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Abstract

One of the most studied data analysis techniques in Numerical Analysis is interpolation.

Interpolation is used in a variety of fields, namely computer graphic design and

biomedical research. Among interpolation techniques, cubic splines have been viewed

as the standard since at least the 1960s, due to their ease of computation, numerical

stability, and the relative smoothness of the interpolating curve. However, cubic splines

have notable drawbacks, such as their lack of local control and necessary knowledge

of boundary conditions. Arguably a more versatile interpolation technique is the

use of B-splines. B-splines, a relative of Bézier curves, allow local control through

knot insertion, do not require knowledge or assumption of boundary conditions for

computation, and have continuous curvature. Another way to exert control on the B-

spline curve is to minimize its roughness. Penalized B-splines, also called P-splines, are

an emerging method of approximation and interpolation formulated in the mid-1990s

by Eilers and Marx. Through definition, example, and application to cerebrovascular

resistance data, we will explore the utility and benefits of P-splines.
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CHAPTER 1

INTRODUCTION

Just after the end of World War II, in 1946, Romanian-American mathematician I.J.

Schoenberg published "Contributions to the Problem of Approximation of Equidistant

Data by Analytic Functions" in Quarterly of Applied Mathematics [1]. It is in this

publication that the word spline is first used to refer to a smooth, piecewise polynomial

function that approximates data. It wasn’t until the late 1950s, however, that further

research into the application of Schoenberg’s splines occurred. This was largely due

to the Computer Revolution, which saw a new interest in computational mathematics

and the problems that could be solved beyond the limits of by-hand computation.

The foremost names during this period were Paul de Casteljau, Pierre Bézier, and

Carl de Boor.

In 1972, de Boor published "On Calculating with B-Splines" in Journal of

Approximation Theory [2] where he revisited the work by Schoenberg from 1946. This

eventually led to the publication of his book A Practical Guide to Splines in 1978

(of which the 2001 revised edition will be further referenced in this thesis), where

de Boor defined a recursive formula for the calculation of B-spline basis functions,

called the Cox-de Boor recursion formula. Research in splines died down until the

mid-1990s when Eilers and Marx published "Flexible Smoothing with B-splines and

Penalties," [3][4]. This publication gave way to a new topic in spline research: the

penalized B-spline, or P-spline.

The motivation for assessing a penalty on the curve is to balance the spline’s

roughness and its approximation of the given data. Eilers and Marx generalized work
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that had been published in 1986 by Finbarr O’Sullivan [4]. O’Sullivan recognized that

the integral of the squared second derivative of the B-spline curve can be expressed as a

quadratic function of the spline’s control points [4], [5]. Eilers and Marx eliminated the

derivative completely and expressed a measure of roughness as the sum of differences

between control points.

This thesis will first define important terms related to B-splines, including the

definition of a spline itself. Splines primarily have two utilities: approximation

and interpolation. We will explore penalization on interpolating B-splines, which

will require defining an interpolation spline. Next, we will build the foundation of

interpolating B-splines by defining the B-spline basis functions and exploring their

properties. Faced with the task of interpolating given data, we will explore two routes.

The de Boor algorithm calculates the value of a B-spline at a value of interest in one

dimension. Lim’s Universal Method simplifies the process of parameterization and

knot vector generation to then easily interpolate in any number of dimensions.

We will then discuss penalization as it relates to reducing curvature and roughness.

Because we are interpolating data and not approximating it, closeness of fit will not be

a factor we will consider. In our discussion of penalization, we will consider briefly the

O’Sullivan penalty and extensively the Eilers and Marx difference penalty. Chapter 5

will demonstrate penalized B-splines on air flow data and briefly discuss limitations to

the concepts presented in this thesis, and conclude with possibilities for future work.
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CHAPTER 2

TERMINOLOGY

2.1 Defining a spline

Before being able to conceptualize mathematically what a penalized spline is, we

must be able to understand to what it is we are referring. Admittedly, it seems that

penalized spline does not have a uniform definition across disciplines, and furthermore

the interdisciplinary use of the term spline itself means that we require careful definition

here to avoid further ambiguity. The reason that it is not simple to find a concise

definition of a spline in relevant literature is that its definition tends to vary by its

purpose. For the purpose of data interpolation, Späth presents the following definition

of a spline interpolant, also referred to as an interpolating spline [6]

Definition 2.1.1 (Interpolating spline). For a non-decreasing sequence u := (ui)
m
0 , an

interpolating spline is a set of m functions sk defined on [uk, uk+1], respectively, with

0 ≤ k ≤ m, that are stitched together so as to be continuously differentiable at every

ui and which satisfy the condition

sk(uk) = yk sk(uk+1) = yk+1

for some values yk and yk+1

We call the values ui the knots. An essential aspect of the definition of a spline,

no matter its utility, is its fundamental structure as a piecewise function. Interpolating

splines need not be comprised of entirely polynomials. However, polynomials lend

themselves to being predictable in their continuity and differentiability, which makes

manipulation between knots and consideration of boundary conditions easier. As such,
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we next define a piecewise polynomial function [7].

Definition 2.1.2 (Piecewise Polynomial Function). Let ζ := (ζi)
l+1
1 be a strictly increas-

ing sequence of points, and let p be a positive integer. If f1, . . . , fl is any sequence of

l polynomials, each of order p (that is, degree < p), then we define the corresponding

polynomial f of order p by

f(x) := fi(x) if ζi < x < ζi+1, 1 ≤ i ≤ l.

A notable discrepancy between Definitions 2.1.1 and 2.1.2 is the defining of u as

a non-decreasing sequence versus the defining of ζ as strictly increasing. This will

not prove to be an issue since our method of B-spline construction (see section 3.4) is

built on the allowance of repeated knots, and so our knot spans (the interval between

a knot and the one after it in the knot sequence) will be half-open intervals, where we

have that [ui, ui+1) and [ui+1, ui+2) are successive knot spans. In fact, this difference

is mostly notational. Definition 2.1.2 does not assume that fi(ζi+1) = fi+1(ζi+1). If

we were to make this assumption in that definition, then we would have a piecewise

polynomial function that interpolates its knots. Cubic splines are just this, with the

requirement that p = 4.

A foundational step of using polynomial interpolating splines is to identify what

degree polynomial is most effective in fitting given data. It is common to choose cubic

polynomials because they offer derivative continuity and have fewer concavity changes

than higher degree polynomials. Interpolation with cubic polynomials is implemented

with cubic splines, which possess the following properties:

1. sj(x) = aj + bj(x−xj)+ cj(x−xj)
2+dj(x−xj)

3 ∀ [xj, xj+1], j = 0, . . . , n−1

where n is the number of knots, aj, bj, cj, dj ∈ R , and [xj, xj+1] is a given knot

span.
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2. si(xi) = yi and si+1(xi+1) = yi+1 for each data point (xi, yi).

3. sj(xj+1) = sj+1(xj+1)

4. s
′
j(xj+1) = s

′
j+1(xj+1)

5. s
′′
j (xj+1) = s

′′
j+1(xj+1)

A cubic spline’s control points are determined by the value of its derivatives at

its endpoints and the function value at the endpoints. We use these to determine

the coefficients on the polynomials that comprise the piecewise function we call the

cubic spline. What is rather limiting about this is that we need the values of all the

control points to determine all the polynomials. One may also hope that if we are

interpolating a data point and we shift said point within an arbitrary neighborhood,

that the rest of the interpolation would not be vastly different, but shifting a point

in a cubic spline has the potential to change the control points, which in turn could

affect the rest of the interpolation.

