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LARGE LANGUAGE MODELS, PROMPTING, AND SYNTHETIC DATA

GENERATION FOR CONTINUAL NAMED ENTITY RECOGNITION

By Charles Cutler

A Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2024.

Director: Dr. Bridget McInnes,

Professor, Department of Computer Science

With the ever-growing amount of textual data, the task of Named Entity

Recognition (NER) is vital to Natural Language Processing (NLP), a field which

focuses on enabling computers to understand and manipulate human language. NER

enables the extraction of information from unstructured text. Accurate information

extraction is crucial for applications ranging from information retrieval to systems

for question-answering. To ensure that NER models are robust to changes in data

distributions and capable of recognizing new entity types, one may consider expanding

the capabilities of an existing model.

Continual learning is a paradigm within machine learning. It studies the objec-

tive of learning new information incrementally without forgetting previously learned

knowledge. A central concern with continual learning is the phenomenon of catas-

trophic forgetting, where training a neural network on new information leads to signif-

icant degradation in performance on previously learned information. Reannotation

of existing data for new information and then training a new model proves costly

ix



and time-consuming, prompting the need for better strategies. Generating and using

synthetic data to combat forgetting has been studied in continual learning for vision

models and, to a limited extent, with long short-term memory unit (LSTM) genera-

tors or inverted models for NER models. One way to achieve this is to use generative

large-language models to create synthetic data.

This work focuses on building the foundation for a generative replay approach.

We aim to determine the efficacy of using Open AI’s GPT-4 model to generate syn-

thetic data to supplement the training of NER systems. We aim to answer the

following questions: Can synthetic data be generated to mimic the format of authen-

tic NER training data? Is synthetic data similar to the authentic data? Does the

addition of synthetic data improve model performance? Is solely using synthetic data

enough to achieve performance on par with a baseline? How do different prompting

strategies for generating synthetic data affect model performance?

We conducted experiments using the 2018 TAC SRIE dataset and a DeBERTa-

V3-based model with broadcast linear and softmax classification layers. We success-

fully generated synthetic data using GPT-4 and two different prompting strategies.

We found improved performance when supplementing authentic data with synthetic

data, even when only supplementing with small amounts.

This work contributes a novel finding concerning NER and synthetic data gen-

eration with generative large-language models and lays the foundation for a novel

generative-replay approach to continual NER.
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CHAPTER 1

INTRODUCTION

With the ever-expanding amount of digital textual data, the task of Named Entity

Recognition (NER) is vital to Natural Language Processing (NLP), a field which

focuses on enabling computers to understand and manipulate human language. NER

enables the extraction of information from unstructured text and involves identifying

and classifying named entities, such as names of people, organizations, locations,

and dates [1]. Accurately recognizing these named entities facilitates information

extraction and plays a crucial role in applications ranging from information retrieval

to systems for question-answering [2]. To ensure that NER models are robust to

changes in data distributions and capable of recognizing new entity types, one may

consider expanding the entity recognition capability of an existing model.

The traditional approach of reannotating an existing dataset for new entities,

restructuring, and training a new model for an expanded entity set is expensive and

time-consuming [3]. Attempts to comprehensively annotate an entirely new dataset

are challenging and time consuming, especially when the number of different entity

types grows. They are also prone to human error even when they are conducted

by a team of disciplined experts. Self-training, where an older model annotates the

dataset for previous entity types, can propagate errors downstream [4]. The conven-

tional method of annotating data solely for new entity types introduces the risk of

catastrophic forgetting [5]. Moreover, storage limitations or privacy concerns may hin-

der access to the original training material [6]. Thus, continual learning approaches

become practical to train models in recognizing new entity types without forgetting

1



the types learned previously.

Continual learning is a paradigm within machine learning. It studies the objec-

tive of learning new information incrementally without forgetting previously learned

knowledge [3]. In continual learning, the tendency of models to forget is called catas-

trophic forgetting [7], where training a neural network exclusively on new information

leads to the severe degradation in performance on previously learned information. In

the realm of NER, continual learning refers to the capacity of a model to adjust and

enhance its performance when faced with novel entities, languages, and domains. For

example, a voice assistant like Siri may benefit from recognizing a new entity type,

such as “movie titles,” to allow users to order movie tickets. However, training a new

version of Siri from scratch to add this feature may not be feasible; therefore, we may

want to expand Siri’s knowledge incrementally instead [4].

Step 1

Step 2

Step K
… …

ART“O” “O” “O”

“O” PER “O” “O”

“O” “O”LOC ORG… …

Mona Lisa , painted by da Vinci , resides in Paris at the Louvre .

Paris is home to the Louvre , where da Vinci's Mona Lisa is displayed .

Da Vinci's masterpiece , Mona Lisa , is housed at the Louvre in Paris .

…

Fig. 1. Each sentence contains the same four entities: “Mona Lisa,” “da Vinci,”

“Paris,” and “Louvre.” The figure shows an example of how annotators might

label these entities differently, demonstrating the “Unlabeled Entity Problem.”

In each step, data is only annotated for a finite set of entity types. Thus,

the non-entity type “O” can contain entities from old and future entity types.

(Consider words without an explicit label in the figure as “O”.)

Inherent to continual learning for NER is another challenge that exacerbates

the issue of catastrophic forgetting. This is called the Unlabeled Entity Problem [8]

2



sometimes referred to as Semantic Shift [9]. Researchers typically annotate new

training data for a finite set of entity types. Unfortunately, this treatment assigns

entities outside this set to the non-entity type “O.” For example, in the second step

in Figure 1, the sample sentence is only annotated for the LOC and ORG entity

types. Because of this, annotators labeled entities that could have been in the ART

and PER entity types as “O.” Unlabeled entities fit into two groups: 1) previously

learned entity types labeled in earlier steps or 2) new entity types that someone might

label in future steps. In Figure 1, there are three different sentences that each contain

the same four entities: “Mona Lisa,” “da Vinci,” “Paris,” and “Louvre.” Figure 1

shows how annotators might label these entities differently depending on the chosen

entity types in a specific continual learning step, each with a different setup.

This work aims to determine the efficacy of using generative large-language mod-

els to create synthetic data to supplement the training of NER systems. This work

first provides an overview of current continual learning methods focusing on NER.

This includes context from previous work in reviewing the area of continual learning.

Evaluation metrics for continual learning are presented and a comparison and evalu-

ation of continual learning methods specific to NER is conducted. The evolution of

continual learning is explored, categorizing methods into Replay, Regularization, and

Parameter Isolation approaches. The research goals of this work are to to answer the

following questions:

1. Can synthetic data be generated to mimic the format of authentic NER training

data?

2. Is synthetic data similar to the authentic data?

3. Does the addition of synthetic data improve model performance?

3



4. Is solely using synthetic data enough to achieve performance on par with a

baseline?

5. How do different prompting strategies for generating synthetic data affect model

performance?

We conducted experiments using the 2018 TAC SRIE dataset and a DeBERTa-

V3-based model with broadcast linear and softmax classification layers. We success-

fully generated synthetic data using GPT-4 and two different prompting strategies.

This work contributes a novel finding concerning NER and synthetic data generation

with generative large-language models and lays the foundation for a novel generative-

replay approach to continual NER.
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CHAPTER 2

LITERATURE REVIEW

2.1 Previous Review Work of Continual Learning

Continual learning methods are often applied to computer vision tasks due to

the dynamic and evolving nature of visual data. In computer vision, new images,

objects, or scenarios may be encountered over time, requiring models to adapt and

learn from new information without forgetting previously acquired knowledge. Con-

tinual learning techniques enable computer vision models to incrementally update

their knowledge and accommodate changes in data distributions, ensuring robust

performance in real-world applications. Surveys of the existing approaches in con-

tinual learning often focus on computer vision tasks because of the pressing need

for adaptive and flexible vision systems that can handle diverse and evolving visual

inputs [3, 10, 11, 12].

De Lange et al. [3] distinguish the three categories of continual learning ap-

proaches that we discuss in this paper. Their survey is largely regularization-focused

and conducts an empirical study that measures the performance of existing contin-

ual learning methods. Lesort et al. [10] focus on robotics applications. The paper

provides a four categories of continual learning approaches, contributing an in-depth

examination of the combined categories models fall into. Parisi et al. [11] provide an

overview of existing continual learning approaches, discussing their connections with

lifelong learning in biological systems.

The recent comprehensive continual learning survey from Wang et al. [13] cata-

logs NLP models based on both the continual learning category and NLP task, touch-
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ing on NER models. Biesialska, Biesialska, and Costa-jussà [14] and Ke and Liu [15]

focus their surveys entirely on NLP tasks. Biesialska, Biesialska, and Costa-jussà [14]

review both task incremental and class incremental continual learning methods and

provide an overview of NLP-specific continual learning datasets and benchmarks. Ke

and Liu [15] add emphasis on knowledge transfer and the problem of inter-task class

separation for task incremental learning methods. To our knowledge, our survey is

the only one that focuses on continual learning methods for named entity recognition.

2.2 A Brief History, Categories, and Evaluation of Continual Learning

Approaches

The origins of continual learning can be traced back to the seminal work of

McCloskey and Cohen [7]. They introduced the concept of catastrophic forgetting,

highlighting that learning new tasks may disrupt previously learned ones when se-

quentially training neural networks. Their analysis revealed that interference often

occurs when a network modifies the weights associated with representing a previously

learned task. This section aims to offer a selective overview of the history of continual

learning, as depicted in Figure 2 , emphasizing key developments and delineating the

three primary categories of continual learning approaches.

2.2.1 Continual Learning Approaches

In this section, we describe three categories of continual learning methods: Re-

play, Regularization, and Parameter Isolation.

2.2.1.1 Replay

Replay approaches involve preserving training data for reuse in subsequent train-

ing steps, typically by selecting a small set of representative samples and reintroduc-
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Replay

Generative Replay

Regularization

Knowledge Distillation

Parameter Isolation

LAMOL

CL Founded

19991989 1990 1991 1992 1993 1994 1995 1996 1997 1998 201120092000 2001 2002 2003 2004 20102005 2006 2007 2008

EWC

PNN

Pseudorehearsal 

20232012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Expert Gate Adapters

PackNet

Created

GEM

iCaRL

DGR

RNC

A-GEM

DPPCoPE

LFPT5

and

Rehearsal 

KD ER

MAS

R-EWC

DnR

LaR

TEM

BiRLwF

SIELLA

Hopfield

Networks QAES

Causal

Distillation

A-BERT DLD

FSA

SPAST-NER

Fig. 2. Timeline of the development of continual learning. Notable publications are

shown above the timeline at the date of first publication. Colored bars represent

publications for different approach categories starting over time. Generative

replay is a sub-category of replay. Knowledge distillation is a sub-category of

regularization. (For interpretation of the publication acronyms, see Appendix

A.)

ing them during future training iterations. These techniques were among the earliest

strategies used in continual learning. For example, seminal works by French [16] and

Robins [17] introduced replay to mitigate catastrophic forgetting by leveraging train-

ing buffers to reintroduce previously encountered examples during ongoing training.

Robins [17] also introduced the concept of pseudo-rehearsal, a form of replay that em-

ploys artificially generated pseudoitems instead of actual previously seen data. These

pseudoitems are constructed by generating new random input vectors and processing

them through the network in a standard manner. Additionally, Robins and McCal-

lum [18] extended the notion of pseudo-rehearsal to Hopfield-type networks, further

decreasing catastrophic forgetting. Despite major differences between Hopfield-type

networks and multi-layer-perceptrons, they determined that the same general tech-

niques for maintaining previously learned information are applicable, only requiring

adaptation of the specific mechanism employed to generate pseudoitems.
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Rebuffi et al. [19] developed Incremental Classifier and Representation Learn-

ing (iCaRL), a method where a neural network learns classifiers and feature repre-

sentations by incorporating exemplar selection and prototype rehearsal. Lopez-Paz

and Ranzato [20] introduced Gradient Episodic Memory (GEM), which utilizes an

episodic memory with a size budget to store a subset of examples from each task

encountered during continual training, aiming to prevent increases in loss on previous

tasks. Chaudhry et al. [21] improved upon GEM with the creation of Averaged Gradi-

ent Episodic Memory (A-GEM), which focuses on preventing increases in the average

episodic memory loss over the previous learning tasks. Additionally, Chaudhry et al.

[21] introduced Tiny Episodic Memory (TEM) to analyze the effects of a minimal

episodic memory setup, where the model encounters previous training samples only

once.

Notably, generative replay began with Shin et al. [22] and formed a distinctive

sub-category within replay approaches. These methods involve saving or utilizing

models capable of generating training data rather than directly saving training data.

Shin et al. [22] developed a method where a model creates synthetic data from past

input distributions called a “scholar,” consisting of a generator and a solver. Ros-

tami, Kolouri, and Pilly [23] created an abstract generative distribution that allows

for the creation of data points to represent previous experiences. LAnguage MOd-

elling for Lifelong Language Learning (LAMOL), developed by Sun, Ho, and Lee [24],

learns to generate pseudo-samples and requires no additional memory space. Subse-

quently, Sun et al. [25] developed Distill and Replay (DnR), which utilizes generative

experience replay to imitate previous data distributions. van de Ven, Siegelmann,

and Tolias [26] introduced a variant of generative replay, “brain-inspired replay,”

that uses modifications inspired by the human brain to improve model performance.

Modifications include Replay-Through-Feedback, which merges the generator into
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the primary model, equipping it with generative backward or feedback connections,

and Conditional-Replay, which allows the model to generate samples of only specific

classes. Notable replay methods for NER, discussed later in Section 2.3.1 include

those proposed by Ma et al. [8] and Xia et al. [27].

Replay approaches in continual learning face notable challenges, particularly re-

lated to privacy concerns and data storage issues. For example, storing and reusing

large volumes of training data can raise privacy concerns, especially when dealing

with sensitive information. It can additionally lead to significant data storage require-

ments, posing practical challenges, particularly in resource-constrained environments.

As a response to these challenges, there has been a significant shift in research toward

the development of replay-free approaches or strategies that combine replay methods

with additional techniques, such as regularization methods. By incorporating regu-

larization techniques, which modify specific sets of weights during training without

nullifying their updates entirely, researchers aim to mitigate the privacy and storage

challenges associated with replay approaches. Regularization methods, as described

below, offer a complementary approach to replay techniques. By incorporating regu-

larization into the learning process, models can retain previously learned knowledge

while adapting to new tasks without relying heavily on storing and replaying large

datasets. These methods introduce constraints or penalties to the training process,

encouraging the model to maintain stability and prevent catastrophic forgetting with-

out the need for extensive replay. By combining replay-free approaches with regu-

larization methods, researchers aim to strike a balance between preserving privacy,

managing data storage requirements, and ensuring continual learning performance.

This integrated approach opens avenues for addressing the challenges posed by tra-

ditional replay methods, paving the way for more efficient and privacy-preserving

continual learning systems.

9



2.2.1.2 Regularization

Regularization methods modify specific sets of weights during training without

nullifying their updates entirely. These methods attempt to mitigate catastrophic

forgetting and ensure the retention of previously learned knowledge while adapting

to new tasks. This is often achieved by incorporating a term into the objective

function or identifying crucial weights and penalizing changes to them.

An early example of regularization in continual learning is presented by French

and Chater [28], who introduced a method to mitigate catastrophic forgetting by

utilizing noise to approximate the error surface associated with previously learned in-

formation. They combined this approximation with the error surface related to new

information to retain previously learned tasks. Ruvolo and Eaton [29] proposed an

algorithm that maintains a shared basis and enables soft task grouping, facilitating

knowledge transfer to new tasks. This approach enhances the model’s ability to gen-

eralize across tasks and retain knowledge more effectively. Zenke, Poole, and Ganguli

[30] introduced intelligent synapses, where each “synapse” in the neural network re-

tains its measure of importance in solving previously learned tasks. This allows the

model to prioritize important connections and penalize changes to them when learn-

ing new tasks. Lee et al. [31] proposed Incremental Moment Matching, a method that

penalizes weight changes during training to prevent catastrophic forgetting. This ap-

proach helps stabilize the model’s performance across tasks and maintain consistency

in learning. Kirkpatrick et al. [32] developed Elastic Weight Consolidation (EWC),

which slows down the learning of certain parameter weights based on their impor-

tance to previously seen tasks through a soft quadratic constraint. EWC effectively

balances the trade-off between learning new tasks and retaining old knowledge. Liu

et al. [33] improved EWC by using rotational matrices to achieve a better reparam-
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eterization and enhance the diagonal assumption of the Fisher Information matrix.

