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This dissertation explores how to better manage resources in mobile net-

works, especially for enhancing the performance of Unmanned Aerial Vehicles (UAV)-

supported IoT networks. We explored ways to set up a flexible communication ar-

chitecture that can handle large IoT deployments by making good use of mobile core

network resources like bearers and data paths. We developed strategies that meet

the needs of IoT networks and enhance network performance. We also developed

and tested a system that combines traffic from several mobile devices that use the

same user identity and network resources within the core mobile network. We used

everyday smartphones, SIM cards, and the Amarisoft Callbox, which includes core

network and eNB components, for our tests.

UAVs have changed many fields due to their flexibility and versatility. This dis-

sertation looks at how UAVs and IoT can work together, addressing important chal-

lenges to make systems work better, increase efficiency, and guarantee strong commu-

nication between UAVs and ground control stations. Collecting data efficiently from
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ground sensors and IoT networks is crucial, and our research is centered on planning

paths that make UAVs as efficient as possible in this process. We use UAVs as relay

nodes, optimizing their paths and flight plans to reduce delays and make sure data

is collected and delivered on time. Additionally, we introduced a new way to route

UAVs, taking into account the Age of Information (AoI) concept. We calculate AoI

from when data is generated to when it is delivered through cellular-connected UAVs,

making mission time as short as possible while keeping UAV connectivity. Our tests

show that our heuristic approach works well in different scenarios. Utilizing UAVs

as relays to facilitate communication reduces mission time and accelerates IoT data

delivery, presenting an innovative advantage over alternative methods. In solving

each problem, we first use an Integer Linear Programming (ILP) solution and then

introduce a faster heuristic algorithm to save time. This combination ensures strong

solutions while also providing quicker computational results.
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CHAPTER 1

INTRODUCTION

UAVs have revolutionized numerous domains, including wireless communication, agri-

culture, and search and rescue operations [1]. These agile flying machines offer im-

mense possibilities when combined with the power of the IoT [2]. In this dissertation,

we embark on a journey to explore the dynamic relationship between UAVs and IoT,

addressing key challenges to optimize system performance, improve efficiency, and

ensure reliable communication between UAVs and ground base stations (GBSs) [3].

By delving into the interconnected domains of path planning, resource management,

and collaborative connectivity maintenance, we aim to unlock the true potential of

UAV-assisted IoT networks, ushering in a new era of possibilities and advancements.

In addition, resource management within the mobile core network plays a piv-

otal role in enhancing the performance of UAV-assisted IoT networks [4]. As the

IoT ecosystem expands, mobile network operators face the challenge of optimizing

resource utilization while addressing the limitations of wireless spectrum availability

[5]. Our research focuses on harnessing the potential of mobile core network resources,

such as bearers and data paths in the Evolved Packet Core (EPC), to establish a scal-

able communication architecture for massive IoT deployments. By smartly grouping

machine-type devices (MTDs) and optimizing traffic patterns, we strive to enhance

efficiency and ensure reliable connectivity. Our resource management strategies cater

to the unique demands and constraints of IoT networks, allowing for effective resource

allocation and improved network performance.

Efficiently collecting data from ground sensor nodes and IoT networks using
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UAVs is crucial in various applications [6]. However, achieving optimal data collection

poses unique challenges. In this research, we focus on path planning strategies that

maximize the efficiency of UAVs during the data collection process. By carefully

considering factors such as battery capacity, flight duration, and data generation

times at IoT devices, we aim to minimize delays and ensure timely data collection.

Our innovative approach integrates UAVs as relay nodes, collecting data from IoT

devices and delivering it to base stations for further transmission. Through meticulous

mission planning, we optimize the path and flight trajectory of UAVs, guaranteeing

efficient data collection and delivery.

Furthermore, ensuring continuous and reliable connectivity between UAVs and

ground control stations is vital for the success of UAV-assisted IoT networks [7, 8,

9]. In this dissertation, we explore collaborative connectivity maintenance strate-

gies that leverage cellular connections to enhance the communication capabilities of

UAVs. While traditional UAV control systems rely on direct LoS communication,

our approach taps into the potential of cellular networks. We address the challenge

of limited GBS coverage by fostering collaboration between UAVs. Through resource

sharing and a multi-hop approach, UAVs support each other, mitigating cellular out-

age durations and ensuring seamless communication. Our collaborative connectivity

framework optimizes mission completion time and guarantees reliable communication,

even in areas with limited GBS coverage.

In conclusion, this dissertation represents a comprehensive exploration of UAV-

assisted IoT networks, with a focus on path planning, resource management, and col-

laborative connectivity maintenance. By addressing these interconnected challenges,

we strive to optimize system performance, improve efficiency, and enable reliable

communication between UAVs and ground control stations. Through innovative ap-

proaches and practical solutions, we aim to unlock the true potential of UAV-assisted
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Fig. 1. Collaborative UAV control systems establish scalable communication for mas-

sive IoT deployments

IoT networks, paving the way for transformative applications in various domains.

This research not only contributes to the advancement of UAV technology but also

drives the evolution of IoT networks, fostering a future where UAVs and IoT seam-

lessly integrate to create a more connected and efficient world.

1.1 Industry Interest

Telecommunication providers are increasingly recognizing the potential of UAVs

to enhance network coverage and connectivity, particularly in challenging or remote

areas [10]. By deploying UAVs equipped with communication equipment, such as

small cellular base stations or relays, telecommunications companies can extend net-

work coverage to serve regions or areas affected by natural disasters. UAVs can

quickly and flexibly establish temporary communication links, providing essential

connectivity for emergency response efforts or supporting ongoing operations in re-

mote locations [11].
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Integration with IoT networks offers significant advantages in the telecommuni-

cations industry [12]. With the proliferation of IoT devices, ranging from smart homes

[13, 14] to industrial sensors, the demand for seamless connectivity and reliable data

transmission has grown exponentially. UAVs integrated into the IoT ecosystem can

serve as aerial nodes, facilitating communication between IoT devices and the core

network. This integration enables efficient and scalable connectivity for a vast number

of IoT devices, ensuring reliable data transmission, monitoring, and control [15].

Moreover, UAVs can act as flying relays, extending network coverage to areas

with weak signals or gaps in traditional infrastructure. By strategically position-

ing UAVs, telecommunications companies can overcome obstacles such as physical

terrain, geographical barriers, or temporary events that may hinder network connec-

tivity [16]. UAVs equipped with communication equipment can establish temporary

communication links, bridging the connectivity gap and providing seamless coverage

for IoT devices in those areas.

In addition, the use of UAVs and IoT networks in environmental monitoring has

gained significant interest among environmental agencies [17], conservation organiza-

tions, and researchers. UAVs equipped with advanced sensors, such as multispectral

or hyperspectral cameras, can capture high-resolution aerial imagery and collect data

on various environmental parameters. For instance, in air quality monitoring, UAVs

can measure pollutant concentrations in real-time, providing valuable insights into

pollution sources, distribution patterns [18], and potential health risks.

Integration with IoT networks offers enhanced capabilities for environmental

monitoring. UAVs can serve as data collection nodes, transmitting environmental

data to centralized servers or cloud platforms wirelessly [17]. This real-time data

transmission enables prompt analysis, interpretation, and decision-making, empow-

ering environmental agencies to take timely action in response to environmental chal-
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lenges. Additionally, UAVs can be integrated with ground-based IoT sensors to create

a comprehensive monitoring network, combining aerial and terrestrial data for a more

holistic understanding of environmental conditions.

By leveraging the power of IoT networks, environmental monitoring efforts can

be streamlined and automated. UAVs can be deployed to monitor large areas effi-

ciently, collecting data from multiple locations simultaneously. The integration with

IoT networks allows for data fusion and analysis, enabling the identification of trends,

patterns, and anomalies in environmental parameters. This integrated approach not

only improves the accuracy and efficiency of environmental monitoring but also sup-

ports timely interventions and conservation strategies.

1.2 Dissertation Organization

The remainder of this dissertation is organized as follows:

1. Literature Review: In Chapter 2, we begin by reviewing the existing literature

related to UAV path trajectory findings, resource management in cellular net-

works, and the AoI area. This chapter provides a comprehensive overview of

the current state of research in these areas, setting the stage for our proposed

solutions.

2. Resource Management in Mobile Core Networks: Chapter 3 presents our pro-

posed approach for managing resources within mobile core networks. We focus

on leveraging mobile core network resources, such as bearers or data paths in

the EPC, to establish a scalable communication architecture for massive IoT

deployments. Our research explores the concept of connecting MTDs to lo-

cal gateway devices, reducing resource usage in the core network. By smartly

grouping devices and optimizing traffic patterns, we enhance efficiency while
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maintaining reliable connectivity. This chapter investigates resource manage-

ment strategies that foster more effective utilization of available resources.

3. Collaborative Connectivity for UAVs: In Chapter 4, we introduce our approach

to designing paths for UAVs with collaboration while maintaining connectivity

to GBSs. UAVs present considerable challenges, especially given the limited

coverage of GBSs. Our research explores the concept of collaboration between

UAVs to overcome these obstacles and enhance connectivity. By leveraging the

power of shared resources and adopting a multi-hop approach, UAVs can sup-

port each other and avoid cellular outage durations. This collaborative frame-

work optimizes mission completion time and ensures reliable communication,

even in areas with limited GBS coverage.

4. Data Collection in UAV-Assisted IoT Networks: Chapter 5 delves into data

collection from ground sensor nodes or IoT networks using UAVs. We consider

a realistic scenario where UAVs act as relay nodes, collecting data from IoT de-

vices and delivering it to base stations for further transmission. In this chapter,

we introduce both an ILP based approach and a greedy heuristic-based solution

that factor in data generation times and the locations of IoT devices to mini-

mize the maximum AoI while optimizing mission time and path length. These

approaches ensure timely data collection and efficient delivery, considering the

inherent constraints of UAV operations.

5. AoI in Mesh Networks: Chapter 6 delves into exploring the path planning

problem for a UAV mesh network that collects data from ground IoT devices

considering the minimization of the maximum age of information. We have stud-

ied several scenarios where the data delivery to the backhaul happens through

satellite connection as well as through a few existing base stations in the area.
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Through simulations, we have shown that the results in different scenarios are

optimal and they have pros and cons to one another.

6. Concluding Remarks: Finally, in Chapter 7, we provide concluding remarks

that summarize the key findings of our research, highlight the contributions

made, and discuss potential avenues for future work.

By organizing the dissertation in this manner, we provide a comprehensive explo-

ration of UAV-assisted IoT networks, covering path planning, resource management,

collaborative connectivity, and data collection aspects. This structure ensures a log-

ical flow of ideas and facilitates a deeper understanding of the research presented.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we explore scalable connection management for massive IoT systems.

We begin by presenting a comparison of the previous studies on IoT resource man-

agement. Then, we delve into the literature that study the trajectory optimization

for cellular-connected UAVs, discussing their contributions and drawbacks. Finally,

we touch upon the AoI metric, emphasizing its importance for timely data collection

from IoT devices using UAVs.

2.1 Scalable Connection Management for Massive IoTs

Subscriber identity sharing aims to efficiently use core network resources by

grouping multiple IoT devices’ traffic [19, 20]. This is done by giving a shared Inter-

national Mobile Subscriber Identity (IMSI) to a group of IoT devices and allowing

the core network to see them as one device. Devices send data in turns on this shared

line to prevent traffic overlap. A related patent from Qualcomm discusses managing

such wireless device networks [21].

This method of IMSI sharing communication helps in using fewer core network

resources like the number of cellular bearers, especially when considering IoT devices

in large service regions [19, 20]. Yet, these studies only allow pre-determined devices

with similar data sending intervals to share the IMSI. Recent work [22] expanded

this, considering all IoT devices and dynamic IMSI sharing using modern subscriber

ID solutions like virtual SIMs [23] and e-SIM cards [24, 25]. These modern solutions

aid in dynamically providing network connectivity to IoT devices [26].
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Fig. 2. Overview of IMSI sharing based aggregated IoT communication in EPC, as a rep-

resentative of mobile core network.

Consider the EPC network in Fig. 2, as a representative core network architecture

which is currently the most common system in use. The IoT devices that share the

same IMSI are considered as the same device by the core network. However, the list of

the IoT devices using the same IMSI are still being tracked by the MTC server in the

background through the usage of external identifiers (EID) and MTC interworking

function (MTC-IWF) [27] that is serving as an intermediary function between the

core network and the MTC server. Note that MTC server does not deal with IP

addresses and cellular IDs (e.g., IMSI), which is managed by Packet Data Network

Gateway (PGW), and just uses external identifiers (EID) to communicate with the

IoT devices. The mapping of IMSI and application port ID to EID is achieved through

communication of MTC-IWF with HSS. The interested readers can refer to [20, 19,

22] for further details.

Previous studies have proposed an aggregated connection model that enables

scalability for massive IoT by allowing devices to share an IMSI and flexibly shifting

their traffic patterns as a practical solution without major architectural changes.
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Several prior works [28, 29, 30, 31, 32, 33, 34, 35] have proposed solutions to han-

dle the escalating connection demands from massive numbers of IoT devices. These

include the core network functions [28], separating control and data planes via Soft-

ware Defined Networking (SDN) and Network Function Virtualization (NFV) [29,

30, 31, 32, 33, 34, 35], and device-centric techniques like virtual bearers and group

communication. Though promising, most solutions have limitations for practical

large-scale deployment. Virtual bearers [34] require close device proximity for device-

to-device communication. Group communication [35] necessitates devices be within

the same base station coverage area. A lightweight stateless MME architecture [30]

improves just one core network gateway, not the overall core network.

In contrast, more scalable and practical aggregated connection models using

IMSI sharing have been studied [20, 22] without radically changing the core network

architecture. These aggregate IoT devices to share a subscriber identity and take

turns transmitting data.

Several studies shed light on the challenges and innovations in IoT resource man-

agement and communication. The study by [36] emphasizes multi-operator network

sharing, aiming to enhance resource utilization and reduce costs but faces specific

challenges in mobility and access channel efficiencies. [37] presents an adaptive shar-

ing priority for IoT communications over LTE-A networks, yet grapples with scala-

bility concerns. [22] offers a solution for managing hyper-dense IoT traffic using a

computationally intensive algorithm. Lastly, [38] introduces a flexible spectrum shar-

ing model for multi-tenant cellular networks, but its outcomes are somewhat limited.

These investigations collectively underscore the evolving strategies and challenges in

IoT resource management.

In Table 1, we show a comparison of the key studies and presents their concepts

and the various metrics they have employed. There is a notable concern about scala-
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Title Main contribution Metrics measured Drawbacks and Challenges
Multi-Operator Net-
work Sharing for
Massive IoT [36]

Allowing multi-operator
network sharing, facilitat-
ing the coexistence of IoT
and high-speed cellular
services, utilizing 3GPP’s
radio access network shar-
ing architecture to improve
resource use and reduce
roll-out expenses (Net-
work Slicing).

• Total number of sup-
ported IoT devices

• Ability to coexist
with other cellular
services

• Limited mobility manage-
ment and traffic dynamic
control

• Excessive overhead and in-
efficiency of random access
channel procedure

Analysis of an
Adaptive Priority-
Based Resource
Sharing Scheme for
Multiservice IoT
Communications
Over LTE-A Net-
works [37]

Designing efficient resource
partitioning for different
types of IoT device com-
munications with an adap-
tive sharing priority (AS)
scheme

• Average waiting de-
lay

• System utilization

• Blocking Probabili-
ties

• Lack of scalability in the
proposed algorithm

Dynamically Shared
Wide-Area Cellular
Communication for
Hyper-dense IoT De-
vices [22]

Developing a dynamically
shared connectivity model
to manage hyper dense IoT
traffic using the same re-
sources and to group the
IoT devices based on their
traffic patterns.

• Number of bearer us-
age

• Resource utilization

• Signaling cost

• Proposed solution used Ge-
netic algorithm which is
computationally intensive.

• Does not consider non-zero
delays threshold which may
reduce the number of bear-
ers further.

Traffic Load-Based
Spectrum Sharing
for Multi-Tenant
Cellular Networks
for IoT Services [38]

Proposing a spectrum shar-
ing model that can be
used to model any spectrum
sharing policy between var-
ious tenants.

• Blocking probability

• Spectrum utilization

• Limited numerical results
and analyzed data

• Does not consider non-zero
delays threshold which may
reduce the number of bear-
ers further.

Table 1. Comparative overview of key previous studies on IoT resource management

and communication

bility, computational intensity, and the ability to handle dynamic and diverse traffic.

Several studies have not addressed non-zero delay thresholds, which are crucial in

optimal resource management. Overhead and inefficiency appear in the management

of IoT devices, highlighting the complexity of the proposed optimized algorithms and

procedures.

2.2 Trajectory Optimization for Cellular-connected Collaborating UAVs

In this section, we review studies on cellular-connected UAVs and their connec-

tivity issues. We start reviewing the studies that aim to optimize the single UAV’s
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path. Cellular-connected UAVs act as user equipment UE and rely on base stations

for connectivity critical to successful mission completion [39, 40, 41, 42, 39, 43, 44,

45]. Recent studies have explored various issues in cellular-enabled UAV networks, in-

cluding interference management [41], power control [42], and trajectory optimization

[46, 39, 43] under constraints like privacy [44] and fading [40].

Due to limited UAV flight times, minimizing mission completion time has been

a major focus [47, 48, 40, 49, 45]. Works have also jointly optimize time with other

objectives. One study [45] jointly optimizes UAV trajectories and terrestrial user

scheduling to maximize downlink throughput. Others [46, 39, 43] jointly optimize

trajectories and transmit power to maximize minimum user rates. To enable solu-

tions, non-convex optimizations have leveraged techniques like coordinate descent and

successive convex optimization [45].

Given the increasing reliance on UAVs in diverse fields, from agriculture and

delivery to defense and communication – ensuring their reliable operation via robust

path planning that considers potential outages is essential [50, 51]. Recent works have

incorporated outage constraints into path planning [47, 48, 40, 49], with different

proposed solutions. A dynamic programming approach [47] provides approximate

polynomial-time paths. Graph-based methods [48, 40, 49] find approximate paths

via shortest path algorithms. A study [40] further includes fading effects for realistic

results. However, these works optimize single UAV paths based only on base station

coverage.

For multi-UAV missions, as shown in Fig. 1, this overlooks collaboration oppor-

tunities between UAVs. This work extends prior efforts by considering collaborative

path planning for multiple UAVs. This differs from literature studying UAV relaying

to reduce data transmission latency [52, 53, 54], which focuses on multi-hop data

routing from sensors to base stations. In contrast, we study optimizing UAV paths
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themselves in a collaborative way to improve cellular connectivity. In our research,

we explore collaboration among UAVs to enhance connectivity maintenance. This is

primarily achieved through multi-hop connections between UAVs, with at least one

of them connected to a GBS. Moreover, such collaboration can sometimes reduce the

total mission time. This is because one UAV can traverse non-connected areas while

maintaining a relayed connection to another UAV that is linked to the GBS.

Several other studies delve into the trajectory optimization of cellular-connected

UAVs. The research by [55] focuses on optimizing both the trajectory of a cellular-

connected UAV and the information collection order of ground targets, aiming to

minimize mission completion time. However, it investigates only one UAV and over-

looks the age of information (AoI) while minimizing flight distance. The study by

[56] proposes an iterative trajectory optimizing algorithm using graph theory. This

approach emphasizes minimizing mission completion time, enhancing area coverage,

and ensuring affordable computation time. Nonetheless, the model lacks collaboration

and doesn’t account for UAV movement outside the range of GBSs. [57] introduces

a design where a UAV forms a mobile bistatic synthetic aperture radar (SAR) with

its serving base station. The focus here is on energy conservation and maintaining

sensing resolutions. The study, however, also limits its approach to a single UAV

and its testing to maps with a limited number of stations and sensing areas. Lastly,

[58] suggests a new trajectory planning scheme for multiple UAVs, combining dynam-

ics analysis, path search, and nonlinear optimization. Their model primarily targets

obstacle avoidance and minimizing mission time, but its optimization time extends

with the number of UAVs, and larger maps with more obstacles have not been tested.

Collectively, these papers highlight innovative methods in UAV path trajectory opti-

mization but also underscore prevalent challenges in scalability and collaboration.

In Table 2, we summarize the key studies that are closest to our work and
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Title Main contribution Metrics measured Drawbacks and Challenges
Trajectory Opti-
mization of Cellular-
Connected UAV
for Information
Collection and
Transmission [55]

Proposing a structured
communication protocol
between the UAV and
the cellular network, es-
tablishing an equivalent
graph-based model

• Minimize the mis-
sion completion time
for information col-
lection and transmis-
sion

• Only one UAV has been in-
vestigated.

• Does not consider AoI while
minimizing the total flying
distance

An efficient trajec-
tory planning for
cellular-connected
UAV under the con-
nectivity constraint
[56]

Optimizing UAV trajecto-
ries using geometric plan-
ning and graph theory,
Identifying potential UAV-
GBS associations based on
their topological relation-
ships.

• Minimizing mission
completion time un-
der the connectivity
constraint

• More area coverage

• Affordable computa-
tion time

• Finding path for only one
UAV investigated. No Col-
laboration!

• Does not consider move-
ment of UAV when it is out
of range of GBSs.

Trajectory Plan-
ning of Cellular-
Connected UAV for
Communication-
Assisted Radar
Sensing [57]

Forming a mobile bistatic
SAR for high-resolution
large-area sensing without
extra spectrum needs

• Minimizing propul-
sion energy

• Guarantee the re-
quired sensing reso-
lutions

• Minimizing the flight
distance in terms of
energy saving and ef-
fective consumption
fluctuation

• Finding path for only one
UAV investigated. No Col-
laboration!

• The first priority is to mini-
mize the propulsion energy
while satisfying the range
and resolutions of sensing.

