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ABSTRACT 

MODELING AND MITIGATING POWER GRID VULNERABILITIES: A 

COMPREHENSIVE ANALYSIS OF RENEWABLE ENERGY INTEGRATION, 

CASCADING FAILURES, AND MICROGRID RESILIENCE 

By Saikat Das, Ph.D. 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy at Virginia Commonwealth University 

Virginia Commonwealth University, 2024 

Director: Zhifang Wang, Ph.D., Associate Professor, Department of Electrical and Computer 

Engineering 

 

In today’s modern power systems, rapid integration of renewable energy and the emergence of 

microgrid technology emphasize the necessity for a comprehensive understanding of 

vulnerabilities and robust defense mechanisms. This thesis sets out on a journey to uncover the 

intricacies of power grid dynamics, cascading failures, and microgrid operations. It proposes 

practical mitigation strategies to fortify power systems against potential disruptions and cyber 

threats, thereby paving the way for a more sustainable and secure energy future.  

The research begins with an exploration of power grid vulnerabilities amidst the increasing 

integration of renewable energy sources, laying the foundation for a comprehensive analysis. 

Power grids’ vulnerability to cascading failures with respect to the penetration level of renewable 

energy into the grid has been analyzed. A novel power balance technique is employed for 

cascading failure analysis and power grid vulnerability measurement. Simulation results indicate 
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that the growing penetration of renewable energy has a proportionally higher impact on grid 

vulnerability to cascading failures due to increased uncertainties injected into the grid. After a 

certain level of renewable energy penetration, some systems may deteriorate rapidly, necessitating 

preventive measures when the penetration level exceeds this threshold. This initial investigation 

sets the stage for a deeper exploration into cascading failure risk analysis. The subsequent segment 

digs into cascading failure risk analysis by statistically analyzing key metrics such as line outages 

per cascade, cascade duration, and load shedding amounts. The analysis is based on historical 

utility data and simulation data of synthetic test cases, building upon the simulation model 

developed in the initial exploration of power grid vulnerabilities. Both uniform and non-uniform 

probability distribution functions have been considered for the initial line trips in the cascading 

failure simulation to determine which function better approximates the cascading failure risks of 

the real-world power grid. The combination of empirical and simulated analyses provides a 

comprehensive understanding of cascading processes, illuminating key risk factors and offering 

avenues for effective preventive measures.  

Shifting focus to microgrid resilience, the research meticulously explores data integrity attacks. 

Through a comprehensive simulation model, vulnerabilities are explored, and mitigation strategies 

are devised to safeguard microgrid operations against data integrity attacks like data loss and false 

data injection. A multi-layered microgrid simulation model with an optimization-based energy 

management system is developed to investigate the impact of renewable energy penetration and 

data loss in battery command. The analysis of false data injection attacks' impact on microgrid 

operation introduces a hybrid approach to ensure stability and reliability across diverse scenarios. 

Realistic attack models targeting load profiles and renewable generation data reveal potential load 

balance discrepancies during islanded microgrid operation under these attacks. By integrating 
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optimization-based energy management with adaptive control schemes, the proposed hybrid 

approach ensures stable microgrid operation in various conditions. This research lays the 

groundwork for strengthening microgrid resilience against cyber threats by integrating additional 

techniques for real-time FDIA detection and resolution, thereby contributing to the ongoing 

advancement of microgrid cybersecurity frameworks and benefiting the broader research 

community. 

Overall, this thesis represents a comprehensive exploration of power grid vulnerabilities, cascading 

failures, renewable energy integration, and microgrid resilience. By combining theoretical analysis 

with practical application, it seeks to strengthen the resilience and security of energy systems, 

ensuring their sustainability amid evolving challenges.
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1. INTRODUCTION 

The ongoing evolution of modern power systems is marked by significant changes driven by 

increasing electricity demand and the imperative to curb carbon emissions for sustainable 

development. This dual pressure has led to a rapid integration of renewable energy sources into 

existing power grids and the rise of microgrid technology, reshaping their dynamics. In the midst 

of modern power systems undergoing rapid changes, a pressing need arises: the need to 

comprehend vulnerabilities and establish resilient defense mechanisms. Our research sets out on a 

path to dig into the complexities of power grid dynamics, cascading failures, and microgrid 

operations, while also introducing viable mitigation strategies. 

1.1. Motivation 

The motivation for this dissertation stems from the dynamic landscape of modern power systems 

undergoing significant transitions. With the escalating demand for electricity and the imperative 

to limit carbon emissions to achieve sustainable development goals, there is a rapid integration of 

renewable energy (RE) sources into the existing power grid [1]. However, while RE sources offer 

promising avenues for clean energy generation, this integration introduces new challenges and 

complexities due to their variable and intermittent nature. Unlike traditional fossil fuel-based 

power generation, which can be controlled and dispatched according to demand, RE generation is 

highly dependent on weather conditions and other environmental factors. As a result, the 

integration of RE introduces significant uncertainty into the power grid. For example, sudden 

changes in weather patterns can lead to fluctuations in RE generation, causing rapid changes in 

power supply that the electric grid must accommodate. This variability can strain the stability and 



 
 

16 
 

reliability of the grid, particularly during periods of high RE penetration. Furthermore, the dynamic 

nature of RE generation increases the likelihood of cascading failures (CF) in interconnected 

power systems. A cascading failure occurs when the failure of one part or element of the system 

triggers a chain reaction, causing other parts or elements to fail in succession. In the context of RE 

integration, sudden fluctuations in RE can overload transmission lines or destabilize grid 

operations, leading to cascading failures that can result in line outages and, in severe cases, 

blackouts. 

Therefore, understanding the impact of RE penetration on the vulnerability of the grid to CF is 

crucial to grid modernization for ensuring the reliability and stability of the power system. By 

analyzing the dynamics of RE integration and its effects on grid operation, researchers and 

practitioners can develop strategies to mitigate the risks associated with CF and enhance the 

resilience of the power grid in the face of increasing RE penetration. 

Cascading failure is a well-documented phenomenon in interconnected power grids, where the 

failure of one part or element of the system can propagate to other parts, leading to widespread 

disruptions [2]. Although CFs are not frequent occurrences, they have catastrophic effects when 

they occur, often resulting in large-scale blackouts [3]. Therefore, it is essential to research and 

analyze these events to understand their underlying mechanisms and mitigate their risks. 

Utility companies store extensive daily outage data, which serve as valuable resources for 

researchers studying CFs. By analyzing historical outage data, researchers can quantify the risks 

associated with cascading processes and identify potential mitigation strategies. Furthermore, 

existing simulation models can be validated using statistical parameters derived from past events, 

providing a benchmark for assessing the accuracy and effectiveness of these models. Studying 

real-world outage data and validating simulation models are essential steps in assessing and 
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mitigating the risks posed by CFs in the power grid. By understanding the dynamics and risks of 

cascading processes and developing effective simulation model and mitigation strategies, we can 

enhance the reliability and resilience of the modern electrical power system. 

The emergence of microgrids as integral components of the smart grid adds another layer of 

complexity to the power system, reflecting the ongoing transitions in the modern power landscape. 

The transition towards a more decentralized power grid is driven by the introduction of distributed 

energy resources (DER), such as solar panels, wind turbines, and energy storage systems. This 

shift marks a departure from the traditional centralized power grid model towards a more 

distributed and resilient infrastructure.  

Microgrids have emerged as a versatile solution to address the evolving needs of the power system. 

These small-scale power grids can operate independently or in parallel with the main grid, offering 

a range of benefits across various applications. From providing reliable power to remote 

communities to ensuring backup power for critical facilities like hospitals and data centers, 

microgrids play a crucial role in enhancing energy reliability and resilience. 

Defined by the Department of Energy (DOE) as interconnected loads and distributed energy 

resources within clearly defined electrical boundaries, microgrids act as a single controllable entity 

with respect to the grid [4]. They operate in various modes, including grid-connected and island 

mode, and can even function off-grid in certain applications. 

Microgrids are characterized as cyber-physical systems (CPS), enabling bidirectional 

communication of both information and electric power between utility providers and users [5]. By 

integrating smart grid technologies, microgrids optimize energy management, reduce peak load, 

and ensure a stable energy supply for critical loads. Additionally, they promote grid modernization 
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and community participation in electricity supply while effectively managing renewable energy 

variability and providing ancillary services to the bulk power system. 

However, the intermittent and uncertain nature of renewable energy sources presents significant 

challenges to the efficient operation of microgrids. To overcome these challenges and maximize 

the potential of renewable energy integration, energy management systems (EMS) play a crucial 

role in optimizing microgrid operations. Initially developed for large-scale grids, EMS technology 

has evolved to address the specific needs of smaller systems like microgrids [6], [7]. In the context 

of microgrids, EMS functions as control software, orchestrating the allocation of power among 

distributed generation (DG) units, energy storage systems, and loads. At its core, a microgrid EMS 

ensures economical load service and facilitates seamless transitions between grid-tied and islanded 

modes based on real-time conditions. By dynamically adjusting energy allocation in response to 

changing demand and generation patterns, EMS maximizes the utilization of available resources 

while maintaining grid stability and reliability. A sophisticated microgrid EMS must effectively 

coordinate the operation of DGs, energy storage systems, and loads to deliver high-quality, 

reliable, sustainable, and cost-effective energy services [8]. This involves optimizing energy 

dispatch, managing battery charging and discharging cycles, and implementing demand response 

strategies to balance supply and demand in real-time. 

Data integrity attacks represent a growing concern for microgrid operation, posing additional 

threats to system reliability and security. These attacks involve the insertion or alteration of data 

within network traffic or data servers, aiming to deceive the EMS and trigger incorrect decisions 

[9]. As a cyber-physical system, the microgrid relies heavily on advanced information and 

communication technology to control electrical units and optimize operations. However, any 

failure or degradation of the cyber system can have significant repercussions, impacting voltage 
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and frequency stability, power balance, and dispatch reliability. Among the various types of data 

integrity attacks, False Data Injection Attacks (FDIAs) stand out as particularly prominent in 

microgrid systems. These attacks can severely disrupt microgrid operation by compromising the 

integrity of data used for decision-making and control, potentially leading to widespread system 

failures and compromised grid reliability. 

Another significant challenge that microgrids encounter is the potential loss of data within 

communication channels. This loss can stem from various factors, including network failures, 

cyber-attacks, or transmission errors. When critical information, such as battery control commands 

or load forecasting data, is compromised due to data loss, it can lead to adverse effects on microgrid 

operation, resulting in increased costs and decreased system reliability. Therefore, gaining a 

comprehensive understanding of the impact of data loss on microgrid operation is essential for 

designing robust and resilient energy management systems. 

The critical importance of microgrids in ensuring uninterrupted power supply to critical loads and 

bolstering power system reliability emphasizes the need to evaluate and mitigate risks stemming 

from data integrity attacks. By comprehensively assessing the economic ramifications of data loss, 

both system operators and researchers can devise effective strategies to mitigate its adverse effects 

and improve the overall performance of microgrids. A thorough understanding of the 

vulnerabilities introduced by FDIA empowers stakeholders to proactively implement measures 

that fortify microgrid operation against potential disruptions. By integrating hybrid operation 

strategies capable of dynamically adjusting objectives to ensure reliable microgrid operation across 

various attack scenarios, operators can enhance system resilience and fortify defenses against 

potential cyber threats. Such proactive measures not only ensure the uninterrupted operation of 

critical infrastructure but also lay the groundwork for the seamless integration of new technologies 
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into existing microgrid systems. By prioritizing resilience and adaptability, stakeholders can 

strengthen overall grid reliability and readiness for future technological advancements in the 

microgrid landscape. 

1.2. Literature Review 

1.2.1. Cascading Failure Simulation Model 

The literature on CF mainly focuses on the modelling and analytical tools for a given network. In 

[10], the authors have provided a brief overview to cascading failure analysis in power systems, 

outlining various analytical models. Different aspects of cascading failures and current 

advancements in analysis tools and models have been discussed by examining their features. A 

great diversity of methodologies has been proposed aiming at modeling the cascading failures. 

Topological models in cascading failure analysis focus on network structure, analyzing node 

degrees, betweenness centrality, and path length to assess vulnerability. Initially, they emphasized 

topological properties [11–14], but modified models now incorporate electrical features like 

Kirchhoff's law and line impedance [15,16]. Maximum flow models, adapted from traffic analysis 

[17], identify vulnerabilities by considering maximum flow from source to sink nodes, with recent 

enhancements including node weights and multi-attribute evaluations [18–20]. High-level 

statistical models offer a simplified approach to analyzing cascading failure in power systems, 

prioritizing speed over detailed mechanisms. The CASCADE model, for instance, assumes 

random initial loads and redistributes load upon failure, accurately predicting total failures and 

blackout sizes [21,22]. Branching process models simulate failure propagation through 

interdependent components, providing fast computation speeds and approximate results similar to 
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CASCADE [23–25]. While these models lack detailed mechanisms, they offer general estimates 

of failure propagation and blackout size distribution. 