This enhancement further strengthens the model’s ability to retain important knowl-

edge while adapting to new tasks. Aljundi et al. [34] proposed a different method

to maintain an importance measure for each network parameter, penalizing changes

to significant parameters to prevent the overwrite of knowledge essential for previous

tasks. This method enhances the model’s ability to retain important information and

adapt to new tasks while minimizing catastrophic forgetting.

Knowledge distillation approaches, which originated with the work of Hinton,

Vinyals, and Dean [35], form a distinctive sub-category within regularization ap-

proaches. These approaches aim to transfer knowledge from a larger, more complex

model (referred to as the teacher model) to a smaller, simpler model (referred to as

the student model) through a process known as distillation. Hinton, Vinyals, and

Dean [35] employed a distillation loss to train a student model using the soft label

output of a parent model for model consolidation. Unlike traditional self-training

with hard labels, distillation provides more information about how the teacher makes

predictions, leading to more effective knowledge transfer. Li and Hoiem [6] introduced

Learning without Forgetting (LwF), the first method to use Knowledge Distillation

specifically for continual learning. LwF addresses the challenge of catastrophic for-

getting by leveraging distillation loss to preserve knowledge of previous tasks while

learning new ones, thereby improving continual learning performance. Notable ex-

amples of regularization approaches for NER include the works of Monaikul et al. [4],

Zheng et al. [36], and Zhang et al. [37]. These methods, which incorporate knowledge

distillation techniques, are discussed in detail in Section 2.3.2.
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2.2.1.3 Parameter Isolation

Parameter Isolation approaches involve dynamically modifying the architecture

of a model to prevent catastrophic forgetting by selectively preserving knowledge while

learning new tasks. This is achieved through techniques such as freezing weights,

adding, cloning, or saving parts of a model to avoid forgetting. The evolution of

parameter isolation approaches has seen significant developments in recent years,

addressing various challenges in continual learning.

One of the pioneering works in this field is Progressive Neural Networks (PNNs)

introduced by Rusu et al. [38], which adds a new neural network for each new task,

each with connections to previously learned networks. Aljundi, Chakravarty, and

Tuytelaars [39] focus on selecting the most relevant previous task when training a

new expert model. By identifying and transferring knowledge from related tasks,

this approach leverages past experiences to facilitate learning on new tasks. Pathnet,

proposed by Fernando et al. [40], takes a different approach by modifying the for-

ward pass path within the network. It identifies critical paths for each learning task

and updates their weights while keeping others unchanged, enabling targeted learning

without interference. Mallya and Lazebnik [41] introduce PackNet, which employs

iterative pruning and retraining to identify and “free up” parameters for learning new

tasks. By efficiently packing multiple tasks into the same neural network, PackNet

optimizes parameter utilization and minimizes interference between tasks. Hard At-

tention to the Task (HAT), developed by Serra et al. [42], trains models by identifying

task-relevant weights and then creating masks to prevent changes to these weights

during subsequent training. This technique, also known as training with hard at-

tention, ensures that crucial information for each task is preserved throughout the

learning process. Collier et al. [43] propose sparse routing networks, which utilize
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co-training techniques to activate different paths through a network of experts. By

avoiding poorly initialized experts, sparse routing networks enhance the robustness

and efficiency of parameter isolation in continual learning scenarios.

In 2019, Houlsby et al. [44] introduced a novel method known as adapter-based

tuning, representing a significant shift in parameter isolation approaches. This method

offers a modular approach to isolating parameters for continual learning tasks. The

primary motivation behind adapter-based tuning was to address the challenges asso-

ciated with fine-tuning deep neural networks for multiple downstream tasks. Tradi-

tional approaches often result in a significant increase in the number of model param-

eters leading to computational inefficiency. Adapter-based tuning addresses this issue

by requiring architectural modifications to pretrained networks. Specifically, a small

number of new parameters are added to the model through the introduction of new

layers known as adapter layers. These adapter layers are injected into the pretrained

network without altering the weights of the original network. Instead, the weights of

the adapter layers are randomly initialized and trained. This approach allows for the

efficient tuning of pretrained models for specific tasks without the need for extensive

parameter modifications.

Several approaches utilize adapter modules or similarly inspired techniques for

continual learning. For example, Ke, Xu, and Liu [45] propose BERT-based Continual

Learning (B-CL) using a Continual Learning Adapter (CLA) inspired by Adapter-

BERT introduced by Houlsby et al. [44]. To mitigate catastrophic forgetting, CLA

utilizes task masks to safeguard task-specific knowledge. Additionally, it employs

capsules and dynamic routing mechanisms to identify and transfer shared knowledge

from previous tasks to the current task. Another approach, developed by Ke et al. [46]

is a Continual and contrastive Learning for ASpect SentIment Classification (CLAS-

SIC). CLASSIC employs adapters to transfer and distill knowledge from previous
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tasks to the model for the current task, enabling it to perform all past and current

tasks effectively. It also learns task masks to isolate task-specific knowledge, thus

preventing catastrophic forgetting. Additionally, Ke et al. [47] introduced Capsules

and Transfer Routing for continual learning (CTR). CTR utilizes a CL-plugin, simi-

lar to an adapter, with a key distinction being that it learns all tasks using only one

pair of CL-plugin modules inserted into Bidirectional Encoder Representations from

Transformers (BERT) [48]

Panos et al. [49] introduce First Session Adaptation (FSA), a novel approach to

continual learning. In this method, a neural network is trained solely during the initial

continual learning step. Subsequently, the network is frozen, and Feature-wise Layer

Modulation adapters are employed to expand the model’s knowledge. Furthermore,

notable parameter isolation approaches for NER include the works of Qin and Joty

[50] and Zhang et al. [51]. These methods are discussed further in Section 2.3.3,

focusing on parameter isolation techniques for NER.

2.2.2 Formal Definition of Continual Learning

Continual learning can be expressed in different forms. This section describes two

popular forms: task-incremental learning (TIL) and class-incremental learning (CIL).

Wang et al. [13] explore more recent forms, such as domain-incremental learning, and

we direct the reader there for additional information.

2.2.2.1 Task-Incremental Learning

With task-incremental learning, the model must incrementally learn to complete

an increasing number of distinct tasks. For example, first, perform sentiment analysis,

then perform named entity recognition, then word sense disambiguation, and then

relationship extraction. Tasks can also be different classification objectives from the
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same overall task. Take, for instance, the task of NER. First, the model is asked

to classify entities as persons or “O.” Then the model is asked to classify images

as locations or “O.” Naturally, it would seem the model can differentiate between

persons, locations, and “O.” Instead, the model has learned only two specific tasks:

entity recognition of persons vs. “O” or entity recognition of locations vs. “O.”

Formally, in the TIL form of continual learning, a model is expected to perform

only the exact tasks it is trained on. Consider a set of tasks, T = {t1, t2, . . . , tm},

where each task ti ∈ T for i = 1, . . . ,m, is distinct, the model will be trained to

learn. Each continual learning training step is a task ti ∈ T , and a training sequence

is simply an ordering of the set of tasks T , i.e., [t1, t2, . . . , tN ], where t1 comes before

t2, t2 comes before t3, etc. After a given training step n ≤ N , the model should be able

to perform all tasks mastered up to that point, e.g., perform all tasks [t1, t2, . . . , tn]

2.2.2.2 Class-Incremental Learning

With class-incremental learning, we are training the model to complete the same

overall task throughout the entire continual learning process, i.e., named entity recog-

nition. Instead, the model must incrementally learn to differentiate between an in-

creasing number of distinct classes with each continual learning training step.

Consider a set of classes we desire the model to learn, C = {c1, c2, . . . , cm}, where

each class ci ∈ C for i = 1, . . . ,m, is distinct. A continual learning training step S is

a set of classes, S ⊆ C, and a training sequence is simply an ordered set of training

steps, [S1,S2, . . . ,SN ], where S1 comes before S2, S2 comes before S3, etc.

The first training step S1 must contain a discrete set of classes from C. Each

subsequent training step [S2, . . . ,SN ] must, at minimum, introduce one class from

C not seen in any of the training steps that come before it. For example, S4 must

introduce at least one class from C not already in {S1 ∪ S2 ∪ S3}. Outside of this
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restriction, overlapping classes with other steps is acceptable. After a given training

step n ≤ N , the model should be able to recognize all classes seen up to that point,

e.g., recognize {S1 ∪ S2 ∪ · · · ∪ Sn}

2.2.3 Evaluation Metrics

In addition to standard task evaluation for continual learning, it is practical to

use metrics that track a continual learning model’s lost performance on previously

learned tasks given the problem of catastrophic forgetting. The most popular metrics

are Average Accuracy [20] and Forgetting Measure [52]. Average Accuracy, defined

in Equation 2.1, takes the average of the model’s accuracy at each step where T is

the number of tasks the model has trained on and RT,i is the model accuracy on task

i after training on all T tasks.

Average Accuracy =
1

T

T∑
i=1

RT,i (2.1)

Forgetting Measure represents the error rate over time. It is a summation of

the differences between the final error rates on classes known to the model and the

error rates on those classes when they were initially learned by the model. A high

forgetting measure indicates the occurrence of catastrophic forgetting. This is de-

fined in Equation 2.2. Where ER is the error rate, ERi,i is the error rate on task i

immediately after learning task i, ERT,i is the error rate after training on all T tasks.

For each task i, the forgetting measure identifies the subsequent task, which results

in the maximum increased error rate, averaging these increases across all tasks.

Forgetting Measure =
1

T − 1

T−1∑
i=1

max
t∈{1,...,T−1}

(ERi,i − ERT,i) (2.2)

Other evaluation metrics include Learning Curve Area [21] and the related on-
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line codelength [53], average incremental accuracy [19], along with three metrics in-

troduced in Kemker et al. [54]. For further details, we direct readers to the original

papers.

The stability-plasticity dilemma is a constraint related to the problem of catas-

trophic forgetting [55]. Model plasticity refers to a model’s ability to incorporate new

knowledge, while model stability refers to its ability to retain old knowledge (avoid

forgetting). Balancing these properties can improve the performance of continual

learning models, and some metrics have been adopted to quantify them.

In addition to the previously mentioned forgetting measure, stability can be

measured by backward transfer[20] Backward transfer measures the effect of learning

a new task on a model’s performance on a previous task, and is typically negative.

This is defined in Equation 2.3, where T is the number of tasks the model has trained

on, RT,i is the model accuracy on task i after training on all T tasks, and Ri,i is

the model’s classification accuracy on task i immediately after training on task i− 1

Backward transfer averages over T − 1 steps and the summation goes only to T − 1,

as Backward transfer cannot be used to measure model stability on the first continual

learning step.

Backward Transfer =
1

T − 1

T−1∑
i=1

(RT,i −Ri,i) (2.3)

Model plasticity can be measured by forward transfer [20] and intransigence mea-

sure [52]. Forward transfer measures whether the model has useful knowledge for the

next continual learning step by comparing its performance to a randomly initialized

model. This is defined in Equation 2.4 where Ri−1,i is the model’s classification ac-

curacy on task i when previously trained on task i − 1, and b̄i is the average test

accuracy for task i when the model is randomly initialized. Conversely to backward
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transfer, forward transfer averages over T − 1 and begins the summation with i = 2,

as it cannot be used to measure plasticity on the final continual learning step.

Forward Transfer =
1

T − 1

T∑
i=2

(Ri−1,i − b̄i) (2.4)

Intransigence measure quantifies a model’s inability to learn new tasks. It com-

pares the model against a reference model, which is trained using all data from the

first task to task i simultaneously. This is defined in Equation 2.5 where R∗
i is the

reference model’s accuracy on the test set of task i when trained up to task i simulta-

neously, and Ri,i is the continual model’s accuracy on task i when trained up to task

i incrementally.

Intransigencei = R∗
i −Ri,i (2.5)

2.3 Continual Learning Methods for Named Entity Recognition

In this section, we present methods tailored specifically for continual learning

in the context of NER, highlighting their unique contributions with the three pri-

mary categories introduced in Section 2.2.1: Replay, Regularization, and Parameter

Isolation. Table 1 shows a comprehensive overview of the NER-specific methods, cat-

egorized according to their respective approaches Notably, some methods employ a

combination of continual learning strategies, as indicated by multiple check marks in

the table We aim to provide a detailed analysis of each method’s strengths and limi-

tations, shedding light on their effectiveness in addressing the challenges of continual

learning for NER.
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Table 1. NER Methods and their Continual Learning Approaches

References Regularization Replay Parameter Isolation

AddNER and ExtendNER [4] ✓

Attention Based Sequence-to-Sequence [56] ✓

Causal Framework for Continual NER [36] ✓

Continual Learning with NERDA [57] ✓

CPFD [9] ✓

Decomposing Logits Distillation [37] ✓

Few-Shot Class-Incremental Learning [58] ✓

JCBIE [59] ✓

Language Model Augmented Learning [60] ✓

Learn & Review [27] ✓

Learning “O” helps for Learning More [8] ✓

LFTP5 [50] ✓ ✓ ✓

Prototype-based NER [61] ✓ ✓

Relation Distillation and Prototyping [62] ✓

Single Epoch Recovery [63] ✓

SKD-NER [64] ✓

SpanKL [65] ✓

Sub-networks and Task similarity [66] ✓

2.3.1 Replay

In this section, we describe previous work that has developed replay methods for

continual learning for NER.

2.3.1.1 Attention Based Sequence-to-Sequence

Chen and Moschitti [56] present a method for continual learning for NER using

a “Progressive Learning” technique. Inspired by Venkatesan and Er [67], the authors
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adapted this approach to the sequence labeling task involved in NER. Attention-

based Sequence-to-Sequence (Attention-based Seq2Seq) models dynamically focus on

different portions of input sequences while generating their output. By assigning

weights to input tokens based on their relevance to the current decoding step, at-

tention mechanisms mitigate information loss, allowing for more accurate and con-

textually relevant sequence generation compared to traditional Seq2Seq models. The

authors implemented a Bidirectional Long Short-Term Memory (BiLSTM) model

and an attention-based Seq2Seq model to conduct experiments for progressive NER.

Both models utilize word and character embeddings to represent input data. Specifi-

cally, the attention-based Seq2Seq model employs BiLSTM units in the encoder and

a single-layer LSTM in the decoder, ensuring a one-to-one mapping between input

words and output labels.

The progressive adaptation process consists of two key steps: first, training a

model on source data, and second, transferring the parameters to the target model.

Firstly, the model undergoes an initial training step on a source dataset DS containing

C NER classes. Then, in a subsequent step the model is further trained on a target

dataset DT , which includes new examples annotated with the NER classes from the

initial step as well as additional E new classes. Finetuning the target model involves

modifying the output layer to accommodate new NER classes. To achieve this, the

authors extend the output layer with nodes corresponding to each new class, initial-

ized with weights drawn from a distribution based on pre-trained weights. Overall,

their experiments never expand beyond two continual learning steps, marking one of

the earlier investigations into expanding a NER model’s knowledge through progres-

sive or continual learning. This approach is categorized as a replay-based method

due to the utilization of data containing all seen entity classes during the subsequent

training step.
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2.3.1.2 Single Epoch Recovery

Coria et al. [63] propose a straightforward finetuning method for continual learn-

ing in NER using a multilingual BERT base model. Their approach involves training

a model sequentially on different languages, following a specified order, for the NER

tasks. The model employs a two-layer feed-forward classifier with a hidden size of

768 and ReLU activation for sequence labeling. During training, the classifier’s input

is the last layer word hidden states after applying dropout with a probability of 0.1.

This method is introduced within the broader context of continual learning for NER,

aiming to address the challenges of adapting NER models to new languages while

retaining performance on previously learned languages.

The training process involves training the model on various languages sequen-

tially, with validation performed on the corresponding validation set for each language.