• The algorithm tested on
maps with limited number
of BS and sensing areas.

Trajectory Planning
for Collaborative
Transportation by
Tethered Multi-
UAVs [58]

Proposing an approach
combines dynamics anal-
ysis, kinodynamic path
search, and nonlinear op-
timization for each UAV’s
path optimization.

• Obstacle avoidance

• Minimizing the mis-
sion time

• The optimization time is rel-
atively long and affected by
the number of UAVs

• The authors do not simulate
their algorithm with large
maps and more number of
obstacles.

Table 2. Comparative overview of key studies on UAVs path trajectory optimization

with collaboration

compare their contributions and drawbacks. These studies underline the importance

of a more holistic and inclusive approach to UAV trajectory optimization, including

the potential benefits and challenges of multi-UAV operations and a broader range of

operational parameters and map scenarios.
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2.3 Optimizing UAV Paths for Timely IoT Data Collection with AoI

Recently, a new metric called Age of Information or AoI has gained traction for

UAV missions that collect data from ground sensors or IoT devices and deliver it

to destinations [54]. Since timely delivery and information freshness is critical for

some applications, AoI has attracted significant research attention [15, 59, 60, 54, 47,

61]. AoI has also been studied alongside considerations like wireless energy transfer,

data acquisition mode selection, energy consumption, power optimization [19], etc.

Proposed solutions utilize optimization techniques [54, 61], dynamic programming

[15], and learning models like reinforcement learning [59].

Despite extensive AoI-related UAV path planning research, most studies only

consider data collection periods and do not focus on UAV-core network/Internet com-

munication. With multiple base stations, uploading data through different ones can

affect device-specific AoI. Moreover, most works assume data generation before UAV

dispatch, while practical scenarios involve continuous data generation. A recent work

[62] considers these aspects but overlooks UAV mission time and path optimization,

potentially resulting in longer paths. It also relies solely on complex optimization

unlike our proposed heuristic-based fast solution. In our approach, we first determine

the optimal solution which is finding UAV path trajectory using ILP, and then intro-

duce a heuristic method that approximates this optimal path solution. The sequence

in which IoTs are visited can influence the AoI and data freshness for IoT delivery.

The importance of optimizing AoI in UAV-assisted data collection for IoT net-

works has attracted significant attention in recent literature. For instance, [63] in-

troduced a scheme superior to deep Q-network and actor-critic-based algorithms in

terms of AoI and energy efficiency, yet it does not consider multi-UAV scenarios or

certain relationships during the UAV-assisted IoT network data collection process.
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[64] proposed an algorithm for UAV trajectory planning to aid cluster-based IoT

networks, emphasizing the minimization of total AoI. However, it restricts its consid-

erations to single UAV scenarios and assumes a specific type of IoT network. A deep

reinforcement learning approach is adopted by [65] to enhance the UAV’s trajectory

for efficient data gathering, aiming to reduce AoI and packet drop rate. Still, the

simulations are bound to a predefined map grid and single UAV settings.

In a similar vein, [66] integrates UAV trajectory and uplink transmission power

optimization to curtail AoI under energy constraints, though it limits its perspec-

tive to single UAVs. A unique contribution from [67] delves into collaborative path

planning for energy-efficient data collection, employing a Hexagonal Area Search al-

gorithm combined with a multi-agent Deep Q-Network. This study notably highlights

coverage, energy, and data collection metrics. However, it lacks a mathematical model

to relate the path to the environmental state, making RL-based solution validation

challenging. Finally, the work of [68] addresses multi-UAV assisted data collection

aiming to enhance information freshness using an improved ant colony algorithm.

Table 3 presents a summary of key studies in the domain of UAV-assisted data

collection in IoT networks with a considerable emphasis on optimizing the AoI. Var-

ious advanced methodologies, including deep reinforcement learning and algorithms

surpassing traditional deep Q-networks, have been employed to address AoI while

also enhancing other factors such as energy conservation. Notably, investigations

have been conducted in both single and multi-UAV settings. However, many studies

tend to focus predominantly on single UAVs, highlighting an area ripe for further

inquiry, especially in multi-UAV systems.

.
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Title Main contribution Metrics measured Drawbacks and Challenges
AoI-Energy-Aware
UAV-Assisted Data
Collection for IoT
Networks: A Deep
Reinforcement
Learning Method
[63]

Proposing a scheme outper-
forming the deep Q-network
and actor-critic-based algo-
rithms in terms of achiev-
able AoI and energy effi-
ciency.

• Minimizing average
Age of Information

• Minimizing energy
consumption

• Does not consider multiple
UAVs

• The relationship between
UAV trajectory, device as-
sociation, and IoT device
power allocation for extend-
ing network lifetime hasn’t
been explored.

UAV Trajectory
Planning for AoI-
Minimal Data
Collection in UAV-
Aided IoT Networks
by Transformer [64]

Proposing an algorithm for
solving the trajectory plan-
ning problem of a UAV used
to aid a cluster based IoT
network

• Minimizing total age
of information

• Does not consider multiple
UAVs

• The authors jointly opti-
mize UAV hovering points
and their visiting order in a
cluster-based IoT network.

Deep Reinforce-
ment Learning
for Efficient Data
Collection in UAV-
Aided Internet of
Things [65]

Proposing a deep reinforce-
ment learning algorithm to
optimize the UAV’s trajec-
tory for effective data col-
lection from IoT ground
sensors.

• Reducing AoI

• Reducing packet
drop rate

• Does not consider multiple
UAVs

• Simulation results run on a
virtually divided map with
size 10x9 grids

AoI-Minimal Power
and Trajectory
Optimization for
UAV-Assisted Wire-
less Networks [66]

Given the problem’s non-
convex nature, the problem
is solved using Lagrangian
dual, convex optimization,
and block coordinate de-
scent methods.

• Minimizing the aver-
age AoI

• Considering energy
consumption limita-
tion

• Does not consider multiple
UAVs

Path planning of
multi-UAVs based
on deep Q-network
for energy-efficient
data collection in
UAVs-assisted IoT
[67]

Introducing a Hexagonal
Area Search (HAS) al-
gorithm combined with
a multi-agent Deep Q-
Network (DQN)

• Coverage ratio

• Energy ratio

• Data collection

• The authors skip a math-
ematical model because
of the unclear path-
environment relationship.

• The authors do not validate
their RL approach.

AoI-Sensitive Data
Collection in Multi-
UAV-Assisted Wire-
less Sensor Networks
[68]

Introducing a strategy
that minimizes SNs’ AoIs
through a three-step iter-
ative process, Optimizing
UAV path with improved
ant colony algorithm.

• Minimizing the aver-
age AoI

• Minimizing the peak
AoI

• Does not consider multiple
UAVs

Table 3. Comparative overview of key studies on AoI and UAV path trajectory opti-

mization
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CHAPTER 3

IMSI SHARING BASED MASSIVE IOT

CONNECTIVITY/RESOURCE MANAGEMENT

3.1 Introduction

The proliferation of IoT technology has brought about a paradigm shift in various

aspects of our daily lives. It has ushered in an era of interconnected devices across a

multitude of applications, encompassing smart cities [69], environmental monitoring

[70], and home automation [14]. This transformation has steered communication

from being human-centric to machine-based, giving rise to a surge in the number of

machine-type devices (MTD) [5]. This surge, however, has posed novel challenges

for mobile network operators, particularly in the context of limited wireless spectrum

and finite resources within core networks.

In response to these challenges, considerable research efforts have been dedicated

to devising solutions spanning various network layers. Furthermore, new standards

like Narrowband-IoT (NB-IoT) [71] have been developed to accommodate the de-

mands of next-generation IoT networks.

This chapter delves into these challenges, with a particular focus on the efficient

utilization of mobile core network resources. The core network gateways, typically

designed to handle traffic from mobile users, may lead to resource under-utilization

when MTDs, which sporadically transmit data, connect directly to macro-cell base

stations (BS) and the core network. Even with the implementation of power-saving

modes (PSM) [27] at the device level, core network resources continue to be consumed.

To address these inefficiencies, one common approach is to connect nearby MTDs
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to a local gateway device, enabling them to collectively utilize the gateway’s connec-

tion. This can be realized through a star topology or by employing device-to-device

(D2D) communication [72, 73]. However, D2D technology’s limited range restricts

this solution to a local context, limiting the number of MTDs that can be accommo-

dated. Moreover, the capacity of the back-haul connectivity from the gateway to the

macro BS must be substantial enough to handle the traffic from all connected devices.

Alternative solutions have been proposed to manage MTD connections to a macro

BS using group-based Radio Resource Connection (RRC) and bearer establishment

[74]. Still, they are confined to MTDs within the same macro BS range.

To achieve scalability, the concept of ”aggregated communication” has been in-

troduced, allowing a group of MTDs with similar data transmission intervals to share

the same subscriber identity and take turns for data communication [19]. This group-

ing of devices occurs at the core network level, potentially spanning multiple macro

BSs within a serving region of a core network gateway. Core network resources treat

the communication from devices in the same group as if it were emanating from a

single device, thereby conserving resources significantly.

The contributions of this chapter encompass a comprehensive exploration of so-

lutions to these challenges:

• Development of ILP-based models to address the traffic shifting-based aggre-

gated IoT communication problem optimally at each network moment.

• Introduction of a heuristic-based, polynomial-time algorithm for device group-

ing based on a novel metric rooted in traffic characteristics.

• Proposition of a polynomial-time algorithm that reorganizes device groups to

adapt to dynamic scenarios where new IoT devices join the network, and others

depart.

19



• Extensive simulations to assess the effectiveness of the proposed algorithms

across diverse scenarios, highlighting their resource-saving benefits.

The subsequent sections of this chapter are structured in the following manner.

The system model, problem description, and ILP formulations are detailed in Sec-

tion 3.2. Our heuristic-driven solutions are thoroughly explained in Section 3.3. The

assessment and outcomes of these solutions, based on various simulation scenarios,

are covered in Section 3.4. In section 3.5, we execute a system for combining traffic

from multiple mobile devices that use the same subscriber identity and network re-

sources within the mobile core network. Finally, we culminate the chapter with our

conclusions in Section 3.6.

Data traffic model. We assume that there is a set G = {I1, I2 . . . IM} of M IoT

devices or MTDs1 where each of them sends their data (e.g., measurements, compu-

tations) to their server in some constant intervals. Their data sending intervals and

the required connectivity duration within each of these intervals vary due to different

application specific requirements. To this end, we assume that for each device Ii ∈ G,

the data upload happens at every λi time units and each data upload occurs for a

duration of δi time units, starting at si and ending at ei, within each λi duration (i.e.,

δi = ei − si), as shown in Fig. 3. We have chosen this model for simplicity, however,

it could be extended to more complicated models (e.g., Gaussian distribution with a

mean). We assume that the time is also divided into equal slots and all time related

parameters are a multiple of the slot size. We also assume that each MTD uses its

own bearer initially, and after aggregation process they are partitioned into groups.

The group of MTDs that use the ith bearer is denoted by Gi, and for convenience, we

will also refer to the ith bearer as Gi.

1We use IoT devices and MTDs interchangeably throughout the text.
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Fig. 3. Original and shifted traffic model for IoT devices.

In the following section we present the way we model this problem and our

assumptions.

3.2 System Model

3.2.1 IoT Traffic Model and Traffic Shifting

Flexible traffic model. As it is shown in Fig. 3, we consider some slight shifts in the

traffic pattern of the IoT devices. That is, the timing of each data upload instance for

an IoT device can either happen earlier or later than its originally scheduled upload

time without exceeding a given time threshold denoted with τmax. Note that this

threshold can be defined by the network management considering the application

requirements (e.g., 5 minute shifting for humidity measurements that is happening

twice a day may be considered fine).

In our initial study, we also considered an inconsistent model for the traffic

pattern changes. That is, we let the individual data sending instances of the same IoT

device to be shifted (i.e., delayed or scheduled earlier) differently without exceeding

the threshold. While this gives more flexibility to the data uploads of the IoT devices,

and hence provides an opportunity to group more IoT devices in the same cellular

line, due to its complexity in modeling as well as only a slight benefit over consistently
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Notations Description

Ii MTD or IoT device i

M Number of MTDs

G (Gt) The set of all MTDs (at time t)

Gi The group of MTDs on ith bearer, which is also denoted as bearer Gi.

Gnew The set of new MTDs joined to the network.

λi Data sending interval of MTD i

δi Duration of data communication in each data sensing interval for MTD i

si Starting time of data communication within each interval by MTD i

ei Ending time of data communication within each interval by MTD i

T (Tj) Least Common Multiple (LCM) of data sending intervals (λ) of all MTDs (in group j)

x, y Number of MTDs leaving and joining the network in every moment, respectively, in dynamic environments

bi Set to 1 if bearer i is used by at least one MTD and at any time (otherwise 0)

bik Set to 1 if bearer i is used by at least one MTD at time slot k (otherwise 0)

IMSI tj Temporary IMSI number or bearer ID assigned to MTD j at network moment t

bijk Set to 1 if MTD i uses bearer j at the time slot k (otherwise 0)

τmax Maximum shifting allowed

diffj Set to 1 if IMSI number for MTD j is not equal to its IMSI number in previous moment.

Table 4. Notations used in Chapter 3
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shifted traffic pattern model, we did not consider that type of inconsistent shifting

model.

Dynamic network model. The number of IoT devices deployed and connected

to the network of Mobile Network Operators (MNOs) has been growing massively.

Similarly, the existing IoT devices have been replaced, moved or upgraded. In order to

model such a dynamic network environment, we first define each time frame without

a change in the set of devices as a network moment, and use two parameters to define

the node joins and leaves between consecutive moments. That is, we assume that x

of the existing IoT devices in the current moment will be leaving the network and

there will be y new devices will be joining the network in the next moment. Note that

depending on the relation between x and y values the network size can be affected

differently i.e., when x < y, the network size will grow; when x > y, it will shrink;

otherwise it will stay the same. In any case, the existing group structure among IoT

devices can be affected dramatically and regrouping of devices or introduction of new

cellular lines may be needed to carry the traffic of all IoT devices.

The notations used throughout this chapter and their descriptions are summa-

rized in Table 4.

3.2.2 Problem Formulation and ILP Models

3.2.2.1 Initial Network

The primary goal of aggregating traffic from MTDs through IMSI sharing is

to minimize the number of active bearers used by all devices and optimize resource

usage in the core network. In Section 3.5, we have some experiments showing how it

is possible to create and execute a system for combining traffic from multiple mobile

devices that use the same subscriber identity and network resources within the mobile
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core network. We achieve this by utilizing commercial smartphones, programmable

SIM cards, and the Amarisoft Callbox [75], which includes both core network and

eNB (evolved NodeB) components.

When no shifting is allowed in the initially scheduled traffic patterns of MTDs,

devices can still be grouped to some extent, provided there is no overlap in the traffic

patterns of different devices within the same group. However, if the devices are

allowed to shift their upload times slightly (i.e., less than τmax) within their long data

sending intervals, there will be more opportunities to reduce the number of groups

and actual bearers used, leading to increased resource savings. To address this, we

utilize ILP to formulate the problem (P1) for finding the optimal aggregation at the

initial network moment, considering the flexible traffic model (which allows shifting),

as shown below:
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(P1) :

min
M∑
j=1

bj,

s.t. bj = min

{
1,

T∑
k=1

bjk

}
,∀j ∈ [1,M ], (3.1)

bjk = min

{
M∑
i=1

bijk, 1

}
,∀j ∈ [1,M ],∀k ∈ [1, T ], (3.2)

M∑
i=1

bijk ≤ 1,∀j ∈ [1,M ],∀k ∈ [1, T ], (3.3)

∃!∆ ∈ [−τmax,+τmax],
δi∑

d=1

bij(rλi+((si+∆+d) mod (λi))) = δi,

∀i, j ∈ [1,M ],∀r ∈ [0, T /λi − 1], (3.4)

bij((r−1)λi+d) = bij((rλi+d)),∀d ∈ [1, λi],

∀i, j ∈ [1,M ],∀r ∈ [1, T /λi − 1], (3.5)

where,

T = LCM{λ1, . . . , λM},

bijk =

1, if Ii uses bearer j at time slot k,

0, otherwise.

The objective function in Equation (3.1) seeks to minimize the number of actively

used bearers, where bj equals 1 if there is an MTD device utilizing it. Equations (3.1)

and (3.2) determine the usage of each bearer (up to M total active bearers if each

MTD uses a separate one) by verifying if at least one MTD is employing it during any

time slot. Since the data transmission intervals (λ) can differ across MTDs, we first

find the least common multiple (LCM) of their intervals to define a common timeline
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T = LCM(λi,∀i).

Equation (3.3) permits at most one MTD to use each slot, while (3.4) mandates

exactly one (∃!) shifting amount (∆) between −τmax and τmax that makes all δi con-

secutive slots used by the ith MTD (i.e., Ii) at a given bearer j. Here, r determines

the timing of repeated data uploads within T .

We also use (3.5) to provide some flexibility to the traffic model while controlling

it to stay within acceptable thresholds. Overall, this enforces consistency in the

shifting between the distinct data transmission intervals of an MTD at its utilized

bearer.

3.2.2.2 Dynamic Network

The previously mentioned model specifically addresses the optimal arrangement

of IoT devices (i.e., combining their data traffic) in a given network instance. There-

fore, it is primarily employed at the initial stage. In scenarios with changing con-

ditions, it becomes essential to account for the transition from the current state to

the subsequent one. In this context, our aim involves not only reducing the count of

communication channels (bearers) utilized but also minimizing modifications to the

existing group configuration from the preceding moment. Any alteration in the iden-

tity of current devices necessitates reconfiguration, leading to additional control traffic

and delays. Nonetheless, since the latter objective is of lesser importance compared

to the primary goal of diminishing the number of bearers, we employ a scalarization

approach to incorporate this prioritization in the objective function 3.6 of the second

problem (P2). This problem pertains to determining the optimal data aggregation in

dynamic settings.
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(P2) :

min

(
M∑
i=1

IMSI ti

)
× L+

M∑
i=1

diffi, (3.6)

s.t. IMSIi = j, if
T∑

k=1

bijk ≥ 1,∀i, j ∈ [1,M ], (3.7)

diffi =

1, IMSI ti ̸= IMSI t−1
i

0, otherwise.
. (3.8)

In this context, Equation (3.7) guarantees the uniform assignment of the same

IMSI number to devices sharing a common bearer. Simultaneously, we assign the

bearer ID (denoted as j) as a provisional IMSI number for devices within that bearer.

This temporary IMSI number can subsequently be associated with an authentic IMSI

from a SIM card. Furthermore, Equation (3.8) identifies devices that will experience

an IMSI alteration in the current instance (t) compared to the previous instance

(t−1).

In the formulation of the objective function (3.6), the parameter L is introduced

as a constant constraint. This constraint ensures that the cumulative IMSI changes

across all devices in the system exert a controlled influence on the optimization pro-

cess, prioritizing the reduction in the utilization of distinct IMSIs (groups or bearers)

by the devices. Notably, the initial segment of the optimization function involves the

summation of IMSI numbers across all devices. This summation not only minimizes

the number of employed groups but also arranges devices within bearers sequentially,

without introducing any unoccupied bearers between consecutive ones (e.g., prevent-

ing the use of bearers 1 and 5 instead of bearers 1 and 2). This design choice serves

to mitigate the frequency of IMSI alterations among devices during successive time
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intervals.

By analyzing how all devices send data, a MNO can use special models to decide

which IoT device should be connected to which communication bearer at different

times. This helps the MNO update important network details, like IMSI numbers for

devices, using an online model explained in this section. However, these models, even

for a small number of IoT devices (about 10-15), take a long time to run (e.g., more

than 1 day processing time with a 2.5 GHz Quad-Core Intel Core i7 computer). So,

if we need to use them often, like when the IoT devices or their data patterns change

a lot, they might not be very practical.

To address this concern, the subsequent section presents heuristic-based solutions

characterized by reduced computational complexities.

3.3 Heuristic-based Solution

3.3.1 Initial Aggregation

3.3.1.1 Overview

To consolidate the data traffic of multiple MTDs onto the fewest possible commu-

nication paths, we adopt an iterative strategy and make a series of informed selections

at each stage. An outline of this procedure is depicted in Fig. 4. Initially, we assume

that each device operates on a distinct communication path or group. Subsequently,

we initiate the process by identifying all permissible pairs of communication paths

that can be merged. This determination hinges on examining whether there exists a

shared time slot allocated to both of these communication paths. Among the set of

permissible communication path pairs (with no time slot overlap), we prioritize the

pair that yields the highest addition score (AS), computed as follows:
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Fig. 4. Overview of heuristic based initial aggregation (HIA) procedure.

(Imax
x , Imax

y ) = argmax
∀Ix,Iy∈G
Ix ̸=Iy

AS(Ix, Iy). (3.9)

Subsequently, the traffic from these two bearers and devices is consolidated into a

single bearer, referred to as the root bearer (Groot), while the other bearer is released.

In successive stages, we assess all remaining MTDs on their individual bearers

to determine if they are suitable for integration with the traffic of the root bearer.

Among those deemed suitable, we select the one that contributes the highest addition

score and combine its traffic with the root bearer. Specifically, assuming G′ represents

the set of MTDs that have not yet been merged into any other bearer, we identify:

Imax
z = argmax

∀Iz∈G′
AS(Iz, Groot). (3.10)
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This iterative procedure persists until no further MTD traffic is qualified for

integration into the existing root bearer. Subsequently, the process continues by

establishing a new root bearer from the pool of single-MTD bearers that have not yet

been aggregated. The subsequent steps involve identifying the most favorable pair of

bearers, consolidating their traffic, and systematically appending other device/bearer

traffic to this chosen bearer, sequentially, until no additional eligible bearers remain.