The CF models found in the literature can be classified based on their method of simulating power 

system response during cascades of tripping events [26]. Two main approaches are commonly 

identified: dynamic transient models and quasi-steady state (QSS) models. In [27], a dynamic 

model is presented which can simulate various cascading outage mechanisms. Steady state models 

are more common in literature to study and evaluate CF process. In [28], [29], the mixed OPF-

stochastic models are the examples of steady state CF model where DC power flow (DCPF) was 

used to reduce computational burden. As DC models resulted in large errors in flow estimation 

[30] for large networks, [31], [32], are among the models incorporates AC power flow in the 

simulation of CF. In the stochastic CF model in [32], conventional optimal power flow (OPF) is 

used in the power balance algorithm which failed to accurately evaluate the negative impacts 

introduced by RE on the grid vulnerability. 

The highly variable nature of renewable generation is expected to significantly influence voltage 

profile dynamics, potentially altering grid behavior during cascading failures. In [33], the authors 

integrate frequency control dynamics into modeling cascading failures and evaluating power 

system robustness under high levels of renewable energy penetration. In [34], the authors propose 

a hybrid probabilistic modeling approach to address cascading overload failures in renewable 

integrated power grids, incorporating load flow balancing and transient stability assessment under 

the occurrence of multiple interval faults. The authors in [35], analyze power system vulnerability 

to cascading failures considering higher security criteria and renewable energy integration using a 

graph-based model, proposing evaluation indices to assess system vulnerability under varying 

operation states and generation uncertainty levels. Although modeling the cascading failure 
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process in power grids is well-documented in the literature, there is a notable gap in research 

concerning the effects of stochastic renewable generation on grid vulnerability to cascading 

failures. 

1.2.2. Cascading Failure Risk Analysis 

To assess the risk of cascading failures, it is essential to not only rely on simulation models but 

also study past events documented by utility and power distribution companies. By using statistical 

parameters from historical data as a benchmark, existing simulation models can be effectively 

validated. In [36], the authors took a complex system approach to analyze the blackout risk of 

power transmission systems using the North American Electrical Reliability Council (NERC) data. 

In [37], the authors evaluated the statistics of cascading line outages spreading using utility data. 

In [38], the authors studied different algorithms for cascading failure analysis in the power grid. 

In [32], [39], the authors incorporated a cascading failure simulation model with ac power flow to 

show power systems’ vulnerability to cascading failure with rising renewables integration. In [40], 

the authors investigated the distribution of cascaded outages by leveraging both historical data and 

a simulation model. They emphasized the importance of defining an appropriate mechanism for 

the initial line trip, which triggers the cascading failure process. Notably, the study adopted a 

uniform probability distribution function for the cascading failure analysis, emphasizing the 

significance of selecting suitable parameters for accurate simulation outcomes. However, the 

existing literature lacks comprehensive studies on cascading failure risk analysis that compare 

historical data with simulated data. Moreover, there is a notable gap in research concerning the 

mechanisms for the initial line trip during cascades, particularly comparing the effects of uniform 

and non-uniform distribution. Additionally, there is limited exploration into validating simulation 
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models with real-world data, which is essential for ensuring the accuracy and reliability of the 

models used in assessing cascading failure risks. 

1.2.3. Microgrid Resilience 

The literature on microgrid EMS offers insights into strategies for optimizing microgrid operation 

and system reliability. In [41], the authors have presented an in-depth review of microgrid energy 

management strategies and solution approaches, emphasizing the multi-objective nature of 

microgrid energy management and its role in sustainable development. In [42], the study has 

introduced a real-time energy management system for renewable-based microgrids, aiming to 

minimize costs while considering resource forecasts. In [43], the authors have demonstrated the 

economic benefits of a rolling horizon unit commitment approach compared to standard methods, 

enhancing system adaptability. In [44], the authors have outlined a microgrid control system 

managing distributed energy resources connected to a single bus. It employs a centralized heuristic 

approach, considering variables like photovoltaic power generation, fuel cell utilization, battery 

state of charge, load profile, and electricity tariff. The system aims to ensure reliable and 

economical energy resource utilization while maintaining power quality. 

Data integrity attacks, a growing concern for microgrid operation, involve inserting or altering 

data in network traffic or data servers to mislead the EMS and prompt incorrect decisions [9]. 

Several studies have investigated the impacts of cyber-attacks on microgrid reliability, including 

analytical methods and comprehensive analyses of threats such as false data injection attack 

(FDIA), denial of service (DoS), and man in the middle (MITM) attacks, along with their 

mathematical modeling and impact assessments on distributed microgrids [45–48]. FDIA stands 

out as one of the most prominent types of data integrity attacks in microgrid systems. It can 

significantly impact the operation of microgrids by compromising the integrity of data used for 
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decision-making and control. In [49], the authors have explored FDIA consequences, examining 

attacker strategies to exploit legitimate participants while maintaining supply-demand balance. In 

[50], the authors have proposed a resilient controller for DC microgrids, countering FDIA and DoS 

attacks with an adaptive control scheme. In [51], a false data injection attack model for the smart 

grid has been proposed, along with detection methods based on deep reinforcement learning. In 

[52], the authors have examined FDIA impact on distributed load sharing in autonomous 

microgrids, studying information corruption and utilization under various injection strategies. In 

[53,54], cyber-attack minimization techniques and resilient control frameworks have been 

proposed for smart grid security. In [55], the study has investigated renewable energy penetration 

and data loss effects on microgrids, while in [56], the authors have proposed a cyber-resilient 

control approach for islanded microgrids, addressing hybrid FDIA and denial-of-service attacks. 

The existing literature on microgrid EMS and FDIA offers valuable insights into optimizing 

microgrid operations and addressing cybersecurity challenges. However, there is a notable gap in 

exploring hybrid operational strategies adaptable to diverse microgrid conditions, and real-time 

attack mitigation techniques are lacking. 

However, another significant challenge that microgrids face is the potential loss of data in the 

communication channels. In [57], the authors delivered a comprehensive overview of diverse tools 

and their specific characteristics applicable in smart grid research which encompasses both the 

communication aspects and the associated information and communication technology 

infrastructure that complement the power grid. In [58], the authors presented a framework for 

conducting power and communication system co-simulation, specifically focusing on the impact 

of communication systems on microgrid stability. The framework was utilized to investigate an 

operational use case where a battery energy storage system is employed to compensate for 
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generation loss in an islanded microgrid. In [59], the authors introduced a comprehensive 

microgrid simulation model that integrates both the power subsystem and the communication 

subsystem using MATLAB Simulink. In [60], the authors analyzed the impact of packet loss on 

demand estimation in smart grids and observed that packet loss increases the cost of power supply. 

In [45], an analytical method has been proposed to measure the impacts of cyber system failures 

and transmission interference on reliable microgrid operation. However, there is a lack of research 

focusing on quantifying the impact of data loss in battery command on microgrid energy 

management systems. Moreover, the conventional method for simulating microgrid energy 

management systems with communication data loss typically involves multiple simulators 

connected through interfaces, which can be complicated. However, there is a need for a more 

streamlined and compact model that integrates all the relevant components of simulation into a 

single simulator. 

1.3. Contribution 

1.3.1. Vulnerability Analysis of Electric Grid Networks 

We have significantly enhanced the accuracy and reliability of our cascading failure simulation 

model by incorporating an improved power balance algorithm. Our enhanced model now includes 

a modified optimal power flow (OPF) algorithm which utilizes a least square adjustment method 

to restore network balance during cascading failures, thereby providing more precise and 

actionable insights into the vulnerability of electric grid networks. We have quantified the 

vulnerabilities associated with the increasing penetration of RE in the existing power grid 

concerning CF. Specifically, we assessed the impact of RE penetration on the grid's vulnerability 

by analyzing metrics such as the amount of load shedding and the number of tripped lines during 
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a cascade process. Our analysis has also identified critical thresholds beyond which system 

deterioration escalates rapidly, highlighting the urgent need for preemptive measures to mitigate 

the adverse impacts of renewable energy integration during cascading failure processes. By 

addressing the shortcomings of existing models and introducing innovative improvements, our 

research significantly advances the state-of-the-art in cascading failure analysis and enhances our 

understanding of the challenges posed by rising renewable energy penetration in modern power 

systems. 

1.3.2. Statistical Analysis of Cascading Failure Risks 

Through a statistical analysis, we have investigated the risk associated with cascading failure 

processes by leveraging historical utility data and our developed CF simulation model. We have 

processed and categorized real-world outage data into cascades, enabling us to conduct statistical 

analyses and quantify the risk parameters associated with past CF events. We have explored the 

mechanisms of initial line trips of a cascade and assessed the impact of different probabilities for 

initial line tripping. By comparing uniform and non-uniform probabilities in initial line trips in a 

cascade in simulated test cases and historical utility data, we provided valuable insights into the 

complexities of CF risk assessment and approximations for the best initial line tripping 

mechanism. Additionally, by validating our findings in the simulation scenarios with real-world 

cascade events, we have gained valuable insights into the distribution of the risk factors, such as 

the duration and number of outage lines, load shedding amount associated with cascading failure 

events. This validation process strengthened the credibility and practical relevance of our 

simulation model. 
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1.3.3. Impact of Data Loss and FDIAs on Microgrid Resilience 

We have developed a multi-layered microgrid simulation model with an optimization-based EMS 

and investigated the impact of data loss and FDIA on microgrid operation. We have developed 

two FDIA model to simulate different FDIA scenarios. Utilizing MATLAB-based simulation 

model, we have quantified the impacts of data loss in battery command and proposed a hybrid 

approach integrating optimization-based EMS with adaptive control methods during FDIA in 

islanded mode. This hybrid approach dynamically switches its objective according to operation 

scenarios to ensure reliable microgrid operation. Through simulation analyses, we have 

demonstrated the effectiveness of our hybrid strategy in safeguarding microgrid operation, while 

also highlighting the potential for further enhancement through the integration of artificial 

intelligence techniques for real-time detection and resolution of FDIAs. 

1.4. Structure of the Dissertation 

In Chapter 2, we have conducted a vulnerability analysis of the power grid in light of the increasing 

integration of renewables. We outlined the system model and introduced a modified OPF 

algorithm. Through extensive simulations on uncertain renewables within IEEE standard test 

cases, we thoroughly examined the outcomes and implications. In chapter 3, our focus shifted to 

the risk analysis of cascading failure processes within the power grid. We detailed the sourcing 

and grouping process of historical outage data and explored the risk assessment using both real-

world and simulated data. By comparing uniform and non-uniform initial line tripping probabilities 

with historical utility data and simulated data, we aimed to determine the function providing better 

approximations of grid cascading failure risks. Transitioning to chapter 4, we have investigated 

the impact of data loss and false data injection attacks on microgrid operation. After providing an 

overview of microgrid structure and various cyber threats and targets, we have presented our FDIA 
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model and proposed microgrid operation strategy. Subsequently, we have described our simulation 

model and comprehensively analyzed the obtained results and findings. 

Table I. Structure of Dissertation 

Chapter Title Description 

2 

Grid Vulnerability 

Analysis with 

Renewables Integration 

Conducted vulnerability analysis of the power grid considering increasing 

integration of renewable energy. Introduced a modified OPF algorithm for 

analysis. 

3 
Cascading Failure Risk 

Analysis and Validation 

Investigated the risk of cascading failure processes within the power grid. 

Sourced and grouped historical outage data for risk assessment. Validated 

findings using real-world and simulated data. 

4 

Microgrid Resilience 

and Cyber Threat 

Analysis 

Focused on microgrid resilience and cyber threat analysis. Introduced an 

FDIA model and proposed microgrid operation strategy. Analyzed 

simulation results and findings. 
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2. POWER GRID VULNERABILITY ANALYSIS WITH RISING 

RENEWABLES INFILTRATION 

2.1. Introduction 

The increasing penetration of renewable energy has a significant impact on the performance and 

reliability of the power grid. This is largely because of the uncertainty of the renewable resources 

and the complex nature of the power system infrastructure. In this chapter, we have analyzed power 

grids’ vulnerability to cascading failures with respect to the penetration level of renewable energy 

into the grid. A novel power balance technique is used for cascading failure analysis and power 

grid vulnerability measurement. The proposed approach incorporates a modified optimal power 

flow algorithm to enhance the existing CF simulation model [32] in the grid vulnerability analysis 

study which accurately reflects the most probable path of cascading failure evolution process with 

uncertain renewable generation. The simulation results on IEEE 118 bus system, IEEE 300 bus 

system and a synthetic 500 bus system showed that increasing penetration of renewable energy 

have proportionally higher impact on grid vulnerability to cascading failures due to injection of 

higher uncertainties into the grid. It was also evident that after a certain level of RE penetration, 

some system might deteriorate rapidly and preventive measures should be taken if and when RE 

penetration level exceeds that limit [61].  