2.1.1 Bézier or Basis?

In this thesis, we will use the abbreviation B-spline to refer to a basis spline curve

as defined in section 3.1. The reader should be cautioned that the literature across

disciplines may use this abbreviation to refer to Bézier basis curves. Both of these

curve types interpolate points using a basis construction. However Bézier basis curves

use Bernstein polynomials as the chosen basis and interpolate with the de Casteljau

Algorithm [8], [9]. Comparatively, basis spline curves use the Cox-de-Boor recursion

formula to construct the basis and interpolate using de Boor’s Algorithm, which will

be discussed in detail later in this thesis. The construction of Bézier basis curves is

beyond the scope of this thesis.
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CHAPTER 3

MATHEMATICAL CONSTRUCTION OF B-SPLINES

3.1 Background

There are several ways to interpolate data with B-splines. However, all B-spline

interpolations require data points, knots, control points, and parameters. We define

the B-spline basis functions as follows [7], [8], [10]:

Definition 3.1.1 (B-spline basis function). Given a knot vector U = [u0, u1, . . . , um],

the associated i-th B-spline basis function Ni,p(u) of degree p is defined by the function

Ni,0(u) =


1 if ui ≤ u < ui+1

0 otherwise

Ni,p(u) =
u− ui

ui+p − ui

Ni,p−1(u) +
ui+p+1 − u

ui+p+1 − ui+1

Ni+1,p−1(u)

for p > 0 and 0 ≤ i ≤ m.

From this we define the B-spline curve interpolation problem [7], [11].

Definition 3.1.2 (B-spline curve interpolation problem). Given a set of data points

Di ∈ Rk, 0 ≤ i ≤ n, the B-spline curve interpolation problem is to find: (1) the knot

vector U = [u0, . . . , um], (2) the parameter value ti for each Di, 0 ≤ i ≤ n, and (3)

the control points Pi (also called the de Boor points) such that the resulting B-spline

curve

C(u) =
n∑

i=0

Ni,p(u) · Pi

has the property C(ti) = Di for 0 ≤ i ≤ n.

In more common methods of interpolation, such as cubic splines, data points and
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knots are often used as terms interchangeably. In B-spline interpolation, the x-values

of our data points will inform our choice of knots and we will not consider the y-values

until solving a corresponding linear system for the unknown control points. In the

intermediary, we will have to determine a single parameter that corresponds to each

data point such that the interpolated curve evaluated at that parameter is equal to

the data point.

3.2 Basis function and curve properties

The B-spline basis functions Ni,p(u) defined above have the following properties

[7], [8].

1. Ni,p(u) > 0 for ui < u < ui+p+1

2. Ni,p(u) = 0 for u0 ≤ u ≤ ui and ui+p+1 ≤ u ≤ um

3.
n∑

i=0

Ni,p(u) = 1 for up ≤ u ≤ un+1

4. Ni,p(u) has Cp−1 continuity at each knot ui

5. Ni,p(u) has support on the interval [ui, ui+p+1]

de Boor enumerates twelve properties of the B-spline curve function C(u) defined

in Definition 3.1.2. Some of these properties pertain only to the qualities of the basis

functions, which Hoschek and Lasser [8] summarize, while a majority of them are

properties of the spline curve itself. The most discussed property of the spline curve

is its convex hull property [7]. Following from Properties 1, 2, and 3 above, we are

able to say that the spline curve is a convex combination of its control points and the

basis functions. That is,

C(u) =
n∑

i=0

Ni,p(u) · Pi, with Ni,p(u) ≥ 0 and
n∑

i=0

Ni,p(u) = 1 for up ≤ u ≤ un+1.
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If the control points Pi are connected with linear functions, these segments create

a control polygon 1. The convex hull property implies that the B-spline curve lies

below the convex portions of the control polygon and above the concave portions.

Another implication of this property, then, is that the B-spline curve is bounded. In

two dimensions, where control points are ordered pairs (xi, yi), the B-spline curve is

bounded above by

max
0≤i≤n

yi

and below by

min
0≤i≤n

yi.

Figure 1 [9] depicts a B-spline curve with its associated control polygon. The first

four control points form a convex curve underneath which the spline curve sits. The

last four control points form a concave curve above which the spline curve sits.

Fig. 1.: A B-spline curve (bold) with its control polygon (non-bold). Knots are circles and
control points are squares.

Because of the convex hull property of the B-spline curve, we are able to estimate

the visual shape of the B-spline curve given the control polygon.

1The term polygon is misleading in the context where we wish to interpolate points
that do not create a closed curve, but it is the standard terminology in spline curve
literature, so we will continue to use it here.
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3.3 de Boor’s Algorithm

de Boor’s Algorithm [7] provides a method for evaluating the B-spline curve C(u)

at any given point within the bounds of the knot sequence. Considering that C(u) is

constructed to interpolate its knots, the use of de Boor’s algorithm for interpolation

purposes is equivalent to inserting a knot within the knot vector. The algorithm is as

follows:

Given control points Pi with 0 ≤ i ≤ n, knots uj for 0 ≤ j ≤ m, degree
p, and value of interest u:

1. Define k by u ∈ [uk, uk+1)

2. If u ̸= uk, let h = p and s = 0. If u = uk, let s be the multiplicity
of uk in the knot vector and let h = p− s.

3. Set P̂i,0 = Pi for k − p ≤ i ≤ k − s

4. C(u) = P̂k−s,h, where we define, for r = 1, . . . , h and k − p+ r ≤
i ≤ k − s,

P̂i,r = (1− ai,r)P̂i−1,r−1 + ai,rP̂i,r−1 (3.1)

ai,r =
u− ui

ui+p−r+1 − ui

(3.2)

3.3.1 A Brief Example

Let U = [0, 0, 3/5, 6/5, 9/5, 12/5, 3, 3] be the knot vector, p = 3, and our control

points be P0 = 0, P1 = 1/2, P2 = 5/2, P3 = 3. We want to find C(7/5). The steps are

as follows, with the numbering corresponding to the algorithm outlined above.

1. 7/5 ∈ [6/5, 9/5) = [u3, u4), therefore k = 3.

2. 7/5 ̸= 6/5, so we let h = 3 and s = 0.

3. Let P̂3,0, P̂2,0, P̂1,0, P̂0,0 be P3, P2, P1, P0, respectively.

The coefficients aj,r and equations P̂j,r are given in the following tables

10



aj,r Equation Value

a1,1
u−u1

u4−u1
7/9

a2,1
u−u2

u5−u2
4/9

a3,1
u−u3

u6−u3
1/9

a2,2
u−u2

u4−u2
2/3

a3,2
u−u3

u5−u3
2/3

a3,3
u−u3

u4−u3
1/3

P̂j,r Equation Value

P̂0,0 P0 0

P̂1,0 P1 1/2

P̂2,0 P2 5/2

P̂3,0 P3 3

P̂1,1 (1− a1,1)P̂0,0 + a1,1P̂1,0 7/18

P̂2,1 (1− a2,1)P̂1,0 + a2,1P̂2,0 25/18

P̂3,1 (1− a3,1)P̂2,0 + a3,1P̂3,0 23/9

P̂2,2 (1− a2,2)P̂1,1 + a2,2P̂2,1 57/54

P̂3,2 (1− a3,2)P̂2,1 + a3,2P̂3,1 13/6

P̂3,3 (1− a3,3)P̂2,2 + a3,3P̂3,2 231/162

Table 1.: The coefficients and P̂ calculations for the de Boor Algorithm example.

Therefore, C(7/5) = 231/162.

3.4 The Universal Method

While the de Boor Algorithm is able to interpolate without needing to know the

basis functions explicitly, it does require knowledge of control points. The choice of

control points is not always intuitive, especially if the shape of the data is not already

known. For this reason, in 1999, South Korean mathematician Choong-Gyoo Lim

proposed the Universal Method for determining the interpolating B-spline curve given

a set of data points, and it is this method [11] that we will make use of in the rest of

this paper.

The B-spline curve C(u) is a parametric curve. In order to interpolate a set of data

points, we must have a means to associate each data point with a parameter passed into

the spline curve. The process of making this association is called parameterization, and
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there are countless methods to achieve this. Typically, one would first parameterize

and then generate the knot vector. Lim proposes, however, that rather than letting

the choice of data point parameters determine the knot vector, we should let equally

spaced knots determine the parameters. The set up of Lim’s Universal Method for

parameter and control point selection, and the solving for the corresponding B-spline

curve, is described below.