Here, note that, if there is no eligible pair of bearers that can be merged and

assigned as root bearer, we stop the entire process and leave each of the single-

MTD bearers as a separate bearer without any aggregation. A formal depiction of

this heuristic-driven methodology is presented in Algorithm 1. The creation of root

bearers is detailed in lines 4-11, and the gradual inclusion of other bearers onto the

root bearer is described in lines 16-32. In instances where no further root bearer can

be established, each remaining MTD retains its separate bearer, as outlined in lines

35-39.

3.3.1.2 Addition Score (AS) Function

In this iterative and greedy heuristic based approach, the critical part is the score

function. As our goal is to aggregate as many MTD traffic as possible on a single

bearer, we select the root bearer as well as the next added bearers to it such that the

allocated time slots in the entire timeline are distributed in a way that adding a new

MTD traffic will be easier. To attain this goal, we consider three different criteria:

• Active Timeline (A): It is the duration from the first allocated time slot until

the last allocated one. For bearer or group j, Gj, we find the minimum start

time and maximum end time of all IoT devices on this bearer, and take the
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Algorithm 1: Initial Aggregation (G)
Input: G: Initial set of MTDs

1 ASmax = 0
2 α = 0 // Next bearer id to assign MTDs
3 while |G| > 0 do
4 foreach (Ix, Iy) s.t. Ix, Iy ∈ G, Ix ̸= Iy do
5 if Ix and Iy are eligible to be merged then
6 if AS(Ix, Iy) > ASmax then
7 ASmax = AS(Ix, Iy)
8 (Imax

x , Imax
y ) = (Ix, Iy)

9 end

10 end

11 end
12 if ASmax ̸= 0 then
13 Gα = {Imax

x , Imax
y }

14 G = G \Gα

15 E = G, ASmax = 0
16 while |E| > 0 do
17 foreach Iz ∈ E do
18 if Iz can be merged on Gα then
19 if AS(Iz , Gα) > ASmax then
20 ASmax = AS(Iz , Gα)
21 Imax

z = Iz
22 end

23 end

24 end
25 if ASmax ̸= 0 then
26 Gα = Gα

⋃
{Iz}

27 E = E \ {Iz}
28 ASmax = 0

29 else
30 E = ∅
31 end

32 end
33 α = α+ 1

34 else
35 foreach I ∈ G do
36 Gα = {I}
37 G = G \Gα

38 α = α+ 1

39 end

40 end

41 end
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difference:

Aj = ejmax − sjmin,where (3.11)

sjmin = min{si, ∀Ii ∈ Gj}, (3.12)

ejmax = max{ei, ∀Ii ∈ Gj}. (3.13)

• Utilization (U): It refers to the percentage of time slots allocated within the

active timeline. Given that bijk = 1 when MTD i allocates bearer j at time slot

k, for all MTDs on a given bearer or group j, Gj, we calculate

Uj =

 ejmax∑
k=sjmin

ak

 /Aj, where (3.14)

ak =


1, if ∃Ii ∈ Gj s.t. bijk = 1

0, otherwise.

. (3.15)

• Border Score (B): This indicates how close the active timeline is to the end

points of the entire timeline. As the allocated time slots get close to the sides

of the entire timeline, the likelihood of allocating another MTD to the same

bearer increases. Thus, we first find the minimum of distances to the start and

end of entire timeline from the start and end of active timeline and take their

sum. That is, for bearer or group j, Gj, we compute

Bj = min{Tj − sjmin, s
j
min}+min{Tj − ejmax, e

j
max}. (3.16)

Here, Tj is the timeline considered for bearer j and defined by LCM(λi, ∀Ii ∈ Gj).

We consider these criteria in a prioritized manner with the following order:

min(Aj) ≻ max(Uj) ≻ min(Bj). (3.17)
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(9,13)/20
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Utilization (#1, #2) = 66.66%

#3 (6,12)/20

Active timeline (#2, #3) = 12

Utilization (#2, #3) = 83.33%

I1
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A(I1, I2) = 12
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(4,6)/10

U(I1, I2) = 66.66%
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U(I2, I3) = 83.33%
A(I2, I3) = 12

Fig. 5. Example: Only devices (I1, I2) and (I2, I3) are eligible to be merged on the

same bearer as their traffic patterns do not overlap. They both have the same

active timeline score, but latter has larger utilization score, thus is selected.

If the active time is the same, we go for the ones that use more of the available

space. And if both active time and usage are equal, we give more importance to

situations that are nearer to the edges.

Let’s take a look at the scenario shown in Fig. 5 involving three MTDs. Here,

we have two choices: combining devices I1 and I2, or I2 and I3. This is because we

can’t merge I1 and I3 due to overlapping traffic. When we calculate the score for the

active timeline, it turns out to be A = 12 for both options.

Next, we consider the second criterion, which is utilization. For the first choice,

we have U = (2 + 4 + 2)/12 = 66.66%, and for the second choice, we get U =

(2 + 6 + 2)/12 = 83.33%. This means that the second combination has a higher

utilization, so we prefer to aggregate the traffic of I2 and I3.

It is important to note that the border score is the same for both cases, which is

B = 4 + 4 = 8. However, in this example, we don’t consider the border score as it is

the third criterion.
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3.3.2 Complexity Analysis

In Algorithm 1, the maximum number of single-MTD bearer pairs that need to

be examined to identify the optimal root bearer is
(
M
2

)
. If another single device can be

added to the current root bearer, finding the best one will require less effort, roughly

O(M). However, if no other device can be added to the root bearer and a new root

bearer needs to be determined by comparing scores of pairs in the remaining set of

unassigned devices, an additional
(
M−2
2

)
pairwise comparisons will be needed.

The worst-case scenario occurs when the root bearer is repeatedly selected with-

out adding any third device, resulting in approximately O(M3) eligibility checks and

score calculations. It is worth noting that the computational cost of score calculations

remains consistent with or without shifting. However, the cost of eligibility checks

increases. Without shifting, it merely compares each time slot within T to identify

overlaps, resulting in an overall complexity of O(M3T ). On the other hand, with

shifting, each device’s time slot is considered within a shifting range of [−τmax, τmax],

requiring approximately O(τ 2max) combinations, each incurring a cost of T . Conse-

quently, the overall cost becomes approximately O(M3T τ 2max).

3.3.3 Dynamic Aggregation During Transition Between Moments

3.3.3.1 Overview

In a dynamic network environment, when the devices or their traffic patterns

change, a new network situation begins. As a result, we need to reevaluate the

existing groups or combined bearer setups. We provide an overview of this process in

Fig. 6.

It is important to note that for each new situation, we have the option to use

Algorithm 1 to create a fresh grouping among the new set of devices, without consid-
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which follow HIA process

Fig. 6. Overview of heuristic based dynamic aggregation (HDA) procedure.

ering the previous groupings of devices that are also present in the current situation.

However, this approach might lead to unnecessary changes in the assignments of de-

vice IMSI numbers. Furthermore, each change in IMSI or bearer for a device triggers

a new provisioning process, which introduces some delay and incurs control traffic

costs.

To address this concern, when new devices join the network and some existing

ones depart, we adopt a strategy to first attempt integrating the newly joined MTDs

into existing groups. This process mirrors the approach used for incorporating other

devices into the root bearer, as outlined in Algorithm 1 (lines 16-32). However, in this

case, we consider all potential combinations of new devices (denoted as Iz ∈ Gnew)

and existing groups (denoted as Gj ∈ Gcur). The sequence of additions is determined
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by consistently identifying the pair that yields the highest score after each addition.

In other words, we find:

(Imax
z , Gmax

j ) = argmax
∀Iz∈Gnew
Gj∈Gcur

AS(Iz, Gj). (3.18)

Following this, we include Imax
z in Gmax

j and remove it from Gnew. This process is

reiterated until no further additions are feasible.

Algorithm 2: Dynamic Aggregation (Gcur, Gnew)
Input: Gcur: Set of existing groups of MTDs

Gnew: Set of new MTDs joined
1 Keep merging (Imax

z , Gmax
j ) from (3.18) until no more possible.

2 RSmax = 0
3 Gtba = ∅ // Set of MTDs to be assigned a group
4 while Gnew ̸= ∅ do
5 foreach Inew ∈ Gnew do
6 foreach Gi ∈ Gcur do
7 if Inew overlaps with an MTD in Gi then
8 if RS(Inew, Gi) ≥ RSmax then
9 RSmax = RS(Inew, Gi)

10 (Ibest, Gbest) = (Inew, Gi)

11 end

12 end

13 end

14 end
15 if RSmax ̸= 0 then
16 Remove each MTD in Gbest that overlaps with Ibest and add to Gtba

17 Gtba = Gtba ∪ Ibest
18 Gnew = Gnew \ {Ibest}
19 else
20 break
21 end

22 end
23 Gnew = Gtba ∪Gnew

24 Keep merging (Imax
z , Gmax

j ) from (3.18) until no more possible.

25 Add each remaining device to one individual bearer as in lines 35-39 of Alg.1.

Keep in mind that this procedure might lead to placing each new device within

an existing bearer if their traffic patterns don’t overlap (i.e., Gnew = ∅). However,

when this is not the scenario, an ideal approach could be to generate new bearers

and allocate the remaining new devices to them. But, prior to doing so, we con-

sider an intermediate step to optimize these new bearer assignments. This involves

temporarily removing some of the existing MTDs. The goal here is to enhance the
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allocation process by accounting for the new devices that have joined the network

since the previous assessment. The details of this smart removal process are outlined

in Algorithm 2 (lines 2-23).

To elaborate, we begin by identifying the pair consisting of an existing group and

a new MTD that has the highest removal score (RS) (lines 5-13). Subsequently, we

eliminate the MTDs in that group which overlap with the new MTD (line 16) and

include them, along with the new MTD, in a set Gtba of MTDs. These MTDs will be

assigned a new group ID and IMSI together (lines 17-18). We continue this process

by finding the next best pair until no more overlaps are encountered. It is important

to note that this process terminates either after considering all newly joined MTDs or

when no further overlaps are found between existing groups and the remaining new

MTDs.

In case the latter scenario occurs, meaning no more overlaps exist, we include

all remaining new MTDs in the set of MTDs to be assigned new groups (line 23).

Subsequently, we recommence the recursive addition process until no more additions

are feasible. Following this, we proceed to create new bearers for the remaining

devices (as seen in lines 35-39 in Algorithm 1).

3.3.3.2 Removal Score (RS) Function:

The critical part during this process is the removal score function, for which we

consider the following three criteria:

• Count of Overlapping MTDs (C): This count signifies the number of MTDs in

an existing bearer j’s timeline that share a data sending interval with the newly

joined MTD. Assuming that Inew is temporarily assigned to Gj, and using bijk
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(4,14)/20

I1I3
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I1

εj (Inew) = 6

Dj(Inew) = 8

Cj(Inew) = 2

Gj

Fig. 7. Example scenario for smart removal process between an existing bearer and

group (Gj) from previous moment and a new MTD (Inew) joined.

(set to 1 when MTD i allocates bearer j at time slot k), we define

Cj(Inew) = |{I ∈ Gj | ∃k ∈ T , bInewjk = 1, bIjk = 1}|. (3.19)

Removing MTDs from a bearer with a higher count of overlapping MTDs in-

creases the potential for reassignment to other bearers during the final addition

process. This aids in reducing the overall number of bearers, as each removed

MTD can be efficiently assigned to different bearers. Fig. 7 illustrates bearer

Gj with two MTDs (I1, I2) overlapping with the new MTD.

• Overlap Duration (D): This measure captures the portion of data sending inter-

vals where the new MTD and an existing bearer j’s timeline intersect. Specifi-

cally, we have

Dj(Inew) =
∑
∀k∈T

| (bInewjk + bjk = 2). (3.20)

Note that bjk is 1 when bearer j is used by at least one MTD at time slot k. A

shorter duration of overlap increases the likelihood that removing MTDs from

that group will help reduce the total number of bearers. This is particularly

relevant when considering shifting possibilities. In Figures 7, Inew has overlap
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from time slot 6 to 14 with MTDs already present in bearer j’s timeline.

• Non-overlap Duration (E): This metric represents the duration of data send-

ing intervals where intersecting MTDs and the new MTD don’t overlap in an

existing bearer j. It is defined as:

Ej(Inew) =
∑
∀k∈T

| (bInewjk + bjk = 1). (3.21)

A longer non-overlap duration increases the potential for reducing the total

number of bearers by removing MTDs from that group. This is because freeing

up more space by removing these MTDs enables more unassigned devices to be

accommodated. In Fig. 7, non-overlapping parts exist from time slot 4 to 6 and

14 to 18.

These criteria are considered in the following order for the smart removal score

calculation:

max(Cj) ≻ min(Dj) ≻ max(Ej). (3.22)

This implies that priority is given to cases with a higher count of overlapping MTDs.

If there is a tie, we consider cases with a shorter overlap duration. If a tie persists,

we then prioritize cases with a longer non-overlap duration (random selection if the

tie persists).

3.3.4 Complexity Analysis

In Algorithm 2, during the initial addition process (line 1), in the worst scenario,

each MTD might be placed in its own bearer (i.e., M bearers from the previous

moment), and with the inclusion of y new devices, we may need to assess all yM

pairings over a duration of T . When considering potential shifting, this results in a
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Fig. 8. Moment0: Original traffic without grouping

complexity of O(yτ 2maxMT ).

In a situation where, at worst, most of the new MTDs are initially placed within

existing bearers individually and later require removal (e.g., due to a single long MTD)

during the smart removal process, determining the order of their addition necessitates

score calculations for each remaining new MTD and existing bearer pairing (i.e.,

(y − 1)M, (y − 2)M . . .). As a result, the overall cost of the initial addition can

approach O(y2τ 2maxMT ).

Throughout the removal process, the worst-case scenario entails removing each

MTD in existing groups one by one, incurring a cost of O(y2MT ) as shifting is not

considered during removal. Subsequently, following a removal process that leads to

the removal of all MTDs from every bearer, we initiate the final addition process

(lines 24-25) to obtain new bearers, resembling the process in Algorithm 1 with a

complexity of O(M3T τ 2max). Therefore, the overall complexity of Algorithm 2 per

network moment is approximately O(MT τ 2max(M
2 + y2)).

3.3.5 Toy Example

In this part, we provide how the proposed algorithms work on an example set

of MTDs and two network moments. Initial moment of the network with five MTDs

and active bearer utilization in different scenarios are shown in Figures 8, 9, and 10.

We examine a group of 5 MTDs, each initially assigned to its own individual
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Fig. 9. Moment0: Grouping MTDs with no shifting

MTD traffics – first moment – with shifting – max shift = 3
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Fig. 10. Moment0: Grouping MTDs with shifting

bearer (for instance, I1 on bearer G1), as illustrated in Fig. 8. The corresponding

traffic patterns are also depicted in Fig. 8. For instance, I1 sends data between the

4th and 9th time units within every 20 time units. To accommodate all repetitions

of data communication for each device throughout this common timeline, we display

their patterns.

Upon applying the initial aggregation algorithm without utilizing a shifting

model, it identifies pairs that can be merged, such as (I2, I5) and (I1, I4). By comput-

ing their addition scores, the algorithm determines that (I2, I5) has the highest score

and thus merges their traffic onto a single bearer (namely, G2). However, attempt-

ing to merge other MTDs into this root bearer doesn’t yield further improvements.

Consequently, a new round of pairwise assessment commences among the remaining

MTDs (I1, I3, I4).

In the next iteration, (I1, I4) is selected and merged to create a new root bearer

(i.e., G1). Since I3 remains the sole MTD left and cannot be added to this root
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Fig. 11. Moment1: Original traffic without grouping

bearer, and no new root bearer can be formed, the algorithm concludes. As a result, I3

remains on a separate bearer (specifically, G3). This completes the initial aggregation

procedure without employing shifting, resulting in the usage of 3 active bearers for

handling the traffic of 5 MTDs, depicted in Fig. 9.

When traffic shifting is considered with a maximum shift of τmax = 3, we intro-

duce the concept of adjusting each MTD’s traffic within the range of [−τmax, +τmax]

during the eligibility assessment of pairwise merges between MTDs.

This time, in addition to the previously identified pairs from the case without

shifting, the algorithm discovers two more eligible pairs, namely (I2, I4) and (I4, I5),

thanks to the flexibility offered by shifting. Nevertheless, despite these new options,

(I2, I5) still yields the highest score, making it the preferred choice for forming the

initial root bearer. In the second iteration of the algorithm, with only one eligible

pair remaining (namely, (I1, I4)), this pair is selected, and their respective MTDs

are merged onto bearer G1. It is important to note that the data patterns of I1 and

I4 have been shifted by -3 and +3 time slots, respectively. This adjustment aims to

create more space for future additions due to the influence of the border score. Since

no further MTDs can be added to this root bearer and only one unmerged MTD (I3)

remains, the process concludes by assigning I3 to a separate bearer, just as in the

previous case.
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Fig. 12. Moment1: Grouping MTDs with no shifting
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Fig. 13. Moment1: Grouping MTDs with shifting

After this initial aggregation, we make one of the MTDs (i.e., I3) leave and a

new MTD (i.e., I6) join the network, as shown in Figures 11, 12, and 13, and run

the dynamic aggregation algorithm in Algorithm 2.

In the absence of shifting, when I3 departs, only two active bearers (G1, G2)

remain in use. Given that I6 cannot be accommodated in these existing bearers, we

initiate the smart removal process. Since I6 has overlaps with both groups/bearers

G1 and G2, we determine the preferred option based on the removal score.

The newly introduced MTD I6 has overlaps with 2 MTDs within each bearer’s

timeline, making them equal in the context of the first metric in the removal score

function. Subsequently, we examine the second priority (i.e., duration of intersection)

and opt for G1 due to its shorter intersection duration with the new MTD (i.e., 8

versus 10). We then proceed to remove all MTDs within G1 and commence the

process of adding unassigned devices (i.e., I1, I4, I6). However, since none of them

can be added to the sole remaining active bearer (i.e., G2), we seek pairs among them
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to establish a root bearer. Given that only I1 and I4 can be grouped without overlap,

we place them into a new root bearer (i.e., G1). As for I6, it cannot be merged

into this bearer, thus retaining its own separate bearer. Consequently, this series of

actions culminates in distributing these devices across three bearers, as illustrated in

Fig. 12.

After the departure of I3 (as seen in Fig. 10), only two bearers are used, em-

ploying traffic shifting limited to τmax = 3. When I6 joins, and since it cannot be

accommodated in bearers G1 and G2, we initiate the smart removal procedure. We

examine all potential shifts within the range of [-3, +3] for I6, calculating the smart

removal scores when paired with each active bearer.

Upon shifting I6’s traffic by +3 time units, only one overlapping device (I4)

remains in bearer G1 alongside I6 (all possible shiftings place both MTDs’ traffic

from G2 in sync with I6). This leads to the removal of I4 from bearer G1, initiating

the addition process for unallocated devices (I4 and I6).

By following the steps in the proposed algorithm, we attempt to merge these

devices into existing bearers. The priority is given to adding I6 to bearer G1 due to

its highest addition score (with +3 shifting). Subsequently, I4 is added to bearer G2

with +3 shifting. This procedure results in the distribution of these devices’ traffic

across two bearers, as depicted in Fig. 13.

It is important to note that in the previous scenario, if we attempted to merge

the new MTD without eliminating any existing MTDs (like I4 in this instance), we

would end up with a total of 3 bearers. This demonstrates the advantage of the smart

removal process in further reducing the count of active bearers.

Furthermore, it is worth mentioning that when we apply the ILP-based solution

to this example, we achieve the same number of bearer usages in each scenario as we

do with the heuristic-based approaches.
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Although the proposed algorithms might not always discover the optimal solu-

tion like the ILP solutions do, the simulation results will demonstrate that they can

produce outcomes that are very close to optimal across most situations.

In order to evaluate the performance of the proposed solutions, we perform sim-

ulations in different settings. We also compare the heuristic based approximate solu-

tions with the optimal solutions obtained by CPLEX from ILP models.

3.3.6 Settings

In accordance with the traffic model outlined in Section 3.4, we initiate the

process by generating data upload traffic for each MTD. This is achieved by first

selecting a data upload interval (λi) at random from the set 10, 20, 40 minutes. Sub-

sequently, we assign a data communication duration, δi = si − ei, within each data

upload interval using three distinct traffic load models. In the scenario of low traffic

load, we consider 10-15% of the data sending interval or λi for data communication.

For medium and high traffic loads, we utilize 15-25% and 25-50% of the interval,

respectively. The start time of data upload (si) within the data sending interval is

randomly determined from the range [0, λi−δi]. The end time of data communication

is automatically established as ei = si + δi.

Throughout the simulations, we vary the count of MTDs from 5 to 500. Specif-

ically, for the sake of comparison with the optimal outcomes derived from the ILP-

based approach, we utilize smaller values of M since obtaining ILP results becomes

time-consuming with a larger number of MTDs. To get the results on heuristics, we

investigate MTD counts as high as 500 and analyze the impact of different parame-

ters. In dynamic network scenarios, we also consider a Dynamicity level defined as

the percentage of devices that join or leave during each moment. In the primary sim-

ulations, we assume an equal number of joinings and departures (i.e., x = y) during
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Traffic Load

Parameter Low Medium High

Data communication per in-
terval (δ in % within λ)

10-15% 15-25% 25-50%

Number of MTDs (M) 5-500

Maximum shifting allowed
(τmax)

0-6 time slots

Data sending interval (λ) ar-
ray

{10,20,40} time slots

Start time for data sending
(si)

Uniformly distributed in λi

End time of data sending (ei) si + δi if it is ≤ λi

Dynamicity 10-50%

Table 5. Simulation parameters and values

every network moment. However, we also explore scenarios where this balance does

not hold. The simulation parameters and their respective values are summarized in

Table 5.