2.2. System Model 

The modern power system is an ever-evolving complex infrastructure. Their complex 

interconnected nature along with characteristics of different parameters introduce uncertainties 

into the network. Demand growth, availability of renewable energy sources, contingencies, 
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climatic conditions, interconnections, power markets, are some examples of uncertain data. The 

goal of this study is to assess the grid vulnerability to cascading process from uncertainty 

perspective. Our proposed model considers uncertainty from load and renewable generation which 

propagates linearly in the line flow process. 

2.2.1. Uncertainty modelling 

In the proposed uncertainty model [62], the load demand power and renewable generator output 

power are represented with two terms as follows:  

𝑃(𝑡) = 𝜇𝑝(𝑡) + 𝜖𝑝(𝑡)                                                                                       (1.1) 

where 𝜇𝑃(𝑡) is the mean of load demand power or renewable generator output power at time t. In 

other words, it is the expected power signal ahead of time. It is actually the forecasted power we 

achieve through some forecasting techniques using historical data. And 𝜖𝑃(𝑡) represents the 

uncertainty which is a zero-mean signal. It is the difference between forecasted data and actual 

data. In this study, we assume load forecasting errors and wind output power mismatches as 

uncertainties. As the historical data and future data follow same pattern for load demand and 

renewable resources, a widely popular forecasting model, autoregressive moving average 

(ARMA) technique [63] is used to model uncertainties in this study. 

2.2.2. Line flow based on AC power flow 

The power flow study is the numerical computation of voltage magnitude and phase angle at each 

bus in an interconnected network under steady state condition. The DC power flow approximation 

is a common approach for calculating load flow and detecting overloaded branches. This 

approximation considers some assumption to achieve the linearization of power flow equations 
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which results in reduction of computational burden. In DCPF, we assume flat voltage profile which 

means the voltage amplitude is equal for all nodes and voltage angle differences between 

neighboring nodes are small. We also assume line resistance are negligible compared to line 

reactance. The accuracy of DCPF depends on these assumptions’ validity in real network situation. 

These assumptions do not hold true for AC power flow which may result in huge computational 

burden and convergence problem for large complex network. On the other hand, the accuracy of 

AC power flow solutions is much higher and we can access the voltage profile of the busses in the 

network. Due to these approximations, DCPF underestimate the severity of cascading failure in 

large complex networks [30]. In our proposed cascading failure model, we have used ACPF to 

detect overloaded branches. However, to determine the mean flow in the branches, unscented 

transformation (UT) method is used to avoid the disadvantages of ACPF [64], [65]. 

2.2.3. Unscented transformation 

The unscented transformation (UT) method can overcome the limitations of linearization by 

providing a direct and definitive approach for transforming statistical information. UT method can 

provide higher accuracy with the same computational burden as linearization. The basic idea of 

UT method is that it is easier to estimate a probability distribution function than it is to estimate 

an arbitrary nonlinear function [64]. In UT method, the input points are selected in a way that they 

can maintain enough information to represent their probability distribution function. The UT 

method is applicable to different uncertain problems with satisfactory result. This method 

calculates the statistics of output random variables undergoing a set of nonlinear transformations. 

In our model, the inputs of the UT methods are the load demand and renewable generation. We 

have chosen the input points in a way so that we can determine the mean and covariance of the 
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input variables. Then UT method can estimate the mean and covariance of the output random 

variables, in our case, line flow in the network [32]. Special focus should be given on the idea that, 

in the UT method, the sample points are not selected randomly. They are chosen in a specific way 

so that they have a predefined mean and covariance. This statistical information propagates 

through some nonlinear function and ultimately results in an accurate estimation of statistics of the 

output variable. 

2.2.4. Tripping mechanism and relay model 

In the proposed relay model, we have used the mean and covariance of the branch flow derived by 

the UT method [32]. This statistical information is the main component of the CF simulation relay 

model. Here, power flow of each branch is assumed to be Gaussian to determine the normalized 

overload distance and in result, the overloading probability of each branch [28]. Then, we can 

calculate the mean overload time (𝜏�̅�) of branch l using the normalized overload distance (𝑧𝑙) and 

overloading probability (𝜌𝑙). 

𝜏�̅� =
2𝜋𝜌𝑙𝑒

𝑧𝑙
2

2

𝐵𝑊𝑙
                                                                    (1.2) 

Where, 𝐵𝑊𝑙 is the equivalent bandwidth of the flow process for the lth line [66]. 

This relay model introduces the uncertainties injected from RE sources and loads to the line flows. 

The time-inverse relay algorithm is in motion when the line becomes overloaded and the time to 

trip (𝑡𝑡𝑟) is inversely proportional to the line overloading value. This value is determined based on 

the thermal stability of the transmission lines [67]. This 𝑡𝑡𝑟 value is compared to the mean overload 

time, 𝜏𝑙
𝑢̅̅ ̅, if it is larger the trip timer is set to zero, otherwise, the trip timer is set to the relay time 
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to trip. This tripping mechanism enables us to model the stochastic process of CF and identify the 

most probable path for its propagation. 

2.3. Modified OPF Algorithm 

During cascading failure process, branches of the power grid may trip and become disconnected. 

The grid network changes after every line trip. To restore the balance in the system some 

modification may be required. In [32], author proposed a power balance algorithm to restore the 

balance. In this algorithm, conventional OPF is used which could not accurately evaluate the 

impacts of RE penetration into the grid during CF. As CF is a very fast evolving process, 

conventional OPF would not properly reflect the transition path of CF process after every line 

tripped. Here, we proposed a modified OPF algorithm which can restore the balance of the grid 

within its capacity limit. In this algorithm, we have proposed least square adjustment of the 

parameters of power grid within their valid capacity limit. The main goal of this algorithm is to 

mimic the most likely evaluation path of CF process in each step of the simulation process. The 

solution of this optimization problem restores the balance of the grid network within the least 

possible adjustment of generation and load controls in the grid and in result, accurately evaluates 

the impacts of RE penetration during CF process by representing the most likely transition path of 

CF process after every line trip. 

2.3.1. Objective function 

The objective function of this modified OPF is the least square adjustment of generation and load 

controls after every line tripping occurs. In this optimization problem, we try to minimize the 

differences of generation and load control parameters from their initial value. As oppose to the 
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conventional OPF, it only focusses on real and reactive generation, real and reactive load demand 

and bus voltage magnitude. In CF process, every line tripping result in change of the existing 

network and the adjustment of generation and load is necessary. The modified OPF serve this 

purpose keeping the system as close to the initial condition.  

min
𝑃𝐺,𝑃𝐷,𝑄𝐺,𝑄𝐷,𝑉

𝑾[ ‖∆𝑃𝐺‖2
2  ‖∆𝑃𝐷‖2

2  ‖∆𝑄𝐺‖2
2  ‖∆𝑄𝐷‖2

2  ‖∆𝑉‖2
2 ]𝑻                                 (1.3) 

Here, ∆𝑃𝐺 , ∆𝑄𝐺 , ∆𝑃𝐷 , ∆𝑄𝐷 and ∆𝑉 represent the real power generation adjustment, reactive power 

generation adjustment, real load adjustment,  reactive load adjustment and the voltage magnitude 

adjustment respectively for each bus before and after line tripping. And, 𝑾 represents coefficients 

or the penalty factors for the respective terms in optimization problem. Here, 𝑾 =

[ 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5]. The values of these coefficients determine the gravity of their respective terms 

in the overall minimization problem. For example, in a specific case when minimizing load 

shedding is of top importance, one can put extra effort in minimize it by setting higher value of 𝑤2 

from other coefficients, which may result into other parameters shift away from initial value. In 

other cases, it could be of more importance to keep the differences of generation dispatch as less 

as possible. In that case, coefficient 𝑤1 will be set to a higher value to minimize the difference of 

generation dispatch which may lead to higher amount of load shedding. Thus, the values of the 

coefficients can be chosen in a way to serve specific purpose in specific cases. Here, in our 

simulation, all the coefficient values are set to 1 to give equal importance to every term in the 

modified OPF algorithm.   

2.3.2. Constraints 

The modified OPF is a constrained optimization problem which has two types of constraints.  
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Equality Constraint:  The active and reactive power balance in each bus, namely the AC power 

flow equation is the equality constraint set for this modified OPF.  

𝑓(𝑉𝑚, 𝜃, 𝑆𝐺, 𝑆𝐷, 𝑌) = 0                                                                      (1.4) 

Here 𝑉𝑚 represents bus voltage magnitudes, 𝜃 represents bus voltage angles, 𝑆𝐺 is the complex 

generation power, 𝑆𝐷 is the complex load and Y is the admittance matrix for the grid after line 

tripping occurs.  

Inequality constraint:  The operating limits of the components of power grid control the steady 

state operation of the network. These operating limits are the inequality constraints set for this 

modified OPF. 

𝑋𝑚𝑖𝑛 ≤ 𝑋 ≤ 𝑋𝑚𝑎𝑥                                                                             (1.5) 

Here X represents real and reactive generation, real and reactive load, bus voltage magnitude and 

bus voltage angle, 𝑋𝑚𝑎𝑥 is the upper boundary and 𝑋𝑚𝑖𝑛 is the lower boundary of the parameters. 

These are the inequality constrains of the modified OPF.  

2.3.3. Algorithm 

In CF simulation process, after every line tripping this modified OPF restores the balance of the 

network using least square adjustment of the generation and load controls 

Figure 1 shows the flowchart of the modified OPF. This modified OPF model represents a 

nonlinear constrained optimization problem. We have used an optimization toolbox of MATLAB, 

‘fmincon’, to solve this problem. This modified OPF takes the transformed admittance matrix after 

line tripping and power flow solution of the network before line tripping as inputs. The parameters 

are initialized as the power flow solution of the network before line tripping. The inequality 
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constraints are set as the operating limits of the generation and load controls and the equality 

constraints are the real and reactive power balance equations for each bus. 

In Figure 2, the overall working diagram of the proposed model has been shown. For a specific 

network we have chosen a few different scenarios where several generators were selected to 

replace them with wind generators. For every scenario, we have chosen different conventional 

generators for replacement. According to the load data, wind data and scenarios, we performed an 

initial optimal power flow to determine the generation dispatch for different RE penetration. Then 

we introduced n-2 contingency into the system to initiate cascading failure. 

 

Figure 1. Flowchart of the modified OPF 
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Figure 2. Overall overview of CF simulation 

After every line tripping, the modified OPF restored the power balance of the network with least 

square adjustments of the parameters within their boundary. In every time step, we performed 

power flow analysis to determine the overloaded lines. For every overloaded line, we have used 

UT method to find out mean overloading time and specific lines have been tripped when the trip 

timer hit zero. During cascading process, we have shut down all isolated buses and islands without 

generation. After the simulation, load shedding amount and number of tripped lines have been 

stored. For every scenario, we have used several different n-2 contingencies to initiate cascading 
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process and took the average of load shedding and trip count to measure the severity of the 

cascading process. For every scenario, we have repeated the process for different level of RE 

penetration to see the impact of RE penetration level on the severity of cascading process. 

2.4. Simulation Results and Discussion 

We have simulated the impacts of increasing renewable generation integration on grid 

vulnerability to cascading overload failures in two IEEE standard cases (IEEE 118 and IEEE 300 

bus system) and one synthetic 500 bus system (ACTIVSg500). In all the cases, we have selected 

a few different scenarios and several different initial n-2 contingencies to initiate cascading 

process. We have used four hours of load data and wind generation data with 4 second resolution. 

Scenarios:  In a specific scenario, we have selected six different conventional generators to replace 

those with wind generators. The six conventional generators have been selected in a way so that 

they could contribute at least 30% of the total generation of the system which in result, represents 

up to 30% RE penetration in the system. Then these conventional generators are gradually replaced 

by wind generators to see the effect of increasing RE penetration in the grid. In our simulation, we 

have chosen a limited number of scenarios in order to reduce the computational burden. The 

scenarios have been chosen in a way so that most of the conventional generators by turn could 

have been replaced by wind generators.  