Given n+ 1 data points D0 = (x0, y0), D1 = (x1, y1), . . . , Dn = (xn, yn) (ordered

such that xi < xi+1), and desiring a B-spline interpolating curve of degree p, we require

knots U = [u0, u1, . . . , um]. From Definition 3.1.1, the recursion formula which defines

the B-spline basis functions requires that

N0,p(u) =
u− u0

up − u0

N0,p−1(u) +
up+1 − u

up+1 − u1

N1,p−1(u)

Nn,p(u) =
u− un

un+p − un

Nn,p−1(u) +
un+p+1 − u

un+p+1 − un+1

Nn+1,p−1(u).

Since we will assign one data point parameter per data point Di, and these parameters

will be defined by the maximum of each of the p-th degree basis functions respectively,

we must have n+ 1 p-th degree basis functions. Therefore Nn,p(u) is the last iteration

of the p-th degree basis functions; wo we only require knots u0 to un+p+1. We will

define m = n+ p+ 1.

We will set the first p− 1 knots to be equal to x0 and the last p− 1 knots to be

equal to xn. The remaining p+ 1 knots will divide the range of x0 to xn evenly. The

first knot span will be [u0, u1) and the last will be [um−1, um). For example, if we have

x0 = 1, xn = x6 = 10, and p = 3, then we will require m = 3 + 6 + 1 = 10 — eleven

knots. We will set the first and last p− 1 knots as u0 = u1 = 1 and u10 = u9 = 10,

with the first and last knot spans as [1, 1) and [10, 10), respectively. Since we still

need to allot u2 to u8, we must subdivide the domain evenly. Figure 2 shows the knots
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ui along a line, where knots u0, u1, u9, and u10 have multiplicity 2. Between the end

knots, there are eight knot spans, and so we divide the range of the knots by eight.

Therefore, each knot is 9/8 apart.

u0 = u1 u2 u3 u4 u5 u6 u7 u8 u9 = u10

1 2 3 4 5 6 7 8
Fig. 2.: Knots along a line, with the inner knot spans numbered.

We now have our knot vector U = [u0, u1, u2, . . . , um] and the associated knot

spans [u0, u1), [u1, u2), et cetera. Our next step is to determine our basis functions.

Using Definition 3.1.1, we will find the n+1 p-th degree basis functions. Note that for

m+ 1 knots, we will have m knot spans and m 0-degree basis functions. Because we

have set the first p− 1 knots to be all equal to the same value, and likewise for the last

p− 1 knots, the first and last p− 1 knot spans will result in Ni,0(u) = 0 always, since

there is never a u such that u is both greater than or equal to, and also strictly less

than, one value. We will find, then, that in computing these basis functions towards

creating our interpolating spline curve, we will only need to concern ourselves with

those basis functions that do not utilize an Ni,p−1(u) and Ni+1,p−1(u) that are always

zero at the same time.

After we have found all Ni,p(u) functions, we will choose our data point parameters

ti to be the x-value at which the maximum of each Ni,p(u) occurs. Since we have

chosen one parameter to correspond to one data point, in order to interpolate the

data points exactly we must have

Dk = C(tk) =
n∑

i=0

Ni,p(tk) · Pi
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. After setting these data point parameters, we are left with only one set of unknowns,

which are the control points Pi.

We can find these most efficiently by solving a corresponding linear system. We

can arrange the basis functions into an (n+1)× (n+1) matrix N where, for our data

point parameters t0, . . . , tn,

N =



N0,p(t0) N1,p(t0) · · · Nn,p(t0)

N0,p(t1) N1,p(t1) · · · Nn,p(t1)

...
...

...
...

N0,p(tn) N1,p(tn) · · · Nn,p(tn)


We also define a matrix D with our data points.

D =



x0 y0

x1 y1
...

...

xn yn


We can now solve for the matrix P , which will have the same dimensions as D. The

corresponding equation is

D = NP

and so

P = N−1D

Upon solving this system, we have our control points and thus the interpolating

B-spline curve.
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3.5 Example

Suppose we wish to interpolate the data points D0 = (0, 1), D1 = (1.5, 0.5), D2 =

(2, 3), D3 = (3, 0.25) with a B-spline curve of degree 3 using Lim’s Universal Method.

We have four data points, so n = 3 and our degree p = 3. The number of m+ 1 knots

is governed by the equation m = p+ n+ 1, so we have m = 3 + 3 + 1 = 7, therefore

we need eight knots. We set the first p − 1 knots, u0, u1, to be equal to 0 and the

last p− 1 knots, u6, u7 to be equal to 3. We then choose the remaining p+ 1 knots

to divide the range of x values evenly. Figure 3 shows the inner knot intervals on a

number line.
u0 = u1

0

u2

3
5

u3 u4 u5 u6 = u7

6
5

9
5

12
5 3

Fig. 3.: Knot intervals on a number line for eight equidistant knots between 0 and 3.

We will write the knot vector as

U =

[
0 0 3

5
6
5

9
5

12
5

3 3

]
.

Next, we must compute all the basis functions using the recursion formula

in Definition 3.1.1. Separating the knot vector into its knot spans gives [u0, u1) =

[0, 0), [u1, u2) = [0, 3/5) , [u2, u3) = [3/5, 6/5) , [u3, u4) = [6/5, 9/5) , [u4, u5) = [9/5, 12/5) , [u5, u6) =

[12/5, 3) , and [u6, u7) = [3, 3). The basis functions on the relevant intervals are con-

tained in Tables 1-4. For the sake of brevity beyond the 0-th degree, where a basis

function’s equation is not given for an interval, it is assumed to be 0.
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Table 2.: B-spline example Degree 0 basis functions.

Degree 0

Basis Function Equation Interval

N0,0(u) 0 everywhere

N1,0(u) 1 [0, 3/5)

0 elsewhere

N2,0(u) 1 [3/5, 6/5)

0 elsewhere

N3,0(u) 1 [6/5, 9/5)

0 elsewhere

N4,0(u) 1 [9/5, 12/5)

0 elsewhere

N5,0(u) 1 [12/5, 3)

0 elsewhere

N6,0(u) 0 everywhere
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Table 3.: B-spline example Degree 1 basis functions.

Degree 1

Basis Function Equation Interval

N0,1(u) 1− 5
3
u [0, 3/5)

N1,1(u)
5
3
u [0, 3/5)

2− 5
3
u [3/5, 6/5)

N2,1(u)
5
3
u− 1 [3/5, 6/5)

3− 5
3
u [6/5, 9/5)

N3,1(u)
5
3
u− 2 [6/5, 9/5)

4− 5
3
u [9/5, 12/5)

N4,1(u)
5
3
u− 3 [9/5, 12/5)

5− 5
3
u [12/5, 3)

N5,1(u)
5
3
u− 4 [12/5, 3)
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Table 4.: B-spline Degree 2 basis functions.

Degree 2

Basis Function Equation Interval

N0,2(u) −25
9
u2 + 35

18
u [0, 3/5)

25
18
u2 − 10

3
u+ 2 [3/5, 6/5)

N1,2(u)
25
18
u2 [0, 3/5)

−25
9
u2 + 5u− 3

2
[3/5, 6/5)

25
18
u2 − 5u+ 9

2
[6/5, 9/5)

N2,2(u)
25
18
u2 − 5

3
u+ 1

2
[3/5, 6/5)

−25
9
u2 + 25

3
u− 11

2
[6/5, 9/5)

25
18
u2 − 20

3
u+ 8 [9/5, 12/5)

N3,2(u)
25
18
u2 − 10

3
u+ 2 [6/5, 9/5)

−25
9
u2 + 35

3
u− 23

2
[9/5, 12/5)

25
18
u2 − 25

3
u+ 25

2
[12/5, 3)

N4,2(u)
25
18
u2 − 5u+ 9

2
[9/5, 12/5)

−25
6
u2 + 65

3
u− 55

2
[12/5, 3)
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Table 5.: B-spline example Degree 3 basis functions.