3.4 Evaluation

3.4.1 Algorithms in Comparison

• Optimal Initial Aggregation via ILP (ILP-IA): This approach solves the ILP-

based model presented in (3.1), focusing solely on the initial aggregation phase.

• Optimal Dynamic Aggregation via ILP (ILP-DA): This method solves the ILP-

based model from (3.6), accounting for dynamic aggregation across multiple

network moments.

• Heuristic Initial Aggregation (HIA): This heuristic algorithm, outlined in Algo-

rithm 1, targets the initial aggregation phase.

• Heuristic Dynamic Aggregation (HDA): This heuristic, detailed in Algorithm 2,
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handles dynamic aggregation during various network moments.

• Heuristic Dynamic Aggregation without Smart Removal (HDA noSR): A variant

of the heuristic dynamic aggregation algorithm, excluding the smart removal

process (lines 4-22 in Algorithm 2).

We explore both shifting and non-shifting aggregation scenarios for each of these

algorithms.

3.4.2 Performance Metrics

We assess the effectiveness of the proposed methods using the following metrics:

• Percentage of Savings (%): This measures the reduction in the number of bear-

ers used. Given a certain number of MTDs M , if the aggregation model deter-

mines that X bearers are adequate to handle the traffic from all M devices, the

percentage of savings is calculated as
(
M−X
M
× 100

)
%.

• Percentage of MTDs with Updated IMSI : This indicates the average percentage

of MTDs whose IMSI changes between consecutive moments in dynamic net-

work scenarios. Alterations in group assignments may require some MTDs to

switch groups, leading to control data traffic for assigning new IMSI numbers.

Minimizing these changes is a secondary goal after maximizing savings. Only

MTDs present in both network moments are considered, and the percentage

is calculated as
(∑Z

t=2

(∑
∀Ii∈Gt diffi

|Gt|

))
/ (Z − 1), where Z is the number of mo-

ments in the network with varying MTDs, and Gt represents the set of MTDs

at moment t.

• Running Time: To showcase scalability, we present the running times of the

algorithms as the number of MTDs increases. Testing is conducted on an Intel
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Core i7 processor with 16 GB memory and a 2.5 GHz clock speed.

We investigate the impact of different traffic load models, MTD counts, network

dynamics, and maximum allowable shifting (τmax) on these metrics. The presented

results are averaged over 20 iterations.

Please note that although prior studies like [20, 19] explored aggregated IoT com-

munication without shifting, their approach assumes that only MTDs with identical

data sending intervals (λ) and communication durations (δ) share the same bearer.

These works mainly focus on modifying call flows to achieve aggregated communica-

tion through IMSI sharing. In contrast, our study addresses the challenge of grouping

IoT devices with varying traffic patterns, as well as updating these groupings in dy-

namic environments. While we cannot directly compare our solutions with existing

literature due to differences in methodology, we treat the no-shifting case as a bench-

mark solution by applying our methods with τmax = 0. This allows us to measure

the added benefits of shifting-based models. Additionally, we analyze the advantages

of the proposed smart removal process, which considers previous moment’s group

structure, in comparison to independent groupings for each moment.

3.4.3 Results

3.4.3.1 Comparison of ILP and Heuristic Solutions

We start by comparing the optimal solutions derived from ILP with those from

heuristics. Initially, we focus on the initial aggregation procedure and the arrangement

of MTDs upon their initial network entry.

Figures 16, 17, and 18 illustrate the percentage of savings achieved by both

the ILP and HIA algorithms across various traffic load models as the MTD count

increases. Notably, in all three graphs, the percentage of savings grows as the MTD
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the initial network moment with low traffic models (τmax = 3 for shifting

based aggregation).

count rises and eventually stabilizes. Although we did not pursue results beyond 50

MTDs due to the long execution time of ILP, this is unnecessary since the savings

reach convergence. When comparing the attained savings, the highest percentage

is evident when the traffic load remains low. Furthermore, across all scenarios, the

percentage of savings ascends with an increase in MTD count. This is attributed

to the greater potential for grouping multiple MTDs into a single bearer under low

traffic conditions. However, the rate of saving enhancement fluctuates among different

traffic loads.

When contrasting solutions based on shifting versus no shifting, the superiority

of shifting in terms of savings is conspicuous in all instances, courtesy of the adaptable

data upload times of MTDs. Analyzing the comparison between ILP and heuristic

outcomes, it becomes apparent that heuristics can approximate ILP results quite

closely. Nonetheless, the gap between heuristic and ILP outcomes widens notably in

high traffic scenarios, where finding improved groupings becomes more challenging
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Fig. 17. ILP vs. Heuristic Algorithms in initial aggregation: Percentage of saving in

the initial network moment with medium traffic models (τmax = 3 for shifting

based aggregation).
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Fig. 18. ILP vs. Heuristic Algorithms in initial aggregation: Percentage of saving in

the initial network moment with high traffic models (τmax = 3 for shifting

based aggregation).
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Fig. 19. Impact of MTD count: The percentage of savings in dynamic environments

(10% dynamicity) with low patterns (τmax = 3)
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Fig. 20. Impact of MTD count: The percentage of savings in dynamic environments

(10% dynamicity) with medium patterns (τmax = 3)
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Fig. 21. Impact of MTD count: The percentage of savings in dynamic environments

(10% dynamicity) with high patterns (τmax = 3)
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Fig. 22. Impact of MTD count: The percentage of savings with updated IMSI

counts in dynamic environments (10% dynamicity) with low patterns (τmax

= 3)
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Fig. 23. Impact of MTD count: The percentage of savings with updated IMSI

counts in dynamic environments (10% dynamicity) with medium patterns

(τmax = 3)
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Fig. 24. Impact of MTD count: The percentage of savings with updated IMSI

counts in dynamic environments (10% dynamicity) with high patterns (τmax

= 3)
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for the heuristic method due to the heightened utilization of MTD timelines.

Moving forward, we compared the ILP solution with heuristic-based approaches

in dynamic network settings. Figures 14 and 15 demonstrate the outcomes for

varying MTD counts within the low traffic model (similar trends are observed with

other models). To manage computational time, we present results up to 25 MTDs,

given that executing ILP-DA takes significantly more time than ILP-IA. For each

MTD count, we conducted simulations across 100 instances, with 10% of existing

MTDs leaving the network while an equivalent number of new MTDs with distinct

traffic patterns join the network in each instance.

Looking at the saving results in Fig. 14, we notice a similar relation as in Fig. 16,

but the gap between ILP-DA and HDA is a bit larger. This discrepancy may arise

from the fact that while ILP-DA can yield marginally higher savings than ILP-IA, it

necessitates more IMSI changes among MTDs during different instances, as depicted

in Fig. 15. The HDA-noSR algorithm, which excludes the smart removal process, ex-

hibits slightly diminished savings compared to HDA, underscoring the advantage of

the smart removal procedure. We will further demonstrate that this benefit becomes

more pronounced as the network accommodates a greater number of MTDs. Addi-

tionally, it is noteworthy that the HDA-noSR algorithm only introduces new joining

MTDs to existing bearers or establishes new ones, consequently avoiding IMSI up-

dates for existing MTDs.

Figures 25, 26, and 27 show how the parameter τmax influences the percentage

of savings. For this comparison, we once again consider a small MTD count (M =

20) to be able get ILP outcomes. While the results for no shifting remain consistent,

they are included to distinctly showcase the advantages of shifting-based models over

this benchmark approach.

Observing the data, we note that a rise in the threshold leads to increased savings
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Fig. 25. ILP vs. Heuristic Algorithms with different maximum shifting threshold

(τmax): Percentage of saving with low traffic patterns (M = 20, τmax = 3).
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Fig. 26. ILP vs. Heuristic Algorithms with different maximum shifting threshold

(τmax): Percentage of saving with medium traffic patterns (M = 20, τmax =

3).
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Fig. 27. ILP vs. Heuristic Algorithms with different maximum shifting threshold

(τmax): Percentage of saving with high traffic patterns (M = 20, τmax = 3).

across all traffic load models. Nonetheless, this enhancement converges more swiftly

in low traffic, followed by medium traffic, and relatively more slowly in high traffic

scenarios. This trend emerges because higher traffic density restricts maneuverabil-

ity within group arrangements, allowing maximum benefits with greater flexibility

achievable through larger thresholds.

3.4.3.2 Impact of MTD Count

To demonstrate the performance of the suggested algorithms with a greater quan-

tity of MTDs, we also test our algorithms and get outcomes for MTD counts ranging

from 100 to 500, in steps of 100. These findings are presented for dynamic scenarios

and exclude ILP results due to extended processing times.

In Figures 19, 20, 21, 22, 23, and 24, we depict both the proportion of savings

and the proportion of MTDs with updated IMSI for three different traffic models.

The savings percentage shown in Figures 19, 20, and 21 illustrate the advantage of

shifting, as in Figures 16, 17, and 18, respectively. Furthermore, the savings tend to

57



remain relatively steady across the various traffic models.

When comparing the HDA and HDA noSR algorithms, we also notice more ad-

vantage of the smart removal process incorporated in HDA as the traffic load increases.

This observation holds true for scenarios involving both shifting and no shifting. Nev-

ertheless, as depicted in Figures 22, 23, and 24, this improvement is accompanied by

changes in the IMSI assignments of MTDs. For instance, in a high traffic model

with shifting and when M equals 500, HDA yields approximately 10% higher relative

savings compared to HDA noSR. However, this enhancement leads to about 5.4%

of MTDs updating their IMSI between consecutive time points. In contrast, as an-

ticipated, HDA noSR does not trigger any updates in IMSI assignments for existing

MTDs.

3.4.3.3 Impact of Dynamicity

In Figures 28,29,30,31,32, and 33, we examine the outcomes under varying lev-

els of dynamicity behavior between successive time points. Specifically, we explore

dynamicity ranging from 10% to 50%. In the case of an initial network with 500

MTDs, this translates to 50 and 250 MTDs joining or departing at each time point,

respectively. When considering the percentage of savings illustrated in Figures 28,

29, and 30, we note a relatively consistent level of savings across all scenarios. Once

again, HDA outperforms HDA noSR in terms of savings, and the shifting approach

contributes to further increased savings. Conversely, the HDA approach leads to

changes in IMSI assignments due to its smart removal process, as depicted in Figures

31, 32, and 33.

It is important to highlight that as the percentage of dynamicity increases, the

proportion of MTDs with updated IMSI also rises. In certain instances, this propor-

tion can become substantial, resulting in heightened control traffic for the allocation
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Fig. 28. Impact of Dynamicity: The percentage of savings with low traffic patterns

(τmax = 3, M = 500)

of new IMSI numbers. However, in a practical setting, even a dynamicity level as

low as 10% can be considered significant. Our observations indicate that with 10%

dynamicity, the proportion of MTDs requiring updated IMSI remains relatively low,

ranging from 0.2% to 5%.

3.4.3.4 Impact of Data Sending Interval Array

In Fig. 35, we examine how the selection of data sending interval arrays for MTDs

affects the outcomes. As depicted in the figure, when there are more options available

and larger values of λ are utilized, the level of savings diminishes for all algorithms.

However, in all cases, shifting as well as the smart removal process considered in HDA

help increase the saving.

On average, approximately 2% of MTDs experience updates in their IMSI be-

tween consecutive time points. This corresponds to around 10 MTDs, thus may not

cause too much control traffic.

In the initial version of this paper [60], we also provided a comparison of these
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Fig. 29. Impact of Dynamicity: The percentage of savings with medium traffic

patterns (τmax = 3, M = 500)
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Fig. 30. Impact of Dynamicity: The percentage of savings with high traffic patterns

(τmax = 3, M = 500)
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Fig. 31. Impact of Dynamicity: The percentage of savings with low traffic patterns

(τmax = 3, M = 500) with updated IMSI counts
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Fig. 32. Impact of Dynamicity: The percentage of savings with medium traffic

patterns (τmax = 3, M = 500) with updated IMSI counts
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Fig. 33. Impact of Dynamicity: The percentage of savings with high traffic patterns

(τmax = 3, M = 500) with updated IMSI counts
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Fig. 34. Impact of various parameters: Percentage of saving with different τmax

in dynamic scenarios (medium traffic, M=500, τmax=3).
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Fig. 35. Impact of various parameters: Percentage of saving with different

data sending interval arrays in dynamic scenarios (medium traffic, M=500,

τmax=3).
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Fig. 36. Impact of various parameters: Percentage of saving in a growing network

(high traffic).
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Fig. 37. Impact of various parameters: Percentage of saving in a growing network

(high traffic).

outcomes with ILP, using a smaller count of MTDs. This comparison showcased how

heuristic algorithms can yield outcomes that are close to those produced by ILP.

3.4.3.5 Running Time Comparison

In Figures 38, 39, and 40, we compare how long different algorithms take to

run. We’re focusing on heuristic-based algorithms because the ILP solutions take too

much time, as shown in [60], so we’re not considering them here. These algorithms

deal with a changing environment, and we run the HIA algorithm independently for

each moment, imagining the network starts fresh at that time without remembering

the past. This is based on the algorithm described in [60], without accounting for the

changing environment.

In Fig. 38, we first compare runtimes using different arrays for when data is

sent. The results show that running HIA every moment takes much longer compared

to HDA and HDA noSR, whether or not we consider shifting. Shifting makes all

algorithms take more time because we need to check various combinations to make
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Fig. 38. Average running time comparison: Different data sending interval arrays

(medium traffic, M=500, τmax=3, dynamicity = 10%).
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network (medium traffic, M=500, τmax=3, dynamicity = 10%).
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ments (medium traffic, M=500, τmax=3, dynamicity = 10%).

the most of shifting’s flexibility. Comparing HDA and HDA noSR, HDA takes a bit

more time due to its smart removal process, but as we saw earlier, HDA can save up

to 10% more than HDA noSR.

Moving to Fig. 39, we compare runtimes with different numbers of MTDs (as-

suming 10% change). The order of algorithms in terms of runtime is similar to Fig. 38.

With more MTDs, HIA’s runtime increases a lot compared to HDA and HDA noSR.

HDA and HDA noSR have similar runtimes, but HDA offers more savings. Finally, in

Fig. 40, we show the average runtimes per moment for different numbers of network

moments. As the results indicate, the average runtimes of HDA and HDA noSR de-

crease as the number of network moments increases. This is because these algorithms

have a high initial grouping running time (using HIA) at the start. Over more mo-

ments, their average runtime per moment becomes lower because of the regrouping

algorithm used. HDA’s average runtime is slightly higher than HDA noSR due to the

smart removal process, but it is still much lower than starting the grouping process

(HIA) from scratch at every moment.
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3.5 Experimental Proof-of-Concept for IMSI Sharing of IoT Devices

In this section, we create and execute a system for combining traffic from multi-

ple mobile devices that use the same subscriber identity and network resources within

the mobile core network. We achieve this by utilizing commercial smartphones, pro-

grammable SIM cards, and the Amarisoft Callbox [75], which includes both core

network and eNB components. Through this demonstration, we showcase how we

can set up and execute an experiment in which each of these devices shares a copy of

the same SIM card and connects to the core network at different times for download-

ing tasks. The outcomes of this experiment indicate that by sharing core network

resources in this manner, we can use them efficiently compared to having separate

cellular connections for each device. This approach holds promise for enhancing com-

munication in massive IoT scenarios.

Subscriber identity sharing, known as International Mobile Subscriber Identity

(IMSI) sharing for connection and communication [19, 60, 76], aims to make efficient

use of mobile core network resources for IoT devices with low data rates and infrequent

communication needs. For instance, devices like moisture sensors in agricultural fields

may only need to transmit data twice a day. This efficiency is achieved by providing a

group of IoT devices with a shared Subscriber Identity Module (SIM) profile that uses

the same IMSI number, enabling them to take turns connecting to the core network

and performing their data communication.

When it is a device’s turn, it registers/attaches to the core network, sets up

the connection, completes its data transfer tasks, and then deregisters/detaches from

the core to free up resources, similar to turning off a phone. Consequently, the core

network treats these connections as if they were coming from a single device. This

approach differs from devices going idle when not actively transmitting data, as idle
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devices still remain registered in the core and consume memory resources. Moreover,

this solution offers a more scalable traffic aggregation compared to the commonly used

method of connecting multiple IoT devices through a local IoT gateway. IMSI sharing

allows aggregation for any device within the core network’s service area, which can

cover hundreds of base stations, whereas the latter method only permits aggregation

among nearby devices.

This IMSI sharing system has been studied in recent works [19, 60, 76]. These

studies have focused on the necessary changes in call flows and core network archi-

tecture to implement IMSI sharing in existing deployments. Additionally, they have

addressed the challenge of efficiently grouping IoT devices based on their traffic pat-

terns. However, it is worth noting that these studies have relied solely on simulations

for evaluation.

In this research, we present a groundbreaking realization of this system through

experiments involving readily available devices and a commercial core network for the

first time.

3.5.1 Design and Implementation

Our laboratory setup is illustrated in Fig. 41. To implement the proposed system,

we utilized Amarisoft Callbox Classic, which incorporates the core functionalities out-

lined by 3GPP (Third Generation Partnership Project), including LTE and 5G NSA

(Non-Standalone), with all the necessary components and antennas for connecting

UE.

The Amarisoft machine’s core network settings offer three distinct algorithms

for authentication and key generation: XOR, MILENAGE, and TUAK. The SIM

cards we obtained from Amarisoft shared the same IMSI number and used the XOR
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Fig. 41. Our lab setup with Amarisoft core network, LTE antennas, and smartphones.

algorithm. Therefore, when testing the scenario where all devices had the same

IMSI number, we used the SIM cards in their default settings. However, for the

scenario where each device had a different IMSI, we reconfigured the SIM cards with

the MILENAGE algorithm. Unfortunately, reconfiguring SIM cards with different

IMSI numbers under the XOR algorithm did not allow them to connect to the core

network, and we are actively investigating this issue. The MILENAGE algorithm

could also have been used to reconfigure SIMs with the same IMSI but different from

the default IMSI number. We employed the HID OMNIKEY smart card reader and

the PySim application for reconfiguring the SIM cards.

In the XOR algorithm configuration (located in the /root/enb/config/enb.cfg

file), there exists a specific parameter known as multi sim. This parameter enables

multiple devices with the same IMSI but different IMEI to connect to the core net-

work simultaneously. It is important to note that this feature is intended for testing

environments and not for real-world deployments. It utilizes both IMSI and IMEI for
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identifying each UE. To ensure that only one device with the same IMSI is actively

connected to the core, we set this parameter to false.

For our experiments, we used three smartphones, each representing an IoT device:

OnePlus Nord N10 (5G), Google Pixel 5 (5G), and Motorola One 5G ACE.

To automate the registration, deregistration, and data communication processes

on these smartphones, we employed an application called Click Assistant [77] along

with the airplane mode feature. Click Assistant enables the modeling of automated

screen interactions at predefined locations following a repetitive schedule.

Similar to the approach used in [76], we implemented a data traffic model in

which each device performs data uploads/downloads for a duration of δ time units

at intervals of λ time units. This process starts at time s and concludes at time e

within each λ duration. Specifically, we utilized three UE instances, each of which

downloaded data during the time intervals of 0-10 seconds, 30-40 seconds, and 60-70

seconds, recurring every 100 seconds (λ).

All devices initially begin with the airplane mode activated. When it is a device’s

turn, such as the first UE’s turn, the Click Assistant app interacts with the airplane

mode symbol to deactivate it, allowing the UE to register/attach to the network.

Subsequently, Click Assistant opens the Google Play app and initiates the download

of a large file. After 10 seconds, Click Assistant interacts with the airplane mode

sign to reactivate it, thereby stopping the download and detaching the UE from the

network.
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Fig. 42. (i) Three UEs with the same IMSI connect to the core at different times to

download data without overlap. (ii) Registration status from 0-10 sec at the

core.

3.5.2 Experimental Results

3.5.2.1 Download Rates and Core Memory Usage

In Fig. 42, we illustrate the download speeds achieved by each UE throughout

the duration of the experiment, where the UEs share the same IMSI and connect

sequentially. Each UE is capable of reaching and sustaining a download speed of

approximately 80 Mbps for their 10-second connection duration. The process of

connecting to the network is extremely rapid, ensuring that downloads commence

without noticeable delays. When the UEs are detached from the network, their

download rates drop to zero. The accompanying table in the figure provides further

insight, showing that only the first UE is registered during the initial 10 seconds,

confirming that memory resources at the core are allocated to just one UE at a time.

3.5.2.2 Core CPU Usage

In Fig. 43, we present a comparison of CPU usage at the core under two scenar-

ios: when the UEs connect to the network sequentially (i.e., only one UE connected

at any given time) and when all three UEs connect to the network simultaneously
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Fig. 43. CPU utilization in the core network when one UE is connected and three UEs

are connected at the same time.

(either using different IMSIs or the same IMSI with the XOR algorithm). The figure

illustrates that connecting all three UEs concurrently leads to an increase in CPU uti-

lization (attributed to resource management in both the eNB and the core network),

with an average usage of 32.4%. Conversely, when only one UE connects at a time,

the CPU usage averages around 26.7%. These measurements were taken while the

UEs were performing identical download tasks. Notably, in the case of three concur-

rent UEs, we also observed download speeds of approximately 26-29 Mbps per UE,

whereas in the single UE scenario, the download speed was approximately 80 Mbps.

3.6 Summary of Contributions

In this chapter, we delve into an innovative approach, examining a traffic-shifting-

based aggregated communication model designed for IoT devices operating in dy-

namic environments. This newly devised aggregated communication model not only

enables devices to share a common subscriber identity (referred to as IMSI) and take

turns during their communication cycles but also integrates a subtle traffic pattern

adjustment, known as shifting, into the original device traffic flow. This shifting as-
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pect aims to further optimize resource utilization, specifically focusing on minimizing

the number of actively utilized bearers within the core network.

