and produce predictions locally, on systems the user controls. Approaches
that instead require data be sent to a third-party in order to receive output are limited in their
usability. In these cases, users are required to stay connected to the internet, or other local
network, preventing usage in environments lacking access or connectivity. Trust is degraded
because availability and autonomy are reduced. Should the AI provider cease doing business
or otherwise cease maintenance, the solution is also no longer usable. Even network or other
infrastructure outages will dictate the use of the solution and degrade trust. These restrictions
are not required to be network related - for instance, an intelligent system may be distributed
on provider-owned hardware, with restricted access. It may be a more lucrative deployment
option for the provider, but trust is degraded because the solution cannot be easily maintained
or transferred without continued engagement with the provider. Even a trustworthy provider
cannot guarantee its continued existence or support. These issues are obvious for predictions,
but they also apply to any training process required to adapt to a user’s own data. The solutions
are made more trustworthy by not requiring transferring data to external systems. Usability can
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be encouraged and supported through reasonable conditions, such as government incentives and
security protocols that maintain privacy, and training procedures that are reasonably short and
infrequent.

Given these desires for improved usability, any AI that takes input from human bioelec-
tric signals should aim to be usable on local systems. Regardless of autonomy needs, many
applications of activity recognition are not well-served by high-latency and low-bandwidth re-
mote systems. In many practical applications, such as a muscle controlled smart prostethesis,
higher-latency response to the user’s intent would limit their reaction time and overall mobility.
However, even if these constraints do not entirely compromise functionality, they still undermine
trust through degradation of usability.

When considering the full life-cycle of Al systems, the end-users’ usability is also an issue
of reproducibility. While reproducibility is often thought of in terms of reproducing research
experiments, model reproducibility clearly requires the ability to produce new output from novel
inputs to a trained model [22, 23]. The domain of ML has recognized this aspect of reproducibil-
ity, with methods to address common issues, such as code, data, and model availability [23, 67,

|.

Our contributions to usability are solutions that aim to reduce the complexity of model
execution and adaption. Reducing complexity reduces computational costs, and therefore the
burden of model building and usage is reduced for individuals. In Chapter 3 and 4 we use
engineering-informed approaches to reduce model complexity, towards methods that are readily
executable on low-power commodity devices. In Chapter 4 and 5 we develop methods that do
not need to be re-trained “from scratch” for a new participant, simplifying the model’s adaption
at deployment for improved usability.

2.1.3 Data Privacy

The requirement of data privacy is a key pillar in most frameworks for trustworthy Al [55,
, 15]. To understand the practical concept of privacy, we first briefly consider its history. We
then discuss the model based attacks and related concepts in support of later chapters.

The notion of the legal right to privacy is considered a fairly recent human invention. It
was first identified as a common law, inherit through custom and precedent, that an individual
had the right to choose whether to share their “private life, habits, and relations” |69, 70, 71].
Over time, legal frameworks developed further [72, 53, 54|, with early focus on health science’s
balance between privacy risks and research benefits of individual health information. Under
this context, an individual’s private health or behavior data (sometimes called “microdata”)
can be combined and then provided to researchers for studies that benefit science and society.
But scientists recognized that the sharing of private data brings a risk of violating the right
to privacy for those contributing data. For these reasons it is common practice to de-identify
data when sharing samples for research purposes [73]. This practice aims to reduce the risk of
re-identification: the ability to use seemingly anonymous data to determine the particular
individual associated with that data. Re-identification is important because it can be a natural
first step towards further privacy violation. The risk of re-identification can be measured as the
likelihood that a sample can be linked back to the individual given the data |71, 73]. Considering
the level concern for information privacy, significant work exists across many fields to help ensure
it.

The survey of work in [75] highlights that the success of the big data era comes at the
increased risk of privacy for individuals. In order to realize all the benefits of increased informa-
tion, individual expectations of content privacy and interaction privacy must be met. They
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propose that methods should meet each user’s own privacy expectations when using information
relating to the individual (content privacy) or when communicating information on behalf of the
individual (interaction privacy). It is intuitive that content privacy can be trivially achieved
in many research and application contexts - simply assume no utility in a shared database of
information and only develop processes that require a user’s own data on their own systems.
Similarly, interaction privacy can be achieved by simply not interacting [19]. These standpoints
are impractical, but they demonstrate through extremes the balance between utility and privacy
that must be considered.

ML systems require data for both training and run-time production of outputs, meaning that
ML developers must also face privacy challenges. However, compared to the more narrow concern
of statistical tools, many new dimensions of privacy are recognized in the broader applications
of AI. The National Institute of Standards and Technology (NIST) outlined a taxonomy of
Adversarial Machine Learning (AML), which they describe as the study of algorithmic security
challenges, attacker capabilities, and attack consequences [76]. Many aspects of their taxonomy
are related to the privacy of sensitive information within original training data, but they also
recognize other risks, such as poisoning attacks that shift decision boundaries or reduce accuracy
but do not necessarily impact privacy. Outside of attacks requiring training data access, they
also recognize challenges such as the development of evasion techniques that use small data
perturbations to invoke an erroneous output. Adversarial samples such as these don’t directly
threaten the privacy of the training data, but they are a flaw in the reliability, and therefore
security, of a solution.

Information leakage facilitates re-identification and other attacks against a model and the
data used to train it. The information was intended to be hidden or secure from an attacker,
but through some means has been leaked to the attacker. Modern notions of how information
is leaked were described recently in [15]. Direct information leakage occurs when someone
gains access to samples, such as an attacker gaining access to a database of training samples
containing sensitive information. Information security controls and other information technology
best practices are fundamental to preventing direct information leakage. Indirect information
leakage occurs when, without access to all training samples, an attacker is able to use inference
algorithms to recover information originally contained in the training data. The strength of
privacy can be measured through simulation of various threat models, typically with the aim of
demonstrating feasibility or a likelihood that an attack can succeed with the level of information
leaked. For example, we can assess the risk that an attacker could infer that a sample was in the
training dataset by simulating a membership inference attack [25].

Researchers in |77] have identified a trade-off between model fairness and model privacy,
both considered pillars within trustworthy AI. The issue arises from the techniques typically
used to adjust unfair models to become more fair. When ML systems under-perform on under-
privileged cohorts, techniques enforce constraints on the learning process in order to better
support the under-privileged cohort. The results help to equalize performance, but experiments
demonstrated they also increased the risk of membership inference attacks. Larger biases, and
therefore increased need for fairness, were also correlated with increased privacy risks.

Based on the previously highlighted trustworthy AI frameworks, our work assumes that
trust is improved if the data required are kept sufficiently private for the application and user
tolerances. Therefore, how training and run-time input data are processed helps determine the
level of trustworthiness of a machine learning system. For example, requiring the user’s data be
sent to external systems undermines trust in the system because data is no longer private. The
external third party may not store the data securely, and it may be sold or otherwise reused for
purposes the user did not originally intend. The user may not even know the form of the data
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captured. Intuitively, these privacy needs overlap with trustworthy requirements surrounding
usability, described in the previous section, and therefore both motivate less complex systems
usable on commodity resources.

Contributions in Chapter 3 and 4 help ensure data can be processed locally on systems
the user owns and trusts. In Chapter 5.3 we propose two AML experiments with our brain2vec
transfer learning approach. One experiment is a straighforward assessment of re-identification
risk, and the second a more nuanced experiment for the risk of membership inference attacks.
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Fig. 3. Bioelectric sensor modalities used in this work: (a) surface Myoelectrocortogra-
phy (EMG) captures electrical activity from electrodes placed on the skin sur-
face, produced from the contraction of skeletal muscle sarcomeres. (b) scalp Elec-
troencepahlography (EEG) records bioelectric activity of neurons, diffused through
skull and scalp tissue, from electrodes placed on the scalp. (c) electrocorticogra-
phy (ECoG) measures neural activity from electrodes placed directly on the brain
surface (cortex), and (d) Stereotactic Electroencephalography (sEEG) measures
neural activity from deep brain structures from depth electrodes implanted via

stereotactic guidance.

2.2 Humans and Computers

In the following subsections, we explore how humans use machines and how their use has
evolved over time. We first highlight the history of research on HCI, tracing this foundational
research to the work in the HAR domain being performed today. Our final subsection discusses
HAR specifically and the relevant challenges for this dissertations focus.

2.2.1 Human Computer Interaction

HCT is a domain of research regarding the design, evaluation, and implementation of interac-
tive computer systems for humans. Its scope includes both HCI as a tool to better communicate
an individual’s desires to a computer system, as well as a tool to study human phenomenon
and physiology [78, 79, 80]. The concept of HCI, with overlapping research in Human Machine
Interaction (HMI), is related to Human Robot Interaction (HRI) in which researchers focus on
robotics. Early worked used the term HMI to discuss the interactions that occur as a person
attempts to satisfy their intention [31]. Their stages of interaction were as follows:

1. User forms the intention
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2. User selects an action
3. User executes an action
4. User evaluates the outcome

From these steps it is clear that HCI is fundamentally user and task centric. If a task -
the goal of each step above in a particular application - can be automated, without a human
component, then HCI concerns and designs are irrelevant.
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Fig. 4. Based on [32]: the dimensions of autonomy and humanness. High autonomy im-
proves the expected utility across domains, while high humanness improves poten-

tial for human-machine trust.

Early computer interfaces progressed primarily through university work that necessitated
an interface to these new systems, but development quickly expanded to industry as the po-
tential became more clear [30]. Remarkable progress erupted with digital computing and the
development of displays, keyboards, and mice. Today, the domain continues to develop with
more recent solutions such as mobile text-to-speech and Al assistants. Modern low-power sys-
tems have enabled more pervasive implementations that can passively monitor human behavior

in order to monitor and gauge a person’s status |78, 83]. Research on HCI recognizes the notion
of a user interface and the obvious need for usability - so much so that some predicted the end
of the user interface by the year 2020 [30]. Technologist even expected machines to anticipate

human needs, enabling more seamless use.

Part of the increased expectations for HCI, as discussed in relation to Al in Section 2.1, is the
demand for mobile systems that are useable anywhere, with few restrictions. More recent research
has recognized the need for trust and trust repair in human-machine interaction, proposing that
increased machine autonomy must be met with a human-centered approach to trust. The simple
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first step proposed by the authors is to begin treating the interaction as being between two
humans, rather than a human and their tools. Under this framework they consider the important
of trust-repair in human-machine relationships [$2], which may need to use emotion recognition
solutions to gauge trust [34]. The authors of [32] call on researchers to rethink the connection
between humans and their technology. They propose framing the relationship not as human-
to-machine, but as another human-to-human interaction. From this assumption, they consider
the humanness of a technology’s design as it relates to its level of autonomy. We adapt a figure
from their work relating the dimensions of humanness and autonomy in Figure 4. They argue
that increase humanness is needed if a strong bond and communication with the human user are
required.

Included in HCI is research on monitoring for scientific research and human health purposes,
which often overlap in needs with interfacing for everyday tasks. Brain-Computer Interface (BCI)
and other bioelectric signals, such as EMG are often recognized and utilized as potential low-
cost and portable solutions to a variety of HCI problems and tasks [30]. More recent material’s
research has highlighted the value of wearable sensors for HCI, calling wearable sensors an “in-
evitable future trend” [35]. Similar wearable sensors are a common method for enabling human
exoskeletons - robots that closely interact with humans to augment their capabilities. Sensors
and their processing systems monitor the environment, including the user, in order to help control
the exoskeleton [30].

HCI has a broad focus on enabling humans to interact more successfully with their tech-
nology solutions. This includes comprehending the user’s intentions and actions, as well as
interacting with the user and the environment. The domain of HCI leverages new technologies
to improve the human experience of the interaction, including advances in Al and bioelectric
sensing. This work’s contributions focus on comprehending the user’s intent or action, and
would fit well within any future HCI solution. We argue that, given HCI’s history and expected
trends described in the above discussion, there is significant overlap with the field of HAR, which
we further discuss in the next subsection.

2.2.2 Human Activity Recognition from Bioelectric Signals

HAR enables rich user experiences for many applications, with the potential to improve the
livelihood for persons with disabilities [37, 88]. HAR solutions may use a variety of different data
modalities to recognize human action, including video, audio, accelerometer, and biophysical data
[7, 8]. The solutions that HAR provides are clearly linked to the domain of HCI: HCI implies
a human interacting with a machine through some action, and HAR focuses on approaches that
allow machines to comprehend the action a person is taking or their current experience. We
therefore view HAR as the solutions that read the human experience, a sub-component of HCI,
which is a broader domain that includes response and actuation of the environment.

Each of the steps listed in Section 2.2.1 may be considered an “activity” relevant to the HAR
domain. In other words, each step is a plausible target for automation or assistance using HAR
approaches. A systems may predict or detect the users intention’s and their desired action (i.e.,
step 1 & 2 - selection & attention). The system may detect the user’s execution of the action
or even help them perform their desired action, perhaps automatically (i.e., step 3 - execution).
Finally, a system may use the individuals physiological response to gauge their satisfaction with
the outcome (i.e., step 4 - evaluation). Depending on the user’s needs, HAR methods can reduce
overhead of these steps in order to improve the experience of HCI contexts.

This work’s focus is on time-varying bioelectic data captured to measure human response.
Unlike video monitoring for activity recognition, using sensor readings is often lower cost and
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pervasive, without violating the privacy of individuals nearby. However, many challenges in HAR
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(A) Mobile (B) Embedded (C) On-body

Fig. 5. Examples of resource constrained platforms often used to implement activity recog-
nition from sensor signals [16]. On-body sensors are used to capture bioelectric

signals, but they may be processed by nearby mobile or embedded devices.

Resource Constrained Platforms: Data are collected through research trials targeting

the data (e.g. expression of activities of daily living |11]), clinical proceedings tangentially related
(e.g. monitoring response to medical procedures [39]), crowd-sourced from interested users (e.g.
Common Voice by Mozilla [90]), or simply harvested from a existing user-base (e.g. mobile

applications). Sensor-based HAR approaches often rely on mobile or Internet-of-Things (IoT)
[33] devices equipped with sensors continuously monitoring the subject. In order to expand
practical use-cases, recognition using this data is performed on-device, which minimizes response
time and eliminates reliance on external systems [91]. However, mobile host systems are typically
resource-constrained, often requiring low power and reduced weight in comparison to traditional
desktop or server host systems. Thus, activity recognition models are motivated to reduce model
complexity while still maintaining acceptable recognition performance.

Resource constrained applications demand low-power and low-latency operation to be vi-
able. In contrast, problems with fewer constraints - perhaps only capital budget constraints -
are permitted to utilize as many large server class machines as can be afforded. In these cases,
issues relating to amp-hour usage and weight of the system are considered in aggregate against
organizational capability. In this context, resource constrained system exist to support a specific
application function. For example, a step tracking device must be light enough to wear for the
duration of tracking, with enough power to measure a day’s worth of data. In contrast, a com-
puting cluster built for optimizing and executing large machine learning models as a service will
only need to comply with common civil and electrical engineering guidelines. The intended ap-
plication determines the constraints, and the constraints of sensing human bioelectric signals are
typically strongest along dimensions of power usage and weight. Chapter 4 presents our work
that reduces the complexity of on-body classification methods without reducing classification
performance.

Distribution Discrepancies: A core goal of machine learning, and even statistical anal-
ysis, is to generalize to more than the distribution of their training data - a recognition that
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variability is inherent [92], and that generalization is a key issue [93]. Methods are expected
to extrapolate to a reasonable extent, but large drifts from training to testing data can reduce
the scope and overall utility of machine learning methods. The HAR domain experiences these
discrepancies due to the varying physiology and behavior of individuals. We illustrate this chal-
lenge in Figures 6 and 7 with data used in our contributions. In these examples, we can see clear
similarity across participant’s and their sensors, yet large differences likely to complicate analy-
sis also exist. Bioelectric signals are further complicated by their own challenges, such as sensor
reliability, electrical interference, and physical placement [5]. In Chapter 4 and 5 we implement
solutions that transfer knowledge in an attempt to overcome distribution discrepancies.

Readability: Bioelectric sensor systems capture information that is less familiar to humans.
For example, most users can review video or audio recordings used to classify an activity, and
judge the system’s capability in part based on their own ability to interpret the information.
Researchers have argued that these other human-friendly modalities have inherit interpretability
that is not present for modalities like sensor recordings [5]. Therefore, effort must be made to
build interpretable solutions that experts and users may consider when using the system. We
highlighted the value of interpretability earlier in Section 2.1.1. Our contributions in 3 and 4
both implement interpretable models that can provide insight into how the data is used for
predictions.
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Examples of distribution discrepancy demonstrated by a selection of sensors across
different participants, taken from data described in Section 5.2.1. Expected values
and their distribution vary widely between participants and even within a partici-
pants separate sensors. While all Machine Learning (ML) is intended to generalize
across some amount of changes to the underlying distributions, the domain of hu-
man activity recognition is challenged by a persistent and seemingly inescapable
drift across users and configurations. While real-time drift can also occur, for in-
stance as a user becomes tired their muscle activity distribution may change, this

work focuses on domain-level human activity discrepancy.
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Fig. 7. Examples of distribution discrepancy demonstrated by the average sensor frequency
response across different participants, taken from data described in Section 5.2.1.
Higher values along the Y-axis correspond to a increased representation of the
corresponding frequency on the X-axis. While each participant’s data is similarly
shaped, their still appears to be distribution discrepancies from shifts in amplitudes,

new spectral modes, and varying noise levels across the participants.

2.3 Deep Learning

This dissertation’s focus is to help establish ML techniques for human activity recognition
from bioelectric signals that are both adaptable and trustworthy. ML describes techniques that
automate the discovery of relationships within data, and to utilize those relationships in practical
applications. More broadly, ML methods map from one distribution to another distribution using
some criterion. |[I| It is the developer or user that must define learning algorithms criterion to
target a useful and worthwhile problem.

This work’s focus is on more recent methods known generally as deep learning [28] [96].
Deep learning techniques attempt to optimize a well-formed problem, albeit with compromises
and simplifications, in hopes of the model learning highly informative representations. Successful
representations allow the model to be used for many separate tasks or simply out-perform other
methodologies.
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Fig. 8. Example of distribution discrepancy of a domain-specific measure: An illustration
of phase amplitude coupling for two patients’ responses to deep brain stimulation
as measured by Electroencepahlography (EEG). This specialized heuristic (Phase
Amplitude Coupling [94][95]) for measuring brain activity provides possible clinical
insight, but still produces large discrepancies between users. Models and inferential
statistics are challenged by these large shifts in a high-dimensional dataset. This
analysis was performed as part of exploratory work following efforts described in
Section 3.2.

2.3.1 Concepts and Components

Deep learning stemmed from artificial neural networks, which are ML methods that attempt
to mimic biological neural systems: each artificial neuron is connected to many other neurons via
synapses, with each neuron firing (producing output) based on the inputs received from other
neurons.

In early work on neural networks, authors described the notion of ill-formed problems versus
well-formed problems. An ill-formed problem, such as facial recognition from an image, does not
have a known process and is possibly subjective. A well-formed problem in contrast is defined
ahead of time or is a well-known operation, such as matrix multiplication. Therefore, a reasonable
approach to ill-formed problems is to first decompose problems into these well-formed concepts
and then proposing solutions to the well-formed aspects. The result, if successful, will lead to
an approximate but useful solution to the ill-formed problem.
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Fig. 9. Popular artificial neural network architectures: (A) Feedforward dense networks,

(B) Convolutional Neural Networks, (C) Recurrent Neural Networks

Efforts in deep learning have further abstracted the artificial neural network model com-
ponents into layers of non-linear transformations. Each layer accomplishes its transformation
through wunits, a generalization of the artificial neuron. The term units is meant to expand the
scope of the term to include newer, sometimes parameterized, components like batch normaliza-
tion [96]. Still, the term “neuron” is used interchangeably with “units” throughout this and other
research.

Artificial neural network models can be separated into many categories, but we begin with
the three most dominant organizations. These are illustrated in Figure 9 as feedforward, con-
volutional, and recurrent architectures. These basic building blocks can be further combined in
ways to accomplish more specialized learning strategies. One such recent development is the
transformer network, discussed in Section 2.3.2, which combines several feedforward networks
and learned transformations to better model sequence data.

A feedforward neural network is a type of artificial neural network that cascades values
through layers of units. If values are transferred backwards through layers or across samples,
the network is considered a recurrent neural network [96] [97]. Tllustrations of feedforward and
recurrent networks are provided in Figure 9a and 9c, respectively.

A convolutional neural network is a distinct organization of units, such that the layers
implement n-dimensional filters. These convolutional layers are in contrast to dense layers that
fully connect all units between layers. Given the properties of digital filtering, convolutional
neural networks work well with highly correlated data and require fewer parameters than a fully-
connected counter-part. When trained on image classification tasks, the resulting filters illustrate
a hierarchy of 2-dimensional convolutional filters. Hidden layers deeper in the model, closer to
the output, build more abstract filters capable of matching complex relationships. [95] [96]

Neural networks can be defined as a method of approximating some function - a mapping
from one data domain to another - through a training procedure. In generalized terms, a network
with parameters 6, input features x, and target variable y is described by the mapping

y = f(z;0)

A traditional artificial neuron performs a weighted sum of its inputs and passes this value
through an activation function. Formulation of a neuron receiving i features is given by:
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Fig. 10. Activation functions for neural networks. After weights and other operations are
applied to a units inputs, the results are passed through the unit’s activation
function. Nonlinearity and differentiability are important characteristics of acti-
vation functions. However, more complex activation require more compute power,

potentially limiting applications.

Z=> mixw=W'X (2.1)

y=o¢(2) (2.2)

Where X is a vector of input features, W is a vector of weights or parameters, and ¢ is the
neuron’s activation function. This style of neuron is still at the center of most deep architectures’
units, but these units often integrate other regularization or transformation operations.

Without a non-linear activation function ¢, a neural network becomes a linear model, re-
ducing the model’s capacity to capture complex relationships [96]. A wide range of activation
functions have been used historically, see Figure 10 for a sample of the more prominent non-
linearities used for activation. In biological systems, neurons spike over time. Within this
context, artificial activation functions in Figure 10 represent the average response of the neuron
over time with respect to a sample. The choice of activation function can significantly impact
both model accuracy and computational burden of training and prediction. Deep learning has
pioneered the use of a Rectified Linear Units (ReLU), which helps to prevent saturation while
also being fast to compute. [99] [96]

Training procedures attempt to optimize the network’s parameters for the mapping z — y
with a low error. Training is typically performed through a cost function, sometimes called an
objective function, and gradient descent. The cost function represents the error in the network’s

24



Chapter 2 — Background

output relative to the desired output. Minimas in the cost surface are pursued by calculating the
error gradient and adjusting parameters to descend to lower regions of the cost surface. A key
challenge with gradient descent applied to complex models like neural networks is determining
the error gradient. Error back-propagation [100] is still widely used as a method to unroll the
contribution of the error onto each neuron’s parameters. Mini-batches of samples - subsets of
the data that fit well within machine memory - are iterated over, and the gradient of each
parameter, with respect to the output of the loss function, is calculated. The loss, or error, is
minimized by using each parameter’s gradient to update its value. An optimization algorithm
adjust the parameter’s value in the negative direction of the gradient, shifting the parameter in
the direction that would result in smaller error. The process is repeated across every batch of
samples in the training data. One iteration over the entire training dataset is termed an epoch,
with most models requiring a hundred or more epochs to reach a performance plateau.

Deep learning methodologies typically have a large number of learned parameters. In order
to optimize the parameters without overfitting, large datasets are required along with robust
regularization. Furthermore, as training progresses, the magnitude of inputs and intermediate
values play an important role in shaping the gradient. Large magnitude values push many
activation functions into regions where the gradient becomes small. However, activation functions
such as the ReLLU, seen in Figure 10, help to address this by having a constant gradient for large
positive values [99]. Another important consideration is the use of a weight initialization scheme
that complements the chosen architecture and activation function [99]. Other methodologies to
prevent vanishing and exploding gradients include feature normalization, batch normalization of
intermediate layers during training, and sparsity regularization to bias weights towards zero.

This introduction outlined the basics of current deep learning techniques in artificial neural
networks. The architectures and their layer types in Figure 9 are the basic building blocks of
deep learning. Combining these architectures with various linear operations, branching data
flows, and more thoughtful use of activation functions are the essential considerations of deep
learning methods. From these methodological tools, new architectures that extend capacity,
expressiveness, or efficiency across multiple domains emerge. Our work primarily applies feed-
forward dense networks and different convolution methods to implement AI forHAR. We also
rely on both sigmoid and ReLl.u activation functions in many of our contributed architectures.

2.3.2 Transformer Architecture

The Transformer represents recent progress in deep learning [101, , , , , ],
and we apply it in Chapter 5, but provide additional background in this section. A Transformer
architecture, as illustrated in Figure 11, is made up of an encoder portion and a decoder portion.
The transformer encoder first uses self-attention to learn how each element of the sequence relate
to all the other elements, e.g., X7 and X5 in Figure 11. Self-attentions is a learned weighted
representation of the inputs, enabling it to attend to any element in the input sequence. The
inputs that the transformer can access are typically fixed, and often called the context size of
the model. The output of the transformer’s encoder is provided to each decoder layer, through
another layer of attention, shown as the “Encoder-Decoder Attention" in Figure 11.

As introduced above, a key novelty of transformers is the method of self-attention [103]
- a learned data transformation that relays information from any position in the input to any
other position before further processing. This is performed by learning transformations over the
input that result in a likelihood distribution that the network uses to weight input elements. For
each d-dimensional embedding vector in the sequence X, a query, key, and value representations
are extracted from an affine transformation with their respective learnable parameter matrices
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Fig. 11. The Transformer, composed of an encoder portion and a decoder portion, is used

to model sequence data with self-attention. Figure adapted from [107].

W<, WX and WV. The result of these transformations are Q, K, and V, respectively. The
result of Q x K7 scores the hidden states and scaled to improve stability by +/dj, where dj,
is the dimension of the key vector. A softmax function is used to normalize the scores to
sum to one - resulting in a weighting across all items in the sequence. This weighting is then
multiplied with V' to weight the contribution to the attention embedding Z for a particular item
in the sequence. Each attention head’s Z is combined and transformed to a final output using
a final learned transformation, with the weights W in Figure 12. As shown in Figure, 11, the
resulting Z matrix is added to the original input X, then passed to the attention layer, and
finally normalized.

While architected nearly identically, the encoder and decoder are differentiated by their
inputs and the cross-attention layer. In their original work, [103] were targeting text translation
when they developed the transformer architecture and its use of attention. In this paradigm,
the encoder portion is provided the entire original text to be translated. The encoder extracts
an informative representation that is passed to the decoder using the encoder-decoder attention
layer. This way, the decoder can similarly attend to the portions of the encoded representations
that are useful.
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2.4 Modeling Methodologies for Trust and Adaptation

This section discusses model methodologies that benefit trustworthy and adaptable Al for
HAR, with a focus on deep learning approaches in ML. As discussed in Section 2.2, HAR
models must contend with shifting distributions on lightweight mobile devices, making predictive
performance and usability challenging. Of course, meeting any of the trustworthy principles
described in Section 2.1 is desirable for a broad range of model applications, but the need for
trustworthy models in the HAR domain might be considered heightened, given the domains
personal nature of direct physiological sensing.