Degree 3

Basis Function Equation Interval

N0,3(u)
5
6
u
(
10
3
u− 75

18
u
)
+
(
1− 5

9
u
)

25
18
u2 [0, 3/5)

5
6
u
(
25
18
u2 − 10

3
u+ 2

)
+
(
1− 5

9
u
) (

−25
9
u2 − 5u− 3

2

)
[3/5, 6/5)(

1− 5
9
u
) (

25
18
u2 − 5u+ 9

2

)
[6/5, 9/5)

N1,3(u)
5
9
u
(
25
18
u2
)

[0, 3/5)

5
9
u
(
−25

9
u2 + 5u− 3

2

)
+
(
4
3
− 5

9
u
) (

25
18
u2 − 5

3
u+ 1

2

)
[3/5, 6/5)

5
9
u
(
25
18
u2 − 5u+ 9

2

)
+
(
4
3
− 5

9
u
) (

−25
9
u2 + 25

3
− 11

2

)
[6/5, 9/5)(

4
3
− 5

9
u
) (

25
18
u2 − 20

3
u+ 8

)
[9/5, 12/5)

N2,3(u)
(
5
9
u− 1

3

) (
25
18
u2 − 5

3
u+ 1

2

)
[3/5, 6/5)(

5
9
u− 1

3

) (
−25

9
u2 + 25

3
u− 11

2

)
+
(
5
3
− 5

9
u
) (

25
18
u2 − 10

3
u+ 2

)
[6/5, 9/5)(

5
9
u− 1

3

) (
25
18
u2 − 20

3
u+ 8

)
+
(
5
3
− 5

9
u
) (

−25
9
u2 + 35

3
− 23

2

)
[9/5, 12/5)(

5
3
− 5

9
u
) (

25
18
u2 − 25

3
u+ 25

2

)
[12/5, 3)

N3,3(u)
(
5
9
u− 2

3

) (
25
18
u2 − 10

3
u+ 2

)
[6/5, 9/5)(

5
9
u− 2

3

) (
−25

9
u2 + 35

3
u− 23

2

)
+
(
5
2
− 5

6
u
) (

25
18
u2 − 5u+ 9

2

)
[9/5, 12/5)(

5
9
u− 2

3

) (
25
18
u2 − 25

3
u+ 25

2

)
+
(
5
2
− 5

6
u
) (

−25
6
u2 + 65

3
− 5

2

)
[12/5, 3)
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Though we must calculate the degree 0, 1, and 2 basis functions in order to

obtain the degree 3 functions, we are only concerned with the degree 3 functions in

the calculation of the data point parameters. We choose these parameters to be the

u-value of the maximum of each degree 3 basis function Ni,3(u). Below is a graph of

each basis function with the coordinates of the maximum value labeled.

Fig. 4.: Each basis function with their respective maximum values.

The data point parameters will be t0 = 0.66207, t1 = 1.20401, t2 = 1.79599,

and t3 = 2.33779, corresponding to the data points D0, D1, D2, and D3, respectively.

The matrix N , which is the matrix of each degree 3 basis function evaluated at each

parameter ti is

N =



0.59647 0.22332 1.85746× 10−4 0

0.16334 0.66662 0.17003 4.98799× 10−8

4.98799× 10−8 0.17003 0.66662 0.16334

0 1.85746× 10−4 0.22332 0.59647


.
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The symmetry of this matrix is unique only to this particular problem and is not

a property of all matrices N of this form. The system we are then presented with to

solve for the control points is

P =



0.59647 0.22332 1.85746× 10−4 0

0.16334 0.66662 0.17003 4.98799× 10−8

4.98799× 10−8 0.17003 0.66662 0.16334

0 1.85746× 10−4 0.22332 0.59647



−1 

0 1

1.5 0.5

2 3

3 0.25


Determination of N−1 and the matrix multiplication problem N−1D are subject to

the expected constraints of computational complexity and efficiency. There is the

possibility that N may be singular, which leads to an inability to find the inverse. If

the inverse of N cannot be found, then N−1D cannot be computed and thus we cannot

find the control points. As well, the size of N presents restraints to computational

time both in finding the inverse, if there is one, and in computing the product N−1D.

The larger N is, the more computationally taxing it is to find the inverse and multiply

on either side of N . For the purposes of this exposition, we will exploit built-in solvers

in MATLAB [12] As such, P is calculated to be

P =



−0.78527 2.07562

2.09623 −1.07016

1.35783 5.14225

4.52058 −1.50584


.

The i-th row of P corresponds to the i-th control point Pi. Since our data points Di

are ordered pairs, the control points are also. Thus P0 = (−0.78527, 2.07562), P1 =

(2.09623,−1.07016), et cetera. As mentioned in section 3.4, C(u) is a parameterized
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function, and so we express any given coordinate (x(u), y(u)) on the B-spline curve by

x(u) = −0.78527 ·N0,3(u) + 2.09623 ·N1,3(u) + 1.35783 ·N2,3(u) + 4.52058 ·N3,3(u)

y(u) = 2.07562 ·N0,1(u)− 1.07016 ·N1,3(u) + 5.14225 ·N2,3(u)− 1.50584 ·N3,3(u)

for some 0 ≤ u ≤ 3. The graph of the B-spline curve and the associated control

polygon is depicted in Figure 5.

Fig. 5.: The curve C(u) in blue, with the interpolated points as asterisks. The dashed line
is the control polygon with the control points marked as an X.
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CHAPTER 4

PENALIZATION

4.1 Motivation and Formulation

In Figure 5, we observe between D2 and D3 a bulging of the interpolating B-spline

curve C(u). The curvature for a parametric curve is defined as

κ =
|x′y′′ − y′x′′|

((x′)2 + (y′)2)3/2
.

The derivatives of x(u) and y(u) are calculated with respect to the parameter u.

Calculating curvature aims to quantify how much a curve deviates from a straight line.

As such, the curvature of a straight line is 0. For the spline curve depicted in Figure

5, the maximum curvature κ between D2 and D3 is calculated to be approximately

5.73 at u ≈ 2.216. Without knowledge of data between D2 and D3, we have no reason

to assume that there is an increased curvature between those data points. We may

then wish to reduce this curvature to facilitate a smoother interpolation. Assessing a

penalty on the control points is one way to achieve a smoother curve.

Much of the literature that discusses penalization surveyed for this thesis is

written in the context of using splines to approximate a function given data, rather

than interpolating it. As such, the formulations of the assessed penalty in the literature

include a term aiming to account for closeness to a known solution by minimization

of a least squares objective. This term is not relevant to the discussion of this thesis

as we are considering spline curves that interpolate the data exactly, regardless of

whether there is an exact function the data is supposed to fit. We will not neglect

this approximation term altogether; it will simply evaluate to 0 and is a moot point

in the ensuing discussion. Subsequently, we will discuss penalization as it relates to
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reducing curvature, not as it relates to closeness of fit.

Nonetheless we aim to minimize

||D −NP ||2+λ · PEN(P ) (4.1)

where D, N , and P are as defined in Chapter 3 [13]. PEN(P ) is a placeholder for the

chosen quantification of roughness to be discussed in subsequent sections. λ ∈ R is a

parameter allowing for fine-tuning of the roughness quantity, and the norm ||·|| is the

Euclidean norm.

It should be noted that since we have constructed N and P such that D = NP ,

the first term will be equal to zero for an interpolation problem. Therefore, we are

truly only seeking to minimize λ · PEN(P ).

4.2 The O’Sullivan Penalty

One way we may try to reduce this curvature is by minimizing the second

derivative of the B-spline curve. We would need to minimize the coefficients on the

terms containing up−2, up−3, . . . , u. Unfortunately, since the basis functions of the

B-spline curve are constructed with a knot vector that facilitates interpolation of the

data points, we cannot alter these coefficients, or we will sacrifice the interpolation.

Another option is to minimize the integral of the second derivative. The higher the

curvature of the B-spline curve, the higher the area underneath it.

