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Abstract

Reconfiguration is the concept of moving between different solutions to a problem by transforming one

solution into another using some prescribed transformation rule (move). Given two solutions s1 and s2

of a problem, reconfiguration asks whether there exists a sequence of moves which transforms s1 into s2.

Reconfiguration is an area of research with many contributions towards various fields such as mathematics

and computer science.

The k-coloring reconfiguration problem asks whether there exists a sequence of moves which trans-

forms one k-coloring of a graph G into another. A move in this case is a type of Kempe swap. An α, β-Kempe

swap in a properly colored graph interchanges the colors on some component of the subgraph induced by

vertices colored α and β. Two k-colorings of a graph are k-equivalent if we can form one from the other by a

sequence of Kempe swaps (never using more than k colors). The k-coloring reconfiguration problem

has applications in statistical physics and mechanics; in particular, it has positive implications on the Markov

chains defined for the Ising model in statistical physics and the antiferromagnetic Pott’s model in statistical

mechanics.

The reconfiguration graph Ck(G) associated with the k-coloring reconfiguration problem is defined

as follows: The vertices of Ck(G) are the k-colorings of G and two vertices in Ck(G) are adjacent if their cor-

responding k-colorings differ by a single move. We study Ck(G) for certain classes of graphs G. In particular,

we study the connectedness and the diameter of Ck(G). Indeed, Ck(G) being connected is equivalent to the

k-colorings of G being pairwise k-equivalent. On the other hand, the diameter of Ck(G) is d if and only if

for every two k-colorings of G, there is a sequence of length at most d from one to the other. Our results on

the connectedness of Ck(G) imply the Markov chain for the models mentioned above is ergodic, while lower

bound results on the diameter of Ck(G) imply lower bounds on the mixing time of the Markov chain.

It is conjectured that the diameter of Ck(G) is O(n2) for every d-degenerate graph G whenever k ≥ d+ 2.

xi



As a step towards proving this conjecture for triangle-free planar graphs, we show that C5(G) is O(n2) for

every planar graph G with no 3-cycles and no 5-cycles.

Moreover, we study the connectedness of C5(G) for the triangulated toroidal grid, G := T [m× n], which

is formed from (a toroidal embedding of) the Cartesian product of Cm and Cn by adding parallel diagonals

inside all 4-faces. We prove that all 5-colorings of T [m × n] are 5-equivalent when m,n ≥ 6, i.e., C5(G) is

connected for such toroidal graphs G.

We also explore list-coloring reconfiguration. For a list-assignment L and an L-coloring ϕ, a Kempe

swap is called L-valid for ϕ if performing the Kempe swap yields another L-coloring. Two L-colorings are

called L-equivalent if we can form one from the other by a sequence of a type of L-valid Kempe swaps. The

associated reconfiguration graph in this case is CL(G). Let G be a connected k-regular graph with k ≥ 3.

We prove that if L is a k-assignment, then all L-colorings are L-equivalent unless G ∼= K2�K3, i.e., CL(G) is

connected for every k-assignment L. This generalizes an analogous result about the k-colorings of k-regular

graphs.

xii



Chapter 1

Introduction

Reconfiguration is the concept of moving between different states of a system by repeatedly applying some

prescribed transformation rule. A state statemay refer to the set of configurations of a combinatorial structure

or the set of solutions of a problem. The state space state spaceof a system encompasses all the possible states of the

system. A classic example of reconfiguration is the Rubik’s cube, invented in 1974 by Hungarian architecture

and design professor Ernő Rubik. A player is given an arbitrary configuration of the cube (Figure 1.1a) and

tries to reach the monochromatic configuration (Figure 1.1c) by rotating the faces of the cube (Figure 1.1b).

Each configuration of the cube is a state, and each rotation corresponds to applying the transformation rule

to move from one configuration to another. The state space of the Rubik’s cube consists of all the possible

configurations of the cube. A single application of the transformation rule, in this case, rotating a face of

the cube, is a reconfiguration step reconfiguration

step

.

(a) (b)
(c)

Figure 1.1: A Rubik’s cube that is (a) scrambled1, (b) rotating2, and (c) solved3.

Reconfiguration is an area of research with many contributions to problems in mathematics and computer

1wordpress.com, classteaching, 2019.
2Wikipedia.com, Booyabazooka, 2006.
3youcandothecube.com, Ron Koziol, Pinterest.

1



science. It draws together challenges and methods from a wide range of different fields including graph theory,

combinatorial game theory, probability theory, random sampling, enumeration, complexity theory, discrete

geometry, statistical physics, and various others. For example, in computer science, one can study 3-SAT

reconfiguration [18] which asks whether it is possible to transform one satisfying assignment of a Boolean

formula (with each clause having at most 3 literals) into another using single variable “flips.” On the other

hand, in geometry, one can study graph morphing [1] which asks whether it is possible to transform one

drawing of a graph into another while preserving certain geometric properties.

Reconfiguration problems also appear in many games and puzzles. One example is the Rubik’s cube

mentioned above. Other examples include sliding puzzles [44] like the 15-puzzle, sliding blocks, Sokoban,

and Rush Hour. A player must slide objects on a surface/board starting from an arbitrary configuration

with the goal of achieving a desired configuration. Moreover, reconfiguration problems arise in numerous

real-world scenarios. One instance is robot motion planning [29] where the goal is to find a sequence of

feasible moves that gets the robot from point A to point B. Such problems are used in the development of

smart cars and in robot-assisted surgery. Another instance is genome rearrangement [5] where the goal is

to determine whether one genome can be transformed into another via a sequence of gene mutations. Such

problems contribute to the study of evolution and mutation in plants.

A real-world application that perhaps captures the main aspects of the reconfiguration framework is the

power supply reconfiguration problem [52]; see Figure 1.2. Consider a set P of power stations each

with a fixed capacity of power supply and a set H of houses each with a fixed amount of power required.

Each house has a number of power stations that can supply it with power. Such power stations are viable

for that house (represented by dashed edges in Figure 1.2). A valid assignment ϕ : H → P assigns a power

station for each house (represented by bold edges in Figure 1.2) from its set of viable power stations in such

a way that no power station exceeds its capacity. Given an assignment of power ϕ, a power transfer for

house h is a reassignment from power station ϕ(h) to some other power station p 6= ϕ(h). Given two valid

assignments ϕ1 and ϕ2, the power supply reconfiguration problem asks whether there is a sequence

of power transfers that transforms ϕ1 into ϕ2 such that each intermediate assignment is also valid.

From a real-world perspective, this situation might represent a power company with multiple generators

P which supply power to multiple houses H. From time to time, customers might want to transfer generators

(for example, to gain access to extra services) and the company is only able to transfer power one customer at

a time so as not to overload the system. Figure 1.2 shows a two-step reconfiguration sequence that transforms

the first assignment ϕ1 (left) into the last assignment ϕ2 (right). For simplicity, assume the power stations

2



11 16 15

3 6 8 10 2

11 16 15

3 6 8 10 2

11 16 15

3 6 8 10 2

Figure 1.2: The power stations4and houses5are labeled from left to right p1, p2, p3 and h1, h2, h3, h4, h5.
A dashed edge indicates a viable power supply station. Bold edges represent a power assignment. The
assignment on the left can be transformed into the one on the right in 2 steps by first transferring power
for h4 from p2 to p3, then transferring power for h3 from p1 to p2.

and houses are labeled from left to right p1, p2, p3 and h1, h2, h3, h4, h5. This sequence might be interpreted

as customer h3 wanting to switch to generator p2. But in order to do that, the company must first switch

h4 to p3 (or h2 to p1). Otherwise, p2 would exceed its capacity, resulting in an invalid assignment.

The power supply reconfiguration problem introduces two important aspects of the reconfiguration

framework. The first is an underlying problem whose solutions constitute the states of the reconfiguration

problem. Given sets P and H along with their capacities and requirements, consider the problem power

supply which asks whether there exists a valid assignment for P and H. From that problem we can derive

the power supply reconfiguration problem which takes two solutions of power supply along with

an appropriate transformation rule and asks whether we can transform one solution into the other. The

second aspect is the condition that each term in the sequence must be a valid assignment. For example,

transferring power for h3 from p1 to p2, then transferring power for h4 from p2 to p3 is another sequence

(different from the one shown in Figure 1.2) which transforms ϕ1 into ϕ2, by definition of power transfer.

However, the first power transfer (reconfiguration step) does not result in a valid solution for power supply

since p2 is overloaded (exceeds its capacity). Thus, such a sequence is not a solution for power supply

reconfiguration. In general, our aim is to study the solution space of the underlying problem. So, we

are interested in sequences that only use solutions of power supply.

The reconfiguration framework reconfiguration

framework

, therefore, comprises the following aspects. An underlying problem X, a

definition for a solution of X, and a definition for a type of move which transforms a current solution of X

into a new solution. Subsequently, the reconfiguration problem for X examines transforming one solution

of X into another through a sequence of moves such that each intermediate term in the sequence is also

a solution of X. Furthermore, moves are always reversible (this is true for all reconfiguration problems

mentioned throughout this dissertation). That is, if there exists a move m1 which can transform state A into

4shutterstock.com, Larry-Rains, 2014.
5redfin.com, StellarMLS, 2024.
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state B, then there exists a move m2 which can transform B into A; in particular, m2 “undoes” or reverses

m1. Thus, a sequence of moves from A to B is also a sequence from B to A. The reconfiguration framework

was properly formalized by Ito et. al. in [45] which sparked an interest in the area and led to a series of

follow-up papers.

A popular line of research considers search problems on graphs as underlying problems for the reconfigu-

ration framework. The goal in a search problem is to find a certain structure inside the graph. For example,

given a graph G and a positive integer k, the search problem independent set finds an independent set6 of

size at least k (a k+-independent set) in G. As a result, independent set reconfiguration asks whether

a k+-independent set of G can be transformed into another via a sequence reconfiguration steps such that

each intermediate set is also k+-independent. Similarly, dominating set finds a dominating set7 of size at

most k (a k−-dominating set) in G and dominating set reconfiguration asks if it is possible to move

between different k−-dominating sets of G. In fact, both of those problems fall under the token framework token framework

which states that these sets can be viewed as configurations of tokens placed on the vertices of the graph.

Interestingly, this formulation using tokens allows for multiple definitions of the transformation rule. The

Token Addition/Removal (TAR) TARmodel defines a move to be the addition or removal of a token from a vertex

in the set. The Token Jumping (TJ) TJmodel defines a move, called a jump, to be removing a token from a

vertex and placing it on another vertex. Finally, the Token Sliding (TS) TSmodel defines a move, called a slide,

to be removing a token from a vertex and placing it on one of its neighbors. Note that the latter two models

are specifically defined for reconfiguration problems where the size of the sets is exactly k and is preserved

throughout.

A key example of a well-studied reconfiguration problem with an underlying graph search problem is k-

coloring reconfiguration. Given a graph G and a positive integer k, the k-coloring8 search problem

finds a k-coloring of G, i.e., a coloring of the vertices of G using at most k colors such that no two adjacent

vertices get the same color. Naturally, the k-coloring reconfiguration problem asks if k-colorings of G

can be transformed into one another via a sequence of “color swaps” (see Section 1.4 for a formal definition).

The purpose of this dissertation is to provide an in-depth study of the k-coloring reconfiguration

problem and present our contributions to the problem.

We now turn to some of the main questions of interest within the reconfiguration community. These

6An independent set is a set of vertices that are pairwise nonadjacent.
7A dominating set is a set of vertices such that every vertex not in the set has a neighbor in the set.
8Typically, graph search problems such as independent set, dominating set and k-coloring are phrased as decision

problems (Yes or No questions). However, we phrase them as above to highlight the fact that the states of corresponding
reconfiguration problems are, in fact, the Yes-solutions to the search problems. Often, if we can answer a decision problem, it
is easy to leverage that to generate a solution.
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questions generally pertain to reachability of solutions or connectivity of the solution space of the underlying

problem and its associated reconfiguration problem. An equivalence class equivalence classof the solution space is a maximal

subset of solutions that are all pairwise reconfigurable to each other. Given an underlying problem with a

fixed discrete solution space, we can ask the following:

1. Can we transform every solution into every other through a sequence of reconfiguration steps?

2. What is the number of equivalence classes of the solution space?

3. What is the smallest number of reconfiguration steps k for which every solution can be reconfigured

to every other by at most k steps?

Observe that if the answer to Question 1 is No, then the answer to Question 3 is∞. Moreover, Questions 1

and 2 are closely related. In particular, the answer to Question 1 is Yes if and only if the answer to Question 2

is 1. Furthermore, Question 1 is phrased as a decision problem decision problem, i.e., a Yes-or-No question. This is because,

ideally, we would like an algorithmic proof for Question 1. However, an existence proof is often sufficient

for making valuable conclusions about the solution space. A Yes answer for Question 1 means that the

solution space is connected, which has positive implications with respect to sampling and enumeration (see

Chapter 2.4). In other words, we generally aim to show that a sequence from one solution to another exists

as opposed to providing one. However, often our existence proofs could be revised to provide algorithms

for constructing this sequence. Note that once a sequence is found, a natural next step is to look for an

“optimal” sequence, which motivates Question 3.

In the case of the Rubik’s cube, the answer to Question 1 is No. This is because some configurations,

such as ones formed from the monochromatic cube by rotating a single corner cubelet or by flipping a single

edge cubelet, are not reachable through face rotations. In fact, such configurations can only be obtained

by manually disassembling the cube and then reassembling it as described9. As it turns out, the answer

to Question 2 for the Rubik’s cube is 12, and each of the aforementioned configurations (monochromatic

cube, monochromatic cube with a rotated corner cubelet, monochromatic cube with a flipped edge cubelet)

belongs to a different equivalence class. Question 3 is, therefore, most interesting for the equivalence class

R containing the monochromatic cube. In 2010, almost three decades after the invention of the puzzle,

it was proven that any configuration of the cube belonging to R can be solved, i.e., transformed into the

monochromatic cube, in at most 20 face rotations10 [59].

9or peeling off the stickers.
10There are configurations for which exactly 20 moves are needed.
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We also commonly explore the computational complexity of answering reconfiguration questions. Simply

put, how hard is it for a computer, in terms of time and space (computer memory), to answer such questions?

The following are widely studied questions on complexity in reconfiguration:

(a) What is the computational complexity of determining whether the solution space is connected?

(b) What is the computational complexity of determining whether two given solutions are reconfigurable

to one another?

(c) What is the computational complexity of finding a shortest sequence between two given solutions?

Reconfiguration problems are often modeled using graphs. For a given reconfiguration problem, we

define a reconfiguration graph reconfiguration

graph

, which reformulates the problem in the language of graph theory. Each

vertex of the reconfiguration graph represents a solution of the underlying problem, and two vertices are

adjacent when their corresponding solutions are reconfigurable to one another by a single reconfiguration

step; that is, a single application of the transformation rule. Thus, transforming one solution into another

is equivalent to finding a path in the associated reconfiguration graph between their corresponding vertices.

This reconfiguration graph formulation allows us to examine Questions 1–3 in the context of graph theory

concepts and invariants. In particular, Questions 1–3 can now be stated as follows.

(i) Is the reconfiguration graph connected?

(ii) What is the number of components of the reconfiguration graph?

(iii) What is the diameter of the reconfiguration graph?

Consequently, the reconfiguration graph for the Rubik’s cube is disconnected (the answer to Question (i) is

No), has 12 components11 (the answer to Question (ii) is 12), and has diameter 20 (the answer to Question (iii)

is 20).

Recall that our main topic of interest for this dissertation is the k-coloring reconfiguration prob-

lem, which considers moving between k-colorings of a graph G using “color swaps.” The reconfiguration

graph for this problem has a vertex for every k-coloring of G, and two vertices are adjacent whenever their

corresponding k-colorings are reconfigurable to one another by a single “color swap.” Most of our work on the

k-coloring reconfiguration problem goes into solving (i) above for special classes of graphs G, though

11In fact, the 12 classes are all cosets, so the components of the reconfiguration graph they induce are all isomorphic.
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we also explore (iii). Further, since all our results for (i) are Yes-answers, they also imply an answer of 1

for (ii). Finally, it is worth noting that the transformation rule for this problem can be defined in two ways,

resulting in different variations of the problem (see Chapter 2). We explore both variations and provide new

results for each in this dissertation.

1.1 Organization

We now give a general outline of the dissertation. The rest of this chapter recalls basic terminology and

definitions of graph theory, graph coloring, and computational complexity. In Section 1.2, we give a brief

overview of graph theory notation and concepts as well as relevant classes of graphs. Our notation is standard

and can be found in most graph theory textbooks. In Section 1.3, we define proper coloring and list coloring.

In Section 1.4, we introduce Kempe swaps, which constitute the key operation we use to transform one

coloring of a graph into another. In Section 1.5, we briefly introduce computational complexity and recall

relevant complexity classes. A reader who is familiar with the contents of these sections is free to skip them.

In Chapter 2, we take a closer look at the k-coloring reconfiguration problem and its list-coloring

variant, and we examine the associated reconfiguration graph. We also introduce the two main models

of transformation for coloring reconfiguration problems. In Section 2.1, we discuss the recoloring model,

where a reconfiguration step is a vertex-recoloring, and survey important results in the literature on it. In

Section 2.2, we consider the Kempe swap model, where a reconfiguration step is a Kempe swap, and go over

previous results on it. In Section 2.3, we discuss computational complexity results for both models. Lastly,

in Section 2.4, we examine applications of coloring reconfiguration in statistical mechanics and physics.

Chapters 3–5 contain our own results and contributions to the k-coloring reconfiguration problem.

In Chapter 3, we explore the recoloring model for planar graphs with no short odd cycles. We show that the

5-coloring reconfiguration graph for planar graphs with no 3-cycles and no 5-cycles has quadratic diameter.

In Chapter 4 we take a look at the Kempe swap model for toroidal graphs. We prove that the 5-coloring

reconfiguration graph for most 6-regular toroidal graphs is connected. Finally, in Chapter 5, we consider

the list-coloring Kempe swap model for regular graphs. For k ≥ 3, we show that k-coloring reconfiguration

graph for (almost all) k-regular graphs is connected.
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1.2 Graph Theory

In this section, we lay out relevant definitions and concepts from graph theory. Throughout this paper we

follow standard graph theory notation used in [63]. For a more detailed review, we refer the reader to any

introductory graph theory textbook such as [63] or [31].

The neighborhood of v in G, denoted NG(v), is the set of vertices adjacent to v, or the set of neighbors

of v. The closed neighborhood
(closed)

neighborhood
of v in G, denoted NG[v], is NG(v) ∪ {v}. For a set S ⊆ V (G), we define

N(S) := ∪s∈SN(s). Similarly, N [S] := ∪s∈SN [s]. The degree of v in G, denoted dG(v), is |NG(v)|. When it

is clear that we are working in G, we usually drop the subscript. If d(v) = 0, then v is isolated. If dG(v) = k

for every v ∈ V (G), then G is k-regular k-regular. The minimum degree of G, denoted δ(G), is minv∈V (G) d(v). The

maximum degree, denoted ∆(G) δ(G),∆(G), is maxv∈V (G) d(v). The maximum average degree, denoted mad(G), is

maxH⊆G

∑
v∈V (G) d(v)

|V (G)| .

A graph H is a subgraph
(induced/

spanning)

subgraph

of G, denoted H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆ E(G). Moreover, it

is a spanning subgraph if V (H) = V (G). A graph H is an induced subgraph of G if V (H) ⊆ V (G) and

E(H) = {vw ∈ E(G)|v, w ∈ V (H)}. We use G[V (H)] (or G[H]) to denote the subgraph induced by V (H).

For a set S ⊆ (V (G) ∪ E(G)), we write G − S to mean G \ S and G + S to mean G ∪ S. If S = {s}, we

write G − s and G + s. A graph is H-free if it does not contain H as a subgraph. For a set S ⊆ V (G), by

identifying identifyingthe vertices in S we mean forming a new graph G′ by replacing S in G with a single vertex w′

such that NG′(w
′) = NG(S) (we replace each maximal set of parallel edges with a single edge). A graph G

is isomorphic isomorphicto H, denoted G ∼= H, if there exists ϕ : V (G) → V (H) such that uv ∈ E(G) if and only if

ϕ(u)ϕ(v) ∈ E(H).

A clique
clique

is a set of pairwise adjacent vertices. An independent set
independent set

is a set of pairwise nonadjacent

vertices. A matching (perfect)

matching

M of G is a subset of E(G) with no two edges in M sharing an endpoint. A perfect

matching M is a matching such that every v ∈ V (G) is an endpoint of some e ∈M . A path P is a sequence

of edges e1, e2, . . . , em that join a sequence of distinct vertices v1, v2, . . . , vm+1 such that vivi+1 = ei for

every i ∈ {1, . . . ,m}. Its length `(P )
`(P )

is |E(P )|. A v, w-path
v, w-path

is a path starting at v and ending at w. The

non-endpoints of a path are its internal vertices. Two paths are internally disjoint internally

disjoint

if, with the possible

exception of their endpoints, have no common vertices.

A graph G is connected connectedif there is a v, w-path for every pair v, w ∈ V (G); otherwise, it is disconnected.

The components componentsof G are its maximal connected subgraphs. Hence, if G is connected, then it has a single
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component: itself. A component is trivial trivialif it is an isolated vertex. For all v, w ∈ V (G), the length of the

shortest v, w-path in G is denoted dist(v, w) dist(v, w). If there is no v, w-path, then dist(v, w) =∞. The diameter of

G, denoted diam(G) diam(G), is maxv,w∈V (G) dist(v, w). For brevity, we denote the set {1, 2, . . . , k} with [k].

1.2.1 Graph Classes

We now introduce relevant classes of graphs.

• Path pathon n vertices, Pn: A graph with vertices v1, v2, . . . , vn and edges v1v2, v2v3, . . . , vn−1vn; see

Figure 1.3e.

• Cycle cycleon n vertices, Cn: A graph with vertices v1, v2, . . . , vn and edges v1v2, v2v3, . . . , vn−1vn, vnv1; see

Figure 1.3a. A chord of a cycle C is an edge e /∈ E(C) with endpoints in V (C). A graph is chordal chordal

if every cycle of length at least 4 contains a chord. The girth girthof a graph is the length of its shortest

cycle. A tree treeis a connected graph with no cycles. A collection of trees is a forest.

• Complete graph completeon n vertices, Kn: A graph with vertices v1, . . . , vn and edges {vivj : 1 ≤ i < j ≤ n};

see Figure 1.3b.

• Bipartite graph bipartite: A graph whose vertex set can be partitioned into two independent sets, or parts, X

and Y ; see Figure 1.3c.

• Complete bipartite graph complete

bipartite

, Ks,t: A bipartite graph with parts X and Y such that |X| = s and |Y | = t,

and with edge set {xy : x ∈ X, y ∈ Y }; see Figure 1.3d.

• Planar graph planar: A graph that can be embedded (drawn without crossing edges) in the plane. Figures 1.3a,

1.3c, 1.3e, and 1.3f are planar. A planar graph together with an embedding is a plane graph. A planar

graph divides the plane into a set of regions called faces. The unbounded region is the outer face (outer) face.

A planar graph with an embedding such that all vertices lie on the outer face is outerplanar. Every

planar graph has an embedding with all edges straight.

• Toroidal toroidalgraph: A graph that can be embedded in the torus. All planar graphs are toroidal; see

Figure 1.3g. However, graphs like K5,K6,K7 are toroidal, but nonplanar.

• Cartesian product Cartesian

product

G H of graphs G and H: A graph with vertex set V (G) × V (H) and edge set

{(g, h)(g′, h′) : g = g′ and hh′ ∈ E(H), or h = h′ and gg′ ∈ E(G)}; see Figure 1.3g.
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• Tensor product Tensor productG × H of graphs G and H: A graph with vertex set V (G) × V (H) and edge set

{(g, h)(g′, h′) : gg′ ∈ E(G) and hh′ ∈ E(H)}; see Figure 1.3c.

• Generalized n-dimensional hypercube hypercube, Qn(S): A graph where vertices represent sequences of length n

with entries in S, and two vertices are adjacent if their sequences differ in a single entry; see Figure 1.3f.

• k-degenerate k-degenerategraph: A graph for which there exists a degeneracy ordering σ of its vertices; that is,

every vertex has at most k neighbors earlier in σ. Equivalently, every subgraph of a k-degenerate

graph contains a vertex v with d(v) ≤ k. The degeneracy of a graph G, denoted deg(G) deg(G), is the smallest

integer k such that G is k-degenerate. Alternatively, deg(G) := maxH⊆G δ(H). The following is well-

known: Toroidal graphs are 6-degenerate, planar graphs are 5-degenerate, triangle-free planar graphs

are 3-degenerate, planar graphs of girth at least 6 are 2-degenerate, and forests are 1-degenerate.

(a) C5 (b) K5 (c) P2 × C3
∼= C6 (d) K3,3

(e) P3

00 01

10 11

(f) Q2({0, 1}) (g) C3 C3

Figure 1.3: A gallery of graphs

1.3 Graph Coloring

We now briefly introduce graph coloring and some of its many applications.

Graph coloring first arose when Francis Guthrie was trying to color a map of the counties of England

so that every two regions sharing a common border received distinct colors. It is said that he conjectured

four colors are enough, and that Guthrie’s brother relayed the problem to Augustus De Morgan who, in

turn, relayed it to William Hamilton in a letter in 1852. This led to the famous Four-Color problem which
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considers coloring the faces of a planar graph. A proof for four colors was first claimed by Alfred Kempe in

1879, and was believed to be correct until 1890 when Percy John Heawood pointed out a flaw in Kempe’s

argument. However, using Kempe’s ideas, Heawood proved that five colors are sufficient. In 1976, Kenneth

Appel and Wolfgang Haken finally proved the Four-Color problem [4]. Their result, the Four-Color Theorem,

is renowned for being the first major result to be proved using a computer.

A k-coloring k-coloringof G is a mapping ϕ : V (G) → [k]. It is proper if ϕ(v) 6= ϕ(w) whenever vw ∈ E(G); see

Figure 1.4(left). A color class color classof ϕ is the preimage of some color α in ϕ; that is, the set of vertices colored

with α in ϕ. A graph G is k-colorable if there exists a proper k-coloring ϕ of G. The chromatic number of

G, denoted χ(G) χ(G), is the smallest integer k such that G is k-colorable. If χ(G) = k, then G is k-chromatic.

Further, G is k-critical k-criticalif χ(G) = k but χ(G− v) < k for every v ∈ V (G).

Remark 1.1. Throughout this dissertation, we assume all colorings are proper unless stated otherwise.

One widely studied generalization of coloring is list-coloring. List-coloring arises in channel allocation for

wireless networks or frequency allocation for stations [62, 42]. A list-assignment list-assignmentL of G assigns a list of colors

L(v) to every v ∈ V (G); see Figure 1.4(right). An L-coloring L-coloringof G is a proper coloring ϕ where ϕ(v) ∈ L(v)

for every v ∈ V (G). For a given function f : V (G) → N, an f -assignment of G is a list-assignment L

such that |L(v)| = f(v) for every v ∈ V (G). A graph G is f -choosable if it has an L-coloring for every

f -assignment L. For a positive integer k, a k-assignment k-/degree-

assignment

of G is a list-assignment L such that |L(v)| = k for

every v ∈ V (G). A graph G is k-choosable if G has an L-coloring for every k-assignment L. If |L(v)| = d(v)

for every v ∈ V (G), then L is a degree-assignment
k-/degree-

choosable
. If G has an L-coloring for every degree-assignment L,

then G is degree-choosable. The choice number (also called list-chromatic number), denoted χl(G) χl(G), is the

smallest integer k such that G is k-choosable.

{1,2,4}

{1,2,3}

1 2

3

{1,3,4} {1,2,4}

{1,2,3}

1 2

3

Figure 1.4: Left: A 3-coloring of K3. Right: A 3-assignment L of K3 along with an L-coloring (underlined
in lists and shown on vertices).

Graph coloring can be applied to several real-world problems. For example, consider the problem of

assigning time slots for a given number of college classes with the caveat that certain pairs of classes cannot

be assigned the same time slot (perhaps both classes are core requirements for the same group of students).
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The classes can be viewed as the vertices of a graph, and two classes are joined by an edge if they cannot be

assigned the same time slot. A coloring of this graph represents a valid time slot assignment. In this case,

the colors correspond to time slots. Similarly, various other scheduling problems, such as aircraft-to-flight

assignments, can be modeled as graph coloring problems [51]. Graph coloring can also be used to model

radio frequency assignments [41] and register allocation [23], among many others.

1.4 Kempe Swaps

In this section we introduce the “color swap” operation used to transform one coloring of a graph into

another.

Recall that Alfred Kempe provided a flawed “proof” for the Four-Color problem. Though his attempt

was unsuccessful, his ideas were later used by Heawood to prove the Five-Color Theorem and played a

crucial role in the eventual correct proofs of the Four-Color problem. One of those ideas introduced by their

namesake is Kempe swaps Kempe swaps.

4

2 3

3

1 2

ϕ1

4

1 3

3

2 2

ϕ2

4

1 3

3

2 1

ϕ3

Figure 1.5: A 1,2-Kempe swap is performed on the 1,2-Kempe component (bold) in ϕ1 to obtain ϕ2.
A trivial 1,2-Kempe swap is performed on the trivial 1,2-Kempe component (bold) in ϕ2 to obtain ϕ3.

Given a coloring ϕ of G, let G′ be the subgraph induced by vertices colored α and β. An α, β-Kempe swap

exchanges the colors on the vertices of a component of G′. Each component of G′ is called an α, β-Kempe

component (or Kempe component Kempe

component

); see Figure 1.5. An α, β-Kempe swap at x exchanges the colors on the

Kempe component of G′ containing x (the terminology implicitly implies that the color of x changes from

α to β). Performing a Kempe swap on a proper k-coloring ϕ of G results in a k-coloring ϕ′ that is also

proper. Equivalently, the property of being proper for a coloring is preserved under Kempe swaps. For a

given coloring ϕ of G and a vertex x ∈ V (G) with ϕ(x) = α, if β /∈ ∪y∈N(x)ϕ(y), then we can recolor x

with β. Such an α, β-Kempe swap is trivial trivialsince the α, β-Kempe component containing x is trivial; see

Figure 1.5. Analogously, we can also define Kempe swaps for list-coloring. Given a list-assignment L of G,
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an L-valid Kempe swap L-valid Kempe

swap

is a Kempe swap that produces an L-coloring; see Figure 1.6. That is, the vertices

of the resulting coloring must be colored from their lists.

{1,3,4} {1,2,4}

{1,2,3}

1 2

3

ϕ1

{1,3,4} {1,2,4}

{1,2,3}

3 2

1

ϕ2

{1,3,4} {1,2,4}

{1,2,3}

1 2

3

ϕ1

{1,3,4} {1,2,4}

{1,2,3}

1 3

2

ϕ2

Figure 1.6: Left: An L-valid Kempe swap (bold) from ϕ1 to ϕ2. Right: Not an L-valid Kempe swap from
ϕ1 to ϕ2 since the vertex with list {1, 2, 4} is colored 3 in ϕ2, but 3 /∈ {1, 2, 4}.

In addition to being used in the proof of the Five-Color Theorem, Kempe swaps are used for extending

a coloring of a subgraph of G to a coloring of all of G [2]. They have also been used in problems related

to the strong immersion of complete graphs [43], which is the idea of mapping the vertices of the complete

graph to those of a graph G such that edges in the complete graph correspond to internally disjoint paths

in G. Moreover, Kempe swaps can be defined for edge-colorings12 and are significant in their study. Kempe

components in that context are well-understood because they are always either cycles or paths. In 1964,

Vizing famously proved13 that χ′(G) ≤ ∆(G) + 1 for every simple graph G using Kempe swaps [61]. In

fact, he proved more strongly that every k-edge-coloring with k ≥ ∆(G) + 1 can be transformed into a

(∆(G) + 1)-edge-coloring via Kempe swaps. A year later he conjectured that every k-edge-coloring with

k ≥ χ′(G) can be transformed into a χ′(G)-edge coloring. In 2023, Narboni proved Vizing’s conjecture with

the help of Kempe swaps [57].

1.5 Computational Complexity

In this section, we briefly discuss computational complexity and introduce some relevant complexity classes.

Given a decision problem D, a fixed input of D defines an instance instanceI of D. For example, let D be the

problem which asks the following: Given a set of integers S and an integer k, is there a subset S′ of S such

that
∑
s′∈S′ s

′ = k? This is called the subset sum problem. The input of D is a pair (S, k) where S is a set

12An edge-coloring is an assignment of colors to the edges of a graph such that edges which share an endpoint get different
colors. A Kempe swap, therefore, exchanges the colors on the edges of a Kempe component of a subgraph induced by colored
edges.

13Since the edges of a ∆(G)-vertex must get distinct colors, this implies that every simple graph G satisfies χ′(G) = ∆(G)
(called class 1 graphs) or χ′(G) = ∆(G) + 1 (called class 2 graphs).
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of integers and k is an integer, and I = ({−3, 2, 7, 10}, 9) is an instance of D. An instance
YES-/NO-

instance
I is a YES-instance

(resp. NO-instance) if the answer for I is Yes (resp. No). A certificate
certificate

C for an instance I of D is a “proof”

for I. For example, the instance I defined above is a YES-instance and C = {2, 7} is a certificate for I since

2 + 7 = 9. A verifier verifieris an algorithm that can verify the correctness of certificates. In particular, a verifier

for D would be an algorithm V which takes a set of numbers and a value k as input, adds up the numbers,

then checks that their sum is equal to k. So, V adds up 2 and 7 and checks that their sum is 9.