Deep learning methodologies are primarily defined by a choice of architecture, objective
function, and a training procedure that utilizes the objective to improve the model using data.
These various optimization inputs and decisions establish a prior, or applies inductive bias, to
a model. Careful choice and definition of these priors can be used to predispose ML models to
certain behaviors and desirable properties. An important desire is that the model generalize to
variety of new data or even new problems. In other words, an important goal is to reduce the
amount of inductive bias needed to create a new model for a new problem. This further relates
to the bias and variance trade-off - models must be complex enough to capture the intricacies of
the training data, but not so expressive as to overfit and poorly generalize.

In the following subsections, we discuss how engineering-informed model designs, like the
ones this work contributes in Chapter 3 and 4, can make interpretable and parsimonious models
for increased trust. Background is also provided on methods that allow models to establish, trans-
fer, and extend prior knowledge in order to adapt to new tasks and domains. This dissertation
contributes two methods utilizing these approaches, outlined in Chapter 4 and 5.

2.4.1 Engineering-Informed Architecture

For more narrowly defined applications, such as HAR from bioelectric data, the model
architecture and training procedure can be modified to align more closely with known priors of
the domain. The process of producing the model, and the model itself, can be defined more
directly for the application. The specialization, however, must come with improvements over
more general-purpose approaches to warrant the effort. Methodologies such as this are known as
informed machine learning, in which prior knowledge is identified, a representation is chosen, and
is integrated into the machine learning approach in some way. The full taxonomy of informed ML
is presented in Figure 13. Informed ML is often used when data is scarce or when non-informed
methods are simply under-performing, but they may be prioritized for many other reasons as
well. Conventional ML strategies utilize data and set of processes to learn a solution. Informed
ML however, integrates prior knowledge into the processes that learn a solution. As highlighted
by [109], the taxonomy of informed ML can be outlined across three areas.

Source of Knowledge: A model developer must first consider from where is the prior
information produced? Knowledge can be sourced from everyday experience, such as simple
concepts that are considered well-known. For example, the knowledge that dogs have fur and
they walk using all four limbs. Moving from this world knowledge to more explicit knowledge,
as termed by [109], the solution must engage with deeper expertise. Subject matter experts in
a particular business domain, for instance, might describe an underlying heuristic that they’ve
utilized for their success. Social scientist, physicists, chemists, etc. may also contribute well
studied formulations or theories that may help a model more easily discover worthwhile solutions.

Representation of Knowledge: Once a model developer is aware of key prior knowledge,
they must ask - how is the knowledge represented in the model building process? This step of
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Fig. 13. Hlustrations from [109]: Taxonomy of informed machine learning

informed learning is critical, and is one of the primary areas of research. The representation is
the input to the integration stage, and is often implemented through concepts such as logic rules,
invariances, relations, or even human feedback. As might be expected, the representation must
realizable in some form, even if compromises must be made to represent the original information
(e.g., rounding an irrational number or estimating a parameter).

Integration of Knowledge: With the prior knowledge clearly represented, a developer
mush now consider where in the ML process should the representation be integrated? The survey
in [109] highlighted four areas common for knowledge integration. The knowledge may be applied
to the training data rather than the model’s algorithm, it may be used to help define the solutions
available to the model, it may directly influence the learning algorithm itself, or the knowledge
can be used to validate the final output of a model. These techniques are not mutually exclusive,
and multiple may be used to complement each other.

Informed ML has seen broad adoption in the physics domain, where experimental data can
vary in size, but existing theories can help ML methods reach better solutions [ 10]. It’s also
well understood that domain knowledge integrated into a ML process can aid in the discovery
of new insights [111]. In our contributions, we use informed ML in our design of Multi-SincNet,
which is applied in both Chapter 4 and 3. Our approach sources knowledge from the natural
sciences, represented as algebraic equations, in order to help reduce the scope of the hypothesis
set.
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2.4.2 Transfer Learning

Canonical ML strategies use learning algorithms to minimize a criterion given example
data, often made up of input features and a desired target [I|. The resulting model can then
be used to make predictions, or otherwise produce output, on new samples in the future. This
strategy has limitations, however, when only a small portion of available training data has target
labels for learning. Without sufficient data, learning and validating a useful model from only
the labeled data can be challenging. In these scenarios, semi-supervised ML methods leverage a
larger unlabeled dataset to improve performance on the smaller labeled dataset. However, semi-
supervised learning must generally make the assumption that the distributions of the labeled and
unlabeled data are the same. Transfer learning further generalizes this notion by allowing the
domain, task, and feature distributions used in training and testing to be different. In transfer
learning paradigms, methods attempt to improve downstream performance by adapting existing
knowledge to new information [9]. Intuitive examples of how learning in related domains can
enable fast adaption to new tasks are shown in Figure 14.
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Fig. 14. Tllustration from [112]: Intuitive examples of transfer learning

Transfer learning separates model development into source tasks and target tasks, and de-
velops methods to adapt between them using various strategies [9] [112]. Methodologies establish
an initial parameterization from a source task as an attempt to instill a model with additional
information that will later improve performance during fine-tuning on a target task. The process
of fine-tuning is often implemented as directly optimizing on the task the model is intended to
solve, while leveraging the representations learned in the source task. An illustration of transfer
learning, and how it relates to self-supervised and supervised learning, is shown in Figure 15.

In a transductive transfer learning approach, the source task and the target task are the
same, but the domains vary. The feature space of transductive learning may differ between
source and target task entirely, or simply the marginal distributions of the features may have
changed. In contrast, inductive transfer learning refers to when the target and source tasks
differ, regardless of the domain or feature space. It may be the case that abundant data exists
for the source task, or perhaps more commonly, a majority of the relevant data is unlabeled
[9]. Methods that learn from an unlabeled source task for later transfer to new tasks began as
self-taught learning [1141]. Today, self-supervised learning for DL is a popular method that does
not require ground truth task labels. Instead, a task is derived from the nature of the data, one
that requires the model to learn an informative mapping that is likely to translate to the future
fine-tuning task [113].
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Fig. 15. Pretraining is a separate stage of model building and happens earlier in time to
a fine-tuning procedure, in which the model is adjusted for the target data and
task. [113]

2.4.3 Incremental Learning

In practice, AI and ML systems must contend with the stability-plasticity dilemma - the
notion that an automated system must retain past knowledge while learning knew knowledge
[115, 116]. If the system is too plastic, catastrophic forgetting may occur in which previously
well-understood concepts are disrupted and can no longer be recalled [117, 115]. In a sense,
the system has forgotten the knowledge it once held. The dilemma is considered a well-known
constraint in neural systems, both biological and artificial, which hinders the ability to adapt
to new data, tasks, or other aspects of the problem. Early work recognized a key dimension of
this challenge as whether or not the training examples are presented concurrently or sequentially
- that the issue primarily arises when new examples are presented separately and not together
during a training session [117]. Intuitively, humans and other biological neural networks do
not learn entirely concurrently. Instead, new concepts and tasks are introduced over time once
previous tasks are sufficiently mastered.

Lifelong learning [1 18] and its more recent incarnation continual learning [116] are research
areas that aim to address challenges of sequential learning in the face of stability-plasticity
dilemma. The authors of [116] recently surveyed the field and describe it as research aimed at
learning from an infinite stream of data. From this stream of data, new tasks may emerge (e.g.
a new classification task), features may drift, and concepts relating features and outputs may
evolve over time. In some more extreme cases, the task boundary or even the notion of the task
may not be clearly delineated. Under these paradigms, the methods are motivated to discover
the tasks or their mutation without supervision [119]. Importantly, the field recognizes that
privacy is harmed when algorithms require access to past training examples during deployment
Due to the required resources and potential privacy issues, the use of memory to store samples
to combat catastrophic forgetting is considered a limitation to solutions. The authors of [116]
describe three primary methods for continual learning in recent research.

(1) Replay Methods: As the name implies, these solutions either store raw samples
or generate synthetic samples to include in the learning set for new tasks. A rehearsal based
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method use the samples as inputs to inform the training process, along with new task samples.
A psuedo-rehearsal is when rehearsal is performed with synthetic samples or random samples.
A constrained optimization approach uses stored samples to guide new model updates such that
those updates minimally impact the previously learned task.

(2) Regularization methods: In order to avoid reliance on raw samples - preserving
privacy and decreasing storage and memory usage - some approaches develop regularization
methods to constrain new task learning. The constraints are intended to help stabilize the
model using either small samples of data or an explicit prior. The data-focused methods are
primarily distillation based approaches using the previous iteration of the model. Prior-focused
methods estimate distributions of parameters and penalize the model for changing parameters
measured as statistically important.

(3) Parameter Isolation: A more straightforward methodology in which new parameters
are added to the model in order to accommodate new tasks. In practice, this can often be a
new "classification head" that utilizes previously optimized features alongside other task-specific
output layers. This prevents forgetting since the original parameters are never altered, but can
significantly increase the model size if many unique output heads are needed.

In [119], the authors present Dual User-Adaption (DUA), a framework that separates server-
side adaption from user-side adaption in a continual learning framework. The DUA is theoreti-
cally focused, aligning their formulation to steps in an algorithmic process and complements the
conceptual framework we illustrate in Figure 1. Incremental learning has also received recent
attention in work related to federated learning |120]. In federated learning, privacy preservation
is approached by distributing the model optimization rather than centralizing the data stor-
age for subsequent model optimization. Incremental learning was recognized as a more realistic
paradigm for edge devices attempting federated learning in practice.

2.4.4 Measuring and Reducing Information Privacy Risk

In section 2.1 we discussed how Al systems can help bolster trust from users by prioritizing
users’ information privacy. In Section 2.3 we described DL for building Al through ML methods
that requires data, or simulated environments, and produce new data in the form of learned
parameters and extracted features. In Section 2.1.3 we described how a typical ML model,
trained on potentially sensitive data like HAR recordings, is a representation of the data it was
trained. The parameters of the models, or the models optimized form, are a potential attack
vector for an adversary. This is important because in practice, releasing models for others to use
requires either sharing the parameters (i.e., the model) or providing black-box access through an
indirect interface. Fither way, users have some level of access to the information represented by
the model. Methods to understand how much information and what that information can reveal
is the focus of this subsection.

A survey separated modern privacy research into data clustering and theoretical frame-
works for managing privacy risks in shared databases [75]. Early methods proposed k-anonymity
in which an equivalence class - group of values that can be used to aid in identifying the source
of a record (e.g., gender, age, job, etc.) - must have at least k entries in the table in order
to decrease the probability of re-identification [121]. The k-anonymity however does not ensure
that sensitive attributes - values relating to the individual that the attacker is interested in know-
ing - are sufficiently diverse to prevent re-identification. The [-diversity method addresses this
shortcoming by requiring that sensitive attributes be well-represented [122]. The I-diversity re-
quirement can therefore be combined with a k-anonymity requirement for increased information
privacy, but at the loss of information within the dataset. Further research developed t-closeness,
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which requires that each equivalence class’s sensitive attributes be bounded with respect to the
populations overall distribution |[123].

Malicious individuals, or attackers, take advantage of information leakage within the model
to discover aspects about the training data. Furthermore, how the model behaves - the distribu-
tion of its outputs for various inputs - may also hint at aspects of the training procedure or even
the input samples themselves. When attempting to infer hidden information about a model’s
training dataset, one of the most fundamental questions that an attacker will want to answer is
whether a given sample was even included in the model’s training dataset. These attacks are
known as membership inference attacks [25] and are not necessarily concerned with trying to
re-identify a specific sample, only whether it was used in training the model. While the authors
in [25] developed attacks against ML models for image analysis deployed as services, early work
developed similar attacks for genomics databases [124, |. In order to measure the privacy risk
of potential membership inference attacks, a number of strategies have been employed, including
statistical tests and metrics use in ML for classification accuracy. Therefore, the measure of risk
is effect size or the performance of the attacker’s classifier [120].

A first step in information security is demonstrating the feasibility of an attack. Our work
focuses on exploiting elements of a system to gain access to private information, but attacks may
seek to destroy, weaken, or otherwise damage the target system. In Chapter 5, Section 5.3 we use
two data-driven methods to evaluate the potential risk of information leakage for re-identification
and membership inference. We accomplish this with experiments that simulate adversarial threat
models in which an attacker uses ML techniques to either classify the individual’s identity or
their membership of a pretrained model.
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CHAPTER 3

INTERPRETABLE FEATURE EXTRACTION FROM BIOELECTRIC NEURAL
SIGNALS

3.1 Introduction

In Section 2.1, we discussed why a key aspect of trustworthy Al is interpretability, for both
user understanding and expert validation. In this Chapter, we’ll present two contributions to
bioelectric sensor-based HAR using ML, both of which allow experts to interpret aspects of the
model for their validation.

We begin in Section 3.2 with an expert-driven preprocessing pipeline and a grid search of
ML hyperparameters for improved efficacy of Deep Brain Stimulation (DBS). The presented
approach relies on EEG data, which exhibits two important issues related to HAR that were
discussed in Section 2.2: distribution discrepancy between individuals and limited dataset sizes.
While the feature extraction approach for predicting DBS treatment response has interpretable
foundations, it cannot discover new features and requires developer guidance.

In Section 3.3, we use Multi-SincNet to learned interpretable parameters for speech detection
from ECoG signals. Similar to the EEG data, the ECoG data in this work is limited and highly
variable across participants. Our speech activity recognition approach discovers interpretable
parameters, and compared to similar deep learning approaches, uses fewer parameters overall.
These smaller personalized models aid in research, validation, and overall usability for end-users.

Both methodologies make informed assumptions about the underlying data generating pro-
cess. We outline the informed components and how they fit into the taxonomy of [109] in Figure
16. In Section 3.2, prior literature and subject matter expertise guide the choice of features
that a modeling process utilizes. In Section 3.3, the foundational natural science knowledge
is integrated into the model, allowing the model to find similarly well-defined features as the
experts.

3.2 Interpretable Preprocessing for Deep Brain Stimulation Efficacy

DBS has had success in treatment of movement disorders such as Parkinson’s Disease (PD)
[127, 128, 129, 130, 131, 132], Essential Tremor (ET) [133, 134, 135, 136], and dystonia [137][135].
The electrical stimulation of motor nuclei such as Globus Pallidus Interna (GPI), Subthalamic
Nucleus (STN), and Ventral Intermedius Nucleus (VIM) of the thalamus generates an active
volume around the electrode site modulating the neuronal tissue in that region. With thera-
peutic high frequency (125-185 Hz) stimulation, the relay of pathological signals through the
sub-circuitries in the basal ganglia thalamocortical network is altered, ultimately alleviating the
underlying motor symptoms. Previous work has shown a pathological coupling between phase
and amplitude of EEG within the motor cortex [94][95]. Both DBS and dopaminergic medicines
result in a return to a more normal EEG pattern [94, 95, ,

DBS treatment begins with surgery to implant leads in the brain region appropriate for the
desired effect. The DBS leads have contacts over the distal 9mm of the implanted lead (Medtronic
Inc.). These leads are connected to implanted generators which can be programmed at any time
after surgery, altering contact location, amplitude, pulse width, and stimulation frequencies [111,
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learning.

, |. After recovery from surgery, selection of the most effective parameters for symptom
controls is required.

In these mapping sessions, the response to varied stimulation configurations is empirically
evaluated for efficacy by monitoring patient response in real time. Side effects are simply brain
responses other than the ones desired for efficacy. For instance, the contact in the ventral
posterolateral (VPL) nucleus of the thalamus will elicit tingling in the contralateral hand or
face, the contact in the VIM will stop the patient’s tremor, and a contact within the internal
capsule will elicit facial contraction [111]. All of these effects are routinely elicited during the
mapping process.

While mapping and configuring the leads can often be straightforward, it is ultimately a
visual-qualitative interpretation performed by an expert. The process can be hampered when
application of the stimulation has delayed effects, such as DBS of the GPI region [145]. Occa-
sionally, the patient will have side effects that cannot be easily categorized and can be related
to anxiety or heightened awareness of internal stimuli [112] [113]. A comprehensive review of
the complexities encountered during programming is given in [146]. It follows that an objec-
tive criteria for DBS efficacy could help reduce the configuration search space and improve the
process.

For monitoring optimal response to DBS, EEG-based methods have advantages over other
techniques, such as Positron Emission Tomography (PET), as the data can be acquired and
analyzed repeatedly during a programming session as different parameters are selected and eval-
uated. Although PET scans have the ability to assess metabolic changes associated with DBS,
this exposes the patient to radiation, and it cannot be used in an iterative process. Similarly the
oxygen metabolic changes identified with Functional Magnetic Resonance Imaging (fMRI) are
radically constrained by the Magnetic Resonance Imaging (MRI) environment and slower time
course. Finally, the incorporation of EEG is relatively low cost.

In this section, machine learning based feature extraction and classification methods are
applied to high resolution EEG data captured from 16 patients with DBS implants. Patients
are fitted with a dense array EEG cap with 256 channels. EEG is recorded as the DBS mapping
procedure cycles through stimulus configurations. For each patient, EEG data is also captured
without DBS being applied. The resulting dataset is annotated for the location of the lead within
the basal ganglia/thalamus and the clinical efficacy of the DBS parameters.
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are driven by domain and task -oriented restrictions and expert knowledge.

With this dataset, we explore the informative capacity of EEG to assist in DBS treatment.
Specific problems include whether DBS is being optimally applied and what aspects of brain ac-
tivity are affected during DBS. We consider these challenges through two separate classification
tasks: (1) Detecting active stimulation and (2) classifying the region of the brain undergoing
stimulation. We compare resulting performance and features selected, split across three stimula-
tion regions and 16 patients. Our results demonstrate the clear potential for reliable classification
within these tasks, with both detection of DBS across patients and DBS region discrimination
consistently achieving precision over 0.6 while still maintaining useful recall.

A total of 16 patients participated in the data collection procedure, each with stimulus in
either the GPI, VIM, or STN regions of the brain. There are 8 patients with GPI DBS (6 PD, 1
dystonia, 1 Tourettes), 6 patients with VIM DBS (2 PD, 4 ET), 1 patient with STN DBS (PD),
and 1 PD patient with VIM on the right and STN on the left.

EEG data acquisition is performed with an Electrical Geodesisc Inc Dense Array system
containing 256 sensors, sampled at 1KHz using the EGI GTEN 100 Amplifier via the EGI
NetStation 5 software. For optimal contact each patient’s head circumference is measured in order
to select the most appropriately sized net of sensors. A 2D projection of electrode placements
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Fig. 18. Available sensors, their corresponding brain regions, and the features utilized by
the best performing models. The selected regions vary by task, but greatly reduce

the feature size of the downstream grid search.
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Table 2. Summary of Deep Brain Stimulation Patients

ID | Stim. Region | DBS Type | On/Off Length | Partition

1| GPI Bilateral 02:16 / 01:48 | Train

2 | STN+VIM | Bilateral 02:00 / 01:38 | Train

3| VIM Left 02:04 / 01:52 | Holdout
4 | GPI Bilateral 04:46 / 04:22 | Holdout
5| GPI Bilateral 02:50 / 02:30 | Train

6 | GPI Bilateral 01:56 / 02:08 | Train

7| STN Bilateral 02:00 / 01:58 | Holdout

8 | VIM Bilateral 02:22 / 01:42 | Train

9| VIM Bilateral 03:54 / 03:46 | Train
10 | GPI Bilateral 02:12 / 02:22 | Holdout
11 | VIM Bilateral 03:44 / 04:44 | Holdout
12 | GPI Bilateral 03:54 / 02:20 | Train
13 | VIM Bilateral 01:32 / 09:14 | Train
14 | VIM Left 04:02 / 04:14 | Holdout
15 | GPI Bilateral 01:26 / 02:54 | Train
16 | GPI Bilateral 05:04 / 01:26 | Holdout
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and brain regions are illustrated at the top of Figure 18.

EEG data is first recorded while the technician monitors for artifacts and adjusts sensors
in real time to address issues. Next, DBS is turned off and EEG is captured for 2-5 minutes or
as long as tolerable to the patient. With the baseline collected, the electrode mapping begins in
a standard fashion while EEG data is collected. Once an optimal response is achieved, another
2-5 minutes of data is recorded.

After initial data collection, the recording session is segmented into several smaller datasets.
These include segments of optimal DBS response resulting from successful mapping, poor DBS
response encountered during mapping, and periods when DBS is switched off. In this work,
data segments captured when DBS is off are referred to as DBS-OFF and data captured during
optimal DBS are referred to as DBS-ON.

3.2.1 Feature Extraction and Modeling Pipeline

The data undergoes several processing stages before being passed to a supervised classifier.
These steps are categorized as part of either the preprocessing pipeline or the model pipeline, as
illustrated in Figure 17. Section 3.2.1 details the unsupervised preprocessing and Section 3.2.1
describes target-oriented feature selection, extraction, and modeling.

Before processing, patient data are split into a train partition and a holdout partition.
The partitioning is stratified across the stimulation region to ensure variations arising from the
region are well-represented in both sets of samples. See Table 2 for a summary of each patient’s
stimulation region, type, experiment length (MM:SS), and partition. The train set is used to tune
the overall pipeline, while the holdout set is reserved for the evaluation of the best performing
processes developed on the train set.

Preprocessing Pipeline

The raw EEG voltages are first re-referenced to the average voltage of the sensors nearest
the mastoids, since these sensors tend to receive reduced signal from the brain. Specifically, for
each sample of 256 real-valued potentials, the sensors nearest the back of the ear are averaged and
the resulting mean is subtracted from all sensors, including the reference sensors. The channels
used as references are identified in Figure 18 as white sensors.

Next, the Fast Fourier Transform (FFT) is applied to the re-referenced EEG magnitudes.
The FFT is applied in 1 second sliding rectangular windows with a step size of 1 second. From
each channel, we extract the average response from 8 bands characterized by a center frequency
fo and a bandwidth of 2Hz, yielding the region [fo — 1, fo +1). Center frequencies begin at 15Hz
and continue in steps of 2Hz, ending with the inclusion of fo = 29Hz. The FFT’s windowing
procedure and the band extraction reduces the number of samples and increases the number of
features, making conservative anomaly detection and feature selection critical for reliable results.

Next, anomaly detection must be applied in order to remove artifacts arising from physio-
logical differences or irregularities in electrode connectivity. The first step of automatic anomaly
detection is applied to the bands retrieved from the FFT process. We examine spatially local
correlation to identify sensors that behave poorly over time. This is approached by calculating
the Pearson correlation coefficient for the r,, nearest sensors to each sensor. Distance is measured
on the 2D plane shown in Figure 18 using Euclidean distance. Any sensor with a median neighbor
correlation less than a specified positive outlier threshold, r7, is considered anomalous. This rule
is derived from the spatial locality of sensors, which generally results in a strong correlation over
time between neighboring sensors. We select r,, = 7 and then calculate r7 = 0.72 as the 90th
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Fig. 19. Example of correlation-based outlier detection using patient 5’s Deep Brain Stim-
ulation (DBS)-OFF beta band. (a) Sensor 5 is highly correlated to most of its
neighbors, while (b) sensor 10 is irregularly not correlated with its neighboring
sensors. Counter-intuitive to common linear statistical modeling, uncorrelated

sensors are considered anomalous.

percentile of median neighbor correlation for all sensors across all experiments in the training
set.

Sensors failing the local correlation threshold in the train set are dropped from the remainder
of the processing for that band in all datasets. We choose this treatment, rather than imputation,
to leverage the redundancy of the 256 channel EEG and to avoid introducing unwanted bias
from imputation. However, since only the training partition is used to identify poorly correlated
sensors, new correlation anomalies in the holdout must be imputed. Therefore, sensors identified
as anomalous through local correlation in the holdout are replaced with the median value from
their 7, neighboring sensors at each sample. This is performed before dropping sensors in the
holdout that were identified in the train set.

After addressing sensors that behave poorly over time using local correlation, we examine
each sensor value with respect to the distribution of values captured by a sensor in an experiment.
We use the modified Z-score, defined in Equation 3.1, to identify anomalous sensor values. The
modified Z-score uses the median instead of the mean in its calculation, and is therefore well-
suited for identifying outliers [117].

xs, — median(xg)
Ly = —* 1
% 1.4826 x MAD, (3:-1)

MADg = median(|xs — median(xs)|) (3.2)

Where z; is all data for sensor s and zg, is the ith value for sensor s. We select Zs, > 5
as our threshold for outliers, such that each value outside this threshold is clipped to the range
[-Zs = 5,Zs = 5]. Given equations 3.1 and 3.2, a unique threshold value, X7, exists for each
sensor across each experiment and is calculated using Equation 3.3:

X7 =1.4826 x 5 x MAD; + median(zs) (3.3)

Any value in a sensor with |Zs| > 5 is replaced with the sensor’s Xp. While this artificial
ceiling will still carry some portion of its original information, it no longer has as large an influence
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on down-stream processing.

After clipping, each experiments’ band-level datasets are scaled to the interval [0, 1] by
dividing by each channel’s respective maximums. A delta transform is then applied, taking the
sample-to-sample difference through time. This centers the values around zero and helps remove
any level shifts that may leak experiment information, without involving additional parameters.
Finally, to balance the dataset and ensure fair representation, 140 samples are drawn (with
replacement) from each band-level dataset for every experiment. This sampling procedure is
only performed on the training set.

Modeling Pipeline

Following the preprocessing described in Section 3.2.1, the bands are recombined for uni-
variate feature selection using Mutual Information (MI). For every feature, MI between the
feature and the target is computed. The features are ranked by their MI score and the top 25%
of features are kept. These features are then separated back into their respective bands before
being passed to a model.

Each model is the combination of feature extractions at the band level concatenated and
passed to a supervised classifier. We use the SciKit-Learn machine learning library [145] for
feature extraction, modeling, and searching the hyperparameter space. Four feature extrac-
tion techniques are compared, including three unsupervised methods: Principle Component
Analysis (PCA), Independent Component Analysis (ICA), and Agglomerative Feature Clus-
tering (AFC) with mean pooling. Common Spatial Patterns (CSP) [119], a supervised technique
popular in Quantitative Electroencepahlography (QEEG), is also included. Extracted features
are passed to one of five supervised classification models. We compare Logistic Regression (LR)
with L2 regularization, classification from K-Nearest Neighbors (KNN), random and gradient
boosted ensembles of trees (Random Forest (RF) and Gradient Boosting (GB)), and Radial
Basis Function (RBF) Support Vector Machine (SVM).

The four feature extraction methods and five model types result in 20 distinct extrac-
tion-+classifier models to be examined and tuned. Due to the size of the search space, a ran-
domized grid search is used to explore potential hyperparameters using K-Fold cross-validation
on the training patients. Models are ranked and selected by their precision score. The folds are
grouped at the patient level such that no patient’s samples are included in both the holdout fold
and the training folds. The K-fold strategy varies between the modeling task, so further detail
is given in Section 3.2.2. Feature extraction methodologies are not mixed in a single model,
meaning only one of PCA, ICA, CSP, or AFC is applied in a given model, but each band’s
extraction procedure has independent hyperparameters.