It is important to remember that the penalty is a function of the control points.

As such, we minimize the penalty by altering our choice in control points. The first

term of (4.1) above is a least-squares problem. We can also apply a least-squares

approach to the second derivative. Using the square of the second derivative as a

roughness quantity is introduced first by Reinsch [14], but its application to B-splines

is attributed to O’Sullivan in 1986 [3], [5]. The derivative penalty applied to a B-spline
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curve, sometimes called an O-spline[13], is

λ

∫ un

u0

{C ′′(u)}2 du = λ

∫ un

u0

{
n∑

j=0

Pj ·N ′′
j,p(u)

}2

du (4.2)

4.3 The Standard P-Spline

Another approach to a penalty on a B-spline is to minimize the difference between

control points. Recall that we have defined our knot vector to specifically be uniform,

meaning the knots of multiplicity 1 are evenly spaced. Using a different method

for choosing the knots will inherently change how we choose the parameters that

correspond to our data points. Other methods of knot vector generation (and by

extension parameterization) include the chordal, centripetal, and Foley methods. Lim

[11] argues that there is no overall advantage in these other knot vector generation

choices over the uniform choice in interpolation problems. Part of the justification for

this is that B-spline curves are transformation invariant for the same knot vector and

parameterization. Lim defines this in a lemma, given here with adapted notation and

terminology.

Lemma 1. Suppose that Pi and P ∗
i , 0 ≤ i ≤ n are two lists of control points such that

PiM = P ∗
i , where M is a transformation matrix. Define the B-spline curves

C(u) =
n∑

i=0

PiNi,p(u) and C∗(u) =
n∑

i=0

P ∗
i N

∗
i,p(u)

for degree p. If the same knot vector U = (u0, u1, . . . , um) is used both for Ni,p(u) and

for N∗
i,p(u), then the B-spline curve is transformation invariant, i.e., C(u)M = C∗(u)

for all u ∈ [u0, un].

When Li and Cao [13] discuss penalties on B-splines, they make a necessary

delineation for a penalty on those with uniform knots and with non-uniform knots.

This is because in an approximation problem, what we will define as the standard
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difference penalty fails to measure roughness in the valleys of the approximating spline.

Li and Cao subsequently call a uniform B-spline with a difference penalty a standard

P-spline and a non-uniform B-spline with a difference penalty a generalized P-spline.

Owing to our knot vector formulation in Chapter 3, we will consider the standard

P-spline (SPS).

We first define the order-1 difference ∆Pi, sometimes called the first ordered

difference,

∆Pi = Pi − Pi−1

for our control points Pi. The order-2 difference is defined by applying the operator

∆ to the order-1 difference. Thus

∆2Pi = ∆∆Pi

= ∆(Pi − Pi−1)

= (Pi − Pi−1)− (Pi−1 − Pi−2)

= Pi − 2Pi−1 + Pi−2

Similarly, the order-3 difference ∆3Pi is Pi − 3Pi−1 + 3Pi−2 + Pi−3. We can define the

order-k difference ∆kPi as applying ∆ a k number of times [15] It is important to note

that since the k -th ordered difference requires control points Pi, Pi−1, . . . , Pi−k and we

must have that i− k ≥ 0 so that there are no negative indices, then i ≥ k. We can

now define the standard difference penalty as

λ

p∑
i=k

(∆kPi)
2

Since ∆ is a linear map, ∆ can be expressed in a matrix formulation. Let D be ∆
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expressed a matrix. The order-1 difference matrix D has entries dij such that

dij = −1, when i = j

dij = 1, when i+ 1 = j

dij = 0, otherwise.

The order-2 difference matrix D2 with entries dij is

dij = 1, when i = j and i+ 2 = j

dij = −2, when i+ 1 = j

dij = 0, otherwise

and the order-3 difference matrix D3 with entries dij

dij = 1, when i = j and i+ 3 = j

dij = −3, when i+ 1 = j

dij = 3, when i+ 2 = j

dij = 0, otherwise.

The size of Dk is (p− k + 1)× (n+ 1). The number of columns comes from having

n+ 1 control points since we have n+ 1 data points. The number of rows comes from

the fact that in the summation expression of the standard difference penalty, we sum

from k to p, meaning there are p − k + 1 terms of the summation. To then square

each term of the sum is, in matrix formulation, equivalent to calculating the square of

the Euclidean norm of Dk applied to the matrix of control points. Therefore, we can

rewrite the standard difference penalty as

λ||DkP ||2.
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Note that the number of columns of P does not matter. In section 3.5, we calculated

P to be a 4 × 2 matrix because we were desiring a curve in the x, y-plane. With

control points as ordered pairs, the product DkP will be a matrix of size p− k+1× 2.

4.4 Brief comments on choosing λ

There are many proposed methods for choosing λ optimally. The two most

common of which are by minimizing generalized cross-validation (GCV) score or

maximizing restricted likelihood (REML) [3], [16]–[18]. While these methods are

useful for many large scale approximation problems, especially in approximation

problems where large intervals are missing data, it is not necessary to find a precise

λ, especially because there is not a significant change in the B-spline curve when λ

is changed by 10% or less [15]. In fact, Li and Cao [16] aim only to find an optimal

interval for λ rather than a specific value. Eilers and Marx discuss choosing λ by

minimizing cross-validation score (CV). They define cross-validation score as

CV =

√√√√ n∑
i=0

(Di − µ̂i)2

n(1−Hi+1,i+1)2

where Di, 0 ≤ i ≤ n are the n+1 data points being interpolated. We define µ̂i = HDi,

where H = N(NTN +DT
k Dk)

−1NT is an (n+1)× (n+1) matrix called the hat matrix.

The derivation and importance of this matrix is discussed in [3], [15], [16], [18], and

[19].

Upon determining the optimal λ, we find the ideal control points P̃ by the

equation P̃ = (NTN + λDT
k Dk)

−1NTD [15].

4.5 Application

With the publication of their book in 2021, Eilers and Marx published an R

package, JOPS, in the Comprehensive R Archive Network (CRAN) [20], [21]. This
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package contains the method psNormal which calculates the control points and

function values of a P-spline optimally approximating the data passed in as a required

argument. Eilers and Marx [15] assert that any approximation with the psNormal

function can become an interpolation by increasing the number of evenly spaced

segments between the maximum and minimum x-values and plotting on a finer x grid.

We have applied the psNormal function to the data defined in section 3.5. We chose

1000 evenly spaced segments, B-spline degree equal to 3, an order-2 difference penalty,

λ = 1, and an x-grid of 100 values. Figure 6 is the resulting plot of the P-spline.

Fig. 6.: P-spline of section 3.5 data.

The psNormal function considers the roughness across the entire domain and

so there is a trade-off: in order to reduce the overall roughness in intervals like that

between D2 and D3, some of the roughness is “redistributed” to other portions of the

29



curve, such as between D0 and D1. In this example, the “redistribution” results in a

curve closely approximating a cubic function.

30



CHAPTER 5

APPLICATION AND CONCLUSION

In this final chapter, we will apply our discussions to cerebrovascular resistance data.

First, we will apply a B-spline generated using Lim’s Universal Method. Next, we

will apply a P-spline with the aid of the JOPS R package. We will conclude with

identifying the limitations to the study of the concepts in this thesis and posit ideas

for future work.

5.1 Application to Cerebrovascular Resistance Data

We now apply our discussion of B-splines and penalization to a set of data points

that was a piecewise linear optimized output from Ellwein et al [22]. This data,

depicted in Figure 7, appear to resemble but not exactly replicate a decreasing sigmoid.

We hypothesize that the oscillations are artifacts rather than exact representations of

the underlying physiology. We are interested if the splines discussed here can give a

continuous functional form that could resemble the dynamics and be used to predict

resistance at different time points.
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Fig. 7.: Cerebrovascular resistance data. Red asterisks are points to be interpolated with a
B-spline and P-spline.