The following are the most widely studied and most pertinent complexity classes for this dissertation.

The complexity class P Pis the set of all decision problems that can be solved by a deterministic Turing

machine in polynomial time. The complexity class NP NPis the set of all decision problems which can be solved

by a nondeterministic Turing machine (A “lucky” machine which can always “guess” a correct solution for

YES-instances) in polynomial time. Alternatively, NP is the set of all decision problems D such that, for

every YES-instance I of D, there exists a certificate CI and verifier VD where VD can verify CI in polynomial

time. In other words, NP is the set of decision problems whose YES-instances can be “checked” in polynomial

time. The complexity class co-NP co-NPis the set of all decision problems D such that, for every NO-instance

I of D, there exists a certificate CI and polynomial-time verifier VD. Equivalently, a problem belongs to

co-NP if and only if its complement belongs to NP. The complexity class PSPACE PSPACEis the set of all decision

problems that can be solved by a Turing machine in polynomial space (computer memory). Analogously, we

can define complexity classes NPSPACE and co-NPSPACE.

Clearly14, P ⊆ (NP ∩ co-NP) and (NP ∪ co-NP) ⊆ PSPACE. Furthermore, note that it is not necessary

to specify whether the Turing machine for a problem in PSPACE is deterministic or nondeterministic. This

is because PSPACE = NPSPACE, by Savitch’s Theorem [60]. In contrast, it is not known whether P = NP

or whether NP = PSPACE, though it is widely believed that both statements are false. In fact, the former

statement is one of the biggest problems in theoretical computer science and is featured as one of seven

problems selected by the Clay Mathematics Institute, called the Millennium Prize Problems, each of which

has an attached monetary prize of one million dollars!

Problem A is reducible to problem B, or there is a reduction reductionfrom A to B, if every instance of A can

be transformed into an instance of B while preserving YES-instances. More precisely, A is reducible to B if

there exists an algorithm that can convert every instance IA of A into an instance IB of B such that IA is a

YES-instance if and only if IB is a YES-instance. The notion of reduction brings about the notion of hardness hardness

in computational complexity, which measures how hard a problem is with respect to other problems. For a

14Checking all possible computations of a nondeterministic Turing machine can be done in polynomial space.
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complexity class X, problem A is X-hard X-hardif every problem B in X has a reduction to A. In particular, if X

is any of the aforementioned complexity classes, then the reduction must be polynomial-time. If A belongs

to X and is X-hard, then A is X-complete X-complete. Observe that if there exists a polynomial-time algorithm which

can solve A, and B is polynomial-time reducible to A, then there exists a polynomial-time algorithm which

can solve B as well. So, an X-hard problem is viewed as being “at least as hard as” every other problem in

X. However, an X-hard problem need not belong to X. For example, the halting problem15 is NP-hard

but does not belong to NP. In contrast, SAT16 is the first proven NP-complete problem.

15Given an encoding of a Turing machine M and an input w, does M halt on w?
16Given a Boolean formula, is there a satisfying assignment?
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Chapter 2

Coloring Reconfiguration

In this chapter, we discuss two key models for the k-coloring reconfiguration problem based on different

definitions of the transformation rule, and we explore the associated reconfiguration graph for each. We also

introduce list-coloring reconfiguration and briefly review the literature for both coloring and list-coloring

reconfiguration under both definitions of the transformation rule.

Recall that the k-coloring reconfiguration problem is derived from the k-coloring search problem

which, given a graph G and a positive integer k, finds a k-coloring of G. The solutions for k-coloring

are the states of k-coloring reconfiguration, and in Section 1.4 we describe an operation which can

transform one k-coloring (state) into another: Kempe swaps. We now introduce two different models for

the k-coloring reconfiguration problem with slight variations in the transformation rule defined using

Kempe swaps.

The first model is the recoloring model recoloring model, where the transformation rule is defined to be a trivial Kempe

swap. So, any two consecutive colorings in a sequence must differ in color on a single vertex. A move in this

case is a recoloring since we recolor a single vertex, and a sequence of recolorings is a recoloring sequence.

Two k-colorings ϕ and ϕ0 are k-equivalent k-equivalentif there exists a recoloring sequence S using at most k colors (i.e.

α, β ∈ [k] for every trivial α, β-Kempe swap)1 that transforms one into the other. In other words, S is a

sequence ϕ = ϕ1, . . . , ϕ2, . . . , ϕt = ϕ0, where each ϕi+1 differs from ϕi by a single recoloring.

The second model is the Kempe swap model Kempe swap

model

, where the transformation rule is defined to be a Kempe

1Note that we bound the number of colors by k since otherwise, we can always construct a recoloring sequence from ϕ1 to
ϕ2 by introducing |V (G)| more colors, recoloring each vertex with a distinct new color in ϕ1, then recoloring vertices with their
desired color in ϕ2.
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swap (not necessarily trivial). A move in this case is simply a Kempe swap. Two k-colorings ϕ1 and ϕ2 are

k-equivalent if there exists a sequence S of Kempe swaps using at most k colors that transforms one into the

other.

For k-colorings ϕ1 and ϕ2, we write ϕ1 ∼k ϕ2 if ϕ1 is k-equivalent to ϕ2. Further, since our moves are

reversible, the relation ∼k is reflexive (ϕ1 ∼k ϕ1), symmetric (if ϕ1 ∼k ϕ2, then ϕ2 ∼k ϕ1), and transitive (if

ϕ1 ∼k ϕ2 and ϕ2 ∼k ϕ3, then ϕ1 ∼k ϕ3). Thus, ∼k is an equivalence relation, which motivates its name. A

graph G is k-mixing k-mixingif its k-colorings are all pairwise k-equivalent. Let L1 and L2 be two sets of k-colorings

of G. The set L1 mixes mixesif k-colorings in L1 are pairwise k-equivalent. The set L1 mixes with L2 if ϕ1 ∼k ϕ2

for every ϕ1 ∈ L1 and ϕ2 ∈ L2. The use of the term “mix” in these definitions is motivated by the rapid

mixing of Markov chains, a topic which is closely related to coloring reconfiguration and which we discuss

in Section 2.4.

Since performing a Kempe swap on a proper coloring of a graph results in another proper coloring, we

are guaranteed that each intermediate state in a sequence for k-coloring reconfiguration is a solution

to k-coloring. However, not every k-coloring of G can be transformed to every other solely using Kempe

swaps with at most k colors. In particular, for the recoloring model, it is not always possible to perform

a recoloring. A coloring in this model is frozen frozenif no vertex can be recolored. Figure 2.1 shows two frozen

3-colorings of K2 K3, or the 3-prism; thus, those colorings are not 3-equivalent. On the other hand, it is

always possible to perform a Kempe swap on a coloring. Yet, that still does not guarantee the equivalence

of colorings. That is, frozen colorings, though defined differently, also exist for the Kempe swap model.

A coloring in this model is frozen if for every pair of colors α and β, the subgraph induced by vertices

colored α and β consists of a single Kempe component. Both 3-colorings in Figure 2.1 are also frozen

for the Kempe swap model; thus, no sequence of Kempe swaps can transform one into the other. This is

because the vertex sets of the three color classes (in each coloring) are fixed under Kempe swaps, but differ

in these two colorings. Constructing frozen colorings is the primary method we know for showing a graph

has nonequivalent colorings.

1 2

3

2 3

1

1 2

3

3 1

2

Figure 2.1: Two 3-colorings of the 3-prism that are frozen for both the recoloring and Kempe swap models.
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Remark 2.1. By slightly abusing terminology, we use “k-equivalent,” “k-mixing,” and “frozen” in both

models.

The reconfiguration graph associated with the k-coloring reconfiguration problem is denoted Ck(G).

It has as its vertices the k-colorings of G, and two vertices in Ck(G) are adjacent if they differ by a single

move, where the type of move depends on the model. Let u and v be vertices in Ck(G) and let ϕu and ϕv be

their corresponding k-colorings in G. Under the recoloring model, u is adjacent to v if ϕu can be obtained

from ϕv by a single recoloring, i.e., if ϕu differs from ϕv on a single vertex. On the other hand, under the

Kempe swap model, u is adjacent to v if ϕu can be obtained from ϕv by a single Kempe swap.

Figure 2.2 shows the reconfiguration graph under both models for all 3-colorings of K3. Observe that

C3(K3) is edgeless in the recoloring model since each coloring is frozen; see Figure 2.2(center). In contrast,

C3(K3) is connected in the Kempe swap model, which implies K3 is 3-mixing; see Figure 2.2(right). By the

definition of recoloring, a path in Ck(G) from u to v in the recoloring model implies a path in the Kempe

swap model as well. In fact, let Crk(G) and CKsk (G) denote, respectively, Ck(G) in the recoloring and Kempe

swap models. We have that Crk(G) is a spanning subgraph of CKsk (G). So, if Crk(G) is connected, then so is

CKsk (G). The converse, however, is often false, as shown in Figure 2.2. When a statement applies to both

models, or the model is understood, we omit the superscripts for the reconfiguration graph.

Analyzing problems of reachability and connectedness in the reconfiguration graph, is equivalent to finding

reconfiguration sequences for the k-coloring reconfiguration problem. That is, ϕu ∼k ϕv if there exists

a path between u and v in Ck(G). Furthermore, if Ck(G) is connected, then every pair of k-colorings of G

are k-equivalent. This motivates the following problems with respect to the model.

k-color path

Instance: A graph G, a positive integer k, and two k-colorings ϕ1 and ϕ2 of G.

Question: Is ϕ1 ∼k ϕ2, i.e., is there a path between the corresponding vertices of ϕ1 and ϕ2 in Ck(G)?

k-mixing

Instance: A graph G and a positive integer k.

Question: Is G k-mixing, i.e., is Ck(G) connected?

Recall that list-coloring is a generalization of coloring. As a result, we can define the list-coloring

reconfiguration problem which, given a graph G and a list-assignment L, asks if it is possible to move

between different L-colorings of G. Recall also the operation defined for list-coloring reconfiguration, L-valid
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Figure 2.2: Left: All 3-colorings of K3. Center: The reconfiguration graph C3(K3) under the recoloring
model. Right: The reconfiguration graph C3(K3) under the Kempe swap model.

Kempe swaps, which work almost exactly like Kempe swaps except that we must ensure that swaps we

perform always recolor vertices with allowable colors. Similar to coloring reconfiguration, we can define an

L-valid recoloring model and an L-valid Kempe swap model for list-coloring reconfiguration. Two L-colorings

ϕ1 and ϕ2 are L-equivalent L-equivalent, denoted ∼L, if there exists a sequence of L-valid recolorings (or Kempe swaps,

depending on the model) that transforms one into the other. A graph G is L-swappable L-swappableif its L-colorings

are pairwise L-equivalent. It is k-swappable k-swappableif it is L-swappable for every k-assignment L. Similarly, it is

degree-swappable degree-

swappable

if it is L-swappable for every degree-assignment L. The list-coloring reconfiguration graph

for a given list-assignment L (and for each model) is CL(G). Finally, the following problems are analogous

to those for coloring reconfiguration.

list-color path

Instance: A graph G, a list-assignment L, and two L-colorings ϕ1 and ϕ2 of G.

Question: Is ϕ1 ∼L ϕ2?

L-swappable (resp. k-swappable)

Instance: A graph G and a list-assignment L (resp. a positive integer k).

Question: Is G L-swappable (resp. k-swappable)?

Next we review relevant results in the literature on coloring and list-coloring reconfiguration for both
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models. We begin by making a few simple observations which are true for both models.

Observation 2.1. V (Ck(G)) 6= ∅ if and only if k ≥ χ(G). Therefore, we only consider Ck(G) for k ≥ χ(G).

Similarly, we only consider CL(G) for list-assignments L such that G admits an L-coloring; in particular,

for k-swappability results, we only consider the case k ≥ χl(G).

Observation 2.2. For every l < k, an l-coloring of G is also a k-coloring of G. Therefore, every edge in

Ck(G) is also in Ck+1(G) and Ck(G) is an induced subgraph of Ck+1(G).

Observation 2.3. If |V (G)| = n, then Crk(G) is an induced subgraph of Qn([k]).

Indeed, by labeling the vertices v1, . . . , vn, each k-coloring ϕ corresponding to a vertex in Crk(G) can be

viewed as a string of length n with entries in [k], where the entries represent the color of each vertex in ϕ. By

the definition of Qn([k]), each such string corresponds2 to a vertex in Qn([k]). Since the adjacency relation

is defined similarly for both Ck(G) and Qn([k]), the observation follows. For the remainder of this chapter,

let n := |V (G)| for any graph G.

2.1 Recoloring Model

In light of Observation 2.1, a natural first question to ask is whether Ck(G) is connected for values of k which

are sufficiently large compared to χ(G). Cereceda et al. [20] proved this is false.

Theorem 2.1 ([20]). There exists no function f such that Ck(G) is connected for every graph G whenever

k ≥ f(χ(G)).

1 2 3

1 2 3 m

m

Figure 2.3: A frozen m-coloring of Lm.

In particular, they constructed a class of 2-chromatic graphs Lm with m ≥ 3 for which Cm(Lm) is

disconnected. For m ≥ 3, let Lm be the graph formed from Km,m (with parts X and Y ) by deleting a perfect

2The converse is not true. For example, the string 1, 1, . . . , 1 does not correspond to a proper k-coloring of G, i.e., it does
not correspond to a vertex in Ck(G).
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matching. More precisely, let X := {x1, x2, . . . , xm} and Y := {y1, y2, . . . , ym}, and let V (Lm) := X ∪ Y

and E(Lm) := {xiyj |1 ≤ i, j ≤ m, i 6= j}. Consider the m-coloring ϕ of Lm where ϕ(xi) = ϕ(yi) = i; see

Figure 2.3. Since every color in [m] appears on N [v] for every v ∈ V (Lm), the coloring ϕ is frozen in Cm(Lm).

Thus, Lm is not m-mixing. Interestingly, Lm is k-mixing3 for all other values of k.

Proposition 2.1 ([20]). Ck(Lm) is connected whenever k ≥ 3 and k 6= m.

We will show that the set of 2-colorings of Lm mixes, and that each k-coloring of Lm is k-equivalent to

some 2-coloring.

Proof. Fix k such that k ≥ 3 and k 6= m. Let L be the set of 2-colorings of Lm in Ck(Lm). Note that L

mixes. To see this, pick arbitrary ϕ1, ϕ2 ∈ L. For i ∈ [2], let αi and βi be the colors used in ϕi on X and

Y , respectively. Since k ≥ 3, there exists a color γ /∈ {α1, β1}. If γ ∈ {α2, β2}, say γ = α2, then recolor X

with γ and recolor Y with β2 to obtain ϕ2. Otherwise, recolor X with γ, recolor Y with β2, and recolor X

with α2 to obtain ϕ2. So, L mixes.

Now consider ϕ /∈ L. To show that Ck(Lm) is connected, it suffices to show that ϕ ∼k ϕ0 for some ϕ0 ∈ L.

Observe that if k < m, then there exists two vertices in X with a common color in ϕ, by Pigeonhole. Such

a color does not appear on Y , by the definition of Lm. Similarly, if k > m, then some color does not appear

on Y , by Pigeonhole. Call this color α. Recolor X with α in ϕ then recolor Y with some β ∈ [k] \ {α}. The

resulting 2-coloring ϕ0 is in L.

In contrast to Theorem 2.1, if k is sufficiently large compared to ∆(G), then Ck(G) is connected. Indeed,

Jerrum [46] proved that every graph G is k-mixing whenever k ≥ ∆(G) + 2. In fact, a closer look at the

proof of this result reveals that we can do better. The proof relies on always being able to recolor a vertex

to a color different from the colors on its closed neighborhood. Since k ≥ ∆(G) + 2, there is always an extra

color to use. Moreover, this is true for every v ∈ V (G) since d(v) ≤ ∆(G). But, given that the proof is by

induction on n, it is enough that G contains one vertex for which this property is true. Fortunately, a class

of graphs with such a vertex exists: the class of degenerate graphs. Recall that if G is d-degenerate, then it

contains a vertex v with d(v) ≤ d. Hence, as shown by Dyer et al. [36], replacing ∆(G) with deg(G) gives a

stronger result. In fact, their result applies, more generally, for list-coloring.

Recall that G is L-swappable if its L-colorings are pairwise L-equivalent.

3Note that Lm is clearly not 2-mixing since C2(Lm) consists of two isolated vertices; namely, the frozen 2-colorings ϕ1 and
ϕ2 defined by ϕi(X) = i and ϕi(Y ) = 3− i for each i ∈ [2].
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Theorem 2.2. For every graph G and list-assignment L, if |L(v)| ≥ deg(G) + 2, then G is L-swappable.

Proof. Recall that n := |V (G)|. We use induction on n. If n = 1, the result is trivially true. So, assume

n ≥ 2. Since G is deg(G)-degenerate, there exists v ∈ V (G) with d(v) ≤ deg(G). Let G′ := G − v. Note

that deg(G′) ≤ deg(G), so |L(w)| ≥ deg(G′) + 2 for every w ∈ V (G′). By induction, G′ is L-swappable. Let

ϕ and ϕ0 be two L-colorings of G, and let ϕ′ and ϕ′0 be their restrictions to G′, respectively. It suffices to

show that there exists an L-valid recoloring sequence from ϕ to ϕ0.

Since G′ is L-swappable, there exists an L-valid recoloring sequence ϕ′ = ϕ′1, . . . , ϕ
′
t = ϕ′0 for some t ∈ N.

We will extend each ϕ′i of G′ to an L-coloring ϕi of G to obtain an L-valid recoloring sequence from ϕ

to ϕ0. Suppose ϕ′i+1 differs from ϕ′i by an L-valid recoloring of a vertex u from α to β. If u /∈ N(v) or

ϕi(v) 6= β, then we perform the same recoloring of u on ϕi to obtain ϕi+1. Otherwise, we recolor v with

a color c ∈ L(v) \ ∪w∈N [v]ϕ
′
i(w). Such a color exists since |L(v)| ≥ deg(G) + 2 and | ∪w∈N [v] ϕ

′
i(w)| ≤

d(v) + 1 ≤ deg(G) + 1. Next we perform the same recoloring of u to obtain ϕi+1. We repeat this process for

each i ∈ [t − 1] to obtain a recoloring sequence ϕ = ϕ1, . . . , ϕt. Finally, if ϕt 6= ϕ0, we recolor v in ϕt with

its color in ϕ0.

Clearly, Theorem 2.2 subsumes Jerrum’s result since deg(G) ≤ ∆(G). Moreover, this bound is best

possible since Km and Lm are both (m− 1)-degenerate but not m-mixing. In fact, this bound is sharp even

for restricted classes of graphs. Indeed, a class of degenerate graphs often studied for its well-understood

structural properties is the class of planar graphs. Thus, it is common to consider the implications of

degeneracy results on this class (along with its subclasses). Recall that planar graphs are 5-degenerate,

triangle-free planar graphs are 3-degenerate, and planar graphs with girth at least 6 are 2-degenerate. As

a result, Theorem 2.2 implies G is k-mixing whenever G is planar and k ≥ 7, whenever G is triangle-free

planar and k ≥ 5, and whenever G is planar with girth at least 6 and k ≥ 4. However, Figure 2.4(left) shows

a frozen 6-coloring of a planar graph, Figure 2.4(center) shows a frozen 4-coloring of a triangle-free planar

graph4 and Figure 2.4(right) shows a frozen 3-coloring5 of a planar graph with girth at least 6.

It is interesting to note the techniques used to show that a graph is k-mixing (or L-swappable). The-

orem 2.2 uses induction and extension. We delete some vertices of G, get a reconfiguration sequence by

induction for the smaller graph G′, then extend that sequence to a sequence in G. Typically, the deleted

subset of vertices is chosen to possess nice properties that guarantee the extension (for example, a vertex

4In contrast, Bartier et al. [7] showed that planar graphs with girth 5 are 4-mixing.
5This can be generalized to any cycle with length divisible by 3 and with a (1,2,3)-alternating coloring.
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Figure 2.4: Left: A frozen 6-coloring of an icosahedron. Center: A frozen 4-coloring of Q3({0, 1}). Right:
A frozen 3-coloring of C6. (In each case, each color used appears in the closed neighborhood of each
vertex.)

with “few” neighbors, as in Theorem 2.2). Proposition 2.1 showcases another technique. The goal in this

case is to show that a subset of colorings L mixes, then show that every coloring not belonging to L mixes

with some coloring in L. Another key method uses reducible configurations, which are structures that cannot

occur in a minimial counterexample. More precisely, we fix a minimal6 counterexample G to the desired

result, then show that some structure H cannot be a subgraph of G; otherwise, an induction (using the

minimality of G) and extension (deleting H) approach is possible. Ultimately, to prove the result, we must

(1) compile a collection of reducible configurations – as well as, show that they are reducible; that is, their

presence in G implies the result – and (2) show that every minimal counterexample contains one. Achieving

(1) is usually done through a careful analysis of the structure of G and its colorings. Whereas, achieving

(2) is often done via discharging, a weight distribution method mainly used on planar graphs. The idea

with discharging is to assign weights to elements of G (for example, its vertices), then distribute the weights

amongst the elements according to some prescribed rules which designed assuming that G contains no copy

of H. Eventually, the aim is to show that the sum of the weights before and after the distribution is different,

a contradiction which implies that G does indeed contain some reducible configuration. We use a type of

reducible-configurations argument for all our results in Chapters 3–5, and we use discharging in Chapter 3.

As previously mentioned, apart from the connectedness of the reconfiguration graph, its diameter is

another area of interest. For k ≥ 4, Bonsma and Cereceda [13] showed there exists a class7 of graphs

Gk with k-equivalent k-colorings that require a recoloring sequence of length superpolynomial in n. In

contrast, Cereceda et al. [21] showed that if G is 3-colorable, then every component8 of C3(G) has diameter

O(n2). Interestingly, there are no known graphs for which the reconfiguration graph is connected and has

6“Minimal” here could refer to smallest number of vertices/edges, or smallest value of some function/parameter with respect
to the graph.

7Such a class of graphs exists even when restricted to bipartite, planar, and planar bipartite graphs [13].
8They also exhibit 3-colorings for which a sequence of length Ω(n2) is needed; thus, the bound is tight.

23



superpolynomial diameter. In fact, Cereceda [19] conjectured that, not only is the reconfiguration graph

connected for degenerate graphs, but its diameter is actually quadratic.

Cereceda’s Conjecture ([19]). For every graph G, if k ≥ deg(G) + 2, then diam(Ck(G)) is O(n2).

Observe that the algorithmic proof of Theorem 2.2 does imply a bound on the length of reconfiguration

sequences; unfortunately, that bound is exponential in n. So, the conjecture suggests a major improvement.

Furthermore, if the conjecture is true, then the bound is sharp. Indeed, recall that paths, and more generally

forests, are 1-degenerate. Bonamy et al. [12] showed that diam(C3(Pn)) is Ω(n2); in fact, Θ(n2). More

generally, they showed the bound is tight for chordal graphs. Despite multiple attempts at proving the

conjecture, it remains open9 even for deg(G) = 2. Nonetheless, some partial results are known. Cereceda [19]

showed the conjecture10 is true for k ≥ ∆(G) + 2 and for k ≥ 2 deg(G) + 1. The former case confirms

the conjecture for regular graphs G since deg(G) = ∆(G). Perhaps the most significant partial result of

Cereceda’s Conjecture was by Bousquet and Heinrich [15] who showed the following.

Theorem 2.3. For every graph G, if k ≥ deg(G) + 2, then diam(Ck(G)) is O(ndeg(G)+1). Furthermore, if

k ≥ 3
2 (deg(G) + 1), then diam(Ck(G)) is O(n2).

For planar graphs, Theorem 2.3 implies diameter O(n6) whenever k ≥ 7 and diameter O(n2) whenever

k ≥ 9. Similarly, for triangle-free planar graphs11 it implies diameters O(n4) and O(n2), respectively,

whenever k ≥ 5 and k ≥ 6. Lastly, for planar graphs with girth at least 6 it implies diameters O(n3) and

O(n2), respectively, whenever k ≥ 4 and k ≥ 5. Furthermore, their second result improves Cereceda’s [19]

bound of 2 deg(G) + 1 on k for a quadratic diameter. Surprisingly, Bousquet and Perarnau [16] proved a

linear diameter is possible with one more color. What’s more, their result can be generalized to list-coloring.

Theorem 2.4. For every graph G and list-assignment L, if |L(v)| ≥ 2 deg(G) + 2 for every v ∈ V (G), then

diam(CL(G)) is O(n).

We include the proof in the spirit of introducing more of the techniques used for solving coloring recon-

figuration problems. In particular, one of the tools used for solving problems relating to the diameter of the

reconfiguration graph is the following lemma from which the proof of Theorem 2.4 follows.

Lemma 2.1. Let G be a graph, L be a list-assignment of G, and ϕ and ϕ0 be two L-colorings of G. Fix

v ∈ V (G) and let G′ := G− v. Further, let ϕ′ and ϕ′0 be the restrictions of ϕ and ϕ0 to G′, respectively. If

9For deg(G) = 1, i.e. for forests, the conjecture follows from [12].
10For k ≥ ∆(G) + 2, the bound on the diameter of the reconfiguration graph was imrpoved to O(n), by Cambie et al. [17].
11The authors also proved diam(C5(G)) is O(n2) for bipartite planar graphs G; thus, improving the bound k ≥ 6 for this

subclass of triangle-free graphs.
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there exists an L-valid recoloring sequence from ϕ′ to ϕ′0 which recolors every w ∈ N(v) at most c times, then

it can be extended to an L-valid recoloring sequence from ϕ to ϕ0 which recolors v at most d c·d(v)
|L(v)|−d(v)−1e+1

times.

Proof. As in the proof of Theorem 2.2, the goal is to perform the same recoloring which transforms ϕ′i to

ϕ′i+1 on ϕi to obtain ϕi+1 if possible. This is only a problem if ϕ′i+1 differ from ϕ′i by a recoloring of vertex

u such that u ∈ N(v) and ϕ′i+1(u) = ϕi(v). In this case, we must first recolor v before recoloring u to obtain

ϕi+1. Note that v must avoid the colors on N [v]; that is, it must avoid at most |N [v]| = d(v) + 1 colors.

So, v can be recolored with at least |L(v)| − d(v)− 1 colors. Let T be the set of colors available for v. Since

|T | ≥ |L(v)| − d(v) − 1 and ϕi(v) /∈ T , there exists a color α ∈ T which is unused by the next d(v) + 1

recolorings of N(v). We recolor v with α, and therefore, avoid recoloring v for the next d(v) + 1 recolorings

of N(v). This gives an L-valid recoloring sequence ϕ = ϕ1, . . . , ϕt of G. Finally, we may need to recolor v

in ϕt to its color in ϕ0. This implies, in total, v is recolored d c·d(v)
|L(v)|−d(v)−1e+ 1 many times.

The idea in Lemma 2.1 is to use extension. But, instead of recoloring v arbitrarily from its list of available

colors, we strategically choose a color from the list which allows us to skip a proportion of the next recolorings

of N(v). Applying Lemma 2.1, it is now easy to prove Theorem 2.4.

Proof of Theorem 2.4. Note that the connectedness of CL(G) follows from Theorem 2.2. Let ϕ and ϕ0 be

two L-colorings of G, and let c := deg(G) + 1. We will show that every v ∈ V (G) is recolored at most c

times; thus, the number of total L-valid recolorings is at most cn and diam(CL(G)) is O(n).

We use induction on n. If n = 1, the result is trivially true. So, assume n ≥ 2. Since G is deg(G)-

degenerate, there exists v ∈ V (G) with d(v) ≤ deg(G). Let G′ := G− v, and let ϕ′ and ϕ′0 be, respectively,

the restrictions of ϕ and ϕ0 to G′. Observe that deg(G′) ≤ deg(G), so |L(w)| ≥ 2 deg(G′) + 2 for every

w ∈ V (G′). By induction, there is an L-valid recoloring sequence from ϕ′ to ϕ′0 which recolors every

w ∈ V (G′) at most c times. By Lemma 2.1, this can be extended to an L-valid recoloring sequence from ϕ

to ϕ0 which recolors v at most d c·d(v)
|L(v)|−d(v)−1e+ 1 ≤ d (deg(G)+1) deg(G)

2 deg(G)+2−deg(G)−1e+ 1 = deg(G) + 1 = c times.

Applying Theorem 2.4 to the aforementioned classes of planar graphs yields the following: diam(Ck(G))

is O(n) for: planar graphs G whenever k ≥ 12, triangle-free planar graphs G whenever k ≥ 8, and planar

graphs G with girth at least 6 whenever k ≥ 6. Furthermore, the following stronger results have been proved.

For planar graphs and triangle-free planar graphs, Dvořák and Feghali [32, 33] improved k ≥ 12 and k ≥ 8,
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respectively, to k ≥ 10 and k ≥ 7. For planar graphs with girth at least 6, Bartier et al. [7] improved k ≥ 6

to k ≥ 5.

It is natural to wonder whether any of these results on planar graphs can be generalized to list-coloring (of

course, the connectedness of CL(G) for any list-coloring generalizations follows directly from Theorem 2.2).

Bartier et al. [7] generalized the result of Dvořák and Feghali on planar graphs to list-coloring, but with one

extra color. More precisely, they showed that for every planar graph G and list-assignment L, if |L(v)| ≥ 11

for every v ∈ V (G), then diam(CL(G)) is O(n). Following this, Cranston [27] confirmed the list-coloring

version of their result for triangle-free planar graphs. That is, he showed that for every triangle-free planar

graph and list-assignment L, if |L(v)| ≥ 7 for every v ∈ V (G), then diam(CL(G)) is O(n).

We end this section with the following questions and open problems. Cereceda’s Conjecture is certainly

the most intriguing problem to work on given that it is still open even for small values of deg(G). However,

another interesting question to ponder is the following.

Question 2.1. If a c · n2 bound is true for Cereceda’s Conjecture, does c depend on deg(G)?

For the most part12, Theorem 2.3 seems to be the current best bound we have on the diameter of

the reconfiguration graph for Cereceda’s Conjecture. In particular, recall that if k ≥ 3
2 (deg(G) + 1), then

diam(Ck(G)) is O(n2). But more than that, Theorem 2.4 gives a linear diameter for k ≥ 2 deg(G) + 2. So, a

natural follow up question is:

Question 2.2. What can we conclude about diam(Ck(G)) for 3
2 (deg(G) + 1) ≤ k ≤ 2 deg(G) + 2? Can

we shrink the gap from either end, i.e., can we show that diam(Ck(G)) is O(n2) or O(n) for values of k,

respectively, larger than 3
2 (deg(G) + 1) or smaller than 2 deg(G) + 2 ?

Bartier et al. [7] conjectured the bound on k in Theorem 2.4 can be brought down to deg(G) + 3. This

is true for deg(G) = 1 since 2 deg(G) + 2 = deg(G) + 3, and true for outerplanar graphs [6]. Moreover, the

improved bounds of [32, 33, 7] on k for Theorem 2.4 seem to suggest the answer is Yes for all planar graphs.

Finally, we briefly remark on lower bounds for the diameter of the reconfiguration graph. It is easy to

see that a linear lower bound holds trivially for every graph G. Indeed, consider two colorings of G which

differ in color on every vertex (a coloring and some permutation of it). Clearly, any recoloring sequence must

recolor every vertex at least once. In terms of lower bounds on diam(Ck(G)) for k ≥ deg(G) + 2, apart from

Ω(n2) for k = deg(G) + 2 given by [12], no nontrivial lower bound is known for k ≥ deg(G) + 3, which poses

12Interestingly, the coefficient for chordal graphs in [12] does not depend on deg(G).
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another intriguing open problem.

2.2 Kempe Swap Model

We now shift our focus to the Kempe swap model. In this section, recall that terms such as “k-mixing” are

to be interpreted based on their definition for this model.

Once again, we see that χ(G) is not the best parameter to consider when studying the connectedness

of the reconfiguration graph. Similar to Lm in the recoloring model, for every s ≥ 3 and t > s, the graph

G := Ks × Kt has χ(G) = s and is s-mixing but not t-mixing. To see this, let V (Ks) := {v1, . . . , vs}

and V (Kt) := {w1, . . . , wt}, and let ϕs(vi, wj) := i and ϕt((vi, wj)) := j; see Figure 2.5. Clearly, a proper

coloring of G requires at least s colors13, so χ(G) = s. Moreover, observe that every subgraph induced by

two color classes in ϕs or ϕt is a complete bipartite graph minus a perfect matching, which is connected since

s, t ≥ 3. So, every α, β-Kempe swap in ϕs or ϕt simply permutes color classes α and β; that is, it permutes

the colors of two rows in ϕs or two columns in ϕt. Since ϕs is the only s-coloring of G up to permuting color

classes, G is s-mixing. However, ϕt is not14 the only t-coloring of G and ϕt is frozen, so G is not t-mixing.

1 1 1 1

2

333

2 2 2

3

ϕs

1 2 3 4

3

321

1 2 4

4

ϕt

Figure 2.5: Left: The only 3-coloring of K3×K4 up to permuting color classes. Right: A frozen 4-coloring
of K3 ×K4.

Since degenerate graphs seem to show great promise for the recoloring model, it is only reasonable to

explore degenerate graphs for the Kempe swap model as well. The most noteworthy result states that,

compared with the recoloring model, the Kempe swap model achieves connectedness of the reconfiguration

graph for degenerate graphs with one less color. Indeed, Las Vergnas and Meyniel [50] proved that deg(G)+1

colors suffice. Similar to Theorem 2.2, their result can be generalized to list-coloring.