3.2.2 Results

Towards guided DBS for improved efficacy, we examine ML methodologies on two binary
classification problems: detecting DBS and discriminating between regions of DBS across pa-
tients. Both problems are approached using the preprocessing and modeling pipelines described
in Sections 3.2.1. Once the best hyperparameters for each of the 20 extraction+-classifier models
are selected, we then select the best extraction method for each classifier based on cross-validation
performance. These 5 resulting extraction-+classifier models are then examined on the holdout
partition to evaluate generalization performance.
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Table 3. Stimulation detection best CV precision scores

CSp ICA FC PCA

GB [0.83 081 0.79 0.82
KN 0.70 0.68 0.68 0.69
LR 0.52 0.52 0.53 0.52
RF 0.82 0.82 0.80 0.82
SVM | 0.75 0.57 0.83 0.83

Table 4. Stimulation detection model performance on holdout patients

N Eaxtracted | Accuracy  F1 Precision Recall
PCA - SVM 34 0.56  0.40 0.73 0.28
PCA - RF 36 0.62 0.59 0.70 0.51
AFC - LR 32 0.49 0.51 0.52 0.51
CSP - KNN 28 0.54  0.55 0.58 0.52
CSP - GB 48 0.53 0.45 0.61 0.36

Detecting DBS Across Patients

We first examine the ability to detect active DBS in a patient, regardless of DBS type. To
accomplish this, the training cohort and their DBS-ON and DBS-OFF segments are combined
into a single set of training samples. Samples taken from DBS-ON belong to the positive class,
while DBS-OFF samples are assigned to the negative class. The resulting holdout dataset has
a 0.51 target rate across 2,584 samples. The features selected, through anomaly treatment and
then feature selection, are depicted in Figure 18. A 9-Fold, leave-one-patient-out cross-validation
scheme is used in this experiment in order to encourage cross-patient generalization.

The best cross-validation results of the hyperparameter search are given in Table 3. The
holdout results for the top performing classifier+extration pairs are given in Table 4, alongside
the total number of features extracted across bands. We find that PCA-SVM and PCA-RF are
most successful regarding precision on the holdout set, but the SVM classifier only recalls less
than a third of the positive samples, leaving PCA-RF with the highest F1 score. The CSP-
AFC model, a high bias estimator coupled with supervised extraction, achieves the best recall
while still maintaining a competitive F1 score. We take the best performing model on the cross-
validation set and produce a learning curve, shown in Figure 20-A, which appears to asymptote,
suggesting the need for more informative features.
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Table 5. Stimulation region classification best CV precision scores

CSP ICA AFC PCA

GB 0.52 0.60 0.60 0.65
KNN | 0.52 058 0.55 0.52
LR 0.53 0.53 0.52 0.53
RF 0.59 0.63 0.61 0.65
SVM | 0.57 0.51 0.53 0.52

Table 6. Stimulation region classification model performance on holdout patients

N Extracted | Accuracy  F1 Precision Recall
CSP - SVM 48 0.66 0.64 0.68 0.61
PCA - RF 36 0.60 0.58 0.62 0.55
PCA - LR 30 0.54 0.65 0.53 0.85
ICA - KNN 26 0.59 0.65 0.58 0.74
PCA - GB 44 0.65 0.62 0.68 0.58

Classifying DBS-ON Stimulation Region

Next, the ability for ML classifiers to separate active DBS-ON region is examined. For this
experiment, only DBS-ON samples are utilized. Furthermore, while three separate stimulation
regions are present in our dataset, STN is poorly represented with only two patients receiving
this type of treatment, with one of these patients receiving both VIM and STN stimulation. For
this reason, we combine VIM and STN treatments into a single class and contrast these samples
against GPI treatments. Thus, we examine a binary classification task with GPI treatments
assigned to the positive class and VIM+STN assigned to the negative class. The resulting
holdout dataset has a 0.53 target rate in its 1,379 samples. The features selected as a result of
anomaly detection and feature selection are illustrated in Figure 18.

To match our DBS detection experiments, we again apply 9-fold cross-validation. However,
because each patient only contributes to one class in this dataset, at least two patients must be
used in the holdout folds. Thus, for each of the 9 folds, one patient from each class is randomly
selected into the holdout fold. Each patient is included in the holdout at least once. This scheme
supports a higher number of unique folds with only a fraction of the underlying groups.

The best cross-validation precision scores for each of the 20 models examined are given in
Table 5. The holdout results for these models, along with the total count of extracted features,
are given in Table 6. In contrast to the DBS detection models, we find that random forest based
models achieve the best precision, regardless of extraction strategy. Furthermore, the random
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Fig. 20. (a) Learning curve with 9-fold grouped cross-validation for DBS detection using
CSP-GB model. A subtle upward trend in the validation data that levels off
suggests the need for more meaningful features and better regularization. (b)
Learning curve with 9-fold grouped cross-validation for DBS-ON stimulation re-
gion classification using Principle Component Analysis (PCA)-RF model. The
model validation scores trend up, suggesting the utility of additional data. How-

ever, high variance across folds show the difficulty in generalizing across patients.

forest model maintains its performance from the cross-validation set to the holdout, while other
low variance models managed to surpass it in holdout performance. The inconsistency between
cross-validation scores and holdout scores in this classification tasks suggests a need for better
regularization and additional data. This is further explored by producing a learning curve for
PCA-AF'! (AF!) model, shown in Figure 20-B. The learning curve results show a clear upward
trend in the validation scores, confirming the need for more data in order to avoid spurious
correlations.

3.2.3 Related Work

Early efforts to decode the EEG response of the brain to DBS concentrated on the peak
amplitude and latencies of the Evoked Potential (EP) in the area of the motor cortex. Work in
[136][150][151] provides insight into similarities and differences between the various locations of
the implanted stimulator. In contrast to the extensive study of EPs to STN stimulation, much
less has been explored with GPI EPs, with existing work focusing on dystonia patients [152][153].

Source localization algorithms have been useful in identifying the affected EP in both the
anatomic and time domains. Laxton et al mapped the brain areas that are affected by electrical
stimulation of the fornix in AD patients [154][155], demonstrating activation of the ipsilateral
hippocampal formation and the medial temporal lobe. This data was consistent with the PET
data in the same patients. The technique has also been used in mapping the response to Brodman
area Cg 25 for the treatment of depression [150].

Beta oscillations have long been recognized as the idling rhythm of the motor cortex. The
discovery of the beta band in the STN region of Parkinsonian patients brought renewed focus
to this unique oscillation and its potential role in PD pathophysiology. De Hemptine et al [110]
has demonstrated that STN DBS reduces this excessive phase amplitude coupling seen in PD.
Although the original experiments were conducted intra-operatively using electrocorticography,
a similar finding has been demonstrated noninvasively with EEG while analyzing the effect of
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medications on the excessive Phase Amplitude Coupling (PAC)|94][95]. This study demonstrated
increased PAC off medications as compared to on medication as well as controls. This work
suggests that the EEG signature of effective DBS stimulation may be disease specific rather than
nucleus specific, with effective stimulation resulting in alteration of the abnormal oscillatory
characteristics of the patient’s disease state.

In general, the work in this section continues the trend of applied QEEG techniques that

have been popular for brain computer interfacing, including motor imagery [157, , |, spike
detection [160][161], and transcranial stimulation [162]|. Finally, while this work focuses on EEG
data, other inputs for assessing effectiveness, such as video monitoring [163][164], may prove

valuable in future work.

3.2.4 Discussion

We approach the problem of DBS classification using an array of common feature extraction
techniques and machine learning models. Results clearly demonstrate successful detection of
DBS, as well as classification of DBS region. We find that an SVM applied to features extracted
using PCA to be the most precise when detecting DBS across patients. A decision tree-based
gradient boosting ensemble, paired with PCA, achieves the highest precision for identifying DBS
region. Overall, the majority of models beat the baseline precision, lending support for future
effort in this approach to improving DBS efficacy.

Several areas of our work could be expanded or considered more closely in future work.
First, a broader range of feature extraction techniques should be considered, especially those
that account for the spatial context of the sensors. This includes how regions may couple in the
time and frequency domain, as shown to be relevant in prior work. Additionally, our anomaly
treatment strategy may benefit from domain knowledge. For instance, sensor correlation checks
may be more sensibly performed with neighbors from within the same brain region only. Other
areas of improvement include stronger regularization for both complex models and supervised
feature extraction [165].
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3.3 Interpretable Speech Detection from Brain-Computer Interfaces

BCI hold the potential for a direct connection to thoughts and intentions, as well as direct
neural control of external devices [166]. Due to superior spatial resolution and spectral band-
width, invasive BCI’s have advantages over non-invasive BCIs for more intricate direct neural
control applications. ECoG is an invasive measurement of the electrical potentials generated
from the neocortex of the brain [167]. ECoG signals have been shown to successfully control the
movement of an upper-limb neuroprosthetic [165], typing interfaces [169], as well as decoding
speech processes [170].

Regardless of the specific approach, the overarching goal is to decode imagined or attempted
speech directly from brain signals to provide an alternate communication channel for those who
have lost the ability to speak. Here, the goal is not to maximize a metric for the quality of
speech decoding. Instead, the approach is conceived from the perspective of identifying brain ac-
tivity associated with intervals of intended speech output, with the ultimate objective of reliably
detecting activity associated with imagined speech.

We present a component model, SincIEEG, based on a CNN architecture developed for
the task of speech activity detection [171]. The model is designed as a gateway, constantly
monitoring brain activity to identify the segments pertinent to speech production. These detected
segments can then be sent to downstream models for subsequent speech decoding and synthesis.
SincIEEG, unlike a traditional CNN, learns a set of bandpass filter coefficients at its input
layer. This provides several advantages over a traditional CNN since the number of required
model parameters is significantly reduced by comparison, making it computationally efficient in
terms of training and implementation. This compactness allows for flexibility without increasing
the optimization problem. Moreover, unlike most traditional CNNs, the SincIEEG model has
the distinct advantage of yielding interpretable parameters. The bandpass filters learned by
SincIEEG can be visualized and equated to conventional spectral brain features.

We demonstrate that SincIEEG is capable of detecting the presence or absence of speech
during each time interval with a high level of accuracy, and compare the model’s performance
to a traditional CNN model, as well as non-deep learning methods. In addition, we highlight
the generalizability of the model architecture in terms of providing empirical, interpretable in-
sights about the discriminable bandpass spectral features for any physiological data that can be
represented as an aggregate of bandpass activity.

The SincIEEG is a Multi-SincNet based convolutional deep learning architecture adapted for
real-time detection of human speech from ECoG input signals. Originally presented for hand-pose
classification from myoelectric sensor readings in the next chapter’s contribution |1 72], and based
off the work in [171], the Multi-SincNet architecture learns the coefficients for a set of parallel
Finite Impulse Response (FIR) bandpass filters, applied across the input channels. Subsequent
convolutional layers learn kernels that aggregate across time and bandpass frequency dimensions.
A final global view, established by a fully connected layer and sigmoid activation, classifies either
‘speaking’ or ‘not-speaking’ from labeled data. Figure 21 illustrates the SinclEEG model and its
layer configurations.

In overview, the inputs to the model are 500 ms windows of raw Intracranial Electroen-
cephalography (IEEG) data (300 time samples) with a stride of 2 ms (1 time sample). The
corresponding label was whether the participant was speaking on the final time sample of the
window. Each 500 ms window represents one training sample for the model. A model was trained
for each participant, using all of the quality electrodes available. Electrodes over the auditory
cortex were excluded for a model validation check, detailed in the following section. A K-fold
training methodology was used and is detailed further in Section 3.3.3.
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Fig. 21. The SincIEEG deep learning architecture: a classification model composed of
a Multi-SincNet input layer and multiple subsequent convolutional layers. (a)
SinclEEG takes raw multi-channel ECoG time series data as input, with channel
dropout for improved regularization. (b) Multi-SincNet learns bandpass filter
parameters to decompose the input signal - illustrated here with three pass-bands.
(c) The filtered signals are normalized with respect to the band dimension using
spatial normalization before convolutional layers learn kernels across time and
pass-bands. All hidden layers use batch normalization for regularization and Leaky
Rectified Linear Units for activation. The model predicts the likelihood of speaking

using a Sigmoid activation at its output layer.

This architecture, was developed and implemented using Pytorch [173] deep learning Python
library. Other critical software libraries used for development and discovery include matplotlib
[174], numpy [175], pandas [176] [177], seaborn [175], SciPy [179].

3.3.1 SincIEEG Architecture

The first layer in the SincIEEG model is a Multi-SincNet layer, an extension to the the
Kaldi speech framework’s [180] SincNet, which applies a SincNet to each of the incoming sensor
channels. The SincNet and Multi-SincNet layers are discussed in more detail in Chapter 4, but we
briefly overview the method for this contribution. A SincNet layer learns a configurable number
of bandpass filters, parameterized through two cutoff frequencies, fr, and fr. The Multi-SincNet
layer can therefore be used to decompose a collection input signals into a fixed set of learned
bands.

In equations 3.4 and 3.5, multiple filters are conceptualized as vectors of low and high
cutoffs, 1 and Fy respectively, identifying regions of the input’s spectrum that the model uses
for classification. These vectors are a parameterization of a SincNet layer, which is shared in our
experiments across all sensors s € S.

FL = {fga fiv ey ;',:Bil} € R+ (34)
Fp = {f%7f]1'{7'“7f;1:3_1} e R
K : (fr, fu, fs) —» RV (3.6)
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SincNet(Fp, Frp) = {K(FL(7), F(i))} (3.7)
Multi-SincNet = SincNetp, g, (s) s € S (3.8)

Sharing bandpass filters across each sensor reduces parameters, improves model latency,
and regularizes the treatment of sensor data. Each FIR filter, k is implemented as a set of kernel
coefficients and applied through convolution with the input signal X.

M—-1N-1

X®ka fH) Z ZX *ka fH)[ Z] (3'9)
7=0 =0

Where X is the input signal and ky, f, is the vector of kernel coefficients that allows fre-
quencies in [fr, fi] to remain in the signal. Additional details on the calculation of k coefficients
and how they compare to learned kernels can be found in [171].

Filters are initialized to uniformly sub-divide the majority of the available spectrum (i.e., 0-
300 Hz) with a 3 Hz region of overlap between adjacent bands. The original Kaldi implementation
initializes bands starting at a low-cutoff of 30 Hz, but we reduce this minimum starting frequency
to 10 Hz to help encourage use of lower frequencies that may be relevant for this application [181].
The Kaldi SincNet implementation also includes a minimum frequency and minimum bandwidth
constraint, which we configure to be 1 Hz and 3 Hz, respectively. Kaldi enforces these minimums
by increasing the absolute value of the learned low-cutoffs and bandwidths by their respective
minimums. Future work should explore the impact of different potential initialization schemes.

Activation

ReLU, defined as y = maz(0,x), provide a linear gradient for all input x € R* and 0
gradient for x < 0. With zero-centered bandpass outputs, a large portion of values will not have
a gradient with ReLU activation. Instead, the Leaky Rectified Linear Units (LReLU) provides
a small gradient for x < 0, while still being non-linear and computationally simple. The LReLLU
activation is defined in equation 3.10, where we use the default a = 0.01 for all our experiments.

Leaky ReLU (z) = max(0,z) + a * min(0, x) (3.10)

Using LReLLU on zero-centered data still greatly diminishes negative inputs. However, the learned
affine parameters within the batch normalization layers can learn to offset any inputs into regions
with higher variance.

Batch Normalization

The amplitude of the output from the Multi-SincNet filters scale directly with the amplitude
of the input signal. Between-sensor relative magnitudes are important to maintain, so we avoid
scaling at the sensor dimension of intermediate data in the early layers. Brain dynamics are not
evenly distributed in the frequency domain, however, and will tend to have higher amplitudes at
lower frequencies. This means the additional bandpass dimensions may be distributed at different
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scales, making it difficult to learn shared kernels in subsequent convolution layers. Furthermore,
the scale of the intermediate values may shift as the cutoff frequencies of the learned bandpass
filters are optimized.

Therefore, in order to balance influence when learning kernels applied across bands, and to
scale hidden outputs to activation regions, a spatial batch normalization [152] is applied at the
band dimension in the three hidden outputs following the Multi-SincNet input layer. Re-scaling
each band independently maintains within-band relative dynamics that can be learned using
shared weights.

1 B-15-1T-1
b=0 s=0 t=0
1 B-15-1T-1
of = (X[b787f7t] —/Lf)2 (312)
ST
b=0 s=0 t=0
X — py
S ! EPY 3.13
V= e B (3.13)
forfeF

Where B is the batch size, S is the set of sensors, F' is the set of bandpass regions, and T is
the number of input samples. Learned affine parameters S and v allow the model to adjust
the center and scale away from the origin and unit variance. Following cross-band convolution,
spatial normalization is applied across sensors - computing ps and o, analogous to puy and oy.
At this point in the architecture, distributions across sensors are well-normalized and suitable
for batch normalization’s regularizing effect, reducing internal covariate drift.

Monte Carlo Dropout

Sensor systems with many highly responsive input channels may have spurious errors or
drift, and sometimes must be removed in pre-processing. Additionally, for general tasks such as
speech activity detection from an ECoG array, some important brain regions may have multiple
sensors covering them, resulting in high co-linearity across channels. To regularize co-linearity
across sensors, channel dropout [183] is applied on the input to the model during training.
Channel dropout on the sensors zeros all signal values for a sensor with an independent Bernoulli
random number parameterized by probability p. It is common to avoid using dropout when using
batch normalization since the noise caused by the dropout will skew the mean and variance
statistics used in normalization towards zero. However, for SinclEEG’s, the data modality is
already centered at zero, and the practical application motivates robustness to sensor dropout.

3.3.2 Data Collection

Participants

ECoG data were recorded from 5 participants with pharmacoresistant epilepsy undergoing
clinical monitoring for surgical planning. No participants reported hearing deficits. In all cases, a
tumor was not the source for the seizures and no lesions were indicated by any electrode used for

49



Chapter 3 — Interpretable Feature Extraction from Bioelectric Neural Signals

Table 7. Electrodes by Participant

Participant | Implanted Analyzed Non-Auditory
1 96 96 89
2 64 51 49
3 64 55 48
4 96 7 73
5 96 85 75
Total 416 364 334

analysis. All participants gave written informed consent and the study protocol was approved by
the institutional review boards of Virginia Commonwealth University; University of California,
San Diego; Old Dominion University; and Mayo Clinic, Florida.

Participants were implanted with subdural electrode grids or strips (Ad-Tech Medical In-
strument Corporation, 1-cm spacing) based purely on their clinical need. Electrode locations
were verified by co-registering preoperative MRI and postoperative computerized tomography
scans. For combined visualization, electrode locations were projected to common Talairach
space. Electrode locations were rendered using NeuralAct [184], as shown in Figure 34. While
brain areas associated with speech are predominantly found on the dominant hemisphere, which
is the left hemisphere in the majority of right-hand dominant people, the neural correlates of
speech production are not exclusively localized in the left hemisphere [185, |. For this reason,
both left and right hemisphere cases are evaluated. In total, ECoG activity was recorded from
416 (96 left hemisphere, 320 right hemisphere) subdural electrodes. Of these, electrodes that
exhibited unnatural signal anomalies based on visual inspection were excluded from the analy-
sis, leaving 364 electrodes (96 left hemisphere, 268 right hemisphere). For each participant, the
number of electrodes implanted, analyzed, and identified as not located over the auditory cortex
(non-auditory) are provided in Table 7.

Task

Participants were instructed to read aloud single words presented in sequence on a computer
screen while their brain activity and voice were simultaneously recorded. The words were selected
from a bank of 431 unique words, split into 4 sets of 115-116 words. The bank of words are
primarily monosyllabic and comprised of the Modified Rhyme Test [187], supplemented with
additional words to better reflect the phoneme distribution of American English [188]. While
this experimental paradigm was originally designed to examine neural correlates of American
English phonemes [189], the data are being used in the present analysis exclusively for speech
activity detection without consideration of phonetic aspects.

The experiment begins with a fixation cross at the center of the screen. The cross is then
replaced by a word that stays on the screen for 2.5 seconds. The word is then replaced with the
cross for 0.5 seconds, before the next word is presented. Words are chosen randomly from the set
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of 115 words for each session and each session contained different subset of words. Participants
completed between 2 and 4 sessions, depending on willingness and ability to complete the sessions.

Data Acquisition

ECoG and audio data were concurrently recorded during the task. ECoG data were band-
pass filtered between 0.5 and 500 Hz, notch filtered at 60 Hz and recorded using g.USB amplifiers
(g.tec Medical Engineering). The data were recorded at a sampling rate of 1200 Hz and subse-
quently decimated to 600 Hz.

The time series and its frequency spectra were visually inspected for anomalies. Channels
having uncharacteristic frequency spectra, substantial artifacts, and/or saturated amplitudes,
were excluded from the analysis. In total, 364 (96 left hemisphere, 268 right hemisphere) elec-
trodes were used for analysis.

This basic preprocessing is standard for ECoG acquisition and the data decimation can be
equivalently achieved by using a lower sampling rate at the time of data acquisition. Thus, the
data used as input to the SinclEEG network effectively represent the raw ECoG timesamples.

Audio data were recorded in parallel using a Blue Microphones Snowball iCE USB micro-
phone connected to the research computer, sampled at 48 kHz. All data recording and stimulus
presentation were facilitated by BCI2000 software [190].

Speech Labeling

Speech labels used for training the model were made in reference to the stimulus cue of
the word being presented in the experiment. Every time-sample from 0.5 seconds after the word
presentation cue to 1.5 seconds after the cue were labeled as ‘speaking’. Every time-sample from
2.0 seconds after the word presentation cue to 3.0 seconds after the cue were labeled as ‘not
speaking’. The other segments, from the cue to 0.5 seconds after, and from 1.5 to 2.0 seconds
after, were purposefully left unlabeled.

This labeling scheme was chosen based on the stimulus presentation cue, opposed to direct
energy detection in the audio signal, so as to develop a more robust model that does not directly
rely upon the acoustic signal. This was done to emulate the scenario were the user is unable to
speak, thus precise labels for the presence or absence of speech would not be available. Instead,
the proposed labeling indicates the time segments where speech is most expected, which can be
generalized to imagined speech.

3.3.3 Optimization Procedure

All deep learning models in this section, both the SincIEEG described above and CNN
model described in Section 3.3.4, use stochastic gradient descent from gradients produced by
error back-propagation. We use the Adam optimizer [191] and fix the learning rate to o = 0.001
for all experiments. Binary cross-entropy loss between the target label and the model’s output
is used as the objective criteria.

Models are evaluated through multiple refits using a K-Fold procedure across a participant’s
sessions. A single holdout session is used for evaluation in each fold and the remaining sessions
are used for training. Some participants had three sessions, providing two training sessions
per fold, while others had only two sessions overall and provided one session per training fold.
The training data is randomly split into a 25% cross-validation portion for monitoring model
performance during training. After each epoch of training, a model under optimization is applied
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to the cross-validation data and scored. For our SincIEEG and CNN experiments, the best model
on the cross-validation is maintained and stored after 100 epochs of training.

Experiments without auditory sensors and other supplementary architecture exploration
used early stopping. For these experiments, if the cross-validation performance didn’t improve
for 10 epochs during training, then the best model at that point was stored and the training
procedure ended. The early stopping procedure generally produced models with similar perfor-
mance to their 100 epoch counterparts. Other configurations we explored using this truncated
procedure include variations of activation function, batch normalization, number of learned ker-
nels, and other modifications to convolution configuration. Performance was robust for most
configurations and these preliminary experiments focused on reducing model complexity.

3.3.4 Experiments

ECoG data acquired from participants performing the speech task were used to further
validate the model. The models are validated both quantitatively for predictive performance,
as well as qualitatively for convergence of the spectral band filters to physiologically plausible
ranges.

Prediction Accuracy

The prediction accuracy is simply computed as the proportion of windows correctly clas-
sified as ‘speaking’ or ‘not-speaking’. Visualizations that overlay the stimulus cue, curated la-
bels, speech audio signal, and the model’s predicted likelihood of speech are presented. Aligning
recorded speech with model predictions across multiple training windows enables an examination
of the model’s predictions with both the labeled regions and recorded speech data. The model’s
ability to predict speech occurring outside the labeled region help to validate the model’s gener-
alization capabilities. Ultimately, this visualization provides an indication as to how the model
would perform in practice. For instance, frequent oscillations in the predicted likelihood may
achieve reasonable accuracy but ultimately be unreliable for use in a classification pipeline.

Spectral Band Convergence

A key aspect of this model’s utility is its ability to learn spectral bands that minimize
the loss function of the network. When the band parameters are combined with the loss and
cross validation loss for each training batch, a visualization of the band convergence over time
can be obtained. This visualization can serve several purposes. For the present analysis it
serves as an additional method of model validation and interpretation. The model is explainable
by design, allowing us to determine the frequency bands the model identified as empirically
predictive. We can compare the frequencies used by the model to those highlighted in prior
work to help confirm the model has discovered task-relevant correlations, improving trust and
generalizability. For other analyses, it could serve as an exploratory tool to investigate whether
frequency information is central to the phenomenon.

Comparison Models and Benchmarks

Randomization Tests In order to compare the model performance to random chance,
model prediction was assessed when trained on randomly labeled segments. The labeling scheme
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maintained a proportional amount of speaking/not-speaking labels, and thus the chance accuracy
should be 50%. To confirm this, the train and test paradigms were kept identical, except that
before training, a labeled segment was randomly assigned a ‘speaking’ or ‘not-speaking’ label.
The hyperparameters chosen for model configuration were 1-Band with a dropout of P = 0.5.

Auditory Cortex Electrode Removal To verify that classification performance was not
merely being driven by auditory feedback, electrodes in the auditory cortex region were manually
identified based on anatomical landmarks and removed from the analysis (see Figure 34). An
abbreviated evaluation of SinclEEG was performed to confirm that the classification performance
was not significantly degraded by the exclusion of the auditory electrodes. Optimization time
of these additional models was reduced by using early stopping as described in Section 3.3.3.
Additional testing verified that early stopping does not unfavorably bias the resulting model
performance.

Linear Discriminant Analysis (LDA) and SVM Benchmarks: To explore whether
the frequency bands that the SinclEEG model identified would confer some benefit over using
the entire broadband spectrum, the performance using the bands that 3-band SincIEEG learned
for each participant was compared to the performance using broadband activity from 0.5-170 Hz
frequencies. The 3-band version was chosen to compare because it is more distinct from broad-
band than the 5-band version which generally occupies a greater proportion of the spectrum. A
LDA and a linear SVM were implemented as performance benchmarks. Because these compar-
atively simple classifiers are not capable of attaining reasonable performance using raw ECoG
timesamples, a preprocessing method derived from [192| was implemented that generates a band
power aggregate measure over a 500 ms window that updates every 50 ms. The labels were
accordingly downsampled to 20 Hz. For each label, the preceding 500 ms of the corresponding
preprocessed ECoG signals were used to compute the input features. The resulting feature array
was flattened into a vector for training the LDA and SVM models. This process was performed
for both the broadband and 3-band SincIEEG versions.

Standard CNN: To establish how SincIEEG performs compared to a traditional deep
learning method, a standard CNN was implemented and evaluated based on [193]. For this
CNN, the first convolutional layers aggregate across time with kernels and stride of five samples,
and a dilation of two samples to further downsample. The next layer maintains the kernel’s size
and stride, but returns to default dilation of one. The remaining two convolutional layers learn
3 x 3 kernels with unit stride and dilation until a final dense layer outputs to a sigmoid activation.
A total of 16 filters were learned in each convolutional layer. The standard convolutional network
model is an important alternative to SincIEEG as it uses the same convolution operation but
is not directly interpretable. The training and testing paradigms remained unchanged, only the
model architecture was exchanged.