We first fit an interpolating B-spline curve to the data points marked by a red

asterisk in Figure 7, which were chosen to delineate a smooth curve for this data.
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That is, our data matrix D is defined as

D =



0 2.727

60 2.765

180 2.797

240 2.822

260 2.844

310 2.496

360 2.522

450 2.542


5.1.1 B-spline construction

Let us use p = 3. We choose this p to avoid the roughness of higher degree

basis functions and to avoid the limitations of only using parabolas to try and fit the

data. With n = 7, we must have m = 11, and therefore 12 knots. The first and last

p − 1 knots will be set at 0 and 450, respectively. Thus we have u0 = u1 = 0 and

u10 = u11 = 450. We allot the middle nine knots to evenly divide 450. Each knot is

then 450/9 = 50 units apart. In Appendix A, Table 5 exhibits the knot values, and

the subsequent knot spans upon which the basis functions will be constructed.

With the knot spans, we can construct eight degree 3 basis functions, the com-

putational details of which are also included in Appendix A. Eight basis functions

yields eight maximum values to be assigned as parameters corresponding to our eight

data points. Our matrix N is then of size 8× 8. We solve the system D = NP for

the matrix P of control points, as is described in Section 3.4. We are then able to

evaluate C(u) at each value in a vector of equally spaced u values between 0 and 450

to get coordinates along the interpolating B-spline curve. Figure 8 shows the resulting

plot of C(u) with the interpolated values marked by red asterisks.
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Fig. 8.: B-spline interpolating curve for cerebrovascular resistance data

Visually, the B-spline curve does well to interpolate D2 to D5 without drastic

changes in curvature. The ends of the curve, however, do not fare as well in their

smoothness, reaching sharp peaks between knots that seem an unjustified assumption

given the general trend of the data. This is an example of when using a P-spline would

be beneficial.

5.1.2 P-spline interpolation

Using the JOPS R package introduced in Chapter 4, we apply a 500 knot-span

P-spline with an order-2 difference penalty on 100 evenly spaced points between 0 and

450. λ is set to 1, thereby eliminating any fine-tuning of the roughness of the curve
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and leaving the minimization of roughness entirely to the choice of control points. The

graphical results are depicted in Figure 9.

Fig. 9.: P-spline interpolation for cerebrovascular resistance data

The P-spline has kept much of the B-spline smoothness between D2 and D5 with

only subtle adjustments to concavity between D2 and D4. The majority of the work of

the P-spline was in reducing the drastic peaks between the first two and last two data

points. The P-spline is certainly not perfect, as even though the curve is substantially

smoother between D5 and D7 than in the B-spline without penalty, we may desire to

reduce the roughness even further. This would be best achieved with knowledge of

data between these two points. Interestingly, the data set from which we extracted

our interpolating data in Figure 7 does curve between D6 and D7 similarly to what

was predicted by the P-spline. However, this phenomenon seems to be coincidental,
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as the P-spline was calculated without providing any knowledge of this portion of the

data and we would anticipate that the P-spline would be calculated only based on the

data provided regardless of any other data existing.

5.2 Concluding Remarks

5.2.1 Limitations

Calculating with B- and P-splines was not without its difficulties. Early on, we

discovered how sensitive B-spline construction is to truncation error. In the early

stages of understanding how to interpolate with B-splines, we attempted to interpolate

the example in Section 3.5 by hand. This included calculating the basis functions

and their maxima analytically. As the maxima were not integer values, we wrote

them down up to three decimal places and carried this truncation through to the

rest of the computations. When it came to evaluating C(u) at various u-values for

plotting purposes, this would ultimately place a u-value into the neighboring knot

span that it should not have been in, which led to an entirely different evaluation in

the basis functions. For example, in Section 3.5 we calculate the maximum value t2

corresponding to N2,3(u) to be 1.79599, just shy of being included in the knot span

[9/5, 12/5). We recorded the value of t2 on paper as 1.80, merely a four-thousandths

difference. Yet when we evaluated C(u) at u = t2 in order to plot the B-spline

curve, t2 was evaluated within [9/5, 12/5), when it should have been evaluated in

[6/5, 9/5). This difficulty was easily overcome by coding the entire computation

process so that calculations were stored in MATLAB’s 16-digit precision and carried

through computation at a higher precision than is feasible to write down.

Another difficulty encountered was in the computation of optimal control points

in the P-spline. Eilers and Marx present a formula for the optimal control points,
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given a matrix N of the basis functions evaluated at equally spaced values, an order-k

difference matrix Dk, and a given λ. In an approximation problem, we can multiply

(NTN + λDT
k Dk)

−1 on the right by NTy with data values contained in y to get the

optimal control points. However, this merely constructs a P-spline approximating

the data, not interpolating it. In order to interpolate the data, we need to plot on a

fine grid along many knot spans, which requires an increasing number of knots. The

number of knot spans required to achieve the interpolation from the approximation

is not intuitive and requires much trial and error. This all lends itself to relying on

numerical methods to handle the computational legwork. The Universal Method, while

choosing control points informed by the data we are interpolating, does not take into

account any roughness of the curve it computes. Furthermore, the de Boor Algorithm

becomes moot because it requires knowledge of the control points to begin with. So

we are faced with two choices, neither of which is ideal: (1) easily compute a curve

that interpolates the points we desire, but potentially be left with an unnecessarily

rough curve, as in Figure 8; or (2) compute control points that minimize the roughness

of the B-spline, but be left with the work of forcing the interpolation afterwards.

Finally, much of the literature regarding not just P-splines but B-splines in

general is dedicated to approximation problems, not interpolation. Research on P-

spline approximation presents another layer to explore due to not only aiming to

minimize roughness, but to also maximize closeness of fit to the data. However, we

argue that this should not reduce interpolation problems to a sort of “base case” or

simplification on which approximation problems are founded. Rather, interpolation

problems present their own layer of complexity to the conversation surrounding B- and

P-splines, as it seems even more of a restriction to require the data to be an exact fit

rather than simply a close fit. Leading into our discussion of future work in this area,

a conversation surrounding the value of interpolation versus that of approximation
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seems long overdue.

5.2.2 Future Work

Throughout chapters 3 and 4, we used only uniformly spaced knot vectors. This

was for both ease of computation and because both Lim [11] and Eilers and Marx [15]

assert that there is no significant advantage of using a different knot vector generation

technique. Nonetheless, it would be interesting see how other techniques affect the

resulting B-spline.

We could also choose a different parameterization of our interpolating B-spline.

We must determine a parameter value to correspond to our data points, but choosing

the maximum of the basis functions is not the only option. The chordal method

for parameterization is ideal when the data to be interpolated closely follows the

control polygon. In this case, the choice of parameters can be approximated with the

parameter corresponding to the nearest control point. The centripetal method extends

the chordal method to reduce the angle at which the B-spline curves at the junctures

of the control polygon segments. It may be worth discovering if the centripetal method

diminishes the utility of P-splines.