13The largest set of vertices in a diagonal forms a clique of size s. More precisely, ω(G) = min{s, t} = s.
14Recolor some vertices of ϕs with colors s+ 1 through t.
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Theorem 2.5. For every graph G and list-assignment L, if |L(v)| ≥ deg(G) + 1, then G is L-swappable.

Since the proof closely resembles that of Theorem 2.2, we defer it to Chapter 5 (see Lemma 5.1 and

Corollary 5.1) where it is more useful. We remark, however, that the subtlety lies in the local effect each

operation has on the graph. Recoloring a vertex only affects that vertex. Thus, in the recoloring model, a

vertex must avoid the colors of its neighbors as well as its own color. In contrast, performing a Kempe swap

at a vertex typically affects that vertex and some of its neighbors (and possibly some other vertices). So, in

the Kempe swap model, a vertex ends up swapping colors with one of its neighbors, thereby only having to

avoid one color less than in the recoloring model.

An immediate consequence of Theorem 2.5 is that every planar graph is k-mixing whenever k ≥ 6.

Meyniel [53] extended this by proving that planar graphs are 5-mixing. This is best possible since Mo-

har [54] proved there exist planar graphs with arbitrarily many 4-colorings which are not 4-equivalent15; see

Figure 2.6. In contrast, he showed that all 3-colorable planar graphs are 4-mixing (also best possible due to

Figure 2.1). Finally, Feghali [38] showed that also every 4-critical planar graph is 4-mixing.

1 2

3

2 3

1

4 4

4

1 2

3

3 1

2

4 4

4

Figure 2.6: Two nonequivalent 4-colorings of a planar graph. Indeed, since the vertex sets of the four
color classes (in each 4-coloring) are fixed under Kempe swaps but differ in these two 4-colorings, both
4-colorings are frozen.

A natural continuation of Theorem 2.5 is to analyze the diameter of Ck(G) for k ≥ deg(G)+1. Motivated

by Theorem 2.5, Bonamy et al. [11] conjectured something similar to Cereceda’s Conjecture.

Conjecture 2.1. For every graph G, if k ≥ deg(G) + 1, then diam(Ck(G)) is O(n2).

Recall that results for the recoloring model imply the same for the Kempe swap model since Crk(G) is a

spanning subgraph of CKsk (G). So, Theorem 2.3 for the recoloring model implies polynomial diameter for

15Figure 2.6 is constructed from Figure 2.1 by adding a vertex to every 4-face. This can be used to construct arbitrarily many
4-colorings which are not 4-equivalent by repeatedly adding a copy of Figure 2.6 inside its inner most triangle.
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Ck(G) whenever k ≥ deg(G) + 2. On the other hand, the case k = deg(G) + 1 seems to be much harder to

tackle. Nevertheless, for planar graphs and regular graphs, polynomial and quadratic diameters are proved,

respectively, even when k = deg(G). For planar graphs G, Deschamps et al. [30] showed diam(C5(G)) is

O(nc) for some positive constant c and remarked that the proof can be adapted for a larger number of colors.

On the other hand, recall that deg(G) = ∆(G) for regular graphs G. Bonamy et al. [8] showed16 that if

k ≥ ∆(G) and G 6∼= K2 K3, then diam(Ck(G)) is O(n2).

We end this section with the following remark. Note that not much is known for the L-valid Kempe swap

model (as far as we know, Theorem 2.5 had not been previously proven, though it may have been intuitively

assumed to easily follow from the coloring version proven by Las Vergnas and Meyniel [50]), which suggests

an interesting direction of research. Our results in Chapter 5 serve as a first step toward further exploring

list-coloring for this model.

2.3 Complexity

Recall from the introduction that a popular line of research is to determine how hard it is to solve coloring

reconfiguration problems. In this section, we lay out the most important complexity results for coloring

reconfiguration.

As previously mentioned, the use of Kempe swaps for the k-coloring reconfiguration problem

guarantees that colorings are always proper. Moreover, we can check in polynomial time if a k-coloring

differs from another by a single Kempe swap (trivial or otherwise). This implies that there exists a verifier

which can check whether a sequence (certificate) for k-color path is a solution using polynomial space.

So, k-color path, and therefore k-mixing17, belong to NPSPACE. Thus, they also belong to PSPACE, by

Savitch’s Theorem. As a result, we are often interested in showing that these problems belong to more

restrictive classes like P, NP, and co-NP, or showing that they are PSPACE-complete.

For both the recoloring and Kempe swap models, observe that 2-color path and 2-mixing are trivially

in P.

For the recoloring model, Cereceda et al. [21] showed that 3-color path is in P. They also showed [22]

3-mixing is co-NP-complete, but is in P when restricted to bipartite planar graphs. For k ≥ 4, Bonsma and

Cereceda [13] proved that k-color path is PSPACE-complete. Moreover, the problem remains PSPACE-

16The connectedness of Ck(G) for k = ∆(G) is a consequence of [40] and [11].
17In the case of k-mixing, we simply run the algorithm for k-color path on all pairs of k-colorings.

29



complete even for bipartite graphs, planar graphs whenever 4 ≤ k ≤ 6, and bipartite planar graphs when

k = 4. For k ≥ 4, Bousquet [14] proved k-mixing is co-NP-hard, though he conjectured it is PSPACE-

complete.

For the Kempe swap model, Bonamy et al. [10] proved that k-color path for k ≥ 3 is PSPACE-

complete. Furthermore, it remains PSPACE-complete even when restricted to k = 3 and planar graphs G

with ∆(G) = 6. They also showed that both k-color path and k-mixing are in P for chordal graphs,

bipartite graphs, and graphs with no induced P4, or cographs. In contrast, no complexity results are known

for k-mixing.

Our Results. We end this section by outlining our main results and contributions in the following

chapters towards the relevant decision problems defined for coloring reconfiguration and its list-coloring

variant. In Chapter 3, we prove that diam(C5(G)) in the recoloring model is O(n2) for planar graphs G with

no 3-cycles and no 5-cycles. In Chapter 4, we prove that 5-mixing in the Kempe swap model is always a

Yes-instance for most 6-regular toroidal graphs. Finally, in Chapter 5, we prove that k-swappable in the

L-valid Kempe swap model is always a Yes-instance for k-regular graphs with k ≥ 3.

2.4 Applications and Motivation

In this section we provide motivation for our work and discuss related applications of the k-coloring

reconfiguration problem.

2.4.1 Enumeration

A common goal in reconfiguration is to study the connectedness of the reconfiguration graph. One reason

for this emphasis is to find paths between solutions of an underlying problem, and possibly devise algorithms

for constructing these paths.

Another key motivation is to approximately enumerate combinatorial structures such as the k-colorings

of a given graph G. Exact counting of those k-colorings is unlikely to be possible in polynomial time18.

However, we can approximately count them by employing an algorithm which generates uniformly random

proper k-colorings of G. This is achieved by defining a Markov chain19 simulation on the set of k-colorings of

18This problem is known to be #P-complete, which is at least as hard as NP-complete, but widely believed to be harder.
19For information on Markov chains, we refer the reader to [47].
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G. The Markov chain represents a random walk on Ck(G) given by a sequence of random variables {Xt}∞t=0.

Every variable Xt represents the state of the Markov chain after t steps, and every edge in Ck(G) is assigned

a ’weight’ which represents the probability of traversing that edge. Starting with an arbitrary k-coloring

of G (a vertex of Ck(G)), we uniformly transition to another k-coloring, one step at a time, by randomly

choosing an edge of Ck(G) using the weights as the probability distribution.

In order to potentially achieve a uniform distribution on all k-colorings, the Markov chain must be ergodic,

i.e., it must have a unique stationary distribution, and it must converge to this distribution independently

of the chosen starting position. This is usually achieved if the reconfiguration graph is connected, which

motivates our study of the connectedness of Ck(G). Moreover, for the method to be efficient, the Markov

chain must be rapidly mixing, i.e., the time it takes for the distribution to become close enough to the

stationary distribution is polynomial in the size of the problem instance. Equivalently, the mixing time for

the Markov chain must be polynomial. Even though upper bounds on diam(Ck(G)) do not necessarily tell

us much about the mixing time of the Markov chains, lower bounds on diam(Ck(G)) imply lower bounds on

the mixing time, which motivates our study of the diameter of the reconfiguration graph.

2.4.2 Ising and Potts Models

The Ising and k-state Potts models study the interaction of “spins” of the atoms of a crystalline lattice.

They are among the most widely studied in statistical mechanics, additionally offering insight into many

areas of solid-state physics. The q-state Potts model (see [64] for further details) has applications in signal

and image processing [48], as well as condensed matter systems [49]. The models assign to each vertex v of

an underlying graph G a spin σ(v) ∈ [k]. So, each spin-assignment of G corresponds to a k-coloring of G, not

necessarily proper. In the ferromagnetic model, the energy of a spin is low (meaning the spin is more likely)

when most edges have endpoints with the same color. In the antiferromagnetic model, which is of greater

interest for us, the energy of a spin is low when most edges have endpoints with distinct colors. In particular,

when the temperature is 0, every edge has endpoints with distinct colors, so the possible spin-assignments

of G are precisely its proper k-colorings.

A popular way to simulate the evolution of a graph’s spin-assignments over time is using the Glauber

dynamics or the Wang–Swendsen–Kotecký (WSK) non-local cluster dynamics. These are Markov chain

algorithms for the Ising and Potts models. In order for each algorithm to function properly, we need that

each spin of the graph has positive probability of eventually transforming to each other spin; that is, the
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Markov chain must be ergodic. In the Glauber dynamics algorithm (resp. WSK algorithm), two states in

the Markov chain will be adjacent exactly when they differ by a recoloring (resp. Kempe swap). Thus, in

the language of graph coloring reconfiguration, ergodicity in the Glauber dynamics and WSK algorithms,

respectively, requires that every two proper k-colorings of G are k-equivalent in the recoloring and Kempe

swap models.

We remark that the results of Chapter 4 are of particular significance. Given that Ck(G) is not guaran-

teed to be connected for general graphs G, these models have been studied for specific graphs. In particular,

highly structural and symmetrical graphs like triangular lattices and Kagomé lattices with boundary con-

ditions, both of which can be formed from toroidal grids (see Chapter 4). The stability of the WSK chain

(equivalently, the connectedness of Ck(G)) for the Potts model for a Kagomé lattice G has been determined

for every value of k [55, 56, 11]. The same authors have determined the stability for the triangular lattice

for every value of k except k = 5. We solve the case k = 5 in Chapter 4.
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Chapter 3

The Recoloring Model: 5-Coloring

Reconfiguration of Planar Graphs

with No Short Odd Cycles

Let n := |V (G)| for any graph G. Recall that Cereceda, van den Heuvel, and Johnson [20, 22] were the first

to study the connectedness of Ck(G). Subsequently, many results [7, 15, 32, 39], as shown in Table 3.1, have

focused on the diameter of Ck(G); in particular, these papers attempt to tackle Cereceda’s Conjecture [19]

that diam(Ck(G)) = O(n2) whenever G is d-degenerate and k ≥ d + 2. (The bound O(n2) is best possible,

as shown by Bonamy et al. [12].) Most results on the connectedness of Ck(G) give an exponential upper

bound on its diameter. Bartier et al. [7] proved that diam(C5(G)) = O(n) for every planar graph G of girth

at least 6, while Dvořák and Feghali [32] proved diam(C7(G)) = O(n) for every triangle-free planar graph

G. Feghali [39] showed that if d ≥ 1 and k ≥ d+ 1, then for every ε > 0 and every graph G with maximum

average degree at most d− ε, we have diam(Ck(G)) = O(n(log n)d−1).

In a recent breakthrough, Bousquet and Heinrich [15] proved that diam(Ck(G)) = O(nd+1) for every d-

degenerate graph G with k ≥ d+2. Since planar graphs are 5-degenerate, and triangle-free planar graphs are

3-degenerate, their result implies that diam(C7(G)) = O(n6) for every planar graph G and diam(C5(G)) =

O(n4) for every triangle-free planar graph G. In the same paper, they proved that diam(C5(G)) = O(n2) for

every bipartite planar graph G. They also remarked that Cereceda’s Conjecture remains open for triangle-
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Graph type / colors 4 5 6 7

Girth 3 ∞ ∞ ∞ O(n6) [15]

Girth 4 ∞ O(n4) [15] O(n log3(n)) [39] O(n) [32]
Girth 4 and no 5-cycles ∞ O(n2) (Main Theorem) - -

Bipartite ∞ O(n2) [15] - -

Girth 5 <∞ [7] O(n log2(n)) [39] - -
Girth 6 O(n3) [15] O(n) [7] - -

Girth 7+ O(n log n) [39] - - -

Table 3.1: A summary of known results on the diameter of the reconfiguration graph of planar graphs.

free planar graphs. Our Main Theorem in this chapter is a step towards proving Cereceda’s Conjecture for

all triangle-free planar graphs.

Main Theorem. If G is a planar graph with no 3-cycles and no 5-cycles, then diam(C5(G)) ≤ 4n2.

3.1 Proof of Main Theorem

Before starting the proof, we review some relevant (mostly standard) definitions.

Let G be a plane graph. Denote by F (G) the set of faces of G and by d(f) the length of each such face f .

A k-vertex

k-/k+-/k−-

vertex/

neighbor/ face
is one with degree k. A k+-vertex (resp. k−-vertex ) is one with degree at least (resp. at most) k.

A k-neighbor of a vertex v is a k-vertex adjacent to v. A k-face is one of length k. We define k+-neighbor,

k−-neighbor, k+-face, and k−-face analogously. A cycle C is separating separatingif G\V (C) is disconnected. A vertex

v is inner innerif v does not lie on the outer face.

A plane graph G is Type 1 if δ(G) ≥ 3 and Type 2 Type 1, 2if each of the following conditions is satisfied: (i)

δ(G) ≥ 2, (ii) the outer face f0 is a 7-face, (iii) V (f0) ( V (G), and (iv) every 2-vertex of G lies on f0; see

Figure 3.1. Note that Type 1 and Type 2 graphs are not necessarily mutually exclusive. That is, a graph

G could satisfy the criteria to be both Type 1 and Type 2. For example, G could satisfy (ii)-(iv) and have

δ(G) ≥ 3, so also satisfy (i). In that case, we will always define G to be Type 2, unless we explicitly say

otherwise, since our conclusions for Type 2 graphs will be stronger.

Let T := ∅ if G is Type 1 and T := V (f0) if G is Type 2. Let V1 := {v ∈ V (G) \ T : dG(v) ≤ 3},

V2 := {v ∈ V (G)\T : dG\V1
(v) ≤ 3}, V3 := {v ∈ V (G)\T : v /∈ V1∪V2}, and V4 := T . For all i ∈ {1, 2, 3, 4},

each vertex v ∈ Vi has level leveli.

Let v be a 3-vertex with neighbors v1, v2, v3, and assume that v is incident with 3 distinct faces. For each
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G1 G2 G3

Figure 3.1: The graph G1 is Type 1 since δ(G1) ≥ 3. The graph G2 is Type 2 since (i) δ(G2) ≥ 2,
(ii) the outer face f0 is a 7-face, (iii) G2 contains inner vertices (so, V (f0) ( V (G2)), and (iv) the only
2-vertex of G2 lies on f0. The graph G3 is Type 1 and Type 2 since (i) δ(G3) ≥ 2, (ii) f0 is a 7-face, (iii)
V (f0) ( V (G3), and (iv) G3 contains no 2-vertices.

i ∈ [3], the face opposite face oppositevi (with respect to v) is the face incident with vertex v that is not incident with

edge vvi. A 3-vertex v is good good (neighbor)if it has a neighbor w of level at most 2 whose opposite face is a 4-face. We

call w a good neighbor of v.

Bousquet and Heinrich [15], in their proof for bipartite planar graphs, introduced the notion of the level

of a vertex. They used it to identify a pair of vertices in G at distance 2 along a common face that could be

identified to proceed by induction. We will apply a similar technique for planar graphs with no 3-cycles and

no 5-cycles. However, identifying such vertices in these graphs might create a 5-cycle, if the vertices lie on a

7-cycle (it will not create any 3-cycle since G has no 5-cycle).

To avoid this problem, we show how to find good vertices inside a subgraph of our graph which does not

contain any separating 7-cycles; note that identifying a pair of vertices in such a subgraph cannot create

a 5-cycle. In particular, if our graph has a separating 7-cycle, then we pick an innermost such cycle and,

using discharging, we show that we can use the extra charge from Euler’s formula to ensure we find a good

vertex away from the outer face. This technique has been used previously; for example, see [34, 35]. Our

next lemma and subsequent corollary establish the existence of good vertices inside separating 7-cycles.

Key Lemma. Let G be a connected plane graph with no 3-cycles, no 5-cycles, and no separating 7-cycles.

If either G is Type 1 or G is Type 2, then G contains a good vertex v with a good neighbor w such that

v, w /∈ T .

Proof. Let V̂ := V (f0). The proofs for Type 1 graphs and Type 2 graphs are similar, though for Type 2

graphs the proof is harder. Recall that if G is Type 1, then T := ∅ and if G is Type 2, then T := V̂ . We

use discharging to show that V (G) \ T contains some good vertex and its good neighbor. Assume instead

that G is a counterexample to the lemma. Denote by ch(v) and ch(f) (resp. ch∗(v) and ch∗(f)) the initial
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(resp. final) charges of each vertex v and each face f . Let ch(v) := d(v) − 4 for every v ∈ V (G) and

ch(f) := d(f)− 4 for every f ∈ F (G). Using Euler’s formula, the total initial charge is −8:

∑
v∈V (G)

(d(v)− 4) +
∑

f∈F (G)

(d(f)− 4) =
∑

v∈V (G)

d(v)− 4|V (G)|+
∑

f∈F (G)

d(f)− 4|F (G)|

= 2|E(G)| − 4|V (G)|+ 2|E(G)| − 4|F (G)|

= 4(|E(G)| − |V (G)| − |F (G)|)

= −8. (3.1)

Now we redistribute charge according to rules (R1) and (R2) below and show that the total final charge

is greater than −8, a contradiction.

(R1): Every 6+-face f gives d(f)−4
d(f) to every incident vertex.1

(R2): Every 3-vertex not in T takes 1
3 from every neighbor that has level at least 3.

Assume first that G is Type 1. We show that ch∗(v) ≥ 0 and ch∗(f) ≥ 0 for all v and all f . Each 4-face f

loses no charge, so ch∗(f) = 4−4 = 0. By (R1), each 6+-face f has ch∗(f) = (d(f)−4)−d(f)
(
d(f)−4
d(f)

)
= 0.

Note that the only vertices that receive charge from their neighbors are 3-vertices that are not in T , and the

only vertices that give charge to their neighbors are vertices of level at least 3, by (R2). Further, observe that

each vertex v of level 3 has d(v) ≥ 4 and at least four 4+-neighbors; otherwise, v has level at most 2. So, each

of those four 4+-neighbors receives no charge from v, and ch∗(v) ≥ d(v)−4− 1
3 (d(v)−4) = 2

3 (d(v)−4) ≥ 0, by

(R2). Moreover, each vertex v of level 2 has d(v) ≥ 4 and loses no charge, so ch∗(v) = ch(v) = d(v)− 4 ≥ 0.

Finally, every 3-vertex v has ch(v) = 3− 4 = −1, so needs to receive at least 1.

Let v be a 3-vertex. First assume that v appears on three distinct faces. Let Mv be the set of neighbors

of v of level at least 3. Note that, for every neighbor x of v, either (i) x ∈ Mv or (ii) the face opposite

x is a 6+-face; otherwise, v is a good vertex with a good neighbor x, a contradiction. Now ch∗(v) ≥

−1 + 1
3 |Mv|+ 1

3 (3− |Mv|) = 0 by (R1) and (R2).

Now assume v appears on at most two distinct faces. So some edge e incident with v is a cut-edge.

Let f ′ be the face containing e. Since δ(G) ≥ 3, each component of G − e contains a cycle that lies in the

boundary walk of f ′. Further, these cycles are vertex disjoint; see Figure 3.2. Because G is triangle-free,

1If a vertex v appears multiple times on a boundary walk of f , then f gives v charge
d(f)−4
d(f)

for each such incidence.
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d(f ′) ≥ 2(4) = 8. Since v appears at least twice on the boundary walk of f ′, the charge v receives from f ′

is at least 2(8− 4)/8 = 1, and ch∗(v) ≥ 0. Thus, the lemma holds when G is Type 1.

v

e

Figure 3.2: An example of the case when G is Type 1.

Now we assume that G is Type 2. By the arguments above, ch∗(f) ≥ 0 for all f and ch∗(v) ≥ 0 for every

vertex v of level 1, 2, or 3, i.e., for every v /∈ T . It remains to show that
∑
v∈V̂ ch∗(v) > −8. Let n2 n2be the

number of 2-vertices on f0. Note that n2 ≤ 6; otherwise, since G is connected, V̂ = V (G), a contradiction.

Claim 3.1. If w1, . . . , wm are 2-vertices on f0 with m ≥ 2 and wiwi+1 ∈ E(G) for all i ∈ [m−1], then their

incident face f (other than f0) is a 6+-face. Thus, each wi, as well as the 3+-neighbors of w1 and wm on

f0, receives d(f)−4
d(f) from f .

Proof of claim. The second statement follows directly from the first via (R1). To see the first statement, let

v1 and v2 be the neighbors of wbm2 c and wbm2 c+1 on f0 (other than each other), respectively, and assume f

is a 4-face. This means m = 2 since d(v1) ≥ 3 and d(v2) ≥ 3, and also f = G[{v1, w1, w2, v2}]. Denote by

v3, v4, v5 the remaining vertices on f0. Now G[{v1, v2, v3, v4, v5}] is a 5-cycle, a contradiction.

Recall that ch∗(f) ≥ 0 for all f and ch∗(v) ≥ 0 for all v /∈ V̂ . So, to reach a contradiction to (3.1), it

suffices to show that
∑
v∈V̂ ch∗(v) > −8. Note that each vertex on f0 takes d(f0)−4

d(f0) = 3
7 from f0 by (R1).

Moreover, by (R2), every 3+-vertex v on f0 satisfies ch∗(v) ≥ (d(v)− 4)− 1
3 (d(v)− 2) ≥ −4

3 . Finally, every

2-vertex v satisfies ch∗(v) ≥ 2− 4 = −2. Let g(V̂ ) g(V̂ )be the charge gained via (R1), from faces other than f0,

in total by all vertices on f0. Now
∑
v∈V̂ ch∗(v) ≥ −2n2− 4

3 (7−n2) + 7( 3
7 ) + g(V̂ ) = −2

3 n2− 19
3 + g(V̂ ). Let

h(V̂ ) := 2
3n2 − 5

3 . h(V̂ )Now, it suffices to show that g(V̂ ) > h(V̂ ) since this implies
∑
v∈V̂ ch∗(v) > −8.

v6v7

v3

v4

v5v1

v2
w3

w5w1

v6v7

v3

v4

v5v1

v2

w5

w1

v6v7

v3

v4

v5v1

v2
w3

w1

Figure 3.3: The three instances of Case 2, in the proof of the Key Lemma when no 2-vertices on f0 are
adjacent. Left: The nonneighbors of v1, v3, and v5 on their incident 4-faces are distinct. Center: The
nonneighbors of v1 and v3 on their incident 4-faces are the same, i.e., w1 = w3. Right: The nonneighbors
of v1 and v5 on their incident 4-faces are the same, i.e., w1 = w5.
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Case 1: n2 ≤ 2. Now h(V̂ ) ≤ −1
3 , so g(V̂ ) ≥ 0 > h(V̂ ).

Case 2: n2 = 3. If f0 has at least two adjacent 2-vertices, then g(V̂ ) ≥ 1
3 (4) > 1

3 = h(V̂ ), by Claim 3.1.

So, we assume no pair of 2-vertices are adjacent on f0. Let v1, . . . , v7 be the vertices on f0 in cyclic order.

By symmetry, assume v1, v3, and v5 are 2-vertices. Note that at least one 2-vertex is incident with a 6+-face.

To see this, assume every 2-vertex is incident with a 4-face. Let w1, w3, and w5 be the inner vertices incident

with the 4-faces of v1, v3, and v5, respectively; see Figure 3.3. (Note that the boundary cycle of f0 cannot

have a chord, since any chord would create either a 3-cycle or a 5-cycle, both of which are forbidden by

hypothesis.) Observe that w1, w3, and w5 are distinct. Otherwise, by symmetry, either w1 = w3 or w1 = w5.

In the former case G[{w1, v4, v5, v6, v7}] is a 5-cycle, and in the latter G[{w1, v6, v7}] is a 3-cycle, both of

which are contradictions. But now G[{w1, v2, w3, v4, v5, v6, v7}] is a 7-cycle that separates v3 from w5, a

contradiction. Hence, by symmetry, v1 is incident with a 6+-face f , so v1, v2, and v7 each get at least 1
3

from f by (R1). Thus, g(V̂ ) ≥ 1
3 (3) > 1

3 = h(V̂ ).

Case 3: n2 = 4. By Pigeonhole, at least two 2-vertices are adjacent on f0. So, g(V̂ ) ≥ 1
3 (4) > 1 = h(V̂ )

by Claim 3.1.

Case 4: n2 = 5. By Pigeonhole, either (a) at least four 2-vertices on f0 induce a path, or (b) three

2-vertices on f0 induce a path P1 and the other two 2-vertices on f0 induce another path P2, and no vertex

on P1 is adjacent to a vertex on P2. In both cases, at least 6 vertices on f0 get at least 1
3 via (R1) from faces

other than f0, by Claim 3.1. So, g(V̂ ) ≥ 1
3 (6) > 5

3 = h(V̂ ).

Case 5: n2 = 6. Now the face f incident to all 2-vertices (other than f0) is a 7+-face. So, each of the

six 2-vertices (as well as the single 3+-vertex) on f0 gets at least 3
7 by Claim 3.1. Thus, g(V̂ ) ≥ 3

7 (7) > 7
3 =

h(V̂ ).

Corollary 3.1. If G is a plane graph with no 3-cycles, with no 5-cycles, and with δ(G) ≥ 3, then G contains

a good vertex v. Furthermore, identifying v and its nonneighbor on an incident 4-face results in a smaller

plane graph with no 3-cycles and no 5-cycles.

Proof. Assume the corollary is false and G is a smallest counterexample. Now G is connected; otherwise,

the result holds, by the minimality of G, for each component of G. Suppose first that G has no separating

7-cycles. By the Key Lemma for Type 1 graphs2, G contains a good vertex v. Let v1, v2, v3 be the neighbors

of v with v3 being a good neighbor of v and f being the 4-face opposite of v3. Let w be the nonneighbor of

2Although G may also satisfy the criteria to be a Type 2 graph, by hypothesis it satisfies the criteria to be a Type 1 graph,
so we invoke the Key Lemma for Type 1 graphs.
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G
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v1

x1 x2

v∗w

x3

G′

Figure 3.4: Now vv3x1x2x3wv1 is a separating 7-cycle in G if (v∗w)v3x1x2x3 is a 5-cycle in G′.

v on f ; see Figure 3.4. Form G′ from G by identifying v with w to form a new vertex v∗w. Since v and w lie

on a 4-face, G′ is a plane graph. If G′ has a 3-cycle, then G has a 5-cycle, a contradiction. Suppose G′ has

a 5-cycle, (v∗w)v3x1x2x3; call it C ′. Since dG(v1) ≥ 3, we note that v1 has a neighbor y in G (other than

v and w) and in G′ we know y lies in the interior of C ′. Thus, in G the 7-cycle vv3x1x2x3wv1 separates y

from v2, again a contradiction. Hence, G′ has no 3-cycles and no 5-cycles. So, the corollary holds when G

has no separating 7-cycles.

Suppose instead that G has a separating 7-cycle and let C be an innermost such cycle. Denote by Cin Cin

the subgraph induced by vertices that lie on C and inside C. Observe that Cin is a plane graph with no

3-cycles, no 5-cycles, and no separating 7-cycles. Further, δ(Cin) ≥ 2 with every 2-vertex of Cin lying on the

outer face of Cin, which is induced by V (C). By the Key Lemma, Cin contains a good vertex v. Define v1,

v2, v3, and w as in the previous paragraph. Note that v, v3 /∈ V (C), by the Key Lemma. So, dG(v) = 3

and v3 has level at most 2 in G, i.e., v is a good vertex in G. We note that v1 and v2 cannot both lie on C.

Suppose the contrary. Since C has length 7, some v1, v2-path P in C has odd length at most 5. If P has

length 1 or 3, then Pv1vv2 is a 3-cycle or 5-cycle, a contradiction. So assume P has length 5. Now Pv1vv2

is a 7-cycle in Cin that separates v3 from w, a contradiction. So assume by symmetry that v1 does not lie

on C.

Form G′ from G by identifying v with w to form a new vertex v∗w. Clearly G′ is a plane graph with no

3-cycles. Assume G′ has a 5-cycle. So G has a (v, w)-path P of length five. It is easy to check that v1 is

not an interior vertex of P . Let Q := Pvv1w, and denote its vertices by v, v3, x1, x2, x3, x4, v1 (in order),

where x4 = w. See Figure 3.5. Since d(v1) ≥ 3, let y be a neighbor of v1 other than v and x4. Note that y is

not on Q, since this would give a 7-cycle with a chord, and thus a 3-cycle or a 5-cycle in G, a contradiction.

So Q separates v2 from y. Since Cin has no separating cycles, Q must not lie entirely in Cin. Since v, v1,
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and v3 are inner vertices of Cin, the vertices of Q outside C are contained in {x2, x3}.

v2

v

v3
v1

z

x1 x2

x4

x3

f

C

v2

v

v3

q

v1

x1 x2

x4

x3

p

f

C

Figure 3.5: Two instances where the 7-cycle Q does not lie entirely in C. Left: Here x2 lies outside C
and z is not part of Q. Right: Here x2 and x3 both lie outside C, and both p and q are not part of Q.

Suppose that Q has exactly one vertex xi with i ∈ {2, 3} outside C. The path xi−1xixi+1 together with

the shorter path in C between xi−1 and xi+1 forms a cycle of length at most 5. Thus, this must be a 4-cycle

xi−1xixi+1z. If z is not on Q, then (Q \ {xi}) ∪ xi−1zxi+1 is a 7-cycle of Cin, which must be facial, since

Cin has no separating 7-cycles; see the left of Figure 3.5. But now the path vv1w lies on both a 7-face and

4-face in Cin, so v1 is an inner 2-vertex of Cin, a contradiction. So instead z must lie on Q. But now either

xi−1z or xi+1z must be a chord of Q, a contradiction.

So assume instead that Q has exactly two vertices outside C, and these are x2 and x3. Similar to above,

the path x1x2x3x4 together with the shorter path on C between x1 and x4 forms a 4-cycle or 6-cycle. If this

cycle has length 4, then x1x4 is a chord of Q, a contradiction. So the cycle must have length 6; we denote its

vertices (in order) by x1x2x3x4pq. Note that neither p nor q is on Q, since p and q lie on C, but all vertices

of Q other than x1, x2, x3, x4 are inner vertices of Cin. Thus, (Q \ {x2, x3})∪x4pqx1 is a 7-cycle in Cin as on

the right in Figure 3.5; again it must be a facial 7-cycle. But now the path vv1w lies on both a 7-face and a

4-face, so v1 is an inner 2-vertex of Cin, a contradiction.

The proof of our main-thm-proj1]Main Theorem (restated below) is now similar to a proof of Bousquet

and Heinrich [15] who showed the same conclusion for the smaller class of all bipartite planar graphs.

Main Theorem. If G is a plane graph with no 3-cycles and no 5-cycles, then diam(C5(G)) ≤ 4n2.

Proof. Let G be a plane graph with no 3-cycles and no 5-cycles. Let ϕA and ϕB be two 5-colorings of G.

(Recall that n := |V (G)|.) We will show that we can transform ϕA into ϕB by recoloring each vertex at

most 4n times. We use induction on n.
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Case 1: G contains a vertex v such that d(v) ≤ 2. Assume n > 1; otherwise, the result follows

trivially. Let ϕ′A and ϕ′B be the restrictions of ϕA and ϕB to G − v. By induction, there exists a sequence

S ′ of recolorings that transforms ϕ′A into ϕ′B such that each vertex is recolored at most 4(n − 1) times.

We extend S ′ to a sequence S of recolorings in G. To form S in G, we can perform each recoloring step

from S ′, except when a neighbor w of v is to be recolored with the current color α of v. In that case, we

need to recolor v before recoloring its neighbor w. The number of colors unused on N(v) ∪ {v} is at least

5− (1 + d(v)) ≥ 2. We recolor v with one of these colors that is not the target color in the next recoloring of

a neighbor of v. So, we only need to recolor v at most once for every two successive recolorings of neighbors

of v. Finally, we may need to recolor v to its target color in ϕB . Since d(v) ≤ 2 and each neighbor of v is

recolored at most 4(n− 1) times in S ′, the total number of times we recolor v is at most 2(4(n−1))
2 + 1 < 4n.

Case 2: δ(G) ≥ 3. Assume n > 1; otherwise, the result follows trivially. By Corollary 3.1, G contains

a good vertex v. v, wMoreover, if v1, v2, v3

v1, v2, v3

are the neighbors of v, where v3 is a good neighbor, and w is the

nonneighbor of v on the 4-face opposite v3, then G′, which is formed from G by identifying v with w into a

vertex v∗w, is a planar graph with no 3-cycles and no 5-cycles.