3.3.5 Results

Prediction Accuracy

The average SincIEEG model accuracy across all participants was 94.1% (s.e 3.5%), and all
but one participant achieved an accuracy above 90%. Figure 22 shows the accuracy of each hyper-
parameter configurations per participant with each configuration repeated three times. Results
from Participant 1 and 2 were very consistent regardless of hyperparameter, while Participant 3
showed significant variability in the 3- and 5- band versions, and Participant 5 performed better
without dropout. These differences are most likely mediated by electrode number and placement.
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Fig. 22. Mean and variance of accuracy for all repetitions’ test folds, for each participant

model configuration.

However, the ability of the model to achieve good performance on such a variety of electrode
locations is a testament to its robustness, and the advantages of a participant-specific feature
set.

As described in Section 3.3.2, target labels were created from the timings of experiment
cues, rather than the participant’s speech. Therefore, to better gauge speech detection per-
formance for practical speech detection applications, predictions were qualitatively assessed by
visual inspection into one of three categories: Full Success, Partial Success, and Failure. A word
trial was considered a Full Success if the prediction captured the entirety of the spoken word
prior to onset and maintained until speech had ceased. Subplots (a), (d), and (g) in Figure 23
are examples of Full Success trials. Regions of false positive predictions encompassing a cor-
rectly identified speaking region were still categorized as a Full Success since false positives are
envisioned to be less critical than false negatives for future applications to imagined speech. A
trial was considered a Partial Success if it captured the majority of the word but clipped either
the beginning or end. Subplots (b), (e), and (h) in Figure 23 are examples of Partial Success
trials. A trial was considered a Failure if the word was missed entirely, if the model prediction
was erratic or inconsistent, or if a portion of the word was missed from an otherwise well-placed
detection. Subplots (c), (f), and (i) in Figure 23 are examples of Fuailure trials.

For each participant’s best model configuration, we selected the model with the best cross-
validation performance and assess its test-set predictions using the criteria described above.
Table 8 shows the proportion of words assigned to each category for a 115 word test set for each
participant for the respective best model configuration. Participant 1 and 2 models were able
to very consistently predict speech before speech onset, suggesting that the model and electrode
location combination may capture aspects of speech planning. Participant 3 and 4 models had
a majority of partial successes. These trials largely exhibited clipping the beginning portion of
words, suggesting that the model may be capturing aspects of speech production rather than
speech planning.

Spectral Band Convergence

Figure 24 shows a representative example of spectral bands converging over training epochs.
While there was a significant amount of variability in the plots across participants and configura-
tions, there are several consistent observations. First, there is a distinct and consistent difference
in the band evolutions during training when dropout is included in the model. With dropout,
bands tended to converge more smoothly, rather than exhibiting large jumps in value as observed
without dropout. With shared parameters, zeroing a sensor channel eliminates its influence and
subsequently allows other sensors of varying magnitudes to drive parameter updates. Further-
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Fig. 23. SinclEEG model predictions of 9 representative words, grouped into 3 categories

detailed in Section 3.3.5. The grey trace is the audio waveform from the micro-

phone and represents the participants utterances during the word trial. The blue

trace, and associated shading, represent the moving average and standard devia-

tion of the model-derived ‘speaking’ likelihood over the previous 15 samples. The

green shaded area represents the region labeled ‘speaking’, and the orange shaded

area represents the region labeled ‘not-speaking’. Top row: Participants 5, 4, 5.

Middle row: Participants 1, 3, 2. Bottom row: Participants 3, 1, 2
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Fig. 25. Learned frequency bands for each the participant and each band combination.
The selected bands are superimposed on a single frequency spectrum as a density
plot at high transparency. Each band is plotted in a different hue: blue, yellow,
green, red, and purple. More saturated hues represent frequencies common across
more participants and configurations than less saturated frequencies. Vertical
dashed lines correspond to the initial cut-off frequencies of adjacent bands prior
to convergence. More details on the band initialization procedure can be found in
Section 3.3.1.

more, zeroed sensors bias downstream normalization layer statistics towards zero. It is posited
that these aspects result in the higher variance stochastic search of frequencies illustrated in
Figure 24.

The final bands learned for each participant, aggregated across sessions and hyperparameter
configurations, are shown in Figure 25, with the bands aggregated across participants shown
in Figure 26. For better visualization, only SincIEEG models with performance in the top
50% for each participant are included in the figures. The bands are superimposed on a single
frequency spectrum as a density plot at high transparency. Each band is plotted in a different
hue, with more saturated hues representing frequencies common across more participants and
model configurations than less saturated frequencies. This provides a compact conceptualization
of the final converged frequencies across models.

For the 1-band case, the general tendency is for the band to be broad. However, the
aggregated data shows that the bands commonly overlapped around 25-75 Hz, implying the
lower frequency band may be more predictive than high gamma for the task as supported by
[181].

The 3-band case indicates one lower-frequency band in a narrow range from 20-40 Hz, a
broader middle band roughly spanning 120-200 Hz, and a high frequency band converging above
250 Hz. The 5-band case shows similar bands a the low and high ends of the spectrum, with
intermediate bands centered at approximately 75 Hz, 150 Hz, and 200 Hz, respectively.

A benefit of the interpretability of learning frequency band is that the results can be directly
compared to known physiologically-relevant bands. Kanas et. al. examined 8 Hz wide frequency
bands from 0 to 248 Hz, and produced a histogram ranking bins by contribution to speech
detection [194]. It is a multi-modal distribution, with two larger peaks, one spanning 0-40 Hz
and one 180-200 Hz, with two smaller, broader peaks in the intermediate frequencies.
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Table 8. Prediction Success Over Trials

Full Partial
Participant Failure
Success Success
1 93 (81%) 11 (10%) 11 (10%)
2 98 (85%) 10 (9%) 7 (6%)
3 36 (31%) 53 (46%) 26 (23%)
4 43 (37%) 51 (44%) 21 (18%)
5 64 (56%) 37 (32%) 14 (12%)

The 3- and 5-band plots mirror this trend. In the 3-band version, the lower frequency band
at 40 Hz and the middle band covering the 150-200 Hz range coincide quite closely with the
peaks in the Kanas et. al. histogram. The 5-band version is even more compelling, with the
first band again centering on 40 Hz, the two middle bands covering areas around 100 Hz and in
the middle hundreds, and the fourth band centering directly at 200 Hz.
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Fig. 26. Learned frequency bands for the top-50% of model configurations across partici-
pants for each band combination, as described in Figure 25. For improved visu-
alization, the analysis only includes the top-50% of model configurations of each

the participants’ sessions.
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Table 9. Model Accuracy Comparison

Participant | SincIEEG  SincIEEG-Non-Auditory CNN || SincIEEG 3-Band LDA  SinclEEG 3-Band SVM | Broadband LDA  Broadband SVM
1 0.939 0.930 0.941 0.748 0.807 0.735 0.726
2 0.979 0.977 0.983 0.900 0.888 0.832 0.827
3 0.957 0.862 0.932 0.876 0.849 0.811 0.794
4 0.893 0.827 0.885 0.743 0.773 0.728 0.713
5 0.941 0.883 0.941 0.710 0.714 0.695 0.692
Mean 0.942 0.896 0.936 0.796 0.806 0.760 0.751
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Comparison and Benchmarks

Table 9 shows the performance of all validation measures in comparison to SinclEEG. The
SincIEEG and SincIEEG Non-Auditory results are the mean test fold accuracy for each par-
ticipants’ best performing hyperparameter configuration, effectively the highest bar for each
participant in Figure 22. Excluding the auditory cortex electrodes did not significantly impact
model performance. The causal formulation of the model, and accurate capture of speech onset
within the predicted speech window, provides a strong indication that perception of speech was
not a driver of the model classification accuracy.

The CNN architecture performance is overall on par with SincIEEG. This shows that the
interpretable and parsimonious architecture of the SincNet does not compromise model perfor-
mance.

The bands identified by the 3-band SincIEEG for each participant were compared to a
broadband approach and classified with LDA and SVM. For both classifiers across participants,
using learned bands instead of the broadband showed an improvement in classification accuracy.
This implies that SinclEEG provides unique and relevant features due to the participant-specific,
empirical, and/or parsimonious nature of the learned SincIEEG bands.

It should be noted that, regardless of whether using learned bands or broadband, the LDA
and SVM classifiers with the preprocessed ECoG signals did not achieve better results than
SincIEEG. Additionally, SinclEEG was able to achieve better results with 30 times greater time-
domain resolution than the methods using the preprocessed features.

3.3.6 Related work

In the last decade, neural speech decoding systems have made significant progress, includ-
ing describing brain regions and mechanisms involved in speech, predicting words or phonemes,
translating neural signals to articulatory kinematics models, text, or directly to speech wave-
forms [195, , , , , , |. Recent efforts have progressed to real-time decoding
and synthesis of overt and imagined speech [192, , , ) ) |. While these studies
primarily focus on broadband gamma activity (~70-250 Hz), recent studies have shown that tra-
ditional lower-band frequencies (~0-50 Hz) also contain relevant and complementary information
for speech decoding [181].

Deep learning has been demonstrated to be an effective method for decoding speech from
ECoG signals and its inclusion in the decoding and synthesis pipeline has increased in recent years
[206, , , |. Although an end-to-end architecture may eventually be wholly effective with
sufficient training data, some current approaches have adopted a modular scheme with several
sequential component models, each configured for a specific aspect of the speech decoding process

[208, 202, 203].

3.3.7 Discussion

We have introduced SinclEEG, a deep learning model with an interpretable architecture.
SincIEEG is capable of detecting overt speech using unprocessed ECoG recordings based on a
diversity of electrode coverage. SincIEEG meets or exceeds the performance of other ECoG
speech detectors, with several additional advantages.

In prior work on using ECoG for speech activity detection, Kanas et. al achieved maximum
accuracies of 92% [208], and 98.8% with non deep learning classifiers[194]. Other studies used
the detection model as part of a larger speech decoding analysis and so did not report specific
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results on speech detection performance [202, |. In comparison to SincIEEG, which uses
unprocessed ECoG recordings, these approaches require appreciable signal preprocessing prior to
speech detection. Since the feature extraction is inherent in SincIEEG, any latency introduced via
explicit, potentially suboptimal, data-independent preprocessing is mitigated in the processing
pipeline - which is critical for real-time implementation.

While we have demonstrated that SincIEEG is capable of speech activity detection from
ECoG signals, the original implementation was used for acoustic speech detection [171], and it
has also been applied to EMG signals [172]. Using a related approach for seizure detection using
non-invasive EEG, Fukumori et. al. showed that a data-driven approach was superior to static
filter banks [209]. Such models that learn the task-relevant spectral bands can be applied to
other domains where frequency analysis is central. This is mainly due to the utility of learning
bandpass filters, and the flexibility of the scope on which different filters can be learned.

In terms of interpretability, visualization of the learned bands provides a unique modality
for studying the relevant spectral features. One consistent observation is that, across all band-
number models and all participants, a low frequency component was always included in the
models. This supports prior work that suggests lower frequency features can play a key role
in speech detection in addition to broadband gamma [189, |. While the present analysis
did not attempt to specifically identify the subset of electrodes related to speech production
processes, due to the consistent performance results regardless of the hemisphere of the implant,
it is expected that the contributions are largely from ventral primary motor cortex as shown in
prior work [192, , , |.

Beyond interpretability, the flexibility of the SincNet architecture’s ability to learn different
combinations of relevant frequency bands make it promising for implementing transfer learning to
leverage existing data for development and training of generalizable models. Gathering sufficient
data and learning robust models for new participants is challenging, particularly for intracranial
recordings where available data is limited and the electrode locations are generally sparse and not
consistent across participants. In this context, transfer learning can be used to refine the model on
a new participant’s data after having learned its initial parameters from other participants’ data
- which can significantly reduce training time and improve model robustness and performance.

Because SincIEEG is capable of learning task-relevant spectral bands across multiple partic-
ipants independent of precise electrode locations, it has the potential to learn generalized bands
for brain regions sampled by the population of electrodes across participants. Furthermore,
specific bands can be learned for channel context labels, such as in which brain region an elec-
trode resides. This allows for encoding a spatial component to the transfer learning, initializing
different bands dependent on electrode location.

Ultimately, toward the development of a practical speech neuroprosthetic, future work must
examine the efficacy of SInNIEEG on transfer learning and, moreover, on imagined speech and
integration with the subsequent speech decoding pipeline.
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CHAPTER 4

ADAPTING FROM COHORTS TO INDIVIDUALS WITH TRANSFER
LEARNING

4.1 Introduction

Classification of human activities from bioelectric sensor data is challenged by inter-subject
variance and resource-constrained platforms, as discussed in Section 2.2. To address these issues
in experiments, this work focuses on surface EMG data: electric potential of skeletal muscles
sampled over time. Models in this domain must adapt to shifting sensors and new users while
remaining simple enough to function on mobile devices. We contribute an approach to these
challenges with SincEMG, a deep neural network that exploits digital signal processing concepts
and transfer learning to reduce model size for activity recognition on raw sensor data.

The model’s first layer decomposes signals into frequency bands using FIR filters optimized
directly from the data. The subsequent convolutional layers downsample across time and aggre-
gate the first layer’s band data. Batch normalization and dropout help to regularize intermediate
layer outputs. This approach reduces compute requirements by decreasing the number of learned
parameters and eliminating any significant data pre-processing. In addition to these improve-
ments, the model’s first layer learns a set of bandpass filters, which provide insight into predictive
regions of the source spectrum.

4.2 SincEMG Model Architecture

Motivated by the need for smaller models with meaningful features, we propose SincEMG,
a deep learning architecture for resource constrained activity recognition on EMG sensor data.
The SincEMG model architecture is illustrated in Figure 28 and is composed primarily of con-
volutional layers, with a dense classification output layer.

For the initial layer, we implement Multi-SincNet as a multi-sensor extension to SincNet
[212] to extract time-series features across an arbitrary number of channels. Applying DSP meth-
ods like those used in SincNet effectively establishes a prioi knowledge of sample inter-dependence
within the input, improving predictive performance and reducing required parameters. The re-
sulting bandpassed outputs are downsampled first using two layers of strided convolution through
time. The 1-dimensional convolution reduces parameters while a stride reduces the size of the
layer’s output feature-space. Overall, these design decisions reduce parameters while helping to
retain information that might be more easily lost in a pooling layer. Next, a cross-band convo-
lution layer aggregates the channel’s band data back to one signal before being passed to fully
connected output layers. Batch normalization [132] is used between each layer after the initial
bandpass layer.

The combined band extraction, strided convolution, and batch normalization operates on
raw data to normalize features and produce a low-dimensional representation for classification.
These model features are discussed in detail in the following subsections.
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Fig. 27. A standard Convolutional Neural Network (CNN) learns coefficients of arbitrar-

ily shaped filters (3x3 shown here) in each layer. The SincNet layer uses the Sinc
function to derive one-dimensional bandpass filters from two learnable parameters.
The above example illustrates three 31 coefficient band pass kernels, requiring a
total of 6 parameters. This effectively embeds the model with a priori knowl-
edge that the signals are time-varying with periodic components, greatly reducing

model complexity while improving interpretability.
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Fig. 28. Example of our proposed architecture with three bands extracted across 8 channels
(data shown taken from [211]). Raw data is passed into the Multi-SincNet layer,
which extracts B bands per channel (three bands per channel shown in this figure).
The band data is then downsampled by two layers of strided convolutions across
time, followed by a convolution across bands. Values are finally passed to a dense

layer block with a softmax output.

4.2.1 Band Extraction with Multi-SincNet

In order to abate noise and extract component signals, digital bandpass filters, such as FIR
filters, can be designed to target informative areas of the signal spectrum. As shown below in
formula 4.1, a discrete FIR filter kernel with coefficients k are applied to a time-series X using
a one dimensional convolution.

M—-1N-1

X® k (fo.fu) = Z Z Xli] = k(fLJH)[ i (4.1)
7=0 =0

The number of samples | X| = N must be large enough to support all source frequencies, but
each new sample in a window increases output delay. In a similar way, more kernel coefficients
|k| = M can better approximate the idealized filter, but larger filters require more padding to fit
on smaller windows of data, attenuating the output signal.

The values of k are determined analytically as described in [212] to behave as a bandpass
filter ks, ), rejecting all frequency components in X outside the region defined by cutoff
frequencies fr and fr. We represent the derivation provided in [212] and implemented in [180)]
as a collection of kernels K, each computed from a differentiable function G(fr, fr) during the
forward-pass of training. The SincNet layer described by formula 4.5 has a configurable number
of filter kernels | K| = B computed from G(fr, frr) applied across collection of learned parameters
Fy and Fy.

Fp={fs . ff . g1} eRT (

Fa={fs" fl', . flp 1} eRT (
SincNet(FL, Fu) = {k(r, (), ru())} 1 € B (
Multi-SincNet = SincNet.(Ft, F4) i e C (
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We extend the implementation provided in [180] to a multi-headed version we refer to as
Multi-SincNet. We use Multi-SincNet in the first layer to learn either a channel-wise or shared
signal decomposition. The Multi-SincNet layer applies a SincNet to each of the 8 separate data
channels - if weights are shared, a single SincNet layer is applied iteratively on each channel
and errors are accumulated. Using per-channel SincNet filters creates a separate SincNet for
each channel position (C' = [1,7]). Per-channel filters requires a small number of additional
parameters for the cutoff frequencies and also requires more kernel coefficient derivations after
each weight update.

The SincNet parameters in [212] are initialized as mel-scale filter-bank to align with the
fundamentals of human speech waveforms. For this work, we instead linearly distribute the
bandpass filters across the 100Hz spectrum.

4.2.2 Single Dimension Convolution

After being passed through the Multi-SincNet layer, the output X € REXC*N is made up
of C channels decomposed into B bands with N samples. To minimize parameters, we use a
strided convolution along a single dimension in each layer. First, the time dimension is reduced
by a 5 element kernel with a stride of 4 over only the time dimension. The time dimension is
convolved twice since its the largest dimension, where N > C' and N > B will be true in our
experiments. Next, the channel bands are aggregated with a kernel sized to match the number of
bands B and input padding. This spectral convolution layer collapses the band-level dimension.
Finally, the output is passed to dense layer with 64 units followed by an output layer for class
prediction.

4.2.3 Regularization

In order to avoid over-fitting we employ two common techniques - layer dropout [213] and
batch normalization [182]. Dropout with a rate p = .25 is used after activation to discourage
over-reliance on specific features within the layers. To address how magnitudes may shift over
subjects, spatial batch normalization is used to scale all intermediate outputs after the Multi-
SincNet layer.

y— z — E[z] (4.6)

/ Var[z] + ¢
The model does not learn affine transformation parameters v and S for batch normalization,

but statistics E[z] and Var[z] are collected during training for use during evaluation. These are
kept with a momentum of 0.1 during both pre-training and subject fine-tuning.

4.2.4 Multi-SincNet Parameter Sharing

When applying multiple SincNet layers across channel inputs, the Multi-SincNet layer can
be configured to use a unique set of parameters for each sensor, or a single set of shared parameters
that are applied to each channel. When sharing parameters, the same set of bands are extracted
from each channel, and error is accumulated from each channel onto the parameters through a
summation. Sharing parameters therefore encourages the model to find frequency bands that
extract informative features across all channels. If instead bands are optimized per-channel,
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then the model may more easily become over-fit to a particular sensor configuration or subject,
reducing predictive performance.

When channel rolling (Section 4.2.5) is used with shared filters in the initial band pass layer,
the regularization primarily impacts the ordering of features at the dense layers. In this case,
channel rolling data augmentation is ensuring the global view does not become dependent on
spatial location, while sharing band pass filters forces the model to ignore this augmentation at
the model’s input layer.

4.2.5 Channel Rolling

To prevent the model from learning a dependence on sensor orientation, we experiment
with channel rolling, or channel displacement, during training. When channel rolling is enabled,
input data is augmented by shifting values across the channel dimension by a random amount
r € UZ[0,|C| — 1], swapping each values’ channel in a sample from X, to X(c4r) mod || before
being compiled into a batch. This type of data augmentation is conceptually similar to image
rotation and translation used to regularize models for image processing: both data augmentation
techniques model expected data transformations that are likely to be seen in practice, regularizing
the model under optimization

The configuration of the input Multi-SincNet layer (Section 4.2.4) dictates how channel
rolling samples during training effects the model. If the Multi-SincNet input layer is configured
to learn per-channel filters, then the value of r alters the underling signal that the learned
parameters operate. This change propagates through the model, forcing the entire model to
adjust to possibly shifting distributions.

When the Multi-SincNet input layer is sharing parameters across each channel, channel
rolling doesn’t alter how the input layer processes data. In this case, the single set of filters are
shared across each sensor - their location in the channel dimension does not map to a unique set
of filters. The convolutional layers that follow are also unaffected by channel rolling in this case,
since they operate along the time and band dimensions across each channel. However, the global
view established at the dense layer is partly determined by the ordering of the sensor channels.
Therefore, when the input layer is sharing parameters and data is augmented with channel rolling,
the intermediate distributions will only shift at the input of the last dense layer. The resulting
methodology prevents over-fitting by encouraging the model to learn a global feature extraction
invariant to sensor location.

4.3 Experiments

Sensor data in HAR suffers from subject-level variance in features, which skews models that
can’t account for shifts in feature distributions between use. Shifting sensor locations and their
conductivity similarly contribute to the challenges of HAR sensor data. Therefore, HAR models
must be evaluated on datasets that include multiple users across several trials and tasks. This
section first describes the public datasets used in our experiments, followed by details regarding
experiments, model configurations, and data augmentation.

4.3.1 Transfer Learning

Differences in subject and training environment make optimizing a fully generalized model
difficult. Instead, a common approach is to use a transfer learning scheme, wherein a model
derives some generalization from a pre-training cohort before later being fine-tuned on a new
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Fig. 29. Results on test data for each dataset across increasing number of bands B for
different modeling approaches. SincEMG is our baseline model in which each
channel has a unique set of learnable parameters in the initial Multi-SincNet layer.
SincEMG-S instead uses a single set of shared learned parameters to bandpass
all channels. The original and shared models are also evaluated with the channel
rolling data augmentation, shown here as SincEMG-R and SincEMG-SR re-
spectively. Note that DB5 models use a larger output layer with 256 units to help

account for the increased number of output classes.
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Table 10. Best performing model for each experiment model configuration (N=5). The

overall best model and its results are bolded for each dataset.

Dataset | Model Output Model Configuration N Bands | N Params Performance
Myo-TL | 64 Units x 7 Classes Per-channel Filters 15| 58,779 98.409% (£0.110)
Shared Filters 51 54,720 98.419% (40.111)
Per-channel Filters + Channel Rolling 7| 58918 98.523% (£0.027)
Shared Filters + Channel Rolling 5| 38,069 | 98.524% (£0.038)
DB5 256 Units x 18 Classes | Per-channel Filters 5| 54,790 65.450% (£1.321)
Shared Filters 5| 57,236 65.182% (£1.218)
Per-channel Filters + Channel Rolling 7| 58918 68.166% (£1.154)
Shared Filters + Channel Rolling 7| 58,820 | 68.456% (£1.209)

subject. To perform transfer learning, the dataset is first separated into a pre-training portion
and an evaluation portion. A base model is then optimized using the pre-training portion. Once
complete, the model is optimized, or "fine-tuned", on the train partition of the subject whose
under evaluation. The evaluation subject represents a new user of the system, whom our model
must adapt to during setup. Once fine-tuning is complete, the model is evaluated on the subject’s
holdout partition, simulating use in application.

Myo-TL provides the data partitioned into pre-training subjects and evaluation subjects.
We use the pre-training subject data only for pre-training, then we fine-tune the model on
each evaluation subject by copying the pre-trained model and training with the evaluation sub-
ject’s data. The first test partition for the evaluation patient is used for cross-validation and
performance monitoring. The second test partition of each evaluation subject is reserved for
performance comparison.

DBS5 is not designed for transfer learning experiments, but we use a procedure matching
[211] by using a leave-one-subject-out K-Fold scheme. Thus, 9 training subjects in each of the 10
folds are used for pre-training, and the remaining subject is used for fine-tuning and evaluation.
Each subject has 6 sessions, which we split into partitions of 4-1-1 for training, cross validation,
and testing. Within each fold, the 4 training sessions of the 9 pre-training subjects are used
together for optimization and their single cross validation sessions are combined to examine
model performance for checkpoints. After pre-training, the model is fine-tuned on the held out
evaluation subject’s 4 training sessions. Similar to before, the cross validation session is used for
checkpoints and the test session is used for performance comparison.

Using the DB5 and Myo-TL datasets, we examine our architecture for use in hand pose
classification with a low-cost EMG wearable device. Models are built using the transfer learning
scheme described in Section 4.3.1, the performance of each model is reported as the mean across
all evaluation subjects. Final model performances reported are each the result of 5 repeated
experiments.

Models are optimized using stochastic gradient descent for 100 epochs on the pre-training
portion of the data. Cross-entropy loss is weighted by w; = %y» where FE(y;) is the rate of
class ¢ in the training data. Performance is monitored using the cross-validation data. The best
model, according to cross validation loss, is stored for the evaluation stage. After pre-training has
completed, the checkpoint of the best performing model is restored, and the model parameters
are overwritten. The pre-trained model is then applied to the training data of the evaluation
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subject. The optimizer and other model statistics are reset before training in the fine-tuning
phase proceeds for another 100 epochs. The model parameters with the best cross validation
performance during fine-tuning are again saved for restoration at the end of the 100 fine-tuning
epochs. For all models, the performance on test data by the model restored from the best
fine-tuning state is the performance we report.

Models are implemented using the PyTorch deep learning and tensor framework [214] and
are optimized through gradient descent using the Adam optimizer [191]. Weights in all layers
except the Multi-SincNet layer are initialized from the normal distribution. The Multi-SincNet
is initialized as described in Section 4.2.1.

4.3.2 Classification Performance

The best performing model for both datasets utilized shared parameters combined with
channel rolling for improved generalization. The Myo-TL dataset required only 5 bands for its
best performance, reaching 98.524% accuracy with only 38,069 parameters. We find the DB5
dataset to be more challenging since it has fewer subjects and far more classes than the Myo-
TL dataset. Still our model exceeds the accuracy of previously reported results using 58,820
parameters to achieve 68.456% accuracy on the DB5 dataset.

The mean (N=5) confusion matrices and per-class Fl-scores for SincEMG-SR-5 are shown
in Figure 30. Myo-TL’s smaller number of classes and increased data produces F1 scores above
0.95 for all classes. We find significant confusion between hand open and both ulnar and radial
deviations. In contrast, DB5’s reduced dataset size and increased number of classes results in F1
scores for SincEMG-SR-7 largely below 0.75 per class.

Several groupings of misclassification can be found in DB5’s confusion matrix in Figure
30. The abduction of all fingers (i.e., spreading fingers apart in parallel with hand) tends to be
misidentified with a thumb opposing little (i.e., pinching with thumb and little finger). Pronation
(i.e., palm facing down) and supination (i.e., palm facing up) through rotation of the wrist are
often conflated.