There is much instructional text about elevating the degree of a B-spline. We

have chosen to use p = 3 in this thesis because this causes the basis functions to be

cubic, subsequently making every Ni,3(u) similar to a cubic spline, the utility of which

is not to be overlooked. Future work may involve varying p to understand if there is

an optimal choice of degree given the number of data points to be interpolated and

the parameterization method chosen.
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Appendix A

COMPUTATIONS FOR CEREBROVASCULAR RESISTANCE DATA

Knots Knot spans

0
[0, 0)

0
[0, 50)

50
[50, 100)

100
[100, 150)

150
[150, 200)

200
[200, 250)

250
[250, 300)

300
[300, 350)

350
[350, 400)

400
[400, 450)

450
[450, 450)

450

Table 6.: Knot values and knot spans for the cerebrovascular resistance data B-spline
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Table 7.: Degree 0 Basis Functions for Cerebrovascular Resistance Data B-spline

Degree 0

Basis Function Equation Interval

N0,0(u) 0 everywhere

N1,0(u) 1 [0, 50)

0 elsewhere

N2,0(u) 1 [50, 100)

0 elsewhere

N3,0(u) 1 [100, 150)

0 elsewhere

N4,0(u) 1 [150, 200)

0 elsewhere

N5,0(u) 1 [200, 250)

0 elsewhere

N6,0(u) 1 [250, 300)

0 elsewhere

N7,0(u) 1 [300, 350)

0 elsewhere

N8,0(u) 1 [350, 400)

0 elsewhere

N9,0(u) 1 [400, 450)

0 elsewhere

N10,0(u) 0 everywhere
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Table 8.: Degree 1 Basis Functions for Cerebrovascular Resistance Data B-spline

Degree 1

Basis Function Equation Interval

N0,1(u) 1− 1
50
u [0, 50)

N1,1(u)
1
50
u [0, 50)

2− 1
50
u [50, 100)

N2,1(u)
1
50
u− 1 [50, 100)

3− 1
50
u [100, 150)

N3,1(u)
1
50
u− 2 [100, 150)

4− 1
50
u [150, 200)

N4,1(u)
1
50
u− 3 [150, 200)

5− 1
50
u [200, 250)

N5,1(u)
1
50
u− 4 [200, 250)

6− 1
50
u [250, 300)

N6,1(u)
1
50
u− 5 [250, 300)

7− 1
50
u [300, 350)

N7,1(u)
1
50
u− 6 [300, 350)

8− 1
50
u [350, 400)

N8,1(u)
1
50
u− 7 [350, 400)

9− 1
50
u [400, 450)

N9,1(u)
1
50
u− 8 [400, 450)
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Table 9.: Degree 2 Basis Functions for Cerebrovascular Resistance Data B-spline

Degree 2

Basis Function Equation Interval

N0,2(u) − 1
2500

u2 + 1
25
u [0, 50)

1
5000

u2 − 1
25
u+ 2 [50, 100)

N1,2(u)
1

5000
u2 [0, 50)

− 1
5000

u2 − 1
100

u+ 3
2

[50, 100)

1
5000

u2 − 3
50
u− 9

2
[100, 150)

N2,2(u)
1

5000
u2 − 1

50
u− 1

2
[50, 100)

− 1
2500

u2 + 1
25
u− 11

2
[100, 150)

1
5000

u2 − 1
25
u+ 8 [150, 200)

N3,2(u)
1

5000
u2 − 1

25
u+ 2 [100, 150)

− 1
2500

u2 + 11
22
u− 23

2
[150, 200)

1
5000

u2 − 1
10
u+ 25

2
[200, 250)

N4,2(u)
1

5000
u2 − 1

16
u+ 9

2
[150, 200)

− 3
5000

u2 + 3
25
u− 15

2
[200, 250)

1
5000

u2 − 49
400

u+ 18 [250, 300)

N5,2(u)
1

5000
u2 − 2

25
u+ 8 [200, 250)

− 1
2500

u2 + 9
200

u− 59
2

[250, 300)

1
5000

u2 − 1
50
u+ 49

2
[300, 350)

N6,2(u)
1

5000
u2 − 1

5
u+ 25

2
[250, 300)

− 1
2500

u2 + 57
400

u− 83
2

[300, 350)

1
5000

u2 − 4
25
u+ 32 [350, 400)
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N7,2(u)
1

5000
u2 − 3

25
u+ 18 [300, 350)

− 1
2500

u2 + 3
10
u− 111

2
[350, 400)

1
5000

u2 − 9
50
u+ 81

2
[400, 450)

N8,2(u)
1

5000
u2 − 7

50
u+ 49

2
[350, 400)

− 3
5000

u2 + 1
2
u− 207

2
[400, 450)
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Table 10.: Degree 3 Basis Functions for Cerebrovascular Resistance Data B-spline

Degree 3

Basis Function Equation Interval

N0,3(u)
1

100
u
(
− 1

2500
u2 + 1

25
u
)
+
(
1− 1

150
u
) (

1
500

u2
)

[0, 50)

1
100

u
(

1
5000

u2 − 1
25
u+ 2

)
+
(
1− 1

150
u
) (

− 1
5000

u2 − 1
100

u+ 3
2

)
[50, 100)(

1− 1
150

u
) (

1
5000

u2 − 3
50
u− 9

2

)
[100, 150)

N1,3(u)
1

150
u
(

1
500

u2
)

[0, 50)

1
150

u
(
− 1

5000
u2 − 1

100
u+ 3

2

)
+
(
4
3
− 1

150
u
) (

1
5000

u2 − 1
50
u− 1

2

)
[50, 100)

1
150

u
(

1
5000

u2 − 3
50
u− 9

2

)
+
(
4
3
− 1

150
u
) (

− 1
2500

u2 + 1
25
u− 11

2

)
[100, 150)(

4
3
− 1

150
u
) (

1
5000

u2 − 1
25
u+ 8

)
[150, 200)

N2,3(u)
(

1
150

u− 1
3

) (
1

500
u2 − 1

50
u− 1

2

)
[50, 100)(

1
150

u− 1
3

) (
− 1

2500
u2 + 1

25
u− 11

2

)
+
(
5
3
− 1

150
u
) (

1
5000

u2 − 1
25
u+ 2

)
[100, 150)(

1
150

u− 1
3

) (
1

5000
u2 − 1

25
u+ 8

)
+
(
5
3
− 1

150
u
) (

− 1
2500

u2 + 11
200

u− 23
2

)
[150, 200)(

5
3
− 1

150
u
) (

1
5000

u2 − 1
10
u+ 25

2

)
[200, 250)

N3,3(u)
(

1
150

u− 2
3

) (
1

500
u2 − 1

25
u+ 2

)
[100, 150)(

1
150

u− 2
3

) (
− 1

2500
u2 + 11

200
u− 23

2

)
+
(
2− 1

150
u
) (

1
5000

u2 − 1
16
u+ 9

2

)
[150, 200)(

1
150

u− 2
3

) (
1

5000
u2 − 1

10
u+ 25

2

)
+
(
2− 1

150
u
) (

− 3
5000

u2 + 3
25
u− 15

2

)
[200, 250)(

2− 1
150

u
) (

1
5000

u2 − 49
400

u+ 18
)

[250, 300)

N4,3(u)
(

1
150

u− 1
) (

1
500

u2 − 1
16
u+ 9

2

)
[150, 200)(

1
150

u− 1
) (

− 3
5000

u2 + 3
25
u− 15

2

)
+
(
7
3
− 1

150
u
) (

1
5000

u2 − 2
25
u+ 8

)
[200, 250)(

1
150

u− 1
) (

1
5000

u2 − 49
400

u+ 18
)
+
(
7
3
− 1

150
u
) (

− 1
2500

u2 + 9
200

u− 59
2

)
[250, 300)(

7
3
− 1

150
u
) (

1
5000

u2 − 1
50
u+ 49

2

)
[300, 350)
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N5,3(u)
(

1
150

u− 4
3

) (
1

5000
u2 − 2

25
u+ 8

)
[200, 250)(

1
150

u− 4
3

) (
− 1

2500
u2 + 9

200
u− 59

2

)
+
(
8
3
− 1

150
u
) (

1
5000

u2 − 1
5
u+ 25

2

)
[250, 300)(

1
150

u− 4
3

) (
1

5000
u2 − 1

50
u+ 49

2

)
+
(
8
3
− 1

150
u
) (

− 1
2500

u2 + 57
400

u− 83
2

)
[300, 350)(

8
3
− 1

150
u
) (

1
5000

u2 − 4
25
u+ 32

)
[350, 400)

N6,3(u)
(

1
150

u− 5
3

) (
1

5000
u2 − 1

5
u+ 25

2

)
[250, 300)(

1
150

u− 5
3

) (
− 1

2500
u2 + 57

400
u− 83

2

)
+
(
3− 1

150
u
) (

1
5000

u2 − 3
25
u+ 18

)
[300, 350)(

1
150

u− 5
3

) (
1

5000
u2 − 4

25
u+ 32

)
+
(
3− 1

150
u
) (

− 1
2500

u2 + 3
10
u− 111

2

)
[350, 400)(

3− 1
150

u
) (

1
5000

u2 − 9
50
u+ 81

2

)
[400, 450)

N7,3(u)
(

1
150

u− 2
) (

1
5000

u2 − 3
25
u+ 18

)
[300, 350)(

1
150

u− 2
) (

− 1
2500

u2 + 3
10
u− 111

2

)
+
(
3− 1

150
u
) (

1
5000

u2 − 7
50
u+ 99

2

)
[350, 400)(

1
150

u− 2
) (

1
5000

u2 − 9
50
u+ 81

2

)
+
(
3− 1

150
u
) (

− 3
5000

u2 + 1
2
u− 207

2

)
[400, 450)

The data point parameters are

t0 = 55.6856

t1 = 99.3311

t2 = 150.5017

t3 = 200.1672

t4 = 249.8328

t5 = 299.4983

t6 = 350.6689

t7 = 394.3144
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The matrix N of basis functions evaluated at the data point parameters is below.