Note that if ϕA(v) 6= ϕA(w), then we can transform ϕA into a coloring ϕ′A such that ϕ′A(v) = ϕ′A(w)

and every vertex is recolored by this transformation at most twice. To see this, let α := ϕA(w). Note that

ϕA(v1) 6= α and ϕA(v2) 6= α since v1, v2 ∈ N(w). If ϕA(v3) 6= α, then we recolor v with α and we are done.

So, assume ϕA(v3) = α. Recall that v3 has level at most 2, so v3 has at most 3 neighbors of degree greater

than 3. Fix x1, x2, x3 ∈ N(v3) such that each 4+-neighbor of v3 is among {x1, x2, x3}. Now there exists a

color β /∈ {α,ϕA(x1), ϕA(x2), ϕA(x3)}; see Figure 3.6. If need be, we first recolor every β-colored 3-neighbor

of v3 (of which there may be arbitrarily many); this is possible since at least one color does not appear on

the closed neighborhood of each 3-vertex. Observe that v might possibly be recolored, but w is not recolored

since ϕA(w) = α 6= β. We now recolor v3 with β, recolor v with α, and are done (since w and v now both

have color α, we can identify them, to form a new vertex).

v2

v3 v

x1

x2

x3

v1

w

G

v2

x1

x2

x3

v1

v∗wv3

G′

Figure 3.6: An instance of Case 2 in the proof of the Main Theorem.
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Similarly, if ϕB(v) 6= ϕB(w), then we can transform ϕB into a coloring ϕ′B such that ϕ′B(v) = ϕ′B(w).

Note that ϕ′A and ϕ′B are proper 5-colorings of G′. By induction, there exists a sequence S ′ that transforms

ϕ′A into ϕ′B in G′ such that each vertex is recolored at most 4(n− 1) times. It is easy to see that S ′ extends

to a sequence S in G such that each vertex is recolored at most 4(n − 1) times (for each recoloring of v∗w

in G′ we recolor both v and w in G).

Recall that we recolor each vertex at most twice when forming ϕ′A from ϕA and at most twice when

forming ϕ′B from ϕB . Thus, the total number of times we recolor each vertex is at most 4(n−1)+4 ≤ 4n.
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Chapter 4

The Kempe Swap Model: In Most

6-regular Toroidal Graphs All

5-colorings are Kempe Equivalent

The a× b toroidal grid (triangulated)

toroidal grid

is the cartesian product of cycles of lengths a and b. The a× b triangulated toroidal

grid, T [a× b], is formed from the toroidal grid by adding a diagonal inside each 4-face, so that all diagonals

are parallel; see Figure 4.1. Clearly each T [a× b] is a 6-regular toroidal graph. And when a ≥ 3 and b ≥ 3,

the graph T [a× b] is 4-colorable (see Lemma 4.3). Mohar and Salas [55] showed that not all 4-colorings are

4-equivalent (when a and b are divisible by 3). In contrast, Bonamy, Bousquet, Feghali, and Johnson [11]

showed that all 6-colorings of T [a×b] are 6-equivalent. Further, they asked whether all 5-colorings of T [a×b]

are 5-equivalent. This question motivates this chapter’s main result. We answer the question affirmatively

when a ≥ 6 and b ≥ 6.

Theorem 4.1. If G is a triangulated toroidal grid T [a× b] with a ≥ 6 and b ≥ 6, then all 5-colorings of G

are 5-equivalent.

Our proof holds in more generality, but to state our main result we need one more definition. For an

embedding of a graph G in the torus, the edge-width is the length of the shortest non-contractible cycle.

Negami showed that if a toroidal graph is 6-regular, then it has a unique embedding1 in the torus. So,

1We omit a formal definition of unique embedding; informally, it means that we can transform any embedding to any other
by “sliding” the graph around the torus, keeping it embedded throughout this sliding process.
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(1,1)

(5, 7)

Figure 4.1: A triangulated toroidal grid T [5× 7].

for each 6-regular toroidal graph G, by the edge-width of G edge-widthwe mean the edge-width of the unique toroidal

embedding of G. The purpose of this paper is to prove the following.

Main Theorem. If G is a 6-regular toroidal graph with edge-width at least 7, then all 5-colorings of G are

5-equivalent.

Our Main Theorem implies the following corollary, the proof of which can also be found in Section 4.1.

Main Corollary. If G is a 6-regular toroidal graph on n vertices chosen uniformly at random, then asymp-

totically almost surely all 5-colorings of G are 5-equivalent.

We now mention another direction of research where the present work is relevant. Recall the following.

A graph is d-degenerate if each of its subgraphs has minimum degree at most d. Las Vergnas and Meyniel

proved [50] (see Lemma 4.1) that if G is d-degenerate, then all k-colorings of G are k-equivalent2, whenever

k > d. Thus, every planar graph G has all k-colorings equivalent whenever k > 5. Meyniel [53] extended this

result to the case k = 5. In contrast, Mohar [54] constructed planar graphs with arbitrarily many 4-colorings

no two of which are 4-equivalent (Figure 2.6).However, he showed that if G is planar and χ(G) = 3, then

all 4-colorings of G are 4-equivalent. It is easy to check that if G is bipartite, then all 3-colorings of G are

3-equivalent. By combining these results, Mohar showed that if G is planar, then all (χ(G) + 1)-colorings of

G are (χ(G) + 1)-equivalent. It is natural to ask whether the same result holds for all toroidal graphs. Our

results can be viewed as a step toward answering this question affirmatively.

We prove the Main Theorem in Sections 4.1 and 4.2. Since the proof of Theorem 4.1 is very similar to

2Generalized as Theorem 2.5 in Chapter 2.
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that of the Main Theorem, we only discuss it in Section 4.3, where we sketch how to adapt the proof of the

Main Theorem. It is worth noting that the Main Theorem immediately implies the case where a ≥ 7 and

b ≥ 7. By symmetry, we can assume that a ≤ b. So the discussion in Section 4.3 just handles the case when

a = 6.

4.1 Proof Outline and Preliminaries

4.1.1 An Introduction to Good Templates

Given a coloring ϕ of G, our idea is to identify the vertices in one or more independent sets, each of which

receives a common color under ϕ. If the resulting graph is 4-degenerate, then all of its 5-colorings are

5-equivalent, as shown in Lemma 4.1; and these 5-colorings correspond to some of the 5-colorings of G

(precisely those 5-colorings of G where the vertices in each identified independent set receive a common

color). A good

4-template
good

4-templatein G is an independent set T of size 4 such that identifying all vertices of T yields a 4-degenerate

graph; see Figure 4.2. We show that if ϕ1 and ϕ2 are 5-colorings that each use a common color on some

good 4-template, say T1 and T2, then ϕ1 and ϕ2 are 5-equivalent. We also show that every 5-coloring is

5-equivalent to a 5-coloring that uses a common color on the vertices of some good 4-template. Together,

these two steps prove our Main Theorem. To formalize this approach, we introduce more terminology.

A template
template

T in G is a collection of disjoint independent sets; each set in T is a color colorof T . A template

with a single color is monochromatic. A template T appears appearsin a coloring ϕ of G if the vertices in each color

of T receive a common color under ϕ. If T appears in ϕ, then also ϕ contains containsT . By contracting a template
contracting

a template
T , we mean identifying the vertices in each color of T . When we contract template T in G, the resulting

graph is denoted GT . A template T is good
good

for G if GT is 4-degenerate. We will see that every 6-regular

toroidal graph G is vertex transitive. So if G has a single good template, then it has many of them. Thus,

given a 5-coloring ϕ, our focus will be on finding a good 4-template contained in ϕ (or some 5-coloring that

is Kempe 5-equivalent to ϕ). Good templates play a central role in our proof of the Main Theorem. This

is due to the following three easy lemmas. The first was originally proved in [50]; but for completeness, we

include the proof. The third, Lemma 4.3, holds in more generality, which we discuss in Section 4.3.

Lemma 4.1. Let G be a graph with a vertex w such that d(w) < k. If all k-colorings of G − w are k-

equivalent, then also all k-colorings of G are k-equivalent. Thus, if G is d-degenerate and d < k, then all
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k-colorings of G are k-equivalent.

Proof. The second statement follows from the first by induction on |V (G)|, where the base case |V (G)| = 1

holds trivially. Now we prove the first. Let w be a vertex with d(w) < k. Let G′ := G− w. Let ϕ1 and ϕ2

denote k-colorings of G and let ϕ′1 and ϕ′2 denote their restrictions to G′. By hypothesis, all k-colorings of

G′ are k-equivalent. So there exists a sequence ψ′1, . . . , ψ
′
s of k-colorings of G′ such that ψ′1 = ϕ′1, ψ′s = ϕ′2

and each ψ′i+1 differs from ψ′i by only a single Kempe swap. We extend each ψ′i to a k-coloring ψi of G as

follows. Let ψ1 = ϕ1. Suppose that ψ′i+1 differs from ψ′i by an α/β swap at a vertex vi. To construct ψi+1

from ψi we use the same α/β swap at vi, unless w lies in the same α/β component as vi and has at least 2

neighbors in that component. In that case, some color γ ∈ {1, . . . , k} is not used on the closed neighborhood

of w. Now we first recolor w with γ, and then use the α/β swap at vi. We call the resulting coloring ψi+1.

By induction on i, each ψi restricts to ψ′i on G′. Thus, ψs agrees with ϕ2 on all vertices except for possibly

w. If needed, recolor w with its color in ϕ2.

Lemma 4.2. If T is a good template in a graph G, then all 5-colorings of G containing T are 5-equivalent.

Proof. Form GT from G by contracting T . Note that each 5-coloring ϕ of G containing T corresponds to a

5-coloring ϕT of GT (formed by contracting T in ϕ). Since T is good, GT is 4-degenerate. By Lemma 4.1,

all 5-colorings of GT are 5-equivalent. If η and ζ are 5-colorings of G containing T , then ηT and ζT are

5-equivalent colorings of GT . Further, this is witnessed by a sequence of Kempe swaps. This same sequence

of Kempe swaps witnesses the 5-equivalence of η and ζ. To simulate in G an α/β swap at a vertex v in GT ,

we simply perform an α/β swap at each vertex in G that was identified to form v. (If v ∈ V (G), then this

is a single swap; but if v represents some non-singleton color of T , then this may be multiple swaps.)

Lemma 4.3. Let G be a 4-colorable graph. If ϕ1 and ϕ2 are 5-colorings of G that contain monochromatic

good templates T1 and T2, then ϕ1 and ϕ2 are 5-equivalent.

Proof. Let ϕ0 be a 4-coloring of G; for concreteness, assume that ϕ0 does not use green. Form ϕ′1 and ϕ′2

from ϕ0 by recoloring the vertices of T1 and T2, respectively, with green. Now ϕ1 and ϕ′1 are 5-equivalent,

by Lemma 4.2, since they both contain the good template T1. Similarly, ϕ2 and ϕ′2 are 5-equivalent. Finally,

ϕ′1 and ϕ′2 are both 5-equivalent to ϕ0, since each is formed from ϕ0 by recoloring an independent set with

green (and each such recoloring step is a valid Kempe swap).
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We will see that all 6-regular toroidal graphs with edge-width at least 7 are 4-colorable (with one excep-

tion, which we handle separately). This was proved by Yeh and Zhu [65], building on work of Collins and

Hutchinson [25]. The latter also proved that T [a×b] is 4-colorable whenever a ≥ 6 and b ≥ 6. So most of the

work in proving our Main Theorem (as well as Theorem 4.1) goes to showing that if G is a 6-regular toroidal

graph with edge-width at least 7, then every 5-coloring of G is 5-equivalent to a coloring that contains a

monochromatic good template. That is the content of Section 4.2.

In view of Lemmas 4.2 and 4.3, and ideas in the previous paragraph, we need a tool to prove that certain

templates are good. A 4-degeneracy order
4-degener-

acy orderof a graph G is an order σ of V (G) such that each vertex in σ

has at least d(v) − 4 neighbors that appear earlier in σ. A 4-degeneracy prefix 4-degener-

acy prefix

of a graph G is an order σ

of some subset of V (G) such that each vertex in σ has at least d(v) − 4 neighbors that appear earlier in

σ. A subgraph H of G is locally connected
locally connected

if each pair of vertices in H that is at distance two in G is also

at distance two in H. A subgraph H of G is well-behaved well-behavedif (i) it is locally connected and (ii) G − H is

connected.

Lemma 4.4. Let H be a well-behaved subgraph of G and let VH denote its vertex set. Let T be a template

with all vertices in VH ; denote the new vertices in GT by VT . Suppose there exist v1, v2 ∈ VH \ VT and there

exist v3, v4 ∈ V (GT ) \ VH such that v3 is a common neighbor of v1, v2 and that v4 is a common neighbor of

v3, vi for some i ∈ {1, 2}. If there exists a 4-degeneracy prefix σ for VH \ VT , then GT has a 4-degeneracy

order, with all vertices of VT coming last in the degeneracy order.

Proof. We will extend σ to all of V (GT ) \ VH . Let R := ∅. We iteratively add vertices of V (GT ) \ VH to R,

so that at each step (i) G[R] is connected and (ii) σ can be extended to (VH \VT )∪R. Since v1, v2 ∈ VH \VT

and v3 is their common neighbor, we can add v3 to R and append it to σ; similarly, we can add v4. Let

S := V (GT ) \ (VH ∪ R). Now suppose that S 6= ∅. Choose v ∈ R such that v has a neighbor in S. (This is

possible since G −H is connected.) Denote the neighbors of v in cyclic order by w1, . . . , w6. Since G[R] is

connected, and |R| ≥ 2, we can assume that w1 ∈ R and w6 /∈ R. If w6 ∈ S, then we add w6 to R and append

it to the prefix, since its neighbors v and w1 are already in R. So assume that w6 ∈ VH . Now w2 /∈ VH , since

w1, v /∈ VH and H is locally connected. If w2 ∈ S, then we add w2 to R, since its neighbors w1 and v are

in R. So assume that w2 ∈ R. Note that w3 /∈ VH , since H is locally connected and w6 ∈ VH but v /∈ VH .

Again, if w3 ∈ S, then we add w3 to R; so assume that w3 ∈ R. If w4 ∈ S, then we add w4 to R, so assume

that w4 /∈ S. If w4 ∈ VH , then also w5 ∈ VH , since H is locally connected and w4, w6 ∈ VH . This contradicts

our choice of v as having a neighbor in S. So w4 /∈ VH , which implies that w4 ∈ R. Finally, w5 ∈ S since v

has some neighbor in S, by our choice of v. Thus, we can always grow R and σ, as desired.
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Figure 4.2: Two examples of good 4-templates in 6-regular toroidal graphs; each includes a triple centered
at 1. In both examples, 2 and 3 serve as v1 and v2 in Lemma 4.4. It is easy to check that the subgraph
induced by the four orange vertices and the three numbered vertices is locally connected; thus, it is
well-behaved.

To apply Lemma 4.4, we will want to verify that some subgraphs H are locally connected. This is fairly

easy, but is complicated slightly by the presence of non-contractible cycles. So the following lemma is useful.

Lemma 4.5. Let G be a 6-regular toroidal graph with edge-width at least 7. If H is a subgraph of G with

diameter at most 4, then H is locally connected unless there exists a vertex w such that H contains at least

four neighbors of w but excludes w.

First, suppose instead that there exists a vertex w such that H contains at least four neighbors of w, but

excludes w. By Pigeonhole, H contains some pair of non-adjacent vertices such that w is their only common

neighbor. So, H is not locally connected. Thus, the hypothesis on w in Lemma 4.5 is necessary.

Proof. Suppose there exist w, x ∈ V (H) with dG(w, x) = 2 but dH(w, x) > 2. Denote the common neigh-

bor(s) in G of w and x by y1 and y2 (if it exists). Since dH(w, x) > 2, we have y1, y2 /∈ V (H). Since H has

diameter at most four, a short case analysis shows that H contains at least four neighbors of either y1 or y2.

(Since H has diameter at most 4, but G has edge-width at least 7, we can essentially ignore the possibility

of non-contractible cycles creating problems.)

Remark 4.1. Often when we claim, in later proofs, that a template is good, we will be implicitly using

Lemmas 4.4 and 4.5. A triple tripleis an independent set of size 3 with a common neighbor. For example, in

each picture in Figure 4.2 a triple comprises the three orange neighbors of vertex 1. A triple itself is not

a good 4-template. However, each triple is a subset of 12 good 4-templates. These include the two good

4-templates shown in Figure 4.2, along with 10 others that arise by rotation and reflection. Further, we show

in Lemma 4.10 that if ϕ contains a triple, then ϕ is 5-equivalent to some 5-coloring that contains a good

4-template. Because triples have fewer vertices than any good template, they are easier to work with. Thus,

we aim to show that every 5-coloring is 5-equivalent to a 5-coloring containing a triple. This motivates the

following lemma.
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Lemma 4.6. Let T be a good template for G, as witnessed by a subgraph H in Lemma 4.4. Let v /∈ VH be

a vertex such that T ∪ {v} is also a good template, with v as its own color. For each 5-coloring ϕ0 of T and

each α ∈ {1, . . . , 5} such that using α on v extends ϕ0 to a proper 5-coloring ϕ′0 of T +v, there exists a proper

5-coloring of G that extends ϕ′0. This v is called a bonus vertex bonus vertexfor T . In particular, if there exists some

other color C in T such that C ∪ {v} includes a triple, then every 5-coloring ϕ containing T is 5-equivalent

to a 5-coloring containing a triple.

Proof. For an example, see Figure 4.5, where T has the two colors {1, 2, 3, 4} and {6, 9}, H is induced by

1, . . . , 11 and v = 12. The hypothesis that v is its own color implies that v is not identified with any other

vertex of T . Thus, v can appear last in the degeneracy order, and is not required to have the same color as

any other vertex in T . Since T ∪ {v} is a good template, every proper 5-coloring of T ∪ {v}, that respects

its colors, extends to a 5-coloring of G (we simply color the vertices outside T ∪ {v} in the reverse of the

4-degeneracy order). Fix a proper 5-coloring ϕ′0 of T ∪ {v}, and let ϕ be an extension of this coloring of

T ∪ {v} to a 5-coloring of G. Let ϕ1 be any other 5-coloring of G that contains T . Since ϕ1 and ϕ both

contain T , they are 5-equivalent. If C ∪ {v} includes a triple, then ϕ contains this triple, so ϕ1 is indeed

5-equivalent to a 5-coloring that contains a triple.

4.1.2 Shifted Triangulated Toroidal Grids

We denote each vertex in a triangulated toroidal grid T [a×b] by an ordered pair (i, j) with i ∈ {1, . . . , a} and

j ∈ {1, . . . , b}; vertices are numbered as entries of a matrix, with (1, 1) in the top left and (a, b) in the bottom

right; see Figure 4.1. So (i, j) is adjacent to (i, j − 1), (i− 1, j), (i− 1, j + 1), (i, j + 1), (i+ 1, j), (i+ 1, j − 1)

with arithmetic modulo a and b, as appropriate. Let T [a × b, c] denote a triangulated a × b toroidal grid

with shift c triangulated

a× b toroidal

grid with shift c

. The vertex set is the same as that for T [a × b], and the edge set is the same except that

edges from column b to column 1 are “shifted” by c. More precisely, each vertex (i, b) is adjacent to

(i+ c− 2, 1), (i+ c− 1, 1), (i+ 1, b), (i+ 1, b− 1), (i, b− 1), (i− 1, b). So T [a× b] = T [a× b, 1]. The following

useful result3 characterizes all 6-regular toroidal graphs.

Theorem 4.2 ([3, 58]). Every 6-regular toroidal graph has the form T [a × b, c] for some positive integers

a, b, c with c ≤ a.

This is Theorem 3.4 in [58]; the condition c ≤ a draws on the comment in [58] at the bottom of page 169.

3This characterization was stated by Altshuler [3], but his paper did not give a complete proof. About 10 years later, Negami
published a proof [58], apparently unaware of the work of Altshuler.
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A circulant circulantCn[1, r, r + 1] Cn[1, r, r + 1]is a 6-regular graph4 with vertex set {1, . . . , n} and with i and j adjacent if

i− j ∈ {±1,±r,±(r + 1)}. Each circulant Cn[1, r, r + 1] has a natural embedding as a triangulation of the

torus: begin with the hamiltonian cycle consisting of edges of “length” 1, wrapping around the torus in

one direction, and now embed the remaining edges, each wrapping around the torus in the other direction.

Building on work of Collins and Hutchinson [25], Yeh and Zhu [65] proved the following.

Theorem 4.3 ([65, 25]). All 6-regular toroidal graphs are 4-colorable, with the following exceptions:

1. G ∈ {T [3× 3, 2], T [3× 3, 3], T [5× 3, 2], T [5× 3, 3], T [5× 5, 3], T [5× 5, 4]}.

2. G = T [m× 2, 1] with m odd.

3. G = Cn[1, r, r + 1] and n ∈ {2r + 2, 2r + 3, 3r + 1, 3r + 2} and n is not divisible by 4.

4. G = Cn[1, 2, 3] and n is not divisible by 4.

5. G = Cn[1, r, r + 1] and (r, n) ∈ {(3, 13), (3, 17), (3, 18), (3, 25), (4, 17), (6, 17), (6, 25), (6, 33), (7, 19),

(7, 25), (7, 26), (9, 25), (10, 25), (10, 26), (10, 37), (14, 33)}.

It is easy to prove that the graphs in Theorem 4.3 are not 4-colorable. More specifically, if α(G) denotes

the indpendence number of G, then simple arguments show that each of the graphs in parts (1–4) have

α(G) < |G|/4, and thus, χ(G) ≥ |G|/α(G) > 4; details are given in Section 3 of [65]. (The proof for graphs

in (5) is ad hoc.) Thus, the result in Theorem 4.3 is best possible.

Lemma 4.7. If G is a 6-regular toroidal graph with edge-width at least 6, and G /∈ {C26[1, 10, 11], C37[1, 10, 11]},

then G is 4-colorable.

Proof. This is an easy consequence of Theorem 4.3. Each graph in (1), (2), (3), and (4) has edge-width at

most 5, 3, 3, and 3 (respectively). So we only consider graphs in (5). Note that Cn[1, r, r + 1] always has

edge-width at most r+1. So we assume that r ≥ 6. When (r, n) = (6, 17), we have the non-contractible cycle

with successive edge lengths 6, 6, 6,−1. When (r, n) = (6, 25), we have 6, 6, 6, 7. When (r, n) = (6, 33), we

have 6, 6, 7, 7, 7. When (r, n) = (7, 19), we have 7, 7, 7,−1,−1. When (r, n) = (7, 25), we have 8, 8, 8, 1. When

(r, n) = (7, 26), we have 8, 8, 8, 1, 1. When (r, n) = (9, 25), we have 9, 9, 9,−1,−1. When (r, n) = (10, 25),

we have 11, 11, 1, 1, 1. When (r, n) = (14, 33), we have 15, 15, 1, 1, 1.

4When n ∈ {2r, 2r + 1, 2r + 2} it is actually a 6-regular multigraph.
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Lemma 4.8. Let G be a 6-regular toroidal graph with edge-width at least 7. If ϕ1 and ϕ2 are 5-colorings of

G and each contains some good monochromatic template (possibly different templates in ϕ1 and ϕ2), then

ϕ1 and ϕ2 are 5-equivalent.

Proof. When G is 4-colorable, the result follows from Lemma 4.3. So, by Lemma 4.7, we only need to

consider G ∈ {C26[1, 10, 11], C37[1, 10, 11]}. Further, C26[1, 10, 11] has a non-contractible cycle of length 6;

it has edge lengths 11, 11, 1, 1, 1, 1. So assume that G = C37[1, 10, 11]. Let ϕ0 denote the 5-coloring of G

that uses color i mod 4 on vertex i, for each i < 37, and uses a fifth color on vertex 37, call it green. An

s-rotation of ϕ0 uses green on vertex s and uses color i mod 4 on vertex i+ s, for each i < 37; a rotation rotationis

an s-rotation for some value of s. If T1 is a 4-template, then some rotation ϕs0 of ϕ0 uses green only on a

vertex that is not in ∪v∈T1N [v], since |T1| ∗ 7 = 28 < 37; in fact, there exist at least 37 − 28 = 9 of these.

So there exists a 5-coloring ϕ1,s of G that agrees with ϕs0 outside of T1 and uses green on T1; again, there

are at least 9 of these. By Lemma 4.2, we know that all of these 5-colorings containing T1 are 5-equivalent;

further, from each of them, we can recolor the vertices of T1 to reach ϕs0. By the transitivity of equivalence,

and the fact that G is vertex transitive, every 5-coloring containing T1 is 5-equivalent to every rotation of

ϕ0. The same is true of 5-colorings containing T2. Thus, ϕ1 and ϕ2 are 5-equivalent.

Now we prove the Main Theorem, assuming results in Section 4.2. For reference, we restate it.

Main Theorem. If G is a 6-regular toroidal graph with edge-width at least 7, then all 5-colorings of G are

5-equivalent.

Proof. Let G be a 6-regular toroidal graph with edge-width at least 7. In Lemma 4.16 of Section 4.2 we prove

that every 5-coloring of G is 5-equivalent to a 5-coloring that contains a good 4-template. Now Lemma 4.8

proves that all 5-colorings of G are 5-equivalent.

An event E(n) happens asymptotically almost surely if Pr(E(n))→ 1 as n→∞.

Lemma 4.9. Fix a positive integer g. If G is a 6-regular toroidal graph on n vertices chosen uniformly at

random, then asymptotically almost surely the edge-width of G is at least g.

Proof. Fix a positive integer n. We prove an upper bound on the fraction of 6-regular toroidal n-vertex

graphs that have edge-width less than g, and we show that this fraction tend to 0 as n tends to infinity.
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Claim 4.1. Each 6-regular toroidal graph can be written as T [a × b, c] for at most 6 choices of positive

integers (a, b, c), such that c ≤ a.

Claim 4.1 follows immediately from Corollary 3.7 of [58]. The idea of that proof is to start from a vertex

and follow edges along a “straight line” until returning to that vertex. More formally, to follow a straight

line, the successor of each vertex v is 3 later than its predecessor in the cyclic order of neighbors of v. The

factor 6 in Claim 4.1 arises from the 6 choices of neighbors to leave our initial vertex. (Since each graph

T [a× b, c] is vertex-transitive, our choice of initial vertex has no effect.)

Claim 4.2. There exists a constant Cg such that, for all positive integers a and b, at most Cg graphs of the

form T [a× b, c] (with c ≤ a) have edge-width less than g.

Fix positive integers a and b. We bound (independently of a and b) the number of integers c with

1 ≤ c ≤ a such that T [a× b, c] has edge-width less than g. We make no effort to optimize this bound, only

to show that it is independent of a and b. Suppose that T [a× b, c] has a non-contractible cycle C of length

less than g. Let r denote the number of number of times that C wraps around the torus in the direction of

the dimension of length a. Let s denote the number of edges on C of length 1 in this direction, and let t1

and t2 denote the numbers of edges on C from column b to column 1 of lengths c and c + 1, respectively.

More precisely, let s, t1, t2 denote the net numbers of these edges traversed in the positive direction as we

traverse C (for some arbitrary orientation). So s + ct1 + (c + 1)t2 = ra. Thus, c = (ra − s − t2)/(t1 + t2).

Since s, t1, t2, and r are all bounded in terms of g (e.g. g > s+ t1 + t2 > −g and g + 1 ≥ r ≥ −(g + 1)), so

is the number of choices for c. This proves the claim.

Let d(n) denote the number of divisors of n. To build a 6-regular toroidal graph T [a× b, c] on n vertices,

we have d(n) choices for the pair (a, b). So the number of 6-regular toroidal graphs with edge-width less

than g is at most d(n)Cg, by Claim 4.2. The number of 6-regular toroidal graphs for the pair (a, b) is

precisely a, since 1 ≤ c ≤ a. So the number for the pairs (a, b) and (b, a) is a + b ≥ max(a, b) ≥
√
n.

By Claim 4.1, this overcounts the total number of 6-regular toroidal graphs on n vertices by a factor of at

most 6. Thus, the fraction of 6-regular toroidal graphs on n vertices with edge-width less than g is at most

d(n)Cg/(((d(n)/2)
√
n)/6) = 12Cg/

√
n, which tends to 0 as n tends to infinity.

This theorem and lemma immediately imply the following corollary.

Main Corollary. If G is a 6-regular toroidal graph on n vertices chosen uniformly at random, then asymp-

totically almost surely all 5-colorings of G are 5-equivalent.
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4.2 Good Templates

Throughout this section we assume that G is a 6-regular toroidal graph with edge-width at least 7. A

coloring ϕ of G is nice niceif it is 5-equivalent to some coloring that contains a good 4-template. In this section

we prove that every 5-coloring ϕ of G is nice. Our proof uses a sequence of lemmas, with increasingly

weaker hypotheses, culminating in the desired result. We adopt conventions common to all figures in this

section. We generally number vertices in the order that we determine their colors. Sometimes, we do not

determine the color of a vertex, but rather determine a color not used there. For such vertices, we restart the

numbering, using higher numbers. To denote that a vertex is not colored green, we lightly shade it green.

We often argue by symmetry. For example, we assume that any triple centered at 30 in Figure 4.3

is {1, 2, 3}, rather than {28, 31, 32}. It is possible that the only automorphism of G that fixes vertex 30

is the identity map. So we do not quite mean that we can apply the same argument to G under some

automorphism. But we do mean something close. If we consider the 6-regular triangulation of the plane,

the set of automorphisms that fix a given vertex v has size 12; it has 6-fold rotational symmetry, together

with reflection through a line containing v. The essential point is that our arguments do not make use of

the global structure of G, but only of subgraphs of G of diameter at most 6. Each time that we invoke

symmetry, we appeal to a map from one such subgraph to another, typically with many vertices in common.

And we always mean one of these 12 symmetries mentioned above. To highlight these symmetries, we draw

our pictures as subgraphs of the 6-regular triangulation of the plane. However, a moment’s reflection shows

that these are isomorphic to subgraphs of a triangulated toroidal grid (as it is drawn in Figure 4.1).

Along similar lines, it is possible that two vertices drawn as distinct in some figure are in fact the same

vertex, when G has a short non-contractible cycle. Such a pair must be drawn at distance at least 7.

Similarly, vertices may be joined by an edge that is not shown; but such vertices must be drawn at distance

at least 6. In some figures, the subgraph shown may have diameter 7 or more. However, the attentive reader

will note that whenever we conclude that ϕ contains a good template T , the vertices of T are contained in

some subgraph H with diameter at most 4. Thus, we avoid these potential complications.

Lemma 4.10. If a 5-coloring ϕ of G contains a triple, then ϕ is nice.

Proof. Assume the lemma is false, and let ϕ be a counterexample with a triple centered at 30, as in Figure 4.3.

(1-3) By symmetry, assume 1, 2, 3 are orange. Neither 6 nor 7 is orange; otherwise {1, 2, 3, 6} or {1, 2, 3, 7}

is a good template. By symmetry, none of the following are orange: 9, 10, 12, 13, 15, 16, 18, 19, 21, 22.
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(4) We will show that 8 is not orange; suppose instead that it is. If 23 or 24 is orange, then ϕ has a good

orange template at {1, 2, 8, w}, where w ∈ {23, 24}. So neither 23 nor 24 is orange; similarly, neither 25 nor

26 is orange. Let α denote the color of 7. If neither 28 nor 29 is α, then an α/orange swap at 7,8 makes 7

orange (and does not change the color anywhere else except 8, and possibly 9). This gives a good template

at {1, 2, 3, 7}, which shows that 8 is not orange. So it suffices to ensure that neither 28 nor 29 is α.

First suppose that 28 is α. If 27, 29, and 30 do not have distinct colors, then some color β is absent from

the closed neighborhood of 28, so we use an α/β swap at 28, ensuring that neither 28 nor 29 is α. Thus,

we assume that 27, 29, and 30 have distinct colors. If 28, 31, 32 have distinct colors, then let γ denote the

color on 30. Now an α/γ swap at 28,30 reduces to the case where 28 (and also 29) is not color α, handled

above. So assume that 28, 31, 32 do not have distinct colors. Thus, some color is absent from the closed

neighborhood of 30. Now recoloring 30 ensures that 30 has the same color as 27 or 29, which we have handled

above. Thus, we assume that 28 is not α.
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Figure 4.3: The proof of Lemma 4.10.

Suppose instead that 29 is α. By symme-

try, we can assume that 9 and 27 are both some

color β; otherwise, we reflect across the line

through 8 and 28. Now we will recolor 8 so

that it is not orange. If 28 and 4 have a com-

mon color, then some color is unused on the

closed neighborhood of 8, so we can recolor 8.

So assume that 28 and 4 use distinct colors; let

γ be the color on 28. If 30 is α or β, then some

color is unused on the closed neighborhood of

28, so we can recolor 28 using the color on 4.

This allows us to recolor 8, which ensures that

neither 8 nor 4 is orange. Now we can recolor

7 orange, reducing to a case above. So assume

that 30 is neither α nor β. If γ does not appear on {31, 32}, then we swap colors on 28 and 30 and recolor

8 with γ. So assume that γ appears on {31, 32}. Now some color is unused on the closed neighborhood of

30, so we can recolor 30, ensuring that it uses either α or β; this reduces to a case above. Thus, we assume

that 29 is not α. All of this shows that we can assume that 8 is not orange. By symmetry, neither 14 nor 20

is orange. So 4 is orange; otherwise we recolor 8 with orange and reduce to a previous case.
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By symmetry, assume that green does not appear on the unique common neighbor of any of the sets

of vertices {1, 5}, {2, 11}, {3, 17}. We use green/orange swaps at each green/orange component containing

vertices 1, 2, and 3. In the resulting coloring, 1, 2, and 3 are green but 4 is orange. So either one of 7, 8, or

9 is green or we can recolor 8 with green. For each possibility, we reduce to an earlier case.