4.3.3 Feature Interpretation

An important benefit of using the Multi-SincNet layer is that the model learns interpretable
parameters in the first layer. The parameters represent a set of band pass filters, highlighting
portions of the spectrum in the input utilized by the model. Depending on the application, the
parameters can be used to validate performance, and guide the design of other algorithms or
research. Figure 31 and 32 plot the learned bandpass parameters over the training epochs for a
model of the best proposed architectures.

In Figure 31, a SincEMG-SR-5 model is trained using the methodology describe in 4.3.1.
Myo-TL pre-training reaches its best in under 20 epochs, delineated in the plots as the dashed
vertical line. The larger versions of this model tested in this work achieve a better fit to pre-
training data over more training epochs, but inevitably tend to overfit, or at least not improve,
when fine-tuned for evaluation. Figure 32 shows four random subject folds from the training
procedure describe in Section 4.3.1. The procedure results in a unique pre-training and fine-
tuning phase for each of the 10 subjects in DB5. In both datasets, the bandpass parameters
make coarse grained adjustments early in the pre-training phase, but the DB5 dataset continues
to make clear adjustments in bandwdith and frequency late into the pre-training phase. Of
course, fine-tuning in both datasets also shows larger changes to the parameters to more closely
align with the evaluation subjects characteristics.
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Fig. 30. Test partition confusion matrices for SincEMG on both the Myo-TL [215] and
DB5 [216] datasets. Confusion matrices are the averages across each experiment
(N=5) of the selected model from Table 10 rounded to the nearest whole integer.
Mutli-class F1 scores are calculated by an unweighted average of each class-specific
F1 score, then each test partition’s class F1 scores are averaged across the repeated

model experiments.

4.4 Related work

HAR enables rich user experiences for many applications, with the potential to improve the
livelihood for persons with disabilities [37][35]. Increasingly, HAR approaches rely on mobile or
IoT [83] devices equipped with sensors continuously monitoring the subject. In order to expand
practical use-cases, recognition using this data is performed on-device, which minimizes response
time and eliminates reliance on external systems [91]. However, mobile host systems are typically
resource-constrained, often requiring low power and reduced weight in comparison to traditional
host systems. Thus, activity recognition models are motivated to reduce model complexity while
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still maintaining acceptable recognition performance.

In pursuit of improved performance, popular deep learning [28] architectures are applied
to sensor data for activity recognition [29]. Architectures such as CNNs [30][31][32], recurrent
neural networks RNNs [33], or a combination [34][35][36] have been used to classify activities from
sensors. These models achieve state-of-the-art results, but often require upwards of hundreds of
thousands of learnable parameters. To reduce processing overhead, some efforts use general-
purpose model reduction techniques [37] or avoid raw data entirely[38]. Furthermore, deep
learning classification models borrowed from other domains, such as CNNs designed for image
classification, do not leverage the unique characteristics of sensor data for HAR. Sensor data
evenly sampled over time yields a time-series dataset, a data modality whose covariance and
assumptions diverge from image data.

The authors of [217] survey recent deep learning efforts and the their application to large
EMG datasets. Models in this domain may operate directly on raw samples, pre-process data
into spectrograms or wavelet topographies, or utilize manually extracted features. The authors
conclude with a discussion that notes the lack of research addressing the computational burden of
deep learning methods applied to EMG data. To approximate computational requirements, this
work will relate the number of learned parameters required by models. The number of learned
parameters correlates with the computational demands since increased parameters require more
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Fig. 31. Band pass regions for 5 shared filters over the per-subject training batches for
the Myo-TL [215] dataset. The vertical grey line indicates the epoch where the

snapshot of the best performing model was captured based on subject CV data.
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storage and typically more operations to produce a prediction. However, this simplifying as-
sumption overlooks derived or non-learned parameters.

Transfer learning using deep learning is explored in [211] for pose classification using EMG
sensor data. The authors explore three primary models across two datasets, resulting in six
model architectures. Their most effective model operated on wavelet features extracted before
being passed to a CNN with dense outputs. Model variations in this work that process raw data
directly require over 500,000 parameters. Their wavelet-based models require approximately
30,000 parameters.

Work in [218] used RNNs to classify windows of EMG data from the Myo band. Given the
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Fig. 32. Band pass regions for 7 shared filters over the per-subject training batches for the
DB5 [216] dataset. The vertical grey line indicates the epoch where the snapshot

of the best performing model was captured based on subject CV data.
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use of gated recurrent units (GRU), we estimate their model uses at least 250,000 parameters.
Experiments using grouped k-fold yields 77% classification accuracy. Many other efforts have
explored CNN classification performance on EMG data. Intention is decoded from EMG data
with sub-sampling and CNNs in [32], improving on support vector machine baselines. In [219],
long-term EMG data is studied using data from daily experiments over 15 days, with stacked
sparse autoencoders of handcrafted features and CNNs performing best. A regression a CNN is
performed in [220] to predict hand orientation and pose. Sensor EMG spectrograms are used as
CNN inputs for multi-task classification in [221]. SqueezeNet architecture is adapted in [37] to
reduce the CNN size, resulting in only 5,889 parameters achieving an accuracy of 84.2% using a
Myo band.

4.5 Discussion

Our results illustrate the utility of domain specific architectures and regularization. Com-
paring our results with prior work [211] in Table 11, SincEMG achieves competitive performance
without pre-processing while using fewer parameters. Our best model for Myo-TL, SincEMG-
SR-5, uses shared filters, channel rolling, and five bands to achieve 98.52% accuracy on raw input
data. The most comparable model is CA-Raw, which requires over 500k parameters, compared
to SincEMG-SR-5’s 38,069 parameters. Otherwise, CA-CW'T requires only 30,219 parameters,
but uses inputs pre-processed into wavelets and ultimately performs worse than SincEMG-SR-5
on both datasets. SincEMG-SR-7+ achieves the best accuracy on DB5 using 58,820 learnable
parameters. Increasing the number of bands to 7 and the dense layer width to 256 (denoted by
’+7) helps compensate for the increased number of classes.

Table 11. Comparison of the proposed SincEMG model with prior work [211]. For each
dataset, the best model and its results are bolded.
Model Pre-proc. | Best N Params || Myo-TL DB5
CA-Raw None 549,091 | 97.39% | 68.08%
CA-Spectrogram FFT 67,179 | 97.85% | 65.10%
CA-CWT CWT 30,219 || 98.31% | 65.57%
SincEMG-SR-5 None 38,069 || 98.52% -
SincEMG-SR-7+ | None 58,820 - 68.46%

Scaling for increased classes is accomplished simply by adding additional band pass filters at
the input and increasing the output layer width. In the case of the DB5 dataset, the increased ca-
pacity and reduced dataset size makes regularization an important component. Applying channel
rolling regularization consistently improved accuracy. Our best models on DB5 further reduced
parameters and improved performance by sharing band pass filters across sensor channels.

Channel rolling regularization is intended to prevent the classification layers at the output
from relying on the position of a common signal, since it is unlikely to occur in exactly the
same position across subjects. Unlike applying dropout to the channels, channel rolling does
not remove information. When applied with shared band pass parameters, it only discourages

over-fitting to the spatial location of the information. Combining channel rolling with per-
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channel filters in SincEMG similarly dissociates each unique filter from a specific spatial location.
Effectively this creates a model that has increased feature extraction capability, but the data
augmentation combats over-fitting.

The use of FIR band pass filters as the basis of a model simplifies implementation as in low-
power application specific integrated circuits. However, in cases of extreme constraints, model
selection may need to favor designs with a lower number of decomposing band pass filters. For
example, remote sensors in areas with high-risk for hardware loss may wish to minimize hardware
costs of sensors. Additional power and cost savings can be earned by reducing the amount of
data transmitted. In this case, a SincNet-based model can be trained offline, using desktop and
server class machines. The coefficients of the learned band pass filters are then included in the
firmware for a low-power DSP micro-processor. For instance, the Texas Instruments TMS320C6x
line of DSP chipsets' is well-suited for filtering using bandpass filters learned by the proposed
SincEMG models. Such a processor can apply the filters on-device, reducing the input size before
transmitting the intermediate results. Servers can then further process the data or store for later
use.

This chapter presents a deep learning architecture for resource-constrained classification of
time series sensor data. Inspired by successes in the speech domain, the SincEMG deep learning
model operates on raw sensor data and yields smaller models with interpretable parameters.
The results across two EMG pose classification datasets demonstrate how this architecture can
achieve state-of-the-art results, even when data is scarce and the number of classes increases.
Deep learning architectures have demonstrated impressive results in many domains, including
visual and audio classification. Departure from the data center to resource-constrained domains,
while challenging, is becoming more common for deep learning systems. As more domains
leverage these models, we expect a continuous need to integrate prior knowledge for improved
resource efficiency.

Thttps://www.ti.com /processors/digital-signal-processors /c6000-floating-point-
dsp/products.html; Accessed October 24th, 2020.
p/p
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CHAPTER 5

ADAPTING FROM UNLABELED COHORTS TO INDIVIDUALS WITH
SELF-SUPERVISED LEARNING

5.1 Introduction

The contributions presented in this chapter approach many of the essential requirements re-
lated to adaptable and trustworthy HAR that we introduced in Sections 2.1 and 2.2. Specifically,
model development of HAR approaches are challenged by costly data collection requirements -
participants must perform the activities in real time, and the activity must be carefully aligned
with labels for supervised training. Furthermore, bioelectric sensor data often has large dis-
crepancies between individuals, typically requiring model developers train a model per each
individual user, as we did in Chapters 3 and 4. Finally, it is often unclear the risk involved when
contributing bioelectric sensor readings of an individual’s physiology to a model’s development.

In this Chapter, we first introduce a method for adaption to new users and tasks, and then
further experiment with the method to quantify the risk of pretraining cohort privacy violations.
Our methods are applied to problems related to speech neuroprostheses, which are systems
designed to decode and synthesize speech directly from the electrical potentials of the brain. In
Section 5.2 of this chapter, we introduce brain2vec, a Self-supervised Learning (SSL) methodology
for representation learning of intracranial neural recordings. Our method does not require labeled
data and supports combining data from any number of participants. The pretrained model can
then be applied to a specific users tasks and data. Our experiments demonstrate brain2vec’s
ability to learn useful features for each participant’s downstream tasks.

In Section 5.3 of this chapter, we extend our experiments to include pretraining on single
participants and pairs of participants. We also propose adversarial threat models for potential
information leakage from a brain2vec model. Our experiments suggest that models such as
brain2vec can be used to train re-identification models, and that brain2vec’s objective criteria
can be used to perform membership inference against the pretraining cohort.

5.2 Self-Supervised Learning of Neural Speech Representations from Unla-
beled Intracranial Signals

In this section, we present brain2vec, a sensor-level feature learning methodology that
builds on recent progress by utilizing self-supervised pretraining, vector quantization, and spatio-
temporal positional encoding for use in speech neuroprosthetics. We adapt semi-supervised
Natural Language Processing (NLP) techniques to allow pooling of data across participants by
re-referencing electrode locations of different participants to a common brain atlas before train-
ing. The proposed framework is used to pretrain a sensor-level feature extraction model on
unlabeled data from multiple participants. For evaluation, the pretrained model is used to ex-
tract features for an unseen participant’s speech related classification tasks. Importantly, the
pretrained model’s parameters are not updated to accommodate the new participant’s data or
sensor configuration, forcing the fine-tuning classifier to rely only on the features learned from
pooled participant data. We also perform exploratory dimensionality reduction and visualization
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of the learned features to illustrate class separation for the downstream classification tasks.
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Fig. 33. Diagram of the Harvard Sentences experiment protocol. Detailed in Section
5.2.1.3.

Our results demonstrate that brain2vec is capable of encoding rich speech representations
which can be used for classifying an array of disparate speech-related downstream tasks. These
results show promise for a future in which "off-the-shelf" pretrained speech neuroprosthetics

Fig. 34. Common atlas electrode locations for the 7 participants.
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models can be used to improve a user’s livelihood without the need for extensive data collection
and labeling.

5.2.1 sEEG Data

To assess our method, we utilize data collected from seven participants, with time-aligned
labels of speech behavior from an experimental protocol. This section describes our data and
how it was collected.

5.2.1.1 Participants

sEEG data were collected from 7 native English-speaking participants being monitored as
part of treatment for intractable epilepsy at University of California San Diego Health. The
locations of sEEG electrodes were determined solely based on the participants’ clinical needs.
The number of implanted electrodes for each participant are provided in Table 5.2.1.1. The study
was approved by Virginia Commonwealth University and UCSD Health IRB.

Participant | # Electrodes

1 90
2 70
3 80
4 175
5 232

94
7 108

Table 12. Number of implanted electrodes for each participant.

5.2.1.2 Acquisition Configuration

Data from the sEEG electrodes (Ad-Tech Medical Instrument Corporation) were recorded
with a Natus Quantum Amplifier (Natus Medical Inc.) and referenced to a pair of subder-
mal needle electrodes in the scalp. The amplifier signals were digitized at 1,024 Hz. An ex-
ternal microphone recorded the audio signal, and was digitized at 44,100 Hz. The digitized
intracranial signals and microphone audio, along with the experiment cues, were synchronized
with the Presentation®) software (Version 18.0, Neurobehavioral Systems, Inc., Berkeley, CA,
www.neurobs.com).
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Fig. 35. The brain2vec pretraining architecture that learns sensor-level representations.
A 0.5 s window of normalized Stereotactic Electroencephalography (sEEG) for a
single electrode signal is passed to a CNN feature encoder producing latent rep-
resentations (blue). Spatio-temporal embeddings are created using the 3D Right
Anterior Superior (RAS) coordinates of the electrode (red). The latent repre-
sentations are from the feature are sent to the quantization module. The latent
representations are then passed to the masking module, and then the positional
embedding is added to the masked latent representations (purple). The embed-
ded latent representations are the passed to the context network, which is a set
of transformer blocks, which finally produce the context representations. The
reconstructed context representations corresponding to the masked latent repre-
sentations are then compared to the quantized vectors using cosine similarity in a

contrastive loss paradigm. Further details of each component are in Section 5.2.2

5.2.1.3 Data Collection Protocol

The experimental protocol is designed to investigate overt and imagined speech processes
in the brain by having participants repeat a sequence of sentences, each in a series of three
different speaking modes. Before the experiment, the participant is explained the paradigm,
experimental icons and cues, and instructed to perform the associated tasks immediately upon
cue presentation - within a 4-second interval during which the task cue is displayed. A trial
begins with a short sentence displayed on a computer monitor while simultaneously narrated
through computer speakers. All sentence audio was less than 4 seconds in length, but regardless
of the length, the associated text remains on the screen for 4 seconds. Following a 20 ms blank
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screen, the participant is cued with an icon to vocalize the sentence (i.e., overt mode), and this
cue remains on the screen for 4 seconds. Following a 20 ms blank screen, the participant is cued
for 4 seconds via icon to articulate the sentence as if they were speaking, but without vocalizing
(i.e., mouthing mode). Finally, after a 20 ms blank screen, the participant is cued for 4 seconds
by icon to imagine speaking the sentence without articulating or vocalizing (i.e., imagined mode).
Then following a 20 ms blank screen, the next sentence trial begins. This protocol is illustrated
in Figure 33.

The paradigm is repeated each time for a set of 50 unique Harvard sentences, designed to
be phonetically-balanced conversational English [222]. All participants completed the entire set
of 50 sentence trials; however, only 25 sentence trials from Participant 1 are evaluated due to a
software issue that corrupted the labeling of the other 25 sentence trials.

5.2.1.4 Volumetric Morphing of Electrode Locations to a Common Brain
Atlas

Compared to single audio data streams commonly used for NLP and language modeling
domains, neural recordings are commonly acquired from tens to hundreds of electrode channels.
Additionally, not only is the location of these channels relative to one another important for
modeling neural processes, but the absolute channel locations in the brain are also important.

The 3D electrode coordinates reconstructed from Computerized Tomography (CT) and MRI
imaging data can not be directly compared across participants due to anatomical brain differ-
ences. For this reason, each participants’ electrode locations were converted from their native
brain space coordinates to corresponding locations on the MNI305 common brain atlas [223, ].
The mapping was done using the Freesurfer software package [225] and MNE-Python python
package [220], where further information on the details of the affine transformation procedure
can be found [225, 227].

While the MNI brain was selected because it is a widely used common atlas, the critical step
is converting the electrodes to a common coordinate space, then any established common atlas
can be implemented. This remapping allows sensing locations to be related across participant or
even sensor modalities (e.g. ECoG, scalp EEG, etc.), and allows our modeling methodology to
leverage the additional spatial information when learning from many participants.

Figure 34 shows the locations of all participant electrodes on the common brain atlas. Each
electrode is represented using a 3-dimensional vector indicating its location on the common brain
atlas. These coordinates are given in the RAS frame, with positive values in the 3 dimensions
referring to right vs. left, anterior vs. posterior, and superior vs inferior, respectively. The
coordinate units are in meters, and take on a range of values [—0.076 m, 0.079 m| across all
dimensions. The origin is located at the Anterior Commissure, and the negative y-axis passing
through the Posterior Commissure.

5.2.2 Self-supervised Pretraining Methodology

Our primary contribution is a model architecture and pretraining methodology for learning
generalized feature representations of brain activity, using only unlabeled sensor data pooled
from an arbitrary number of participants. We refer to this approach as brain2vec, and this
section describes the underlying model, loss functions, and optimization procedure. We later
show in Section 5.2.3 that representations learned by brain2vec can be used to train classifiers
on an array of labeled downstream tasks. Importantly, the brain2vec pretraining methodology
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enables fine-tuning on any number of sensors, including new configurations on unseen users.

The model consists of a sensor-level feature encoder, implemented as a CNN. The feature
encoder’s outputs are then passed to a transformer network that learns a latent context vector
representation of the input sEEG signal. During the pretraining phase, the model is tasked with
reconstructing masked regions of the input signal’s latent representations, using self-supervised
techniques pioneered by language models [228, 13, 11, |. The training is aided by a vector
quantization module that discretizes the targets, thus guiding the network to learn a constrained
hidden representation. RAS coordinates are used to learn a spatio-temporal embedding that is
added to the input of the context model. The resulting sensor-level model can then be used for
feature extraction in a task-specific fine-tuning procedure.

5.2.2.1 Model Architecture

The brain2vec architecture is based on the wav2vec2 audio modeling architecture [229)],
but with significant modifications to support the modality of intracranial sensor data, including
changes to the feature encoder CNN, positional embedding paradigm, codebook configuration,
and context network size. In this section, we first overview the input data and the key processing
steps across the model’s components. Further details on how brain2vec differs from wav2vec2
are described in each subsection.

Brain2vec’s input is an unnormalized 0.5 second segment from a single SEEG channel. The
input window is first downsampled to 512 Hz and standardized to a zero mean and unit variance
within the half second window. The segment is then passed through a CNN-based feature encoder
that generates the latent representations. These latent representations are then passed to both
the Quantization Module, where they are discretized into a codebook vector for the objective
function, as well as to the context network. The context network is a standard transformer
architecture, producing context representations from the codebook distribution. Before entering
the context network, regions of context representations across time are masked from the context
network by replacing the context representation with a learned mask embedding. Then, spatio-
temporal positional information is embedded in the latent representations before being pass to
the context model. The masked context representations are learned by having to correctly choose
their corresponding quantized latent representation from a set of distractors.

The decision to use a 0.5 s window was driven primarily by prior work, and the intuition
that the majority of pertinent information for decoding speech from neural signals will be en-
capsulated in the neural activity immediately preceding the produced speech. In [230], a speech
re-synthesis task was shown to be largely dependent on only 400 ms of neural data centered at
the corresponding 400 ms audio signal to be reconstructed, despite the preceding and trailing
400 ms of neural data being included in the predictive model.

Feature Encoder Network: The feature encoder network is used to reduce dimension-
ality of the input signal before being passed to the Quantization Module and Context Network.
The encoder is therefore a 1-D CNN, operating on the fixed length, single-channel, 0.5 s of 512
Hz input sEEG data. The network has 5 convolution layers, each consisting of a 1-D convolu-
tion, dropout regularization with probability p = 0.25, layer normalization [231], and a GELU
activation function. The first convolutional layer learns 128 filters with width of 7 samples. The
next two layers reduce to 64 filters with a smaller 3 sample kernel. The final two layers further
reduce dimensionality to 32 filters with a kernel width of 3. All layers use no padding and a
stride of 2 to reduce dimensionality. The resulting feature encoding architecture encodes a 0.5
second window of sEEG into 6 sequential steps of 32 element channel data (3226).

Positional Embedding: The original wav2vec2 architecture utilized a grouped convolu-
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tion relative positional embedding scheme to include temporal position information to the net-
work. Unlike the single-channel audio used in the original design, there is a need to encode the
brain signals according to their spatial locations. In order to include not only temporal but also
spatial channel information, a positional embedding scheme was implemented that incorporates
the electrode RAS coordinates.

The positional embedding used in brain2vec is produced from a learned transformation of
the RAS coordinates described in Section 5.2.1.4. The first linear layer of the transformation
receives the electrode’s 3-element RAS coordinates and transforms the input to 32 hidden units.
Another 32-unit hidden layer then further transforms the features, before a final output layers
produces a 32 x 6 -dimensional embedding vector. A LReLLU with negative slope equal to 0.01 is
used as the non-linear transform after each linear layer. We use a LReLU, rather than a standard
ReLU, to better handle negative values of the RAS coordinates, while still be computationally
simple. The resulting embedding vector is added to the latent representation vector before being
passed to the context network.

Quantization Module: The vectors are quantized using a combination of the product
quantization [232] and Gumbel Softmax [233] techniques. Product quantization involves creat-
ing a set of discrete vectors by defining a number of codebooks G, each with a set of codewords
W. Quantization vectors are made by concatenating codewords sampled from each codebook.
Thereby a maximum number of quantization vectors is given by W&. We assign the hyperpa-
rameters G = 2 and W = 40 for a maximum possible 1,600 vocabulary size.

Gumbel Softmax enables one-hot encoding of the quantization vectors in a fully differen-
tiable way. A vector of G« W = 80 logits are provided to a Gumbel Softmax in order to produce
a differentiable one-hot encoding of a word within a group. The quantization vectors are learned
via a linear layer, ReLU, and another linear layer which outputs the logits. A diversity loss
term, discussed in more detail in the training section, encourages diverse use of the codebook
and codewords. This prevents collapse of the codebook, such that it uses only one or few code-
words. Details on the exploration of the effect of modulating number of groups and words on a
performance of a vector quantized approach are examined in [234].

Masking Procedure: All the latent representations are quantized before the masking step
in order to serve as targets for the objective function. The same latent representations from the
feature encoder that are passed to the quantization module are also masked before being passed
into the context network.

This masking is the basis of the self-supervised learning of the model and is implemented
according to [229]. Due to our shorter sequence dimension of only 6 elements, masking is sim-
plified to choosing two consecutive time steps at random. Each masked latent representation
is replaced by the same learnable masking token vector. Overall this results in 1/3 of latent
representation vectors masked for the context network. An example of this masking is provided
in Figure 36.

Context Transformer Network The context network is a transformer which follows the
same architecture as the encoding side [105], also employed by BERT [13]|, which provides the
in-depth details of the Transformer architecture. The proposed context network consists of 6
transformer block layers, each with four attention heads, 2048 feed forward units, and dropout
regularization with P = 0.25. The output of each layer is the same dimension as the latent
representations fed into the network.
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5.2.2.2 Pretraining

During pretraining, brain2vec learns speech activity representations from intracranial signals
based on an objective function that requires it to correctly identify the true quantized latent
representation vector from a set of distractors. The model only has access to the unmasked
corresponding context representation vector when producing its predicted representation of the
masked steps. By using discrete targets rather than continuous vector space targets, the network
is influenced towards a parsimonious set of ‘hidden unit’ clusters which represent the underlying
speech activity.

Loss Functions: The objective in the pretraining phase is achieved by balancing three
loss terms. The first being the contrastive loss function. Given a context representation vector
¢; for a masked time step ¢, the model must choose the correct quantized vector g, = QM (z;),
which represents the quantization of the latent representation z; at timestep ¢, from a set of
quantized vectors ¢ € ) which include itself and K distractors uniformly sampled from other
masked timesteps. The loss is calculated by first computing the cosine similarity between context
representation vector ¢; and quantized vectors (). The similarity logits are then normalized before
taking the negative log of the result for the true vector ¢;. All experiments presented in this
work use k£ = 100 during pretraining.

exp(cosinesim(cy, qt) /K
>_qeq exp(cosinesim(ct, q)/K)
This contrastive loss is combined with a diversity loss term. The diversity loss Ly is used to
ensure that the use of codewords and codebooks is diverse. The equal use of W codewords from

G codebooks is encouraged by maximizing the entropy of averaged softmax distribution over the
codewords for each codebook p,

L. = —log
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Finally, a feature penalization term L, is included as the L2-norm of the feature encoder’s
output. This encourages smaller features and reduces variance.

i=N

PETOIE

i=1

The final objective function weighs the diversity loss Ly with «, and the L2-norm L, with
A. Both a and A can be treated as model hyperparameters during pretraining to help ensure
the model converges. All experiments presented in this work use @ = 1 and A = 10~ during
pretraining.

L=1L.+aly+\L,

Optimization Procedure: Models are pretrained using stochastic gradient descent, with
batches of 1,024 sensor windows over 100 epochs. A random 20% of training samples, stratified
at the participant-sentence level, are set aside for cross validation at the end of each epoch during
training. The final model is taken from the epoch with the lowest loss L on the cross validation
samples. A learning rate of 0.001 and betas of (0.5,0.999) were used with the Adam optimizer
[235]. The learning rate is reduced by a factor of 0.1 every 10 epochs without improvement on a
validation set drawn from the training set.

5.2.3 Evaluation on Classification Tasks

To assess the viability of brain2vec, and the generalizability of its learned representations,
the features extracted through the feature encoder and context network are applied to three
distinct but related downstream classification tasks. These tasks were chosen to be relevant
to different aspects of speech decoding; however, they vary in complexity and the components
of speech being classified. For all three classification tasks, 0.5 seconds of sEEG data from all
available electrodes is considered, with labels for the half-second window assigned in a task-
specific manner. In all cases, classification performance is evaluated using balanced accuracy.

The first classification task is Speech Activity Detection. This task is the binary classification
of whether a participant is speaking or not-speaking during the half-second window. The second
task is Speech Behavior Recognition, a multi-class problem of predicting which of 4 speech-
related behaviors is being performed: listening, speaking, mouthing, or imagining. The third
task is Word Classification, where the model must classify which word from a reduced set is
being spoken during the window.