Our study scenario unfolds in a dynamic environment characterized by devices

frequently entering and exiting the network, effectively creating distinct network mo-

ments. Our primary objective is to maximize traffic aggregation from these devices

while simultaneously ensuring stability in bearer assignments and IMSI usage, even

as the composition of devices within the network undergoes continuous changes.

In pursuit of these goals, we initially formulate solutions based on ILP. However,

to mitigate the time computational complexity in ILP approaches, we propose a set

of heuristic-based aggregation algorithms offering significantly reduced computational

demands. Through extensive simulation experiments, we reveal that these heuristic-

based solutions yield results that closely approximate those obtained through ILP

techniques, all while imposing significantly lower computational overhead.

Furthermore, our exploration highlights that the incorporation of a ”smart re-

moval” process between consecutive network moments brings additional benefits. The

comprehensive results underscore the efficacy of our proposed HDA algorithm. No-

tably, the HDA algorithm demonstrates scalability and efficiency, making it partic-

ularly well-suited for operation within dynamic and ever-changing network environ-

ments.

In addition, we conducted an experiment involving mobile devices, each equipped

with a copy of the same SIM card. These devices connected to the core network at

different intervals to carry out download tasks. We demonstrated the automation of

these sequential connections using readily available smartphones and an auto-clicking

application. Data collection was performed using the Amarisoft core network. The

outcomes of our experiment indicate that this approach to aggregating traffic not

only decreases the memory and CPU resources utilized at the core but also offers a
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promising solution for enhancing communication efficiency in scenarios involving a

large number of IoT devices.
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CHAPTER 4

COLLABORATIVE OUTAGE-AWARE UAV PATH PLANNING

In this chapter, we address the challenge of optimizing the trajectories of UAVs to

ensure continuous network connectivity during missions. This research introduces a

collaborative approach where multiple UAVs act as relays for each other to minimize

mission time. We present both a nonlinear programming-based solution and a faster

graph-based approximation, demonstrating that the proposed approach offers efficient

trajectory optimization for multi-UAV scenarios.

4.1 Introduction

UAVs have recently been utilized in many different applications such as surveil-

lance and communication [78]. In order to benefit from UAVs truly in practice,

however, it is significant to make sure that UAVs have secure, reliable and low-

latency communication links with the ground control stations for their command and

control. However, current products in the market today rely on direct LoS com-

munication with their pilots in the ground over nonlicensed spectrum. Thus, a new

approach [16] that aims to control UAVs through cellular connection has been consid-

ered in order to enhance the performance of UAV based systems. In such a scenario

with cellular-enabled UAVs [39], the GBSs provide connection to UAVs so that they

can communicate with their pilots on the ground as well as with other UAVs.

In rural areas, using UAVs might be challenging because the cellular coverage

might not be enough for good communication between UAVs and GBSs due to limited

number of GBSs around. Recent studies [47, 79, 40, 49] have set a limit on how
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Fig. 44. An example scenario with 5 GBSs and 2 UAVs, where each UAV needs to

travel from a starting location (e.g., L1
S) to a final destination point (e.g.,

L1
F). The UAV 1 can shorten its path by the help of UAV 2 as shown with

dashed lines.

often UAVs can lose their cellular connection (outage) while maintaining the required

communication quality. They focus on finding the best paths for UAVs while staying

within this limit. However, these studies look at each UAV’s path separately and

don’t consider how UAVs could work together to stay connected.

The GBS ranges are determined based on the shortest distance needed to get

the desired communication quality between UAVs and GBSs.

Let’s imagine a scenario as shown in Fig. 51, where there are five GBSs and two

UAVs. Each UAV has a mission: to fly from a starting point to a final destination

without losing their cellular connection for too long. This is important because UAVs

need to stay in touch with their operators through control messages. The solid lines

represent the best paths for UAVs if they don’t help each other, while the dashed

lines show what happens when they work together to stay connected. Between points

X and Y , the first UAV connects to GBSs through the second UAV, like passing
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a message along. Notice that the second UAV adjusts its path a bit to make this

happen. Overall, when UAVs collaborate like this, they finish their missions faster

than if they work alone, like in the solid lines.

Our main focus is on how UAVs can work together to find good paths. In Sec-

tion 4.2, we explain how our system works and what the problem is. Since solving this

problem perfectly is really hard, in Section 4.3, we present an approximate solution

using a graph-based approach with a few steps. We’ll share the results of our solution

and compare it with a different solution that doesn’t consider UAV collaboration in

Section 4.4. Finally, in Section 4.5, we wrap up by summarizing our findings and

discussing what could be done in the future.

4.2 System Model

4.2.1 Assumptions

We’re assuming there are n UAVs, labeled as a group U = {u1, u2, . . . , un}. Each

UAV has a mission: to fly from a starting point, Lu
S = (xu

S, y
u
S , z

u
S), to a final spot,

Lu
F = (xu

F, y
u
F, z

u
F), where all UAVs stay at the same height, H. UAVs travel at a

specific speed, V , and altitude, H, without having a loss of communication for more

than τmax time units. We also have a set of GBSs, represented by G = {g1, g2, . . . , gk},

where there are k GBSs. Each GBS’s position is given as (xi, yi, zi), and they’re all

at the same height, HG.

Just like in previous studies [47, 79, 40], we’re keeping things simple by assuming

that each communication link (like from GBS to UAV or between UAVs) has its own

separate communication channel, so they don’t interfere with each other. Both GBSs

and UAVs have one antenna each, which sends and receives signals in all directions.

Communication happens mainly in LoS. We’re using RG to define the minimum range
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Notations Description

U , G The set of UAVs and GBSs, respectively.

n, k Number of UAVs and GBSs, respectively.

Lu
S, L

u
F Start and final location of UAV u, respectively.

xu(t), yu(t) Location of UAV u in timeslot t.

cu(t) Connectivity of UAV u at time t. It is equal to 1

if UAV u can communicate to a GBS directly or

over another UAV at timeslot t; otherwise it is 0.

RG Max distance/range for a GBS-UAV link to main-

tain required SNR level.

RU Max distance/range for a UAV-UAV link to main-

tain required SNR level.

Tu Flight duration time of UAV u

Vu Maximum speed of UAV u

TTotal Sum of flight durations of all UAVs

τmax Maximum continuous outage threshold for UAVs

Table 6. Notations used in Chapter 4

needed for the SNR for UAV-GBS communication. It is calculated using: R =√
γ0

Smin
− (H −HG)2, where γ0 = Pβ0

σ2 is a reference SNR. Here, P is how strong the

GBSs send signals, σ2 is the noise power at a UAV’s receiver, and β0 is how strong

the signal is at a reference distance of 1 meter. Smin is the smallest SNR needed for

good communication between UAVs and GBSs. This SNR at a UAV’s receiver tells us

how well the cellular-enabled communication is working. For communication between

UAVs, we use a similar concept called RU . All the symbols used in this chapter are

listed in Table 6.
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4.2.2 Problem Statement

Our scenario, the main goal is to ensure that the UAVs finish their task without

experiencing a communication interruption (meaning no direct or multi-hop connec-

tion through other UAVs) for more than τmax time units. Additionally, the aim is to

make the total time taken for all UAVs to complete their missions as short as possible.

This total time is determined by the last UAV that arrives at its final destination.

Furthermore, there is a goal to reduce the total distance that all UAVs need to travel.

Since the UAVs will be moving, we use u(t) = (xu(t), yu(t), H) to show where

UAV u is located at a given time t. Here, 0 ≤ t ≤ T u
max, with T u

max being the

maximum time UAV u can fly at a constant speed of Vu. Based on these concepts,

we can describe the optimization problem as follows:
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min (max
∀u∈U

Tu)λ+ TTotal, (4.1)

s.t. (xu(0), yu(0)) = (xu
S, y

u
S),∀u ∈ U , (4.2)

(xu(Tu), yu(Tu)) = (xu
F, y

u
F),∀u ∈ U , (4.3)

dist
u(t+1)
u(t) ≤ Vu,∀u ∈ U ,∀t ∈ T , (4.4)

cu(t) =



1, if ∃gk ∈ G s.t. distgku(t) ≤ RG

1, if ∃v ∈ U s.t. dist
v(t)
u(t) ≤ RU &

cv(t) = 1

0, otherwise,

∀u ∈ U ,∀t ∈ T , (4.5)
t+τmax∑

l=t

cu(l) ≥ 1,∀u ∈ U , t ∈ T , (4.6)

Tu =
T∑
t=0

(dist
u(t+1)
u(t) /Vu),∀u ∈ U , (4.7)

TTotal =
U∑

u=0

Tu,∀u ∈ U , (4.8)

where,

distvu =
√

(xu − xv)2 + (yu − yv)2 + (zu − zv)2 .

In Equation (4.1), we’re using a method called scalarization, which involves mak-

ing the first goal more important by multiplying it with a big number λ. The idea is

to first minimize the total time it takes for all UAVs to complete their missions, and

then minimize the total travel time for all UAVs within that mission time.

Equations (4.2) and (4.3) determine the starting and ending points for each

UAV’s journey, respectively. Equation (4.4) makes sure that UAVs don’t move more

than their set speed between each time step. Equation (4.5) sets the connectivity to
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1 if a UAV is within range of a GBS or another connected UAV. Here, cu(t) shows if

UAV u is connected at time t.

Equation (4.6) ensures that no communication outage lasts more than τmax time

units. Equation (4.7) calculates how long UAV u is in the air, and Equation (4.8)

calculates the total flight time for all UAVs combined.

4.3 Proposed Solution

Although the problem could be solved using a nonlinear optimization solver with

the model from the previous section, this takes a while to get to the answer. So, in

this part, we suggest an easier solution using a graph-based method. First, we check

if the UAVs can actually get to their destinations considering all the rules and things

like where the GBSs are, and also thinking about how the UAVs can help each other.

If it is doable, we then use the graph method to come up with approximate paths for

all the UAVs.

4.3.1 Graph-Based Feasibility Check

For every UAV, we make a graph Gu = (V,E), where nodes show GBS positions

and the UAV’s starting and ending points. If the UAV can fly directly between any

of these spots without going over the communication time limit, we add an edge

connecting the nodes. The edges’ weights are the straight-line distances between the

nodes.

More formally,

V = G ∪ {Lu
S, L

u
F}, (4.9)

E = {ei,j | ∀i ∈ V, ∀j ̸= i ∈ V s.t.

distji ≤ 2RG + τmax & wij = distji}. (4.10)
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Algorithm 3: Feasibility Check
1 R = |U| × |G|: Reachability matrix
2 for each u ∈ U do
3 Form graph Gu as described in (4.10).
4 Run BFS from source u
5 for each g ∈ G that is reachable from u do
6 Ru,g = 1
7 end

8 end
9 for each g ∈ G do

10 Calculate Ag using (4.12) to find the total number of UAVs that can reach g
11 end
12 continue=true
13 while continue do
14 for each u ∈ U do
15 Update the graph Gu using (4.13).
16 Run BFS from source Lu

S and update R

17 end
18 if

∑
∀g∈GAg did not increase then

19 continue=false
20 end

21 end
22 for each u ∈ U do
23 if Lu

F is not reachable from Lu
S then

24 return false
25 end

26 end
27 return true

With the graph we made and by using the BFS algorithm starting from each

UAV’s starting point, we can figure out which GBSs each UAV can reach on its own

without going over the communication time threshold.

Let R denote a |U| × |G| matrix showing the reachability of UAVs to the GBS

areas. Thus, we set

Ru,g =


1, if UAV u can fly to GBS range g with a

desired connection (i.e., no outage > τmax )

0, otherwise.

(4.11)

We then find the number of UAVs that can reach to each GBS g as follows:

Ag =
∑
∀u∈U

Ru,g. (4.12)
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After we know Ag for each g, we run the BFS algorithm again on each graph Gu.

We add new connections between nodes if this condition is met:

distgjgi ≤ 2RG + (Ai + Aj − 1)RU + τmax. (4.13)

This equation looks at the best way to position the UAVs (like being in a straight

line between a pair of GBSs that are RU apart) to make sure a UAV can travel from

one GBS area to the other one.

Remember, we have to run the BFS again and again until none of the Ag values

change. This is because when we add new connections, some Ag values might change.

This can create more chances to add new connections. Algorithm 3 has the step-by-

step process of this feasibility check. If no more new connections can be added, the

algorithm checks if each UAV can make it to its final destination. If any of them can

not, it says it is not possible.

4.3.2 Graph-Based Path Approximation

If the solution is feasible, to figure out the paths for all the UAVs, we start by

putting new points and connections into the graph. Then, we use Dijkstra’s method

to find the shortest paths (taking into account the values denoted by wij in Equation

4.10) from where each UAV starts to where it needs to end up. Now, let’s delve into

the specifics of these steps.

4.3.2.1 Finding Helping Points

While checking the feasibility, if one UAV needs assistance from another UAV

to move between two GBSs without losing connectivity, we identify these points of

assistance or relays. Let’s use hj
i to represent a helping point where UAV ui provides

coverage for UAV uj to travel between two GBS areas with a desired link. Look at
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Fig. 45. The exact location of helping point in which u2 helps u1 to go to g2’s range

from g1’s center.

Fig. 45 as an example. Here, only one UAV can reach these GBS ranges on its own

(Ag = 1). Let’s say that according to the shortest path found by Dijkstra’s algorithm,

UAV u1 needs to move from the range of g1 to the range of g2 (u1 relies on u2, or u2

needs to assist u1). In this scenario, we determine that u2 should help u1 at a location

that’s a distance of Ru away from the point when u1 reaches its communication outage

limit (marked by the dashed circle’s edge). In Fig. 45, this corresponds to the red

point, which is located at a distance of d = RG +RU + τmax from g1.

To determine the exact position of the helping point, we start by finding a normal

vector, denoted as n̂(g1, g2), pointing from the center of g1 to the center of g2. We

then multiply this vector by the distance of the assistance point from g1 to get the

coordinates. In mathematical terms, we have:

n̂(u1, u2) =

n1

n2

 =

xu2−xu1

dist
u2
u1

yu2−yu1
dist

u2
u1

 . (4.14)

Using this, we find the specific point where u1 should be to assist u2:

hj
i = (xu1 + n1d, yu1 + n2d),
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Fig. 46. Intersection of two GBS areas. Dark points are added to graph as new vertices.

where d = RG + RU + τmax. At this point, u1 must wait for a maximum of

distg2g1 − 2RG − τmax units of time so that u1 can safely reach the GBS range of g2.

It might be the case that there are more UAVs that can assist u1 than actually

required. When this happens, we select the UAVs with shorter initial paths calculated

using Dijsktra’s method. Presently, we’re not accounting for situations where there

is a circular dependence between UAVs.

4.3.2.2 Finding Intersection Points

To make the UAVs’ paths even more efficient, we take a step further. We identify

where the coverage areas of the GBSs intersect. These intersections occur where the

boundaries of the service areas overlap. We pinpoint these intersection points, which

are essentially where the service coverage circles from the GBSs overlap, and we

introduce these as new vertices in our graph.

Importantly, these intersections will always be inside the GBS ranges, meaning

that as UAVs travel to these from either GBS center, there won’t be any loss of

connection.

We also focus on the region where the service is transitioning to an outage (rep-
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resented by the space between dashed and solid circles) and the outage circles them-

selves. In this case, we are cautious to ensure that UAV travel remains within ac-

ceptable limits. We do this by breaking down the outage area into smaller circular

sections, essentially adding more circles between the solid and dashed ones. After cre-

ating these sections, we find the intersection points for each circle with one another.

For each of these points, we make sure that the combined distance from that point

to the considered GBS centers is not greater than a certain value (2RG + τmax).

For instance, in Fig. 46, we introduce an additional circle between the outage

and service area circles. This leads to the identification of 9 intersection points in

both the upper and lower sections. We then verify if the sum of distances (d1 and d2)

from each GBS center is within the limit of 2RG + τmax before adding these points to

the graph.

It is important to understand that these intersection points are just more where

a UAV could travel along its route. So, if a UAV is receiving assistance from other

UAVs to calculate its shortest path, we can also take into account the coverage area

of the assisting UAVs. This area can be thought of as another circle that will overlap

with other circles we are considering, like the circles representing the GBS service

areas or the additional circles in the outage region.

For instance, in Fig. 45, when we think about this concept, an intersection be-

tween the gray circle and the dashed circle appears. In this particular example, there

is only one point where they intersect. But in different scenarios, there could be two

intersection points resulting from this concept. This shows how we are expanding our

consideration to include the impact of helping UAVs’ coverage areas. These points

are added to Gu1 or to the graph of UAV u1.
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Fig. 47. The vertices and edges in the graph: I1 and I2 are intersections of circles, h1

and h2 are helping points of a UAV to another UAV, and C is the center of

GBS’s region. Edges are created between all vertices.

4.3.2.3 Adding Edges Between Nodes on the Graph

As we include new points in the graphs (like Gu for UAV u), we also need to

create new connections between these points. To do this, we start by identifying the

points that originate from the GBS’s locations. These points include the locations of

the GBSs as well as the helpful points from the UAVs.

Once we identified these points, for each of them, we determine all the other

points that fall within their coverage area. For every pair of points within this area,

we establish a connection, or edge, between them. This helps define potential routes

or paths between these points.

Fig. 47 provides an example of this process. Here, you can see that edges are

drawn between all pairs of nodes within the same GBS service area. This demon-

strates how we’re building connections in the graph based on the range of a single

GBS.
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4.3.2.4 Adding Short-cut Edges Between Nodes on the Short-path

To make UAV paths even more efficient, we also consider adding short-cut con-

nections between nodes in the travel path graphs. This is because some routes may

not be included based on the usual methods we talked about earlier, possibly be-

cause the distance of those routes exceeds certain conditions we have set. So, we are

considering creating short-cuts.

Here is how we approach this: We start by drawing a direct connection (an edge)

between every pair of nodes that make up the current shortest path for a UAV. Then,

we run a check to ensure we are not exceeding the maximum allowable outage. To

do this check, we identify where these new short-cut edges intersect with the GBS

circles, and we accurately determine their coordinates.

Next, we sort these intersection points based on how far they are from one end

of the short-cut edge to the other. We then go through each consecutive pair of these

intersection points. If these points fall within the ranges of different GBSs and the

distance between them is less than or equal to τmax, we keep the short-cut edge. But

if the distance between these consecutive intersection points is greater than τmax and

they are in different GBS ranges, we skip adding this short-cut edge.

The procedure detailed above can be found in Algorithm 4. This method sys-

tematically determines the inclusion of short-cut connections, with the objective of

further optimizing the trajectories of UAVs.

Let’s look at an example scenario in Fig. 48 to explain this process. In this

scenario, we have a short-cut edge that intersects with the circles of the GBSs. We’ve

identified six points where this edge intersects with the GBS circles, and we call this

set of points M = {M1,M2,M3,M4,M5,M6}.

What we do next is examine pairs of consecutive intersections that come from
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Algorithm 4: Adding Short-Cut Edges

1 for each (N1, N2) pair on the current path of UAV do
2 Add a temporary edge E′ between N1 and N2

3 M ← ordered set of intersection points between E′ and GBSs.
4 for each consecutive points (Mi,Mi+1) in M do

5 if distMi
Mi+1 ≥ τmax × V & Mi and Mi+1 are in range of different GBS

service areas then
6 Remove E′ as it is infeasible
7 end

8 end

9 end
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Fig. 48. Checking the feasibility of adding short-cut edge between two nodes, N1 and

N2, on the current path of a UAV.

different GBS service areas. In this case, we focus on the distance between M1M2

and the distance between M3M4. If the drone can travel this distance without going

beyond the maximum allowable outage, then we consider the short-cut edge as a valid

option.

When we apply this check and find that the distance between M1M2 and M3M4

is within the acceptable outage limit, we determine that the short-cut edge is a good

choice. By factoring this into our path optimization process, and running Dijkstra’s

algorithm again, we can find a shorter path for the drone compared to its current

path, which follows the sequence < g1, I1, I2, I3, g4 >.
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4.3.2.5 Path Calculation and Time Synchronization

After we completed the formation of graphs for each UAV, we use Dijkstra’s

algorithm to discover the shortest paths for them. It is important to note that if a

UAV is assisting another UAV, it must be at a specific helping point when the other

UAV requires its help. As a result, for these helping UAVs, we determine their routes

to the final destination points, taking into account the need to visit and wait at these

helping points.

Once we have the paths for each UAV figured out, the next step is to coordinate

their timings so they can travel simultaneously. This coordination might involve

adding some extra waiting time to the path of a helping UAV. This waiting time

becomes necessary if the helping UAV arrives at the assistance point earlier than

needed and must wait there until the dependent UAV no longer requires its help.

4.4 Evaluation

In this part, we show the results of simulations that test how well our proposed

approximate solution works. We used a map with 12 GBSs and 3 UAVs. The GBSs

were positioned at a height of 12.5 meters, while the UAVs were at 90 meters above

the ground. The reference SNR at a distance of 1 meter was set at 80 dB, and the

minimum required SNR (Smin) was set to 26.02 dB. The maximum speed of the UAVs

was limited to 50 m/s. With these parameter values, we calculated that the distances

RG and RU are both equal to 10 units in the x-y axis, which corresponds to a physical

distance of 250 meters.

In Fig. 49, we initially compare the best route taken by UAVs using the CPLEX

method with the nonlinear model mentioned in Section 4.2, alongside the paths ac-

quired through the approximate solution introduced in Section 4.3. The outcomes
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Fig. 49. Optimal and approximate UAV trajectories with collaboration of UAVs.

When there is no collaboration UAV 2 cannot fly with given outage threshold

(τmax = 2.5 units).

indicate that the suggested approximate solution manages to closely mirror the opti-

mal route. It is important to note that without cooperation, UAV 2 cannot fly from

its starting point to the destination within a time limit of τmax = 2.5 units. This im-

plies that earlier studies [47, 79, 40, 49], which did not consider collaboration among

UAVs, would have failed to find a path for UAV 2. However, with the assistance of

UAVs 1 and 3, such a path becomes feasible. The various scenarios’ path lengths for

each UAV are detailed in Table 7.