Contingency:  To initiate the CF simulation, we have manually tripped two branches (n-2 

contingency) at the initial stage of the simulation. We have selected several different n-2 

contingencies to initiate the CF simulation to see different cascading failure evaluation path for 

every scenario. In order to reduce the computational work load, we have selected limited number 
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of initial n-2 contingencies. The contingencies have been selected from a batch of contingencies 

which mostly represents the critical lines of the system which leads to CF process. 

2.4.1. IEEE 118 Bus System 

The IEEE 118 bus test case represents a portion of the American Electric Power with 54 committed 

generators, 99 loads and 186 branches [68]. We have considered fifteen different scenarios where 

we replaced conventional energy with wind energy to see the impact of RE penetration in case of 

cascading failure.  

To initiate cascading failure, we introduced 50 different N-2 contingencies in the simulation for 

every scenario to see its evolution process. To measure the severity of the cascading process we 

considered the load shedding amount and trip count for every case. For every scenario, we have 

tested our model for 0% to 30% renewable penetration. We have taken the mean of the total load 

shedding amount for 50 different initial n-2 contingencies. 

In scenario 1, generator 5, 10, 17, 21, 30 and 40 have been replaced by wind generator. We have 

simulated this scenario for 50 different n-2 contingencies. The average load shedding amount and 

average count of line tripping are the measuring tool to assess vulnerability to cascading failures. 

Table II. Vulnerability impacts evaluation (Scn 1)-IEEE118 

Avg Load Shedding (MW) Avg number of lines tripped 

RE 0% RE 10% RE 20% RE 30% RE 0% RE 10% RE 20% RE 30% 

22.19 63.49 131.95 175.84 2.54 4.02 4.98 5.90 

 

From Table II, we can see that for scenario 1, with increasing renewable penetration, the average 

load shedding amount increased from 22.19 MW to 175.84 MW. And the average trip count also 
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increased from 2.54 to 5.90. The increasing renewable penetration increased uncertainty into the 

system which results in larger amount of load shedding which makes the network more vulnerable 

to cascading failure. 

From Figure 3, we can see the same trend for every scenario, which is the increasing trend of load 

shedding amount with increasing RE penetration. If we take a closer look on Figure 3, we can see 

that for 50% of cases there is a sudden increase in load shedding when RE penetration level reached 

20%.  
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Scenario (11-15) 

Figure 3. Average load shedding amount for increasing RE penetration (IEEE 118 bus system) 

In Figure 4, we have shown the average number of line trips for every scenario with 50 different 

n-2 contingencies. The line trip count also increased with the increasing RE penetration.  
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Scenario (6-10) 

 

  
Scenario (11-15) 

Figure 4. Number of tripped lines for increasing RE penetration (IEEE 118 bus system) 

 

For a specific scenario and for a specific contingency we can see the most probable cascading 

process evaluation path. In Table III, we can see that for scenario 1, when we initially tripped line 

51 and 168 to initiate CF process, the trip count and the load shedding percentage increased with 

increasing RE penetration. 
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Table III. Vulnerability impacts for a specific contingency-118 bus 

Scenario N-2 Contingency RE Penetration Trip Count LNS (%) 

1 51, 168 

0% 4 0.60 

10% 13 8.77 

20% 17 12.71 

30% 26 24.10 

 

In Figure 5, we can see the cascading failure evolution process for scenario 1 where branch 51 and 

168 was initially tripped. We can see the initial escalation in the initial stage of the CF process and 

then after some time the system becomes stable. For RE penetration of 0% the system has 

stabilized very quickly compared to higher RE penetration level. With increasing RE penetration, 

the system took more time to stabilize which also indicates the vulnerability to CF with uncertain 

generation. 
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Figure 5. Cascading failure evolution for a specific contingency 
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2.4.2. IEEE 300 Bus System 

We have tested our algorithm on another IEEE test case, IEEE 300 bus system. This test case was 

developed by the IEEE test systems task force under the direction of Mike Adibi in 1993. This 

system contains 69 generators, 304 transmission lines and 195 loads, and its loading level is higher 

than 118 bus system [69]. We have considered ten different scenarios for this test case where we 

replaced conventional energy with wind energy to see the impact in case of cascading failure. To 

initiate cascading failure, we introduced N-2 contingencies in the simulation. For every scenario, 

we have considered 10 different n-2 contingencies to initiate cascading failure and see its most 

probable evolution process. To measure the severity of the cascading process we have considered 

the load shedding amount and trip count for every case as measuring tool.  

For example, in scenario 2, generator 11, 14, 31, 48, 62 and 64 have been replaced by wind 

generator. We have simulated this scenario for 10 different n-2 contingencies. The average load 

shedding amount and average number of tripped lines are the measuring tool to assess vulnerability 

to cascading failures. 

Table IV. Vulnerability impacts evaluation (Scn 2)-300 bus 

Avg Load Shedding (MW) Avg number of lines tripped 

RE 0% RE 10% RE 20% RE 30% RE 0% RE 10% RE 20% RE 30% 

346.4 420.1 613.2 1181.9 4 4.67 6.22 8.11 

 

From Table IV, we can see that for scenario 2, with increasing renewable penetration, the average 

load shedding amount increased from 346.4 MW to 1181.9 MW. And the average trip count also 

increased from 4 to 8.11.  
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Scenario (1-5) 

 

  
Scenario (6-10) 

  
Scenario (11-15) 

Figure 6. Average load shedding amount for increasing RE penetration (IEEE 300 bus system) 
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The increasing renewable penetration increased uncertainty into the system which resulted into 

larger amount of load shedding and made the network more vulnerable to cascading failure. 

  
Scenario (1-5) 

  
Scenario (6-10) 

 

  

Scenario (11-15) 

Figure 7. Number of tripped lines for increasing RE penetration (IEEE 300 bus system) 
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From Figure 6, we can see the same trend for every scenario, which is the increasing trend of load 

shedding amount with increasing RE penetration. If we take a closer look on Figure 6, we can see 

that for almost 80% of the cases, when RE penetration level reached 30%, there is a rapid increase 

in load shedding amount which indicates that the system becomes more vulnerable at this level of 

RE penetration. 

In Figure 7, we have shown the average number of line trips for every scenario with 10 different 

n-2 contingencies. The line trip count also increased with the increasing RE penetration. 

2.4.3. 500 bus case (ACTIVSg500) 

The ACTIVSg500 case is a 500-bus power system test case that is entirely synthetic, built from 

public information and a statistical analysis of real power systems. It bears no relation to the actual 

grid in this location, except that generation and load profiles are similar [70]. This system contains 

56 committed generators, 597 transmission lines and 200 loads, total generation capacity 12188.9 

MW and load 7750.7 MW. We have considered only three different scenarios for this test case due 

to high computational burden. To initiate cascading failure, we introduced N-2 contingencies in 

the simulation. For every scenario, we have considered 25 different n-2 contingencies to initiate 

cascading failure and see its most probable evolution process. 

Table V. Vulnerability impacts evaluation (Scn 1)-500 bus 

Avg Load Shedding (MW) Avg number of lines tripped 

RE 0% RE 10% RE 20% RE 30% RE 0% RE 10% RE 20% RE 30% 

230.2 268.6 280.6 303.9 6.05 6.53 6.68 6.79 
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From Table V, we can see that for scenario 1, with increasing renewable penetration, the average 

load shedding amount increased from 230.2 MW to 303.9 MW. And the average trip count also 

increased from 6.05 to 6.79.  

 

  
Scenario (1-3) 

Figure 8. Average load shedding amount for increasing RE penetration (500 bus system) 

From Figure 8, we can see the same trend for every scenario, which is the increasing trend of load 

shedding amount with increasing RE penetration. If we take a closer look on Figure 8, we can see 

that there is a steady increase in load shedding amount. 

In Figure 9, we have shown the average number of line trips for every scenario with 25 different 

n-2 contingencies. The line trip count also increased with the increasing RE penetration. 
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Scenario (1-3) 

Figure 9. Number of tripped lines for increasing RE penetration (500 bus system) 

Comparing the results of the three cases we can say that, in all the cases with increasing penetration 

of RE, the amount of load shedding and the number of tripped lines increased. As measuring tool 

of vulnerability to cascading failure, the system becomes more vulnerable to cascading failure. 

Moreover, from Figure 6, we can notice sudden rapid increase of load shedding amount for most 

of the scenarios in 300 bus system when RE penetration increases from 20% to 30%.  As a matter 

of fact, on an average there is around 120% increase of load shedding when RE penetration 

increased from 20% to 30%.  

Table VI. Overall analysis in three test cases 

Test Case 
Load shedding (%) Trip count 

RE 0% RE 10% RE 20% RE 30% RE 0% RE 10% RE 20% RE 30% 

IEEE 118 39.18 61.32 101.78 131.98 2.7 3.4 4.5 4.9 

IEEE 300 95.00 155.00 270.00 593.00 2.7 2.9 3.2 4.6 

ACTIVSG500 165.00 189.00 211.00 235.00 5.05 5.21 5.76 6.02 
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RE penetration 

Figure 10. Overall vulnerability analysis 

From Figure 10 and Table VI, we can see the overall vulnerability analysis for IEEE 118 bus 

system, IEEE 300 bus system and 500 bus system averaging all the scenarios. We can see that for 

IEEE 118 bus system, load shedding reached 2.35% for 20% RE penetration. For IEEE 300 bus 

system, there is a sudden increase in load shedding (2.4%) when RE penetration reached 30%. 

And for synthetic 500 bus system we can see a steady increase of load shedding amount with 

increasing RE penetration. It is evident for some cases that when RE penetration reached a certain 

point, the system may enter a critical stage where it can deteriorate rapidly and preventive measures 

should be taken to mitigate the negative impacts of RE penetration. Hence, by incorporating the 

modified OPF power balance algorithm in simulation process, the negative impacts introduced by 

RE on the grid vulnerability have been accurately reflected. 
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2.5. Summary 

In this research, we have analyzed the impacts of renewable generation on grid vulnerability to 

cascading overload failures in terms of its penetration level. The existing CF simulation model, 

which utilizes the ACPF method along with the UT method, has undergone significant 

enhancement. By integrating a modified OPF algorithm for power balance, the model now better 

reflects the probable evolution path of the CF process, leading to increased accuracy in our study. 

This modification allows for a more precise representation of system dynamics and enables more 

reliable predictions of cascading failure scenarios. Blackout size and the number of tripped lines 

has been used as measuring tools to assess vulnerability to CF. It is found that higher penetration 

from renewable energy leads to a higher number of trips counts and a larger amount of load 

shedding. The proposed model has also been able to identify that after a certain level of RE 

penetration, some systems may deteriorate rapidly, and preventive measures should be taken if and 

when RE penetration levels exceed that limit. 

The improved simulation model incorporating the novel power balance algorithm with modified 

OPF offers several advantages over conventional OPF methods. By incorporating the least square 

adjustment method, it better captures the fast-evolving CF process, thus providing more accurate 

predictions of system vulnerabilities. This enhanced accuracy is crucial for decision-makers to 

implement preemptive measures and avoid the potential danger of cascading failure due to higher 

renewable penetration. Take-aways from the simulation results of IEEE 118 and 300 bus systems 

reveal the necessity to upgrade infrastructure to mitigate the fast-increasing potential of danger 

from cascading failures. These findings emphasize the importance of proactive infrastructure 

upgrades to ensure grid reliability and resilience in the face of rising renewable energy penetration. 

Looking forward, future work could entail conducting additional simulations on a broader range 
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of test cases to gain a deeper understanding of threshold levels and system vulnerabilities. It is 

important to recognize that every power system has unique characteristics, including varying 

loading levels, bus-to-branch ratios, and network topologies. As a result, the threshold level of RE 

penetration for cascading failure vulnerabilities may differ across different systems. By simulating 

more test cases with a higher number of scenarios and initial contingencies, we can acquire deeper 

insights into the vulnerabilities associated with increased renewable energy penetration. However, 

it is crucial to acknowledge the computational burden and time constraints associated with 

extensive simulations. Despite these challenges, expanding the scope of simulations to encompass 

various scenarios and contingencies will be pivotal in advancing our understanding of grid 

vulnerabilities and informing effective mitigation strategies. 
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3. CASCADING FAILURE RISK ANALYSIS OF ELECTRICAL POWER 

GRID 

3.1. Introduction 

In this chapter, we have studied the severity of cascading failure processes of electrical power grids 

by statistically analyzing the number of line outages per cascade, the cascade duration, and the 

load shedding amount of a cascade, based on the historical utility data of the BPA system and the 

simulation data of two synthetic test cases using our developed CF simulation model. Both uniform 

and non-uniform probability distribution functions have been considered for the initial line trips in 

the cascading failure simulation in order to determine which function better approximates the 

cascading failure risks of the real-world grid. The obtained simulation data and statistical analysis 

results from the two 500-bus synthetic test cases are then compared with those from the historical 

utility data [71]. 