The authors explore both forward and backward transfer during training, assessing

forward transfer by comparing the average performance on the last language against

monolingual and multilingual baselines. Backward transfer is evaluated by comparing

the average performance on the first language with monolingual baselines. Addition-

ally, the authors investigate the recovery of performance lost due to forgetting after

continual training. They propose using a single additional epoch of training for the

model at the end of the training sequence, leveraging data that includes information

from all tasks in the training sequence. This approach aims to limit the effects of

forgetting while potentially boosting forward transfer.

For continual learning, the authors focus on recovering performance lost due to

forgetting. Their approach involves incorporating an additional epoch of training us-

ing data containing information from all tasks in the training sequence. This recovery

process is crucial for limiting the effects of forgetting while potentially enhancing for-
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ward transfer. Notably, this method is categorized as a replay-based approach due to

its utilization of data containing all seen entity classes during the recovery process.

Essentially, the recovery data acts as a form of replay, enabling the model to retain

knowledge of previously learned tasks while adapting to new ones.

2.3.1.3 Learn and Review

Xia et al. [27] introduce the Learn and Review (L&R) method, which incorpo-

rates generative replay to the student/teacher implementation of Monaikul et al. [4].

They utilize a one-layer LSTM language model as a generator to address inter-type

confusion of previously learned classes in existing student/teacher models. This con-

fusion occurs when the model is unable to discriminate between different entity types

during classification. For example, consider a model trained to identify different types

of named entities in text, such as “person,” “organization,” and “location.” Inter-

type confusion may occur when the model misclassifies the name of a person as the

name of an organization, exhibiting inter-type confusion between the “person” and

“organization” entity types.

L&R method divides continual learning into two stages: the learning stage and

the review stage. The learning stage employs the previous continual learning step’s

model as a teacher in a standard student/teach configuration. Additionally, for each

continual learning step, a separate generator model is trained during this stage. Fol-

lowing the learning stage, a new model MR is initialized from the student model.

During the review stage, for each previous continual learning step i ∈ {1, 2, . . . , k−

1}, the generator Gi creates unlabeled sentences related to the entity type from that

step Ei. The sentences are fed to both the student and teacher models. Subsequently,

the student model’s predictions for the new class are concatenated with the teacher’s

predictions for the old classes to get a full probability distribution for all classes.
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The new model MR is trained using the Kullback–Leibler (KL) divergence loss be-

tween the student and the concatenated predictions, along with the cross-entropy loss

between the new class prediction and the current data, which includes the student

predictions on the new class as well. This is similar to (Eq. 2.15), except with the

student predictions on the new class included in the KL divergence loss.

2.3.1.4 Language Model Augmented Learning

Language Model Augmented Learning (LAMOL) refers to a learning paradigm

that incorporates language models, such as GPT (Generative Pre-trained Trans-

former), into the learning process to enhance performance on various tasks. Payan

et al. [60] adapt the LAMOL model [24] for continual learning in NER, leveraging

data replay. The model architecture is built on a pre-trained GPT-2 language model

base [68], augmented with two layers of bidirectional Long Short-Term Memory (BiL-

STM) networks. Each BiLSTM layer consists of 768 dimensions in both the forward

and backward sequence processing directions, employing a hyperbolic tangent (tanh)

non-linearity and linear transformation. Additionally, the model incorporates a Con-

ditional Random Field (CRF) layer for label prediction. The parameters, excluding

those from the GPT-2 base pre-trained on OpenAI’s WebText, are randomly ini-

tialized, the entire parameter set is either trained or fine-tuned during the training

process. In training their model, the authors assume that all entity type classes are

known in advance, eliminating the need for label size expansion in subsequent con-

tinual learning steps when unseen labels are introduced during the continual learning

steps. In the context of data replay, the authors delineate the process for each con-

tinual learning step, except the initial one, where a fixed size of replayed examples,

set to 20% of the current continual learning step’s training set, is selected, with an

equal number of examples sampled from each previous step.
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2.3.1.5 Joint Continual Learning Neural Network for Biomedical Infor-

mation Extraction

He et al. [59] introduced the Joint Continual Learning Neural Network for Biomed-

ical Information Extraction (JCBIE), which specializes in continual information ex-

traction, including NER, using data replay. The model’s objective is to jointly learn

NER and Relation Extraction (RE) in continual learning settings. The NER task is

divided into Span Detection (SP) and Entity Typing (ET), where SP utilizes BIOES

tagging. JCBIE incorporates two separate BioBERT-based encoders for NER and

RE. The authors augment input sentences with special entity markers to emphasize

entity positions and types. During training, the NER encoder processes the original

sentences, while the RE encoder utilizes sequences with markers based on gold labels.

During inference, the model predicts entity spans and types, inserts markers accord-

ingly, and performs RE prediction. Multi-head classifiers are employed for ET and

RE, while a single-head classifier is used for SP. SP, ET, and RE are simultaneously

trained during the process, and inference relies on SP results for ET predictions and

SP and ET results for relation predictions.

The continual learning process in JCBIE is referred to as “Continual Multi-

Corpora Learning,” where data replay for NER and RE is conducted across datasets

or corpora. In each subsequent learning step, data from previous steps, representing

previously learned domains or corpora, are utilized. However, the authors do not

provide specific guidance on choosing replay data or the amount of replay data in

practical settings. Essentially, JCBIE implies an expanding training set as the model

continues to learn, suggesting a continuous accumulation of knowledge over time.
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2.3.1.6 Few-Shot Class-Incremental Learning

Few-shot class-incremental learning refers to the scenario where a model incre-

mentally learns to recognize new classes with only a few examples available for each

class.

Wang et al. [58] propose a framework for few-shot continual NER, where a model

incrementally learns from only a few annotations (e.g., 5-10 samples per entity type)

without requiring access to previous training data. The model achieves this by gen-

erating and training on synthetic samples. The authors argue that the traditional

knowledge distillation approach suffers in the few-shot setting. To address this con-

cern, they devised a method to generate more data samples that contain previous

entity types.

To construct their synthetic data, the authors invert the teacher model and op-

timize reconstructed token embeddings such that the predictions from the teacher

model match the corresponding randomly sampled label sequences containing pre-

vious entity types. Subsequently, distilling from the traditional teacher model with

this data will enable the preservation of knowledge about previous entity types. The

authors note that the generated input sequences may be unrealistic. To encourage

more realistic generated data, they adversarially match hidden features of tokens be-

tween synthetic data and real data tokens, excluding the hidden states of entities of

previous entity types within the synthetic data being matched.

The authors use BERT with a linear layer and a conditional random field (CRF)

as the NER model. During each continual learning step, they initialize the student

model from the teacher model to additionally preserve knowledge about previous

entity types. When training with real data, the authors assume they have already

generated a synthetic dataset with data samples containing all previously seen entity
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types. They then use the current continual learning step’s real data, the teacher

model, and synthetic data to train the student model, treating the real and synthetic

data differently during training.

When distilling with real data, the authors approximate the sequence-level dis-

tributions from the CRF using the top ten predictions to make the problem tractable.

For the “new” entity types appearing only in the current step, they replace the

teacher’s predictions with the ground truth labels and train the student model with

this modified real data using cross entropy to match output distributions with respect

to the corrected top ten predictions using Equation 2.6 where CE(·|·) is cross entropy,

P̂Mt−1(Y |X) are the teacher’s predictions from modified real data, and P̂Mt(Y |X) are

the student’s predictions from modified real data.

Lreal(Dt) = − 1

|Dt|
∑
X∈Dt

CE(P̂Mt−1(Y |X), P̂Mt(Y |X)) (2.6)

For distilling synthetic data, there are no ground truth labels to replace the pre-

dictions from the teacher with tokens that might be of an entity type in the current

step. Essentially, some tokens predicted as “O” by the teacher could be considered

a “new” type by the student. Thus, to compute a loss between the student and

teacher, the authors decompose the sequence-level outputs of the CRF into marginal

token-level predictions and then match the marginal predictions of the student and

the teacher, combining the marginal predictions of new entity types and “O” from

the student to match the dimensionality of the teacher using Kullback–Leibler (KL)

divergence defined in Equation 2.7 where KL(·|·) is KL divergence, pt−1
e are the pre-

dictions of the teacher, and p̂te are the predictions of the student.

Lsyn(Dt
r) = KL(p̂te|pt−1

e ) (2.7)
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The final loss to train the student combines losses from distillation using the real

data and distillation using the synthetic data as shown in Equation 2.8.

L = Lreal(Dt) + αLsyn(Dt
r) (2.8)

2.3.1.7 Prototype-based NER

In prototype-based NER, the system learns prototypes or representations of dif-

ferent named entity types during training. These prototypes capture the character-

istics or features common to entities of the same type. Kumar et al. [61] present a

few-shot approach to continual NER utilizing entity-type prototypes. Their model

architecture is built on a transformer-based model with a classification layer, where

the last hidden layer serves as a prototype representation to convert the model into

a prototypical network during training and inference. During training, if a token is

correctly classified, the last hidden layer of the transformer is saved as a prototype for

the token’s gold entity class. Multiple prototypes are saved per entity class, with the

number determined by a hyperparameter. Prototypes are only saved during the final

epoch of training. During inference, the model calculates cosine-similarity scores be-

tween a token’s last hidden layer representation and all saved prototypes. The model

predicts a label for the token based on the k-nearest neighbor search on the computed

cosine-similarity scores.

For continual NER, the authors first train a model to recognize a baseline set of

entity types using multi-class cross-entropy loss. Prototypes for baseline entity types

are saved during this process. To perform incremental learning, the classification

layer of the baseline model is reset, and “O” entity-type prototypes are removed.

Prototypes for old entity types remain unmodified throughout the training. A hybrid

loss function is introduced to train the model on new entity types, incorporating both
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cosine-similarity loss and cross-entropy loss. When a token belongs to an old entity

type, cosine-similarity loss is computed with each prototype of the corresponding

old entity type and added to the cross-entropy loss. When a token belongs to a

new entity type, only cross-entropy loss is computed This process repeats for each

continual learning step.

This approach is categorized as a replay-based method because it utilizes data

containing all previously seen entity classes during model training for recognizing

new entity types. Although it involves an additional loss term, categorizing it as a

regularization method, its reliance on data replay for old entity types aligns it with

the replay-based section. During experimentation, the authors’ continual learning

steps used only 30 additional samples to expand the model’s knowledge.

2.3.1.8 Learning “O” helps for Learning More

Ma et al. [8] propose a representation learning method aimed at acquiring dis-

criminative representations for entity classes and the “O” class. The authors introduce

an entity-aware contrastive learning approach along with two distance-based relabel-

ing strategies to enhance the learning of old classes. For each class c, a collection

of K exemplars Mc = xi
c, y

i
c, X̄

i
c is maintained, where xi

c denotes a token labeled as

c, and X̄ represents the context of that token labeled as “O.” In their experiments,

the authors opt for K = 5 Their training process spans N epochs for each continual

learning step, organized into two stages: the initial M epochs focus on acquiring an

entity-oriented feature space, followed by N −M epochs dedicated to further refining

the representation of the “O” class.

In the first step of their method, the authors aim to construct an entity-oriented

feature space, where the distance between points reflects the semantic similarity of

the entities. To achieve this, they utilize cosine-similarity and Supervised Contrastive
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Loss [69] to train a nonlinear mapping F (·) on the output hidden state of a pre-trained

language model. The Supervised Contrastive Loss (LSCL) is defined in Equation 2.9

where I represents the set of indices of anchor tokens, A(i) is the set of indices of

tokens that are not i, and P (i) denotes the set of indices of positive samples distinct

from i.

LSCL =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
es(zi,zp)/τ∑

a∈A(i) e
s(zi,za)/τ

(2.9)

The hidden state representation after the nonlinear mapping is denoted as z =

F (h), and s(·) represents the cosine similarity. The authors exclusively apply con-

trastive learning on the entity classes and train the model using LSCL during the

initial M epochs. To further refine the representation of the “O” class, the authors

calculate a threshold to select potential “O” class entity clusters from the feature

space. For each entity class, they compute the class similarity, defined as the average

cosine similarities between all distinct exemplars as shown in Equation 2.10.

Sc =
1

|Mc|
∑

xi,xj∈Mc,xi ̸=xj

s(F (h(xi)), F (h(xj))) (2.10)

The threshold Tent represents the median class similarity score across all entity

classes and is recalculated before each epoch to adapt based on the degree of conver-

gence. Using this threshold, the authors implement entity-aware contrastive learning

for the “O” class, employing auto-selected anchors and positive samples as shown in

Equation 2.11 where IO, PO, and AO are modified versions of the anchor and positive

sample sets tailored for the “O” class, utilizing the threshold Tent.

LSCL,O = LSCL(IO, PO, AO) (2.11)

In the final N − M epochs, the authors jointly optimize the representations of
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entities and the “O” class using the objective function in Equation 2.12.

L = LSCL,O + LSCL (2.12)

Additionally, to further distinguish old entity classes, the authors propose two

distinct distance-based relabeling strategies, leveraging the previous model and the

exemplar set. The first strategy involves prototypes, where they compute a prototype

for each class using the exemplar representations from the previous model defined in

Equation 2.13.

pc =
1

|Mc|
∑

x ∈ Mcht−1(x) (2.13)

After computing the prototypes for each class, the authors define a relabeling

threshold by determining the lowest similarity score of all exemplars with their re-

spective prototype. A token undergoes relabeling only if its similarity to any given

prototype exceeds this threshold. Alternatively, the second relabeling strategy in-

volves nearest neighbors. Here, tokens are relabeled based on their distances to the

exemplars of each class, with relabeling occurring only if a token’s distance falls within

a specified threshold. To leverage the learned entity class representations fully, the

authors employ the Nearest Class Mean classifier [19] for classification. For each

token, the class prediction is defined in Equation 2.14 where pc is the prototype of

entity class c calculated with the exemplars as show in Equation 2.13.

y∗ = argmax
c∈Call

t

s(ht(x),pc) (2.14)
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2.3.2 Regularization

In this section, we describe previous work that has developed regularization meth-

ods for continual learning for NER.

2.3.2.1 AddNER and ExtendNER

The paper by Monaikul et al. [4] employs knowledge distillation as a technique

for continual learning for NER. Initially, a teacher model is trained to recognize a

predefined set of classes. Subsequently, the predictions made by the teacher model

are integrated into the objective function of a student model. The objective for the

student model is to mimic the behavior of the teacher model by imitating its output

probability distribution of classes for each token. This imitation process is achieved

by computing the KL divergence between the probability distributions produced by

the teacher and student models.

The authors introduce two student-teacher methods, namely AddNER and Ex-

tendNER, which utilize knowledge distillation for continual learning. Both methods

employ neural network architectures comprising an encoder layer followed by a linear

layer for classification. Specifically, the authors use a BERT-based model for the en-

coder component. They make the assumption that the dataset provides labels in the

BIO format, where each token is labeled to indicate whether it marks the beginning

of an entity (B-), is inside an entity (I-), or is unrelated to any entity (O), denoting

the “other” tag.

In the AddNER approach, the student model initially mirrors the architecture of

the teacher model. Subsequently, an additional linear output layer is introduced to

enable the student to learn new entity types. Importantly, each linear output layer

shares the same encoder layer. During the training process, both the teacher and the
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student process a sample. Consequently, both models generate a predicted output

probability distribution for each token. The objective of the student is to minimize

the weighted sum of two losses for each token: the KL divergence with respect to

the teacher’s predictions (which penalizes forgetting previous entity types) and the

cross-entropy loss with respect to the dataset labels (which penalizes errors related

to new entity types). The loss function L is defined in Equation 2.15 where α and

β are hyperparameters that weight the contributions of the respective losses. KL(·)

represents the KL divergence between the output probability distributions for each

token from the teacher (pMi) and the student (pMi+1). CE(·) denotes the cross-entropy

between the true class or gold label y and the predictions of the student (pMi+1).

L = α ∗KL(pMi , pMi+1) + β ∗ CE(y, pMi+1) (2.15)

The authors compute the KL divergence between the corresponding output layers

in the student and the teacher models. Additionally, they calculate the cross-entropy

between the newly added output layer and the gold labels obtained from the dataset.

Since there are multiple output layers, conflicts may arise regarding the predicted

class of a token. To resolve these conflicts, the authors combine the outputs for each

token from different output layers using a set of heuristics.