In Fig. 50, we display the flight paths of UAVs achieved using the approximate

solution with various outage thresholds. As τmax increases, the lengths of individual

UAV paths and the overall mission (represented by the longest UAV path) durations

decrease, as expected. These outcomes underscore the reliability of the proposed

approximate solution, which remains effective across different scenarios.

When we compare the computation times of the suggested approximate solution
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Table 7. Path lengths of UAVs (shown in units of axis)

Method UAV 1 UAV 2 UAV 3 Total Mission

CPLEX 47.02 47.06 47.20 141.28 47.20

Heuristic 48.80 50.69 45.27 144.76 50.69

No collaboration 41.80 N/A 35.39 N/A N/A

τmax UAV 1 UAV 2 UAV 3 Total Mission

1 50.91 49.56 48.37 148.84 50.91

2.5 48.80 50.69 45.27 144.76 50.69

5 46.37 49.81 42.01 138.19 49.81

and the CPLEX-based optimal solution – for instance, in the case of the results shown

in Fig. 49 – the approximate solution takes only 0.1 seconds, whereas the optimal

solution using CPLEX takes around 30 minutes. Thus, the approximate solution

delivers much quicker results while maintaining a closeness to the optimal outcomes.

4.5 Summary of Contributions

In this chapter, we explore how UAVs that can communicate with GBSs can

optimize their flight paths while staying within a specified connectivity limit. We

look at a situation where each UAV needs to travel from a starting point to a final

point, and all the UAVs collaborate to make sure they stay connected to the GBSs.

We start by setting up a mathematical problem ILP that helps us find the best

paths for the UAVs. To make things more manageable in terms of calculations, we

create a simplified solution using graphs. This graph-based approach makes things

easier to compute. We run simulations, and from the results, we see that our simpler

solution is almost as good as the optimal one. This approach works well for various

scenarios.
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Fig. 50. Comparison of approximate trajectories with different connection outage

thresholds.

4.6 Future Work

While this chapter provided a comprehensive discussion on the optimization of

UAV path trajectories with collaboration while they have direct or indirect connec-

tions to GBSs, there are several aspects that necessitate further investigation.

1. Improving Graph-Based Solution Precision: The current graph-based

solution, although efficient in time, occasionally deviates from the optimal so-

lution. Enhancing the accuracy of this method is paramount.

2. Scalability with Increased UAV Numbers: As UAV operations scale, the

number of UAVs in a given scenario may also increase. Our graph-based solution

could be generalized to handle scenarios with a larger number of UAVs, ensuring

its relevance and efficiency in a variety of operational contexts.

3. Performance Comparison: As we introduced both the ILP method and

the graph-based solution, a detailed comparative analysis on their performance
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metrics, including accuracy, computation time, and resource utilization, would

be beneficial. This will provide more nuanced insights into the trade-offs and

advantages of each approach.
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CHAPTER 5

AOI-OPTIMAL CELLULAR-CONNECTED UAV TRAJECTORY

PLANNING FOR DATA COLLECTION FROM IOT NETWORKS

5.1 Introduction

UAVs have revolutionized various fields such as wireless communications, agri-

culture, and search and rescue operations, thanks to their agility and ability to reach

inaccessible areas. This study focuses on a scenario where UAVs serve a crucial role

in data collection from ground sensors or IoT networks, acting as a bridge to re-

lay this information to its intended destination. For effective data transfer, a UAV

must navigate close to each IoT device along a designated path before concluding its

mission.

Given the limited battery life of UAVs, which restricts their flight duration,

it is essential to meticulously plan their routes to ensure efficient data collection.

This planning must also take into account the specific times when data becomes

available at each IoT device, necessitating visits to these devices only after data

generation. Contrary to many existing studies that assume data availability before

mission commencement [7, 8, 9], this work acknowledges the practical scenario where

data generation may not always align with such assumptions.

Once IoT devices generate data, the UAVs need to collect that data and then

deliver it to their respective destinations, taking into consideration the requirements

of the application at hand. In this study, we consider a broader scenario by including

multiple UAVs and a set of GBSs as the delivery points of the collected data from

the ground IoT devices. This approach redefines the AoI to cover the period from
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Fig. 51. An example scenario where two UAVs collect data from seven ground IoT

devices considering their data generation times and uploads the collected data

by visiting a base station. Age of Information is defined from the moment the

data is generated at each IoT device until it is uploaded to a GBS.
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Fig. 52. AoI calculation for the data of each IoT device in Fig.51.

data creation to its upload to a GBS, ensuring the timeliness and relevance of the

information relayed.

Recent studies have delved into UAV path planning within IoT networks with

varying aims, such as minimizing energy consumption [48], reducing connection out-

age times [80], and maximizing data collection efficiency [81]. The introduction of

AoI as a metric emphasizes the importance of data freshness upon delivery. While

previous research has largely focused on AoI in scenarios where data is delivered to

a single endpoint, this study proposes a more practical and broader scenario where

a cellular-connected UAV can upload the collected data to any available GBS, thus
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offering a more flexible and realistic approach to data delivery and finalizing mission

requirements.

An example scenario is illustrated in Fig. 51 where two UAVs are collecting data

from seven ground IoT devices and uploading the collected data to a GBS. The age

of information for each collected data is computed in Fig. 52. Note that the data

of each IoT i is collected by a UAV at time di after its generation at time ti ≤ di,

and it is uploaded to a GBS at a later time (denoted by u). It is possible multiple

IoT data can be uploaded at the same to reduce the mission time without increasing

maximum AoI.

In this study, our main goal is to optimize UAV flight paths to minimize the

maximum AoI of collected data, considering the generation times and locations of

IoT devices. Moreover, we also target reducing mission time and the UAV flight

durations/distances, advancing the state-of-the-art in UAV-assisted data collection.

Our solution approaches include both an ILP based solution and also a more compu-

tationally efficient but approximate greedy heuristic based solution.

The rest of the chapter is organized as follows. In Section 5.2, we provide the

system model together with the assumptions made and the problem statement. In

Section 5.3, we elaborate on the ILP based approach as well as our greedy heuristic

based solution and a brute-force approach. In Section 5.4, we then provide our sim-

ulation results in various scenarios. Finally, we provide the concluding remarks and

discuss the future work in Section 5.5.
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Notations Description

U Set of UAVs

u The UAV that travels over the field for data collection from

a starting point to an end point.

I The set of ground sensors or IoT devices.

G The set of ground base stations (GBS).

V D
i The time UAV visits the IoT device i and downloads the gen-

erated data.

V U
i The time UAV uploads and delivers the data captured from

IoT i to one of the GBSs.

Lu
S, L

u
F Start and final location of UAV u, respectively.

L, T The ordered set of critical locations and times on the UAV

path, respectively.

Lu(t) Location of the UAV u at time t ∈ T .

li Location of ground IoT device i.

gi Location of GBS i.

Table 8. Notations and their descriptions defined in Chapter 5(Part 1).
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Notations Description

cui (t) Connection status of the UAV u to IoT device i at time t ∈ T .

It is equal to 1 if the UAV u can communicate to the IoT i

and receive the data at time t; otherwise, it is 0.

ti The generation time of the data at IoT device i.

dui (t) Collection status of data from IoT device i by UAV u at time

t ∈ T . It is equal to 1 if the UAV u collects IoT device i’s

data at time t; otherwise 0.

pi(t) Upload status of data that is downloaded from IoT i to a

GBS at time t ∈ T . It is equal to 1 if the UAV uploads the

data downloaded from IoT i to one of the GBSs at time t;

otherwise 0.

gui (t) Connection status of the UAV u to GBS i at time t ∈ T . It

is equal to 1 if UAV can communicate to the GBS i and send

the data at time t; otherwise, it is 0.

G(t) If the UAV is in range of at least one GBS at time t ∈ T .

RI Max distance/range for an IoT-UAV link to maintain required

SNR level.

RG Max distance/range for a UAV-GBS link to maintain required

SNR level.

Tmax Maximum possible flight duration for the UAV to reach the

destination.

TF The first time the UAV arrives at the final location (i.e., mis-

sion time).

Table 9. Notations and their descriptions defined in Chapter 5(Part 2).
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5.2 System Model

5.2.1 Assumptions

We assume a system model with a set of UAVs, U , a set of ground IoT devices, I,

and a set of GBSs, G. Each IoT device is assumed to generate a data at some specific

times defined by the application. The location of each IoT device i is represented by

li and its data generation time is denoted by ti. Each UAV u has a starting location,

Lu
S and a final destination Lu

F which needs to be reached out after collecting data

from ground IoT devices assigned to it. The data collection for all UAVs needs to

be completed within a given time constraint Tmax, which is defined as the maximum

possible flight time for the UAVs and can be computed based on their hardware

specifications.

We assume each GBS, UAV and IoT device is equipped with a single omni-

directional antenna and each (UAV, IoT) link or (UAV, GBS) link works in a separate

band that is orthogonal to others to avoid the interference (as our focus is not to

manage the interference). The collection of data from an IoT device happens when a

UAV arrives in the vicinity of the IoT device. More specifically, we assume that when

the distance between the UAV and an IoT device is less than RI , the data can be

transmitted. Similarly, the upload of the data from the UAV is assumed to happen

to a nearby GBS when the UAV arrives in the range of a GBS, which is assumed

to be RG. It is assumed that UAV can fly with a maximum speed of V at a fixed

altitude of H. Note that this will allow the UAV to communicate with the ground IoT

devices through LoS based signal without having interference. The actual value of

RI and RG can be computed by considering the signal level modeling (i.e., minimum

SNR necessary) and the required transmission bandwidth for the specific application
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data [80, 82]. That is, for example,

RG =

√
γ0
Smin

− (H −HG)2.

where γ = Pβ0 represents the baseline SNR, P the transmission power of a GBS, σ2

the noise power at the UAV receiver, and β0 the channel power gain at a reference

distance of 1m. The minimum SNR, Smin, ensures the communication quality between

a UAV and a GBS.

The location of the UAV at time t is denoted by Lu(t) = (xu(t), yu(t), H) until

its flight ends at time Tmax.

The location of each GBS, designated as gi, is expressed using Cartesian coordi-

nates (xi, yi, zi). To simplify, we assume all GBSs are at a constant altitude, HG, i.e.,

zi = zj = HG for any i, j within the range [1, K]. The starting and ending points are

denoted as (xS, yS, zS) and (xF , yF , zF ), respectively, with both zS and zF equal to H.

The UAV’s location at any time t is indicated by (x(t), y(t), H), where 0 ≤ t ≤ Tmax,

and Tmax is the maximum flight time determined by the UAV’s battery capacity and

its constant speed V .

5.2.2 Problem Statement

Given the set U , I, and G, together with the locations of IoT devices (li), GBS

centers (zi), start and end locations of UAVs (Lu
S, L

u
F ) and the data generation times of

IoT devices (ti), our goal is to minimize the maximum AoI during the data collection

process by UAVs. In addition to this primary objective, we also consider minimizing

the mission time as secondary goal, and also aim to minimize the length of the total

path travelled by the UAVs as a third objective. Thus, using the scalarization, the
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overall objective is formulas as:

min ((Amax)λ+ u(TF ))Θ +Dsum (5.1)

s.t.

Amax = max
{
(V U

i − ti)
}
,∀i ∈ I, (5.2)

u(TF ) = max
∀u∈U

(T u
F ), (5.3)

Dsum =
∑
u∈U

(LS
u → LF

u ). (5.4)

where V U
i is the upload time of the IoT device i’s data to a GBS by the UAV that

downloaded its data, T u
F is the time UAV u reaches its final point and LS

u → LF
u

denotes the trajectory for the UAV u. We use scalars λ ≫ θ, to prioritize different

goals.

5.3 Proposed Solutions

In this section, we first describe the ILP based solution, then discuss the heuristic

based more computationally efficient and approximate solution. The notations used

throughput this section are given in Table 8 and 9.

5.3.1 ILP Solution

In the proposed problem each UAV starts from a starting point to collect data

from ground IoT devices and arrives to an end point (which can be the same location

as the initial starting point). Let Lu = {Lu
0 , L

u
1 , L

u
2 , ..., L

u
2|I|, L

u
2|I|+1} be the set of

ordered locations that we are trying to identify on the route of each UAV u. These

locations correspond to the critical locations that define the path of each UAV u which

include the start (Lu
S) and end locations (Lu

F ) as well as the download and upload

locations for the data of each IoT device. Note that Lu
0 = Lu

S and Lu
2|I|+1 = Lu

F . We
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also define Tu = {T u
0 = 0, T u

1 , T
u
2 , ..., T

u
2|I|, T

u
2|I|+1 = T u

F} as the set of times that the

UAV is present at the corresponding locations in L, i.e., Lu(Ti) = Li.

It is essential to ensure that each UAV commences and concludes its mission

at specified locations. Furthermore, due to the limitations imposed by the UAV’s

battery capacity, there is a maximum allowable flight duration that must be adhered

to. Thus, we have

Lu(0) = Lu
S, (5.5)

Lu(TF ) = Lu
F & T u

F ≤ Tmax,∀u ∈ U . (5.6)

For each consecutive time moment during the mission of UAVs, we ensure that

the distance traveled by the UAV is equal to or less than their maximum speed

capability by:

dist
Lu(i+1)
Lu(i)

≤ V × (Tu(i+ 1)− Tu(i)),

∀i ∈ [0, 2|I|],∀u ∈ U . (5.7)

Each IoT device generates data at a specific time. The UAV is required to visit

the IoT device after this data generation to capture the data. Furthermore, the

delivery of this data to a GBS must occur only after it has been captured from the

IoT device. These are ensured by

V D
i ≥ ti,∀i ∈ I, (5.8)

V U
i ≥ V D

i ,∀i ∈ I. (5.9)

To facilitate the UAV’s data capture from an IoT device, it is imperative for

the UAV to be within the communication range of the IoT device. Consequently, a

variable has been established to monitor the connectivity status between the UAV
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and the IoT device. Data download by the UAV is permissible only if a connectivity

link is established. Nevertheless, there may be instances where the UAV is within the

communication range of the IoT device but chooses not to download any data.

cui (t) =


1, if dist

Lu(t)
li

≤ RI

0, otherwise.

, (5.10)

dui (t) ≤ cui (t), (5.11)

∀t ∈ T,∀i ∈ I, ∀u ∈ U .

Each IoT device’s data should be captured by one and only one UAV.

∑
∀t∈T

∑
∀u∈U

dui (t) = 1,∀i ∈ I,∀u ∈ U . (5.12)

To record the time at which a UAV visits the IoT device and captures its data,

we utilize the variable V D
i , as previously defined. Since the value of dui (t) is set to

1 only for one UAV throughout the entire timeline of all UAVs, by multiplying this

value with the time variable, we obtain the exact moment when data is downloaded

from the IoT device onto the UAV.

V D
i =

∑
∀u∈U

∑
∀t∈Tu

(dui (t)× t),∀i ∈ I. (5.13)

Similarly, by multiplying the value of dui by u, we obtain the id of the UAV that

downloads the data from IoT device i.

UD(i) =
∑
u∈U

∑
t∈Tu

(dui × u),∀i ∈ I. (5.14)

Similar to the UAV-IoT connection, for the UAV to upload the collected data
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to the GBS, it must be within the communication range of a GBS. We monitor the

UAV-GBS connection status using another variable, G(t), which indicates whether

the UAV is connected to at least one GBS at time slot t. Furthermore, it should be

mentioned that when the UAV enters the communication range of a GBS, it has the

capability to upload data to that GBS.

gui (t) =


1, if distLu(t)

zi
≤ RG

0, otherwise.

,

∀u ∈ U , ∀t ∈ T,∀i ∈ G, (5.15)

Gu(t) = min(1,
∑
∀i∈G

gui (t)),∀u ∈ U ,∀t ∈ T, (5.16)

pui (t) ≤ Gu(t),∀u ∈ U , ∀i ∈ I,∀t ∈ Tu. (5.17)

Additionally, we impose a constraint to ensure the UAVs upload the captured

data. All data captured by the UAVs from the IoT devices must be uploaded to the

GBSs.

∑
∀u∈U

∑
∀t∈Tu

pui (t) = 1,∀i ∈ I. (5.18)

In order to compute the AoI of each data, we need to record the time at which

the UAV delivers the collected data to a GBS. Given that each IoT’s data is delivered

only once, we leverage this condition by multiplying the value of ui(t) by t, and then

summing this over all critical times.

V U
i =

∑
∀u∈U

∑
∀t∈Tu′

(uu′

i (t)× t), ∀i ∈ I. (5.19)

Similarly, by multiplying the value of pui by u, we obtain the id of the UAV that
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uploads the data of the IoT device i to a GBS.

UP (i) =
∑
u′∈U

∑
t∈Tu′

(pui × u),∀i ∈ I. (5.20)

This information is needed, as when there are multiple UAVs, we need to make sure

that the data is uploaded by the UAV that collected the data from the IoT. To this

end, we also consider the following constraint.

UD(i) = UP (i),∀i ∈ I. (5.21)

Finally, the path lengths of the UAV trajectories can be computed by

Dsum =
∑
u∈U

2|I|∑
i=0

dist
Lu
i+1

Lu
i

. (5.22)

where, distvu represents the distance between two coordinates u and v.

Note that these formulations will apply when there is only one UAV too. How-

ever, to speed up the running time of the ILP based solution for one UAV scenario,

some constraints (e.g., (5.21)) can be removed as they will be always satisfied and

will not be necessary.
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Algorithm 5: FastestIoTDelivery (Lu
cur, Tcur)

Input : Lu
cur: Current location of UAV

Tcur: Current time passed since start
Output: Ibest: Best IoT index

Tdel: Delivery time to the best IoT
Gnearest: Nearest GBS to the best IoT

1 foreach i ∈ I do
// Find intersection point of UAV’s trajectory with IoT i’s range

2 Ii ← Lu
curli ∩RI(i)

// Find time to reach IoT i’s range

3 ∆i ← (dist(Lu
cur, Ii))/V + Tcur

// Update download time if arrived before data generation

4 if ∆i ≥ ti then
5 ∆i ← ti
6 end

// Closest GBS for IoT i
7 g∗ ← argming∈G dist(Ii, g)

// Find intersection point with the closest GBS’s range

8 G∗
i ← Iig∗i ∩RG(g

∗))

// Delivery time for data of IoT i
9 ∆g ← ∆i + (dist(Ii, g

∗
i ))/V

// Keep the best one

10 if Gi < Tdel or Tdel = NULL then
11 Tdel ← ∆g

12 Ibest ← i
13 Gnearest ← g∗

14 end

15 end

5.3.2 Greedy Heuristic Approach

Due to the high computational complexity of the ILP based solution, getting

results at scale is not practical. Thus, in this section, we present our heuristic based

solution. We first start with the scenario where there is only one UAV, then discuss

how it scales to the multi-UAV scenario.
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5.3.2.1 Single UAV

Our greedy heuristic based approach relies on sequentially integrating IoT devices

and GBSs into the UAV’s trajectory, while also avoiding exhaustive examination

of all permutations. Thus, it enables us to approximate the optimal solution with

significantly reduced computational time.

We start with a path that includes only the start and the end location of the

UAV. We then select an IoT device and try to place it in one of the available spots on

the current trajectory. The available spots are considered as the positions between

the consecutive elements of the current trajectory. That is, in the initial trajectory,

there is only one position possible (i.e., between the starting and end points of the

UAV). In order to select the next IoT device to be added onto the trajectory, we

use the strategy described in Alg. 5. That is, we find out the IoT device whose

data can be delivered (to the nearest GBS) the fastest based on the UAV’s current

position. Once an IoT device is added onto the UAV trajectory, we then consider

inserting the GBS that allow that IoT device quickest delivery of its data. Here, we

only consider the positions (between any consecutive element) after the last added

IoT location. For example, once the first IoT is added, we only consider the one and

only one position after this IoT device for a possible GBS insertion. Moreover, we

consider not even inserting this GBS to the path. This is because it is possible that

there may be other GBSs already in the current UAV trajectory which can upload

the recently added IoT device’s data without increasing the current AoI.

The process continues similarly until all the IoT devices are added in the UAV

trajectory. The next IoT to be added on the trajectory is determined by finding the

IoT device whose data could be delivered the fastest from the final position (and

time) of the UAV on the current trajectory. Once the IoT to be added is determined,
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we try all possible locations to add it on the trajectory. As the UAV trajectory grows

with new the addition of IoT devices and GBSs, the set of possible locations to add

the next IoT device expands. For example, for the second IoT device insertion, since

there will be the first IoT device and a GBS are already in the trajectory, there are

three positions from which we need to find out the one that gives the smallest AoI

and insert the second IoT there. Once the second IoT is added on the trajectory,

depending on where it is added, there will be one to three different positions for the

GBS to be added. Note that we try not only inserting the GBS to any of the positions

after the second IoT’s position but also try not inserting the GBS at all and proceed

with the option that provides the best AoI. In the cases where inserting the GBS to

the trajectory provides the same AoI (compared to not adding it), we opt to omit it

is insertion as we also aim to minimize the UAV’s travel distance.

Upon completing the integration of all IoT devices, we calculate the AoI for the

UAV’s ultimate trajectory, which must include the defined start and end points, all

IoT devices, and at least one GBS. This entire process is illustrated in Algoritm 6.