5.2.3.1 Leave-one-participant-out Pretraining

The scarcity of well-labeled intracranial brain data is important motivation for this work,
and with only seven participants, our evaluation must also confront these challenges. We design
a leave-one-participant-out pretraining evaluation method, in which six participants of our seven
are used for pretraining and a single participant’s data is held out for fine-tuning a downstream
classifier.
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Fig. 37. Diagram of the downstream task training procedure. Given a participants Stereo-
tactic Electroencephalography (sEEG) signals, a 0.5 s window across all electrodes
is considered. The window for each single electrode, and it’s corresponding Right
Anterior Superior (RAS) coordinates, are passed to a brain2vec model, produc-
ing context representations for each electrode. These representations are flattened,
concatenated, then passed through a 16-unit linear layer before finally being passed

through the N-class classification output linear layer. The value of N-class is de-

pendent on the task being optimized.
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For each participant, that participant’s data is excluded and all remaining participants’
data is pooled into an unlabeled training dataset. Thus, a unique pretrained model is generated
for each participant, one that has never seen a sample from the patient before fine-tuning. This
paradigm minimizes data leakage in context feature learning, and ensures the model is not simply
memorizing inputs. Additionally, it is intended to simulate the ultimate intended scenario for
which a pretrained model based on a larger data corpus is used as the initial model for a new user
and subsequently fine tuned. Herein, a pretrained brain2vec model refers to such a participant-
specific, leave-one-out model. All models employ the same architecture and only differ with
respect to the training data.

5.2.3.2 Downstream Classification

The utility of learned features is assessed by optimizing parsimonious supervised classifica-
tion models using only the features extracted form brain2vec. The parameters of the brain2vec
model are frozen, and not updated, to better assess practical applications where new data and
available training time are both small. We refer to these procedures interchangeably as “fine-
tuning” or “downstream classification”.

All three downstream classification tasks follow a similar structure in terms of architecture.
Each 0.5 second window of sEEG data is labeled for each of the three tasks, respectively, as
described in subsequent sections. To train the downstream tasks, the weights of the entire
pretrained model are fixed. For every 0.5 window of labeled sEEG data, every electrode belonging
to a participant is passed through the pretrained model in sequence. Every electrode generates
the context vector representation of the SEEG input. These representations are flattened and
concatenated. This vector, containing the context representations of all electrodes of a participant
for a 0.5 window, is then provided to one 16-unit linear layer and a final output linear layer which
learns to map to the task-specific classes. The activation function is a leaky ReLU with negative
slope of 0.01. We use dropout with P = 0.75 and batch normalization to help regularize the
classification optimization.

During fine-tuning, only the additional linear layers and normalization layers are updated.
The fine-tuning is performed separately for each participant. That is, a classifier is trained for
each participant on their set of electrodes and corresponding labels.

Speech Activity Detection: For speech activity detection, the audio data is labeled using
an energy threshold to generate binary speech/non-speech labels for each segment. Only task
segments from the speaking region are processed for speaking labels, but non-speaking labels
are taken from any low energy windows in any task region. The sentence narration audio was
removed to prevent false-positives in this automatic labeling process. Windows of 0.5 s SEEG
data corresponding to overt speech are assigned a speaking label. An approximately equivalent
quantity of windows with audio below the threshold were assigned a label of non-speaking.

Speech-related Behavior Recognition: The behavior recognition task labels each 0.5 s
sEEG window according to one of four speech-related behaviors; listening, speaking, mouthing,
or imagining. The resulting 4-class classification problem challenges the model to disambiguate
highly related activities. The experiment protocol codes the regions with associated experimental
cues, visualised in Figure 33. Labels are assigned to the sEEG data according to these task
intervals. Each interval is 4 s in length; however, the initial 0.5 s and the final 1.0 s of the 4-s
interval is not labeled to better ensure that the labeled data is representing the speech-related
behavior within the interval.

Word Classification: The word classification task requires the fine-tuning model to clas-
sify a word from a restricted set. The data collection protocol does not repeat sentences, but
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Fig. 38. Box plot of accuracy across participants for the 3 downstream task. Red triangles
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across all sentences there are a set of words that are repeated and are not stop words. Stop
words are the most common words such as articles, prepositions, or pronouns, which are com-
monly excluded when training natural language schemes. Ten such non-stop words are selected
arbitrarily for the present analysis.

Forced word alignment was performed on the audio data to identify word start and stop
times. These word start-stop times were used to label the corresponding sEEG segments with
the associated word.

The training set consists of the sSEEG windows corresponding to all 10 selected non-stop
words from their first appearance. For the test set, the model is given an sEEG window from 5 of
the 10 words, taken from the second appearance of the word. The remaining second appearances
of each word are used for cross-validation during training. For example, if the bolded training
word was taken from the sentence The fish turned on the bent hook, then the word would be
tested on sEEG segments corresponding to the subsequent sentence He was caught, hook, line,
and sinker. In this way, the word classification task is challenged with previously unseen data.
The selection of which word’s second occurrence is included in the cross-validation versus the
test set is randomized for each participant’s trial.

5.2.4 Results

The performance of brain2vec is evaluated by comparing the balanced accuracy for each of
the respective classification tasks. Figure 38 and Table 5.2.4 show the balanced accuracies of
the three tasks for each participant, the overall average accuracy, and the chance accuracy of
the classification task. In order to verify chance accuracy, the downstream tasks were trained on
randomly assigned labels, and these results are included in the table.

Compared to the Speech Activity Detection and the Word Classification task, Speech-
Related Behavior Recognition had higher inter-participant variability, and was overall closer
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to chance accuracy for the task.

The Speech Activity Detection task’s average balanced accuracy is 80.2%, and achieves the
smallest variance among the tasks. All participants were significantly above chance accuracy
of 50%, and the worst performer attained 82.7% accuracy. For comparison, in a recent speech
activity detection study using the same Harvard Sentence dataset, logistic regression models as
well as CNN models achieved an average accuracy of 82-84%]|2306|. Several other studies using
intracranial signals reported results ranging between 80% - 94% accuracy|[208, |. All these
studies used fully supervised learning methods.

Word Classification yielded the most promising performance of the three tasks. With only
one training example of each word from the repeated word set, average participant accuracy was
52.9% when tested on repeated words. Moreover, the hold-out words were from entirely different
sentences with different broader context. As mentioned in Section 5.2.1.3, Participant 1 did not
complete all 50 sentences during the data collection experiment. They did not have the samples
required to be evaluated on the Word Classification task, and thus are excluded from this portion
of the evaluation experiments.

A notable observation seen in Figure 38 is that, while there were some exceptions, there was
a tendency for participants to perform consistently in comparison to other participants across
the three tasks. For example, participants 4 and 6 performed in the top half for all tasks, while
participant 3 and 7 performed in the bottom half.

Figure 39 shows the cross-validation loss of during pretraining for all participants. It can
be observed that the models converge to generally similar losses, that is, there do not appear
to be order-of-magnitude differences. This is expected, as each model shares approximately 6/7
of the electrode data corpus. Nevertheless, it is confirmation of that there is some measure of
consistency in the convergence process.

The confusion matrices of downstream classification tasks are shown in Figure 40. The
Behavior Recognition task shows that imagining was confused more often with listening and
mouthing than with speaking. Further, speaking was confused most often with mouthing. This
observation may indicate a closer mechanistic relationship between imagined speech and listening
or mouthing than over speaking [237, , 239).

Figures 41, 42, and 43, and respectively show the 3-component t-SNE [210] of the pretrained
features for each fine-tuning task. The figures give an indication that the context representations
learned by brain2vec are meaningful to each speech domain task. It is observed that, for each task,
there are clear regions of separability for each of the classes. Particularly, word classification in
Figure 41 shows distinct differentiations between words. This likely contributes to the impressive
performance of the word classification task given comparatively little training data, as the context
representations show clear differentiation prior to supervised training.

5.2.5 Related Work

There have been significant advances in neural speech decoding over the past decade using
intracranial recordings such as ECoG or sEEG. These include describing brain regions and
mechanisms involved in speech, predicting words or phonemes, translating neural signals to
articulatory kinematics models, text, or directly to speech waveforms [195, , , , ,

, |. Recent efforts have progressed to real-time synthesis or classification, and decoding of
imagined speech [192, , , , , |.

However, due to the nature and limitations of the clinical procedures commonly used to
obtain research data, existing methods for neural speech decoding generally rely on participant-
specific models, trained on labeled experiment tasks. Supervised approaches such as these are
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Speech-related Speech Activity Word
Participant
Behavior Recognition Detection Classification
1 33.4% 91.1% -
2 36.2% 95.0% 54.1%
3 44.3% 82.7% 48.3%
4 49.4% 89.3% 40.9%
5 36.1% 88.9% 55.7%
6 46.4% 89.9% 56.0%
7 49.8% 91.7% 62.6%
Average 42.2% 89.8% 52.9%
Random 27.0% 54.8% 12.4%
Chance Acc. 25% 50% 10%

Table 13. Balanced accuracy of downstream tasks. Participant 1 did not have a complete

dataset needed for Word Classification and is therefore omitted.
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Fig. 40. Confusion matrices of fine-tuning classification tasks across all participant test

sets. Each row (true label) is normalized independently, giving the portion pre-

dicted class labels across all of the true samples evaluated.

naturally restrictive, supporting only one particular participant’s sensor configuration and task-
related behavior. Instead, SSL methods with unlabeled data and explicit handling of sensor
configuration may allow for much more flexible paradigms in which multiple participant’s data
can be pooled for learning general purpose features. Furthermore, methods that learn without
labels have broader potential applications, including use in closed-loop online systems in which
labels are unreliable or non-existent.

SSL enables optimization of adaptable representations using only unlabeled data [211, 212,
243, 244, 245]. Methods pretrain a model on conterts implicit within the data. These pretexts
typically exploit assumptions of locality to encourage information-rich representations relevant
to downstream modeling tasks. There are many approaches to pretraining, mostly as variations
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of generative and contrastive objective terms [246], with the pioneering success in NLP [247, 248)]
and recent advances in visual domains [219]. Model architectures vary depending on the domain
and modality, but the transformer |108] is often an architecture component for SSL approaches.

The recent introduction of the transformer architecture ushered in a new era for the deep
learning field, showing the attention mechanism to be a simple yet powerful tool for NLP and
sequence to sequence models [108]. The self-attention transformer block served as the foundation
for BERT [13] and the GPT series [14], which solidified a trend of self-supervised learning where
models are pretrained on a large, neutral, data corpus before being fine-tuned on a specific task
of narrower scope. More recent vision transformers effectively demonstrate that most data can
be treated as a sequence, that self-attention performs as well or better than CNNs, and that
computer vision models can benefit from self-supervised pretraining like their NLP counterparts
[250]. Transformers have since been shown a viable or superior method for object detection,
video action recognition, point cloud shape classification, and multi-modal models [101, 102,
103, 104, 105, 106].

Recently, several studies have explored training language models directly from audio signals
rather than text [229, 251, 252]. The key insight of these methods is that, rather than learning
a representation in a latent space with continuous targets, they learn from a discretized set of
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Fig. 41. Visualization of 3 t-SNE components from the pretrained features on an unseen
users data (Pt. 7), colored by the Word Classification fine-tuning task.

90



Chapter 5 — Adapting from Unlabeled Cohorts to Individuals with Self-Supervised

Learning

‘pseudo-speech’ units. Thus, these methods essentially use clustering to learn a self-defined lexi-
con rather than being constrained to map to an externally defined set such as words, phonemes,
or characters. This approach is particularly appealing to speech neuroprosthetic development
because it is analogous to the way speech is processed by humans, assigning discrete concep-
tual meaning to physiological inputs from a persisting audio source, which are also concepts
underlying speech production.

5.2.6 Discussion

The performance of brain2vec on the three disparate downstream tasks showcases the gener-
alizabilty of the self-supervised features learned by the procedure. While all tasks achieve better
than chance accuracy for all participants, in particular, the speech detection task approaches ac-
curacies on par with other supervised learning methods, and the word classification task exhibits
promising results using only a small amount of labeled data.

The main objective of this analysis was to develop and establish the efficacy of the pre-
training procedure and model, using the performance on downstream tasks as a measure rather
than an end goal. The manner in which the model pretrains inherently makes it difficult to draw
conclusions directly from analyzing the context representations, and is further complicated with
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Fig. 42. Visualization of 3 t-SNE components from the pretrained features on an unseen

users data (Pt. 7), colored by the Behavior Recognition fine-tuning task.
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Fig. 43. Visualization of 3 t-SNE components from the pretrained features on an unseen

users data (Pt. 7), colored by the Speech Detection fine-tuning task.

the addition of the fine-tuning linear layers. Thus, performance on downstream tasks are used
to draw indirect evidence of the efficacy of pretrained features. The classification tasks were
purposefully selected to cover disparate speech representations that yield a range of classification
challenges. Otherwise, the selected classification tasks are somewhat arbitrary with respect to
common speech representation available in this particular dataset, and the framework is designed
to be agnostic to specific speech representations.

Performance on the Speech-related Behavior Recognition task, while comparatively exhibit-
ing the weakest performance, can also be considered the most challenging of the three classifi-
cation tasks. The neural circuits for perceiving speech, and producing overt, mouthed, and
imagined speech, are highly intertwined [253, 238, 254]. Nevertheless, it is encouraging that the
context representations of the model appear to encode some neural correlates of these behaviors.

The Word Classification task is essentially a few-shot learner, only provided a pair of training
examples (i.e., word utterances) of each class before evaluation - one for optimization, and another
for validation. In contrast, a study recently showed results ranging from 30-60% on a similar
classification task using ECoG signals and a transformer architecture, though in a fully supervised
manner|255]. This demonstrates the utility of the self-supervised method: using only unlabeled
data, features are learned and guided into hidden, likely sub-word, units. Then, it is posited,
comparatively little data is required to map these features to a word space.
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The success of brain2vec is likely due to several factors. The self-supervised training of
latent representations with quantized targets, while keeping the learned context representation as
continuous, is a gentle influence to learn not fully-discrete codewords, but instead grouped clusters
in the continuous space, known as hidden units. In this way, features are guided towards self-
determined clusters, while still allowing the model to fully leverage the rich context of continuous-
space features. Because of the self-supervised nature, these clusters are not matched to any
linguistic unit, such as words or phonemes, and instead are self-determined by the network.
However, because the training data are strictly from the speech domain, it is likely that the
hidden units are converging to neural versions of some, possibly combinations of, linguistic units.
This is a potential explanation as to why the Word Classification task was successful using sparse
training data.

The projection of RAS electrode coordinates to a common brain atlas allowed for the pool-
ing of data from multiple participants to provide informative absolute brain location data of
electrodes to the model. With a sufficient data corpus and electrode coverage, this type of self-
supervised model has the potential to train a brain signal regression given neighboring signal
data.

During model development, several issues were observed that adversely impacted training
success. The objective term weights, o and A, required exploration with small experiments
to find appropriate configurations that avoided codebook collapse - wherein the model used few
codewords or the codewords would have little variance overall. Under some conditions, brain2vec
would fail to converge and maintained at a high CV loss, but this could not be consistently
replicated and never occurred with the configuration presented in this work. We found large
improvements in consistency after implementing appropriate weight initialization. Convolution
and linear layers were initialized from A/(0, 0.02), BatchNorm parameters from A/ (1., 0.02) with
a bias of zero, and LayerNorm parameters are initialized with 1.0 and zero bias. This implies
a sensitivity to initial conditions and hints at further improvement through more sophisticated
initialization schemes and complex learning rate paradigms as explored in other language model
methods [252, 234]. This is likely an attribute of the model architecture rather than the particular
data.

The number of transformer blocks, and the latent representation vector dimension, and
other factors that determined model complexity, often impact performance on downstream tasks.
This is likely a balance with the amount of available data. Language models using transformer
architectures often have a ‘large’ model variant with 24 transformer blocks [229, , l;
however, these models are typically pretrained using on the order of 60,000 hours of data, whereas
the proposed approach was effective using slightly over 1 hour of data for pretraining.

Additional sEEG training data would allow for a deeper model with more transformer
blocks, a longer input sequence, or larger embedding dimension, which might in turn provide
greater context and learn richer representations of multiple speech and speech related processes.
The downstream tasks explored here are constrained by the nature of the speech data available.
With enough data, and a sufficient depth of network, it is conceivable for brain2vec to serve as
the backbone of an even more generalized model; one capable of discriminating overt or imagined
speech intention, then decoding the speech from the same initial feature set.
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5.3 Privacy and Performance of Neural Speech Representations

In Section 5.2, we contributed a self-supervised neural speech representation that enables
transfer learning to new contexts by pretraining on multiple individuals’ data. However, as
discussed in Section 2.1.3, models built from potentially sensitive data, such as neural recordings,
risk leaking information and facilitating downstream privacy violations of the pretraining cohort.
In order to assess these risks, and improve understanding of neural speech representations, this
section examines the brain2vec model’s pretraining process and evaluates two threat models
for pretraining membership privacy. We use various combinations of the seven participants’
recordings to evaluate different dataset sizes and privacy issues related to pretraining brain2vec.
The sequence of experiments we perform in this section are illustrated in Figure 44. Experiments
use participant data from the Harvard Sentences dataset described earlier in Section 5.2.

We first characterize the impact of changes to pretraining hyperparameters when using
single-participant datasets (1-participant). Experiments explore how the pretraining losses are
impacted by the feature extraction architecture, positional enbedding method, codebook size,
and mask length. From the results of the single-participant experiments, we select several hy-
perparameter configurations for pretraining on larger six-participant cohorts (6-particpant). We
compare the selected models on the fine-tuning tasks originally presented in Section 5.2. Through
the variations in dataset size and hyperparameter values, we begin to assess which aspects, if
any, lead to better downstream classification results.

We also compare the selected model’s behavior within two privacy evaluation experiments:
re-identification and membership inference. The re-identification experiment is de-
signed to demonstrate the feasibility of discriminating between individual participants using
the representations learned from pretraining. Our approach reuses the 6-participant models
to optimize 7-class re-identification models - one class for each of 7 participants, including the
pretraining holdout participant. The membership inference experiment uses a novel two-
participant (2-participant) shadow modeling design to demonstrate the feasibility of an adversary
determining if a sample belongs to an individual in the pretraining cohort. Our approach requires
models that are pretrained on only two participants in order to simulate private target datasets
and an adversary’s shadow modeling datasets. Our methods investigate both the potential for
neural representations to improve generalizeability of brain-computer interfaces as well as the
potential for privacy attacks against people contributing pretraining data.

The remainder of this section is organized as follows. In Section 5.3.1 we summarize the
data collection and its distribution discrepancies. In Section 5.3.2 we describe our approach
to experimenting with brain2vec’s architecture configuration. In Section 5.3.3 we describe our
methods for evaluating the privacy of individuals contributing to brain2vec’s pretraining process.
In Section 5.3.4 we present the results of our methods, followed by further discussion of related
work in 5.3.5 and our contributions in 5.3.6.

5.3.1 Dataset & Distribution Discrepancies

The contributions in Section 5.3 use the same dataset first described as Section 5.2: sEEG
data collected from seven native English-speaking participants being monitored for treatment of
in-tractable epilepsy at University of California San Diego (UCSD) Health. Table 14 provides
an overview of each participants’ data. This section highlights the data collection protocol and
the discrepancies in the data distributions across participants that might influence experiments
- complete details of the data collection can be found in Section 5.2.1.

The data collection protocol for the neural data we use, illustrated in Figure 33, is designed
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utility on varied pretraining dataset sizes.

to investigate both imagined and overt speech modalities. During a trial, study participants are
asked to listen to a displayed sentence, then they are prompted to first repeat the sentence aloud,
then only articulate the sentence without vocalizing (i.e., "mouthing"), and finally only imagine
speaking the sentence without motor function. Each modality is performed by the participant in
a series of 4 second intervals, each separated by a 20 millisecond blank screen. Participants are
made aware of the protocol, including icons and cues, and asked to perform the associated task
immediately after a cue is presented, but within the 4 second interval. Each of seven participants
repeated the experimental protocol for 50 distinct sentences designed to be phonetically balanced
conversational English [256]. However, the labeling was corrupted for 25 of the 50 trials recorded
for Participant 1, leaving only 25 sentences useable for our research.
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Fig. 45. Distribution of coordinates in a shared RAS coordinate frame across participants.
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Table 14. Summary of Participant sEEG Recordings

Participant ID Num. Sensors Duration (Min:Sec) Num. Samples Avgerage Standard Dev.

1 90 17:05 47,250,000 5.2 61.8
2 70 13:50 29,750,070 4.9 80.1
3 80 14:48 36,400,000 -2.4 78.2
4 175 14:38 78,750,000 2.5 181.1
5 232 18:52 134,560,000 -1.0 102.8
6 94 15:57 46,060,000 2.7 117.4
7 108 14:38 48,600,108 0.2 84.5

The location of each sensor in the brain is important for contextualizing the neural signals
being recorded. We use the same volumetric morphing of electrode locations to a common brain
atlas that is described in Section 5.2 to preprocess sensor coordinates. The resulting (X,Y, Z)
coordinates are in meters with positive values corresponding to right (vs. left), anterior (vs.
posterior), and superior (vs. inferior). These data are referred to as RAS coordinates and their
distribution across participants is visualized in Figure 45. The RAS coordinates are used in
the original design as the inputs to a dense network that learns a positional embedding for the
context encoder.

Distribution discrepancy is a key challenge in BCI and other HAR problems - training data
may simply not match evaluation or application data, and sufficient data for analyses can be
challenging to collect given the diversity and costs. Our dataset for this work is no different.
There is considerable spatial discrepancy across participants’ electrode location as measured
by our RAS coordinate’s. For example, participant 6’s electrodes are located entirely in the
right hemisphere, while the other participants, such as 3, 4, and 5, are distributed more evenly
across both hemispheres of the brain. Our experiments in later sections will explore performance
when a model is only trained on a single participant’s RAS distribution, and transferred to
a different participant. Using RAS to encode the position of the sensor data may therefore
be critical to determining downstream model behavior. Separately, we visualize the spectral
distribution of participants’ sensors. We apply an FFT to all sensors, across the entire dataset,
for each participant and visualize the resulting distribution in our Background chapter’s Figure
7. Each participant’s spectra follows an expected pink-noise distribution, but large variations
in magnitude also exists across frequencies. These spatial and frequency discrepancies across
participants are expected to challenge models in the following experiments in which we train
models that have only seen one or two participants before being applied to all other participants.

5.3.2 Grid Search of Pretraining Configurations

We characterize our neural representation learning methodology by optimizing models over
various cohort sizes and model configurations. We first aim to understand brain2vec pretrain-
ing on individual participants and the impact of varying codebook size, mask length, positional
embedding method, and feature extractor architecture. We use individual participants to pro-
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vide insight into how the method may perform differently when only applied to a single sensor
configuration (represented through the RAS coordinates), sensor value distribution, and reduced
dataset size. An added benefit is that the reduced dataset size speeds up pretraining, allowing
a broader search of configurations. From the results of pretraining each hyperparameter combi-
nation, we select the best performing configurations for each positional embedding method. We
don’t select the positional embedding method based on 1-participant results since performance
may be impacted by varied RAS coordinates and sensor values across more participants. We
also perform additional optimization across context network depth using the best 1-participant
model configurations. We then take the best performing context network depth on 1-participant
datasets and apply those pretrained models to the original downstream fine-tuning tasks. We
also use these configurations to pretrain 6-participant models and examine their performance.
Finally, we also use these configurations in our privacy experiments introduced in Section 5.3.3.

The set of hyperparameter configurations, whose unique combinations we optimize across
all 7 individual participants as 1-participant models, are provide in Table 15. Below we summa-
rize the motivation for each hyperparameter modification, with additional description for new
methodolgies. We conclude this section with a description of the pretraining methods that,
unless otherwise noted, is used throughout Section 5.3.

Hyperparameters Configurations

Feature Extractor Architecture 128x7x2|64x3x2|64x3x2|32x3x2|32x3x2 = Shape(6, 32)
(N Filters x Width x Stride)  128x7x7|64x5x5|16x3x2 = Shape(3, 16)

Positional Embedding Method Spatio-temporal from RAS

Spatial from RAS

Codebook Size 20, 40, 80

Mask Length 1,2

Table 15. Hyperparameter configurations used in single participant pretraining experi-

ments. Description of each configuration is provided in Section 5.3.2

Feature Extractor Architecture: We experiment with the impact of the feature ex-
tractor by reducing its depth, while increasing the width and stride to reduce the embedding
dimension to 16 elements and temporal width to 3 steps. We refer to this configuration as 16x3
and the original configuration as 32x6. The smaller 16x3 model speeds up training and reduces
the size of the resulting extracted features, improving it’s potential utility in practical appli-
cations. We hypothesize that the reduced dimensionality may also help prevent over-fitting in
downstream fine-tuning tasks. However, the reduced dimensionality of the feature extractor’s
output will also impact the quantization. Lower dimensional features restrict the quantization,
making it more challenging to utilize larger codebooks. This may bias models to learn simplified
lexicons, no matter how many quantization words and groups are used in the codebook.

Positional Embedding Method: We also adjust how the positional embedding is learned
and experiment with an implementation that does not embed across time from the RAS coordi-
nates. The original brain2vec described earlier in Section 5.2 learns a spatio-temporal embedding
directly from the RAS coordinates. As described in 5.2, the RAS coordinates are passed through
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a multi-layer linear network with LReLLU activations to produce an output size equal to the
embedding and time dimensions (e.g., 32x6 in the original model). However, we hypothesize
that this implementation may overfit to the RAS dimensions of the pretraining cohort and trans-
fer poorly to new participants and tasks. Intuitively, it may be more helpful to decouple the
representations of time from the representation of space. Therefore, we also experiment with
a positional embedding that only encodes the spatial dimension from the RAS coordinates and
directly learns a positional embedding for each time-step with the same width as the embedding
dimension. This method intends to disentangle the spatial representation from the temporal rep-
resentation. We hypothesize that his modification may help the model transfer across different
participants’ spatial configurations.

Codebook Size: We vary the codebook size W, with the number of codebooks fixed to
G = 2. Increasing the codebook size allows the model to be more expressive and varied with it’s
representations. However, it’s also possible that reducing codebook size may help regularize and
prevent over-fitting in downstream fine-tuning tasks. Therefore, we experiment with the original
configuration of W = 40, as well as halving the value to W = 20 and doubling the value to
W = 80.

Mask Length: We experiment with halving the original mask length configuration of 2
to a mask length 1. Increasing the mask length to 3 or more is not possible with our smaller
16x3 feature extractor’s temporal size of 3 steps. We perform these experiments because it’s
unclear how this configuration change might impact the pretraining process and the resulting
learned representations. Masking more of the latent features will make the pretraining task more
difficult, impacting the contrastive loss and possibly the utilization of the codebook as captured
through the diversity loss.

Pretraining method: Given our limited data, we only use the first 40% of samples for
pretraining to avoid over-fitting to the dataset since downstream fine-tuning tasks and privacy
experiments need unseen samples for evaluation. This aligns with guidance provided in prior
work for evaluating SSL algorithms like brain2vec [257]. We fix the number of codebook groups
G = 2 to limit the search space while still enabling the non-linearity of multiple codebooks. We
also keep fixed the assignments of the learning rate [ = 0.001, the diversity weight a = 1, and
the feature penalization weight A = 10~'. We use a batch size of 1024 samples. All models are
optimized with early stopping configured for 15 epochs and learning rate reduction by a factor
of 0.1 every 10 epochs without improvement. Because we limit pretraining data and stop models
early, we expect these experiments to result in reduced performance overall when compared to
the previous chapter’s results. Still, we expect that our experiments can still illicit important
variance across model configurations, even with these additional restrictions.