3.2. Risk Analysis of Cascading Process from Historical Utility Data 

Transmission line outages are a useful measuring tool to assess the severity of cascading failure in 

the system. In this study, the historical transmission line outage data from the Bonneville Power 

Administration (BPA) website [72] have been collected and statistically analyzed. The BPA 

system is an American federal agency operating in the Pacific Northwest. Bonneville is one of four 

regional Federal power marketing agencies within the U.S. Department of Energy (DOE). We 

examined 21 years of transmission line outage data (1999-2020) publicly available on the BPA 

website. Every outage has information on the outage date and time, outage duration, voltage level, 

outage type, cause of the outage etc. All the outages can be categorized into automatic outages and 
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planned outages. Only automatic outages are considered for our study as these outages normally 

initiate CF processes in the system. From 1999 to 2020, there are 43,240 automatic outages 

documented on the BPA data. These outages are then grouped into different cascades according to 

their start times: if two-line outages separated by more than an hour, they will be grouped into two 

different cascades. Otherwise, if the start time difference of two consecutive outages is less than 

or equal to one hour, they will be grouped into the same cascade. This grouping process is adopted 

from [37]. Here, we have processed 20,211 automatic outages excluding outages having duration 

less than one minute as these outages did not spread any further and according to this grouping 

method, there are 5,724 cascades in the observed outage data. Among these cascades, 4,968 

(86.79%) cascades have only one generation and do not spread further. After grouping all the 

outages into separate cascades, we analyzed the risk associated with each cascade.  

Outage number, cascade duration, and load shedding amount are crucial parameters used to assess 

the severity and risk of CF events in power systems. The outage number represents the total count 

of disabled lines or components during a CF event, indicating the extent of the disruption within 

the grid. A higher outage number implies a larger-scale impact on system reliability and resilience. 

Cascade duration refers to the duration of a CF event, reflecting the length of time it takes for the 

cascade to unfold and propagate through the system. Longer cascade durations signify prolonged 

system instability and disruption, highlighting the challenges faced by operators in restoring 

normal operation. Load shedding amount quantifies the quantity of load that must be curtailed to 

maintain grid stability during a CF event. Higher load shedding amounts indicate increased strain 

on the system and the potential for widespread service interruptions. Analyzing these parameters 

provides valuable insights into CF dynamics, helping stakeholders identify vulnerabilities and 
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develop effective mitigation strategies to enhance system resilience. In order to measure the 

severity of CF processes, the number of tripped lines (outage number) and the duration of each 

cascade have been studied for the BPA system. The higher the outage number and the longer the 

duration of a cascade, the higher risk it will pose to the system. As the BPA data does not include 

records of load shedding, we are unable to analyze this metric for it. 

In Figure 11(a), we can see the probability distribution of the outage numbers in a cascade for the 

BPA data. Here, the probability of a cascade with only one outage is the highest. After that, with 

the increasing number of outages, the probability decreases rapidly. We tried several statistical 

distributions to model the probability of outages in a cascade. Considering the simplicity of the 

model and measuring the goodness of fit, we propose an exponential distribution function to fit 

the data. The probability distribution function of an exponential distribution is as follows: 

𝑓(𝑥, 𝜆) = {
𝜆𝑒−𝜆𝑥, 𝑥 ≥ 0
0,           𝑥 < 0

                                                      (3.1) 

Here, λ is the parameter of the distribution often called the rate of the distribution, and (1/λ) 

represents the mean of this distribution. 

The exponential distribution function is adopted to fit the BPA outage data. According to this 

distribution, the mean number of outages in a cascade is 3.53. In Figure 11(b), the probability 

distribution of the cascade duration has been shown. The probability of a cascade lasting less than 

20 minutes is the highest. After that, with the increasing amount of duration of a cascade, the 

probability decreases rapidly. We have also fitted this duration data with the exponential 

distribution function considering the simplicity of the model and also measuring the goodness of 

the fit. The mean duration according to this distribution function is 30.9 minutes [40,73].  
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(a) Probability distribution of outage 

number in a cascade 

(b) Probability distribution of cascade 

duration 

  

Figure 11. Probability distribution with exponential fitting for BPA data 

3.3. Risk Analysis from Simulated Data 

3.3.1. Simulation Model 

The CF simulation model described in chapter 2 is used for the simulations on two synthetic power 

system test cases in order to analyze the risk of CF processes [61]. At first, the optimal power flow 

(OPF) algorithm is used on the forecasted load profiles to determine the initial generation 

dispatches in normal condition. Then a single branch of the system has been tripped manually to 

initiate the CF process. After every branch gets tripped, AC power flow has been used to determine 

the overloaded branches of the system. The unscented transformation (UT) method has been used 

to determine the mean overload time of the overloaded branches [64]. These values are then used 

in the relay mechanism to determine whether any other branches are getting tripped or not. After 

every new line trip, a modified version of the OPF algorithm is used to restore the power balance 

of the system. Here, the least-square adjusted OPF algorithm is used to mimic the most viable path 

of the CF process. The CF process will eventually stabilize and there will be no more overloaded 
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lines in the system. After every CF simulation, we have determined the total number of line trips 

during the cascade, the duration of the cascade, and also the load shedding amount (if any). 

3.3.2. Initial Line Tripping Mechanism 

We have initiated our cascading failure simulation by tripping a single branch of the system. If a 

system has n number of branches, n different cascades can be initiated by tripping each different 

branch. We have considered both uniform and non-uniform distribution for these initial line trips.  

Uniform Initial-Line-trip Distribution: In this case, it is assumed that every line getting tripped 

to initiate a CF process is with the same probability in the system. For that scenario, a system with 

n lines has n different cascades and the probability of these cascades happening are same. 

Non-uniform Initial-Line-trip Distribution: We have also considered the non-uniform probability 

of initial line trips. Three different parameters have been considered to assign the non-uniform 

probability of initial line trips so that every cascade in the system may have a different probability.  

Branch Flow: First we consider the branch flow as a defining parameter to assign the probability 

of initial line trips. The loading level of each branch of the system is determined as the ratio of the 

branch power flow under normal operation condition and its maximum branch capacity. After that, 

we divided all the branches into ten categories and assigned them different weights for the CF 

estimation, as shown in Table VII. 
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Table VII. Non-uniform probability definition of initial line trips according to the loading level 

 

Loading level (l) Weight 

0 ≤ l ≤ 0.1 1 

0.1 < l ≤ 0.2 2 

0.2 < l ≤ 0.3 3 

0.3 < l ≤ 0.4 4 

0.4 < l ≤ 0.5 5 

0.5 < l ≤ 0.6 6 

0.6 < l ≤ 0.7 7 

0.7 < l ≤ 0.8 8 

0.8 < l ≤ 0.9 9 

0.9 < l ≤ 1.0 10 

 

The higher the loading levels, the higher the probability of a branch initially getting tripped to start 

a cascading process. 

Shortest Path: In this case, we use the network topology of a power grid to assign the non-uniform 

probability of initial line trips. We first define all the generation buses as the boundary nodes of a 

system and calculate the shortest path from every bus to the boundary. The distances are measured 

in terms of the hops on the shortest path. As every branch is connected with two buses, we have 

taken the minimum of the shortest paths associated with the two buses connected to the branch. 

Hence, for every branch, we have a corresponding shortest path to the boundary. We have 

considered this distance to assign a specific weight for every initial line trip. The longer the 

distance, the higher the probability of a line initially getting tripped, as shown in Table VIII. 
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Connectivity: In this case, we have considered the connectivity of every bus as a defining 

parameter. In the power grid, every bus is connected to several other buses. For every bus, we have 

determined this connectivity number. As every branch is connected by two buses, for every branch, 

we have considered the average connectivity number of the corresponding buses. This connectivity 

number is considered to assign the non-uniform probability of initial line trips. The higher the 

connectivity, the higher the probability of a line getting tripped initially and starting a CF process, 

as shown in  

Table IX. 

Table VIII. Non-uniform probability definition of initial line trips according to the shortest path 

Shortest path to boundary (d) Weight 

d=1 1 

d=2 2 

d=3 3 

d=4 4 

d=5 5 

d=6 6 

d=7 7 
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Table IX. Non-uniform probability definition of initial line trips according to the connectivity 

 

Connectivity number of every line (n) Weight 

n = 1 1 

n = 1.5 2 

n = 2 3 

n = 2.5 4 

n = 3 5 

n = 3.5 6 

n = 4 7 

n = 4.5 8 

 

3.4. Result and Discussion 

Due to security and confidentiality reasons, detailed topology information regarding the BPA 

control area load and renewable penetration scenario is not publicly accessible. Additionally, the 

outage data spanning 21 years utilized in this study encompasses periods of significant system 

changes, including the retirement of old lines and the addition of new ones. Despite these 

limitations, we have inferred the system's loading level and utilized available information to 

conduct comprehensive analysis. Specifically, our study incorporates two synthetic 500-bus test 

cases for cascading failure simulation and statistical risk assessment, enabling comparison with 

real-world data and enhancing the robustness of our findings. 
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3.4.1. Test Case: ACTIVSg500  

The ACTIVSg500 case is a 500-bus power system test case that is entirely synthetic, built from 

public information and statistical analysis of real power systems. It bears no relation to the actual 

grid in this location, except that generation and load profiles are similar [74]. This synthetic 500-

bus test case contains 56 committed generators, 597 transmission lines, and 200 loads, a total 

online generation capacity of 8863.6 MW, and a load of 7750.7 MW. As the system has 597 

transmission lines, we will have 597 different CF processes by initially tripping these 597 lines. 

For each CF simulation process, we have calculated the number of total lines tripped during the 

cascade, the duration of the cascade, and the amount of load shedding in percentage. We have 

considered both uniform and non-uniform probability of initial line trips. For the uniform 

probability of initial line trips, all the cascades initiated by a single line trip have the same 

probability. On the contrary, for the non-uniform probability of initial line trips, all the cascades 

have a different probability of occurrence. We have considered three different loading levels for 

our CF simulation and every loading level have a different weight according to the load duration 

curve of the BPA control area load. These three different loading levels have been combined 

according to their weight to mimic the real-world scenario where loading levels are different during 

different times of the day.  

Table X. Weights of different loading level 

Loading Level Weight 

85% 0.1 

70% 0.7 

50% 0.2 
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In Figure 12, the probability distributions of the total number of outages in a cascade are shown. 

Figure 12(a) considers the uniform probability of any initial line trips and Figure 12(b), (c), and 

(d) consider the non-uniform probability of initial line trips. In Figure 12(b), the power flow in a 

branch is used as a defining parameter to assign different weights on initial line trips. Similarly, in 

Figure 12(c) and Figure 12(d), the shortest path to the boundary and connectivity of the systems 

are used as defining parameters to assign different weights on the initial line trips respectively. It 

is obvious from the figure that most of the cascades have only one outage and did not spread any 

more. The probability of a cascade having a large number of outages is very low and this 

probability decreases with the increasing number of outages. We have fitted our simulated outage 

number data with exponential distribution. In Table XI, the mean number of outages per cascade 

has been shown. Initial line trip probability according to branch flow has given us the best 

estimation compared with the BPA data while probability according to shortest path 

underestimated the mean outage number and probability according to connectivity overestimated 

the number the most. 