Let parallel pairs parallel pairsdenote the template, with two colors and two vertices in each color, induced by vertices

{1, 2, 3, 4} in Figure 4.4.

Lemma 4.11. If a 5-coloring ϕ of G contains parallel pairs, then ϕ is nice.

Proof. Assume the lemma is false, and let ϕ be a counterexample. By Lemma 4.10, it suffices to show

that ϕ is equivalent to a 5-coloring that contains a triple. We assume 1,2 are green and 3,4 are blue, as in

Figure 4.4.

(5-7) Note that 5 must be green, as follows. If some other neighbor v of 19 is green, then ϕ contains a

good template at {v, 1, 2, 3, 4}. The 4-degeneracy prefix begins 20, 14 and the bonus vertex is 15 (which we

make green). If 19 has no green neighbor, then we can recolor 19 green and get a green triple at {1, 2, 19}.

So 5 is green, as claimed. By the same argument, 6 is blue. If 10 is green, then ϕ contains a good template

at {1, 2, 3, 4, 10}, with prefix 20, 14, 21 and bonus vertex 15. So 10 is not green; by symmetry, neither is

11. Similarly, neither 12 nor 13 is blue. Suppose that none of 7, 8, 16, and 25 is green or blue. Now we

use green/blue swaps at 1,3 and at 2,4. Each of these green/blue components that we recolored contains at

most 4 vertices; in particular, neither contains 5, so 5 is still green. If 19 is blue, then we have a blue triple

centered at 14. If a neighbor v of 19 other than 5 is blue, then we have a good template {v, 1, 2, 3, 4}, as

above (with 15 as bonus vertex). Otherwise, we can recolor 19 blue to get a blue triple centered at 14. Thus,

we assume that at least one of 7, 8, 16, and 25 is blue or green. By symmetry, assume that 7 is blue.

(8) Note that 14 is not blue, since then we have a blue triple at {3, 4, 14}. Similarly, 15 is not green.

Suppose, to reach a contradiction, that 16 is blue. Let α be a color that is not green and not blue and that

does not appear on 23 or 24. We use an α/green swap at 1 and an α/green swap at 2 (possibly a single

swap, if 1 and 2 are in the same α/green component). It is easy to check that 1 and 2 are the only green

vertices that get recolored α. In particular, 5 is still green.

If a neighbor v of 19 is α, then we have a good template at {v, 1, 2, 3, 4}. Otherwise, either 19 is α or we

can recolor it α. In each case, we get an α triple at {1, 2, 19}. Thus, 16 is not blue. So 8 must be green.

Otherwise, the blue/green component containing 2,4 has at most two more vertices: 21 and 22. After a
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blue/green swap at 2,4, we can recolor 21 green. This gives a good template at {1, 2, 3, 4, 5, 21}, with bonus

vertex 15. Thus, 8 is green.
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Figure 4.4: The proof of Lemma 4.11.

(9) Note that 17 is not green (or blue, as we will

see); otherwise, it would form a green triple with 2

and 8. Suppose that 9 is not green. Let α be a color

that is not green or blue and is also not used on 23

or 24. Now we use a green/α swap at 1 and also

use a green/α swap at 2. It is easy to check that

the only green vertices that get uncolored are 1 and

2. In particular, 5 is still green. If a neighbor v of

19 is colored α, then we have a good template at

{v, 1, 2, 3, 4}, with bonus vertex 15. So either 19 is

α or we can recolor it α. In either case, we get a

triple colored α. Thus, 9 is green.

If 17 is blue, then we have a good template at {1, 2, 3, 4, 8, 9, 17}, with bonus vertex 15; the degeneracy

prefix is 23, 16, 20, 14, 21. So 17 is not blue. Similarly, 18 is not blue; this good template replaces 17 in the

previous one with 18, and the degeneracy prefix is 23, 16, 17, 20, 14, 21. Let β be a color that is not green or

blue and is unused on 24 and 25. We use β/blue swaps at 3 and at 4. It is easy to check that the only blue

vertices that get uncolored are 3 and 4. This new coloring again satisfies the hypotheses of the lemma, but

3 and 4 have a common color β different from the color on 6. We repeat our argument above that showed

that 6 was blue. Now it shows that 6 is β, but in fact 6 is blue. This contradiction finishes the proof.

Lemma 4.12. If a 5-coloring ϕ of G uses the same color on vertices 1, 2, 3, 4 in Figure 4.5, then ϕ is nice.
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Figure 4.5: The proof of Lemma 4.12.

Proof. By symmetry, assume that 1, 2, 3, 4 are or-

ange. By Pigeonhole, some color other than orange

is used on at least two neighbors of 5; call this color

blue. If these neighbors are 6 and 7, then ϕ con-

tains parallel pairs centered at 5, so we are done by

Lemma 4.11. Thus, we assume that blue is used on

vertices 9 and v, where v ∈ {6, 7, 8}. If v = 8, then

we have the good template {1, 2, 3, 4, 8, 9}; the pre-

fix is 5, 7, 10, 11, and the bonus vertex is 12. If
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v = 6, then we have the good template {1, 2, 3, 4, 6, 9}; the prefix is 5, 7, 8, 10, 11 and the bonus vertex is

12. It is easy to check that the subgraphs induced by {1, . . . , 11} and {1, . . . , 12} are well-behaved, since

each of them has diameter 4, but every non-contractible cycle has length at least 7. So we assume that blue

is used on 7 and 9. Repeating the same argument, with 10 in place of 5, shows that blue is used on 7 and

13. But now {7, 9, 13} is a blue triple, so ϕ is nice.

Let crossing pairs crossing pairsdenote the template, with two colors and two vertices in each color, induced by vertices

{1, 2, 3, 4} in Figure 4.6.

Lemma 4.13. If a 5-coloring ϕ of G contains crossing pairs, then ϕ is nice.

Proof. We assume the lemma is false, and let ϕ be a counterexample. Further, we assume that 1 is blue, 2 is

red, 3 is blue, and 4 is red. We may also assume that 5 is green, 6 is orange, and 7 is purple. By symmetry

between red and blue, either 8 is green or 8 is blue.

Case 1: 8 is green. Note that 9 is not red, or we have red/green parallel pairs centered at 7. Similarly,

11 is not blue. Neither 10 nor 12 is green, since ϕ has no green triple. So 9 and 10 are orange and blue (in

some order), and 11 and 12 are red and purple (in some order).
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Figure 4.6: Case 1.1: 9 is orange and 10 is blue.

Case 1.1: 9 is orange, 10 is blue. (By hor-

izontal symmetry, and permuting colors, this also

includes the case that 9 is blue and 10 is orange,

but 11 is purple and 12 is red.) None of 13, 14,

15 is orange; otherwise we have an orange triple

centered at 8 (when 15 is orange) or we have a

good template. When 13 is orange, the template

is {1, 2, 3, 4, 6, 9, 13}, the prefix is 5, 7, 8, 11, 12,

and the bonus vertex is the neighbor of 2 that forms

a triple with 1 and 3. When 14 is orange, the tem-

plate is {1, 2, 3, 4, 6, 9, 12, 14} (with 12 in its own color class) the prefix is 5, 7, 8, 11; and the bonus vertex5 is

the neighbor w of 12 and 1 other than 6. After we color w orange, we are done by Lemma 4.12. If 11 is red

and 12 is purple, then a red/orange swap at 11,6 gives a red triple centered at 5. So 11 is purple and 12 is red.

By horizontal symmetry, none of 16, 17, 18 is purple. One of 19 and 20 is purple; otherwise a purple/blue

5We must include 12 in the first template; otherwise, adding the bonus vertex w creates a subgraph that is not locally
connected, since dG(11, w) = 2, but dH+w(11, w) > 2.
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swap at 7,10 gives a blue triple centered at 5. Similarly, one of 19 and 20 is orange; otherwise we use a

purple/orange swap at 11,6,7,9 followed by a blue/orange swap at 10,7, which gives a blue triple centered

at 5. So 19 and 20 are purple and orange (in some order). Now either we have purple/orange parallel pairs

centered at 10, or we get them after a purple/orange swap at 11,6,7,9. This contradicts Lemma 4.11.

1

2 3

45

6 7

8 9

10

11

12

13 14

15

16 17

18

Figure 4.7: Case 1.2: 9 is blue, 10 is orange, 11 is red, 12
is purple.

Case 1.2: 9 is blue, 10 is orange, 11 is red,

12 is purple. One of 13 and 14 is orange; otherwise

a green/orange swap at 5,6,8 gives an orange triple

centered at 7. Similarly, one of 13 and 14 is pur-

ple; otherwise, a purple/green swap at 5,7,8 gives a

purple triple centered at 6. By Lemma 4.11, ϕ has

no parallel pairs, so 13 is purple and 14 is orange.

If neither 15 nor 16 is orange, then an orange/red

swap at 6,11 gives a red triple centered at 5. If nei-

ther 15 nor 16 is blue, then we recolor 11 blue, and

recolor 6 red, which gives a red triple centered at 6. So 15 and 16 are orange and blue (in some order). By

symmetry, 17 and 18 are purple and red (in some order). Now we use a blue/green swap at 8,9, recolor 11

green, and recolor 6 red; this gives a red triple centered at 5.

Case 2: 8 is blue. Now 9 is not red; otherwise, we have a good template at {1, 2, 3, 4, 9}, with prefix

5,7, and the bonus vertex is the neighbor of 2 that forms a triple with 1 and 3. So 9 is either orange or green.

Case 2.1: 9 is orange. (10-12) If 10 is green, then we have green/orange parallel pairs centered at

7. So 10 is blue. None of 15, 16, 17 is orange; otherwise we have an orange triple centered at 8 or a good

template as in Case 1. (If v = 15, then our bonus vertex gives a blue triple. But if v = 16, then we use

Lemma 4.12, as in Case 1.)
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Figure 4.8: Case 2.1: 9 is orange.

If 11 is red, then a red/orange swap at 11,6 gives

a red triple centered at 5. So 12 is red; otherwise,

we recolor 6 red, getting a red triple centered at

5. And 11 is green or purple. Assume 11 is purple;

otherwise, a green/purple swap at 5,7 reduces to this

case (with green and purple interchanged). Similar

to 15, 16, 17, none of 18, 19, 20 is purple. (13-14)

Now 13 or 14 is orange; otherwise an orange/red

58



swap at 12,6 gives a red triple centered at 5. Also, 13 or 14 is purple; otherwise a purple/orange swap at

11,6,7,9, followed by a red/purple swap at 12,6, again gives a red triple centered at 5. So 13 and 14 are

orange and purple (in some order). But now we either have orange/purple parallel pairs centered at 12, or

else we get them after a purple/orange swap at 11,6,7,9.

Case 2.2: 9 is green. (11-12) Now 11 or 12 is red; otherwise, we recolor 6 red and get a red triple

centered at 5. And 11 or 12 is green; otherwise a green/orange swap at 5,6 reduces to case 2.1, with green

and orange interchanged. Note that 10 is either blue or orange.
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Figure 4.9: Case 2.2a: 10 is blue.

Case 2.2a: 10 is blue. (13-16) One of 13 and

14 is purple; otherwise we use a purple/red swap at

7,4, and recolor 6 purple, which gives purple/blue

parallel pairs centered at 5. Similarly, one of 13 and

14 is orange; otherwise, a purple/orange swap at 6,7

reduces to the previous sentence. So 13 and 14 are

purple and orange in some order. We assume 13 is

orange and 14 is purple; otherwise a purple/orange

swap at 6,7 reduces to this case. If 15 is green, then

we have green/purple parallel pairs centered at 10.

And if 15 is red, then we have the good template {1, 2, 3, 4, 8, 15}; the prefix is 5, 6, 7, 10 and the bonus

vertex is the neighbor of 3 that forms a triple with 2 and 4. So 15 is orange. Now 16 is red; otherwise we

have a purple triple centered at 10.

(17-19) Since we have no blue triple, 17 is purple or orange. If 18 is red, then we have red/blue parallel

pairs centered at 9. Thus, 18 is purple or orange. If 19 is purple or orange, then we either have orange/purple

parallel pairs centered at 8, or we get them after an orange/purple swap at 6,7. Thus, 19 is red or green.

(20-21) We show that 20 and 21 are both purple or orange. Suppose 11 is red. If neither 20 nor 21

is orange, then a red/orange swap at 11,6 gives a red triple centered at 5. If neither 20 nor 21 is purple,

then a purple/orange swap at 6,7 followed by a red/purple swap at 11,6 again gives a red triple centered at

5. Instead, assume 11 is green. If neither 20 nor 21 is orange, then an orange/green swap at 11,6,5 gives

orange/purple parallel pairs centered at 4. And if neither 20 nor 21 is purple, then we use a purple/orange

swap at 6,7, followed by a green/purple swap at 11,6,5, followed by a purple/orange swap at 5,7; this again

gives orange/purple parallel pairs centered at 4. So 20 and 21 are orange and purple. If 11 is green, then

a green/blue swap at 11,8,9,10 gives a green triple centered at 7. So assume 11 is red, and use a red/blue
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swap at 11,8. If 18 is purple, then a red/orange swap at 8,6 gives a red triple centered at 5; so assume 18 is

orange. Now a purple/orange swap at 6,7 and a purple/red swap at 8,6 again gives a red triple centered at 5.

Case 2.2b: 10 is orange. (13-14) Note that 13 or 18 is purple; otherwise, we use a purple/red swap

at 7,4 and recolor 6 purple, which gives purple/blue parallel pairs centered at 5. Suppose that 18 is purple.

Now 13 is not green; otherwise we have green/purple parallel pairs centered at 4. So 13 is orange. Now

we reduce to Case 1 with 13, 18, 10, 7, in place of 1, 2, 3, 4 (and orange, purple, red in place of blue, red,

green). Thus, 13 is purple. If 19 is red, then we have the good template {1, 2, 3, 4, 8, 19}; the prefix is 5, 6,

7, 10 and the bonus vertex is the neighbor of 3 that forms a triple with 2 and 4. So 19 is not red. Thus, 14

is red; otherwise a red/orange swap at 4,10 gives orange/blue parallel pairs centered at 5.
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Figure 4.10: Case 2.2b: 10 is orange.

(15-17) If 15 is orange, then we have the good template

{1, 2, 3, 4, 6, 10, 15}, with prefix 5, 7, 9. Our bonus vertex

is 13, which allows us to finish by Lemma 4.12. Suppose

15 is blue. If 19 is not purple, then a purple/orange swap

at 6,7,10 and a red/orange swap at 4,7 gives red/blue

parallel pairs centered at 9. So assume 19 is purple. Now

18 is blue; otherwise we recolor 10 blue and get a blue

triple centered at 9. Now 17 is orange; otherwise an or-

ange/green swap at 10,9 gives parallel orange/green pairs

centered at 7. Finally, a green/purple swap at 5,7,9 and a red/green swap at 4,7 gives red/blue parallel pairs

centered at 9. Thus, 15 is not blue. So 15 is purple, since it sees red and green and is not orange or blue.

Thus, 16 is purple; otherwise a purple/blue swap at 7,8 gives a blue triple centered at 5. If 11 is red and 12

is green, then a green/blue swap at 8,9 gives a green triple centered at 6. So 11 is green and 12 is red. If 17

is orange, then we recolor 8 red and recolor 7 blue, which gives a blue triple centered at 5. So 17 is red.

(18-19) Now 18 or 19 is green; otherwise a green/orange swap at 9,10 gives green/orange parallel pairs

centered at 7. And 18 or 19 is blue; otherwise we recolor 10 blue, which gives blue/red parallel pairs centered

at 9. So 18 and 19 are blue and green (in some order). Now we use a purple/orange swap at 6, 7, 10 followed

by a red orange swap at 4, 7. This gives a red triple centered at 9.

Let a pair pairdenote the template, with one color and two vertices, induced by vertices {1, 3} in Figure 4.10.

Lemma 4.14. Every 5-coloring of G is equivalent to a 5-coloring with a pair.
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Proof. Six vertices in a coloring form alternating sets alternating setsif they are colored as vertices 1,2,3,4,5,6 in Figure 4.12

(not Figure 4.11), ignoring all other colors in that picture. We first show that each 5-coloring is equivalent

to a 5-coloring that contains either a pair or alternating sets. Assume instead that ϕ is a counterexample to

this statement.
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Figure 4.11: A claim in the proof of Lemma 4.14.

(1-6) Since we have no pair, we also have no triple.

By Pigeonhole, two colors appear exactly twice on the

neighborhood of 7. Since we have no pair, these repeated

colors appear “across” from each other; that is, each color

appears on two vertices with 7 as their unique common

neighbor. By rotational symmetry, we assume 1 and 2

are red, and 3 and 4 are orange, as in Figure 4.11. If no

neighbor of 3 is red, and no neighbor of 1 is orange, then

an orange/red swap at 1,3 gives orange on both 1 and 4, a pair. Thus, either 5 is red or 9 is orange; by

symmetry, we assume that 5 is red. By repeating the same argument for 2 and 4, we assume that 6 is red;

if instead 11 is orange, then we have alternating sets, as claimed.

(7-14) Now 7 and 8 are new colors, green and blue, respectively. If 9 is orange, then we have alternating

sets; and if 9 is green, then we have a green pair, 9 and 7. If 9 is purple, then we recolor 7 with purple

and get a purple pair. So 9 is blue. This implies that 10 is purple. Clearly, 11 is not red or blue. It is

also not green, since ϕ has no pair, and it is not orange, since ϕ does not have alternating sets. So 11 is

purple. If 12 is green or purple, then ϕ contains a pair; so 12 is blue. Now 13 and 14 are both green; for

each vertex, three colors appear on its neighbors and a fourth is forbidden, since ϕ contains no pair. Now

we use a purple/orange swap at 10,4. This gives an orange pair at 10 and 3. This proves the claim that ϕ

is equivalent to a 5-coloring that contains either a pair or alternating sets.
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Figure 4.12: Finishing the proof of Lemma 4.14.

(1-10) Now we assume that ϕ contains alternating

sets, with 1, 4, 5 red and with 2, 3, 6 orange, as in Fig-

ure 4.12. We also assume 7 is green and 8 is blue. (a)

First suppose that 9 and 10 are both purple. At least

one of 11 and 12 is blue or green. So either ϕ contains as

a pair one of {7, 11} or {8, 12} or the resulting coloring

contains one of these pairs after a green/blue swap at 7,8.

So assume that 9 and 10 are not both purple. (b) Next
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suppose that 9 is blue and 10 is green. If none of 11, 12, 13, 14 is purple, then we recolor both 3 and 4

purple, which gives a pair. If instead one of 11, 12, 13, 14 is purple, then recoloring 7 or 8 purple gives

a purple pair. Thus, we assume that exactly one of 9 and 10 is purple. (c) By reflectional symmetry, we

assume that 9 is blue and 10 is purple.

(11-18) Since 7 is green, 11 is not green. Similarly, 11 is not purple, since then we can recolor 7 purple.

So 11 is blue. If 12 is green, then we can recolor 7 purple and recolor 8 green. So 12 is purple. By reflectional

symmetry, 13 is blue and also 14 is purple. Note that 15 is not green, since 7 is green. And 15 is not purple,

since then we could recolor 7 purple to get a purple pair. So 15 is red. Similarly, 16 is orange. Next, 17 is

green; otherwise, an orange/green swap at 2,7,3 gives the orange pair {6, 7}. Now recoloring 2 purple gives

a purple pair at {2, 12}.

Lemma 4.15. If ϕ is a 5-coloring of G with a pair, then ϕ is equivalent to a coloring that contains either

a triple, or parallel pairs, or crossing pairs. In particular, ϕ is nice.

Proof. The second statement follows immediately from the first, combined with Lemmas 4.10, 4.11,

and 4.13. So we now prove the first; instead assume that ϕ is a counterexample.

(1-8) By assumption, 1 and 2 have a common color, red; see Figure 4.13. Now 3 and 4 have new colors:

purple and green, respectively. Further, 5 is also purple. Suppose instead that 5 is orange; now each of

7 and 8 is either purple or blue. If either is purple, then we have red/purple crossing pairs centered at 4.

Otherwise, both 7 and 8 are blue, so we have red/blue parallel pairs centered at 4. Thus, we assume that

5 is purple; similarly, we assume that 6 is green. Below we frequently use this argument implicitly. Finally,

7 and 8 have new colors; if they are not distinct, then we have parallel pairs centered at 4. So assume 7 is

orange and 8 is blue. Now we consider 4 cases, depending on the color of 9.
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Figure 4.13: Case 1: 9 is orange.

Case 1: 9 is orange. (10-13) Since 7 and 9 are both

orange, 10 is red, like 1, and 11 is purple, like 3. Now

12 is blue. And 13 is orange; otherwise, a purple/orange

swap at 3 gives an orange triple centered at 1.

(14-16) One of 14 and 15 is blue; otherwise a

blue/orange swap at 7 gives blue/red parallel pairs cen-

tered at 4. And one of of 14 and 15 is green; otherwise, an

orange/green swap at 7,4 gives orange/red crossing pairs

centered at 3. Note that 17 is not red, since 1 is red and
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6 and 9 have distinct colors. So 16 is red; otherwise a red/orange swap at 9,1,7 gives a red triple centered at

11.

(17-19) Note that 18 cannot be purple, since 3 is purple, but 6 and 9 have distinct colors. So 17 is purple;

otherwise, a blue/purple swap at 12,3 gives blue/red crossing pairs centered at 4. Further, 18 cannot be

orange, since then a red/blue swap at 12,1 gives red/orange crossing pairs centered at 17. So 18 is red. If 19

is green, then an orange/blue swap at 9,12 gives orange/red parallel pairs centered at 3. So 19 is blue. But

now we recolor 9 with green, and recolor 12 with orange. This also gives orange/red parallel pairs centered

at 3.
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Figure 4.14: Case 2: 9 is purple.

Case 2: 9 is purple. (10-14) If 10 is green, then

we have green/purple parallel pairs centered at 1, so 10

is blue. Since 3 and 9 are purple, 11 is orange and 12

is red. If 13 is green, then we have green/purple parallel

pairs centered at 11; so 13 is blue. If 14 is orange, then we

have orange/red parallel pairs centered at 3; so 14 is blue.

(15-16) Note that 21 is not green, since 4 is green but

5 and 10 are distinct colors. Now 15 is green; otherwise,

a green/orange swap at 4,7 gives orange/purple crossing

pairs centered at 1. Note that 18 is not red, since 1 is red

but 9 and 15 are distinct colors. So 16 is red; otherwise a red/blue swap at 1,10 gives blue/purple crossing

pairs centered at 11.

(17) Suppose 17 is not red. If neither 19 nor 20 is purple, then a red/purple swap at 2,3,1,9 gives a

red triple centered at 11. If neither 19 nor 20 is green, then a green/red swap at 2,4,1 gives a green triple

centered at 3. So 19 and 20 are purple and green. Now we recolor 2 with orange and do a green/red swap

at 4,1, which gives green/purple crossing pairs centered at 11. So 17 is red.

(18-20) Now 18 is orange; otherwise an orange/purple swap at 9,11,3 gives an orange triple centered at

1. If neither 19 nor 20 is green, then a green/red swap at 2,4,1 gives a green triple centered at 3. If neither

19 nor 20 is orange, then we recolor 2 with orange and use a green/red swap at 4,1. This gives green/purple

crossing pairs centered at 11. So 19 and 20 are green and orange. Now we recolor 9 with green. Afterwards,

a red/purple swap at 1,3,2 gives a purple triple centered at 4.

Case 3: 9 is blue. (10-11) Now 10 is orange, since all other colors are used on its neighborhood. If 11
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is orange, then we have orange/red parallel pairs centered at 3. So 11 is blue.

(12-13) If 12 is green, then we are actually in Case 2, by reflecting horizontally and interchanging colors

green and purple. So we assume that 12 is not green; thus, 12 is purple. Similarly, 17 is not green, by

reflecting both vertically and horizontally, and interchanging both orange/blue and green/purple. Now 13 is

green; otherwise a green/red swap at 1,4,2 gives a green triple centered at 3.
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Figure 4.15: Case 3 in the proof of Lemma 4.15.

(14) Note that 27 is not purple, since 3 is purple but 6

and 9 have distinct colors. So, if 14 is not purple, then a

purple/orange swap at 10,3 gives purple/orange parallel

pairs, centered at 1. Thus, 14 is purple.

(15-16) Now 15 and 16 must be orange and purple. If

neither is orange, then recoloring 11 with orange gives or-

ange/red parallel pairs centered at 3. If neither is purple,

then a purple/blue swap at 11,3 gives blue/red crossing

pairs centered at 4. So 15 and 16 are orange and purple.

Suppose that 15 is purple. If 26 is blue, then we have

blue/purple crossing pairs centered at 6. And if 26 is orange, then we have orange/purple parallel pairs

centered at 6. So 26 is red. This means that 27 is blue. Now a green/orange swap at 6,10 gives green/red

crossing pairs centered at 3. So we assume 15 is not purple. Thus, 15 is orange and 16 is purple.

(17-18) If 17 is purple, then we recolor 2 with orange, recolor 11 with red, and use a red/green swap at

1,4. This gives red/green parallel pairs centered at 3. Thus, 17 is orange. Now 23 is not green, since 4 is

green but 5 and 17 have distinct colors. So 18 is green; otherwise, a green/blue swap at 8,4 gives green/blue

parallel pairs centered at 2.

(19-20) If neither 19 nor 20 is blue, then a blue/orange swap at 7 gives blue/red parallel pairs centered

at 4. If neither 19 nor 20 is green, then a green/orange swap at 7,4 gives orange/red crossing pairs centered

at 3. So 19 and 20 are blue and green. If 19 is green, then 23 is orange since 7 is orange. Thus, 25 is red;

otherwise, we can recolor 5 red and get a red triple centered at 4. Now a blue/red swap at 8,2,11 gives

red/green parallel pairs centered at 5. Thus, 19 is blue and 20 is green.

(21-24) Note that 24 cannot be red, since 2 is red and 16 and 17 have distinct colors. So 21 is red;

otherwise, a red/green swap at 13,2,4,1 gives a green triple centered at 3. Similarly, 22 is red; otherwise, a

red/orange swap at 2,17 and a red/green swap at 1,4 gives a red triple centered at 8. Now 23 must be red;
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otherwise a red/blue swap at 8,2,11 gives 11 and 21 red but 16 and 17 with distinct colors, a contradiction.

Finally, 24 is purple. If not, then we recolor 17 purple and repeat the argument above showing that 17 is or-

ange, getting a contradiction. Now an orange/blue swap at 17,8 gives orange/red parallel pairs centered at 4.

Case 4: 9 is green. (9-11) We assume that 10 is green; otherwise reflecting vertically (interchanging

orange/blue) reduces to an earlier case. Further, either 11 or 24 is purple. Otherwise, a purple/red swap at

3 gives a purple triple centered at 4. By possibly reflecting vertically, we assume 11 is purple.
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Figure 4.16: Case 4 in the proof of Lemma 4.15.

(12) Note that 15 and 16 must each be either orange

or blue, and they must have distinct colors; otherwise,

we have parallel pairs centered at 3. Denote the colors

of 15 and 16 by α and β, respectively. If neither 13 nor

17 is purple, then an α/purple swap at 15,3 gives α/red

crossing pairs centered at 4. And if neither 13 nor 17 is β,

then an α/β swap at 15 gives β/red parallel pairs centered

at 3. So 13 and 17 are β and purple (in some order). By

a similar argument, 18 and 14 are α and purple (in some

order). Thus, 12 is red; otherwise, we recolor 6 red, which

gives a red triple centered at 3.

(13-14) If 17 is purple, then either 13 is orange and 15 is blue or vice versa. In the first case, a blue/red

swap at 15,1 gives red/purple crossing pairs centered at 6. In the second case, we recolor 1 blue, which gives

blue/purple parallel pairs centered at 15. So 13 is purple. Suppose 18 is purple. If 15 is blue, then a red/blue

swap at 15,1 gives red/purple parallel pairs centered at 6. If 15 is orange, then we recolor 1 blue and recolor

15 red. Again, we get red/purple parallel pairs centered at 6. So 14 is purple.

(15-18) Suppose 15 is orange and 16 is blue. If 24 is purple, then recolor 1 blue, 2 orange, 15 red, and

16 red; this gives a red triple centered at 6. So 24 is orange. Recolor 1 blue. Use a red/purple swap at 2,3,

and a red/orange swap at 3,15. This gives orange/purple parallel pairs centered at 16. So 15 is blue and 16

is orange. This implies that 17 is orange and 18 is blue.

(19-23) Note that 19 cannot be green, since 6 is green, but 12 and 13 have distinct colors. If 19 is purple,

then a red/blue swap at 15,1 gives red/purple parallel pairs centered at 17. So 19 is blue. If 20 is red, then

a red/blue swap at 1,15 gives a red triple centered at 17. So 20 is green. Note that 21 or 22 must be green;

otherwise, a red/green swap at 12,6 gives a red triple centered at 3. And 22 cannot be green, since 6 is
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green but 12 and 14 have distinct colors. So 21 is green. If 22 is orange, then we recolor 12 purple and

recolor 6 red, which gives a red triple centered at 3. So 22 is purple. Finally, 23 must be green; otherwise

we have purple/red or purple/orange crossing pairs centered at 18. Now a blue/orange swap at 18,16 gives

blue/orange parallel pairs centered at 6.

Now we prove the main result of this section.

Lemma 4.16. If G is a 6-regular toroidal graph with edge-width at least 7, then every 5-coloring of G is

5-equivalent to a 5-coloring that contains a good 4-template.

Proof. Let G be a graph satisfying the hypothesis, and let ϕ0 be a 5-coloring of G. By Lemma 4.14, ϕ0 is

5-equivalent to some 5-coloring ϕ1 that contains a pair. By Lemma 4.15, ϕ1 is 5-equivalent to some 5-coloring

ϕ2 that contains either a triple, or parallel pairs, or crossing pairs. By Lemmas 4.10, 4.11, and 4.13. ϕ2 is

5-equivalent to some 5-coloring ϕ3 the contains a triple, and thus contains a good 4-template.

4.3 Extensions and Open Questions

We begin the section by sketching the proof of Theorem 4.1. For reference, we repeat the statement below.

Theorem 4.1. If G is a triangulated toroidal grid T [a× b] with a ≥ 6 and b ≥ 6, then all 5-colorings of G

are 5-equivalent.

Proof Sketch. We sketch how to modify the proof of the Main Theorem to prove Theorem 4.1. Recall that

our Main Theorem handles the case that a ≥ 7 and b ≥ 7, since then G has edge-width at least 7. By

symmetry, we can assume that a ≤ b. So assume that a = 6. By Lemma 4.7, we know G is 4-colorable; so

Lemma 4.3 still applies. In fact, the only place that our proof uses edge-width 7 is when we apply Lemma 4.5

to show that a subgraph H is locally connected. However, in the proof of Lemma 4.5 we only need the fact

that H does not contain five vertices on a non-contractible cycle of length 6. The graph T [6× 6] has exactly

18 non-contractible cycles of length 6. These run along the 6 rows, 6 columns, and 6 diagonals. And for

T [6×b] with b ≥ 7, we have b non-contractible cycles of length 6; each runs along a column. So, to adapt the

proof to our present situation, it suffices to check that H does not contain exactly 5 vertices on any of these

non-contractible 6-cycles. In the proofs of Lemmas 4.10 and 4.12, this is true. However, in the proofs of

Lemmas 4.11 and 4.13, there is sometimes a single non-contractible cycle C of length 6 with 5 of its vertices
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in H. In this case, we simply add the final vertex v of C to T and to H, making v the sole vertex in its

color in T . It is straightforward to check that the subgraph G−H − {v} is still connected. Thus, the proof

of Lemma 4.5 still applies.

In the introduction we mentioned that Mohar proved that if G is a planar graph with χ(G) = k, then

all (k + 1)-colorings of G are (k + 1)-equivalent. Mohar also constructed, for any positive integers k, `

with k < ` a k-chromatic graph with a single k-coloring and with two `-colorings that are not `-equivalent

(Figure 2.5). We would still like to find larger classes of graphs G for which all (χ(G) + 1)-colorings are

(χ(G) + 1)-equivalent. Our conjectures below focus on graphs embedded in the torus, and other surfaces.

We first state a lemma that will likely be useful in studying this problem. We call a template T in a graph

G k-good if GT is k-degenerate.

Lemma 4.17. Let G be a graph with χ(G) ≤ k. If ϕ1 and ϕ2 are (k + 1)-colorings of G that contain

monochromatic k-good templates T1 and T2, respectively, then ϕ1 and ϕ2 are (k + 1)-equivalent.

We omit the proof, since it is nearly identical to that of Lemma 4.3.

Conjecture 4.1. If G is a triangulated toroidal grid T (a×b) (say with a ≥ 3 and b ≥ 3), then all 5-colorings

of G are 5-equivalent.

Conjecture 4.2. If G is a 4-chromatic toroidal graph, then all 5-colorings of G are 5-equivalent.

Conjecture 4.3. If G is a toroidal graph, then all 5-colorings of G are 5-equivalent.