0.5965 0.2293 2.4506× 10−4 0 0 0 0 0

0.1734 0.6665 0.1601 0 0 0 0 0

0 0.1617 0.6666 0.1717 1.6834× 10−9 0 0

0 0 0.1650 0.6667 0.1683 6.2350× 10−9 0 0

0 0 6.2350× 10−9 0.1683 0.6667 0.1650 0 0

0 0 0 1.6834× 10−7 0.1717 0.6666 0.1617 0

0 0 0 0 0 0.1601 0.6665 0.1734

0 0 0 0 0 2.4506× 10−4 0.2293 0.5965


The control point matrix P

P =



−18.6507 3.6021

48.3170 2.5214

193.8694 2.8693

250.1565 2.7735

244.9935 2.9676

330.6742 2.4156

293.8158 2.3274

641.3898 3.3666



47



Bibliography

[1] I. Schoenberg, “Contributions to the problem of approximation of equidistant

data by analytic functions: Part a - on the problem of smoothing or gradua-

tion. a first class of analytic approximation formulae,” Quarterly of Applied

Mathematics, vol. 4, no. 1, pp. 45–99, 1946. doi: 10.1090/qam/15914.

[2] C. de Boor, “On calculating with b-splines,” Journal of Approximation Theory,

vol. 6, no. 1, pp. 50–62, 1972. doi: 10.1016/0021-9045(72)90080-9.

[3] P. Eilers and B. Marx, “Flexible smoothing with b-splines and penalties,” Stasti-

cal Science, vol. 11, no. 2, pp. 89–102, 1996. doi: 10.1214/ss/1038425655.

[4] P. Eilers, B. Marx, and M. Durbán, “Twenty years of p-splines,” Statistics and

Operations Research Transactions, vol. 39, no. 2, pp. 149–186, 2015.

[5] F. O’Sullivan, “A statistical perspective on ill-posed inverse problems,” Stastical

Science, vol. 1, no. 4, pp. 502–527, 1986. doi: 10.1214/ss/1177013525.

[6] H. Späth, One Dimensional Spline Interpolation Algorithms, 1st ed. Boca Raton,

FL: CRC Press, 1995, 404 pp., isbn: 1-56881-016-4.

[7] C. de Boor, A Practical Guide to Splines (Applied Mathematical Sciences),

Revised. New York: Springer, 2001, vol. 27, 339 pp., isbn: 0-387-95366-3.

[8] J. Hoschek and D. Lasser, Fundamentals of Computer-Aided Geometric Design,

trans. by A. Peters. Wellesley, MA: A.K. Peters, 1993, 727 pp., isbn: 978-1-

56881-007-2.

[9] G. Farin, Curves and Surfaces for CAGD: A Practical Guide, 5th ed. San

Francisco, CA: Morgan Kaufmann, 2001, 497 pp., isbn: 978-1-55860-737-8.

48

https://doi.org/10.1090/qam/15914
https://doi.org/10.1016/0021-9045(72)90080-9
https://doi.org/10.1214/ss/1038425655
https://doi.org/10.1214/ss/1177013525


[10] D. Rogers and J. A. Adams, Mathematical Elements for Computer Graphics,

2nd ed. McGraw-Hill, Inc., 1990, 611 pp., isbn: 0-07-053529-9.

[11] C.-G. Lim, “A universal parameterization in b-spline curve and surface parame-

terization,” Computer Aided Geometric Design, vol. 16, pp. 407–422, 1999.

[12] MathWorks, Matlab, version 9.10.0 R2021a, 2021.

[13] Z. Li and J. Cao, General p-splines for non-uniform b-splines, 2022.

[14] C. Reinsch, “Smoothing by spline functions,” Numerische Mathematik, vol. 10,

pp. 177–183, 1967. doi: https://doi.org/10.1007/BF02162161.

[15] P. Eilers and B. Marx, Practical Smoothing: The Joys of P-splines. Cambridge,

UK: Cambridge University Press, 2021, 199 pp., isbn: 978-1-108-61024-7.

[16] Z. Li and J. Cao, “Automatic search intervals for the smoothing parameter in

penalized splines,” Statistics and Computing, vol. 33, no. 1, pp. 1–18, 2023.

[17] M. Lu, Y. Liu, and C.-S. Li, “Efficient estimation of a linear transformation

model for current status data via penalized splines,” Statistical Methods in

Medical Research, vol. 29, no. 1, pp. 3–14, 2020.

[18] P. Reiss and R. T. Ogden, “Smoothing parameter selection for a class of

semiparametric linear models,” Journal of the Royal Statistical Society, B, vol. 71,

no. 2, pp. 505–523, 2009. doi: 10.1111/j.1467-9868.2008.00695.x.

[19] C. Gascoigne and T. Smith, “Penalized smoothing splines resolve the curvature

identifiability problem in age-period-cohort models with unequal intervals,”

Statistics in Medicine, pp. 1888–1908, 2023.

[20] R Core Team, R: A language and environment for statistical computing, R

Foundation for Statistical Computing, Vienna, Austria, 2021. [Online]. Available:

https://www.R-project.org/.

49

https://doi.org/https://doi.org/10.1007/BF02162161
https://doi.org/10.1111/j.1467-9868.2008.00695.x
https://www.R-project.org/


[21] P. Eilers, B. Marx, B. Li, J. Gampe, and M. X. Rodriguez-Alvarez, Jops:

Practical smoothing with p-splines, R package version 0.1.19, 2023. [Online].

Available: https://CRAN.R-project.org/package=JOPS.

[22] L. Ellwein, S. Pope, A. Xie, J. Batzel, C. Kelley, and M. Olufsen, “Patient-specific

modeling of cardiovascular and respiratory dynamics during hypercapnia,”

Mathematical Biosciences, vol. 241, no. 1, pp. 56–74, 2013, issn: 0025-5564.

doi: https://doi.org/10.1016/j.mbs.2012.09.003. [Online].

Available: https://www.sciencedirect.com/science/article/

pii/S0025556412001824.

50

https://CRAN.R-project.org/package=JOPS
https://doi.org/https://doi.org/10.1016/j.mbs.2012.09.003
https://www.sciencedirect.com/science/article/pii/S0025556412001824
https://www.sciencedirect.com/science/article/pii/S0025556412001824

	Penalized Interpolating B-splines and Their Applications
	Downloaded from

	Acknowledgements
	Abstract
	VITA
	Table of Contents
	List of Figures
	 Introduction  
	 Terminology 
	Defining a spline

	 Mathematical Construction of B-Splines  
	Background
	Basis function and curve properties
	de Boor's Algorithm
	The Universal Method
	Example

	 Penalization
	Motivation and Formulation
	The O'Sullivan Penalty
	The Standard P-Spline
	Brief comments on choosing 
	Application

	 Application and Conclusion
	Application to Cerebrovascular Resistance Data
	Concluding Remarks

	Appendices
	 Computations for Cerebrovascular Resistance Data