 

  

(a) Uniform initial line trip probability 
(b) Initial line trip probability according 

to branch flow 
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(c) Initial line trip probability according 

to the shortest path to the boundary 

(d) Initial line trip probability according 

to the connectivity 

 

Figure 12. Probability distribution of the number of outages in a cascade for the ACTIVSg500 system 

 

Table XI. Mean number of outages in a cascade for ACTIVSg500 system 

Probability of initial line trip Uniform 

Non-uniform 

Branch flow Shortest Path Connectivity 

Mean number of outages 3.44 3.46 3.05 4.07 

 

In Figure 13, the probability distributions of the duration of a cascade are shown. Figure 13(a) 

considers the uniform probability of any initial line trips and Figure 13(b), (c), and (d) consider 

the non-uniform probability of initial line trips. The probability of a cascade having a long duration 

is very low and this probability decreases with the increasing duration. We have fitted our 

simulated cascade duration data with exponential distribution. In Table XII, the mean duration of 

a cascade has been shown which is pretty close to the number we got from the BPA data. Initial 

line trip probability according to the connectivity of the system has given us a more accurate mean 

duration value compared with the BPA data while probability according to the shortest path 

underestimated the mean duration of a cascade the most. 
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(a) Uniform initial line trip probability 
(b) Initial line trip probability according 

to branch flow 

  
(c) Initial line trip probability according 

to the shortest path to boundary 

(d) Initial line trip probability according 

to the connectivity 

 

Figure 13. Probability distribution of the cascade duration for the ACTIVSg500 system 

In Figure 14, the probability distributions of the load shedding percentage during a cascade are 

shown. Figure 14(a) considers the uniform probability of any initial line trips and Figure 14(b), 

(c), and (d) consider the non-uniform probability of initial line trips. The probability of a cascade 

having a large load shedding amount is very low and this probability decreases with the increasing 

load shedding amount. We have fitted our simulated load shedding percentage data with 

exponential distribution. In Table XIII, the mean load shedding percentage of a cascade has been 

shown where probability according to the shortest path resulted in the lowest amount of load 

shedding and the probability according to connectivity resulted in the largest amount of load 

shedding. 
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Table XII. Mean duration of a cascade for ACTIVSg500 system 

Probability of initial line trip Uniform 

Non-uniform 

Branch flow Shortest Path Connectivity 

Mean duration (minutes) 28.86 28.94 27.32 29.26 

 

  

(a) Uniform initial line trip probability 
(b) Initial line trip probability according to 

branch flow 

  
(c) Initial line trip probability according to 

the shortest path to boundary 

(d) Initial line trip probability according to 

the connectivity 

 

Figure 14. Probability distribution of the load shedding percentage of a cascade for the ACTIVSg500 system 

 

Table XIII. Mean load shedding percentage of a cascade for ACTIVSg500 system 

Probability of initial line trip Uniform 

Non-uniform 

Branch flow Shortest Path Connectivity 

Mean load shedding (%) 1.78 1.91 1.41 2.23 
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3.4.2. Test Case: AutoSyngrid case 

We have used another 500-bus test case for our CF simulation model. This test case has been 

developed using AutoSyngrid, a MATLAB-based toolkit for the automatic generation of synthetic 

power grids [75]. For our generated test case, WECC (Western Electricity Coordinating Council) 

system has been utilized as a reference system for generation and load settings as this system is 

closely related to the BPA control area load. We have named this test case ASGWECC_500_1. 

This test case contains 103 committed generators, 875 transmission lines, 109 loads, a total online 

generation capacity of 34,277.8 MW, and a load of 29,313.8 MW. Like the previous test case, as 

the system has 875 transmission lines, we will have 875 different CF processes by initially tripping 

these 875 lines. For each CF simulation process, we have calculated the number of total lines 

tripped during the cascade, the duration of the cascade, and the amount of load shedding in 

percentage. In this test case also, we have considered both uniform and non-uniform probability 

of initial line trips. Just like the previous test case, we have considered three different loading 

levels for our CF simulation, and every loading level has a different weight according to the load 

duration curve of the BPA control area load. These three different loading levels have been 

combined according to their weight to mimic the real-world scenario where loading levels are 

different during different times of the day. 

In Figure 15, the probability distributions of the total number of outages in a cascade are shown. 

Figure 15(a) considers the uniform probability of any initial line trips and Figure 15 (b), (c), and 

(d) consider the non-uniform probability of initial line trips. In Figure 15(b), the power flow in a 

branch is used as a defining parameter to assign different weights on initial line trips. Similarly, in 

Figure 15(c) and Figure 15(d), the shortest path to the boundary and connectivity of the systems 

are used as defining parameters to assign different weights on the initial line trips respectively. It 
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is evident from the figures that most of the cascades have only one outage and did not spread any 

further. The probability of a cascade having a large number of outages is very low and this 

probability decreases with the increasing number of outages. We have fitted our simulated outage 

number data with exponential distribution. In Table XIV, the mean number of outages per cascade 

has been shown which is higher than the number we got from the BPA data and the previous test 

cases. Initial line trip probability according to the shortest path to boundary has given us the best 

estimation with the BPA data while probability according to the branch flow overestimated the 

number the most. 

  

(a) Uniform initial line trip probability 
(b) Initial line trip probability according 

to the branch flow 

  
(c) Initial line trip probability according 

to the shortest path to the boundary 

(d) Initial line trip probability according 

to the connectivity 

 

Figure 15. Probability distribution of the number of outages in a cascade for the ASGWECC_500_1 system 
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Table XIV. Mean number of outages in a cascade for the ASGWECC_500_1 system 

Probability of initial line trip Uniform 

Non-uniform 

Branch flow Shortest Path Connectivity 

Mean number of outages 4.40 5.91 3.39 4.72 

 

In Figure 16, the probability distributions of the duration of a cascade are shown. Figure 16(a) 

considers the uniform probability of any initial line trips and Figure 16(b), (c), and (d) consider 

the non-uniform probability of initial line trips. The probability of a cascade having a long duration 

is very low and this probability decreases with the increasing duration. We have fitted our 

simulated cascade duration data with exponential distribution. In Table XV, the mean duration of 

a cascade has been shown which is very close to the number we got from the BPA data. Initial line 

trip probability according to the branch flow of the system has given us the best estimation of the 

mean duration value compared with the BPA data while probability according to the shortest path 

underestimated the mean duration the most. 

 

  

(a) Uniform initial line trip probability 
(b) Initial line trip probability according 

to branch flow 
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(c) Initial line trip probability according 

to the shortest path to the boundary 

(d) Initial line trip probability according 

to connectivity 

 

Figure 16. Probability distribution of the cascade duration for the ASGWECC_500_1 system 

 

Table XV. Mean duration of a cascade for ASGWECC_500_1 system 

Probability of initial line trip Uniform 

Non-uniform 

Branch flow Shortest Path Connectivity 

Mean duration (minutes) 29.50 31.17 27.78 30.29 

 

In Figure 17, the probability distributions of the load shedding percentage during a cascade are 

shown. Figure 17(a) considers the uniform probability of any initial line trips and Figure 17(b), 

(c), and (d) considers the non-uniform probability of initial line trips. The probability of a cascade 

having a large load shedding amount is very low and this probability decreases with the increasing 

load shedding amount. We have fitted our simulated load shedding percentage data with 

exponential distribution. In Table XVI, the mean load shedding percentage of a cascade has been 

shown which is lower than in the previous test case. Initial line tripping probability according to 

the shortest path resulted in the lowest amount of load shedding and the probability according to 

branch flow resulted in the largest amount of load shedding. 
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(a) Uniform initial line tripping 

probability 

(b) Initial line tripping probability 

according to branch flow 

  
(c) Initial line tripping probability 

according to the shortest path to boundary 

(d) Initial line tripping probability 

according to connectivity 

Figure 17. Probability distribution of the load shedding percentage of a cascade for the ASGWECC_500_1 system 

 

Table XVI. Mean load shedding percentage of a cascade for ASGWECC_500_1 system 

Probability of initial line trip Uniform 

Non-uniform 

Branch flow Shortest Path Connectivity 

Mean load shedding (%) 0.70 1.16 0.58 0.75 

 

In Table XVII, the overall summary of the CF processes in terms of the total number of tripped 

lines and cascade duration has been presented. For test case ACTIVSg500, the mean number of 

tripped lines in cascade is similar to BPA data for the uniform probability of initial line trips. 

However, we get the best result while assuming a non-uniform probability of initial line trips 

according to branch flow. For test case ASGWECC_500, all the simulated results overestimated 
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the mean number of tripped lines during a cascade and we get the best result in comparison with 

BPA data for a non-uniform probability assumption for initial line trips according to the shortest 

path to boundary parameter. For cascade duration, the results from both the test cases are similar 

to BPA data. Here, the non-uniform probability assumption for initial line trips according to the 

branch flow gives the best results for ASGWECC_500, and the non-uniform probability 

assumption for initial line trips according to the connectivity of the system gives the best results 

for the ACTIVSg500 test case.  

Table XVII. Overall comparison of cascading failure risk analysis for the BPA system and the synthetic test cases 

System Number of tripped lines Cascade duration (minutes) 

BPA 3.53 30.9 

Probability 

distribution of initial 

line trips 

Uniform 

Non-uniform 

Uniform 

Non-uniform 

Branch 

flow 

Shortest 

path 

Connectivity 

Branch 

flow 

Shortest 

path 

Connectivity 

ACTIVSg500 3.44 3.46 3.05 4.07 28.86 28.94 27.32 29.26 

ASGWECC_500 4.40 5.91 3.89 4.72 29.5 31.17 27.78 30.29 

 

For the load shedding, the BPA system lacks historical data and we do not have a benchmark for 

performance comparison. We can only say that from Table XVIII, the load shedding percentage is 

higher for the ACTIVSg500 test case for both uniform and non-uniform probability distribution 

of initial line trips.  
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Table XVIII. Comparison of mean load shedding percentage between two synthetic test cases 

System Load shedding (%) 

Probability distribution of initial 

line trips 
Uniform 

Non-uniform 

Branch Flow Shortest Path Connectivity 

ACTIVSg500 1.78 1.91 1.41 2.23 

ASGWECC_500 0.70 1.16 0.58 0.75 

 

From Table XVII, we can say that the non-uniform probability distribution of initial line trips 

appears to yield the most consistent results across both test cases. However, to establish a definitive 

conclusion, further simulations using additional test cases are warranted. These simulations will 

enable a self-comparison among various test cases, allowing us to determine which probability 

distribution function is superior in terms of accuracy and reliability. It is also important to note 

that we currently lack detailed information about the BPA control area load, which limits our 

ability to precisely replicate real-world conditions in our test cases. Obtaining this information 

would enhance the accuracy of our comparisons and enable us to make more definitive 

assessments regarding the effectiveness of different parameters of non-uniform initial line trip 

distribution. Additionally, the absence of data on RE penetration levels presents another limitation 

in our study. Integrating RE penetration levels into our simulations would allow us to analyze their 

impact on cascading failure risk analysis. This presents a promising avenue for future research, as 

understanding the influence of RE penetration levels on CF risk analysis is essential for enhancing 

grid resilience and reliability. In summary, while our current findings suggest the superiority of 

non-uniform distribution of initial line trips, further research efforts are needed to validate and 

refine our conclusions. Obtaining detailed information about BPA control area load and exploring 
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the effects of RE penetration levels in future simulations will contribute to a more comprehensive 

understanding of cascading failure dynamics and inform more effective risk mitigation strategies. 

3.5. Summary 

In conclusion, our analysis highlights the significance of considering various parameters to 

measure the severity of cascading failure processes in power grids. By examining the number of 

tripped lines, duration of the CF process, and load shedding requirements, we gain valuable 

insights into the impact and magnitude of these events. Our study incorporates both uniform and 

non-uniform probability distributions of initial line trips, revealing that non-uniform distributions 

offer more accurate estimations for mean outage number and cascade duration. Specifically, the 

probability distributions based on branch flow and connectivity show promising results for 

different test cases, indicating their effectiveness in estimating outage number and cascade 

duration, respectively. However, the lack of load shedding information in the BPA system poses 

challenges for performance comparison, highlighting the need for comprehensive data sources. 

Moving forward, further simulations are essential to refine our understanding and validate our 

findings across different real-world data sources. Obtaining detailed information on the BPA 

control area load would enhance comparability with simulation data, facilitating more accurate 

assessments. Additionally, conducting additional simulations on various real-world data sources 

will provide a clearer perspective on the accuracy of non-uniform distribution models for initial 

line trips. Overall, our work lays the foundation for improved risk assessment and mitigation 

strategies in power grid resilience planning, contributing to the robustness and reliability of future 

grid operations.  



 
 
 

74 
 

4. MICROGRID RESILIENCE 

4.1. Introduction 

In this study we have developed a multi-layered microgrid simulation model with an optimization-

based energy management system. We have explored two critical aspects impacting the 

optimization and security of microgrid operations: data loss and false data injection attacks. 

We have investigated the impact of renewable energy penetration and data loss in battery command 

in a simulation framework. Data loss in battery command can cause voltage instability, energy 

supply loss, and increased operational costs in microgrid systems, especially in electricity markets. 

In contrast to the conventional co-simulation approach, the presented simulation model exclusively 

utilizes MATLAB to simulate the energy management system in a microgrid and quantify the 

impacts of data loss of battery command. The simulation results show that on average, more data 

loss results in higher operational costs, but there are situations where less data loss can be more 

detrimental to microgrid operation than higher levels of data loss. This research provides valuable 

insights into the effects of data loss in battery command and its potential economic impact on 

microgrid operation [55]. 

Furthermore, this chapter presents a comprehensive analysis of false data injection attacks' impact 

on microgrid operation introducing a hybrid approach to ensure stability and reliability across 

diverse scenarios. Two realistic FDI attack models are developed, targeting load profiles and 

renewable generation data. Simulation results reveal potential load balance discrepancies during 

islanded microgrid operation under these attacks using optimization-based EMS. To mitigate these 

challenges, the proposed hybrid approach integrates optimization-based energy management with 
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adaptive control schemes, ensuring stable microgrid operation in various conditions. Our present 

work lays the foundation for further advancement incorporating artificial intelligence techniques 

which represents a promising avenue to enhance the accuracy and effectiveness of our initial 

model. 