Conjecture 4.4. For every surface S there exists cS such that if G embeds in S with edge-width at least cS,

then all 5-colorings of G are 5-equivalent.
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Chapter 5

The L-valid Kempe Swap Model:

Kempe Equivalent List Colorings

Recall that Meyniel [53] proved that if G is a planar graph, then all of its 5-colorings are 5-equivalent;

see also [30]. This was extended by Las Vergnas and Meyniel [50], who proved the same conclusion for

all K5-minor-free graphs1. They also showed that if G is (k − 1)-degenerate, then all of its k-colorings

are k-equivalent; Lemma 5.1 below (equivalently, Theorem 2.5 from Chapter 2) generalizes this result to

list coloring. Mohar [54] conjectured that if G is connected and k-regular, then all of its k-colorings are

k-equivalent. This is a natural next step, since the sparsest graphs that are not (k − 1)-degenerate are

k-regular. Mohar’s Conjecture was proved for k = 3 by Feghali, Johnson, and Paulusma [40] (with a single

exception K2 K3) and for k ≥ 4 by Bonamy, Bousquet, Feghali, and Johnson [11]; this was reproved in a

stronger form in [9]. Our Main Theorem in this chapter (stated on the next page) is an analogous result for

list-coloring.

Remark 5.1. Recall from Observation 2.1 that we only consider list-assignments L for which G admits

an L-coloring. Thus, the existence of an L-coloring for G should be implicitly assumed in the definition of

L-swappability.

To illustrate some of the key ideas in this paper, we now reprove a helpful lemma of Las Vergnas and

Meyniel [50], generalized to the context of list-coloring.

1An H-minor of a graph is a subgraph isomorphic to H obtained through a combination of vertex deletions, edge deletions,
and edge contractions. A graph is H-minor-free if it contains no H-minor.
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Lemma 5.1. Let G be a connected graph, let L be a list-assignment for G, and fix v ∈ V (G) with |L(v)| >

d(v). Let G′ := G− v and let L′ denote L restricted to G′. If G′ is L′-swappable, then G is L-swappable.

Proof. Assume G′ is L′-swappable. Let ϕ1 and ϕ2 denote L-colorings of G, and let ϕ′1 and ϕ′2 denote their

restrictions to G′. Since G′ is L′-swappable, there exist L′-colorings ψ′0, . . . , ψ
′
t of G′ such that ψ′0 = ϕ′1 and

ψ′t = ϕ′2 and ψ′i differs from ψ′i−1 by a single L′-valid Kempe swap, for each i ∈ [t]. Now we extend each

ψ′i to an L-coloring ψi of G such that ψi and ψi−1 are L-equivalent. Suppose that ψ′i differs from ψ′i−1 by

an α, β-swap at vi, for some vi ∈ V (G) and some colors α and β. If ψi−1(v) /∈ {α, β} or if v is not in the

same α, β-component of ψi−1 as vi, then we form ψi from ψi−1 by performing the same α, β-swap at vi.

This approach also works if {α, β} ⊆ L(v) and v is in the same α, β-component as vi, but v has degree 1 in

that component. So suppose that v is in the same α, β-component as vi, but either |L(v) ∩ {α, β}| = 1 or v

has degree at least 2 in that α, β-component. Since |L(v)| > d(v), there exists γ ∈ L(v) that is unused by

ψi−1 on the closed neighborhood of v. We first recolor v with γ, and then perform the α, β-swap at vi. By

induction on i, this gives an L-coloring ψt that restricts to ψ′t. Lastly, if ψt(v) 6= ϕ2(v), then we recolor v

with ϕ2(v).

Corollary 5.1. A graph G is L-swappable whenever there exists a vertex order in which each vertex x is

preceded by fewer than |L(x)| neighbors. In particular, G is L-swappable when G is (k − 1)-degenerate and

L is a k-assignment. This includes the special case that k := ∆ and G is connected, but not regular.

Proof. We prove the first statement by induction on |V (G)|. The base case |V (G)| = 1 holds trivially.

The induction step holds by Lemma 5.1, taking v to be the final vertex in the order. The second statement

follows from the first, using any order that witnesses that G is (k−1)-degenerate. Finally, the third statement

obviously follows from the second, when we order the vertices by non-increasing distance from some vertex

of degree less than k.

Now we can state our Main Theorem and outline its proof.

Main Theorem. If G is a connected graph with ∆ ≥ 3 and G /∈ {K2 K3,K∆+1}, then G is ∆-swappable.

If G ∈ {K2 K3,K∆+1} and L is a ∆-assignment that is not identical everywhere, then G is L-swappable.

Note that the interesting case in our Main Theorem is when G is regular, since otherwise the result is

included in Corollary 5.1. A crucial step in proving the Main Theorem is verifying the following Key Lemma.

Its proof mirrors that of Lemma 5.1.
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Key Lemma. If H is degree-swappable and G is a connected graph containing H as an induced subgraph,

then G is degree-swappable.

In view of the Key Lemma, we have a natural plan to prove the Main Theorem. (i) Compile a collection H

of known degree-swappable graphs. (ii) Show that if G is connected with ∆ ≥ 3 and G /∈ {K2 K3,K∆+1},

then G contains as an induced subgraph some H ∈ H. (For brevity, we omit from this sketch the details of

handling K2 K3 and K∆+1, but they are not hard.) In fact, Erdös, Rubin, and Taylor [37] used a similar

approach to characterize all degree-choosable graphs. They showed that if G is connected and not a Gallai

tree, then G contains as an induced subgraph an even length cycle with at most one chord2, which we call

a good cycle good cycle. It is easy to check that every good cycle is degree-choosable. A cut set S ⊂ V (G) is such

that G − S is disconnected. A graph G is k-connected k-connectedif |V (G)| > k and every cut set S satisfies |S| ≥ k.

The connectivity of G is the largest integer k such that G is k-connected. A block blockin a graph is a maximal

2-connected subgraph. A Gallai tree Gallai treeis a connected graph in which each block is an odd cycle or a clique.

These results on good cycles imply that every connected graph is degree-choosable unless it is a Gallai tree;

this implication uses an analogue of our Key Lemma that holds for degree-choosability.3 So perhaps we

might hope to even characterize degree-swappable graphs. But when we take this approach, we quickly find

many degree-choosable graphs that are not degree-swappable.

Example 5.1. Denote the vertices of an n-cycle Cn by v1, . . . , vn. Let L(vi) = {i, i + 1} mod n. See the

left side of Figure 5.1. Note that Cn has two L-colorings: (1) ϕ(vi) = i, for all vi, and (2) ϕ(vi) = i+ 1, for

all vi. However, |L(vi) ∩ L(vj)| ≤ 1 for all distinct i, j. Thus, neither ϕ1 nor ϕ2 admits any L-valid Kempe

swap. So Cn is not degree-swappable.

More generally, let G be any Gallai tree. For each block Bi of G, let di := dBi(v) for all v ∈ V (Bi). Assign

to each block Bi a list Li of size di such that Li1 ∩Li2 = ∅ whenever i1 6= i2. Let L(v) := ∪Bi3vLi. Now G is

not L-choosable, as is easy to verify by induction on its number of blocks. (This is the standard construction

showing that Gallai trees are not degree-choosable.) Form G′ from G by adding some edge xy such that

x, y ∈ V (G) but xy /∈ E(G), x and y are in distinct blocks, andG′ is not a Gallai tree. Let L′(x) := L(x)∪{α},

L′(y) := L(y) ∪ {α}, and L′(z) := L(z) for all z ∈ V (G) \ {x, y}, and some α /∈
⋃
v∈V (G) L(v). See the right

side of Figure 5.1. Note that G′ is L′-choosable (by the result of Erdös, Rubin, and Taylor [37], since G′ is

not a Gallai tree). Furthermore, G′ has some L′-coloring ϕ1 with ϕ1(x) = α and has some other L′-coloring

ϕ2 with ϕ2(y) = α. Moreover, since G is not L-choosable, every L′-coloring of G′ uses α on either x or y.

2The general case of this result easily reduces to the case when G is 2-connected, which is known as Rubin’s Block Lemma.
For a shorter proof, see Section 9 of [28].

3To prove this analogue, we greedily color the vertices of G \H in order of non-increasing distance from H. Afterward, we
can extend this coloring to H precisely because H is degree-choosable.
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4 55 66 1

1 2 2 3 3 4

4 55 66 1

1 2 2 3 3 4

4 55 66 1

0 1 2 1 2 3 3 4 5 6 6 7 8 9 7 8 9

7 8 9 07 8 94 5 4 51 2

0 1 2 1 2 3 3 4 5 6 6 7 8 9 7 8 9

7 8 9 07 8 94 5 4 51 2

Figure 5.1: Left: A 6-cycle and a 2-assignment showing that it is not degree-swappable. Right: Another
“Gallai tree plus edge” and a degree-assignment showing that it is not degree-swappable.

Note that L′(x) ∩ L′(y) = {α}, so no L-valid Kempe swap can move α from x to y, or vice versa. Thus, ϕ1

and ϕ2 are not L-equivalent. This implies that G′ is not degree-swappable, even though, as noted above, G′

is degree-choosable.

Note that Example 5.1 includes an even cycle with a single chord e whenever the two cycles containing

e each have odd length (deleting any edge besides the chord gives a Gallai tree). Thus, many good cycles

are not degree-swappable. In fact, we have discovered further graphs that are not degree-swappable4, and

we do not yet have a conjectured description of all such graphs. So we suggest the following problem.

Problem 5.1. Characterize all degree-swappable graphs.

To prove the Main Theorem, we split into two cases: (i) connectivity at most 3 and (ii) connectivity at

least 4. In the first case, which takes most of the work, we use a small vertex cut to show that G contains

an induced subgraph H from a family of known degree-swappable graphs. In the second case, the higher

connectivity allows us to more explicitly construct a sequence of L-valid Kempe swaps to transform any

L-coloring ϕ1 into any other ϕ2. The rest of the paper is organized as follows. In Section 5.1 we prove the

Key Lemma, as well as a few other helpful results on swappability. In Section 5.2 we compile a family of

known degree-swappable graphs. Finally, in Section 5.3 we prove the Main Theorem.

4Interestingly, all such graphs have connectivity 2. Moreover, in a follow-up paper [24], we show that every 4-connected
graph is degree-swappable (in fact, more strongly, we show it is L-swappable for every list-assignment L satisfying |L(v)| ≥ d(v)
for every v ∈ V (G)). Thus, we conjecture in [24] that every 3-connected graph is L-swappable for every such list-assignment L.
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5.1 Swappability Lemmas

In this section, we prove a number of lemmas about swappability. More precisely, each lemma considers a

graph G and a list assignment L and identifies a set of L-colorings of G that are pairwise L-equivalent. Each

of these results can be viewed as extending Lemma 5.1.

Lemma 5.2. (a) If |L(v)| ≥ d(v) for all v and |L(w)| > d(w) for some w, then G is L-swappable (assuming

that G is connected). (b) If x ∈ V (G) and G − x is connected, then the same result holds even if we only

require |L(x)| ≥ 1.

Proof. The first statement follows directly from Corollary 5.1. We order the vertices by non-increasing

distance from w; thus, every vertex other than w has a neighbor later in the order. For the second statement,

we simply put x first in the order, and apply the previous result to G− x, which is still connected.

Fix a graph G, a vertex v ∈ V (G), a list assignment L for G, and a color α ∈ L(v). Let L denote the

set of all L-colorings of G. Let Lv,α L, Lv,αdenote the set of L-colorings ϕ such that ϕ(v) = α. Recall that if L′

is a set of L-colorings of G that are pairwise L-equivalent, then L′ mixes mixes. If also ϕ is an L-coloring that is

L-equivalent to some ϕ′ ∈ L′, then we say that ϕ mixes with L′ mixes with L′; often it is the case that ϕ /∈ L′.

Lemma 5.3. Let G be a connected graph such that w, x ∈ V (G), wx ∈ E(G), and G − x is connected. If

L is a degree-assignment for G such that there exists α ∈ L(x) \ L(w), then Lx,α is nonempty and mixes.

More generally, ∪α∈L(x)\L(w)Lx,α mixes.

Proof. We let G′ := G−wx, let L′(x) := L(x) \L(w), and let L′(v) := L(v) for all v ∈ V (G) \ {x}. Now we

apply Lemma 5.2(b) to G′ and L′.

Lemma 5.4. Let G be a graph with v, w1, w2 ∈ V (G) such that G− {w1, w2} is connected, w1, w2 ∈ N(v),

and w1w2 /∈ E(G). Fix a degree-assignment L for G.

(1) If there exists α ∈ L(w1) ∩ L(w2), then Lw1,α ∩ Lw2,α is nonempty and mixes.

(2) If there exist α ∈ L(w1) ∩ L(w2) and β ∈ L(w1) \ L(v), then (Lw1,α ∩ Lw2,α) ∪ Lw1,β is nonempty and

mixes.

(3) If there exist α ∈ L(w1)∩L(w2) and β ∈ L(w1)\L(v) and also N(w1) = N(w2), then
⋃
α∈L(w1)∩L(w2)(Lw1,α∪

Lw2,α) ∪
⋃
β∈L(w1)\L(v) Lw1,β is nonempty and mixes.
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Proof. To prove (1), let G′ := G − {w1, w2}, let L′(y) := L(y) \ {α} for all y ∈ N(w1) ∪ N(w2), and let

L′(z) := L(z) for all other z ∈ V (G). Note that |L′(v)| ≥ |L(v)| − 1 > dG(v) − 2 = dG′(v). Thus, we can

apply Lemma 5.2(a) to G′ and L′.

Now we prove (2). If α = β, this holds by Lemma 5.3 (with x := w1 and w := v). So assume α 6= β. Let

G′ := G − vw1 − w2 and let L′(w1) := {α, β} and L′(z) := L(z) \ {α} for all z ∈ N(w2) and L′(z) := L(z)

otherwise. Now L′ mixes for G′, by Lemma 5.2(a), with w := v. These L′-colorings of G′ are in bijection

with colorings of G in Lw2,α ∩ (Lw1,α ∪ Lw1,β), and each L′-valid Kempe swap in G′ maps to an L-valid

Kempe swap in G that respects this bijection. Since Lw1,β mixes by Lemma 5.3 and Lw1,α ∩Lw2,α mixes by

(1), the result follows. (Note that Lw1,β ∩Lw2,α 6= ∅, since we can color w1 with β and color w2 with α, and

then color G− {w1, w2} greedily towards v.)

Finally, we prove (3). Consider ϕ ∈ Lw1,α ∪Lw2,α. If ϕ(w1) 6= ϕ(w2), then we simply recolor w1 or w2 so

that they both use color α; this is possible because N(w1) = N(w2), so α is unused on N(w1) (and on N(w2)).

Thus, ϕ mixes with (Lw1,α∩Lw2,α)∪Lw1,β by (2). Finally, if there exist distinct α, α′ ∈ L(w1)∩L(w2), then

we repeat the argument above with α′ in place of α. Similarly, if there exist distinct β, β′ ∈ L(w1) \ L(v),

then we repeat the argument above with β′ in place of β. This proves (3).

We will often want to prove that a graph G is L-swappable, for some list assignment L. When we want

to prove that a graph is degree-swappable, the following lemma significantly restricts the possibilities for L

that we must consider.

Lemma 5.5. Fix a graph G, a degree-assignment L, and an edge vw such that G − vw is connected and

degree-choosable. If |L(v) ∩ L(w)| ≤ 1, then G is L-swappable.

Proof. If |L(v) ∩ L(w)| = 0, then G is L-swappable if and only if G − vw is L-swappable, and the latter

statement holds by Lemma 5.2(a). So assume instead that |L(v) ∩ L(w)| = 1 and that L(v) ∩ L(w) = {α}.

Form L1 from L by removing α from L(v). Form L2 from L by removing α from L(w). Form L3 from L by

removing α from both L(v) and L(w). Note that G is L1-swappable if and only if G− vw is L1-swappable,

and the latter is true by Lemma 5.2(a). The same is true for L2-swappable. Since L3 is a degree-assignment

for G − vw, by assumption G − vw has an L3-coloring ϕ. Note that ϕ is both an L1-coloring and an L2-

coloring. Thus, L1-colorings mix with L2-colorings. Since every L-coloring of G is either an L1-coloring or

an L2-coloring (or both), we conclude that G is L-swappable.

The rest of this section is dedicated to proving the Key Lemma (from the introduction). In fact, we prove
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a more general version, Lemma 5.6.

Lemma 5.6. Fix a graph G and a function f : V (G)→ Z+. Let H be an induced subgraph of G such that

G − H is f -swappable. Let f ′(x) := f(x) − (dG(x) − dH(x)) for all x ∈ V (H). If f ′(x) ≥ dH(x) for all

x ∈ V (H) and H is f ′-swappable, then G is f -swappable.

To see that Lemma 5.6 generalizes the Key Lemma, let f(v) := dG(v) for all v ∈ V (G), and note that

f ′(v) = dH(v) for all v ∈ V (H) and G −H is f -swappable by Lemma 5.2(a). (Each component of G −H

has a vertex w with a neighbor in H.)

In this paper we only need the version of the lemma from the introduction (when f(v) = d(v)), but the

more general version is no harder to prove, and it is useful elsewhere [26]. The proof of Lemma 5.6 mirrors

that of Lemma 5.1. We start with L-colorings ϕ′1 and ϕ′2 of G \H and a sequence of L-colorings ψ′0, . . . , ψ
′
t,

showing that ϕ′1 and ϕ′2 are L-equivalent. And we seek to extend these L-colorings of G\H to L-colorings of

G. Our main obstacle is the possibility that at some step colors used on H might interfere with our desired

Kempe swap. So first we prove, for every L-coloring ϕ′ of G \H and every L-valid Kempe swap for ϕ′, that

some extension of ϕ′ to an L-coloring of G does not interfere. This notion of “non-interference” motivates

Definition 5.1 and Lemma 5.7.

Definition 5.1. For a graph G and a list assignment L for G, an L-coloring ϕ of G is (α, β)-versatile (α, β)-versatileat w

if ϕ(w) ∈ {α, β} and an (α, β)-swap at w is L-valid for ϕ.

Lemma 5.7. Fix a graph G, a connected subgraph H, and a list assignment L for V (G). Let ϕ′ be an

L-coloring for G − H that is (α, β)-versatile at a vertex w. If |L(v)| ≥ dG(v) for all v ∈ V (H), and H is

not a Gallai tree, then there exists an L-coloring ϕ of G that extends ϕ′ such that ϕ is (α, β)-versatile at w.

Further, there exists such an L-coloring ϕ with the property that each (α, β)-component of ϕ contains the

vertex set of at most one (α, β)-component of ϕ′.

Proof. Since H is not a Gallai tree, it contains an induced even cycle, C, with at most one chord. We first

show how to extend ϕ′ to G− C, and then how to extend it to all of G.

A key step is to show that if |V (H)| ≥ 2 and x ∈ V (H), then there exists an L-coloring ϕ of G− (H −x)

that extends ϕ′ to x and that is (α, β)-versatile at w. Suppose that |V (H)| ≥ 2 and fix x ∈ V (H). When

choosing a color for x (for brevity, we denote it by ϕ′(x)), to ensure that the resulting extension of ϕ′ is an

L-coloring that is (α, β)-versatile at w, we need to check the following three properties: (a) ϕ′(x) 6= ϕ′(y) for

all y ∈ N(x) \H, (b) if ϕ′(x) ∈ {α, β} and x has a neighbor y /∈ H with ϕ′(y) ∈ {α, β}, then {α, β} ⊆ L(x),
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and (c) if ϕ′(x) ∈ {α, β}, then x has at most one neighbor y /∈ H with ϕ′(y) ∈ {α, β}. Now (a) ensures

the extension is a proper L-coloring; (b) ensures that an (α, β)-swap at w will not create a problem at x;

and (c) ensures that each (α, β)-component of ϕ contains at most one (α, β)-component of ϕ′ and that an

(α, β)-swap at w will not create a problem at y.

We form a list assignment L′(x) from L(x) by first removing each color that is used by ϕ′ on a neighbor of

x. Further, if α is used on a neighbor of x and α /∈ L(x), then we remove β from L(x). Similarly, if α is used

on two neighbors of x, then we remove β from L(x), regardless of whether or not α ∈ L(x). We also remove

α from L(x) if either of these situations occurs, but with β and α interchanged. Since |L(x)| ≥ dG(x), we

must have |L′(x)| ≥ dH(x) ≥ 1, because H is connected and |V (H)| ≥ 2. To extend ϕ′ to x, we simply

choose any color in L′(x). This completes the key step, started in the previous paragraph. To extend ϕ′ to

G−C, we repeatedly apply the key step, coloring vertices in order of non-increasing distance from C. Now

we show how to extend ϕ′ to C.

Case 1: C has no chord. For each v ∈ V (C), form L′(v) as in the previous paragraph. Again,

|L′(v)| ≥ 2 for all v ∈ V (C). First suppose there exists γ and x, y ∈ V (C) such that γ /∈ {α, β} and

xy ∈ E(C) and γ ∈ L′(x) \L′(y). Now we color x with γ and proceed around C finishing with y. Each time

that we color a vertex on C, we ensure that its degree in the subgraph induced by vertices colored α and β

(among all colored vertices, both inside and outside C) is at most 1. This ensures that each (α, β)-component

of ϕ contains the vertex set of at most one (α, β)-component of ϕ′. This process succeeds because each time

we color another vertex z1 we reduce the number of allowable colors on its uncolored neighbor z2 by at most

one (even if we completely repeat the process of removing colors as in the previous paragraph, treating z1

as though it is outside H); this is virtually the same as extending ϕ′ to G− C. We can finish at y because

the color on x does not restrict our choice of color for y.

Suppose instead there exists γ /∈ {α, β} such that γ ∈ L′(v) for all v ∈ C. Now we use γ on one maximum

independent set in C and color each remaining vertex v from L′(v) \ {γ}.

Finally, suppose that L′(v) = {α, β} for each v ∈ V (C). Now we alternate α and β around C. In each

case, it is easy to check that the resulting coloring ϕ is (α, β)-versatile at w. The key observation for this

last case is that no vertex of C has a neighbor in G− C colored α or β, by construction of L′(v).

Case 2: C has a chord. Let x denote one endpoint of the chord and let y and z denote the neighbors of x

on C, besides the other endpoint of the chord. Form L′(v) for each v ∈ V (C), as above; again |L′(v)| ≥ dH(v)

for all v ∈ V (C). Since |L′(x)| ≥ dH(x) = 3, there exists γ ∈ L′(x) \ {α, β}. If γ ∈ L′(y) ∩ L′(z), then
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use γ on y and z and color greedily toward x in the remaining uncolored subgraph. So assume instead that

γ /∈ L′(y)∩L′(z); by symmetry, assume that γ /∈ L′(z). Now use γ on x, then color the remaining uncolored

subgraph greedily in order of non-increasing distance from z. Again, we can finish at z because using γ on x

does not restrict the choice of color for z. As above, each time that we color a vertex on C, we ensure that

its degree in the subgraph induced by vertices colored α and β (both inside and outside C) is at most 1.

Again, this ensures that each (α, β)-component of ϕ contains the vertex set of at most one (α, β)-component

of ϕ′.

Now we prove Lemma 5.6. As mentioned above, the proof mirrors that of Lemma 5.1, but now Lemma 5.7

ensures some extension to H is versatile for the next Kempe swap in G−H.

Proof of Lemma 5.6. Fix a graph G and a function f : V (G) → Z+. Let H be an induced subgraph of G

such that G − H is f -swappable. Let f ′(x) := f(x) − (dG(x) − dH(x)) for all x ∈ V (H). Assume that

f ′(x) ≥ dH(x) for all x ∈ V (H) and that H is f ′-swappable.

Let L be an f -assignment for G. Let G′ := G−H. By assumption, each component of G′ is L-swappable.

So G′ is L-swappable. Let ϕ0 and ϕ be two L-colorings of G, and let ϕ′0 and ϕ′ denote their restrictions

to G′. Since G′ is L-swappable, there exists a sequence ϕ′0, ϕ
′
1, . . . , ϕ

′
k = ϕ′ of L-colorings of G′ such that

every two successive L-colorings differ by a single L-valid Kempe swap. By induction on k, we extend each

ϕ′i to an L-coloring ϕi of G such that every two successive L-colorings in the sequence ϕ0, ϕ1, . . . , ϕk = ϕ

are L-equivalent. The case k = 0 is easy because ϕ0 = ϕ, so we are done.

So assume that k ≥ 1. Suppose that ϕ′i+1 differs from ϕ′i by an α, β-swap at a vertex vi. By Lemma 5.7,

there exists an L-coloring ϕ̃i of G, such that the restriction of ϕ̃i to G′ is ϕ′i and an α, β-swap at vi is L-valid

in ϕ̃i. Furthermore, the restriction of this new coloring (after performing the α, β-swap at vi) is ϕ′i+1. It now

suffices to show that ϕi and ϕ̃i are L-equivalent. We do this by a sequence of Kempe swaps that recolors H

but never changes the colors on V (G−H).

For each v ∈ V (G − H), remove ϕ′i(v) from L(w) for each w ∈ N(v) ∩ V (H); denote the resulting list

assignment on H by LH . Note that |LH(x)| ≥ f ′(x) ≥ dH(x) for all x ∈ V (H). If |LH(x)| > f ′(x) for

some x, then H is LH -swappable by Corollary 5.1, since |LH(y)| ≥ f ′(y) ≥ dH(y) for all y ∈ H. So assume

|LH(y)| = f ′(y) for all y ∈ H. Since H is f ′-swappable, the restrictions of ϕi and ϕ̃i to H (which are

both LH -colorings) are LH -equivalent. Consider a sequence of Kempe swaps that witnesses this. Note that

performing the same Kempe swaps in G transforms ϕi to ϕ̃i (this is because for each edge vw with v ∈ V (H)
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and w /∈ V (H), we have ϕ′i(w) /∈ LH(v)). Now performing an α, β-swap at vi in ϕ̃i yields an L-coloring of

G that restricts to ϕ′i+1 on H; denote this L-coloring of G by ϕi+1.

The previous two paragraphs show that we can use L-valid Kempe swaps to transform ϕ0 into an L-

coloring ϕ̃ that agrees with ϕ on G−H. Finally, we transform ϕ̃ to ϕ. This is possible precisely because H

is f ′-swappable.

5.2 Degree-swappable Graphs

In this section we prove that various graphs are degree-swappable. In view of Lemma 5.6, if a connected

k-regular graph G contains an induced copy of any degree-swappable graph, then G is k-swappable. Our

first example of degree-swappable graphs requires a new definition. A theta graph theta graph, Θa,b,c, consists of two

3-vertices, x and y, that are linked by internally disjoint paths of lengths a, b, and c.

Lemma 5.8. If G is a bipartite theta graph, Θa,b,c, then G is degree-swappable.

Proof. Fix a degree-assignment L for G. Note that G − vw is degree-choosable for all vw ∈ E(G). So, by

Lemma 5.5, |L(v) ∩ L(w)| ≥ 2 for all vw ∈ E(G). Let x and y denote the 3-vertices of G, and let Pa, Pb,

and Pc denote the internally disjoint x, y-paths of lengths a, b, and c, respectively. Since G has an x, y-path

with all internal vertices of degree 2, by Lemma 5.5 we can assume, by transitivity, that |L(x) ∩ L(y)| ≥ 2.

Suppose L(x) 6= L(y). Specifically, suppose L(x) = {1, 2, 3} and L(y) = {1, 2, 4}. This implies that every

2-vertex has the list {1, 2}. Fix an arbitrary L-coloring ϕ of G with ϕ(x) = 3 and ϕ(y) = 4. Starting from

an arbitrary L-coloring ϕ′, we can recolor x with 3 and recolor y with 4, then reach ϕ by using at most one

1, 2-swap on each path of G− {x, y}. Thus, we assume that L(x) = L(y) = {1, 2, 3}.

Suppose two disjoint x, y-paths, say Pa and Pb, have the same list for their 2-vertices. Form G′ from G

by deleting all 2-vertices of Pa. Note that dG′(x) = 2 < 3 = |L(x)|, so G′ is L-swappable by Lemma 5.2(a)

with w := x. This implies that G is also L-swappable, as follows. Since Pa and Pb have lengths of the same

parity, given any L-coloring of G, we can recolor the internal vertices of Pa so the neighbors of x and y on

Pa have the same colors as their neighbors on Pb. Thus, any sequence of Kempe swaps in G′ extends to a

sequence in G. So we assume that no two x, y-paths have the same list for their 2-vertices.

Denote by xa, xb, and xc the 2-neighbors of x, if they exist (when one x, y-path has no 2-vertices, assume

it is Pc, and let xc denote y). Assume L(xa) = {1, 2}, L(xb) = {1, 3}, and L(xc) = {2, 3}. Note that the sets
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Lx,1,Lx,2, and Lx,3 each mix by Lemma 5.3.

Consider ϕ ∈ Lxa,1 ∩ Lxb,1. Note that the 2,3-component containing x is a path (also containing all

2-vertices of Pc and possibly y, depending on the parities of the x, y-paths). So a 2,3-swap at x shows

that Lx,2 mixes with Lx,3. By symmetry, Lx,1 mixes with Lx,2. Thus, Lx,1 ∪ Lx,2 ∪ Lx,3 mixes; that is, L

mixes.

Recall that an even length cycle with at most one chord is a good cycle.

Lemma 5.9. Let G be a graph that contains as induced subgraphs two good cycles, H1 and H2. Assume

that H1 and H2 intersect in at most one vertex and that all but at most one edge induced by V (H1)∪V (H2)

either lies in H1 or lies in H2; further, if there exists such an edge, then V (H1) ∩ V (H2) = ∅. If P is a

shortest path from H1 to H2, then G[V (H1)∪ V (H2)∪ V (P )] is degree-swappable. Thus, if G is a connected

graph with at least two degree-choosable blocks, then G is degree-swappable.

Figure 5.2: Three examples of G[V (H1) ∪ V (H2) ∪ V (P )] in Lemma 5.9.

Proof. To begin, we prove the second statement from the first. Let B1 and B2 be two degree-choosable

blocks of G. So neither B1 nor B2 is a complete graph or odd cycle. By Rubin’s Block Lemma [37], there

exist induced even cycles H1 and H2, each with at most one chord, in B1 and B2, respectively. Let P be a

shortest path from H1 to H2. By the first statement and the Key Lemma, G is degree-swappable.

Now we prove the first statement. If possible, choose H1 so that it is an even cycle with at most one chord

that is closest to H2. By Lemma 5.6, it suffices to consider the case that V (G) = V (H1) ∪ V (H2) ∪ V (P ).

Let L be a degree-assignment for G. Let u be the endpoint of P in H1. For each path Q, let `(Q) `(Q)denote the

length (number of edges) of Q. We often write the parity of Q parity of Qto mean the parity of `(Q). If `(P ) 6= 0, let

v be the neighbor of u on P . Suppose NH1
(v) = {w1, . . . , wt} with t ≥ 3. Let Pi be the wi, wi+1-path in H1

for every i ∈ [t]. If Pi is even for some i ∈ [t], then G[v ∪ V (Pi)] is an even cycle closer to H2, contradicting

our choice of H1. So assume Pi is odd for every i ∈ [t]. Since H1 is even, t must also be even; thus, t ≥ 4.

But now G[v∪V (P1)∪V (P2)] is an even cycle closer to H2. Thus, when `(P ) 6= 0, we assume |NH1
(v)| ≤ 2.

Also, since G−xy is degree-choosable for every xy ∈ E(H1), we assume |L(x)∩L(y)| ≥ 2 by Lemma 5.5.

Thus, if w, z ∈ V (H1) and some w, z-walk consists only of 2-vertices (including w and z), then transitivity

implies L(w) = L(z).
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Case 1: `(P ) = 0 or |NH1(v)| = 1.

Case 1.1: H1 has no chord. Pick u1, u2 ∈ NH1(u) and let L(u1) = {a, b}; see Figure 5.3a. As observed

above, L(u2) = L(u1) = L(ui) for all ui ∈ V (H1) \ {u}, by transitivity. Since H1 is even, ϕ(u1) = ϕ(u2)

for every ϕ ∈ L. By Corollary 5.1, Lu1,a and Lu1,b each mix. To see this, order the vertices of G − H1

by non-increasing distance from u (with u last), and recall that always ϕ(u1) = ϕ(u2). Now we show that

Lu1,a ∪ Lu1,b mixes. Since H2 is degree-choosable and |L(u)| = d(u) = 3, there exists an L-coloring ϕ′ with

ϕ′(u) /∈ {a, b}. Performing an a, b-swap at u1 in ϕ′ shows that Lu1,a mixes with Lu1,b. Thus, L mixes.

Case 1.2: H1 has a chord xy with u /∈ {x, y}. Let P1, P2, and P3 be the x, y-path, x, u-path, and

y, u-path on H1 avoiding u, y, and x, respectively; see Figure 5.3b. If `(P1) is odd, then `(P2 ∪ P3) is also

odd since H1 is even. Thus, H1 induces a bipartite theta graph, and we are done by Lemma 5.8. So we

instead assume `(P1) is even.

Assume L(w) = {a, b} for every 2-vertex w on P1. Recall that {a, b} ⊆ L(x)∩L(y). Let L(x) = {a, b, c}.

Suppose L(y) 6= L(x); so assume L(y) = {a, b, d}. By Lemma 5.3, both Lx,c and Ly,d mix (and are

nonempty). Further, Lx,c ∩ Ly,d 6= ∅, since H2 is degree-choosable; thus, Lx,c ∪ Ly,d mixes. Since G[V (P1)]

is an odd cycle, L = Lx,c ∪ Ly,d, and we are done. So we instead assume that L(x) = L(y) = {a, b, c}.