With ExtendNER, the student model initially replicates the architecture of the

teacher model. Subsequently, the authors extend the output layer to accommodate

learning the new entity types. The training methodology resembles that of AddNER,

where the student model is trained on the weighted sum of two losses. However, in

ExtendNER, the model selectively computes either the KL divergence or the cross-

entropy loss for each token, based on its corresponding label in the dataset. Specifi-

cally, the KL divergence is computed when a token’s gold or true label is designated
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as “O,” while the cross-entropy loss is calculated when the gold label represents one

of the new entity types.

2.3.2.2 Causal Framework for Continual Named Entity Recognition

Zheng et al. [36] propose Causal Framework for Continual NER (CFNER), a

model designed to learn from historical data without resorting to replay mechanisms.

Utilizing a student-teacher setup, their approach leverages the teacher model’s capac-

ity to interpret novel tokens within an established feature space. CFNER backprop-

agates loss for a single token based on a weighted average prediction of many tokens.

The target token is referred to as the anchor token, while the remaining tokens con-

tributing to the average are referred to as the matched tokens. Employing a k-nearest

neighbor approach, a preserved model from the preceding continual learning phase

identifies tokens closely aligned with the anchor token within the pre-existing feature

space.

The model’s prediction for the anchor token combines with its predictions for the

matched tokens to form the final prediction for loss backpropagation. This process

enables the influence of old data on new predictions without resorting to data replay.

The model is trained on continual learning sets featuring only one labeled entity type,

with the authors adopting a greedy sampling strategy to bias datasets towards the

target entity type. Their loss function incorporates cross-entropy on the weighted

average prediction of the new model for labeled tokens from the new class (EffectE in

Equation 2.16), and KL divergence with the teacher’s output probability distribution

on “other” class tokens (EffectO in Equation 2.16):
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Effect = EffectE + EffectO

= −
∑
i

CE(Y i, Yi)−
∑
j

KL(Y j, Ỹj),

s.t. Di ∈ DE, Dj ∈ DO.

(2.16)

where Y represents the weighted average prediction of the new model, Yi is

the ground-truth label of the new entity type, Ỹj denotes the output probability

distribution of the old model on “other” class anchor tokens, and Di and Dj signify

tokens i and j from the new data corresponding to the new class DE and the “other”

class DO, respectively.

Their approach to constructing a weighted average prediction ensures that tokens

closely aligned with the anchor token exert a stronger influence on the final probability

distribution Hu et al. [70].

To address label noise resulting from the retrieval of nearby tokens using the

teacher model instead of relying on labeled replay data, the authors implement a

confidence threshold-based curriculum learning strategy to filter out noisy “other”

class samples defined in Equation 2.17 where M , δ1, and δm are hyperparameters

such that δ1 > δm and m represents a specific continual learning step.

δi =


δ1 +

i−1
m−1

(δm − δ1), 1 ≤ i ≤ m

δm, i > m,

(2.17)

As the continual learning steps progress, the confidence threshold linearly de-

creases until reaching δm at continual learning step m+ 1. Additionally, the authors

incorporate a self-adaptive weight to enhance the KL divergence loss from the teacher

model’s soft labels as the number of learned entity types increases.
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2.3.2.3 Decomposing Logits Distillation

Zhang et al. [37] propose a model-agnostic method that can enhance existing

distillation-loss based models. Typically, these models generate predictions based on

the softmax of the dot product of tensors, which aggregates positive and negative

features and weights. However, Decomposing Logits Distillation (DLD) introduces

a novel approach by decomposing this summation into positive and negative terms.

Specifically, it constructs a positive logit from the sum of positive elements derived

from element-wise multiplication, representing likelihood, and a negative logit from

the sum of negative elements, signifying unlikelihood as as defined in Equation 2.18

where Zt
i,e denotes a complete logit, Zt,p

i,e represents the sum of positive elements, and

Zt,n
i,e denotes the sum of negative elements.

Zt
i,e = Zt,p

i,e + Zt,n
i,e (2.18)

The DLD loss is then defined as the sum of positive and negative losses shown

in Equation 2.19 where Θt represents the set of trainable parameters of model t.

LDLD

(
Θt

)
= Lp

DLD

(
Θt

)
+ Ln

DLD

(
Θt

)
(2.19)

This loss can seamlessly complement models employing traditional KL divergence

loss shown in Equation 2.20 where LLD (Θt) is the traditional KL divergence loss with

teacher soft labels, and λ is a loss-balancing hyperparameter. This addition facilitates

the computation of KL divergence loss between separate soft distributions, compris-

ing sets of positive and negative terms outputted by both the student and teacher

models The authors demonstrate that incorporating DLD enhances the performance

of ExtendNER [4] and CFNER[36].
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L
(
Θt

)
= LCE

(
Θt

)
+ λLLD

(
Θt

)
+ LDLD

(
Θt

)
(2.20)

2.3.2.4 Continual Learning with Named Entity Recognition for DAnish

Vijay and Priyanshu [57] introduce a variant of Named Entity Recognition for

DAnish 1 (NERDA) for continual learning (NERDA-Con). The authors propose

incorporating EWC within the training module of NERDA [71] to regularize losses in

future training. NERDA is a Python package designed to streamline the fine-tuning

process of pretrained transformer models for NER tasks. The authors present two

algorithm variants, one for distribution shifts and one for separate tasks. The authors

consider the task to have undergone a distribution shift when the task remains the

same, but the application domain changes. Consider an example of identifying named

entities belonging to some fixed set of preselected classes but changing the domain

from news articles into biomedical text. In this case with NERDA-Con, the authors

apply EWC to the complete neural network, including the transformer-based and

output layers. Alternatively, NERDA-Con allows using EWC only on the shared

model parameters. When used this way, NERDA-Con enables the training of NER

models across different tasks—for example, training a model first to perform coarse-

grain classification and then to perform fine-grain classification.

2.3.2.5 Relation Distillation and Prototypical pseudolabeling

Zhang et al. [62] developed the Relation Distillation and Prototypical pseudo

label method (RDP) to perform continual NER. Specifically, the authors define back-

ground shift as an effect that aggravates catastrophic forgetting when old and future

1According to the authors, NERDA has been expanded for use with other lan-
guages, not just Danish
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named entity types are classified as the non-entity type, “O,” during the current

learning step. The RDP method has two components: Task Relation Distillation and

Prototypical Pseudo Labeling. The Task Relation Distillation component is designed

to combat catastrophic forgetting while providing the model with a balance between

stability and plasticity. First, the authors introduce inter-task relation distillation

loss to allow for control over stability. They first create a new set of soft-targets

Y t to distill against by replacing the dimensions in the “one-hot” ground truth that

represent old entity types with the previous model’s output probability distribution

Ŷt. The inter-task relation distillation loss is defined in Equation 2.21.

Lcd(Θ
t) = − 1

|X t|

|Xt|∑
i=1

Y t(i) log Ŷt(i) (2.21)

Second, the authors introduce intra-task self-entropy loss to allow for control

over plasticity. Their goal was to increase the model’s confidence by minimizing

the intra-task self-entropy of the current output probability distribution defined in

Equation 2.22.

Lse(Θ
t) = − 1

|X t|

|Xt|∑
i=1

Ŷt(i) log Ŷt(i) (2.22)

These two losses are combined with the standard knowledge distillation loss

shown in Equation 2.23 to define the total Task Relation Distillation loss with two

hyperparameters to balance the tradeoff between stability and plasticity.

Lrd(Θ
t) = λ1Lcd(Θ

t) + λ2Lse(Θ
t) + Lkd(Θ

t) (2.23)

The Prototypical Pseudo Labeling component is designed to combat the back-

ground shift effect that can worsen catastrophic forgetting. The authors aimed to

clear up any confusion in the non-entity “O” class and generate high-quality pseudo
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labels for the model. Their approach compares entity prototypes with the feature

representations of tokens. When a token’s feature representation is far from an entity

prototype, it lowers the prediction probability for that type, allowing for a more re-

fined pseudo-labeling of the token. To generate the prototypes, the authors start with

the course pseudo labeling by taking the entity class with the highest probability for

each token predicted by the old model. They then calculate the average embedding of

an entity type as its prototype. Using the prototypes, they create a pseudo labeling

of a sequence, Ỹt, and compute the cross entropy with the current output probability

distribution defined in Equation 2.24. Overall, the objective function for the model

within the RDP is the sum of the two losses defined in Equation 2.25.

Lce(Θ
t) = − 1

|X t|

|Xt|∑
i=1

Ỹt(i) log Ŷt(i) (2.24)

L(Θt) = Lce(Θ
t) + Lrd(Θ

t) (2.25)

2.3.2.6 Confidence-based pseudolabeling and Pooled Features Distillation

Zhang et al. [9] developed the Confidence-based pseudo-labeling and Pooled Fea-

tures Distillation method (CPFD) to perform continual NER. The CPFD method has

two components. The first is Pooled Features Distillation designed to strike a balance

between stability and plasticity. The second is Confidence-based Pseudo-labeling de-

signed to combat background shift. The Pooled Features Distillation component uses

the attention weights of the pretrained language models to retain embedded linguistic

knowledge such as coreference and syntax information. The authors create a feature

distillation loss to transfer linguistic knowledge from the old model. To mitigate the

problem of excess stability, the authors incorporate pooling into their loss. They
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argue that a lack of pooling can result in a model that is too stable but that substan-

tial pooling can result in a model that is too plastic. Thus, the authors balance their

pooling by aggregating statistics across only one of the head and sequence dimensions

as shown in Equation 2.26 where At
l and At−1

l correspond to the attention weights of

layer l for the old model Mt−1 and the current model Mt respectively. K represents

the count of attention heads.

LPFD =

|Xt|∑
i=1

|Xt|∑
j=1

∥∥∥∥∥
K∑
k=1

At
l,k,i,j −

K∑
k=1

At−1
l,k,i,j

∥∥∥∥∥
2

+
K∑
k=1

|Xt|∑
j=1

∥∥∥∥∥∥
|Xt|∑
i=1

At
l,k,i,j −

|Xt|∑
i=1

At−1
l,k,i,j

∥∥∥∥∥∥
2

+
K∑
k=1

|Xt|∑
i=1

∥∥∥∥∥∥
|Xt|∑
j=1

At
l,k,i,j −

|Xt|∑
j=1

At−1
l,k,i,j

∥∥∥∥∥∥
2

(2.26)

The Confidence-based Pseudo-labeling component uses median entropy as a con-

fidence threshold when generating pseudo labels to reduce error propagation from the

old model. The authors combat background shift by defining a new target,Ỹt, for

the model to learn. To generate Ỹt, the authors combine the “one-hot” ground truth

with the course pseudo labels from the old model, Ŷt−1. Essentially, for all the tokens

labeled as “O” in the current ground truth, they use the prediction of the old model

as the label. However, the previous model’s prediction is only used if the model is

confident enough; that is, the uncertainty of the model for its prediction is less than

the median entropy confidence threshold. Lastly, because the entities in the current

learning step tend to outnumber the old entity classes after pseudo labeling, the au-

thors introduce an adaptive reweighting type balanced strategy where they can weigh

classes differently based on their frequency. This is defined in Equation 2.27 where
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ηi denotes the weight of the token at the location i in the sequence X t. Overall, the

total loss in CPFD is the sum of the two losses defined in Equation 2.28 with λ as

a hyperparameter for balancing losses, and Θt being the set of learnable parameters

for Mt.

Lbalance−pseudo = − 1

|X t|

|Xt|∑
i=1

ηiỸt(i) log Ŷt(i) (2.27)

L(Θt) = Lbalance−pseudo + λLPFD (2.28)

2.3.2.7 Span-based Knowledge Distillation to preserve memories and multi-

label prediction

Zhang and Chen [65] propose a neural SPAN-based model with Knowledge distil-

lation to preserve memories and multi-Label prediction for continual NER (SpanKL).

Given a sequence X of tokens, a span is a subsequence of tokens, xi, ..., xj, that are

all part of the same entity. SpanKL aims to turn each span into a representation

using the contextualized word embeddings and then perform binary classification for

each entity type in the current learning step (i.e., in a given continual learning step

with entity types PER and ORG, the model will predict whether a specific span is

of the type PER or not and whether the span is of the type ORG or not). The

authors develop the span representation using the contextualized word embeddings

of the tokens. Given a span, the authors use two distinct one-layer feed-forward net-

works, one for the starting boundary token and one for the ending boundary token of

the span, before performing the scaled dot product. Specifically, they use multi-head

dot-product attention. They then organize all of the span representations related to a

specific entity type into the upper triangle region of a matrix where the row and col-
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umn indicate the beginning and end of that span. To predict the final classification of

a span, they pass the predicted logit through a sigmoid activation before performing

binary cross-entropy loss where each entity type in the current learning step is bi-

nary classified independently. Binary cross entropy is defined in Equation 2.29 where

p(k|sij) is the gold label, p̂(k|sij) is the predicted label, k is an entity type, and sij is

a span between tokens xi and xj.

LBCE = −
n∑

i=1

n∑
j=1

L∑
k=1

p(k|sij)log(p̂(k|sij)

+ (1− p(k|sij))log(1− (p̂(k|sij))

(2.29)

The authors specify that they compute the binary cross-entropy loss only be-

tween the span matrices of current entity types. For continual learning, the authors

incorporate knowledge distillation into SpanKL. The teacher model predicts over the

whole dataset and gives the soft label for every span for every old entity type. These

are then used to compute the KL divergence loss with the current model shown in

Equation 2.30 where p̃(k|sij) is the soft label from the teacher model. The authors

specify that they compute the KL divergence loss only between the span matrices

of old entity types. The final loss for training is the sum of the two losses shown

in Equation 2.31. For the model’s final output, the authors combine the predicted

overlapping entities into a flat one by only keeping the entity type prediction with

the highest predicted score.

LKD = −
n∑

i=1

n∑
j=1

L∑
k=1

p̃(k|sij)(log(p̃(k|sij)− log(p̂(k|sij)))

+ (1− p̃(k|sij))(log(1− p̃(k|sij))− log(1− p̂(k|sij)))

(2.30)
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L = α ∗ LBCE + β ∗ LKD (2.31)

2.3.2.8 Span-based Knowledge Distillation with Reinforcement Learning

Chen and He [64] propose a model called Span-based Knowledge Distillation for

NER (SKD-NER). Their goal was to prevent catastrophic forgetting by minimizing

the effect of parameter updates based on poor optimization steps. They use reinforce-

ment learning to adjust the knowledge distillation process by changing the distillation

temperature and loss weights to allow for better forward compatibility of the model

while addressing the issue of token noise. The SKD-NER model consists of a con-

textual encoder, span-prediction layer, label-loss layer, and reinforcement learning

for knowledge distillation layer. For the contextual encoder, they use BERT. The

span prediction layer utilizes a multi-headed attention mechanism that computes the

span matrix using the entity’s starting position token and ending position token to

obtain the predicted entity span. They use Relative Position Encoding to add rel-

ative position information during the span prediction process. The label-loss layer

incorporates a span-based cross-entropy to encourage the model to learn boundary

information better.

The reinforcement learning for knowledge distillation layer starts with the stan-

dard knowledge distillation approach. However, during the knowledge distillation

process, the authors introduce a reinforcement strategy to optimize the distillation

temperature, which acts on the soft labels for each span of each old entity type. Their

reinforcement learning strategy keeps a sequence of environment states. Each state is

a concatenation of the vector representation of the input instance xi, the prediction

by the teacher model on xi, and the loss of the student model on the xi. An agent

modifies the distillation temperature and the weight of the distillation loss for the
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current teacher model. The policy function defined in Equations 2.32 - 2.34 where

F (sj) is the state vector, θ is the trainable parameters, aj ∈ 0, 1 is the action value,

T is the temperature factor, and weight is the weight of the distillation loss. They

use accuracy on a validation set and the student loss as a reward, where a hyperpa-

rameter balances the reward between the training and validation sets, and they defer

the reward until the end of each batch.

πθ(sj, aj) = [temp(sj, aj), klweight(sj, aj)] (2.32)

temp(sj, aj) = aj ∗ [T + A ∗ F (sj)] + (1− aj) ∗ T (2.33)

klweight(sj, aj) = min[aj ∗ (weight+B ∗ F (sj)) + (1− aj) ∗ weight, 0.1] (2.34)

2.3.3 Parameter Isolation

In this section, we describe the parameter isolation methods.