Together, our contributions provide valuable insights into enhancing the optimization and security 

of microgrid operations, addressing pertinent challenges in the field and paving the way for further 

advancements in microgrid research. 

4.2. Microgrid Overview 

A microgrid can be seen as a modern small-scale electrical power grid infrastructure for better 

efficiency, reliability, and integration of renewable energy sources. It can be defined as an 

interconnection of energy storage devices, distributed energy resources, and loads with defined 

boundaries that act as a single controllable entity [76]. Microgrid can be defined as a system that 

enables a two-way flow of both powers for the electrical network and information for the 

communication network. This bidirectional communication of power and information offers 

various advantages such as efficient monitoring of the network conditions, predicting failures, and 

reducing maintenance costs [77]. By leveraging advanced control techniques and real-time 

monitoring, microgrids can operate in islanded mode, disconnected from the main grid, and 

seamlessly switch to grid-connected mode whenever required. The integration of renewable 

energy sources and energy storage systems in a microgrid can also help in reducing carbon 

emissions and providing a reliable and sustainable source of power. 



 
 
 

76 
 

4.2.1. Microgrid Components 

A microgrid comprises various components that work together to provide a reliable and sustainable 

power supply. These components include [78]: 

Distributed Energy Resources (DERs): DERs are decentralized power generation sources located 

within the microgrid. They can include renewable energy technologies like solar panels, wind 

turbines, biomass generators, and small-scale hydroelectric systems. DERs generate electricity 

locally and contribute to the power supply of the microgrid. 

Energy Storage Systems (ESS): ESSs store excess energy generated by DERs during periods of 

low demand and supply it during periods of high demand. Common types of ESSs include 

batteries, flywheels, and pumped hydro storage. Energy storage enhances the stability and 

reliability of the microgrid by balancing supply and demand fluctuations and improving the 

integration of intermittent renewable energy sources. 

Loads: Loads in a microgrid refer to the electrical consumption from various sources, including 

residential buildings, commercial entities, and industrial parks. These loads can vary in terms of 

power demand, duration, and characteristics, and they form the basis for energy consumption 

within the microgrid. 

Control and Monitoring Systems: These systems ensure the efficient and reliable operation of the 

microgrid by monitoring and controlling the power flow, voltage, frequency, and other parameters. 

They use advanced algorithms and communication technologies to coordinate the operation of 

DERs, ESSs, and other components, optimizing their performance and responding to changes in 

demand or grid conditions. 

Point of Common Coupling (PCC): The PCC is the electrical connection point between the 

microgrid and the utility system. It is typically located at the low-voltage bus of the substation 
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transformer. The PCC serves as the interface between the microgrid and the main utility grid, 

allowing for bi-directional power flow and the exchange of electricity when needed. 

By integrating and coordinating these components, microgrids offer greater control, resilience, and 

efficiency in meeting electricity needs, supporting renewable energy integration, and enhancing 

the overall sustainability of the power system. 

4.3. Cyber Attack Types and Targets in Microgrid 

There are several types of cyber-attacks that can target microgrid operations. These attacks aim to 

exploit the vulnerabilities in the microgrid's communication, control, and information 

infrastructure.  

4.3.1. Attack Types 

Some common types of cyber-attacks in microgrids include the following: 

False Data Injection/ Data Manipulation: This attack involves intentionally injecting inaccurate 

or manipulated data into the microgrid's monitoring, control, or communication systems. By 

tampering with the data, malicious actors can deceive the EMS and compromise the integrity and 

reliability of microgrid operations. Such attacks can lead to incorrect decision-making, suboptimal 

control actions, and potential disruptions in energy supply. 

Denial-of-Service Attacks: In this type of attack, the attacker overwhelms the microgrid's 

communication or control systems with a flood of requests or data, causing them to become 

unresponsive or unavailable. 
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Malware and Ransomware: Malicious software can be injected into the microgrid's systems, 

compromising their integrity and functionality. Ransomware attacks encrypt critical system data 

and demand ransom in exchange for restoring access. 

Man-in-the-Middle Attacks: In this type of attack, the attacker intercepts and modifies 

communication between components in the microgrid. This allows them to eavesdrop on sensitive 

information, inject malicious commands, or alter data exchanged between devices. 

Physical Attack: Physical attacks involve the deliberate physical manipulation or destruction of 

microgrid components, such as tampering with equipment or cutting power lines. While not strictly 

cyber-attacks, they can have severe consequences on the microgrid's operation. 

4.3.2. Attack Targets 

In a microgrid, various types of data can be targeted in a cyber-attack. Here are some examples of 

data that can be under attack: 

Control Data: Control data includes commands and instructions sent to the microgrid components 

for operation and coordination. Attackers can manipulate or disrupt control data to manipulate the 

behavior of the microgrid, leading to incorrect operation or instability. 

Sensor Data: Sensor data is collected from various sensors deployed in the microgrid to monitor 

its performance, including voltage, current, temperature, and renewable energy generation. 

Manipulating sensor data can mislead the control algorithms and decision-making processes, 

causing incorrect system operation. 

Market Data: If the microgrid operates in an electricity market, market data such as real-time 

prices, demand forecasts can be under attack. Manipulating market data can impact the microgrid's 

economic performance and decision-making processes, leading to financial losses. 
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Operational Data: Operational data includes historical data, performance logs, maintenance 

records, and system configurations. Attackers can target operational data to gain unauthorized 

access, extract sensitive information, or disrupt the normal functioning of the microgrid. 

Customer Data: In cases where the microgrid serves customers, their data, including personal 

information, consumption patterns, and billing details, can be targeted. Breaching customer data 

can result in privacy violations, financial losses, or identity theft. 

Data-related attacks in microgrid systems encompass a variety of types and can target different 

types of data within the system. These attacks pose significant risks and can occur at any time, 

whether randomly or during critical periods, resulting in severe consequences for microgrid 

operation. 

4.4. False Data Injection Attack Model 

There are various types of cyber-attacks targeted towards cyber physical system like microgrid; 

among these, FDIAs stand out as the most prominent, frequent, and effective tactics favored by 

attackers, burdening controllers and leading to revenue losses, device mismanagement, and load 

dysfunction [47]. Attackers can manipulate data through various FDI techniques, including 

reading, modifying, or deleting it. These attacks come in different types, such as continuous, 

interim, stealthy, constrained, unconstrained, and time-varying FDI attacks. They also vary in 

duration and intensity, with transient attacks causing strong perturbations over a short period and 

continuous attacks remaining undetected for longer periods. Intensity-wise, attacks can be constant 

or variable, with constant attacks having similar magnitudes and variable attacks being stochastic 

or asymptotic. 
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The choice of FDIAs as the primary focus for modeling cyber-attacks on cyber-physical systems 

like microgrids stems from several factors. Firstly, FDIAs are among the most prominent, frequent, 

and effective tactics employed by attackers targeting such systems. Their prevalence and 

effectiveness make them a critical threat that requires thorough analysis and mitigation strategies. 

Moreover, FDIAs can manifest in various forms, including reading, modifying, or deleting data, 

providing attackers with a versatile toolkit for manipulating system behavior. This diversity of 

attack techniques necessitates a comprehensive understanding of FDIA dynamics to develop 

effective defense mechanisms. Furthermore, FDIAs exhibit different characteristics, such as 

continuous, interim, stealthy, constrained, unconstrained, and time-varying variations, each posing 

unique challenges for detection and mitigation. Their varying durations and intensities, ranging 

from transient perturbations to continuous, undetected attacks, underscore the need for a nuanced 

approach to modeling and analyzing FDIA scenarios. While other attack models exist, such as 

denial-of-service attacks, ransomware or man-in-the-middle attacks, FDIA's unique 

characteristics, prevalence, and effectiveness make them particularly worthy of study in the 

context of microgrid security. By focusing on FDIA modeling, researchers can gain valuable 

insights into the vulnerabilities and potential mitigation strategies specific to these sophisticated 

cyber-attacks, ultimately enhancing the resilience and security of microgrid systems against 

evolving threats. 

We constructed two types of FDIA model to simulate FDI attack in the microgrid EMS. One is 

continuous intensity FDIA model (type 1), in which, the false data injection occurs continuously 

over a defined period. The intensity of the attack remains within a constant range throughout the 

attack duration. The attacker injects false data into the system at a consistent intensity, which can 
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mimic normal system behavior to a certain extent. This model is characterized by a steady flow of 

false data into the system. Another is probabilistic intermittent FDIA model (type 2). In this type 

of attack model, the false data injection occurs intermittently with a certain probability. Instead of 

a continuous flow, the attack happens sporadically, with periods of normal system behavior 

interspersed between the attack intervals. The attacker injects false data into the system, with a 

predefined probability dictating the likelihood of successful execution of this attack. This model 

is characterized by unpredictable and sporadic bursts of false data, making it more challenging to 

detect compared to continuous attacks. 

In the continuous intensity FDI attack model (type 1), the attacker defines the start and end times 

of the attack (𝑡𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑒𝑛𝑑) and sets the maximum and minimum intensity of the attack (𝐼𝑚𝑎𝑥 

and 𝐼𝑚𝑖𝑛). With complete knowledge of the system, the attacker can strategically inject data within 

the stability limits, making detection and mitigation challenging. At each time step during the 

attack, a random intensity value (I) is generated from a uniform distribution within the interval 

(𝐼𝑚𝑎𝑥, 𝐼𝑚𝑖𝑛). 

𝑖𝑓 𝑡𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡 ≤ 𝑡𝑒𝑛𝑑 

𝐼(𝑡) = 𝑟𝑎𝑛𝑑𝑜𝑚(𝐼𝑚𝑎𝑥, 𝐼𝑚𝑖𝑛)  

𝐷𝑎𝑡𝑡(𝑡) =  𝐷𝑎𝑐𝑡(𝑡) +
𝐼(𝑡)

100
× 𝐷𝑎𝑐𝑡(𝑡)                                                (4.1) 

Here, 𝐷𝑎𝑐𝑡(𝑡) represents the actual data and 𝐷𝑎𝑡𝑡(𝑡) represents the attacked data at time t. 

For probabilistic intermittent FDI attack model (type 2), during the specified time interval 𝑡𝑠𝑡𝑎𝑟𝑡 ≤

𝑡 ≤ 𝑡𝑒𝑛𝑑, at each step, there is a probability 𝜀𝑎𝑡𝑡𝑎𝑐𝑘 of constructing and injecting the attack. If the 

probability is not met, no attack is conducted. This type of attack can also test the response speed 

of detection methods. 
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𝑖𝑓 𝑡𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡 ≤ 𝑡𝑒𝑛𝑑 

𝐼(𝑡) = 𝑟𝑎𝑛𝑑𝑜𝑚(𝐼𝑚𝑎𝑥, 𝐼𝑚𝑖𝑛) 

𝐷𝑎𝑡𝑡(𝑡) = {
𝐷𝑎𝑐𝑡(𝑡) +

𝐼(𝑡)

100
× 𝐷𝑎𝑐𝑡(𝑡),  𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) < 𝜀𝑎𝑡𝑡𝑎𝑐𝑘

𝐷𝑎𝑐𝑡(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                       (4.2) 

4.5. Microgrid Operation Strategy 

Microgrids offer the flexibility to operate in both grid-connected and island mode, adapting to 

varying energy supply and demand conditions. Grid-connected microgrids may shift to island 

mode for scheduled maintenance, peak demand management, grid instability, or emergencies, 

guaranteeing continuous power supply and enhancing system resilience [79–82]. During grid-tied 

operation, a microgrid leverages the buffering effect of the main electric grid, partly mitigating the 

impact of false data injection attacks and managing resulting power imbalances. If FDIA persists 

undetected or unresolved, the microgrid will continue to operate, though sub-optimally, while 

adhering to operational constraints. However, in islanded mode, FDIA presents a more significant 

threat, requiring careful management to uphold network power balance, integrity, and stability. 

In our proposed methodology, we have proposed a hybrid approach combining optimization-based 

EMS with tailored adaptive control schemes, specifically crafted for islanded microgrid operations 

during FDIA scenarios. This hybrid strategy ensures adaptability and resilience, leveraging 

optimization-based EMS for normal grid-tied operations, even in the face of FDIA challenges, 

while employing adaptive control methods to safeguard microgrid functionality during islanded 

operation under FDIA conditions. 
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4.5.1. Optimization-based Energy Management System 

In microgrid systems, EMSs play a crucial role in maximizing renewable energy integration, 

economic efficiency and ensuring reliability. They address dispatch optimization problems by 

considering production and storage capacities, market data, and operational constraints, relying on 

accurate forecasts. Communication networks coordinate the operation of diverse energy resources, 

including renewables, generators, and storage systems. Our study employs an optimization-based 

EMS to manage microgrid operation in normal condition, addressing these challenges effectively. 