Since H1 and `(P1) are both even, `(P2) and `(P3) have the same parity. By Lemma 5.3, Lx,c and Ly,c

each mix (and are nonempty). Further, L = Lx,c ∪ Ly,c. So it suffices to show that Lx,c mixes with Ly,c.

Pick x1 ∈ NP2
(x) and y1 ∈ NP3

(y), if they exist; again, see Figure 5.3b.

Suppose first that neither P2 nor P3 has any internal vertex. Since |L(u) ∩ L(x)| ≥ 2, assume that

a ∈ L(u). Since `(P1) is even, we can color V (H1) so that all neighbors of x and y use color a. Since H2

is degree-choosable, we can extend this coloring to an L-coloring ϕ of G. Now performing a b, c-swap at x

shows that Lx,c mixes with Ly,c, and we are done.

u1

u2

u

(a)

P1

P2

P3

x

y

u

(b)

P1

P2

x y

(c)

Figure 5.3: The 3 subcases in Case 1. (a) Case 1.1: H1 has no chord. (b) Case 1.2: H1 has a chord xy.
(c) Case 1.3: H1 has a chord uy (i.e. x = u).
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Assume instead that P2 or P3 contains an internal 2-vertex. By symmetry, assume x1 exists. Let w1

be a 2-vertex adjacent to x on P1. Recall that L(w1) = {a, b}. As above, we assume a ∈ L(x1). Now

Lw1,a ∩ Lx1,a mixes by Lemma 5.4. To construct an L-coloring in this set, we can color x arbitrarily from

L(x) \ {a} and color greedily toward H2. Thus, Lw1,a ∩ Lx1,a contains ϕ1 and ϕ2 such that ϕ1(x) = c and

such that ϕ2(x) = b, so ϕ2(y) = 2. This again proves that Lx,c mixes with Ly,c, so we are done.

Case 1.3: H1 has a chord xy with x = u (by symmetry). Let P1 and P2 be the u, y-paths in H1;

see Figure 5.3c. Since H1 is even, `(P1) and `(P2) have the same parity. If `(P1) is odd, then H1 induces a

bipartite theta graph, and we are done by Lemma 5.8. So `(P1) is even. Pick y1 ∈ NP1(y) and y2 ∈ NP2(y).

By symmetry, assume L(y) = {a, b, c} and L(y1) = {a, b}. By Lemma 5.3, Ly,c is nonempty and mixes. By

Lemma 5.3, Ly,c mixes.

Suppose L(y2) = L(y1) = {a, b}. Pick ϕ ∈ Ly,a. We show that ϕ is L-equivalent to some ϕ′ ∈ Ly,c.

If ϕ(x) 6= c, then recoloring y with c gives a coloring in Ly,c. So assume ϕ(x) = c. If ϕ(w) = b for some

w ∈ NG−E(H1)(x), then there exists α ∈ L(x) which does not appear on N [x]. We recolor x with α then

recolor y with c to get a coloring in Ly,c. So assume ϕ(w) 6= b for every w ∈ NG−E(H1)(x). Now we perform

an a, b-swap at y followed by a b, c-swap at y to get a coloring in Ly,c. The same argument shows that every

ϕ ∈ Ly,b is L-equivalent to some coloring in Ly,c. Since Ly,c mixes, also Ly,a ∪ Ly,b ∪ Ly,c mixes; that is, L

mixes.

So we assume L(x1) 6= L(y1). By symmetry, assume L(y1) = {a, c}. By Lemma 5.3, both Ly,b and Ly,c

mix (and are nonempty). Further, Ly,a is nonempty. And for every ϕ ∈ Ly,a, we can perform an a, b-swap

(resp. a, c-swap) at y to get a coloring in Ly,b (resp. Ly,c). Thus, Ly,a ∪ Ly,b ∪ Ly,c mixes; that is, L mixes.

Case 2: |NH1(v)| = 2. Let NH1
(v) = {v1, v2}; denote the v1, v2-paths in H1 by P1 and P2. Recall,

from the start of the proof, that P1 and P2 are both odd.

Case 2.1: H1 has no chord. By symmetry, assume `(P2) > 1. Pick w1 ∈ NP2(v1) and w2 ∈ NP2(v2);

see Figure 5.4a. Assume L(v1) = {a, b, c} and L(w1) = {a, b}, by symmetry. Suppose L(v1) 6= L(v2);

specifically, suppose L(v2) = {a, b, d}. By Lemma 5.3, both Lv1,c and Lv2,d mix. By Lemma 5.5, if `(P1) > 1,

then L(w) = {a, b} for every w ∈ V (P1). Thus, Lv1,c ∩ Lv2,d 6= ∅. Further, for every ϕ /∈ Lv1,c ∪ Lv2,d,

there exists γ ∈ ({c, d} − ϕ(v)). So we can perform a Kempe swap either at v1 or at v2 to get a coloring in

Lv1,c ∪ Lv2,d. Thus, L mixes, and we are done. So we assume instead that L(v1) = L(v2) = {a, b, c}.

By Lemma 5.3, Lv1,c and Lv2,c each mix. If `(P1) = 1 or L(w) = {a, b} for every w ∈ V (P1), then

Lv1,a and Lv1,b each mix by Lemma 5.2(a), with w := v2. This is because ϕ(w2) = ϕ(v1) for every
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Figure 5.4: The 4 instances of Case 2, when H1 contains 2 neighbors of v: the first comprises Case 2.1
and the remaining three comprise Case 2.2. (a) H1 has no chord. (b) H1 has a chord st on P2. (c) H1

has a chord st on P1 ∪ P2. (d) H1 has a chord v1t (i.e. s = v1).

ϕ ∈ Lv1,a ∪ Lv1,b. Similarly, Lv2,a and Lv2,b each mix. Further, Lv1,a ∩ Lv2,b 6= ∅. Also, for every γ ∈ {a, b},

the set Lv1,c∩Lv2,γ 6= ∅ and Lv2,c∩Lv1,γ 6= ∅. So Lv1,a∪Lv1,b∪Lv1,c mixes; that is, Lmixes. Thus, we assume

`(P1) > 1. Pick y1 ∈ NP1
(v1) and y2 ∈ NP1

(v2). By the above, we may assume L(y1) = L(y2) = {a, c}.

By Lemma 5.3, Lv1,b and Lv2,b each mix. Also, Lv1,c ∩ Lv2,b 6= ∅ and Lv1,b ∩ Lv2,c 6= ∅. We note that

L = Lv1,c ∪ Lv1,b ∪ Lv2,c ∪ Lv2,b. So it suffices to show that Lv2,c ∪ Lv2,b mixes. As before, Lv1,a mixes by

Lemma 5.2(a), with w := v2. Moreover, Lv1,a ∩ Lv2,b 6= ∅ and Lv1,a ∩ Lv2,c 6= ∅. Thus, Lv2,c ∪ Lv2,b mixes,

and we are done.

Case 2.2: H1 has a chord st. Recall, from the start of the proof, that H1 is an even cycle (with at

most one chord) closest to H2; further, `(P1) and `(P2) are odd. Assume s, t ∈ V (P2) − {v1, v2} (with s

closer to v1). Let Ps (resp. Pt) be the s, v1-path (resp. t, v2-path) avoiding t (resp. avoiding s); see Figure

5.4b. If Ps and Pt have the same parity, then G[H1] is a bipartite theta graph (since H1 is even), and we

are done by Lemma 5.8. So assume Ps and Pt have opposite parities. Now H1[V (Ps)∪ V (Pt)∪ v] is an even

cycle closer to H2, contradicting our assumption. The same argument works (interchanging P1 and P2) if

s, t ∈ V (P1)− {v1, v2}.

Assume instead that s ∈ V (P1) − {v1, v2} and t ∈ V (P2) − {v1, v2}. Let P3, P4, P5, and P6 be the

v1, s-path, v2, s-path, v1, t-path, and v2, t-paths forming P1 and P2; see Figure 5.4c. By symmetry, assume

P3 is even and P4 is odd. Now P5 is even and P6 is odd; otherwise, G[H1] is a bipartite theta graph, and we

are done by Lemma 5.8. But H1[V (P4) ∪ V (P5) ∪ v] is an even cycle closer to H2, contradicting our choice

of H1.

So the chord st must have an endpoint in {v1, v2}; say s = v1. Note that t 6= v2; otherwise, G[H1] is a

bipartite theta graph, and we are done by Lemma 5.8. By symmetry, assume t is on P2. Let P3 and P4 be
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the s, t and v2, t-paths forming P2; see Figure 5.4d. Now P3 is even and P4 is odd; otherwise, G[H1] is a

bipartite theta graph, and we are done by Lemma 5.8. But again H1[V (P4) ∪ v ∪ s] is an even cycle closer

to H2, contradicting our choice of H1.

x

v

y

w

P

Figure 5.5: A K+
4 formed by subdividing an edge one or more times, and the resulting path P .

Lemma 5.10. The graph K+
4 formed from K4 by subdividing a single edge one or more times is degree-

swappable.

Proof. Let P be the path formed by subdividing the edge in K4 one or more times. Denote the 3-vertices of

G by v, w, x, y, where v and w each have a 2-neighbor; see Figure 5.5. Let L be a degree-assignment for G.

By symmetry and by Lemma 5.5, we assume that L(z) = {1, 2} for every z ∈ V (P ) and {1, 2} ⊆ L(v)∩L(w).

By symmetry, assume that L(v) = {1, 2, 3}.

Assume first that L(w) = L(v) = {1, 2, 3}. By Lemma 5.3, each of Lv,3 and Lw,3 mix. Moreover,

Lv,3 ∩ Lw,3 6= ∅. Thus, Lv,3 ∪ Lw,3 mixes. Let L1 := Lv,3 ∪ Lw,3 and L2 := L \ L1. We now show that

every ϕ ∈ L2 mixes with L1; thus L mixes. Pick ϕ ∈ L2 and assume by symmetry that ϕ(v) = 1. If

3 /∈ {ϕ(x), ϕ(y)}, then we recolor v with 3 to get a coloring in L1, and we are done. So assume by symmetry

that ϕ(x) = 3. Now suppose ϕ(w) = 1. If 1 /∈ L(x), there exists γ ∈ L(x) with γ /∈ ∪z∈N [x]ϕ(z). So we

recolor x with γ then recolor v with 3, and we are done. If, instead, 1 ∈ L(x), then a 1,3-swap at v gives a

coloring in L1, and we are done. So assume instead that ϕ(w) = 2. If 1 /∈ L(x), then 2 ∈ L(x) by Lemma 5.5.

Now a 2,3-swap at w gives a coloring in L1, and we are done. If, instead, 1 ∈ L(x), then a 1,3-swap at v

gives a coloring in L1, and we are done.

Instead assume L(w) 6= L(v); specifically, assume L(w) = {1, 2, 4}. By Lemma 5.3, the sets Lv,3 and

Lw,4 each mix. Let L1 := Lv,3 ∪ Lw,4 and L2 =: L \ L1. We show that L1 mixes. If {3, 4} 6⊆ L(x) ∩ L(y) or

L(x) 6= L(y), then Lv,3 ∩ Lw,4 6= ∅; thus, L1 mixes. Otherwise, L(x) = L(y) = {3, 4, α} with α ∈ {1, 2} by

Lemma 5.5. By symmetry, assume L(x) = L(y) = {3, 4, 1}. We show again that L1 mixes.
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Suppose `(P ) is even. Pick ϕ ∈ Lv,2 ∩ Lw,2 ∩ Lx,3 ∩ Ly,4. Now we can recolor either x with 1 then v

with 3, or y with 1 then w with 4 to get colorings in Lv,3 and Lw,4, respectively. Thus, L1 mixes. Instead

assume that `(P ) is odd. Pick ϕ1 ∈ Lv,1 ∩ Lw,2 ∩ Lx,3 ∩ Ly,4 and ϕ2 ∈ Lv,2 ∩ Lw,1 ∩ Lx,3 ∩ Ly,4. Now a

1,3-swap at v in ϕ1 or a 1,4-swap at w in ϕ2 give colorings in Lv,3 and Lw,4, respectively. Also, ϕ1 and ϕ2

are L-equivalent, as witnessed by a 1,2-swap at v. Thus, L1 mixes.

Finally, we show that every ϕ∗ ∈ L2 mixes with L1; thus, L mixes. Pick ϕ∗ ∈ L2 with ϕ∗(v) = 1, by

symmetry. Note that {ϕ∗(x), ϕ∗(y)} = {3, 4}; otherwise, we can either recolor v with 3 or w with 4 to get

a coloring in L1, and we are done. So assume ϕ∗(x) = 3 and ϕ∗(y) = 4. If `(P ) is odd, then we assume

ϕ∗(v) = 1 and ϕ∗(w) = 2; if not, then we achieve this with a 1,2-swap at v. Now a 1,3-swap at v shows

that ϕ∗ mixes with L1. Instead assume that `(P ) is even. Now assume ϕ∗(v) = ϕ∗(w) = 2; if not, then we

achieve this by a 1,2-swap at v. Recolor x with 1, then recolor v with 3.

v1 v2

v3v4

w

Figure 5.6: The 4-wheel.

Let W4 := C4 ∨K1; this is the “4-wheel”, or wheel with 4 spokes (see Figure 5.6).

Lemma 5.11. The graph W4 is degree-swappable.

Proof. Let G := W4. Denote the 3-vertices by v1, v2, v3, v4, in order along a 4-cycle, and denote the dom-

inating vertex by w; see Figure 5.6. Fix a degree assignment L for G. Note that |L(x) ∩ L(y)| ≥ 2 for all

xy ∈ E(G), by Lemma 5.5. Since |L(v1) ∩ L(v2)| ≥ 2 and |L(v2) ∩ L(v3)| ≥ 2 and |L(v2)| = 3, we conclude

from Pigeonhole that |L(v1) ∩ L(v3)| ≥ 1. We consider the three cases |L(v1) ∩ L(v3)| ∈ {1, 2, 3}.

Case 1: |L(v1) ∩ L(v3)| = 3. Assume L(v1) = L(v3). If L(v2) 6= L(v1), then there exists β ∈

L(v1) \ L(v2) since |L(v2)| = |L(v1)|. Further, since L(v1) = L(v3), we have L(v1) ∩ L(v3) = L(v1) so

∪α∈L(v1)∩L(v3)Lv1,α = L. By Lemma 5.4(3), L mixes. So assume L(v2) = L(v1) and, by symmetry, L(v4) =

L(v1). So there exists α ∈ L(w)\
⋃4
i=1 L(vi), and clearly Lw,α mixes. Given an L-coloring ϕ with ϕ(w) 6= α,

we can simply recolor w with α. Thus, L mixes.

Case 2: |L(v1) ∩ L(v3)| = 2. Assume that L(v1) = {a, b, c} and L(v3) = {a, b, d}. If {c, d} 6⊆
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L(v2)∩L(v4)∩L(w), then L mixes by Lemma 5.4(3), as above. So assume {c, d} ⊆ L(v2)∩L(v4)∩L(w). By

Case 1 and symmetry, we assume L(v2) 6= L(v4). Interchanging v2 and v4 with v1 and v3 (and interchanging

c and d with a and b) shows that also a, b ∈ L(w). Further, L(v2) ∪ L(v4) ⊆ L(w). Thus, L(v2) = {a, c, d}

and L(v4) = {b, c, d}, up to possibly swapping v2 and v4. Now by Lemma 5.4(3), both
⋃
α∈{a,b} Lv1,α∪Lv3,α

and
⋃
α∈{c,d} Lv2,α ∪ Lv4,α mix. The union of these two sets is all of L. Further, the two sets mix, since

some coloring ϕ lies in both; namely, ϕ(v1) = ϕ(v3) = a, ϕ(v2) = ϕ(v4) = c, and ϕ(w) = d. Thus, L mixes.

Case 3: |L(v1) ∩ L(v3)| = 1. Assume L(v1) = {a, b, c} and L(v3) = {a, d, e}. By symmetry between

v1, v3 and v2, v4, we assume that |L(v2)∩L(v4)| = 1. Since |L(vi)∩L(vj)| ≥ 2 for all i ∈ {1, 3} and j ∈ {2, 4},

we assume that L(v2) = {a, b, d} and L(v4) = {a, c, e}. Since c ∈ L(v1) \ L(v2), Lemma 5.4(3) shows that

Lv1,a∪Lv1,c mixes. Since b ∈ L(v1)\L(v4), Lemma 5.4(3) shows that Lv1,a∪Lv1,b mixes. Thus, L mixes.

5.3 Proof of Main Theorem

In this section, we prove our main result: Every connected k-regular graph (with k ≥ 3) is k-swappable

unless G = Kk+1 or G = K2 �K3. Further, these exceptional graphs are L-swappable whenever L is a

∆-assignment that is not identical everywhere. We split the main result into 4 cases depending on the

connectivity of G. In Theorem 5.1, we prove the result for connectivity 1. In Theorem 5.2, we prove the

result for connectivity 2 by using a cut set of size 2 (a 2-cut), and showing that G contains an induced

degree-swappable subgraph from the family of graphs compiled in Section 5.2.

For connectivity 3, we split into three cases: (i) k ≥ 5, which we prove in Lemma 5.12, (ii) k = 4, which

we prove in Lemma 5.13, and (iii) k = 3, which we prove in Lemma 5.14. For cases (i) and (ii) we use a 3-cut

and show that G contains an induced degree-swappable subgraph from Section 5.2. For case (iii), we first

show that for every 3-assignment L of G, the lists must be identical for all vertices. Then, in Theorem 5.3,

we invoke the result of Feghali, Johnson, and Paulusma for 3-colorings of 3-regular graphs [40, Theorem 1]

(for completeness, we state it below). Finally, we prove the result for 4-connected graphs in Theorem 5.4

as follows. In Lemmas 5.15 and 5.16, we handle the case of k-assignments L that are not identical for all

vertices (Lemma 5.16 handles the case G = Kk+1). In Lemma 5.17, we show that either G contains a 4-wheel

(so we are done by Lemma 5.11), or the absence of a 4-wheel restricts the possible L-colorings enough that

G must be L-swappable.

Theorem A. [40, Theorem 1] If G is a connected 3-regular graph that is neither K4 nor the graph K2 �K3,

then all 3-colorings of G are 3-equivalent.
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Theorem 5.1. For k ≥ 3, if G is k-regular with connectivity 1, then G is k-swappable.

Proof. Since G has connectivity 1, it contains a cut-vertex. Thus, G contains at least two endblocks. If G

contains at most one degree-choosable block, then some endblock B is not degree-choosable. Let v be the

cut-vertex in B. Since k ≥ 3 and G is k-regular, B = Kk+1 and dB(v) = k. But now G = B which contradicts

that G has connectivity 1. Thus, G contains at least two degree-choosable endblocks. By Lemma 5.9, G is

k-swappable.

Now we consider the case that G has a vertex cut of size at most 3. In a graph G, a block is Gallai Gallaiif it

an odd cycle or a clique; otherwise it is non-Gallai non-Gallai.

Theorem 5.2. For k ≥ 3, if G is k-regular with connectivity 2, then G is k-swappable.

Proof. Let G satisfy the hypotheses of the theorem, and let L be a k-assignment for G. Let S be a 2-cut in

G. Let GS := G − S GS. Now every endblock B of GS has order at least k − 1, since each vertex v of B has

dG(v) = k and v has at most two edges to S. Further, if an endblock B is non-Gallai, then B contains an

even cycle with at most one chord.5 We call such a cycle a good cycle good cycle. If GS has at least two endblocks each

of which contains a good cycle, then Lemma 5.9 implies that G is L-swappable. So we assume that at most

one endblock of GS contains a good cycle. Thus, at most one endblock of GS is non-Gallai.

Claim 5.1. GS has at most two Gallai endblocks.

Proof of Claim 5.1. Observe that every Gallai endblock B is regular of degree either k − 1 or k − 2, since

|S| = 2. Further, every such B sends at least k − 1 edges to S. This holds because either (i) B is regular

of degree k − 1, so B has at least k vertices, and at least k − 1 of these each send an edge to S, or (ii) B is

regular of degree k−2, so B has at least k−1 vertices, and at least k−2 of these each sends two edges to S.

Suppose, contrary to the claim, that S contains at least 3 Gallai endblocks, B1, B2, B3. As noted above,

each Bi sends S at least k − 1 edges. So 3(k − 1) ≤ 2k; thus, k = 3. Further, GS has no other endblocks.

But now some Bi is its own component, so it contains no cut-vertex, and thus sends more edges to S than

counted above, which gives a contradiction.

Claim 5.2. GS has exactly one non-Gallai endblock; call it B0.

5Recall that Rubin’s Block Lemma [37] says a block contains such a cycle if and only if it is non-Gallai.
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Proof of Claim 5.2. Suppose GS has no non-Gallai endblocks. Since GS has at most two (Gallai) endblocks,

each endblock is its own component. So each endblock sends S at least min{2 · (k − 1), 1 · k} = k edges, for

a total of at least 2k edges to S. If either component of GS is (k− 2)-regular, then S has too many incident

edges, so we get a contradiction. Thus, each endblock is Kk. If either vertex in S has at least 2 neighbors

in each component of GS , then we are done by Lemma 5.9. So assume that each vertex of S sends one edge

to one component and sends k − 1 edges to the other. Now G contains a copy of K+
4 , and we are done by

Lemma 5.10. Thus, instead GS has exactly one non-Gallai endblock; call it B0.

Case 1: GS has exactly one Gallai endblock; call it B1. If B1 is (k− 1)-regular, then some v ∈ S

has at least two neighbors in B1, but does not dominate B1. Thus, B1 +v contains a good cycle, and so does

B0. Now we are done by Lemma 5.9. So assume instead that B1 is (k− 2)-regular and that B1 has order at

least k − 1. In fact, each vertex of S is adjacent to all of B1. Now counting edges shows that B1 = Kk−1,

each vertex of S is adjacent to all of B1, and S is an independent set. Hence, G contains a copy of K+
4 , and

we are done by Lemma 5.10.

Case 2: GS has exactly 2 Gallai endblocks, B1 and B2. Suppose that B1 or B2 is its own

component; by symmetry, say that it is B1. If B1 is (k− 1)-regular, then some vertex x ∈ S has at least two

neighbors in B1, but does not dominate it. So B1 + x and B0 each contain good cycles, and we are done by

Lemma 5.9. If B1 is (k− 2)-regular, then it sends at least 2(k− 1) edges to S. So the total number of edges

incident to S is at least 2(k − 1) + (k − 1) + 1 = 3k − 2 > 2k, a contradiction.

Thus, B1 and B2 are in the same component G2 of GS and B0 is its own component G1. Now S sends

2(k− 1) edges to non-cut-vertices in endblocks of G2. This implies, by counting edges to S, that every other

vertex of G2 is non-adjacent to every vertex in S.

If some vertex x ∈ S sends at least two edges to B1, then (since x sends no edges to the cut-vertex in

B1) GS has a good cycle in B0 and another good cycle in B1 + x, so we are done by Lemma 5.9. The same

is true if some x ∈ S sends at least two edges to B2. So assume that each x ∈ S sends at most one edge to

B1 and one edge to B2. Since B1 and B2 each receive at least k − 1 edges from S, this implies that k = 3

and each x ∈ S sends exactly one edge to each of B1 and B2. Now G2 + x must contain a good cycle, unless

B1 = B2 = K2 and G2 + x is an odd cycle. But in this case, each vertex of G2 that is not a non-cut-vertex

of B1 or B2 has too few incident edges, a contradiction.

Lemma 5.12. For k ≥ 5, if G is k-regular with connectivity 3, then G is k-swappable.
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Proof. Let G satisfy the hypotheses of the lemma, and let L be a k-assignment for G. Let S be a minimal

3-cut of G, and let GS := G− S GS.

Claim 5.3. Every Gallai endblock B of GS is regular of degree k − 1, k − 2, or k − 3 and sends at least

k − 1 edges to S. If B is a component of GS, then B sends at least k edges to S.

Proof of Claim 5.3. Since G is k-regular and |S| = 3, every non-cut-vertex in an endblock B sends at most

3 edges to S, so sends at least k − 3 edges to vertices of B. Since B is a Gallai endblock, B is regular. And

since G is 3-connected, some non-cut-vertex of B sends an edge to S. Thus, B is regular of degree k − 1,

k − 2, or k − 3.

Note that every Gallai endblock B of GS sends at least k − 1 edges to S. This is because either (i) B is

(k−1)-regular, so at least k−1 vertices of B each send 1 edge to S, or (ii) B is (k−2)-regular, so at least k−2

vertices of B each send 2 edges to S, or (iii) B is (k− 3)-regular, so at least (k− 3) vertices of B each send 3

edges to S. Thus, the number of edges that B sends to S is at least min{1·(k−1), 2·(k−2), 3·(k−3)} = k−1.

Further, if a component of GS consists of a single block, say B, then a similar computation shows that the

number of edges B sends to S is at least k.

Claim 5.4. GS has no endblock B that is an odd cycle with length at least 5.

Proof of Claim 5.4. If such a B exists, then it sends at least 4(k − 2) edges to S. By Claim 5.3, each

component not containing B sends at least k edges to S. But 4·(k−2)+k = 5k−8 > 3k, a contradiction.

Claim 5.5. GS has at most 1 non-Gallai endblock and at most 3 Gallai endblocks.

Proof of Claim 5.5. If GS contains at least 2 non-Gallai endblocks, then it contains 2 good cycles; so G

is degree-swappable, by Lemma 5.9. So instead GS contains at most one non-Gallai endblock. If GS has

at least 4 Gallai endblocks, then by Claim 5.3 the number of edges from S to endblocks of GS is at least

4(k − 1) > 3k, a contradiction. So GS has at most 3 Gallai endblocks.

We will show G contains an induced degree-swappable subgraph, so we are done by Lemma 5.6. Specifi-

cally, we will often show G contains two good cycles, and invoke Lemma 5.9.

Case 1: GS has 0 non-Gallai endblocks. Let B1 be an endblock that is a whole component G1. If

B1 = Kk−2, then each vertex in S is adjacent to all of B1 (and some pair of vertices in S is non-adjacent),

so G contains an induced K+
4 ; thus, we are done by Lemma 5.10. So instead B1 ∈ {Kk−1,Kk}. Suppose
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B1 = Kk. Now some vertex x ∈ S is adjacent to at least two vertices of B1 and also non-adjacent to

some vertex y ∈ B1; see Figure 5.7a. (This follows from Pigeonhole and the fact that each vertex of S has a

neighbor in B1.) Choose z ∈ N(y)∩S. Since x and z each have a neighbor in G2, the subgraph G[S∪V (G2)]

contains an x, z-path. Note that N(x)∩N(z)∩V (B1) = ∅, since each vertex of B1 has a unique neighbor in

S. Thus, G contains a copy of K+
4 (possibly using the edge xz, rather than an x, z-path through G2), and

we are done by Lemma 5.10.

Assume instead that B1 = Kk−1. Now each vertex of B1 has exactly two neighbors in S. Denote S by

{x1, x2, x3}. By symmetry, there exist vertices y1, y2, y3 ∈ B1 such that y1 and y2 are both adjacent to each

of x1 and x2; and y3 is adjacent to x2 and x3. Now {x1, y1, y2, y3} induces K4 − e. Since x3 is adjacent to

y3 (but not y1 or y2), again G contains K+
4 as above, so we are done by Lemma 5.10.

Case 2: GS has exactly 1 non-Gallai endblock, B1. Let G1 be the component of GS containing

B1, and let B2 be a regular endblock of another component G2. Since S sends at least k − 1 edges to B2,

by Pigeonhole some vertex x ∈ S sends at least 2 edges to B2. If B2 has at least k vertices, then x is not

adjacent to all of B2, since x sends an edge to G1. Thus, B2 + x is non-Gallai, so it contains a good cycle.

Since B2 + x and B1 each contain a good cycle, we are done by Lemma 5.9.

Assume instead that B2 has order k−1 or k−2. We will show that G2 = B2. Assume the contrary; so B2

has a cut-vertex y; see Figure 5.7b. If B2 has order k− 2, then dG2
(y) ≥ dB2

(y) + 1 = (|B2| − 1) + 1 = k− 2;

so dG[S∪{y}](y) = k − dG2
(y) ≤ 2 However, each other vertex of B2 is adjacent to all of S. So some x ∈ S is

not adjacent to y but sends at least two edges to B2. Thus, B2 + x and B1 each contain a good cycle, so we

are done by Lemma 5.9.

Assume instead that B2 has order k− 1; again, see Figure 5.7b. The number of edges from S to B2 is at

least 2(k − 2), and dG2
(y) ≥ 1 + dB2

(y) = 1 + ((k − 1) − 1) = k − 1, so dG[S∪{y}](y) ≤ 1. Thus, S sends y

at most 1 edge and in total sends all other vertices of B2 at least 2(k − 2) edges. If two vertices of S each

send only one edge to B2, then some non-cut-vertex of B2 has too few incident edges. This is because each

non-cut-vertex of B2 needs an edge from at least 2 vertices of S, and B2 has at least (k − 2) ≥ 3 non-cut-

vertices. So at least 2 vertices of S send at least 2 edges to B2, and at least one of them is non-adjacent

to y. We let x denote such a vertex. Now B1 and B2 + x each contain a good cycle, and we are done by

Lemma 5.9. Thus, we assume that G2 = B2.

Suppose B2 has k−1 vertices. Now S sends B2 exactly 2(k−1) edges. Thus, some vertex x ∈ S sends at

least two edges to B2 and is not adjacent to all of B2; this is because (k−1) + 2(1) < 2(k−1) < 2(k−1) + 1.
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Figure 5.7: S and the components of GS when (a) G1 is a single Gallai endblock B1, and (b) G1 contains
a non-Gallai endblock B1 and G2 has more than one endblock.

(The first term represents the possibility of at most one vertex of S sending at least two edges to B1 and

the third term represents the possibility of at least two vertices of S dominating B1.) Now B2 + x contains

a good cycle, as does B1, so we are done by Lemma 5.9. Hence, B2 has k − 2 vertices, and every vertex in

S is adjacent to all of B2. At least one pair in S is not adjacent; call it x1, x2. Each of x1 and x2 has a

neighbor in G1, so G contains a copy of K+
4 , and we are done by Lemma 5.10.

Lemma 5.13. If G is a 4-regular graph with connectivity 3, then G is k-swappable.

Proof. Let S be a vertex cut of size 3, and let GS := G − S GS. As in the proof of Lemma 5.12, if GS has at

least two non-Gallai endblocks, then we are done by Lemma 5.9. So we assume that GS has at most one

non-Gallai endblock.

Claim 5.6. Each Gallai endblock of GS is K2, K3, or K4.

Proof of Claim 5.6. The proofs of Claims 5.3 and 5.4 in Lemma 5.12 also work here essentially unchanged.

So each Gallai endblock is regular of degree k − 1, k − 2, or k − 3. (Here k = 4.) As before, if GS has

an endblock B that is an odd cycle with length at least 5, then the number of edges going to S is at least

4(k−2) +k. However, we can strengthen this bound as follows. If B is its own component, then the number

of edges it sends to S is at least 5(k − 2). And if B is not its own component, then some other endblock in

its component sends S at least k− 1 edges. Thus, we get min{4 · (k− 2) + (k− 1), 5(k− 2)}+ k > 3k, again

a contradiction.

Case 1: GS has exactly 1 non-Gallai endblock B1. B1, G1Let G1 be the component of GS containing

B1. Let B2 be a Gallai endblock in some other component G2. B2, G2
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Case 1.1: B2 is K4. Now G2 + x contains a good cycle, for some x ∈ S, as follows (so we are done

by Lemma 5.9). If some vertex x of S sends at least 2 edges to B2, then B2 + x is non-Gallai, since x is

also non-adjacent to some vertex in B2 (this includes the case that G2 = B2). Thus, x + B2 contains a

good cycle. Otherwise, each vertex of S sends one edge to B2 and some vertex x sends an edge to another

endblock of G2. Now x+G2 is 2-connected and irregular (so it is non-Gallai and contains a good cycle).

Case 1.2: B2 is K3. Suppose that no vertex of S sends edges to exactly 2 vertices of B2. Now G2 6= B2,

two vertices of S each send a single edge to B2, and at least one of them, call it x, sends an edge to another

endblock of G2. Now G2 +x is 2-connected and irregular; thus, it contains a good cycle. So we assume some

vertex x ∈ S sends exactly two edges to B2. Now B2 + x is non-Gallai and contains a good cycle. Since B1

is non-Gallai, we are done by Lemma 5.9.

Case 1.3: B2 is K2. By symmetry, we assume that every Gallai endblock in G2 is K2. If G2 = K2,

then G contains a copy of K+
4 (with its non-adjacent 3-vertices in S), so we are done by Lemma 5.10. If G2

contains at least 3 endblocks, then each non-cut-vertex in each of these endblocks is adjacent to all of S, so

G contains an induced K2,3 (with two vertices in S), which is a bipartite theta graph, so we are done by

Lemma 5.8. Thus, G2 has exactly two endblocks. If G2 = P3, then some x in S is adjacent to all vertices

in G2, so G2 + x contains a good cycle, and we are done by Lemma 5.9. If some interior block B3 of G2 is

non-Gallai (so contains a good cycle), then each x in S has a path to B3 in G2 (and sends at most one edge

to B3), so we are done by considering B1, B3, and a shortest path between them. Instead, assume that every

interior block of G2 is Gallai. Since G2 only has two endblocks, some x ∈ S sends an edge to the interior

block B3. Again, G2 + x contains a good cycle.