109



Algorithm 6: GreedySingleUAVPathFormation
Input: Lu

S , L
u
F , I, RI , G, S

Output: Updated UAV path P
1 C ← ∅ // Checked IoTs

// Initialize UAV path with start and finish locations

2 P ← [Lu
S , L

u
F ]

3 Lu
cur ← Lu

S // Current location of UAV

4 Tcur ← 0 // Current time

5 while |C| ̸= |I| do
// Find the IoT whose data can be delivered earliest

6 Bi ← FastestIoTDelivery(Lu
cur, Tcur)

7 C ← C ∪ {Bi}
8 Bg ← argming∈G dist(Bi, g)
9 PIoT ← |P | − 1, PGBS ← |P |

10 LIoT ← −1, LGBS ← −1
11 ∆←∞
12 for i = 1 to PIoT do
13 for g = 0 to PGBS do
14 Ptemp ← P
15 Insert Bi into Ptemp at position i
16 if g > i then
17 Insert Bg into Ptemp at position g
18 else
19 g ← −1 ; // No GBS insertion if condition not met

20 end
21 if AoI(Ptemp) < ∆ then
22 ∆← AoI(Ptemp)
23 LIoT ← i
24 LGBS ← g

25 end

26 end

27 end
28 P ← (P [1 : LIoT − 1], Bi, P [LIoT : end]) ; // Insert Bi at position LIoT

in P
29 if LGBS ̸= −1 then
30 P ← (P [1 : LGBS − 1], Bg, P [LGBS : end]) ; // Insert Bg at position

LGBS in P

31 end
32 Lcur ← P [length(P )− 1] ; // Update current location as the last UAV

location before end point in P
33 Tcur ← CurrentTimeAt(Lcur) ; // Update current time based as the

time UAV arrives Lcur

34 end
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5.3.2.2 Multiple UAVs

Algorithm 7: GreedyMultiUAVPathFormation

Input: Lu
S, L

u
F , I, RI , G, RG

Output: Optimized paths for each u in U

1 C ← ∅

2 foreach u in U do

3 Pu ← [Lu
S, L

u
F ]

4 T u
cur ← 0

5 end

6 while |C| ̸= |I| do

7 foreach u in U do

8 Bu
i , D

u ← FastestIoTDelivery(Lu
cur, T u

cur)

9 Bu
g ← argming∈G dist(B

u
i , g)

10 end

11 umin ← argminu D
u

12 Bi ← Bumin
i , Bg ← Bumin

g

13 C ← C ∪ {Bi}

14 Insert Bi and Bg to Pumin
as in lines 10-34 in Algorithm 6

15 end

16 foreach u in U do

17 Au = Calculate AoI for Pu

18 end

19 Return minu∈UAu

In this subsection, we leverage the greedy heuristic developed for a single UAV
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and adapt it for multi-UAV scenarios to optimize path planning with the objective of

minimizing the maximum AoI. This adaptation involves several modifications to the

single UAV approach. Specifically, with every movement of the UAVs, we dynamically

update the sequence of IoT devices targeted for data delivery, taking into account the

current positions of the UAVs. Consequently, the prioritization of IoT devices for

each iteration may vary as the UAVs progress along their paths.

Another key modification pertains to the management of IoT device assignments

to UAVs. For each UAV, we maintain a prioritized list of IoT devices, sorted based

on the anticipated delivery time. Upon the selection of an IoT device by a UAV for

data delivery, and subsequent completion of this delivery (i.e., uploaded the data to

a GBS), the IoT device’s identifier is removed from the lists maintained for all UAVs.

This ensures that no UAV is assigned to an IoT device that has already had its data

delivered by another UAV, thus preventing redundant visits and optimizing the data

collection process.

In Alg. 7, we describe a greedy selection process for multiple UAVs to optimize

their paths while interacting with IoT devices and GBSs, aiming to minimize AoI.

Initially, each UAV is assigned a start and end location, and a loop begins that

continues until all IoT devices delivered their data. Within this loop, for each UAV,

the algorithm determines the best IoT device to visit next based on its current location

and the delivery time of data from that IoT device. It also identifies the closest GBS

to the selected IoT device (lines 8-13). Among all UAVs, it selects the UAV that

can deliver the data in the least amount of time and updates the UAV’s path to

include the IoT device and GBS at optimal positions to minimize AoI (lines 14-21).

This process is repeated, updating the path for each UAV with the inclusion of IoT

devices and GBSs, until all IoT devices have been processed. The paths for all UAVs

are then recalculated to reflect the updated AoI (lines 22-24). Similar to the approach
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for a single UAV, and when considering the addition of a specific IoT, we may omit

adding a GBS to the UAV paths if the maximum AoI remains unchanged.

5.3.3 Brute-force Approach

For comparison purposes, we also obtain results using a brute-force approach

too. To this end, we obtain all the permutations of the IoT devices to first get a visit

order in the UAV trajectories, which always start at the starting location of the UAV

and ends in the final location of the UAV. In the single UAV scenario, since all IoT

devices should be visited by the same UAV, we consider a permutation that includes

all the IoT devices. However, in the multiple UAV scenario, we first distribute the

IoT devices to each UAV. It is possible that some UAVs may not be assigned any IoT

devices at all. Once a UAV knows the ordered set of IoT devices that will be visited,

we then consider adding one GBS to be visited before or after each IoT device visited.

It is possible that there may not be a GBS added between some IoT device visits, as

this is a possible scenario. Also, note that we do not need to consider more than one

GBS between IoT device visits, as we assume in the first GBS visited, all the data

will be uploaded. For all possible such permutations of IoT devices and potentially

visited GBSs in between, we calculate the AoI for the given scenario and find out the

best result. In multiple UAV scenario, we compute the max AoI for all UAVs and

take the max of all.

5.4 Simulation Results

5.4.1 Toy Example

In this section, we dive into a hands-on example to demonstrate the step by step

functionality of the proposed solutions, and how they compare to other solutions. We

consider 5 IoT devices and 4 GBSs deployed on a map of 20 units by 20 units. The
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Table 10. Locations of GBSs

GBS ID 1 2 3 4

Coordinates (2,2) (11,10) (18,2) (10,18)

Table 11. Locations of IoT devices and data generation times

IoT ID 1 2 3 4 5

Coordinates (2,6) (18,7) (15,15) (5,18) (3,18)

Data generation times (ti) 5 10 20 10 10

Table 12. Simulation Parameters

Parameters Values

UAV speed (V ) 2

Map size 20x20

GBS range (RG) 2

IoT range (RI) 1

Number of IoTs 5

Number of GBSs 4

Scale (for ILP) 1,10,100

positions of GBSs and IoT devices are given in Table 10 and Table 11, respectively.

Single UAV: We start with single UAV example where the UAV commences its

mission from the coordinates (4,4), aiming to complete its mission at the location

(2,12). The other parameter values are given in Table 12.

We start with brute-force results presented in Fig. 53, wherein all possible per-

mutations of IoTs and GBSs are explored to minimize the AoI. In this scenario, it

is observed that the UAV opts not to deliver data from IoT1 immediately. Instead,

it proceeds to IoT5, then to IoT4, and delivers the data from all three IoT devices

simultaneously at GBS2. The UAV’s path in this method is delineated as follows:

S → IoT1→ IoT5→ IoT4→ GBS2→ IoT2→ GBS3

→ IoT3→ GBS2→ E

In the greedy heuristic based approach, we only consider a selected subset of all
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Fig. 53. Example with a single UAV: UAV trajectory obtained by brute-force

approach.
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Fig. 54. Example with a single UAV: UAV trajectory obtained by the greedy

heuristic algorithm.
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Fig. 55. Example with a single UAV: UAV trajectory obtained by the ILP based

approach using CPLEX (with scale 10).

117



Table 13. Steps in the Greedy heuristic algorithm
Step Decision

Step 1 S → IoT1→ GBS1→ E

Step 2 S → IoT1→ GBS1→ IoT2→ GBS3→ E

Step 3 S → IoT1→ GBS1→ IoT4→ IoT2→ GBS3→ E

Step 4 S → IoT1→ GBS1→ IoT5→ IoT4→ IoT2→ GBS3→ E

Step 5 S → IoT1→ GBS1→ IoT5→ IoT4→ IoT2→ GBS3→ IoT3→ GBS4→ E

possible IoT and GBS permutations as described in Algorithm 5 and in Algorithm 6.

The UAV prioritizes the transmission of data from IoT2 to the nearest GBS,

identified as GBS3. Following this prioritized sequence, the UAV is tasked with

delivering data from IoT4. At the outset, the closest GBS for each IoT is identified,

with GBS4 being the nearest for IoT4. The algorithm then seeks the optimal insertion

point for IoT4 and GBS4 within the sequence, aiming to minimize the AoI increase.

The strategy emphasizes minimizing GBS additions and finding the most effective IoT

and GBS positions to reduce AoI. Consequently, the algorithm directs the UAV to

IoT4 immediately after IoT1’s data delivery, then to IoT2, allowing for simultaneous

data delivery without incorporating GBS4. The algorithm’s decisions are detailed in

the Tab. 13. The result of this algorithm is depicted in Fig. 54.

Finally, we look at results obtained with ILP optimization. Here we use different

scales of the map to show the impact of it in optimal solution. As the scale grows, we

can obtain much better solutions, however, the running time increases dramatically.

Thus, we stop the run after 2 hours. This method shows the lowest AoI possible in

the given scenario an used as baseline to compare the performance of other solutions.

The UAV trajectory obtained when we use a scale of 10 (so the map is considered

like 200 by 200) is given Fig. 55.

In Table 14, we present a comparative analysis of the AoI for individual IoT

devices utilizing various algorithms. First of all, the ILP results with different scales

118



Table 14. Comparison of AoI for individual IoT devices with all algorithms in single

UAV scenario

Algorithms/IoT IDs 1 2 3 4 5

Brute-force 10.60 11.61 8.70 5.60 5.60

Greedy heuristic 0.68 12.91 12.17 12.91 12.91

ILP (Scale = 1) 8 12 10 3 3

ILP (Scale = 10∗) 10.3 10.3 9.8 6 4.8

ILP (Scale = 100∗) 9.96 10.18 8.84 10.18 10.18

obtained who that, the AoI decreases with more scale. Note that the ILP solutions

for scale 10 and scale 100 do not reach 100% optimality (thus * is used), as we have

constrained the computational time to a maximum of 2 hours for each scenario. Fur-

thermore, it is evident from the comparison that ILP consistently yields the optimal

solution relative to the other algorithms under consideration. On the other hand,

greedy heuristic can result slightly higher AoI but runs much faster (finishes within

seconds). We will compare the running times extensively later.

Multiple UAVs: For the multiple UAV scenario, we consider two UAVs different

starting and ending points. The first UAV begins and concludes its mission at a

location with coordinates (2,11), while the starting and ending location for the other

UAV is (2,12). We use the same GBSs as in single UAV scenario however, we consider

six IoT devices with locations and data generation times given in Table 15.

Table 15. Locations of IoT devices and data generation times in multi-UAV example

IoT ID 1 2 3 4 5 6

Coordinates (18,7) (15,15) (5,18) (3,18) (5,5) (18,18)

Data generation times (ti) 5 10 10 10 5 1

In Table 16, we compare the AoI for each approach across each IoT device.

As observed across all three maps, the IoT devices are divided into two groups,

with each group being serviced by one UAV. This strategy assists in maintaining

the maximum AoI limit. In Figures 56,57 and 58, we present the outputs from each
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Fig. 56. Example with two UAVs: The UAV trajectory obtained by brute force

approach.

120



Fig. 57. Example with two UAVs: The UAV trajectory obtained by the greedy

heuristic algorithm.
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Fig. 58. Example with two UAVs: The UAV trajectory obtained by the ILP based

approach using CPLEX (scale = 10).
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Table 16. AoI for each IoT device across different algorithm in multi-UAV scenarios

Algos/IoT
IDs

1 2 3 4 5 6

Brute force 8.62 8.01 8.89 8.89 8.62 9.58

Insertion 7.75 10.58 10.58 10.58 7.75 9.58

ILP (Scale =
1∗)

10 10 8 8 3 11

ILP (Scale =
10∗)

8.8 3.6 9.42 9.42 7 9.6

ILP (Scale =
100∗)

7.11 9.31 9.22 9.22 7.11 9.57

of the algorithms we have developed. In Figure 56, we illustrate the output of the

brute-force approach. This method considers all possible permutations of IoT devices

and combinations of GBSs. Among all potential options, the depicted output yields

the minimum maximum AoI. In the greedy heuristic-based approach, as illustrated

in Figure 57, we initially identify the first IoT devices based on the delivery time for

each UAV. The earliest IoT device that both UAVs can deliver data from is IoT 5.

Following this, since the first UAV can deliver the data from IoT 5 faster than the

second, it heads directly to IoT 5’s location. According to our greedy algorithm, the

closest IoT for the first UAV would then be IoT 1. The second UAV is responsible for

delivering data from all other IoT devices. Since the data generation at IoT 6 occurs

at time 1, it is prudent for the second UAV to deliver this data as early as possible

to GBS4 before moving on to collect data from IoTs 2, 3, and 4. Upon gathering the

data, it will deliver all of it to GBS4. The sequence in which the IoTs are visited

by each UAV is the same as the one presented in Table 13, which applies to a single

UAV. In Figure 58, we present the output of the ILP approach. The scale of this map

is set to 10, and it achieves the lowest minimum maximum AoI compared to other

approaches. However, it takes more time to produce this result.
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5.4.2 Random Scenarios

In this part, we consider random scenarios and provide a general performance

comparison of compared algorithms.

Single UAV: We generate 100 different scenarios with a specific scenario and

get an average performance. We start with deploying different number of IoT devices

on the map, while keeping the GBS count fixed at 4. The data generation time of IoT

devices is set as randomly between 0 and 20. As it is shown in Fig. 59, the maximum

AoI increases as the number of IoT devices increases for all algorithms. While the

Cplex results are the best as expected, the permutational brute force approach gives

close to that, and the proposed greedy heuristic can provide slightly larger but similar

results. Next, we look at the impact of number of GBSs in the same way while keeping

the number of IoT devices as 4. As shown in Fig. 60, increasing the number of GBSs

results in a reduction of the maximum AoI thanks to the more coverage provided with

more GBSs. The relationship between the compared algorithms is also similar to the

previous scenario. Finally, in Figure 61, we examine the scalability of our algorithm,

specifically within the heuristic approach (as we could not get results with Cplex

and brute force for large number of IoT devices). The results depicted in this figure

demonstrate that as the number of IoT devices increases in the same area (e.g., map

size 40 referring to 40 by 40), maximum AoI increases but it increase in the slope

decreases due to some convergence. Note that when the map size gets larger, the AoI

gets bigger with the same number of IoT devices, but as new IoT devices are added

to the area the convergence happens there eventually too.

Multi-UAV: Next, we obtain results for a multiple UAV scenario. To this end,

we consider |U| = 2 UAVs and generate 100 different scenarios with a specific number

of randomly placed IoT devices, while maintaining a constant count of 4 GBSs. We
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Fig. 59. Single UAV: Impact of varying number of IoT devices (GBS count = 4) on

maximum AoI.

3 4 5

Number of GBSs

6

7

8

9

10

11

M
a

x
im

u
m

 A
o

I 
(t

im
e

 u
n

it
) Bruteforce

Heuristic

Cplex

Fig. 60. Single UAV: Impact of varying number of GBSs (with IoT count = 4) on

maximum AoI.
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Fig. 61. Single UAV: Results with greedy heuristic with large number of IoT devices

on different maps (area sizes).
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Fig. 62. Multi-UAV scenario: Impact of varying number of IoTs (GBS count = 4) on

maximum AoI.
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Fig. 63. Multi-UAV scenario: Impact of varying number of GBSs (with IoT count =

4) on maximum AoI.

1 2 3
Number of UAVs

2

4

6

8

10

M
a

x
im

u
m

 A
o

I 
(t

im
e

 u
n

it
)

Bruteforce

Heuristic
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calculate the average maximum AoI. The data generation time for the IoT devices is

again randomly set between 0 and 20.

As depicted in Fig. 62, the maximum AoI increases with the number of IoT

devices for both algorithms. We could not obtain Cplex results for these scenarios as

it took too long thus presenting brute force results, which give closer to Cplex results.

We note that heuristic results provide more AoI than brute force, as expected, but

the gap is increasing slightly. Subsequently, we analyze the influence of the number

of GBSs on this scenario, holding the number of IoT devices constant at four. As

the results in Fig. 63 shows, the AoI decreases with more GBSs, as the UAVs find

more opportunity to upload the collected data, and the gap between brute force and

heuristic based approach gets smaller with more GBSs. Finally, in Fig. 64, we show

the impact of different number of UAVs on AoI. As expected, with more UAVs, the

data of IoTs is both collected and uploaded to a nearby GBS much faster, yielding a

lower AoI. Greedy heuristic based approach can provide close to brute-force results,

while running in very short time, which is pivotal for real-time applications requiring

up-to-date information.

Processing Time: Next, we compare the running times of different algorithms

in different scenarios. We start with results with single UAV as presented in Fig. 65.

The results clearly show that the processing time required for the ILP approach far

exceeds that of the brute-force method, which in turn significantly surpasses the time

taken by the heuristic approach with small IoT counts, but becomes much higher

than heuristic approach with large number of IoTs.

In Fig. 66, we analyze the running times of the heuristic and brute-force ap-

proaches as the number of UAVs increases. The running time for the heuristic ap-

proach escalates due to the increased number of potential scenarios that need explo-

ration. In contrast, with the brute-force approach, increasing the number of UAVs
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leads to the distribution of IoT devices across more UAVs. This distribution simplifies

the analysis by reducing the number of potential combinations that each UAV must

evaluate, consequently decreasing the overall running time.

Next, we consider the scenario with 3 UAVs. As the results in Fig. 67 show,

the running time increases heavily for brute force approach (Cplex results will be

much longer than it, but we could not receive it as it look very long), underscoring its

impracticality for real-time operations within multi-UAV systems. In contrast, the

heuristic approach demonstrates a remarkable reduction in processing time, thereby

making its suitability for scenarios demanding rapid decision-making and execution.

Finally, in Fig. 68, we show the maximum AoI obtained with brute force and

heuristic approach with three UAVs and with larger number of IoTs. Since it takes

very long to get results with brute force, we could not obtain results when IoT count

is more than 5. However, as the trend with smaller number of IoTs show, the heuristic

approach will follow what the brute force gives in different scenarios, while having

very small computation cost.

Overall, all these AoI and running time results show the trade-off involved in

algorithm selection for multi-UAV scenarios. While the brute-force (and ILP based)

method may offer better results its high computational cost renders it less feasible

for dynamic and practical environments. On the other hand, the heuristic algorithm,

by virtue of its design, offers a balanced compromise between information freshness

and computational efficiency, making it a more viable choice for real-time multi-UAV

operations.

5.5 Conclusion

In this chapter, we have explored the path planning problem for a cellular-

connected UAVs considering minimization of the maximum AoI for any data collected
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as the main criteria. Different from previous works, AoI is defined as the time passes

from the moment data is generated till it is uploaded to any of the nearby ground

base stations by the UAVs. We developed both an ILP based model and a greedy

heuristic based algorithm to find the path for the UAV. Through simulations with

different scenarios, we have compared the results obtained by different methods and

showed how their results differ in terms of several metrics.

In the future work, we will consider an online algorithm for the UAVs where

only limited information about the IoT devices and the field (e.g., GBS locations) is

known. We will also consider multi-UAV scenarios and more realistic communication

models.
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CHAPTER 6

AOI IN MESH NETWORKS

6.1 Introduction

Following emergencies and disasters, effective response management heavily re-

lies on communication and the collection of environmental data. Communication in

these scenarios can be facilitated through various methods, including satellite, ad hoc

networks, local base stations, or a combination thereof. UAVs play a crucial role as

they can serve as airborne base stations [83], ensuring reliable LoS connectivity with

minimal interference, or function as relays to link ground users/devices to the main

network infrastructure.

Existing research on UAV deployment in disaster and emergency contexts ad-

dresses several challenges, such as optimizing UAV positioning [84] to maximize user

coverage and communication data rates, maintaining network topology [85], and ef-

ficient data packet routing [86]. Considerations also include the energy limitations

and charging protocols of UAVs, as well as managing interference between UAVs and

ground users for more practical implementations.

This study delves into the data collection process from terrestrial sensor nodes

or IoT devices at emergency sites, particularly focusing on the freshness of the infor-

mation, known as the AoI. Prior studies have thoroughly examined path planning for

UAVs to optimize data collection from ground-based IoT devices [62], and the tra-

jectory optimization concerning various factors like energy usage, time constraints,

and environmental conditions [80, 87]. Recent introductions of AoI concepts have

led to investigations into AoI-optimized data delivery in UAV-supported IoT frame-
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works [61, 88, 9]. These assume data generation prior to UAV missions, whereas in

practical scenarios, sensor data might be generated at varying times during UAV op-

erations. Additionally, no prior work has considered the aspects of multi-UAV mesh

networks and connectivity persistence. This paper presents a novel approach by in-

tegrating these elements to provide a comprehensive examination of UAV-assisted

communication and data collection in emergency settings.

Fig. 69 illustrates an example scenario, with a set of UAVs, connected in a mesh

network, collecting data from several ground IoT devices. We show two different

time moments of the same UAV mesh network. At time t the data from the first two

IoT devices is collected while in the next time moment, the data of the other IoT

devices are collected. Note that the UAVs maintain their connectivity among each

other. This helps up-to-date communication among them, which is vital in emergency

sites, where there is no or minimal infrastructure. In this figure, we show that the

UAVs also move and get into the range of a base station at a later time to upload

the collected data to the backhaul, which makes it reach to the emergency response

center to be processed.

Fig. 70 shows the AoI for the two different scenarios considered. If there is an

undamaged GBS in the emergency site and the goal of the UAV mesh network is to

delivery the collected data from the IoT devices to this GBS, the AoI will be from

the moment the data is generated at t1 until the moment it is delivered to the GBS

at t3. However, if there is a satellite connection possible from one of the UAVs, as

soon as one UAV in the mesh network receives the data, it will be delivered to the

backhaul through that satellite connection immediately (delay while exchanging data

between connected UAVs is neglected assuming the data is very small).