2.3.3.1 Task-CL based on Sub-networks and Task similarity

Ke et al. [66] point out that most continual learning methods address only catas-

trophic forgetting or knowledge transfer and seek to introduce a method that ad-

dresses both. They propose Task-CL based on Sub-networks and Task similarity

(TST). TST uses a frozen BARTlarge as a base model and inserts a randomly initial-

ized, frozen adapter [44] into each transformer layer. A number of binary masks are

created with the same parameter size as the inserted adapter. Inspired by network

pruning and other sub-network masking methods, TST trains these binary masks

following Wortsman et al. [72] to turn off select parameters of the frozen adapter to
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change the model output.

TST seeks to perform task-incremental learning using NER as one of its tasks.

When a new task is encountered, for each previously trained mask, the model saves an

importance score for that mask on the new data. A mask with a high importance score

indicates that a previous and current task may be closely related enough to facilitate

knowledge transfer by training further on the current task. Aside from outperforming

the compared baselines, the authors found that TST did enable knowledge transfer

between NER and the related task Aspect Sentiment Classification by randomizing

the order of the tasks and finding a negative average forgetting measure when each

task was learned before the other.

2.3.3.2 Lifelong Few-Shot Language Learning with Prompt tuning of T5

Qin and Joty [50] explore few-shot task-incremental continual learning and present

Lifelong Few-Shot Language Learning with Prompt tuning of T5 (LFPTS). Prompt

tuning involves the creation of a matrix of embeddings not restricted to the vocabu-

lary of any model, known as a soft prompt, and the training of those embeddings by

backpropagating loss to increase the probability of a label being output by a frozen

model. The authors point to the likelihood of overfitting during task incremental

learning as a motivation to use prompt tuning as an alternative to model fine-tuning.

Like adapter-based methods, prompt tuning allows for the training of relatively few

parameters when compared to fine-tuning large, generalist models, and both methods

are able to retain the generalizability of pre-trained models by freezing their weights.

Following Lester, Al-Rfou, and Constant [73], LFTP5 trains prompts that cause

a frozen T5 model to act as both a task solver and a pseudo-sample generator, cre-

ating its own replay data to train with NER, text classification, and summarization

are learned sequentially in a stream, multiple prompts are used for multiple tasks.

44



The authors explore the effect of initializing prompt embeddings for a task with those

of the previously learned task, and a KL divergence loss is taken between the out-

puts of previous and current task prompts to combat forgetting by encouraging label

agreement.

2.4 Evaluation of Continual Learning NER Systems

Named Entity Recognition methods are evaluated using precision, recall, and F1

scores. Precision is the ratio between correctly predicted mentions over the total set

of predicted mentions for a specific entity, recall is the ratio of correctly predicted

mentions over the actual number of mentions, and F1 is the harmonic mean between

precision and recall. The micro- and/or macro- F1 scores are typically reported as

a comparison across systems. The macro F1 score treats all classes equally. where

the micro F1 score aggregates the contributions of all classes taking into account the

inherent class imbalance of the entities in the dataset.

There are four main datasets that the presented NER systems have been evalu-

ated on: CoNLL-03, OntoNotes5, I2B2, and FewNERD. The CoNLL-03 dataset [74]

consists of approximately 1,400 sentences from Reuters news articles that have been

human-annotated with persons, locations, organizations, and miscellaneous entities 2.

The OntoNotes5 dataset [75] consists of various genres of text such as news, telephone

conversations, and talk shows, in English, Chinese, and Arabic. It contains 18 entity

types, the six most frequent types being: person, organization, geopolitical entity,

date, cardinal number, and Nationalities or religious or political groups (NORP) 3.

The I2B2 dataset [76] consists of 141,000 sentences from 1,304 medical records for

296 diabetic patients pulled from the MIMIC-3 corpus. It contains 16 entity types,

2https://www.clips.uantwerpen.be/conll2003/ner/
3https://catalog.ldc.upenn.edu/LDC2013T19
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including age, doctor, hospital, patient, and medical record, to name a few 4. The

FewNERD dataset [77] consists of 188,238 sentences from Wikipedia annotated by

humans. It contains 8 coarse-grained entity types and 66 fine-grained types. The

coarse-grained entity types are: person, location, organization, art, building, prod-

uct, event, and miscellaneous. For a detailed list of fine-grained entity types we direct

you to their publication 5.

Table 2 reports micro- and macro- F1 scores across these four aforementioned

popular datasets for each of the reviewed methods if possible. ExtendNER [4],

CFNER [36], CPFD [9], Decomposing Logits Distillation (DLD) [37], and RDP [62]

are directly comparable on CoNLL-03, OntoNotes5, and I2B2. Their CoNLL-03 setup

contains two classes in the initial step and one class in each following continual learn-

ing step. For OntoNotes and I2B2, their setup contains eight classes in the initial step

and two classes in each following continual learning step. SKD-NER [64], SpanKL

[65], and NERDA-CON [57] can be compared on FewNERD, each using only the

8-coarse grained entity types from this dataset. SKD-NER [64], SpanKL [65], and

Learn & Review [27] can be compared on OntoNotes5, each used only the six most

frequent entity classes. Attention Based Seq2Seq [56] reports results on CoNLL-03

using three classes in the initial step and one class in the subsequent continual learn-

ing step. Few-Shot Class-Incremental NER [58] report results on CoNLL-03 using

one class in the initial step and one class in each of the following continual learning

steps. They report results on OntoNotes5 for all 18 entity classes but use their own

method when grouping them into continual learning steps. Learning “O” [8] reports

results on FewNERD by using six steps of 11 entities and on OntoNotes5 by using

4https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
5https://ningding97.github.io/fewnerd/
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three steps of 6 entities.

Note that JCBIE [59], LAMOL-NER [60], Single Epoch Recovery [63], and Proto-

NER [61] conduct experiments that do not contain any overlapping datasets and are

subsequently not included in the table. TST [66] and LFTP5 [50] are task-incremental

continual learning methods and the experiments conducted in the original papers

do not produce results comparable to the other methods reviewed in this paper.

Subsequently they are also not included in the table. The OntoNotes5 results for

Few-Shot Class-Incremental NER [58] were extrapolated from a graph and represent

an approximate measure. All of the results for ExtendNER [4] were included from

[36].

Table 2. NER Methods and their F1 Results
Approach Method CoNLL-03 OntoNotes5 I2B2 FewNERD

Category Micro Macro Micro Macro Micro Macro Micro Macro

Regularization

ExtendNER [4] 76.66±0.66 66.36±0.64 76.85±0.77 54.37±0.57 52.25±5.36 30.93±2.77

CFNER [36] 80.83±0.36 75.20±0.32 80.68±0.25 60.52±0.84 69.07±0.89 51.09±1.05

CPFD [9] 85.70±0.19 83.49±0.16 83.38±0.18 66.27±0.75 81.05±0.87 65.04±1.13

DLD [37] 83.40±0.87 79.54±0.71 82.26±0.55 63.07±1.13 70.88±0.70 53.21±0.92

RDP [62] 85.82±0.36 83.59±0.37 83.30±0.30 66.92±1.26 80.08±0.40 63.72±0.71

SKD-NER [64] 88.17 67.14

SpanKL [65] 88.98 62.15

NERDA-CON [57] 77.61 78.40

Replay

Seq2Seq [56] 88.20

Few-Shot CINER [58] 64.18 33*

Learn & Review [27] 85.74±0.44 83.02±0.63

Learning “O” [8] 83.18 51.16

47



CHAPTER 3

METHODOLOGY

3.1 Research Goals and Experimental Design

Through our review, we identified a critical gap in the literature. Generating

and using synthetic data to combat forgetting has been studied in continual learning

for computer-vision models, notable examples being [22, 23, 26]. However, for NER

models, using synthetic data to combat forgetting has only been studied to a limited

extent with LSTM generators [27] or inverted models [58]. Thus, a critical gap,

namely the absence of generative large-language models to create synthetic data to

combat forgetting, presented a timely and promising avenue for exploration.

This work focuses on building the foundation for a generative replay approach for

continual NER. We aim to determine the efficacy of using Open AI’s GPT-4 model to

generate synthetic data to supplement the training of NER systems. To that effect,

we aim to answer the following questions:

Research Question #1: Can synthetic data be generated to mimic

the format of authentic NER training data? To answer this question, we

plan to repeatedly prompt Meta’s Llama-2-70b and OpenAi’s GPT-4-0125-preview

and visually inspect the output. The visual inspection will be implemented with

the assistance of a domain expert in information extraction to determine whether

we can use the generated synthetic data to train a NER model. We will consider

generated synthetic data usable if it resembles authentic NER training data in the

CoNLL-03 format, i.e., sequences of tokens, each with corresponding entity labels.

Figure 3 shows an example sentence in both BRAT and CoNLL-03 formats. During
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this process, we will construct and refine an ad-hoc prompting strategy to generate

and improve the outputs of the large-language models. We will refine our prompting

strategy until the large-language model, if possible, generates consistent outputs in

the correct format.

SEX STRAIN SPECIES

Six   week   old   male   ZDF     rats   were   housed   with   access   to   feed   and   water   .
O O O O O O O O O O O O

SEX STRAIN SPECIES

Six   week   old   male   ZDF     rats   were   housed   with   access   to   feed   and   water   .BRAT

CoNLL-03

Fig. 3. A side-by-side comparison of a sentence in the BRAT and CoNLL-03 formats.

In BRAT, the sentence is highlighted for different entity types only. BRAT

is easier for annotating data however, NER models require data in CoNLL-03

format for training. A model’s parameters are updated based on the cross

entropy between the true and predicted label for each word, which requires

each word to be assigned a true label. BRAT does not provide such information

but, in CoNLL-03, an equal length list of labels, including the non-entity type,

is created for the sentence assigning one label to each token.

Research Question #2: Is synthetic data similar to the authentic data?

To answer this question, we plan to compare the contextualized embeddings for en-

tities of the same entity type across authentic and synthetic data. We will use a

pretrained but not finetuned DeBERTa-based model to generate these contextualized

embeddings. We can determine the similarity between the two groups by clustering

the embeddings and comparing the two clusters. Overall, the closer the synthetic

entity embeddings are to the authentic ones, the more similar the synthetic data is

to the authentic data.

Research Question #3: Does the addition of synthetic data improve

model performance? To answer this question, we first plan to select three target

entities to study from a dataset using a baseline model trained in the traditional fash-
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ion for NER. We intend to select a well-represented and high-baseline-performing en-

tity, a well-represented and low-baseline-performing entity, and a poorly-represented

and low-baseline-performing entity. The task of NER is one that inherently deals

with class imbalance. Additionally, even when trained in the traditional sense, not

all entities are equally easy to recognize. Thus, our motivation for these three target

choices is to differentiate and measure the effect of our approach on different naturally

occurring scenarios for entities.

Next, we plan to filter the chosen dataset into three variants, one for each targeted

entity. The filtered variants will be labeled for only the “O” and targeted entity

types. Filtering the original dataset in this fashion will convert the standard multi-

class classification problem for NER into a binary classification problem. We will

train a model for each filtered variant using only authentic data as the baseline for

comparison with our approach.

The first experimental model we propose is “combined gen.” For this model, we

will generate a fixed amount of synthetic data. Then, we will augment the baseline

model’s training set with all of this generated synthetic data and train the model. For

data generation, we intend to use a 5-shot example prompting, which is to include

five examples of real data in each prompt. The motivation behind using 5-shot was to

restrict the amount of human-annotated data needed when using our method. This

restriction significantly reduces annotation labor and time costs, especially when fully

synthetic data could replace real training data. Additionally, we propose a second

experimental model, “combined gen small.” For this model, we will only augment

the baseline model’s training set with 10% of the generated synthetic data and train

the model.

Research Question #4: Is solely using synthetic data enough to achieve

performance on par with a baseline? To answer this question, we propose
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a third experimental model, “replaced gen.” For this model, we will not use any

authentic training data and solely train a model with the generated synthetic data.

Figure 4 visualizes the differences between the training set for each of the described

experimental models.

Authentic 
Data

Synthetic 
DataAuthentic 

Data
Authentic 

Data

Synthetic Data

combined_gen combined_gen_small replaced_genbaseline

Synthetic 
Data

Fig. 4. Visualization of each proposed variant of the training set.

Research Question #5: How do different prompting strategies for

generating synthetic data affect model performance? We plan to explore

a second prompting strategy to answer this question. With this additional strategy,

we will generate an equivalent amount of synthetic data as with the ad-hoc strat-

egy. We then plan to repeat the same experimental models, “combined gen,” “com-

bined gen small,” and “replaced gen.” We will then compare results to determine the

effect, if any, of prompting on the efficacy of synthetic data for NER.

3.2 System Design

This section provides a detailed description of the structural framework used for

the NER system, including data preprocessing, the model architecture, the training

methodology, and the inference procedure. We developed the model using PyTorch
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Lightning 1, a lightweight PyTorch wrapper that aims to streamline the training

process for PyTorch models. PyTorch Lightning provides a high-level interface for

organizing code modularly, reducing development time for complex machine learning

projects. It abstracts the initialization of training loops, logging, and distributed

training in favor of model development.

3.2.1 Data Preprocessing

3.2.1.1 Dataset loading

We first use the brat rapid annotation tool (BRAT) brat2conll converter to con-

vert the TAC dataset from BRAT format to CoNLL-03 format for NER. We then read

each document into a Pandas data frame. Each sentence and corresponding sequence

of entity labels are collected into lists respectively and grouped to represent instances.

We instantiated a PyTorch Lightning Data Module 2 for the TAC dataset, allowing

for better reusability in the future for different experiments and models without du-

plicating code. Another benefit of designing our model to use Data Modules is the

ease of using different datasets. We simply pass a different module to our model’s

trainer.

3.2.1.2 Removal of IOB Tags

The entities were initially labeled in the IOB format. The IOB (Inside, Outside,

Beginning) format in NER serves as a methodology for annotating and categorizing

named entities. This format uses a hierarchical tagging scheme, wherein each token

within a given text is labeled to denote its positional context within a potential

1https://lightning.ai/docs/pytorch/stable/
2https://lightning.ai/docs/pytorch/stable/data/datamodule.html
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entity. A “B-” proceeding an entity label, e.g., “B-PER,” indicates the beginning

of that entity. An “I-” proceeding an entity label, e.g., “I-PER,” indicates a token

inside an entity. We removed the IOB tags for our experiments and replaced them

with the generic entity label (e.g., I-PER becomes simply PER). Additionally, we

remove non-contiguous entity types from the dataset by replacing them with the “O”

non-entity type label. Figure 5 shows an example sentence labeled in both the IOB

format and non-IOB format.

John  Smith   works   at   Virginia    Commonwealth    University   .

B-PER B-ORGO

John  Smith   works   at   Virginia    Commonwealth    University   .IOB

No-IOB

I-PER O OI-ORG I-ORG

PER ORGOPER O OORG ORG

Fig. 5. An example sentence labeled with both IOB and non-IOB labels.

3.2.1.3 Filtering on TAC-variants

The full TAC dataset was filtered three times, once for each targeted entity type

we selected. The filtering process involved relabeling as “O” all tokens not already

labeled as “O” or the targeted entity type.

3.2.2 Architecture

3.2.2.1 Underlying Model

The underlying model used within our framework is based on DeBERTa. He et

al. [78] developed Decoding Enhanced BERT with disentangled attention (DeBERTa)

and introduce two major changes to the standard BERT architecture: disentangled

attention and the enhanced mask decoder. Disentangled attention aims to reduce the

interference between different attention heads. Within an encoder block, DeBERTa
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represents tokens using two vectors, one for content and one for relative position.

By decomposing content and position, this mechanism allows the model to better

focus on different aspects of the input text independently. Additionally, incorporat-

ing absolute positional information before the final classification layer enhances the

decoding of masked tokens during the masked-language-modeling pre-training task.