Case 2: GS has 0 non-Gallai endblocks.

Case 2.1: GS has at least 4 endblocks. As in the proof of Lemma 5.12, each endblock sends at least

k− 1 = 3 edges to S. So the number of endblocks in GS is at most |S|k/(k− 1) = 3 · 4/3 = 4. Suppose that

GS has 4 Gallai endblocks. If some endblock is a K3, then it sends S at least 4 edges, so S has too many

incident edges (as above), a contradiction. Now GS has only 2 components, and no component is a single

endblock; otherwise, S sends that component at least 4 edges, and 4 + 3 · 3 > 4|S|, a contradiction. So let

B1, B2 be endblocks of G1 and let B3, B4 be endblocks of G2, with B1, B2, B3, B4 ∈ {K2,K4}. Similarly,

S sends edges only to non-cut-vertices of B1, B2, B3, B4. This implies that if some vertex x ∈ S sends two

edges each to G1 and G2, then x+G1 and x+G2 each contain a good cycle, and we are done by Lemma 5.9.

That is because, for each i ∈ [2], either some endblock of Gi is K4 or both endblocks of Gi are K2 and there

is an interior endblock B5 that is irregular. Now by Pigeonhole, some x in S must send two edges each to
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G1 and G2, so we are done.

Case 2.2: GS has a component that is neither K3 nor K4. By Case 2.1, GS has at most 3

endblocks. So let B1 be a block of GS that is a whole component of G1. If B1 is an odd cycle of length 5 or

more, then B1 sends S at least 10 edges, and GS−B1 sends S at least k−1 = 3 edges, but 10+3 > 4|S| = 12,

a contradiction. If B1 = K2, then every vertex of S is adjacent to all of B1, and some pair of vertices in S

is non-adjacent. Thus, G contains a K+
4 , and we are done by Lemma 5.10.

Instead assume that B1 ∈ {K3,K4}. This implies that some vertex x ∈ S, sends at least 2 edges to B1

and is not adjacent to all of B1. If x sends an edge to two endblocks in G2, then G2 + x contains a good

cycle (either some endblock of G2 is not K2, or else G2 = P3, or G2 contains an interior block that is not

K2). Thus, x sends an edge to at most one endblock of G2. So if G2 contains two endblocks, call them B2

and B3, then we may assume that x sends no edges to B3 and that B3 6= K2. This implies that some vertex

y ∈ S sends at least 2 edges to B3 and is not adjacent to all of B3, so B3 + y contains a good cycle. Now we

are done, by considering the good cycles in B1 + x and in B3 + y. Hence G2 has a single endblock; that is,

G2 = B2. By the previous paragraph, G2 6= K2, a contradiction.

Case 2.3: GS has a component that is K3 or has 3 components. Suppose that B1 = B2 = K3.

If some vertex x ∈ S sends exactly 2 edges to each Gi, then each Gi + x contains a good cycle, so we are

done by Lemma 5.9. But such x must exist because (a) each Bi gets 3 edges from S, (b) S sends out at

most 12 edges, and (c) we cannot write 6 as a sum of 3 terms, each 1 or 3. Assume instead that B1 = K4.

If GS has a third component G3, then G3 is a single block B3, and counting edges from S shows that

B1 = B2 = B3 = K4 and S is an independent set. Now G contains a bipartite theta graph (take 2 vertices

in S and a neighbor of each in each component). Assume instead that GS has only 2 components.

By symmetry, we assume that B1 = K4 and B2 = K3. If some vertex xi ∈ S sends two edges to each of

B1 and B2, then we are done; so assume this does not happen. By symmetry, we assume that dB2
(x1) = 3,

dB2
(x2) = 2, and dB2

(x3) = 1, so dB1
(x1) = dB1

(x2) = 1 and dB1
(x3) = 2; see Figure 5.8a. This implies that

x2x3 ∈ E(G). But now x2 and x3 lie in a 4-cycle with two vertices of B1, and they also lie in a 4-cycle with

two vertices of B2. The union of these 4-cycles is a bipartite theta graph; so we are done, by Lemma 5.8.

Case 2.4: GS has 2 components and both are K4. Suppose that B1 = B2 = K4 (and GS has only

two components). Denote S by x1, x2, x3. By symmetry (and counting edges), we assume that dB1
(x1) =

dB2(x2) = 2 and dB2(x1) = dB1(x2) = dB1(x3) = dB2(x3) = 1. This implies that x1x3, x2x3 ∈ E(G) and

x1x2 /∈ E(G); see Figure 5.8b. If y1 is a neighbor of x1 in B1 and y2 is a neighbor of x3 in B1, then
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Figure 5.8: S and the components of GS when (a) B1 = K4 and B2 = K3, and (b) B1 = B2 = K4.

{x1, x3, y1, y2} induces a 4-cycle in V (B1) ∪ S. Similarly, there exists an induced 4-cycle in V (B2) ∪ S that

uses edge x2x3. Each of these 4-cycles is a good cycle, and they intersect in a single vertex x3. So we are

done.

Now we handle the case when G is 3-regular and has connectivity 3, and two vertices of G have distinct

lists.

Lemma 5.14. Let G be 3-connected and 3-regular, but not K4. Let L be a 3-assignment for G. If there

exist v, w1 ∈ V (G) with L(w1) 6= L(v), then G is L-swappable.

Proof. Since G is connected, we assume vw1 ∈ E(G). Since G is not a clique, G has an L-coloring by the

list version of Brooks’ Theorem. Thus, L 6= ∅. Denote N(v) by {w1, w2, w3}. If possible, also choose v so

that L(w2) 6= L(v) or L(w3) 6= L(v) (or both); this choice is used only once, near the end of the proof.

If w1w2, w2w3 ∈ E(G), then {w1, w3} is a vertex cut, which contradicts that G is 3-connected. Thus, by

symmetry, {w1, w2, w3} induces at most one edge.

We note that G − e is degree-choosable for each e ∈ E(G), as follows. Assume instead that G − e is a

Gallai tree for some e ∈ E(G). Since G− e is 2-connected, it is is a Gallai block, i.e., a complete graph or an

odd cycle. But this is impossible since G− e is irregular. Thus, G− e is degree-choosable. By Lemma 5.5,

this implies that |L(x) ∩ L(y)| ≥ 2 for all xy ∈ E(G). In particular, |L(wi) ∩ L(v)| ≥ 2 for each i ∈ [3].

Let A1 := ∪α∈L(w1)∩L(w2)Lw1,α ∩ Lw2,α A1, B1

A2, B2

A3, B3

and B1 := ∪α∈L(w1)\L(v)Lw1,α. Define A2, B2, A3, and B3

analogously, as in Table 5.9. Let A := ∪3
i=1Ai and B := ∪3

i=1Bi.

A, B

Observe that L = A ∪ B. Moreover, by

Lemma 5.3, B1 is nonempty and mixes. Recall from above that G[w1, w2, w3] has at most one edge.

To help clarify the arguments in this proof, we will often draw an auxiliary graph that has a vertex for
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A B
A1 : ∪α∈L(w1)∩L(w2)Lw1,α ∩ Lw2,α B1 : ∪α∈L(w1)\L(v)Lw1,α

A2 : ∪α∈L(w1)∩L(w3)Lw1,α ∩ Lw3,α B2 : ∪α∈L(w2)\L(v)Lw2,α

A3 : ∪α∈L(w2)∩L(w3)Lw2,α ∩ Lw3,α B3 : ∪α∈L(w3)\L(v)Lw3,α

Figure 5.9: Every L-coloring is in A or B.

each Ai and Bj that is non-empty. (Since |L(wi)∩L(v)| ≥ 2 for all i, we have |L(wi)\L(v)| ≤ 1. Thus, each

nonempty Bj mixes.) If Ai ∪ Bj mixes, then we draw an edge between the vertices Ai and Bj . So, to show

that L mixes, it suffices to show that this auxiliary graph is connected.

Case 1: G[w1,w2,w3] has one edge. By symmetry between w2 and w3, assume that w1w3 /∈ E(G).

So either w2w3 ∈ E(G) or w1w2 ∈ E(G).

First suppose w2w3 ∈ E(G). This implies that A3 = ∅. Since w1w2 /∈ E(G), the sets A1 and A2 are

both nonempty. By Lemma 5.4(2), A1 ∪ B1 and A2 ∪ B1 both mix; see Figure 5.10a. Moreover, for each

i ∈ {2, 3}, if Bi is nonempty, then Bi ∪ Ai−1 mixes by Lemma 5.4(2). So A ∪ B mixes; that is, L mixes.

1 2 3

Ai

Bj

(a)

1 2 3

Ai

Bj

(b)

1 2 3

Ai

Bj

Lw1,b

(c)

Figure 5.10: (a) The case that w2w3 ∈ E(G). (b) The case that w1w2 ∈ E(G) and B3 6= ∅.
(c) The case that w1w2 ∈ E(G), B3 = ∅, and B2 6= ∅.

Instead assume w1w2 ∈ E(G). So A1 = ∅. Since w2w3 /∈ E(G), the sets A2 and A3 are both nonempty.

By Lemma 5.4(2), A2 ∪ B1 mixes. Now we show that B2 = B3 = ∅. Suppose first that B3 6= ∅. By

Lemma 5.4(2), A2 ∪ B3 and A3 ∪ B3 both mix; see Figure 5.10b. If B2 = ∅, then we are done, since A ∪ B

mixes. So assume B2 6= ∅. Now by Lemma 5.4(2) A3 ∪ B2 mixes. Thus, A ∪ B mixes; that is, L mixes. So

we assume B3 = ∅.

Now suppose that B2 6= ∅. By Lemma 5.4, B2 ∪ A3 mixes. Since B1 and B2 are nonempty, there exists

α ∈ L(w1) \ L(v) and β ∈ L(w2) \ L(v). If α 6= β, then B1 ∩ B2 6= ∅; thus, B1 ∪ B2 mixes. So A ∪ B mixes,

and we are done. So assume α = β. If L(w1) = L(w2), then there exists γ ∈ L(v) \ (L(w1) ∩ L(w2)). By

Lemma 5.3, the set Lv,γ mixes. Moreover, B1 ∩Lv,γ and B2 ∩Lv,γ are both nonempty. Thus, B1 ∪Lv,γ ∪B2
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mixes. So A ∪ B mixes, and we are done. So assume L(w1) 6= L(w2). Pick a ∈ L(v) ∩ L(w1) ∩ L(w2) and

b ∈ L(w1) \ L(w2) and c ∈ L(w2) \ L(w1); see Figure 5.11a. Note that Lw1,b mixes by Lemma 5.3, and

B2 ∩Lw1,b 6= ∅. So B2 ∪Lw1,b mixes; see Figure 5.10c. Moreover, there exists ϕ ∈ Lw1,b ∩Lw3,b, and ϕ mixes

with B1 by Lemma 5.4(2). Since ϕ ∈ Lw1,b, the set Lw1,b ∪B1 mixes; hence, B1 ∪B2 mixes. So A∪B mixes,

and we are done. So we instead assume B2 = ∅.

v

w1 w2 w3

abc

abd acd abc

(a)

v

w1 w2 w3

abc

abd abc abc

(b)

Figure 5.11: Two cases when w1w2 ∈ E(G). (a) A 3-assignment for N [v] when d ∈ L(w1) ∩ L(w2) and
L(w1) 6= L(w2) and L(v) = L(w3). (b) A 3-assignment for N [v] when L(v) = L(w2) = L(w3).

Now B2 = ∅ = B3, so L(w2) = L(w3) = L(v); see Figure 5.11b. From above A1 = ∅ and A2 ∪ B1

mixes. So it suffices to show that A3 mixes with B1. By Lemma 5.3, we know that Lw2,c and Lw1,d

and Lv,c are nonempty sets that mix. Note that B1 = Lw1,d. Since Lw1,d ∩ Lw2,c 6= ∅, we see that

Lw2,c ∪ Lw1,d mixes. Similarly, Lw1,d ∩ Lv,c 6= ∅, so Lw1,d ∪ Lv,c mixes. Finally Lv,c ∩ Lw2,α ∩ Lw3,α 6= ∅ for

each α ∈ {a, b}. Thus, Lv,c ∪
⋃
α∈{a,b}(Lw2,α ∩ Lw3,α) mixes. Combining all these observations gives that

Lw2,c ∪ Lw1,d ∪ Lv,c ∪
⋃
α∈{a,b}(Lw2,α ∩ Lw3,α) mixes. But this set contains A3 ∪ B1, so we are done.

Case 2: G[w1,w2,w3] has no edges. So A1,A2, and A3 are all nonempty. Moreover, B1 ∪ A1 and

B1 ∪ A2 both mix by Lemma 5.4(2). If B2 6= ∅, then B2 ∪ A1 and B2 ∪ A3 both mix by Lemma 5.4(2); see

Figure 5.12a. If, in addition, B3 = ∅, then A ∪ B1 ∪ B2 mixes, and we are done. Otherwise, B3 6= ∅. So

B3 ∪ A2 and B3 ∪ A3 both mix by Lemma 5.4(2). Thus, A ∪ B mixes, and we are done. So assume B2 = ∅;

by symmetry, also B3 = ∅.

1 2 3

Ai

Bj

(a)

1 2 3

Ai

Bj

(b)

Figure 5.12: HereG[w1, w2, w3] has no edges. (a) The case that B2 6= ∅.
(b) The case that B2 = ∅ = B3.

Now it suffices to show that A3 ∪B1 mixes. Fix z1 and z2 in N(w1) \ {v}. By symmetry between w1 and

94



v, we assume N(w1) induces no edges and L(w1) = L(z1) = L(z2); see Figure 5.13a. By Lemma 5.3, Lv,c is

nonempty and mixes. Now we show that A3 mixes. Form G′ from G by deleting v then identifying w2 and

w3. Call the new vertex w23. Note that G′ is 2-connected; equivalently, w23 is not a cut-vertex in G′. To

see this, note that {w2, w3} is not a vertex cut in G, since G is 3-connected. So {w2, w3, v} is not a vertex

cut in G, since v is a leaf in G− {w2, w3}. But the components of G− {v, w2, w3} are the same as those of

G′ − w23. So w23 is not a cut-vertex in G′, as desired.

Let L′ be a 3-assignment for G′ with L′(w23) = L(w2) and L′(x) = L(x) for all other x ∈ V (G′). Now

G′ is L′-swappable, by Lemma 5.2(a) with w := w1, since dG′(w1) = 2 < 3 = |L′(w1)|. We note that every

coloring ϕ′ of G′ can be extended to a coloring ϕ in G since | ∪x∈N(v) ϕ
′(x)| ≤ 2. Thus, L′-colorings are

in bijection with colorings in A3. Moreover, every α, β-swap performed in ϕ′ can also be performed in ϕ

as follows. If the swap does not involve N(v), or ϕ(v) /∈ {α, β}, then we perform the same swap as in ϕ′

(possibly a swap at w2 and w3 each). If ϕ(w1) = ϕ(w2) = ϕ(w3) or β = d (so the swap is at w1), then we

can recolor v with γ /∈ {α, β} then perform the swap. Otherwise, suppose ϕ(v) = α and (i) ϕ(w1) = β, or

(ii) ϕ(w2) = ϕ(w3) = β. In case (i), the swap is valid since {a, b} ∈ L(v), and in case (ii), the swap is valid

since L(v) = L(w2) = L(w3). Thus, A3 mixes, as claimed.

For every ϕ ∈ ∪γ∈{a,b}Lw2,γ ∩ Lw3,γ , either (i) ϕ(w1) = ϕ(w2) = ϕ(w3), or (ii) ϕ(w1) = d, or (iii)

ϕ(v) = c. In case (i), we have A1 ∩ A2 ∩ A3 6= ∅, so we are done. In case (ii), ϕ ∈ B1; and in case (iii),

ϕ ∈ Lv,c. Thus, Lw2,γ ∩ Lw3,γ mixes either with B1 or Lv,c, for each γ ∈ {a, b}. So it suffices to show that

B1 mixes with Lv,c. By our choice of v at the beginning of the proof, there exists u ∈ N(z1) \ {w1} with

L(u) = L(z1); otherwise, we would have chosen z1 instead of v. Since G is 3-connected, G− z1− z2 contains

a u, v-path P . Note that L(x) 6= L(y) for some x and y that are successive on P . By construction, either

x or y is not in N(v) ∪ N(w1); see Figure 5.13b. By symmetry, assume x /∈ N(v) ∪ N(w1). Since there

exists γ ∈ L(x) \ L(y), by Lemma 5.3, the set Lx,γ mixes. Further, Lx,γ ∩ B1 6= ∅ and Lx,γ ∩ Lv,c 6= ∅; thus,

B1 ∪ Lv,c mixes, and we are done.

Theorem 5.3. Let G be 3-regular with connectivity 3. If L is a 3-assignment for G, then G is L-swappable

unless either (a) G = K4 or (b) G = K2 �K3 and L(v) = L(w) for all v, w ∈ V (G).

Proof. Let L be a 3-assignment for G. If there exists v, w ∈ V (G) such that L(v) 6= L(w), then G is L-

swappable by Lemma 5.14 (or Lemma 5.16 when G = K4)6. Otherwise, L(v) = L(w) for every v, w ∈ V (G).

If G 6= K2 �K3, then by Theorem A [40], G is L-swappable.

6Although we have not yet proved this lemma, its proof is independent of the present theorem, so invoking it now is logically
consistent. We make this choice to preserve the narrative flow of Section 5.3.
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Figure 5.13: (a) A 3-assignment for N(v) ∪ N(w1) when L(w1) = L(z1) = L(z2) and L(v) = L(w2) =
L(w3). (b) The first instance, along a u, v-path, of a consecutive pair x, y with distinct lists.

Lemma 5.15. Let G be 4-connected, k-regular, but not a clique. Let L be a k-assignment for G. If there

exist v, w1 ∈ V (G) with vw1 ∈ E(G) and L(w1) 6= L(v), then G is L-swappable.

Proof. By the list version of Brooks’ Theorem [37], G has an L-coloring; that is, L 6= ∅. Denote the neighbors

of v by w1, . . . , wk. By Lemma 5.3, for each i ∈ [k] and each α ∈ L(wi) \ L(v), the set Lwi,α mixes. By

Lemma 5.4(2), for all distinct j, ` ∈ [k] and each β ∈ L(wj) ∩ L(w`), the set Lwj ,β ∩ Lw`,β mixes. Let

L1 := ∪i∈[k] ∪α∈L(wi)\L(v) Lwi,α. L1, L2Let L2 := ∪j,`∈[k],j 6=` ∪β∈L(wj)∩L(w`) Lwj ,β ∩ Lw`,β . By Pigeonhole, for

every ϕ ∈ L, either ϕ ∈ L1 or ϕ ∈ L2, or both. So L = L1 ∪ L2.

We will often want to L-color a small set of vertices, S, and show that our coloring ϕ of S extends to

an L-coloring of G. This is possible whenever S ⊂ N(v) and |S| ≤ 3 and |(∪x∈Sϕ(x)) ∩ L(v)| < |S|. After

coloring S, we greedily color G − S in order of nonincreasing distance from v. This uses that G − S is

connected, since G is 4-connected and |S| < 4. And the same argument shows that all such L-colorings

(with a fixed coloring of S) mix.

Case 1: |L(w1)\L(v)| ≥ 2. Note, for each α ∈ L(w1)\L(v), that Lw1,α 6= ∅. Further, ∪α∈L(w1)\L(v)Lw1,α

mixes, by Lemma 5.3. Suppose there exists i ∈ [k] \ {1} with L(wi) \ L(v) 6= ∅. Similar to above,

∪β∈L(wi)\L(v)Lwi,β mixes. Further, given β ∈ L(wi) \ L(v), there exists α ∈ L(w1) \ L(v) such that α 6= β.

Since Lw1,α ∩ Lwi,β 6= ∅, we see that L1 mixes.

Fix i, j ∈ [k] with wiwj /∈ E(G) and L(wi)∩L(wj) 6= ∅; fix α ∈ L(wi)∩L(wj). Recall that Lwi,α ∩Lwj ,α

mixes, by Lemma 5.4(1). Suppose that i, j ∈ [k] \ {1}. Fix α ∈ L(wi) ∩ L(wj). Now there exists β ∈

L(w1) \ (L(v) ∪ {α}). Thus, there exists an L-coloring ϕ with ϕ(wi) = ϕ(wj) = α and ϕ(w1) = β, by the

remark before Case 1. Note that ϕ ∈ Lw1,β ∩ (Lwi,α ∩ Lwj ,α). Thus, Lwi,α ∩ Lwj ,α mixes with L1 for each

such choice of i, j, and α ∈ L(wi) ∩ L(wj).
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Finally, suppose there exists i ∈ [k] \ {1} with α ∈ L(w1)∩L(wi) and w1wi /∈ E(G). Let G′ := G− vw1.

Let L′(wi) := {α}, L′(w1) = {α} ∪ (L(w1) \ L(v)), and let L′(x) := L(x) for all other x ∈ V (G′). Note that

G′ has an L′-coloring and all L′-colorings of G′ mix, by Lemma 5.1. Further, the L′-colorings ϕ′ of G′ are in

bijection with L-colorings ϕ of G with ϕ(wi) = α and ϕ(w1) ∈ {α}∪ (L(w1) \L(v)). This latter set includes

a coloring in Lw1,α ∩ Lwi,α and also a coloring in L1. Thus, L1 ∪ L2 mixes; that is, L mixes.

By symmetry among the wi’s, we henceforth assume that |L(wi) \ L(v)| ≤ 1 for all i ∈ [k].

Case 2: |L(wi) \ L(v)| ≤ 1 for all i ∈ [k] and |(L(w1) ∪ L(w2)) \ L(v)| ≥ 2. As above,

∪α∈L(wi)\L(v)Lwi,α mixes, for each i ∈ [k], by Lemma 5.3. By hypothesis, there exist α ∈ L(w1) \ L(v) and

β ∈ L(w2)\L(v) with α 6= β. So there exists ϕ ∈ Lw1,α∩Lw2,β . Further, for every i ∈ [k] with L(wi) 6= L(v),

there exists γ ∈ L(wi) \ L(v) such that either (a) Lw1,α ∩ Lwi,γ 6= ∅ (and γ 6= α) or (b) Lw2,β ∩ Lwi,γ 6= ∅

(and γ 6= β). Thus, L1 mixes.

Now instead fix any distinct i, j ∈ [k] with wiwj /∈ E(G). For each α ∈ L(wi) ∩ L(wj), recall that

Lwi,α ∩ Lwj ,α mixes by Lemma 5.4(1). For each such i, j there exists α ∈ L(wi) ∩ L(wj) and such a

coloring ϕ either with ϕ(w1) /∈ L(v) or with ϕ(w2) /∈ L(v), unless {i, j} = {1, 2}. However, in this case,⋃
α∈L(w1)∩L(w2) Lw1,α ∩ Lw2,α ∪

⋃
β∈L(w1)\L(v) Lw1,β mixes, by Lemma 5.4(2). Thus, L1 ∪ L2 mixes; that is,

L mixes.

By symmetry among the wi’s, we now assume |(L(wi) ∪ L(wj)) \ L(v)| ≤ 1 for all i, j ∈ [k].

Case 3: |∪i∈[k]L(wi)\L(v)| = 1. Let {α} denote ∪i∈[k]L(wi)\L(v). Note that Lwh,α mixes whenever

h ∈ [k] and α ∈ L(wh), by Lemma 5.3. Since G is not a clique, there exist i, j ∈ [k] such that wiwj /∈ E(G).

For each such i, j and β ∈ L(wi) ∩ L(wj), the set Lwi,β ∩ Lwj ,β mixes, by Lemma 5.4(1). Now we show

that Lwh,α mixes with Lwi,β ∩ Lwj ,β for all such h, i, j, α, and β. First suppose that α 6= β. If h /∈ {i, j},

then there exists an L-coloring ϕ with ϕ(wh) = α and ϕ(wi) = ϕ(wj) = β. If h ∈ {i, j}, then this claimed

mixing follows from Lemma 5.4(2). So assume instead that α = β. If h ∈ {i, j}, then this is trivial, since

Lwi,β∩Lwj ,β ⊆ Lwh,α. So assume h /∈ {i, j}. Pick β′ ∈ L(wi)∩L(wj)\{α}. There exists an L-coloring ϕ with

ϕ(wh) = α and ϕ(wi) = ϕ(wj) = β′. But now we are again done by Lemma 5.4(2). More specifically, Lwh,α

mixes and Lwi,α mixes. By Lemma 5.4(2), also Lwi,β ∩ (Lwj ,β ∪Lwj ,α) mixes. Since Lwi,α ∩Lwj ,α ⊆ Lwi,α,

we are done.

The next lemma handles the case that G = Kk+1. The main ideas in the proof are similar to those in

the previous proof, but the details are a bit different.
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Lemma 5.16. Let G = Kk+1, where k ≥ 3, and let L be a k-assignment. If there exist v, w ∈ V (G) such

that L(v) 6= L(w), then G is L-swappable.

Proof. We denote the vertices of G by v1, . . . , vk+1, and we consider three cases.

Case 1: There exist i, j ∈ [k+ 1] such that |L(vi)\L(vj)| ≥ 2. Fix ϕ ∈ L. By symmetry, assume

that i = 1 and j = 2. Since |L(v2)| = k and |V (G)| = k+ 1, there exists ` ∈ [k+ 1] such that ϕ(v`) /∈ L(v2).

Let α := ϕ(v`). Let L1 := ∪β∈L(v1)\L(v2)Lv1,β . By Lemma 5.3, we know that Lv`,α mixes and also L1 mixes.

We will construct an L-coloring ϕ′ such that ϕ′ ∈ L1 ∩ Lv`,α. This will prove that L1 mixes with Lv`,α.

Since ϕ ∈ Lv`,α and ϕ is an arbitrary L-coloring, we conclude that G is L-swappable. Let ϕ′(v`) = α, color

v1 from L(v1) \ (L(v2) ∪ {β}), and thereafter color greedily, finishing with v2.

Case 2: There exist distinct i, j, ` ∈ [k+ 1] and distinct colors αi, αj such that αi ∈ L(vi) \

L(v`) and αj ∈ L(vj) \ L(v`). We can assume that Case 1 does not hold, so |L(w) \ L(x)| ≤ 1 for all

w, x ∈ V (G). By symmetry, we assume that i = 1, j = 2, and ` = 3. Let L1 := Lv1,α1 and L2 := Lv2,α2 .

By Lemma 5.3, note that L1 mixes and L2 mixes. We construct ϕ′ ∈ L1 ∩ L2. Let ϕ′(v1) := α1, let

ϕ′(v2) := α2, and thereafter color greedily, finishing with v3. Fix an arbitrary L-coloring ϕ. Now it suffices

to show that either ϕ is L-equivalent to some L-coloring in L1 or ϕ is L-equivalent to some L-coloring in L2.

Since |L(v3)| = k and |V (G)| = k + 1, there exists h such that ϕ(vh) /∈ L(v3). Further, either ϕ(vh) 6= α1

or ϕ(vh) 6= α2; by symmetry, assume the former. Now, as in the previous case, there exists an L-coloring ϕ′

such that ϕ′ ∈ L1 ∩ Lvh,ϕ(vh). Since Lvh,ϕ(vh) mixes, by Lemma 5.3, we are done.

Case 3: There exist i, j, ` ∈ [k+1] with i /∈ {j, `} and a color α such that α ∈ (L(vj)∩L(v`))\

L(vi). We can assume neither Case 1 nor Case 2 holds. So, |L(vi)∩L(vj)| = |L(vi)∩L(v`)| = k−1. If j = `,

i.e., there is only one vertex vj such that α ∈ L(vj) (implying that L(vl) = L(vi) for all l ∈ [k + 1] \ {j}),

then every coloring ϕ lies in Lvj ,α. This is because |L(vi)| = k and |V (G)| = k+ 1, which implies that some

vertex (namely vj) has ϕ(vj) /∈ L(vi). By Lemma 5.3, Lvj ,α mixes. So, we conclude that G is L-swappable.

Thus, we assume that j 6= `.

By symmetry, assume that i = 1, j = 2, and ` = 3. If L(v2) = L(v3), then pick β ∈ L(v1) \ L(v2). By

Lemma 5.3, each of Lv1,β ,Lv2,α, and Lv3,α mixes. Moreover, Lv1,β ∩ Lv2,α 6= ∅ (color v1 with β, color v2

with α, then color greedily, finishing with v3). So, Lv1,β mixes with Lv2,α. By symmetry between v2 and v3,

the set Lv1,β also mixes with Lv3,α. Further, if α ∈ L(vh) for some h ∈ [k + 1] \ {2, 3}, then Lvh,α mixes by

Lemma 5.3. And as above, Lvh,α ∩ Lv1,β 6= ∅, which implies that Lvh,α mixes with Lv1,β . Since |L(v1)| = k

and |V (G)| = k + 1, for every L-coloring ϕ there exists h ∈ [k + 1] such that ϕ(vh) /∈ L(v1). In particular,
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ϕ(vh) = α. So, ϕ ∈ Lvh,α, and we conclude that G is L-swappable. Thus, we assume L(v2) 6= L(v3).

By symmetry, assume L(v1) = [k], L(v2) = ({α} ∪ [k]) \ {1}, and L(v3) = {α} ∪ [k − 1]. By Lemma 5.3,

each of Lv1,k,Lv1,1,Lv2,α,Lv2,k,Lv3,α, and Lv3,1 mixes. Moreover, Lv1,k ∩Lv2,α 6= ∅ (color greedily, finishing

with v3). Similarly, Lv1,k ∩ Lv3,1 6= ∅,Lv1,1 ∩ Lv2,k 6= ∅, and Lv1,1 ∩ Lv3,α 6= ∅. Thus, Lv1,k mixes with each

of Lv2,α and Lv3,1; similarly, Lv1,1 mixes with each of Lv2,k and Lv3,α. By coloring greedily, finishing with

v1, there exists ϕ ∈ Lv2,α ∩ Lv3,2. And a 2, α-swap in ϕ at v2 gives a coloring in Lv3,α. Thus, Lv2,α mixes

with Lv3,α. Finally, if α ∈ L(vl) for some l ∈ [k + 1] \ {2, 3}, then Lvl,α mixes by Lemma 5.3. And, Lvl,α

mixes with Lv1,1 since Lvl,α ∩Lv1,1 6= ∅. As above, for every L-coloring ϕ, there exists h ∈ [k+ 1] such that

ϕ(vh) = α. Thus, we conclude that G is L-swappable.

Lemma 5.17. Let G be a 4-connected graph that is k-regular, but does not contain an induced 4-wheel, W4,

and is not Kk+1. If L(v) = [k] for all v ∈ V (G), then G is L-swappable.

Proof. Let G satisfy the hypothesis. Fix an arbitrary vertex v ∈ V (G) and denote N(v) by {w1, . . . , wk}.

By Pigeonhole, for every ϕ ∈ L there exist distinct i, j, α ∈ [k] with wiwj /∈ E(G) and ϕ(wi) = ϕ(wj) = α.

Since L(x) = [k] for all x ∈ V (G), for all distinct i, j such that wiwj /∈ E(G) and all distinct α, β ∈ [k],

the sets Lwi,α ∩ Lwj ,α and Lwi,β ∩ Lwj ,β mix with each other; we simply use α, β-swaps at wi and wj . So,

in this proof, Li,jlet Li,j := ∪α∈[k](Lwi,α ∩ Lwj ,α). For convenience, when wiwj ∈ E(G), let Li,j := ∅. So

L = ∪i,j∈[k],i6=jLi,j .

By Lemma 5.4, if wiwj /∈ E(G), then Li,j mixes. Fix distinct i, j, ` ∈ [k] such that wiwj , wjw` /∈ E(G).

We show that Li,j mixes with Lj,`. Let G′ := G − vwj , let L′(wi) := {1}, L′(w`) = {2}, L′(wj) := {1, 2},

and L′(x) := [k] for all x ∈ V (G) − {wi, wj , w`}. Let G′′ := G − {wi, wj , w`}. Note that G′′ is connected,

since G is 4-connected. Let σ′′ be a vertex order of V (G′′) by non-increasing distance from v, and let

σ′ := wi, w`, wj , σ
′′. Now σ′ shows that L′ mixes, since each vertex x is preceded by fewer than |L′(x)|

neighbors in σ′.

Now consider distinct h, i, j, ` ∈ [k] such that whwi, wjw` /∈ E(G). We must show that Lh,i mixes with

Lj,`. If whwj /∈ E(G), then Lh,i mixes with Lh,j and Lh,j mixes with Lj,`, as above, so we are done. Assume

instead that whwj ∈ E(G). By symmetry, also wiwj , wiw`, w`wh ∈ E(G). However, now G contains an

induced 4-wheel, a contradiction.

Now we combine the previous four lemmas to completely handle the 4-connected case.
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Theorem 5.4. Let G be 4-connected. If G is k-regular and not Kk+1, then G is k-swappable. If G = Kk+1,

L is a k-assignment, and L is not identical everywhere, then G is L-swappable.

Proof. If G contains W4 as an induced subgraph, then we are done by Lemma 5.11 and Lemma 5.6. So

assume it does not. Fix a k-assignment L for G. If there exist x, y ∈ V (G) such that L(x) 6= L(y), then G is

L-swappable, by Lemma 5.15 or Lemma 5.16. So assume instead that L(x) = L(y) for all x, y ∈ V (G). By

symmetry, we assume that L(v) = [k] for all v ∈ V (G). Now we are done by Lemma 5.17.
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