5.3.3 Privacy Evaluation Experiments

We perform two experiments to assess the degree of information leakage resulting from
brain2vec and its pretraining methodology. Both methods are focused on the privacy of an
individual participant who has contributed data to the pretraining of a brain2vec model. Our
contributions assume a desire to measure and possibly reduce the risk of privacy violation in
support of trustworthy AI for bioelectric HAR. In the context of our BCI application, this
means that an individual’s decision to contribute neural data to the construction of a shared
embedding model must not imply a forfeiture of their confidentiality. Any risks to potential
misuses or unintended information leakage should be measure and appropriately communicated
to participants.

We use brain2vec because it is our own contribution and because it is able to generalize
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across multiple participants’ unlabeled data, laying the foundation for many users to contribute
data to build a more robust model. Such a model may then be shared broadly to quickly
enable new individuals and their BCI solutions. In such applications, measuring the risk of
privacy violation is valuable since it may improve trust, regardless of the findings. We frame
our privacy experiments by describing the assumptions surrounding a potential attack, known
generally as a threat model. Therefore, these experiments may also be considered simulation of
privacy attacks against brain2vec models by some potential adversary or attacker. The model
instance being attacked is referred to as the target model. We first establish shared notation
for our privacy attacks, followed by a detailed description of each experiments’ methods and
practical motivations.

Notation: In our ML-based paradigm, a model M trains using algorithm A on dataset D,
which is made up of individual users u; € U. The algorithm A represents brain2vec’s pretrain-
ing methodology, which remains fixed except for the hyperparameter variations selected from
experiments described previously in Section 5.3.1. We vary the dataset D with distinct combi-
nations of users to produce different target models Myq;ger built using algorithm A for training.
A simulated adversary attempts to predict which individual produced a sample of new data (re-
identification) or predict whether the user was originally part of target model’s training dataset
Diarger (membership inference). In each case, the adversary intends to use Miqyger’s outputs to
perform the attack and violate the user’s privacy. The following methods for privacy evaluation
share these basic concepts, but the details of each experiment’s design are provided in the next
subsections.

5.3.3.1 Participant Re-Identification Task

Sharing an individual’s data in order to create a larger database of important attributes and
outcomes is foundational to modern health science and ML research. However, a core concern in
sharing private sensitive data is the ability to re-identify the individual tied to the data in order
to violate their privacy. We discuss the history of privacy and how it relates to contemporary
methods in our background chapter’s Section 2.1.3. We build on prior research and measure
brain2vec’s privacy risk as the likelihood that a sample can be linked to the individual who
provided the data. We make generous assumptions of an attackers access to the pretraining
data in order to perform an assessment of re-identification attack feasibility. Our experimental
methods are described in this section with results provided later in Section 5.3.4.

The re-identification attack is designed similar to a fine-tuning task, but one that seeks
to identify the individual with only the pretrained model and samples of new data from the
participants being identified. The feature extraction process learned by brain2vec is general-
purpose - the downstream task may conceptually be any approach that maps sensor readings to
some other target distribution. Our contribution assumes the null hypothesis that brain2vec’s
learned representations are not correlated with the participants’ identities, but only correlate
with participant-agnostic downstream tasks. Our re-identification experiments test this assump-
tion, examining if we can build a model to re-identify the pretraining participants. In practical
scenarios, our re-identification experiment simulates a threat models in which a malicious model
developer with access to the pretraining dataset desires to re-identify their pretraining partic-
ipants from unlabeled neural data in future applications. Importantly, in applications such as
security, there is a practical need to be able to re-identify a previously authorized individual.
Even entertainment-oriented use-cases of BCI (e.g., interactive simulations or video games) may
desire to re-identify a user in order to load their preferences, for example. Therefore, a success-
ful re-identification attack highlights both the utility of brain2vec as a biometric authentication
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tool as well as its potential for use in violating an individual’s privacy. In contrast, a failure
to re-identify participants suggests that brain2vec cannot be used as a biometric authentication
method and that raw feature outputs are poor attack vectors for re-identification.
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Fig. 46. Method to measure risk of participant Re-identification: A pretraining
cohort of 6 participants is used to optimize a brain2vec model. The adversary
uses their access to the training data to build a re-identification classifier training
set from the 6 pretraining participants and a remaining participant not part of
the pretraining cohort. The model is evaluated using the same participants data,
only we partition the dataset and use the last 40% of samples, which were not

used during pretraining.

Methodology: A private target model M;qyq4e¢ is pretrained on a set Dygrger that is made
up of neural data from a set of participants Uigrger. Suppose an adversary with access to Mg get
wishes to also build a re-identification classifier Cry that can identify which individual produced
a sample of neural data using only M;qr4e¢ for feature extraction. Importantly, the pretraining
process for Myg,get is not modified to support the needs of Cry. Instead, Miqyger is pretrained
for general-purpose downstream tasks as previously outlined. We assume black-box access to
Miarger’s outputs - Cry can only access the outputs of Mi,r4er and cannot access potentially
useful hidden features or Myg,get’s inputs. This enables attacks to be used in scenarios where
access to the model’s inputs or parameters is forbidden or obfuscated. Our assumptions of
black-box access together with our assumption that training Crr does not modify Mgy ger also
simulates broad scenarios in which the training algorithm A may not be known by the attacker
when building Cry.

Our re-identification experiment is illustrated in Figure 46 and uses all 7 participants to
evaluate privacy of the 6-participant brain2vec models selected from the results of Section 5.3.1.
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In each experiment, one individual does not contribute to M;urger’s pretraining, allowing us
to compare privacy risks for pretraining members vs. non-members. M;grge¢ is trained using
the methods described in Section 5.3.2, therefore Mgrger is only pretrained on the first 40% of
samples from the participants. Similarly, during training of C'gy, data is restricted to only the
same first portion of samples in each of users’ trial. We reserve the remaining portion for drawing
test samples. Taking test samples from the later portion of the experiment trial is intended to
simulate an attack using the re-identification model sometime in the future after training on the
original pretraining data Dygrget. This design is intended to further simulate practical scenarios
in which time passes between Cpr;’s development and its use in future re-identification.

The re-identification attack requires that the attacking model (i.e., Crr) be applied to
multiple users, even when individuals have varying numbers of sensors. To approach this issue,
we make a simplifying assumption that also increases the difficulty for the attacker: we assume
that the attacker will only have access to features extracted from a random set of Ny sensors.
The attacker knows they will receive features for N, features, but they do not know which
sensors. This approach is implemented by sampling, without replacement, Ny sensors from
each participant’s window of data before being combined with other participant’s data within a
batch. Sensors are selected based on a uniform distribution - no particular sensor is preferred
over any others. We then experiment with re-identification attacks that vary N over each model
configuration. This allows our experiments to gauge how increased sensor access might increase
the risk of re-identification. Note that we only evaluate up to Ny = 64 randomly sampled sensors
since one the participants in our dataset only has 70 sensors.

The Crr model is a fully connected feed-forward neural network with 2 hidden layers having
128 units and a final layer with 7 output units. LReLLU with a negative slope of 0.01 is used for
hidden activation, with a softmax output for classification. We use a element-wise dropout rate
of .75 and batch normalization to regularize the model. Otherwise, we use the same training
configurations previously described. We do not search the hyperparameter space of Cry, therefore
it is intended to be simple, yet expressive enough to confidently assess privacy risk. Results for
the re-identification experiments are provided in Section 5.3.4.

5.3.3.2 Membership Inference

When attempting to attack an individual’s privacy using public ML models, an adversary
may try to determine whether an individual was a member of the a model’s training cohort.
This attack is known as membership inference. If an attacker is able to infer membership, then
it follows that they can also tie other attributes of the dataset to that individual. For example,
inferring that an individual was a member of a dataset used to train a model on a specific diseases
prognosis also confers to an attacker the knowledge that the individual has the disease. In this
section, we describe our method of simulating a membership inference attack against brain2vec.
Our experiments aim to infer the individual’s membership in the training data, as opposed to
specific samples from the individual. In other words, given an individual who provided neural
data for pretraining, any sample of neural data from that individual is considered a member
of the pretrained model’s cohort. Our experimental methods are described in this section with
results provided later in Section 5.3.4.

Similar to our re-identification attack, we assume that brain2vec’s pretraining procedure
is intended to produce features uncorrelated with the individual contributing the input data.
Our membership inference experiments therefore examine if the feature distributions are altered
when an individual that wasn’t seen during pretraining provides input. It follows that in order for
membership inference to be successful, an attack model must be able to discover a generalizeable
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mapping from the feature distribution to the membership class. Stated differently - the way
in which brain2vec’s output distributions are altered when applied to new participants must be
reproducible across model builds. We expect this to be a difficult problem, primarily due to the
self-supervised nature of brain2vec - it’s features are learned with minimal guidance, and the
change in distribution between members and non-members is likely highly divergent between
model instances. As discussed in Section 5.2, the benefit of the brain2vec methodology is its
ability to discover its own lexicon for representing neural signals. This lexicon, let alone how
it changes between participants, has no constraints that would encourage its encoding of the
representation to remain consistent across separate model optimizations. For this reason, we
experiment with a white-box attack in which the attacker can access hidden states and the
self-supervised loss outputs for a sample. The self-supervised losses measure the ability for the
model to infer masked steps in the encoded features, and we hypothesize that this correlates with
pretraining membership. The losses measure a sample’s usage of a model’s codebook as well as
the context network’s ability to produce similar feature representations. Utilizing the pretraining
loss information as a vector for membership attack can be conceptualized as asking the model
“how well can you encode this sample of data?” - we expect the response may be indicative of
pretraining membership. A white-box threat model such as this is a generous assumption for
the attacker since real-world applications may restrict this access, but we choose this approach
in order to set a baseline for what we hypothesize is a difficult attack.

Methodology: A private target model M;yrge is pretrained on a dataset Digrger that
includes data from participants in Upgrget- An adversary desires to infer if an individual u;
contributed data to the target model M4, ger, meaning they wish to infer if u; € Usgrger. The
adversary knows the pretraining algorithm A and the number of individuals |Ujgrger| used to
pretrain Miqrger. The adversary also has access to another set of individuals Ugg, who can
contribute data for the adversary’s needs. The users in Ugyq, are not members of Ugrger -
Ugdy and Uigrger are disjoint sets of users. The adversary uses Ugq, to construct a shadow
modeling dataset Dy, to train a membership classification model Cy;;. The goal of Cyyy is
to predict if a participant u; is a member of that model’s users U using outputs provided by
the model’s interface. Therefore, the adversary uses Uy,qg, to simulate various training cohorts
and membership combinations for training Cjsr. Specifically, for every unique combination
of n = |Diarget| participants in Ugg,, the adversary trains a shadow brain2vec model using
the known training method A. The adversary then extracts the same features accessible from
Myiqrger for each individual in Uyg, using each shadow model. For each shadow model, there are
|Uudw| — 1 individuals that were not members of the shadow model’s original pretraining data. A
membership inference training dataset Dy, is created by extracting outputs for each participant
in Uy,g4, for each shadow model. The outputs are labeled a member if the individual was originally
a member of the shadow model’s training dataset, otherwise it is labeled a non-member. The
adversary can then train a membership inference classification model Cj;; using Dy,,.

Our membership inference experiment is illustrated in Figure 47 and assumes that M;g,get
is trained using only 2 participants for pretraining (i.e., 2-participant models). This is a nec-
essary restriction of dataset size due to the need to have pretraining holdout participants to
serve as non-members for both shadow modeling and evaluation of the attack using simulated
target models. Therefore, we simulate an attacker with access to U,g, containing |Uuq,| = 4
participants, allowing the attacker to build 6 shadow models from (3) participant combinations.
The participants in U,g, might represent additional public datasets or even individuals collabo-
rating with the adversary to attack the target models, including the adversary themselves. The
remaining 3 participants makeup Upsrger and are used to evaluate the adversary’s Cyr with 3
target models from (g) participant combinations. The participants and developers contributing
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Fig. 47. Method to Measure Privacy Risk of a Shadow Modeling Membership
Inference (MI) Attack: (a) From seven participants, four participants repre-
sent a cohort available to the adversary to produce shadow modeling datasets. Six
unique shadow models from (3) participant pairs are pretrained using the same
method as the target model. (b) The adversary constructs a training dataset and
trains a membership inference classifier by passing both members and non-mem-
bers through each of the trained shadow models. (c) The remaining three partic-
ipants represent contributors to the dataset used by victim, the person or people
developing models that are targeted by the adversary. These participants desire
that their contribution to a target model remain anonymous. These three partici-
pants are used to train three different private models from each of ( ) pairs, which
will be used to evaluate the adversary’s simulated attacks. (d) The resulting three
target models are assumed to be “released” publicly and represents the adversary’s

end goal in our experiments.

to the target models are the hypothetical victims of the attack in Figure 47’s illustration. The

performance of the attacker’s Cjs; when predicting membership and non-membership from the

three target models represents the membership inference risk under the outlined conditions.
For each pretraining configuration to be evaluated, 35 = (;) unique experiments are per-
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formed with 21 = (;) brain2vec models. To reduce computational burden of these experiments,
we select the shadow modeling configurations based on the results of the re-identification exper-
iment results rather than grid-search pretraining configurations. We believe this to be a sensible
approach, since the individual-level correlations allowing re-identification may translate well to
membership inference. Note that our re-identification task does not face this same computational
burden - it reuses the 6-participant models produced in Section 5.3.2, and only 7 = (g) unique
models must be pretrained for each configuration’s re-identification experiment.

We explore multiple variations of inputs for the attacker’s Cps; model. Given a frozen
pretrained brain2vec model and a sensor sample, we begin by first producing the outputs Z;
from the brain2vec instance’s feature encoder. We pass these features Z; to the quantization
module to produce the likelihood distribution over the possible codewords for each step (FQP).
Next, we slide a mask of length 1 over the feature encoders output, producing the context
network’s prediction for each time step. For each of the context network’s prediction, we capture
the codeword likelihood distribution (CQP) or the contrastive loss L. for each prediction (CL).
Importantly, FQP and CQP are vectors of likelihoods equal in size to |[FQP| = |CQP| =
T x G xW. In order to reduce feature dimensions for the attacker model, we measure Shannon’s
entropy across codewords W for each codebooks G and time steps T, reducing dimensions to
|[FQP| = |CQP| =T x G. We refer to these feature vectors as FQP-E and CQP-E. A summary

reference of these outputs is provided below:

e Entropy of Feature Extractor’s Quantization Probabilities (FQP-E): The entropy of the
likelihood distribution of the codewords from quantizing the feature encoder’s output.

e Context Encoders Quantization Probabilities (CQP-E): The entropy of the likelihood
distribution of the codewords from quantizing the context networks masked predictions.

e Contrastive Loss (CL): The loss L, for each of the context network’s predictions. We take
L. as implemented for minimizing the similarity with distractors using binary cross-entropy
during pretraining. To reduce skew in the distribution, we apply a simple negative-log
transform f(x)=—log(x + €), where € = 1e°.

Similar to the re-identification privacy assessment, the membership inference attack model
(i.e., Cprr) must be applied to multiple individuals and their sensor configurations. We use the
same approach for membership inference that we described for re-identification: we sample N
sensors, without replacement, from each participant when a building a batch of data. Therefore,
each Cyr model is trained to infer membership from a fixed set of sensors. We vary the number
of sensors in our experiments to investigate if the risk of membership inference changes with the
number of sensors producing features for the attacker.

Like the Cg; model, the Cj;; model is meant to be a parsimonious baseline attempt at
membership inference. The Cj;; model is a fully connected feed-forward neural network with 2
hidden layers having 128 units and a final layer with 2 output units. An LReLLU activation with
negative slope of 0.01 is used in the hidden layers, followed by a softmax output in the output
layer for classification. An element-wise dropout rate of .75 and batch normalization regularize
the Cpsr model.

5.3.4 Results

In this Section we report the results of the experiment workflow outlined in the prior sec-
tions and illustrated in Figure 44. We begin in Section 5.3.4.1 where we compare the average
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Table 16. Average total loss across CV batches for 1-Participant pretraining

Positional Encoding

Spatio-temporal from RAS

Spatial from RAS

Mask Length 1 2 1 2
Output Dimensions (Embed. x Time) Codebook Size
20 579.60 2728.97 789.45 2138.34
16x3 40 976.46 2184.61 987.95  2208.49
80 837.76 2262.12  775.79  2338.22
20 1483.70 1834.73 1372.10 1720.91
32x6 40 1409.19 1884.00  1731.01  1798.62
80 1412.54 1631.00 1446.82  1816.23
Table 17. Average CV loss for 1-Participant pretraining across encoder depth

N. Encoder Layers 4 6 8

Output Dimensions (Embed. x Time) Codebook Size Mask Length Positional Encoding
1 Spatio-temporal from RAS ~ 810.15  579.60  1043.35
2 2 Spatial from RAS 2319.61 2138.34  6136.46
10 40 2 Spatio-temporal from RAS  2292.03 2184.61  2419.35
80 1 Spatial from RAS 662.53  775.79  705.93
1 Spatial from RAS 162110 1372.10  1510.18
2 2 Spatial from RAS 2420.74 172091 1645.86
0 40 1 Spatio-temporal from RAS 1480.41 1409.19  1457.75
80 2 Spatio-temporal from RAS 1758.27 1631.00  1666.44
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batch loss for the cross-validation partition of each 1-participant model after its completed the
pretraining optimization procedure. We visualize the pretraining loss terms over the training
epochs for various groupings of interest in order to characterize how the loss terms correlate
with the hyperparamters. From these results, we select eight configurations to perform addi-
tional experiments for which we vary the encoder depth in additional experiments. We select the
top performing configurations and pretrain 6-participant models using the same configurations.
We then report their fine-tuning performance on the original speech tasks introduced in 5.2.1
using the selected configurations. Next, in Section 5.3.4.2, we report the 7-class accuracy for
our re-identification experiment using the pretrained 6-participant models. Finally, in Section
5.3.4.3, we select a single configuration from the re-identification results to use in pretraining
2-participant models for our shadow modeling membership inference experiment. We report the
balanced accuracy as our measure of membership inference risk.

5.3.4.1 Pretraining and Speech-related Task Fine-Tuning

The pretraining cross-validation loss L for the 1-participant grid search of hyperparameters
is provided in Table 16. The average is taken across mean from each batch of the cross-validation
data. Each cell represents the average total loss across all seven 1-participant models for that
particular model configuration. Notably, configurations with a mask length of 1 always achieve
lower loss scores than configurations with mask length of 2. Larger 3226 embeddings out-perform
smaller 1623 embeddings when using a mask length of 2. Overall, the models with the lowest
pretraining losses in our experiments used the smallest codebook, mask length, and feature
extractor. The results bolded in Table 16 are the codebook sizes that achieve the lowest loss
across the other hyperparameters.

For each of the bold configurations in Table 16, we optimize additional 1-participant pre-
trained models across context encoder depths of 4 and 8. Training losses for the encoder depth
experiments are illustrated in Figures 51 and 52, and the average loss across the validation data
is present in Table 17. For each selected configuration tested, we select the best performing en-
coder depth, shown as the bolded configuration in Table 17. These selected model configurations
are reused in later experiments when exploring the impact of hyperparamter configurations.

The fine-tuning results for the selected model configurations, when pretrained with either
1 pretraining participant or 6 pretraining participants, are illustrated in Figures 54 and 55.
In both figures, we group the fine-tuning participant on the “transfer type” - whether or not
the participant was a member of the pretraining cohort. In Figure 54, we show results for
configurations with a mask length of 1. In Figure 55, we show the same results for the selected
configurations with a mask length of 2.

Figure 56 visualizes the accuracy of the 1-participant models across combinations of pre-
training and fine-tuning participants. For brevity, only two well-performing models are visualized
in this manner - one model selected from configurations with mask length of 1 and another con-
figuration selected from results with mask length of 2 (full descriptions provided in the caption).
The heatmaps appear more correlated for a specific fine-tuning participant, suggesting that the
fine-tuning participant is the primary driver of fine-tuning performance.

The eight configurations selected from the 1-participant pretraining results were also pre-
trained with 6-participants. The pretraining losses for these models are illustrated in Figure 53.
The fine-tuning results for these same models are shown alongside their 1-participant counter-
parts in Figures 54 and 55.
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Table 18. Average balanced accuracy of Re-identification attacks on holdout

Avg. Accuracy (StD.)

Output Dimensions (Embed. x Time) Codebook Size Mask Length Positional Encoding Num. Encoder Layers
1 Spatio-temporal from RAS 6 0.258 (0.043)
20
2 Spatial from RAS 6 0.251 (0.042)
16x3
40 2 Spatio-temporal from RAS 6 0.263 (0.045)
80 1 Spatial from RAS 4 0.262 (0.046)
1 Spatial from RAS 6 0.314 (0.050)
20
2 Spatial from RAS 8 0.323 (0.054)
32x6
40 1 Spatio-temporal from RAS 6 0.322 (0.050)
80 2 Spatio-temporal from RAS 6 0.454 (0.167)

5.3.4.2 Participant Re-Identification

We take the 6-participant model configurations selected in the previous section and attempt
to re-identify all participants, including the participant left out of each model’s pretraining. The
average configuration-specific re-identification accuracy on holdout samples, calculated across
number of sensors Ng, can be found in Table 18. The aggregate re-identification attack accuracy
for each Ny is illustrated in Figure 57. For visual clarity in Figure 57 we do not separate results
by positional embedding method since we note low variance across this configuration. Instead,
each facet in the Figure 57 represents a group of similarly configured brain2vec models, with color
shading to indicate the configuration is a "Smaller" or "Larger" codebook. This is necessary due
to the model selection process - only the better performing configurations were selected.

In Figure 58 we compare the re-identification performance between partiicpants who were
members of the pretraining cohort and non-members. For this analysis, we used the class-level F1
score since we are separating the performance across classes. In other words, we are comparing
the performance for re-identifying each participant individually, which is highly imbalanced (i.e.,
a positive class making up approximately % of the samples), so we rely on a common measure
suitable for this imbalance. Otherwise, layout and interpretation of Figure 58 is conceptually
similar to Figure 57.

5.3.4.3 Membership Inference

We take the model configuration that achieves the best re-identification results in Sec-
tion 5.3.4.2 for use as our target model configuration in our membership inference experiment.
Specifically, we train 21 models on two pairs of the seven participants using a mask length of
two, W = 80, six encoder layers, a spatio-temporal positional embedding from RAS, and 32x6
feature output dimension. We then used these 2-participant models to perform the membership
inference experiment as previously outlined in Section 5.3.3.

The balanced accuracy for our membership inference experiments are illustrated in Figure
59. We compare the train and test partition performance to illustrate both over-fitting and the
potential for the attack to generalize to its target model. We also provide a table of the same
results in Table 19 We use balanced accuracy, defined as the average of recall for the two classes,
due to the class imbalance in the holdout partition. The simple definition of balanced accuracy
also makes it more suitable for measuring risk in an interpretable manner. Using balanced
accuracy for our metric, even though the classes are imbalanced, makes it sensible for us to use a
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Table 19. Average membership inference balanced accuracy on holdout

Features CL CQP-E FQP-E

Number of Sensors

1 0.510 (0.026)  0.500 (0.003) 0.499 (0.007)
2 0.524 (0.045)  0.501 (0.004) 0.503 (0.015)
4 0.519 (0.040)  0.501 (0.005) 0.504 (0.019)
8 0.533 (0.043)  0.499 (0.012) 0.502 (0.017)
16 0.537 (0.046)  0.502 (0.015) 0.514 (0.030)
32 0.546 (0.059) 0.501 (0.012) 0.511 (0.029)
64 0.553 (0.062)  0.505 (0.014) 0.512 (0.036)

50% accuracy as our baseline performance. Models must perform significantly better than 50%
balanced accuracy in order to confirm a risk of membership inference. However, recent work in
[126] argue that balanced accuracy should not be used for these evaluations, and that instead an
analysis of the model’s true-positive rate at thresholds producing low false-positive rates should
be used instead. We leave this updated analysis technique to future efforts.

5.3.5 Related Work

This section’s contributions are at the intersection of SSL, BCI, privacy, and security. We
first refer to progress in vision and audio SSL to more broadly consider ways to evaluate pretrain-
ing methodologies. We then outline advances in BCI and why SSL methods such as brain2vec
are unique in their capabilities and potential privacy challenges. Finally, we conclude with a re-
view of literature related to privacy for machine learning models with focus on human physiology
based systems.

Self-Supervised Learning: Recent SSL approaches use the implicit structure present
in data to optimize a model during a “pretraining” phase. Importantly, SSL pretraining does
not require a labeled dataset. The resulting pretrained model can later be applied to other
“downstream” end tasks. These end tasks are typically supervised, often with much less data
than was available for pretraining. Our work is primarily interested in the evaluation of SSL
methods, rather than development of new SSL. methodologies.

The authors of [257] present Visual Task Adaption Benchmark, which outlines and applies a
methodology to compare visual SSL algorithms. Their focus is on diverse tasks and data sources,
which cannot be easily replicated with our limited BCI data, but they do establish several relevant
protocols. First, datasets for supervised task evaluation are expensive to collect and label, so it is
permissible for evaluation of models to reuse the same tasks. Second, to avoid meta-overfitting,
the pretraining algorithms should avoid using data that are a part of the evaluation tasks.
Finally, a unified implementation should be used for the evaluation tasks - there should be no
prior knowledge about the evaluation task implied by the architecture or parameter search. Their
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evaluation of pretraining in the visual domain demonstrates that pretrained models out-perform
models trained from scratch for most evaluation tasks. Furthermore, they show that fine-tuning
the entire model generally performs better than the more simple evaluation of appending a linear
classification layer for training the evaluation task.

In [258] the authors compared thirty recent image-based SSL methods and how they per-
form when applied to downstream end tasks. They show that structural downstream tasks
tend to benefit more from SSL than semantic tasks. In their experiments, structural tasks
involved learning about the structures in the image, such as estimating depth or detecting walk-
able surfaces. Semantic tasks describes those involving labels of content in the image, such as
image classification. The authors also show that starting with a self-supervised model, rather
than another supervised task’s encoder, tends to perform better as a feature extraction method.
They also show that performance on downstream tasks is not always positively correlated with
self-supervised training performance and that models pretrained from similar domains to their
downstream tasks tend to lead to the best performance. They are also unable to to demonstrate
the need for a well-balanced dataset when pretraining.

Brain-Computer Interfaces: Efforts to record and decode neural signals with BCI have
have been progressing for decades [259]. In general, BCI solutions aim to improve medical treat-
ment, enable or enrich human-computer interaction, and advance our understanding of neurolog-
ical processes [260]. Distribution discrepancies force many BCI solutions to rely on per-patient
models: approaches that, when deployed, are optimized from scratch for the individual. In these
scenarios, any threat to an individual’s privacy is localized to the new user and the manage-
ment of their data. In contrast, deploying a model that has been pretrained on other individuals,
threatens the privacy of all pretraining individuals through the possibility of information leakage.
In order to study information leakage from pretraining BCI system, this work uses the brain2vec
model presented in [12] since it’s demonstrated ability to capture and utilize information from
multiple participants’ unlabeled neural data. The brain2vec model has been assessed for neural
decoding of speech-related tasks, which is closely related to other prior work in BCI [195, ,

Physiological security: Adversarial attacks on physiological computing are surveyed in
[262], illustrating the growing interest in attacking the integrity of such systems with modified
data that leads to incorrect behavior. The authors note the popularity of EEG and that methods
for attacking transfer learning methodologies have been limited. Still, the work reviewed is
focused on attacking systems in use, but no authors have investigated the potential privacy risks
in transfer learning from physiological data.