He, Gao, and Chen [79] develop DeBERTaV3, which improves the original DeBERTa

model by replacing the masked-language-modeling task with replaced token detection

(RTD). The RTD task uses a generator to create corruptions to token sequences. The

authors then treat DeBERTaV3 as a discriminator to predict whether a token in the

corrupted input is either original or replaced by the generator, similar to the idea be-

hind Generative Adversarial Networks (GAN). We first use the DeBERTa tokenizer

before passing the subtokens through pretrained DeBERTa-v3-large. We then pass

the outputs through a broadcast linear layer with a softmax. The final output for

each subtoken is its predicted entity class. When trained with a mix of authentic and

synthetic data, the files are read into memory and joined into one large training set.

Figure 6 shows the model architecture of our DeBERTa based NER model.
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Fig. 6. The model architecture.
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3.2.2.2 Regularization

Regularization techniques can prevent overfitting and improve the generalization

ability of machine learning models. We use several techniques with our model. We use

logit scaling, which involves rescaling the logits or raw predictions of a model before

applying a softmax function to help calibrate and stabilize the model’s predictions.

We use a learning rate scheduler to adjust the learning rate during training to help the

model converge more effectively. We use a scheduler that raises (warm-up) and then

lowers the learning rate on an epoch schedule, with the highest learning rate occurring

30% into the training sequence. We use batching to reduce the number of samples

the model processes before updating its parameters; we set the batch size to 32. We

used gradient clipping to scale the gradients during training and prevent them from

becoming too large, helping to prevent/mitigate the exploding gradient problem. We

also used gradient flooding, which adds a constant value to the gradients to prevent

them from becoming too small, helping to prevent/mitigate the vanishing gradient

problem. We used label smoothing that helps with class imbalance by assigning some

extra probability of other classes to the model’s predictions. We also use dropout

to drop a certain proportion of neurons during training randomly and encourage

the model to learn multiple paths for information to traverse through the network.

Within DeBERTa, we also use attention dropout, which refers to applying dropout

specifically to attention mechanisms in models such as transformers, to improve their

generalization performance.

3.2.3 Training

We feed the tokenized sentences into the DeBERTa model. The model is tasked

with predicting the sequence labels for each token in the input. Based on the difference
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between predicted and true labels, a loss value is calculated and back-propagated

through the DeBERTa model to adjust its weights. We use the AdamW [80] optimizer,

which decouples weight decay from the optimization steps. We train each model for

ten epochs. We use checkpointing to take the model that performs the best on the

validation set during training. Figure 7 shows how generated data is incorporated

into the training procedure.

DeBERTa
Model

Synthetic
Data

Training
Data

GPT-4

Authentic
Data

Exemplar 
Extraction

Synthetic Data
Supplementation

Predicted
Outputs

Fig. 7. Incorporation of Synthetic Data into Training.

We trained our models using the resources provided by the VCU High Perfor-

mance Research Computing (HPRC) core. 3 The VCU HPRC core facility occupies

approximately 2,000 square feet of space on the third floor of Harris Hall on the

Monroe Park campus. The mission of the HPRC is to provide high performance

computing services for the VCU research community. To accomplish this goal, the

HPRC maintains two major supercomputing clusters, each specialized for different

3https://hprc.vcu.edu
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computing environments: Athena and Fenn. We used the Athena cluster.

Athena is the primary cluster for large scale parallel computing. Athena consists

of 109 compute nodes with a total of 7628 CPU cores, 38 TB of RAM, 28 GPUs,

3 PB of lustre filesystem, and a high-speed InfiniBand architecture of up to 100

Gb/s. Each node comprises between 28 to 128 cores, and 128 GB to 1 TB of RAM.

GPU nodes comprise the NVIDIA V100, A100, and H100 GPUs. We trained our

models exclusively using NVIDIA A100 GPUs. The clusters provide 70+ software

packages including R, SAS, Matlab, MPI, Bioperl, CellRanger, Gaussian16, VASP,

Intel compilers, MCNP, nekRS, OpenFOAM, Salmon, etc. To facilitate the usage

of the software and lower the barrier to non-traditional users, a web portal based on

Open OnDemand offers a graphical user interface to interactive applications, including

Jupyter lab, RStudio, VS Code, Matlab, SAS, etc. To support this infrastructure, the

HPRC employs 6 FTE staff positions: Alberto Cano, faculty director, Mike Davis,

technical director; three systems analysts; and an applications analyst. In addition

to maintaining the hardware, the HPRC works collaboratively with VCU researchers

to maintain and optimize a large number of applications, scientific, statistical and

development software.

3.3 Data

The National Toxicology Program (NTP), an interagency program headquar-

tered at the National Institute of Environmental Health Sciences (NIEHS, part of

the National Institutes of Health), and the Environmental Protection Agency (EPA)

created the 2018 TAC SRIE dataset for the Text Analysis Conference Systematic

Review Information Extraction (SRIE) task. They were interested in automated

systems for information extraction from systematic reviews of environmental chem-

icals to reduce human labor costs while maintaining quality. The following link,
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“https://tac.nist.gov/2018/SRIE/”, provides more information about the task. The

2018 TAC SRIE dataset contains experimental design factors for the categories of

Animal, Dose, Exposure, and Endpoint found in the “Material and Methods” sec-

tion of journal articles describing experiments related to toxicity and health effects

on animals of environmental agents. Extracting these entities is difficult due to the

diversity of writing and presentation styles in published literature. Many publications

contain multiple experiments with various exposures and doses evaluated at multiple

endpoints. Authors may report experimental details with different units and often

use many different names to refer to the same chemical. In addition, this informa-

tion may be presented in the text, a table, a figure caption, or a figure itself. Thus,

creating information extraction models for this domain is a non-trivial task.

GROUP_NAME

DOSE
DURATIONVEHICLE

SEX

TEST_ARTICLE

STRAIN SPECIES

GROUP_NAME

Six week old male ZDF rats were housed with free access to 

feed and water, acclimatized for one week, randomized into 

vehicle and treatment groups and then administered vehicle 

water or CNX-011-67, respectively, for seven weeks.

Fig. 8. Method section excerpt with entities highlighted

The TAC dataset contains 7,417 sentences annotated for 24 different entities.

After preprocessing as defined in the previous section, the number of entity types

is reduced from 24 to 21. Due to processing errors within the brat2conll conversion

scripts from BRAT, five pairs of files did not get included in the experiments. We

summarize information about the entities from the correctly processed files in Table

3.

We trained and evaluated a baseline model on the full TAC dataset and collected
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Table 3. Entities from the TAC SRIE dataset

Category Entity # of instances # of entities # of labels

Non-entity O 7,402 N/A 171,249

Animal

CellLine 38 38 133

GroupName 462 734 1,970

GroupSize 250 335 736

SampleSize 40 41 79

Sex 353 481 538

Species 1,133 1,363 1,427

Strain 233 323 821

Dose

Dose 301 585 1,000

DoseDuration 142 182 211

DoseDurationUnits 137 164 198

DoseFrequency 70 81 185

DoseRoute 394 466 786

DoseUnits 292 438 1272

TimeAtDose 51 86 139

TimeAtFirstDose 30 32 54

TimeAtLastDose 9 11 13

TimeUnits 363 540 605

Exposure

TestArticle 1,056 1,444 2,730

TestArticlePurity 16 23 91

TestArticleVerification 3 3 78

Vehicle 277 324 723

results as presented in Table 4. Then we selected three entities based on the crite-

ria outlined in Research Question #3. In particular, for our experiments, we were

interested in three entities from the Animal group: “CellLine,” “GroupName,” and

“Species.”

“CellLine” denotes a population of cells derived from a single cell and cultured un-

der specific laboratory conditions. These cell lines are tools for studying cellular pro-

cesses, disease mechanisms, drug responses, and various biological phenomena. Each
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Table 4. TAC Baseline Results

Category Entity Test F1

Non-entity O 0.98

Animal

CellLine 0.73

GroupName 0.73

GroupSize 0.84

SampleSize 0.43

Sex 0.92

Species 0.91

Strain 0.92

Dose

Dose 0.77

DoseDuration 0.79

DoseDurationUnits 0.83

DoseFrequency 0.52

DoseRoute 0.84

DoseUnits 0.81

TimeAtDose 0.58

TimeAtFirstDose 0.55

TimeAtLastDose 0.0

TimeUnits 0.71

Exposure

TestArticle 0.67

TestArticlePurity 0.57

TestArticleVerification 0.0

Vehicle 0.68

Overall
Micro-F1 0.97

Macro-F1 0.67

cell line typically possesses unique characteristics and behaviors, reflecting its tissue

of origin and any genetic modifications introduced during culturing. Researchers uti-

lize cell lines from diverse sources, including human, animal, and microbial origins,

to investigate a wide range of scientific questions and to develop therapeutic inter-

ventions. “GroupName” refers to distinct categories or levels within a dataset that

are compared to assess differences or effects. These groupings typically represent

experimental conditions, treatment regimens, or other factors of interest being in-

vestigated. Assigning observations to appropriate group names allows researchers to
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conduct comparative evaluations and infer relationships or associations between vari-

ables. Group names play a crucial role in hypothesis testing, where researchers aim to

determine whether observed differences between groups are statistically significant or

merely due to chance. “Species” refers to a fundamental unit of classification in the

taxonomic hierarchy. It represents a group of organisms capable of interbreeding and

producing fertile offspring under natural conditions. Each species typically exhibits

distinct morphological, physiological, and behavioral characteristics, contributing to

its unique identity within an ecosystem. Within scientific research involving animal

subjects, “Species” denotes the specific type or category of organisms under investi-

gation, encompassing a variety of taxa such as mammals, birds, reptiles, amphibians,

fish, and invertebrates.

We created the three variants of the TAC dataset by filtering it. Each variant

was filtered for a specific entity label, marking the remaining labels as “O”. We then

partitioned each variant into a training, validation, and test set with a stratified split

of 70/15/15 percent of the full TAC dataset, respectively. Table 5 displays a summary

of the entity statistics for each of the filtered and partitioned versions.

Table 5. Entities from the filtered TAC SRIE dataset

Filter Entity # of instances # of labels in Train # of labels in Val # of labels in Test

CellLine
CellLine 38 99 15 19

O 7,417 130,003 28,004 26,898

GroupName
GroupName 462 1,460 266 244

O 7,417 128,705 27,042 27,321

Species
Species 1,133 988 207 232

O 7,412 128,986 27,029 27,596

3.4 Generating Synthetic Data

The synthetic data for our experiments was generated using 5-shot prompts with

OpenAi’s GPT-4-0125-preview model. This section describes the specific procedure
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used when generating the data.

We first extracted example instances, called exemplars, to provide context within

the prompts. These exemplars were extracted from the unfiltered version of the TAC

dataset. We considered an instance suitable if and only if it met our extraction

criteria. Specifically, the unique entity labels present in the instance contained ex-

clusively the specific entity label we wished to generate for and the “O” label. We

carefully partitioned the filtered versions of the dataset into the training, validation,

and testing sets. We ensured that all the extracted exemplars were placed in the

training set. This was necessary to prevent reporting results on an instance used to

generate synthetic data. For the “CellLine” label, we extracted 9 exemplars, and for

“GroupName” and “Species”, we extracted 50 exemplars. The choice in the number

of extracted exemplars depended on the availability of the data; however, we set an

upper bound of 50.

For constructing the prompts, we used two different strategies. The first strategy

was ad-hoc, where we collectively designed a prompt using our domain knowledge.

The second strategy, which we refer to as Knowledge Entity Extraction (KEE), was

inspired by Shao et al. [81], who were inspired by Mishra et al. [82]. Our KEE style

prompt was created using Shao et al. [81] as guide. The prompts are comprised of

different mixtures of five generic components: Task Descriptions, Entity Definitions,

Task Emphasis, Task Examples, and a Prompt. We use the Task Descriptions to

ask the large-language model to take on a role, for example “You are an experienced

biologist, capable of easily recognizing named entities.” We also define the overall task

to complete and output format within the Task Descriptions. The Entity Definitions

provide the large-language model with specific definition of the entity that we would

like to be generated. The Task Emphasis is to provide the large-language model with

additional rules to follow when generating its output, such as “Ensure the samples

62



are of adequate length.” The Task Examples are the 5-shot exemplars. The Prompt

is a component we added to formally request the large-language model generate 5

instances of synthetic data for NER. Figure 9 compares the generic structure of the

two different prompting strategies.

Prompt

Entity Definitions

Task Description

Task Emphasis

Prompt

Task Examples

Task Description

Task Examples

Prompt

Ad-Hoc Prompt Strategy KEE Prompt Strategy

Task Description

Start

End

Fig. 9. Comparison of prompting strategies

We utilized five exemplars (5-shots) within each prompt. For “Species” and

“GroupName”, we created 10 prompts under each prompting strategy. For “Cel-

lLine”, we created 2 prompts under each prompting strategy. The exemplars used

were the same across prompting strategies. That is, ad-hoc Prompt 1 and KEE

Prompt 1 contained the same five exemplars, ad-hoc Prompt 2 and KEE Prompt

2 contained the same five exemplars, and so on. There is no overlap of exemplars

across prompts within a prompting strategy except with “CellLine.” There were only

9 samples that met the criteria for exemplar extraction, thus we used one exemplar

twice to to allow us to create two 5-shot prompts.
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To generate the synthetic data, we initially experimented with using Meta’s

Llama-2-70b with limited success. The model struggled to produce outputs that

were correctly formatted and did not produce outputs that passed visual inspection.

Additionally, the model often shifted into unrelated tasks or domains, occasionally

even producing outputs that were not human-readable. As a result, we transitioned to

utilizing OpenAi’s GPT-4-0125-preview model. GPT-4-0125-preview was successful

in outputting data that met the requirements to be considered usable for NER.

When generating synthetic data, each prompt was used to generate a maximum

of 100 instances. The prompt was used to initially query the large language model

(LLM), requesting 5 synthetic data instances. The subsequent response was appended

to the context history of the conversation. Following the initial query and response,

the phrase “Create five more.” was used to query the model for additional instances

until 50 instances were created, each time appending the LLM’s response to the

context history. The process was repeated to reach a total of 100 instances before

moving to the next prompt. The decision to generate instances using a prompt in

two batches of 50 instead of a single batch of 100 stemmed from several observations

discovered when attempting to generate 100 in a single batch. We observed that in

more extended conversations, the LLM’s responses drifted further from the desired

domain and suffered more from repetitive patterns. We hypothesize that the increased

distance from the initial prompt in more extended conversations affects the quality

of subsequent responses. However, we leave a detailed investigation of this effect for

future work.

Overall, we generated 1,000 synthetic instances for the “GroupName” and “Species”

entity types and 200 for “CellLine”. We combined the complete set of synthetic

instances for each type (1,000 or 200) with their corresponding training set of au-

thentic data to create the “combined gen” set for experimental model #1. For the
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“combined gen small” for experimental model #2, a randomly selected 10% of the

synthetic instances were used. For experimental model #3, the complete set of syn-

thetic instances on their own represent the “replaced gen” training set. This was

done independently for each prompting strategy. Despite being mostly structured as

Python dictionaries, some very minor syntax errors required the raw LLM outputs

to be further preprocessed before they were directly useable. The average cost to

generate 50 samples using GPT-4-0125-preview was $0.87, representing a significant

decrease in cost compared to manual collection and annotation of data.
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Please generate 5 synthetic data samples to augment an NER dataset. 
 
Each sample should include a list of sentence tokens and their corresponding class labels. It is 
imperative that there is the exact same number of class labels as tokens in the sentence. Every 
generated sentence token must have a corresponding label. 
 
The complete set of generated samples should cover all requested entity types, but individual 
samples may vary in the number of entity types included. For each sample, include at least one 
token for each requested entity type. You can repeat entities within a sentence or across sentences 
to ensure diversity in the data. Ensure that each label corresponds to its corresponding entity 
type (e.g., PER for names of people, ORG for organizations, LOC for locations, DATE for dates). The 
output should be a Python dictionary. 
 
 
Here are five examples: 
 
    { 
        "sample1": { 
            "tokens": [`The', `following', ..., `bedding', `.'] 
            "labels": [`O', `O', ..., `O', `O'] 
        },  
        "sample2": { 
            "tokens": [`Once', `mice', ..., `recovery', `.'] 
            "labels": [`O', `Species', ..., `O', `O'] 
        },  
        "sample3": { 
            "tokens": [`The', `labeled', ..., `)', `.'] 
            "labels": [`O', `O', ..., `O', `O'] 
        },  
        "sample4": { 
            "tokens": [`Plates', `were', ..., `)', `.'] 
            "labels": [`O', `O', ..., `O', `O'] 
        },  
        "sample5": { 
            "tokens": [`At', `the',..., `asphyxiation', `.'] 
            "labels": [`O', `O', ..., `O', `O'] 
        } 
    } 
     
Please generate 5 synthetic data samples to augment a NER dataset consisting of the method section 
of scientific articles describing animal studies.  
 