The objective of this research is to develop strategies for the trajectory and con-

nectivity of UAV mesh networks aimed at optimizing the AoI during data collection
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devices at time t (black) and t+ 1 (gray) and uploading their data to a base
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Fig. 70. Age of information in two different scenarios.

from IoT devices in specific scenarios. While some studies, such as [89], consider the

AoI in UAV-assisted data collection from IoT devices, none address the transmission

of data to a backhaul through satellites or to an operational base station in an emer-

gency setting. In this context, AoI is typically defined as the duration from when data

is first collected by a UAV to when it is received. Our definition diverges as we con-

sider AoI from the moment data is generated until it reaches a backhaul entry point,

such as a base station or satellite link. To our knowledge, only two studies [90, 91]

align with our definition of AoI. However, these do not account for scenarios involving

multiple UAVs interconnected within a mesh network in an emergency environment
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with limited or no infrastructure.

The remainder of this chapter is structured as follows. Our system model and

assumptions are detailed in Section 6.2, where we also define the problem and discuss

the optimization models developed for various scenarios. Simulation results for these

scenarios are presented in Section 6.3. We conclude the paper and outline future

research directions in Section 6.4.

6.2 Problem Statement of Mesh Networks and ILP Formulation

We start with the problem (P1) where UAVs need to collect data from all ground

IoT devices while maintaining the connectivity among them and the data delivery

happens through a satellite connection from one of the UAVs. We define a decision

variable for the location of each UAV at each time moment, defined by a set L =

{L0, L1, L2, ..., LT}. Our main goal is to minimize the maximum AoI during this data

collection process:

minAmax. (6.1)

Under this objective we first divide the map into a grid and develop an ILP based

model.

In order to make sure the UAVs do not move more than their max speed between

two consecutive time frames, we use

dist
L(u,t)
L(u,t−1) ≤ V, ∀t ∈ [1, T ],∀u ∈ U , (6.2)

where, dist
Lj

Li
represents the distance between two coordinates Li and Lj.

Different UAVs are also not allowed to be in the same location at the same time
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Fig. 71. Flow-based mesh network connectivity modeling.

by

dist
L(uj ,t)

L(ui,t)
> 0,∀t ∈ [0, T ],∀ui, uj ∈ U , i ̸= j. (6.3)

Since the data at each IoT may be generated any time, we also make sure that

the UAV visits the IoT device’s range and downloads or collects its data after its

generation time (ti):

V D
i ≥ ti,∀i ∈ I, (6.4)

where V D
i denotes the time the UAV downloads the data of IoT i. Note that there

could be multiple data generated by the same IoT and this formula applies to all such

data.

We implement a flow-based connectivity management idea following the similar

implementations in previous works that also consider full connectivity among graph

nodes or UAVs [92]:

0 ≤ Fi,j(t) ≤ (|U| − 1)× Ai,j(t),∀t ∈ T,∀i, j ∈ U , (6.5)

where Fi,j(t) denotes the virtual flow assumed to go from node (i.e., UAV) i to node

j at time t. Here, we also use the connectivity information among the UAVs defined
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by

Ai,j(t) =


1, if dist

L(uj ,t)

L(ui,t)
≤ RU

0, otherwise.

,

∀t ∈ T,∀ui, uj ∈ U , ui ̸= uj. (6.6)

We define the incoming flow to each UAV by

IF (u, t) =
U∑

u!=u′

Fu′,u(t),∀u ∈ U ,∀t ∈ T. (6.7)

Also, the outgoing flow from each UAV by

OF (u, t) =
U∑

u!=u′

Fu,u′(t),∀u ∈ U ,∀t ∈ T. (6.8)

Then, to make sure each UAV, except the initial UAV (i.e., u0) that starts the

flow, keeps one item in the flow before releasing it, we set

IF (u, t)−OF (u, t) = 1,∀u ∈ U \ {u0},∀t ∈ T. (6.9)

Note that we need at least one flow incoming to each UAV so that it is connected

to the other UAVs. Moreover, the max incoming flow should be limited by maximum

initial flow defined. To satisfy both, we have

1 ≤ IF (u, t) ≤ |U| − 1,∀u ∈ U \ {u0},∀t ∈ T. (6.10)

The outgoing flow from the initial UAV should be enough to reach all other

UAVs, so we have

OF (u0, t) = |U| − 1,∀t ∈ T, (6.11)

OF (u0, t)− IF (u0, t) = |U| − 1,∀t ∈ T. (6.12)
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The outcome of this flow based approach is illustrated in Fig. 71. The so-called

source UAV sends enough flow to reach all UAVs and each gets one flow and sends

the rest to others.

The connectivity between the UAV and each IoT device is determined based on

the distance between the IoT device and each UAV u at a given time t.

ci(u, t) =


1, if dist

L(u,t)
li

≤ RI

0, otherwise.

,

∀t ∈ T,∀i ∈ I, ∀u ∈ U .

We then allow the collection of data by each UAV in range of IoT device in (6.13)

and only one time as defined in (6.14).

di(u, t) ≤ ci(u, t),∀t ∈ T,∀i ∈ I, ∀u ∈ U , (6.13)∑
u∈U

∑
∀t∈T

di(u, t) = 1, ∀i ∈ I. (6.14)

In (6.15), we assign the UAV’s IoT visit time to its pre-defined variable V D
i by

multiplying the value of di(t) by t and then computing the sum. Since di(t) is equal

to 1 in only one of the ts, the value of V D
i becomes equal to the IoT visit time.

V D
i =

∑
u∈U

∑
∀t∈T

(di(u, t)× t)),∀i ∈ I. (6.15)

Finally, we compute max AoI for any data collected from all IoT devices using

the following equation. AoI here is defined as the time elapsed from data generation

time ti to its delivery or upload time at V U
i , which is equal to V D

i in this case.
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Amax = max
{
(V D

i − ti)
}
,∀i ∈ I. (6.16)

6.2.1 Relaxed Problem using Critical Times

The problem P1 defined in the previous section considers the computation of

each UAV’s location at each time moment. However, this can be very costly and may

not be very critical as long as the data is delivered with the same maximum AoI. To

this end, in this section, we introduce an alternative approach in which we maintain

the mesh network, ensuring that all UAVs are connected, but only during critical

times, which are defined as time instances when a UAV downloads data from an IoT

device. Unlike the previous problem, where we divide the total timeline into unit

time slots, in this relaxed scenario, the total number of variables on the timeline is

equal to the number of IoT devices. By adopting this strategy, we reduce the number

of decision variables in the ILP model, thereby calculating the results more rapidly as

the time complexity decreases. The sole limitation in this approach is that we cannot

ensure the connectivity for all UAVs between the critical times during their flights.

In this problem, the set of locations that we look for each UAV is defined by the

number of IoT devices. Let L = {L0, L1, . . . , L|I|} represent the set of locations we

seek to determine along the UAV’s route, and let T = {T0, T1, . . . , T|I|} denote the

respective time moments. Similar to the previous problem, our primary goal is to

minimize the maximum AoI during the data collection process.

In comparison with the previous problem, other than the reduced size of T , we
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just update Equation 6.2 as follows:

dist
L(u,t)
L(u,t−1) ≤ V × (Tt − Tt−1), ∀t ∈ T, ∀u ∈ U . (6.17)

That is, we just need to make sure the path for each UAV between the critical times

is possible within the time difference of critical times considering their max speed.

6.2.2 Delivery to Ground Base Stations

In the third problem, we explore the scenario where the data delivery happens

to a ground base station or GBS that is still functioning in the emergency site (no

satellite connection from a UAV). In this scenario, we assume there are several GBSs

across the map. The UAVs’ mission now extends beyond merely downloading data

from IoT devices. They must also upload this data to the GBSs. Given this expanded

role, we revise the definition of the age of information as the time interval starting

when the data is generated by an IoT device and ending when the UAV delivers the

data to a GBS. As with the previous problems, our objective remains to maintain

the mesh network and ensure connectivity among the UAVs while minimizing the

maximum AoI.

Here, we consider an approach similar to previous problem (P2) using variables

for only time critical moments. Compared to P2, however, we need to double the

number of critical times. This adjustment is necessary because, in this scenario, the

UAVs are required to perform two tasks for each data from the IoT devices: first, to

download the data from the IoT device, and then to upload it to one of the GBSs. Let

L = {L0, L1, . . . , L2|I|} denote the set of locations we aim to identify along the UAV’s

route, and let T = {T0, T1, . . . , T2|I|} represent the corresponding set of times. We

also define the location of GBSs G = {g1, g2, . . . , gn}. Our primary objective remains

to minimize the maximum AoI throughout the data collection and delivery process.
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In addition to constraint (6.4), the UAV must deliver the downloaded data to one

of the GBSs, and this delivery must occur after one of the UAVs captures the data

(all other UAVs get the same data due to mesh network based connectivity among

UAVs). Therefore, we add the following constraint to our model:

V U
i ≥ V D

i , ∀i ∈ I. (6.18)

This ensures that the visit to upload data at a GBS (V U
i ) occurs on or after the

visit to download data from an IoT device (V D
i ) for each IoT device i in the set I.

Next, in addition to the connectivity constraint between a UAV and an IoT device

for downloading of data as given in (6.13), we check out the connectivity between the

UAV and GBS based on the distance between the GBS and each UAV u at a given

time t.

gi(u, t) =


1, if dist

L(u,t)
lg

≤ RG

0, otherwise.

,

∀t ∈ T,∀g ∈ G,∀u ∈ U .

Given that our network is a mesh network and we operate under the assumption

that UAVs are always connected, if one of the UAVs is within the range of a GBS,

it can upload or deliver the data. This remains valid even if the UAV performing

the upload is not the same one that initially downloaded the data. Equation (6.19)

verifies whether at least one of the UAVs is within the range of a GBS. Furthermore,

(6.20) indicates that uploading is feasible if any UAV is within the range of a GBS. To

ensure that data from all IoT devices are uploaded to the GBSs, we integrate (6.21)

into our model. We also keep the times for delivering each IoT’s data by adding

142



Equation (6.22) to our model.

G(t) = min(1,
∑
u∈U

∑
∀i∈G

gi(t)),∀t ∈ T, (6.19)

ui(t) ≤ G(t),∀i ∈ I,∀t ∈ T, (6.20)∑
∀t∈T

ui(t) = 1,∀i ∈ I, (6.21)

V U
i =

∑
∀t∈T

(ui(t)× t),∀i ∈ I. (6.22)

Finally, in this problem, we compute the maximum AoI for all IoT devices’ data

using the following equation. In this formula, the AoI for each IoT device is the time

elapsed from the data generation time ti to its delivery time (upload time) to a GBS

at time slot V U
i .

Amax = max
{
(V U

i − ti)
}
, ∀i ∈ I. (6.23)

Multiple Objectives: In all problems, our primary objective is to minimize the

max AoI. Then, we also set other objectives such as minimizing the average AoI and

then minimizing the total path length of UAVs. These objectives are targeted in a

prioritized manner using scalarization. However, to expedite solution time in ILP

solver, we also consider hierarchical solution. That is, we initially just minimize the

max AoI and find an optimized answer. In a subsequent step, we add the max AoI

as a constraint in our model and aim to reduce the total AoI across all IoT devices.

In the third stage, we additionally impose the total AoI as a constraint and focus on

minimizing the overall travel distance of the UAVs.
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6.3 Simulation Results

In this section, we present the simulation results for the problems studied using

4 UAVs. Our simulation map is a 40x40 unit grid. For all simulations, the IoT-

UAV communication range is set as RI = 2 units, and the UAV-UAV communication

range is set as RU = 6 units. In Problems P1 and P2, we look at scenarios with 4 IoT

devices positioned at each corner of the map, specifically at coordinates (4,4), (4,36),

(36,4), and (36,36). The data from these IoT devices is generated at time slots 0, 0,

3, and 5.

Figures 72, 73,74 and 75 illustrate the critical moments (t = 0, 2, 3, and 7) in

the mission of UAVs as obtained by P2 model. From these results, it is clear that

the UAV first collects data from IoT devices 2 and 1 (which start generating data at

time 0) at time slots 0 and 2, respectively. It then proceeds to gather data from IoT

devices 3 and 4 at time slots 3 and 7. The results show that the AoI for each IoT

device is 2, 0, 0, and 2, with a maximum AoI of 2. Note that the results obtained

with P1 has the same max AoI but the solution is obtained in a much longer time as

it requires a connectivity among the UAVs at all times.

In Figures 76, 77,78 and 79, we see CPLEX’s output for P3. This scenario

involves 3 IoT devices and 1 GBS. The UAV-GBS communication range is set as

RG = 2 units. The UAV’s mission is to collect data from the IoT devices and deliver

it to the GBS. The results show that the UAV prioritizes data collection from IoT

devices 1 and 3, which start generating data at time 0. After delivering this data to

the GBS, the UAV then collects data from IoT device 2, yielding a maximum AoI of

4.

Figures 80, 81, and 82 presents heatmap of the UAV mesh network coverage

during their paths. Comparing Fig. 80 and Fig. 81, we observe that our strategy
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in P2 enhances UAV movement efficiency. The UAVs tend to position themselves

near the map’s center, enabling quicker data collection from each IoT device. This

demonstrates the advantage of the critical time concept introduced in P2 over P1.

On the other hand, in P3, the UAVs prioritize collecting data from IoT devices 1 and

3, which have earlier data generation times, before delivering this data to the GBS

and then collecting data from the remaining device.
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Fig. 72. Snapshot of the UAV mesh network at the first critical time. Data generation

time for IoT device 1 is 0.
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Fig. 73. Snapshot of the UAV mesh network at the second critical time. Data gener-

ation time for IoT device 2 is 0.
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Fig. 74. Snapshot of the UAV mesh network at the third critical time. Data generation

time for IoT device 3 is 3.
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Fig. 75. Snapshot of the UAV mesh network at the fourth critical time. Data genera-

tion time for IoT device 4 is 5.
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Fig. 76. The snapshot of the UAV mesh network at critical time 1.
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Fig. 77. The snapshot of the UAV mesh network at critical time 2.
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Fig. 78. The snapshot of the UAV mesh network at critical time 3.

148



0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40
Critical Time 4: 5s

IoT1 IoT2

IoT3 GBS

1

2

3

Fig. 79. The snapshot of the UAV mesh network at critical time 4.
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Fig. 80. Coverage heatmap of UAV mesh network during path in P1.
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Fig. 81. Coverage heatmap of UAV mesh network during path in P2.
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Fig. 82. Coverage heatmap of UAV mesh network during path in P3.
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6.4 Summary of Contributions

We have explored the path planning problem for a UAV mesh network that

collects data from ground IoT devices considering the minimization of the maximum

age of information. We have studied several scenarios where the data delivery to the

backhaul happens through satellite connection as well as through a few existing base

stations in the area. Depending on the scenario and the associated AoI definition

which is determined by the data delivery time to the backhaul, we formulated the

problem using ILP to find the optimal path and mesh topology of UAVs towards

minimizing the max AoI. We have considered relaxed ILP solutions as well to reduce

the time complexity of the solutions. Through simulations, we have shown that the

results in different scenarios are optimal and they have pros and cons to one another.

6.5 Future Works

In our future work, we will consider more realistic communication models and

also study heuristic based solutions which can provide close to optimal ILP results

with a much faster running time.
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CHAPTER 7

CONCLUDING REMARKS

7.1 Our Contributions

In this concluding chapter, we draw together the threads of our research to pro-

vide a holistic perspective on the innovative approaches we have explored in the con-

text of IoT communication, traffic aggregation, and UAV path optimization. These

elements of our study converge to offer novel insights and practical solutions for dy-

namic and resource-constrained IoT and UAV networks environments. Here’s a list

of our contributions:

1. Pioneering Traffic-Shifting-Based Aggregated Communication Model

for IoT Devices:

• Introduced a novel traffic-shifting-based aggregated communication model

for IoT devices.

• Characterized by common Subscriber Identity Module sharing and traffic

shifting.

• Aimed to optimize resource utilization within the core network.

• Explored the complexities of dynamic network scenarios with continuously

entering and exiting devices.

• Addressed unique challenges in traffic aggregation and stability within such

environments.

• Proposed heuristic-based aggregation algorithms as computationally effi-

cient alternatives.
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• Conducted extensive simulations to validate the efficacy of these heuristics

in approximating ILP results while minimizing computational overhead.

2. Practical Experiments with Mobile Devices:

• Conducted practical experiments involving mobile devices.

• Automated connections to the core network for download tasks.

• Confirmed the feasibility of the traffic aggregation concept.

• Demonstrated reductions in core network memory and CPU resource uti-

lization.

3. UAV Path Optimization with Collaborative Approach:

• Explored how UAVs can optimize flight paths while staying within a spec-

ified connectivity limit.

• Introduced a collaborative approach where multiple UAVs act as relays for

each other to minimize outage time.

• Developed mathematical models, including ILP, to find optimal paths for

UAVs.

• Created a simplified solution using graph-based approaches for UAV path

optimization.

• Conducted simulations to show that the simpler solution is almost as good

as the optimal one.

4. Minimizing Maximum AoI for Data Collected by UAVs:

• Addressed the problem of minimizing the maximum AoI for data collected

by UAVs.
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• Developed both ILP-based and heuristic-driven trajectory determination

methods.

• Conducted a comprehensive comparative analysis between these two ap-

proaches across diverse scenarios.

5. AoI in Mesh Networks

• Developed a novel approach using UAVs in a mesh network to enhance

data collection and delivery in minimal infrastructure areas, incorporating

trajectory planning to maintain connectivity.

• Demonstrated the effectiveness of various strategies in minimizing AoI,

comparing outcomes across different models including data transmission

through satellites and to ground base stations.

Our journey began with the introduction of a pioneering traffic-shifting-based

aggregated communication model for IoT devices. This model, characterized by com-

mon Subscriber Identity Module sharing and traffic shifting, seeks to optimize re-

source utilization within the core network. We navigated through the complexities of

dynamic network scenarios, where devices continuously enter and exit the network,

presenting unique challenges in traffic aggregation and stability.

To address these challenges, we initially turned to ILP as a mathematical model

approach. However, we recognized the need for more computationally efficient solu-

tions, leading us to propose heuristic-based aggregation algorithms. Through exten-

sive simulations, we validated the efficacy of our heuristics algorithms, demonstrating

their ability to closely approximate ILP results while minimizing computational over-

head. Moreover, the introduction of a ”smart removal” process between network

moments emerged as a valuable enhancement, further optimizing our approach.
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Our exploration extended beyond theoretical frameworks to practical experi-

ments involving mobile devices. Leveraging readily available smartphones and an

auto-clicking application, we automated connections to the core network for down-

load tasks. This experiment confirmed the feasibility of our traffic aggregation con-

cept, showcasing reductions in core network memory and CPU resource utilization.

These outcomes present a promising solution for enhancing communication efficiency

in scenarios involving a large number of IoT devices.

As another contribution in our research we explore how UAVs that can com-

municate with GBSs can optimize their flight paths while staying within a specified

connectivity limit. We’re looking at a situation where each UAVs needs to travel from

a starting point to a final point, and all the UAVs collaborate to make sure they stay

connected to the GBSs.

Again, we start by setting up a mathematical model and then by utilizing ILP

we find the best paths for the UAVs. Unlike previous studies that focus on single

UAV optimization, we introduce a collaborative approach where multiple UAVs act

as relays for each other to minimize outage time.

To make things more manageable in terms of calculations, we create a simplified

solution using graphs. This graph-based approach makes things easier to compute.

We run simulations, and from the results, we see that our simpler solution is almost

as good as the optimal one. This approach works well for various scenarios.

Our unique perspective incorporated the concept of minimizing the maximum

AoI for data collected by UAVs. To tackle this problem, we developed both ILP-based

and heuristic-driven trajectory determination methods. Simulations across diverse

scenarios enabled us to conduct a comprehensive comparative analysis between these

two approaches, shedding light on their respective strengths and weaknesses.

In summation, our research contributes a multifaceted toolkit for optimizing
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communication in dynamic and resource-constrained environments. Whether through

innovative traffic aggregation techniques for IoT devices, practical experiments on

mobile devices, or UAV path optimization strategies, our work offers valuable insights

and solutions that hold promise for the ever-evolving landscape of modern wireless

communication networks. As we look to the future, the concepts explored here serve

as a foundation for further advancements and applications in this dynamic field.

7.2 Future Works

The study has illuminated the complex process of improving the flight paths

of UAVs by collaboration, and how these paths relate to GBSs both directly and

indirectly. There is still much to uncover in this area. To start, even though our

graph-based method is quick, it doesn’t always find the best path. So, we need to

make it more accurate. As the use of UAVs grows, it will be common to have many

of them flying at once. This means we have to make our method work well with

more UAVs. Also, we want to test how well our heuristic algorithm works in different

conditions. In addtion, we want to:

• Test our method with many UAVs and in various maps.

• Look into using machine learning to improve our route decisions.

• Work with UAVs experts to test our methods in real-life situations.

• Make sure our method works well even with complicated maps.

Overall, we’re looking to push the boundaries and make sure our research helps

in improving how UAVs find their paths when working together. This improvement

may help us in AoI studies.

The current heuristic algorithm to find minimum AoI, while fast and efficient,
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tends to yield less accurate results in scenarios with numerous IoT devices, creating a

gap between heuristic and optimal outcomes. Our research objectives for the future

include:

• Investigating an alternative heuristic algorithm capable of achieving results

closer to optimality, particularly in complex scenarios with a high number of

IoT devices.

• Developing ILP and heuristic algorithms to optimize UAV paths, prioritizing

AoI minimization. Additionally, we will explore collaborative strategies among

multiple UAVs to further reduce AoI. These efforts aim to enhance the accuracy

and efficiency of our approach.
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