Advancements in BCI and other physiological systems have further motivated research into
neurosecurity - the application of computer security and privacy concepts to neural devices and
their communications [263]. The recent survey by [264] outlines the progress in neurosecurity, de-
scribing it as a nascent field with four key areas: integrity, availability, safety, and confidentiality.
Attacks on BCI integrity are no different than attacks on any other information system. Within
the application of BCI, integrity attacks attempt to modify or destroy neural-related data, and
can target data at point of storage, transmission, or receipt. Reducing availability reduces the
scope of the authorized users access, degrading the BCI’s utility and potentially causing other
harms [265, 15]. Efforts to degrade the safety of BCI systems aim to harm users, including physi-
ological or even psychiatric harms [266]. Confidentiality of BCI systems is increasingly important
as they become more successful at decoding thoughts, intentions, and aspects of an individuals
character [265]. Confidentiality - how participation in a BCI systems construction may enable
future violation of a users privacy - is a primary focus of the work in this section.

Privacy and Information Leakage in ML: In order to assess the potential for privacy
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violations in BCI, we apply approaches to assess information leakage in ML approaches first
applied in other domains. The work in [25] introduced the adversarial framework of shadow
models for membership inference attacks. Using only the predicted class likelihoods, their ef-
forts demonstrated highly accurate membership inference attacks across both tabular and image
modalities. The authors in [267] investigate the information discernible from the updates to
language models, enabling an attacker to understand the differences in training dataset used to
train two language models. Recent work in [268] proposed unified general measure for quan-
tifying information leakage through membership inference attacks. They introduce Nirvana, a
methodology which minimizes generalization gaps to help prevent membership inference white-
box attacks. Both white-box and black-box attacks are considered for graph neural networks in
social network setting by the authors in [269]. Privacy methods have also been applied to the
HAR domain. The authors of [270] applied shadow modeling techniques to HAR to estimate
information leakage from inertial sensors in a mobile device. In [271], researchers propose a
framework for video-based activity recognition. Their approach uses an adversarial modeling
process to anonymize video frames by modifying their content to remove identifying information
yet still contain the relevant activity.

5.3.6 Discussion

We produce hundreds of experiments in order to investigate brain2vec’s privacy and perfor-
mance, which we discuss in more detail in this section. First, our pretraining grid-search yields
insights into how the pretraining losses are impacted by various changes in architecture. Next,
our re-identification experiments illustrate brain2vec’s ability to identify individuals, even if only
given random subsets of their sensors. We are also able to show that certain model configurations
result in better re-identification performance. Finally, while our membership inference experi-
ment shows poor generalization for most configurations, we are able to illustrate that certain
features have increased risks when access to the number of sensors increases.

In our pretraining grid search experiments, the largest impact on the pretraining
loss terms result from varying the dimensionality of the output by reducing the size of the
feature extractor module at the input of brain2vec. Changes to these dimensions impact all the
operations that follow, including quantization and inference of the masked time-step, so it is
unsurprising that it has a large impact on optimization. These differences can be seen in Figures
48, 49, and 50. In particular, Figure 50 is the most clear - our smaller output dimension (16x3)
achieves a better contrastive loss than the larger output dimension (32x6) when a mask length
of 1 is used, but performs worse with a mask length of 2. This is likely because the smaller
dimension does not provide enough information in a single time-step in order to support the
inference of the other two. Whereas when trained using the larger dimension, 4 time-steps are
used by the context encoder (i.e., 6 steps with 2 masked) to predict a vector that is similar to
the quantizer’s output. Indeed, we can see that the smaller output dimension also poorly utilizes
the codebook of the model, since the diversity loss generally performs better when the output
dimension is larger. We find that smaller codebooks (i.e., smaller W) generally achieve lower
diversity loss since dimensionality over which diversity is measured is reduced. However, we note
that the smaller codebook does not appear to impact the contrastive and feature penalty terms
in our experiments. The feature penalty increases with a 32x6 dimension output since there
are more terms that make up the penalty, though the larger model appears to begin to reduce
its feature penalty earlier and more rapidly than its 16x3 counterparts. Illustrated in Figure
53, we find similar results regarding the configuration of the feature extractor when pretraining
6-participant models. Due to the cost of pretraining these larger models, we only pretrain eight
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of the best performing configurations, which makes it difficult to compare model configurations
due to the number of hyperparameters that are varying. However, as can be seen in Figure 53’s
two columns of training loss curves, the distinction between the performance of the two output
dimension configurations continues even with increased data.

We find that the changes to the positional encoding have little impact on the pretraining
losses for the smaller 16x3 model. However, for the larger model, our results suggest a lower
diversity loss with a spatio-temporal embedding derived from the RAS coordinates. When only
using RAS for the spatial component instead, the diversity loss appears to actually worsen. This
relationship can be seen in several ways across the pretraining losses presented in Figures 48, 49,
and 50. We hypothesize that this may be due to the difficulty of disentangling the positional com-
ponent in order to produce features similar to the quantizer, which has no positional awareness.
This assumes that decoupling the temporal component into its own parameters results in a more
complex positional representation. However, if this were the case, we might expect improvement
from a larger context network, yet as shown in Figures 51 and 52, we find very little impact to
pretraining performance metrics when varying the number of transformer encoder layers in the
context network.

As shown in Figures 54 and 55, we find inconsistent variance between the pretraining config-
uration and the performance of downstream classification tasks. This overall lack of correlation
between pretraining performance and downstream fine-tuning performance in our experiments
has also been illustrated in the visual domain for some models and tasks [258]. In our work, it
appears that speech activity recognition performs better with the smaller output dimension, but
larger models with larger mask lengths in Figure 55 do better at speech-related behavior recog-
nition. The word classification task appears to be the noisiest, likely due to it’s small sample
size and increased number of output classes. It’s also important to note that the sample sizes of
the “Pretain Pt.” and “Non-Pretrain Pt.” in Figures 54 and 55 varies between the columns of
pretraining cohort size. Specifically, 1-participant brain2vec models have a larger non-pretrain
cohort (N = 6) and smaller pretrain cohort (N = 1) for evaluation. Of course, this is reversed for
the 6-participant models, which have a smaller non-pretrain cohort (N = 1) and a larger pretrain
cohort (N = 6). These differences in sample sizes should be better controlled in future evalua-
tions, possibly regressing downstream classification performance onto hyperparameters using a
linear model in order to better gauge the effect. We leave this task to future work.

Our pair-wise comparison of pretrain-to-fine-tune performance in Figure 56 helps illustrate
the inconsistent performance. Figure 56 shows how fine-tuning performance can be primarily
driven by the selected fine-tuning participant in the speech-related behavior and speech activity
detection tasks (left and center column plots) - these tasks have a more clear tendency to have
correlation across rows (pretraining participant) in comparison to the word classification task.
From these sample visualizations, we further demonstrate that the relationship between the
pretraining participant and the participant used for down-stream fine-tuning is highly variable
and inconsistent across our three supervised tasks.

Our participant re-identification experiments clearly demonstrate the capability of
brain2vec as a tool for detecting individuals using their brain recordings. Even with only a
handful of randomly selected sensors, a simple model can be used to re-identify individuals well
above the baseline class rate. Our results show the increased privacy risk of sharing more sensors
with the attacker - the accuracy in each of Figure 57’s and 58’s subplots is directly correlated
with the number of sensors used. Our results also show that higher dimensional features of
32x6 also increase the re-identification accuracy. Though we don’t demonstrate consistent dif-
ference in re-identification success across mask-length, we observe high-performing outliers only
in configurations with mask length of 2 and larger codebooks.
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It’s intuitive that this would be possible since no aspect of brain2vec’s pretraining regimen
is intended to penalize features that are correlated with the participant that provided the input
sample. However, while there is also no aspect of brain2vec’s pretraining that specifically en-
courages correlation with the participant, there are many aspects of the data that will correlate.
For example, the sensor location, provided as RAS coordinates to the model, can vary widely
across participants, as illustrated earlier in Figure 45. These discrepancies, as well as others like
the spectral distribution across participants, are well known challenges in HAR problems. Since
these distributions vary across participants, they can act as a “fingerprint”; helping to uniquely
identify the individual. In our case, the features extracted by brain2vec enabled 7-class accu-
racy of over 50% in some cases. Our results were achieved without substantial grid-search of
attacker model hyperparameters - future work may easily improve on these results with larger
hyperparameter grids or other improved designs.

The membership inference experiment does not generalize well to the simulated target
model, suggesting that membership inference with our approach to be difficult. As shown in 59,
we find that the FQP-E and CQP-E features perform similarly, but FQP-E appears to over-fit
less, illustrated by its lower train performance and slightly higher test performance. Still, both
of these features are unable to achieve performance on the test set that is significantly above a
50% balanced accuracy. In other words, we are unable to demonstrate any non-negligible risk of
membership inference using FQP-E and CQP-E as attack vectors.

In contrast, we find that the CL features appear to pose some risk for membership inference.
Figure 59 also shows that the attacker’s Cs; model performs equally well on the train partition
when using CL as it does when using FQP-E and CQP-E features. However, when using CL,
the attack has a clearly increasing performance in the test partition as more sensors are made
accessible. While the resulting accuracy in the test partition are still very low for CL, only
reaching about 55%, the performance appears to be significantly above the baseline and the
performance of FQP-E and CQP-E.

Each configuration performs better during training as they gain access to more sensors, but
only the CL features demonstrate any ability to beat our baseline of 50% balanced accuracy.
The attack models are over-fitting to the shadow modeling dataset, suggesting that the features
are information rich for the goal of membership inference, but they don’t generalize well to un-
seen target models. In general terms, the membership inference experiment tests the change in
response when a self-supervised model is applied to data outside the pretraining distribution. In
order to construct a reliable attack, the classifier C;r is tasked with detecting in-distribution
data, and therefore must also recognize out-of-distribution data. As shown by the high per-
formance in the training partition, it is clearly possible to perform this task if given access to
instances of the target model. But even with multiple examples of out-of-distribution responses
in the shadow modeling dataset (i.e., the train partition), the attacker struggles to discover a re-
liable general-purpose mapping for their attack (i.e., the test partition). We hypothesize that the
self-supervised pretraining and its randomly initialized target structure (i.e., the codebook) may
be guarding against our membership inference attack. It may be that the learned representation,
driven by the input data and quantization strategy, are likely to vary considerably from model
instance to model instance, even with identical data. This is because the pretraining procedure
does not enforce a specific structure, nor does it encourage interpretable features in anyway.

While our membership inference results don’t illustrate a high-risk for membership inference
attacks against brain2vec, the performance of CL features does motivate further research. With
larger datasets and more methodical attack model development, the feasibility of such an attack
may increase. It is the responsibility of researchers to continue to evaluate how well their models
withstand these attacks, and to communicate those results to contributing individuals.
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Fig. 48. Pretraining results on individual participants using mask of length 2. Each model
configuration is pretrained 7 times, once for using each participant’s data. Each
row is a different loss term over the training epochs. Contrastive loss, top row,
tends to perform better with smaller quantization configurations and RAS-based

positional embedding.
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Fig. 49. Pretraining results on individual participants using mask of length 1. Each model
configuration is pretrained 7 times, once for using each participants data. Each
row is a different loss term over the training epochs. Contrastive loss, top row,

tends to perform better with smaller quantization configurations and RAS-based

positional embedding.
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Fig. 51. The best performing 1-participant configurations with mask length of 1 optimized
with context encoder depths of 4, 6, and 8 layers. We observe little difference

between depth configurations.
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Fig. 53. Pretraining losses for 6-participant models configured using the best performing

1-participant model configurations. We highlight the variation in performance

with respect to the change in the feature extraction’s dimensions by separating

this hyperparameter into columns.
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Fig. 54. Fine tuning results of the selected brain2vec models with mask length of 1. The
"Pretraining Pt." are results from fine tuning participants that were used to pre-
train the model, while "Non-Pretrain Pt." refers to results from fune-tuning par-

ticipants that were new to the model during fine-tuning.
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Fig. 55. Fine tuning results of the selected brain2vec models with mask length of 2. The
"Pretraining Pt." are results from fine tuning participants that were used to pre-
train the model, while "Non-Pretrain Pt." refers to results from fune-tuning par-

ticipants that were new to the model during fine-tuning.
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Fig. 56. Fine tuning results of two 1-participant pretrained models. In the top row: mask
length of 1, a codebook size of 80, 4 encoder layers, and an embedding vector
size of 1623. In the bottom row: mask length of 2, a codebook size of 20, 8
encoder layers, and an embedding vector size of 3226. Along the y-axis of each
heatmap is the participant ID whose data was used to pretrain the model. The
x-axis provides the participant ID that was used to fine tune the model supervised
fashion. Values in each cell are the holdout accuracy and the shading is centered

at 1.5x each task’s target rate.
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Fig. 57. Re-identification accuracy using 6-participant pretrained brain2vec models. In all
cases, increasing the randomly sampled sensors (X-axis) improves test accuracy
(Y-axis). However, the larger output dimension (i.e., two plots in the right col-
umn) achieves higher performance overall. Furthermore, high performing outliers
only occur in configurations with mask length of 2 (i.e, lower right plot), achiev-
ing nearly twice the accuracy of comparable configurations. The variance in the
bottom right is tied to three instances of pretrained brain2vec models with a code-
book size of 80, each of which performs much better than other instances with

identical configuration.
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Fig. 58. Re-identification F1-score averaged across classes (i.e., participants), separated by
whether data from the class was seen during pretraining. Models with different
codebook sizes are aggregated together for the purpose of this visualization. Re-
sults show higher variance and slightly higher performance for participants not
in the pretraining data, though differences don’t appear significant in most cases.
Results shown are in concordance with the 7-class accuracy shown in Figure 57 -
primarily that the larger model with larger masks appears to improve re-identifi-

cation performance.
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Fig. 59. Balanced accuracy from our membership inference experiment described in Section
5.3.4.3. We use balanced accuracy due to the class imbalance. The membership
prediction performance on the “Train Partition” generally performs well, but the
performance on the “Test Partition” remains at random chance for binary clas-
sification for FQP-E and CQP-E features. However, there appears to be a clear
trend in the performance of the CL features, in which the performance increases

to significant levels when given access to more sensors.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

This dissertation was motivated by the lack of progress in HAR model designs that prioritize
trust and adaptability when applied to bioelectric signals. While HAR solutions are important to
enabling larger HCI and scientific research goals, ML-based approaches have often been borrowed
from separate domains such as computer vision. However, naively transferring designs between
domains results in overly complex solutions that ignore issues like usability, interpretability, and
adaptability. Our contributions were designed to reduce complexity, increase interpretability, and
enable models to transfer knowledge to new users and tasks. To improve trust, we use engineering
informed designs to integrate interpretability into the model and greatly reduce complexity. To
improve adaptability, we use transfer learning and self-supervised learning with person and task
specific fine-tuning to transfer knowledge within the model. Below we enumerate each of our
goals with a brief discussion of this dissertation’s contribution.

Goal 1: Improve interpretability and reduce complexity by learning engineering-
informed models

Our first goal in this dissertation was accomplished in Chapter 3 and 4. In Section 3.2,
we illustrate an approach to interpretable preprocessing of bioelectric signals for use in ML
algorithms detecting effective DBS treatment. With this work, we are the first to implement
a classifier detecting optimal DBS using EEG in a post-operative setting. Critical for such
novel work is that the method allows subject matter experts to validate that the model is using
features congruent with their understanding of the problem. Without this capability, experts
may be concerned that information leakage or spurious correlations are driving results, rather
than generalizable features associated with the brain’s underlying mechanisms. Therefore, our
modeling pipeline is designed to select interpretable features from a collection extracted based
on expert guidance. We find that our best performing models tend to use motor-related brain
regions for classification, which aligns well with expectations since DBS was used to treat motor-
degenerative disorders in our study. Our methods are evaluated on the challenging task of
classifying the response in participants completely held out from model training, and our models
consistently beat baseline class rates.

We continue with our primary contribution for interpretable modeling of bioelectric signals
in Section 3.3 with SincIEEG, a model for speech detection from neural signals collected using
IEEG sensors. Prior work for speech detection relies on expert guided features and preprocessing,
similar to our own work in Section 3.2. However, we desired to move passed this paradigm and
develop models capable of discovering these features directly from data, with minimal expert
guidance. To that end, SincIEEG uses an engineering-informed input layer we developed called
Multi-SincNet that borrows well known mathematical properties of periodic signals to learn
interpretable input features. Trained on each individual participant separately, the model learns
a filter bank of FIR bandpass filters. The resulting model therefore has a globally interpretable
input layer integrated into the model architecture, which we use to help validate the model by
comparing the interpretable features with previous research findings. We find that the features
automatically discovered by our method align well with prior research that relied on grid-searches
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of extracted features. The use of bandpass filters also reduces the number of parameters needed
compared to more traditional CNNs or RNNs applied in prior work, making our solution more
usable in practice. Our method’s performance meets prior work’s classification performance, but
without the need for expert-guided feature extraction and expensive preprocessing.

In Chapter 4, a hand-pose classifier using EMG data is implemented using a similar method
to SinclEEG which we call SincEMG. Prior work for HAR on EMG has relied on expensive
feature extraction or difficult to interpret deep learning models, but our SincEMG design allows
us to visualize how learned features evolve from pretraining all the way to fine-tuning on new
users. We implement our method on existing datasets that already had extensive prior work for
our comparison. Our SincEMG solution beats prior work’s classification performance, but with
no preprocessing and an order of magnitude fewer parameters than previous methods, greatly
improving usability. The improved interpretability and reduced complexity of our contributions
supports this dissertations trustworthy objectives.

Goal 2: Improve inter-person adaptation using transfer learning across individ-
uals

The second goal of this dissertation was achieved in Chapters 4 and 5. In Chapter 4, we
implement transfer learning for HAR on EMG to pretrain SincEMG in a supervised fashion, then
SincEMG is fine-tuned using the same classification task for the new individual user. Prior work
used large models which we argue are more applicable in image processing domains. Our methods
out-perform the state-of-the-art, in-part due to a novel application-aware regularization scheme
that aggressively augments data during training to prevent over-fitting in both pretraining and
fine-tuning stages.

In Chapter 5.2 we introduce brain2vec, a self-supervised learning method for speech-related
HAR tasks using bioelectric signals recorded from sEEG sensors. Rather than rely on more
traditional supervised learning, brain2vec is inspired by recent advances in natural language
modeling and representation learning. Prior work, similar to our own in Section 3.3, often relies
on patient-specific models, increasing the cost of developing practical HAR solutions since every
user requires a model trained “from scratch”. Similar to our work in Chapter 4, we transfer to
unseen individuals after pretraining, but we also transfer to entirely new supervised tasks and
even new sensor configurations. After self-supervised pretraining, we freeze the parameters of
our model and fine-tune just two additional layers: a 16-unit hidden layer and an output layer for
the supervised classification. With a challenging leave-one-patient-out evaluation that eliminates
information leakage between pretraining and fine-tuning, we show that this method approaches
state-of-the-art performance on three separate activities related to speech production for all
seven individuals in our dataset. The transfer learning contributions of these chapters suports
this dissertations adaptability objectives.

Goal 3: Enable adaptation from unlabeled data with self-supervised pretraining

Section 5.2’s brain2vec model also addresses our third objective with its introduction of
a self-supervised method of pretraining that does not require labeled data. Prior work relies
on carefully curated labeled datasets in order to support training of supervised classification
pipelines. In contrast, by pretraining with self-supervised learning at the sensor-level, with a
sensor-location-aware positional embedding, brain2vec can be trained without labels, on any
number of individuals, with any number of sensors in any location. To the our knowledge, this
work is one of the earliest self-supervised pretraining methodologies in field of BCI for HAR that
achieves worthwhile classification performance after transfering from pretraining using unlabeled
data. Our self-supervised contribution supports this dissertation’s objectives of improved adapt-
ability as well as trustworthiness through improved usability of reduced dependence on labeled
data.
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Goal 4: Characterize neural representations and the privacy risks of individuals
contributing data

Results in pursuit of our fourth goal are provided in Section 5.3. Considering the novelty of
our brain2vec methodology, we aimed to explore the impact of varying pretraining cohort size,
hyperparameters, and architecture design decisions in order to better understand what aspects
correlate with performance. To accomplish this, we perform a large grid-search of brain2vec
configurations, showing that the output dimensions of the feature extractor have a large impact
on self-supervised pretraining objectives. Similar to prior work in the visual domain, we find that
the pretraining performance is not consistently correlated with downstream task performance.
We also show that disentangling the temporal and spatial dimensions of the positional embedding
appears to make pretraining more difficult, but this potential regularization does not appear to
improve down-stream classification performance. However, results indicate that larger pretrain-
ing cohorts of six participants vs. single participants may reduce the variance of down-stream
performance.

We also develop two experiments designed to help assess the privacy risk faced by individuals
contributing neural data to brain2vec’s pretraining. Prior work investigating the privacy of
HAR solutions have been limited, with none investigating self-supervised feature extractors like
brain2vec. We argue that as BCI solutions become more common for everyday HAR solutions,
researchers must work now to understand the privacy risks of new methods. To that end, we
show that users can be re-identified with high-accuracy by simply fine-tuning on participant
identifiers as a down-stream classification task. This suggests that brain2vec has potential as
both a worthwhile solution for user-tracking as well as a tool for malicious re-identification of
individuals contributing pretraining data.

We also contribute a novel membership inference experiment that aims to study the po-
tential of person-level membership inference, rather than sample-level. Prior work in other
domains outside of HAR are not necessarily associated with an individual, thus we introduced
an experiment that uses 2-particpant brain2vec models to conduct a shadow modeling attack
on pretraining member privacy for brain2vec. Our membership inference experiment does not
evidence significant risk, though we discover that the contrastive loss values used during pre-
training may pose a risk due their membership detection accuracy increasing above baseline
levels. However, more research and development is needed to provide a more conclusive result.
These contributions support this dissertations objective of building trustworthy ML approaches
to HAR from bioelectric signals by investigating the privacy risks of our methods.

6.2 Future Work

Recent ML techniques have benefited from large, easily accessible datasets. For example,
breakthrough work in image analysis was a combination of both new ideas and easy access to
large databases of images voluntarily shared by millions of users on the internet [272]. Because
individuals have their own desires to take and share photos, using their own commodity devices,
the data necessary to build these solutions became abundant. Paired with advances in com-
pute technology (i.e., Graphics Processing Unit (GPU)s), researchers were able to leverage this
abundant data to further develop the capabilities of large scale ML techniques.

Researchers and practitioners are now challenged to not only consider how to enable trust in
their solutions, but also how to apply these solutions to other domains that do not share the same
scale of data as images or text modalities. A naive assumption is to assume that we must simply
wait for the same abundance of data to emerge in these new domains. For example, expecting
groundbreaking BCI solutions only once sufficient number of people are collecting data from their
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BCIs and making it widely available. This is unlikely - there is no clear motivation for a user
to record and share their BCI recordings in the same way users are motivated to take photos or
write text. The modalities of images and text are the natural way that humans communicate.
Without intervention to collect large scale data, most bioelectric-based HAR solutions such as
BCI will struggle to find further success, and without success, it is unlikely to attract users. It
becomes a problem of dependencies - i.e., is the cart before the horse.

Instead, like some researchers have been proposing [273], ML research efforts need to shift
towards “small data” problems and their solutions. Challenges of too few samples plague methods
that require direct optimization of many parameters - a well known problem in data-centric
ML methods. As ML methods become more standardized, and pretraining methods produce
worthwhile pretrained foundation models across domains, its believed that even small amounts
of high-quality data can produce worthwhile results.

In many cases, approaches to HAR challenges avoid optimizing across users and their data,
further limiting available data for training. These decisions only exacerbate issues of limited data
in an attempt to manage the distribution discrepancies that occur across individuals contributing
data. If we look to more prevalent domains, such as text and image analysis, leveraging unlabeled
HAR datasets to pretrain models for few-shot application to downstream tasks is likely a fruitful
direction. While our brain2vec contributions were notable, our grid search experiments suggest
that more investigation is needed to fully understand these types of approaches.

Taking these challenges to their extreme arrives at the research efforts on incremental and
continual learning. In these paradigms, samples may be few and the tasks themselves in need
of algorithmic discovery. We expect HAR to be difficult to approach with continual learning
due it’s inherit challenges (see Section 2.2.2) and lack of clear prior work demonstrating how to
transfer across distribution discrepancies. We believe that our contributions have helped move
the field forward with respect to these challenges, but more work is needed. Still, it may be
breakthroughs in incremental learning that instead unlock better transfer learning for the HAR
domain and its problems. Therefore, we encourage researchers in the field of incremental learning
to consider applying their techniques to HAR related problems.

Incremental learning is also compelling because of its interest in minimizing the number of
samples that a model must store to maintain performance. Future methods that don’t require
recording and storing user data for HAR transfer learning will bolster security and therefore im-
prove trust in certain scenarios. This information security is especially important in information-
rich HAR scenarios that leverage potentially sensitive information. For example, it’s not clear
what value high-resolution brain recording may have - future algorithms may be able to extract
or predict much more sensitive information than they currently can today. The future risk of
today’s data can be hard to understand - researchers and scientist must work now to supply
future practitioners with worthwhile solutions.
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Appendix A

ABBREVIATIONS

AFC Agglomerative Feature Clustering

AT Artificial Intelligence

AML Adversarial Machine Learning

BCI Brain-Computer Interface

CNN Convolutional Neural Network

CSP Common Spatial Patterns

CT Computerized Tomography

DBS Deep Brain Stimulation

DL Deep Learning

DUA Dual User-Adaption

ECoG -electrocorticography

EEG Electroencepahlography

EMG Myoelectrocortography

EP Evoked Potential

ET Essential Tremor

FFT Fast Fourier Transform
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FIR Finite Impulse Response

fMRI Functional Magnetic Resonance Imaging

GPI Globus Pallidus Interna

GPU Graphics Processing Unit

GB Gradient Boosting

HAR Human Activity Recognition

HCI Human Computer Interaction

HLEG High-Level Expert Group

HMI Human Machine Interaction

HRI Human Robot Interaction

ICA Independent Component Analysis

IEEG Intracranial Electroencephalography

IoT Internet-of-Things

KNN K-Nearest Neighbors

LDA Linear Discriminant Analysis

LR Logistic Regression

LReLU Leaky Rectified Linear Units

MI Mutual Information
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ML Machine Learning

MRI Magnetic Resonance Imaging

NIST National Institute of Standards and Technology

NLP Natural Language Processing

OECD Organisation for Economic Co-operation and Development

PAC Phase Amplitude Coupling

PD Parkinson’s Disease

PCA Principle Component Analysis

PET Positron Emission Tomography

QEEG Quantitative Electroencepahlography

RAS Right Anterior Superior

RBF Radial Basis Function

ReLU Rectified Linear Units

RF Random Forest

RNN Recurrent Neural Network

sEEG Stereotactic Electroencephalography

SSL Self-supervised Learning

STIN Subthalamic Nucleus
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SVM Support Vector Machine

TRB Trust-Related Behavior

VIM Ventral Intermedius Nucleus

XAI Explainable Artificial Intelligence
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