Each sample should include a list of sentence tokens and their corresponding class labels. It is 
imperative that there is the exact same number of class labels as tokens in the sentence. Every 
generated sentence token must have a corresponding label. 
 
The complete set of generated samples should cover all requested entity types, but individual 
samples may vary in the number of entity types included. For each sample, include at least one 
token for each requested entity type. You can repeat entities within a sentence or across sentences 
to ensure diversity in the data. Ensure the samples are of adequate length. Ensure that each label 
corresponds to its corresponding entity type. The entities are: Species. The output should be a 
Python dictionary. 

Fig. 10. Example of a Ad-Hoc style prompt for the “Species” entity type

66



<Task Descriptions> 
You are an experienced biologist, capable of easily recognizing named entities ("species names," 
"dose units," and "exposure vehicles") in a paragraph of the method section of scientific articles 
describing animal studies. Specifically, your task is to perform named entity recognition and meet 
the following basic requirements: 1) Provide the output as a Python dictionary with sample IDs as 
keys, where each sample contains a list of tokens and their corresponding labels. Python dictionary 
example:  
 
    { 
        "sample1": { 
            "tokens": ["XXX", "XXX"], 
            "labels": ["XXX", "XXX"] 
        }, 
        "sample2": { 
            "tokens": ["XXX", "XXX"], 
            "labels": ["XXX", "XXX"] 
        } 
    } 
     
2) Include at least one token for each requested entity type for each sample. 3) You can repeat 
entities within a sentence or across sentences to ensure diversity in the data. 
     
<Entity Definitions> 
In biological and ecological studies, "Species" refers to a fundamental unit of classification in 
the taxonomic hierarchy. It represents a group of organisms capable of interbreeding and producing 
fertile offspring under natural conditions. Each species typically exhibits distinct morphological, 
physiological, and behavioral characteristics, contributing to its unique identity within an 
ecosystem. Within the context of scientific research involving animal subjects, "Species" denotes 
the specific type or category of organisms under investigation, encompassing a variety of taxa such 
as mammals, birds, reptiles, amphibians, fish, and invertebrates.  
     
<Task Emphasis> 
1) Each sample should include a list of sentence tokens and their corresponding class labels. It is 
imperative that the exact same number of class labels are used as tokens in the sentence. 2) Ensure 
that each label corresponds to its corresponding entity type. 3) Ensure the samples are of adequate 
length. 4) The complete set of generated samples should cover all requested entity types, but 
individual samples may vary in the number of entity types included. 
     
<Task Examples> 
Here are five examples: 
     
    { 
        "sample1": { 
            "tokens": [`The', `following', ..., `bedding', `.'] 
            "labels": [`O', `O', ..., `O', `O'] 
        },  
        "sample2": { 
            "tokens": [`Once', `mice', ..., `recovery', `.'] 
            "labels": [`O', `Species', ..., `O', `O'] 
        },  
        "sample3": { 
            "tokens": [`The', `labeled', ..., `)', `.'] 
            "labels": [`O', `O', ..., `O', `O'] 
        },  
        "sample4": { 
            "tokens": [`Plates', `were', ..., `)', `.'] 
            "labels": [`O', `O', ..., `O', `O'] 
        },  
        "sample5": { 
            "tokens": [`At', `the',..., `asphyxiation', `.'] 
            "labels": [`O', `O', ..., `O', `O'] 
        } 
    } 
     
<Prompt> 
Generate 5 synthetic data samples to augment a NER dataset comprising the method section of 
scientific articles describing animal studies. Start your sample number with "sample1". The entity 
to recognize is "Species". 
  

Fig. 11. Example of a KEE style prompt for the “Species” entity type
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CHAPTER 4

RESULTS

4.1 Results

This section presents the results of our experiments.

4.1.1 Authentic and Synthetic Entity Similarity

We used pretrained deberta-v3-large to produce contextualized embeddings for

each entity in the TAC dataset. For multi-word entities, the embeddings of each word

were averaged together to generate the overall entity embedding. Each embedding

was a 1,024-dimensional vector; thus, it was necessary to perform dimensionality

reduction to plot the embeddings. We used principal component analysis (PCA) from

the Sci-Kit Learn (sklearn) Python library to reduce the 1,024-dimensional vectors

into two dimensions. PCA reduces dimensionality by transforming the vectors into a

new coordinate system, where the axes are the principal components. These principal

components are linear combinations of the original features and are orthogonal to each

other. Figure 12 plots the embedding representations of all the entities in the TAC

dataset and all the synthetic entities we generated. Figure 12 presents the overall

area of interest, which the subsequent sections will explore in more detail.

4.1.1.1 Species Entity Similarity

For the “Species” entity type, Figures 13, 14, 15, 16 (Appendix B) showcase the

similarity between the authentic and synthetic “Species” entities. Figure 13 plots

only the authentic “Species” entities from TAC, the entities marked with a black
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Fig. 12. Plot of the embedding representations for all authentic entities in TAC and

all synthetic entities.

“X” denote those which appeared in the randomly selected exemplars. Figure 14

adds synthetic entities from the ad-hoc prompted generated data. Figure 15 adds the

synthetic entities from the KEE prompted generated data. Lastly, Figure 16 adds

both styles of synthetic data. With “Species”, across both prompt styles, synthetic

entities appear to be slightly grouped amongst the authentic entities in the left portion

of the authentic data in the semantic space. Unfortunately, the synthetic data appears

to stray from the general trend of the authentic entities across the entire space.

Distinctly, synthetic data seems to partially overlap with the authentic data before

diverging up and to the right. For the KEE synthetic data, the divergence appears
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more prevalent.

4.1.1.2 CellLine Entity Similarity

For the “CellLine” entity type, Figures 17, 18, 19, 20 (Appendix B) showcase

the similarity between the authentic and synthetic “CellLine” entities. Figure 17

plots only the authentic “CellLine” entities from TAC; the entities marked with a

black “X” denote those that appeared in the randomly selected exemplars. Figure

18 adds the synthetic entities from the ad-hoc prompted generated data. Figure 19

adds the synthetic entities from the KEE prompted generated data. Lastly, Figure

20 adds both styles of synthetic data. Across both prompt styles, synthetic entities

appear to be closely grouped amongst the authentic entities within the semantic space.

Additionally, the synthetic data appears to match the general trend of the authentic

entities in the entire space. Noticeably, however, along the top of the cluster, there

appears to be a non-negligible number of entities that stray from the authentic data.

4.1.1.3 GroupName Entity Similarity

For the “GroupName” entity type, Figures 21, 22, 23, 24 (Appendix B) showcase

the similarity between the authentic and synthetic “GroupName” entities. Figure

21 plots only the authentic “GroupName” entities from TAC, the entities marked

with a black “X” denote those which appeared in the randomly selected exemplars.

Figure 22 adds the ad-hoc prompted synthetic entities. Figure 23 adds the synthetic

entities from the KEE prompted generated data. Lastly, Figure 24 adds both styles

of synthetic data. Again, with “GroupName”, synthetic entities appear to be closely

grouped amongst the authentic entities across both prompt styles. The synthetic

data appears to mostly match the general trend of the authentic entities in through

the entire semantic space. Interestingly, the synthetic data seems to “fill in” the
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middle area of the arch-shaped trend of the authentic data. Noticeably, however, in

the upper right the synthetic data seems to fan out away from the authentic data.

4.1.2 NER Results on TAC

The overall results of our experiments are found in Table 6.

Table 6. Test Set Results on the filtered TAC SRIE dataset

TAC Variant Model Class 0 (“O”) Class 1 (“Entity”) Micro F1 Macro F1

P R F1 P R F1

Species

baseline 1.00 1.00 1.00 0.95 0.88 0.91 1.00 0.96

ad hoc combined gen 1.00 1.00 1.00 0.94 0.89 0.91 1.00 0.96

kee combined gen 1.00 1.00 1.00 0.93 0.89 0.91 1.00 0.96

ad hoc combined gen small 1.00 1.00 1.00 0.95 0.88 0.91 1.00 0.96

kee combined gen small 1.00 1.00 1.00 0.95 0.88 0.91 1.00 0.96

ad hoc replaced gen 1.00 0.99 0.99 0.26 0.67 0.38 0.98 0.69

kee replaced gen 1.00 0.98 0.99 0.19 0.62 0.29 0.98 0.64

CellLine

baseline 1.00 1.00 1.00 1.00 0.30 0.47 1.00 0.73

ad hoc combined gen 1.00 1.00 1.00 0.42 0.43 0.43 1.00 0.71

kee combined gen 1.00 1.00 1.00 0.89 0.35 0.50 1.00 0.75

ad hoc combined gen small 1.00 1.00 1.00 1.00 0.30 0.47 1.00 0.73

kee combined gen small 1.00 1.00 1.00 1.00 0.43 0.61 1.00 0.80

ad hoc replaced gen 1.00 1.00 1.00 0.16 0.65 0.26 1.00 0.63

kee replaced gen 1.00 0.99 0.99 0.04 0.87 0.08 0.99 0.54

GroupName

baseline 0.99 1.00 1.00 0.32 0.03 0.06 0.99 0.53

ad hoc combined gen 1.00 1.00 1.00 0.78 0.80 0.79 1.00 0.90

kee combined gen 1.00 1.00 1.00 0.73 0.77 0.75 1.00 0.87

ad hoc combined gen small 1.00 1.00 1.00 0.79 0.46 0.58 0.99 0.79

kee combined gen small 1.00 1.00 1.00 0.73 0.82 0.77 1.00 0.80

ad hoc replaced gen 0.99 0.99 0.99 0.06 0.09 0.07 0.98 0.53

kee replaced gen 0.99 0.98 0.99 0.09 0.19 0.12 0.98 0.56

Recall that NER methods are evaluated using precision, recall, and F1 scores.

Precision is the ratio between correctly predicted mentions over the total set of pre-

dicted mentions for a specific entity. Recall is the ratio of correctly predicted mentions

over the actual number of mentions. F1 is the harmonic mean between precision and

recall. The micro- and/or macro- F1 scores are typically reported as a comparison

across systems. The macro F1 score treats all classes equally, whereas the micro
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F1 score aggregates the contributions of all classes, taking into account the inherent

class imbalance of the entities in the dataset. Also, notice that the task of NER is

highly imbalanced. This imbalance stems from the fact that most words or phrases

are not an entity we are interested in recognizing and are subsequently classified as

the non-entity type “O.” As a result of the “O” classes prevalence, models tend to

favor predicting “O” as opposed to other classes and generally perform exceptionally

well on the “O” class.

4.1.2.1 Species Results

The “Species” results of our experiments are found in Table 6, in the upper third.

With the “Species” entity type experiments, we achieved a baseline performance of

0.96 Macro-F1. We achieved similar results (0.96 Macro-F1) when including all syn-

thetically generated data (... combined gen) independently for each prompting strat-

egy with minor fluctuations in precision and recall with the “Species” entity type. We

again achieved similar results (0.96 Macro-F1) when including a random 10% of syn-

thetically generated data (... combined gen small) independently for each prompting

strategy with no fluctuations in precision and recall, compared to the baseline, with

the “Species” entity type. When we excluded all authentic data (... replaced gen), we

saw a drop in performance; however, we achieved some ability to recognize species.

For the ad-hoc synthetic data, a 0.69 Macro-F1 was achieved, with 0.38 F1 for the

“Species” entity type. For the KEE synthetic data, a 0.64 Macro-F1 was achieved,

with 0.29 F1 for the “Species” entity type. We speculate that the difference in per-

formance between the different prompt styles is related to the quality of samples

generated. The KEE “Species” entity embeddings tended to stray further from the

authentic “Species” entity than the ad-hoc did, thus reducing the performance.
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4.1.2.2 CellLine Results

The “CellLine” results of our experiments are found in Table 6, in the mid-

dle third. With the “CellLine” entity type experiments, we achieved a baseline

performance of 0.73 Macro-F1. When including all synthetically generated data

(... combined gen) independently for each prompting strategy, we achieved 0.71 Macro-

F1 with ad-hoc generated data and 0.75 Macro-F1 with KEE generated data. With

the (... combined gen) experiments, ad-hoc achieved a 0.43 F1 compared to 0.50 F1

for KEE for the “CellLine” entity type. When including a random 10% of syn-

thetically generated data (... combined gen small) independently for each prompting

strategy, we achieved 0.73 Macro-F1 with ad-hoc generated data and 0.80 Macro-

F1 with KEE generated data. KEE combined gen small (0.61 F1) outperformed

ad hoc combined gen small (0.47 F1) on the “CellLine” entity type. Additionally,

kee combined gen small performed best overall across all of the CellLine experiments.

We speculate that the strong performance by KEE in both (... combined gen) and

(... combined gen small) is related to the observation that KEE “CellLine” entities

were clustered more closely amongst the authentic entities. Additionally, that implies

that in (... combined gen small), we were more likely to randomly select higher qual-

ity data for the 10% partition with KEE than with ad-hoc. When we excluded all

authentic data (... replaced gen), we again saw a drop in performance; however, we

achieved some minimal ability to recognize cell lines. For the ad-hoc synthetic data,

a 0.63 Macro-F1 was achieved, with 0.26 F1 for the “CellLine” entity type. For the

KEE synthetic data, a 0.54 Macro-F1 was achieved, with 0.08 F1 for the “CellLine”

entity type.
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4.1.2.3 GroupName Results

The “GroupName” results of our experiments are found in Table 6, in the

lower third. With the “GroupName” entity type experiments, we achieved a base-

line performance of 0.53 Macro-F1. When including all synthetically generated data

(... combined gen) independently for each prompting strategy, we achieved 0.90 Macro-

F1 with ad-hoc generated data and 0.87 Macro-F1 with KEE generated data. Ad-hoc

achieved a 0.79 F1 compared to 0.75 F1 for KEE for the “GroupName” entity type and

ad hoc combined gen performed the best overall for “GroupName.” When including

a random 10% of synthetically generated data (... combined gen small) independently

for each prompting strategy, we achieved 0.79 Macro-F1 with ad-hoc generated data

and 0.80 Macro-F1 with KEE generated data. KEE combined g58 small (0.77 F1)

outperformed ad hoc combined gen small (0.47 F1) on the “GroupName” entity type.

We speculate that the synthetic data, regardless of the prompting strategy, performed

well due to the observation that synthetic entities seemed to “fill in” the gaps in the

entity feature space. Areas in the space more sparsely populated with authentic en-

tities were supplemented well with synthetic data across both prompting strategies.

When we excluded all authentic data (... replaced gen), we again saw a drop in per-

formance; however, we achieved a comparable ability to recognize group names as the

baseline. For the ad-hoc synthetic data, a 0.53 Macro-F1 was achieved, with 0.007 F1

for the “GroupName” entity type. For the KEE synthetic data, a 0.56 Macro-F1 was

achieved, with 0.12 F1 for the “GroupName” entity type.

4.2 Conclusions

In conclusion, we can answer our five research questions.

Can synthetic data be generated to mimic the format of authentic NER training
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data? We prompted multiple generative large-language models and inspected their

outputs. With OpenAI’s GPT-4, we found that we can generate synthetic data that

mimics the format of authentic NER training data. Additionally, we found that we

could generate synthetic NER samples cheaper than annotating authentic samples.

We averaged $0.87 per 50 synthetic sentences.

Is synthetic data similar to the authentic data? We used a pretrained version of

DeBERTa-V3-large to produce entity embeddings for all the authentic and synthetic

entities. Then, after performing dimensionality reduction using PCA, we clustered

and compared the authentic and synthetic representations for the three entities we

investigated. We found that GPT-4 can produce synthetic data that falls within the

cluster of its corresponding authentic data in semantic space.

Does the addition of synthetic data improve model performance? We studied

two experimental combinations of synthetic with authentic data for each of the three

entities. “Combined gen” added all of the synthetic data to the authentic data.

“Combined gen small” added a random 10% of the synthetic data to the authen-

tic data. Each combination was done independently for the two different prompting

strategies. We found that the models maintained or improved on the baseline model’s

performance across the three entities and two prompting strategies we investigated.

Is solely using synthetic data enough to achieve performance on par with a base-

line? We studied an additional experimental setup of solely data for each of the three

entities. “Replaced gen” used only the synthetic data to train the model indepen-

dently for the two prompting strategies. We found that the models could not achieve

performance on par with the baseline models.

How do different prompting strategies for generating synthetic data affect model

performance? The two strategies were compared nine times across our experiments

(three experimental setups times three variants). For the seven non-baseline models in
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which the two prompting strategies produced different F1 scores, Ad-Hoc performed

best three out of seven times, and KEE performed best the other four times. For the

other two times, they tied. Overall, we found no single best prompting strategy.

4.3 Contribution to the field

• Determined synthetic data can be generated by GPT-4 in the proper format

allowing the automated creation of labeled training data for NER.

• Evaluated Ad-Hoc and KEE Prompting.

• Evaluated the distribution of synthetic entities vs authentic entities.

• Initially evaluated the ratio of synthetic to authentic data.

4.4 Future Work

This section presents future research directions to extend the findings and con-

tributions of this thesis, addressing both challenges and opportunities.

4.4.1 Statistical Significance Validation

We intend to validate our experimental results for statistical significance. We

will repeat our experiments to collect mean, median, and standard deviation for each

set of results and conduct significance testing, ensuring that the observed effects are

not merely due to random chance.

4.4.2 Best 10% Selection Experiments for Generated Data

We intend to devise a sample selection method for generated synthetic data

based on the entity representation clustering experiments. We propose selecting the

samples containing entities most semantically similar to the entities in the authentic
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data. Samples will be selected by empirically determining a distance or an amount of

similarity from the centroid of the exemplars or alternatively all available authentic

data. Then, we propose exploring the effectiveness of selecting the best 10% of syn-

thetic data for model training as opposed to a random 10%. By focusing only on the

highest-quality synthetic samples, we hope to further improve model performance and

generalization. We plan to conduct experiments to compare different data selection

strategies and evaluate their impact on model learning.

4.4.3 Alternative Oversampling Techniques

We intend to compare synthetic data generation to oversampling techniques for

NER to better determine the extent to which the observed performance gains from

our experiments should be attributed to simply having more data versus the novel

synthetic data supplementation.

4.4.4 Ablation Study on Quantity of Synthetic Data

We intend to conduct an ablation study on the amount of synthetic data required.

4.4.5 Decreasing Semantic Drift and Increasing Diversity

We intend to determine if prompting in even smaller batches further reduces se-

mantic drift. We also intend to adjust the generative model’s temperature to increase

the diversity of generated samples.

4.4.6 Implementation of Continual Learning

Finally, we intend to implement a continual learning system for NER that incor-

porates the novel synthetic data as a generative replay-based approach.
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Appendix A
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ABBREVIATIONS

A-BERT Adapter BERT [44]

A-GEM Averaged Gradient Episodic Memory [21]

Adapters Created Creation of adapter models in NLP [44]

AddNER Additive variant of student teacher NER [4]

B-CL BERT-based Continual Learning [45]

BERT Bidirectional Encoder Representations from Transformers [48]

BIO Inside, Outside, Beginning labeling framework for NER

BiR Brain Inspired Replay [26]

BiLSTM Bidirectional Long Short Term Memory Unit

BRAT Web-based tool for text annotation

CFNER Causal Framework for Continual NER [36]

CIL Class-incremental learning

CL Founded The idea of catastrophic forgetting is first presented [7]

CLA Continual Learning Adapter [44]

CLASSIC Continual and contrastive Learning for ASpect SentIment Classification [46]

CoNLL-03 2003 Conference on Natural Language Learning

CoPE Continual Prototype Evolution [28]

CPFD Confidence-based pseudo-labeling and Pooled Features Distillation [9]

CRF Conditional Random Field

CTR Capsules and Transfer Routing [47]

DAnish North Germanic language of Danish

DGR Deep Generative Replay [22]
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DLD Decomposing Logits Distillation [37]

DnR Distill and Replay [25]

ELLA Efficient Lifelong Learning Algorithm [29]

ER Experience Replay [23]

ET Entity Typing

EWC Elastic Weight Consolidation [32]

ExtendNER Extension variant of student teacher NER [4]

FSA First Session Adaptation [49]

GAN Generative Adversarial Network

GEM Gradient Episodic Memory [20]

GPT Generative Pretrained Transformer

HPRC VCU High Performance Research Computing

iCaRL Incremental Classifier and Representation Learning [19]

IOB Inside, Outside, Beginning labeling framework for NER

JCBIE Joint Continual Learning for Biomedical Information Extraction [59]

KD Knowledge Distillation [35]

KEE Knowledge Entity Extraction [81]

KL Kullback Leibler Divergence

LAMOL LAnguage MOdelling for Lifelong Language Learning [24]

LaR Learn and Review [27]

LFPT5 Lifelong Few-shot Learning with Prompt Tuning of T5 [50]

LLM Large Language Model

LOC Location entity type
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LoLM Learning O Helps For Learning More [8]

LSTM Long-Short Term Memory Unit

LwF Learning Without Forgetting [6]

MAS Memory Aware Synapses [34]

NER Named Entity Recognition

NERDA Named Entity Recognition for DAnish [71]

NIEHS National Institute of Environmental Health Sciences

NLP Natural Language Processing

NTP National Toxicology Program

ORG Organization entity type

PER Person entity type

PNN Progressive Neural Networks [38]

QAES Quadratic Approximation to the Energy Surface [28]

R-EWC Rotated Elastic Weight Consolidation [33]

RDP Relation Distillation and Prototypical pseudo label [62]

RNC Routing Networks for Continual Language Learning [43]

RTD Replaced token detection

SI Synaptic Intelligence [30]

SKD-NER Span-based Knowledge Distillation for NER [64]

SP Span Detection

SPA Selective Parameter Updates [51]

SpanKL Span-based Knowledge Distillation [65]

SRIE Systematic Review Information Extraction

ST-NER Student-Teacher NER [4]
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TAC Text Analysis Conference

Task-CL Task incremental Continual Learning

TEM Tiny Episodic Memory [83]

TIL Task incremental Continual Learning

TST Task-CL based on Sub-networks and Task similarity [66]

VCU Virginia Commonwealth University
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Appendix B

ENTITY EMBEDDING PLOTS

Fig. 13. Plot of the embedding representations for all authentic Species entities in

TAC.
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Fig. 14. Plot of the embedding representations for all authentic Species entities in TAC

and ad-hoc Species synthetic entities.
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Fig. 15. Plot of the embedding representations for all authentic Species entities in TAC

and KEE Species synthetic entities.
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Fig. 16. Plot of the embedding representations for all authentic Species entities in TAC

and all Species synthetic entities.
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Fig. 17. Plot of the embedding representations for all authentic CellLine entities in

TAC.
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Fig. 18. Plot of the embedding representations for all authentic CellLine entities in

TAC and ad-hoc CellLine synthetic entities.
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Fig. 19. Plot of the embedding representations for all authentic CellLine entities in

TAC and KEE CellLine synthetic entities.
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Fig. 20. Plot of the embedding representations for all authentic CellLine entities in

TAC and all synthetic CellLine entities.
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Fig. 21. Plot of the embedding representations for all authentic GroupName entities

in TAC.
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Fig. 22. Plot of the embedding representations for all authentic GroupName entities

in TAC and ad-hoc GroupName synthetic entities.
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Fig. 23. Plot of the embedding representations for all authentic GroupName entities

in TAC and KEE GroupName synthetic entities.
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Fig. 24. Plot of the embedding representations for all authentic GroupName entities

in TAC and all GroupName synthetic entities.
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[55] Martial Mermillod, Aurélia Bugaiska, and Patrick BONIN. “The Stability-

Plasticity Dilemma: Investigating the Continuum from Catastrophic Forgetting

to Age-Limited Learning Effects”. In: Frontiers in Psychology 4 (2013). issn:

1664-1078. doi: 10.3389/fpsyg.2013.00504.

[56] Lingzhen Chen and Alessandro Moschitti. “Learning to Progressively Recog-

nize New Named Entities with Sequence to Sequence Models”. In: Proceedings

of the 27th International Conference on Computational Linguistics. Santa Fe,

NM, USA: Association for Computational Linguistics, Aug. 2018, pp. 2181–

2191. (Visited on 08/26/2023).

[57] Supriti Vijay and Aman Priyanshu. NERDA-Con: Extending NER Models for

Continual Learning – Integrating Distinct Tasks and Updating Distribution

Shifts. June 2022. doi: 10.48550/arXiv.2206.14607. arXiv: 2206.14607

[cs]. (Visited on 09/08/2023).

[58] Rui Wang et al. “Few-Shot Class-Incremental Learning for Named Entity

Recognition”. In: Proceedings of the 60th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers). Dublin, Ireland: Asso-

104

https://doi.org/10.1007/978-3-030-01252-6_33
https://doi.org/10.1007/978-3-030-01252-6_33
https://doi.org/10.48550/arXiv.1901.11373
https://arxiv.org/abs/1901.11373
https://arxiv.org/abs/1901.11373
https://doi.org/10.1609/aaai.v32i1.11651
https://doi.org/10.3389/fpsyg.2013.00504
https://doi.org/10.48550/arXiv.2206.14607
https://arxiv.org/abs/2206.14607
https://arxiv.org/abs/2206.14607


ciation for Computational Linguistics, May 2022, pp. 571–582. doi: 10.18653/

v1/2022.acl-long.43. (Visited on 09/08/2023).

[59] Kai He et al. “JCBIE: A Joint Continual Learning Neural Network for Biomed-

ical Information Extraction”. In: BMC Bioinformatics 23.1 (Dec. 2022), p. 549.

issn: 1471-2105. doi: 10.1186/s12859-022-05096-w. (Visited on 11/10/2023).

[60] Justin Payan et al. “Towards Realistic Single-Task Continuous Learning Re-

search for NER”. In: Findings of the Association for Computational Linguis-

tics: EMNLP 2021. Punta Cana, Dominican Republic: Association for Com-

putational Linguistics, Nov. 2021, pp. 3773–3783. doi: 10.18653/v1/2021.

findings-emnlp.319. (Visited on 09/08/2023).

[61] Ritesh Kumar et al. ProtoNER: Few Shot Incremental Learning for Named

Entity Recognition Using Prototypical Networks. Oct. 2023. doi: 10.48550/

arXiv.2310.02372. arXiv: 2310.02372 [cs]. (Visited on 12/06/2023).

[62] Duzhen Zhang et al. “Task Relation Distillation and Prototypical Pseudo La-

bel for Incremental Named Entity Recognition”. In: Proceedings of the 32nd

ACM International Conference on Information and Knowledge Management.

CIKM ’23. New York, NY, USA: Association for Computing Machinery, Oct.

2023, pp. 3319–3329. isbn: 9798400701245. doi: 10.1145/3583780.3615075.

(Visited on 12/06/2023).

[63] Juan Manuel Coria et al. “Analyzing BERT Cross-lingual Transfer Capabili-

ties in Continual Sequence Labeling”. In: Proceedings of the First Workshop

on Performance and Interpretability Evaluations of Multimodal, Multipurpose,

Massive-Scale Models. Virtual: International Conference on Computational

Linguistics, Oct. 2022, pp. 15–25. (Visited on 09/08/2023).

105

https://doi.org/10.18653/v1/2022.acl-long.43
https://doi.org/10.18653/v1/2022.acl-long.43
https://doi.org/10.1186/s12859-022-05096-w
https://doi.org/10.18653/v1/2021.findings-emnlp.319
https://doi.org/10.18653/v1/2021.findings-emnlp.319
https://doi.org/10.48550/arXiv.2310.02372
https://doi.org/10.48550/arXiv.2310.02372
https://arxiv.org/abs/2310.02372
https://doi.org/10.1145/3583780.3615075


[64] Yi Chen and Liang He. “SKD-NER: Continual Named Entity Recognition via

Span-based Knowledge Distillation with Reinforcement Learning”. In: Pro-

ceedings of the 2023 Conference on Empirical Methods in Natural Language

Processing. Ed. by Houda Bouamor, Juan Pino, and Kalika Bali. Singapore:

Association for Computational Linguistics, Dec. 2023, pp. 6689–6700. doi:

10.18653/v1/2023.emnlp-main.413. (Visited on 01/25/2024).

[65] Yunan Zhang and Qingcai Chen. A Neural Span-Based Continual Named En-

tity Recognition Model. June 2023. doi: 10.1609/aaai.v37i11.26638. arXiv:

2302.12200 [cs]. (Visited on 11/10/2023).

[66] Zixuan Ke et al. Continual Learning Based on Sub-Networks and Task Simi-

larity. Sept. 2022. (Visited on 11/28/2023).

[67] Rajasekar Venkatesan and Meng Joo Er. “A Novel Progressive Learning Tech-

nique for Multi-Class Classification”. In: Neurocomputing 207 (Sept. 2016),

pp. 310–321. issn: 0925-2312. doi: 10.1016/j.neucom.2016.05.006. (Visited

on 12/04/2023).

[68] Alec Radford et al. “Language Models Are Unsupervised Multitask Learners”.

In: OpenAI blog 1.8 (2019), p. 9.

[69] Prannay Khosla et al. “Supervised Contrastive Learning”. In: Advances in

Neural Information Processing Systems. Vol. 33. Online and Vancouver, BC,

Canada: Curran Associates, Inc., 2020, pp. 18661–18673. (Visited on 02/03/2024).

[70] Xinting Hu et al. “Distilling Causal Effect of Data in Class-Incremental Learn-

ing”. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition (CVPR). Online: IEEE Computer Society, June 2021, pp. 3956–3965.

doi: 10.1109/CVPR46437.2021.00395. (Visited on 03/05/2024).

106

https://doi.org/10.18653/v1/2023.emnlp-main.413
https://doi.org/10.1609/aaai.v37i11.26638
https://arxiv.org/abs/2302.12200
https://doi.org/10.1016/j.neucom.2016.05.006
https://doi.org/10.1109/CVPR46437.2021.00395


[71] Lars Kjeldgaard and Lukas Nielsen. NERDA. Technical University of Den-

mark, University of Copenhagen, and Copenhagen Business School, 2021. url:

https://github.com/ebanalyse/NERDA (visited on 12/04/2023).

[72] Mitchell Wortsman et al. “Supermasks in Superposition”. In: Advances in

Neural Information Processing Systems. Vol. 33. Online and Vancouver, BC,

Canada: Curran Associates, Inc., 2020, pp. 15173–15184. (Visited on 12/31/2023).

[73] Brian Lester, Rami Al-Rfou, and Noah Constant. “The Power of Scale for

Parameter-Efficient Prompt Tuning”. In: Proceedings of the 2021 Conference

on Empirical Methods in Natural Language Processing. Ed. by Marie-Francine

Moens et al. Online and Punta Cana, Dominican Republic: Association for

Computational Linguistics, Nov. 2021, pp. 3045–3059. doi: 10.18653/v1/

2021.emnlp-main.243. (Visited on 03/06/2024).

[74] Erik F Tjong Kim Sang and Fien De Meulder. “Introduction to the CoNLL-

2003 Shared Task: Language-Independent Named Entity Recognition”. In: Pro-

ceedings of the Seventh Conference on Natural Language Learning at HLT-

NAACL 2003. Edmonton, Canada: Association for Computational Linguistics,

2003, pp. 142–147. url: https://aclanthology.org/W03-0419.

[75] Sameer Pradhan et al. “Towards Robust Linguistic Analysis using OntoNotes”.

In: Proceedings of the Seventeenth Conference on Computational Natural Lan-

guage Learning. Ed. by Julia Hockenmaier and Sebastian Riedel. Sofia, Bul-

garia: Association for Computational Linguistics, Aug. 2013, pp. 143–152. url:

https://aclanthology.org/W13-3516 (visited on 04/10/2024).

[76] Amber Stubbs, Christopher Kotfila, and Özlem Uzuner. “Automated systems
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