Objective Function: In our study, the microgrid EMS optimizes to minimize operational costs 

while ensuring power balance and meeting system constraints. These costs include grid electricity, 

diesel generator, and battery storage expenses, with optimization targeting a 24-hour horizon. 

min (∑ (𝐶𝑔𝑟𝑖𝑑(𝑡) × 𝑃𝑔𝑟𝑖𝑑(𝑡𝑁
𝑡=0 )) × 𝛥𝑡 + ∑ (𝑃𝑔𝑒𝑛(𝑡)) × 𝐶𝑔𝑒𝑛 × ∆𝑡𝑁

𝑡=0 + ∑ (𝑃𝑏𝑎𝑡𝑡(𝑡)) × 𝐶𝑏𝑎𝑡𝑡 × 𝛥𝑡𝑁
𝑡=0 )         (4.3) 

Here, 𝐶𝑔𝑟𝑖𝑑(𝑡) represents the cost of grid electricity at time t, 𝑃𝑔𝑟𝑖𝑑(𝑡) represents the power flow 

from the grid to the microgrid at time t, 𝐶𝑔𝑒𝑛 represents the diesel generator fuel cost per unit of 

electric power, 𝑃𝑔𝑒𝑛(𝑡) represents the output power of the generator to the microgrid at time t,  

𝑃𝑏𝑎𝑡𝑡(𝑡) represents the power flowing into or out of the battery energy storage system (BESS) 

within the microgrid at time t, 𝐶𝑏𝑎𝑡𝑡 represents the operational and maintenance cost of the BESS 

per unit of electric power, and Δt represents the specific time slot. In our study, we have data for 

every time slot (Δt) and we are optimizing the operational cost of the microgrid for the next 24-

hour horizon in every time slot. 

Constraints: The EMS optimization in this study involves a constrained optimization problem 

with two distinct types of constraints. These constraints encompass power balance and input/output 

power to the battery, serving as equality constraints within the optimization process.  
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𝑃𝑝𝑣(𝑡) + 𝑃𝑔𝑟𝑖𝑑(𝑡) + 𝑃𝑏𝑎𝑡𝑡(𝑡) + 𝑃𝑔𝑒𝑛(𝑡) = 𝑃𝑙𝑜𝑎𝑑(𝑡)                                   (4.4) 
𝐸𝑏𝑎𝑡𝑡(𝑡) =  𝐸𝑏𝑎𝑡𝑡(𝑡 − 1) +  𝑃𝑏𝑎𝑡𝑡(𝑡) × ∆𝑡                                          (4.5) 

Here 𝑃𝑝𝑣(𝑡) represents the PV output power at time t, 𝑃𝑙𝑜𝑎𝑑(𝑡) represents the total load that needs 

to be served at time t, 𝐸𝑏𝑎𝑡𝑡(𝑡) represents the stored energy of the BESS at time t. In (4.4), the 

power balance equation ensures the load is served by the available generation. In (4.5), the equation 

relates the battery energy with the charging/discharging rate at every time slot. 

 The operating limits of the components of the microgrid are the inequality constraints of the 

optimization. 

𝑋𝑚𝑖𝑛 ≤ 𝑋 ≤ 𝑋𝑚𝑎𝑥                                                                  (4.6) 

Here, X represents 𝑃𝑔𝑟𝑖𝑑, 𝑃𝑏𝑎𝑡𝑡, 𝑃𝑔𝑒𝑛 and 𝐸𝑏𝑎𝑡𝑡, 𝑋𝑚𝑖𝑛 is the lower boundary and 𝑋𝑚𝑎𝑥 is the upper 

boundary of the parameters. 

4.5.2. Adaptive Control Scheme 

Adaptive control schemes for microgrid operation refer to strategies that dynamically adjust 

control parameters or algorithms based on changing operating conditions or system dynamics. 

These schemes aim to optimize microgrid performance and enhance its resilience in response to 

variations in renewable energy generation, load demand, grid disturbances, or other factors. 

Adaptive control schemes may include techniques such as heuristic approaches, which enable 

microgrids to adapt their control actions in real-time to maintain stability, improve efficiency, and 

ensure reliable operation. Heuristic approaches involve using practical rules or strategies that 

prioritize speed and simplicity over finding the optimal solution. Examples of heuristic approaches 

in microgrid operation include priority-based dispatch, droop control, and load shedding strategies. 
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In our proposed adaptive control method, we utilize real-time sensor data for load, PV generation, 

and BESS status, omitting the use of 24-hour horizon forecast data to enhance resilience against 

FDIA. Droop control settings are implemented for diesel generators to adjust power output based 

on requirements, leading to frequency deviations. The parameters are configured so that half of 

the rated output power is maintained for the rated frequency. Our primary focus lies in prioritizing 

renewable energy sources for meeting load demand, followed by BESS utilization based on SOC. 

The diesel generator covers any unmet load, affecting system frequency deviation. If load demand 

exceeds the generator's capacity, a predetermined portion is shed to maintain power balance. 

Conversely, in surplus scenarios, excess PV generation may be curtailed to ensure balance. 

4.6. Simulation Model 

In our simulation setup, the microgrid operates in grid-tied mode under normal conditions and can 

seamlessly transition to islanded mode when required. We have assumed access to historical data 

on weather information, customer load, and electricity market prices specific to the microgrid 

location. These datasets served as the basis for forecasting a 24-hour horizon in our EMS 

optimization. We utilized an open-source dataset [83] providing 24-hour ahead forecasted data for 

every fifteen minutes using a recurrent neural network (RNN) with the Keras Python library. This 

forecasted data served as direct input for our EMS, which incorporated additional inputs such as 

microgrid parameters, BESS parameters, and other constraints.  

Figure 18 illustrates the working diagram of the proposed optimization-based EMS simulation 

model, comprising three main components. The first part involves datasets of weather information, 

customer load, and electricity market data, processed using forecasting techniques to generate 24-

hour horizon data for renewable energy (RE) generation, load profile, and variable electricity 
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prices. These serve as inputs for the second part, EMS, which employs an optimization approach 

to evaluate optimal battery control, load control, and diesel generator dispatch commands. These 

commands are then sent to the physical microgrid, which constitutes the third part of our simulation 

framework. Real-time measurements of load, RE generation, and BESS state of charge are used to 

update the database and system parameters, facilitating the updating of forecasted data. The EMS 

conducts optimization every thirty minutes using the updated forecasted data and transmits 

optimized commands for battery, load, and diesel generator dispatch. For constrained optimization, 

we utilize MATLAB's 'fmincon' solver. The EMS optimizes operational costs every thirty minutes 

based on forthcoming 24-hour data and dispatches control instructions to microgrid controllers 

accordingly, ensuring optimal operation based on the latest information. The physical microgrid is 

modeled using the power flow function in our simulation setup. 

4.6.1. Simulating Data Loss in Battery Command 

Data loss in communication systems can have vital impacts on the operation of any system that 

relies on data transfer for control or decision-making. In a microgrid, where energy generation and 

consumption need to be carefully managed and coordinated, data loss can result in suboptimal 

control decisions or even system instability. For example, if battery control commands are lost, 

the microgrid may not be able to properly utilize its energy storage resources, leading to reduced 

efficiency and increased operating costs. In addition, if data loss occurs during critical events such 

as sudden load changes or system failures, the microgrid may not be able to respond appropriately, 

potentially resulting in blackouts or other disruptions. Therefore, it is important to consider the 

impact of data loss in communication channels when designing and operating microgrids. In our 

simulation model, we have simulated probabilistic data loss in battery command data to assess the 
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economic impact of microgrid operation. Probabilistic data loss refers to the random loss of data 

that can occur in communication channels or storage devices. One way to model this type of loss 

is through probability distributions, such as the uniform distribution. The uniform distribution 

assumes that the probability of losing data is equal across all possible values. In other words, each 

possible data value has the same likelihood of being lost. This distribution can be used to simulate 

the effects of data loss in a system and to quantify the potential impact on the system's performance. 

By incorporating probabilistic data loss models into simulation tools, researchers and engineers 

can better understand the behavior of complex systems under uncertain conditions, and design 

more robust and reliable systems. 

 

Figure 18. Working flow for the optimization-based EMS 
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4.6.2. Simulating FDIA in EMS 

Our simulation model is primarily configured to operate the microgrid in grid-tied mode with the 

capability to transition to island mode for several hours, a common scenario in microgrid 

operation. During islanded operation, if FDIA is detected, the microgrid switches to adaptive 

control modes, relying solely on real-time sensor data due to potential manipulation of forecasted 

data. Figure 19 illustrates the working flow of the adaptive control methods of microgrid operation. 

The generator operates in droop control mode, dispatching half of its rated power at the rated 

frequency and adjusting generation as needed to maintain power balance. It is advisable to have 

backup redundancy for real-time sensor data in critical systems like microgrids, especially in the 

face of potential cyber threats like FDIAs. Redundancy options may include redundant sensors or 

communication systems. Following a 24-hour microgrid simulation, we calculate the total 

electricity cost, generation-load mismatch, and final SOC of the BESS. In cases of load shedding, 

a penalty cost is added to the total electricity cost, typically assumed as 240c/kWh according to 

the literature [84–86]. 

 

Figure 19. Working diagram for adaptive control schemes for microgrid operation 
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To implement the hybrid approach of microgrid operation effectively, certain infrastructure 

requirements must be met. Firstly, the installation of an advanced FDIA detection model is 

essential. This model will enable the accurate detection of cyber-attacks on the system, facilitating 

the seamless transition from optimization-based EMS to adaptive control mode when necessary. 

By promptly identifying and mitigating FDIAs, the microgrid can maintain reliable operation and 

mitigate potential risks. Furthermore, the adaptive control schemes utilized in the hybrid approach 

rely heavily on real-time sensor data. Therefore, it is crucial to ensure the integrity and reliability 

of this data. Redundancy measures can be implemented to enhance data reliability and resilience 

against corruption. For instance, redundant sensors can be deployed throughout the microgrid to 

provide backup data in case of sensor failure or data manipulation. Additionally, redundant 

communication systems can be employed to ensure uninterrupted data transmission and 

communication between system components. By implementing these infrastructure requirements, 

such as advanced FDIA detection models and redundant sensor and communication systems, the 

hybrid approach can operate effectively and ensure reliable microgrid operation. These measures 

enhance the resilience of the microgrid against cyber threats and contribute to maintaining stable 

and secure energy distribution within the system. 

4.7. Result and Analysis 

4.7.1. Impact of Data Loss  

In this study, we have simulated the impacts of increasing data loss in battery command for various 

renewable energy penetration on a small microgrid. In our simulation, the microgrid has a peak 
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load of 10.2 kW. It is also composed of a PV system as a distributed energy resource and a battery 

energy storage system. We have integrated different PV penetration (10%, 50%, 100%) to see the 

economic impact on microgrid operation. For 10% PV penetration, we have used a 15kWh battery 

energy storage system with a maximum charging/discharging rate of 1kW and for 50% and 100% 

PV penetration, we have used a 75kWh battery energy storage system with a maximum 

charging/discharging rate of 5kW. For each scenario, we have simulated different amounts of data 

loss (0%, 10%, 30%, 50%, 100%) in battery command to see the impact on microgrid operation. 

We have simulated every case several times and compared the results.  

In Figure 20, we can see a specific case of a 10% data loss scenario for 10% PV penetration in the 

microgrid where Figure 20(a) represents the state of charge of the battery system during the day. 

And in Figure 20(b), we can see how the total load is served by the PV generation, grid electricity, 

and battery output power during the whole day. In Figure 21 and Figure 22, we can see two cases 

of a 10% data loss scenario for 50% and 100% PV penetration in the microgrid. 

 

Figure 20. A specific case of 10% data loss scenario for a 10% PV penetration in the microgrid (a) State of charge 

of the BESS, (b) Optimized power profiles of PV generation, battery output, grid electricity, and total load over time 
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Figure 21. A specific case of 10% data loss scenario for a 50% PV penetration in the microgrid (a) State of charge 

of the BESS, (b) Optimized power profiles of PV generation, battery output, grid electricity, and total load over time 

 

Figure 22. A specific case of 10% data loss scenario for a 100% PV penetration in the microgrid (a) State of charge 

of the BESS, (b) Optimized power profiles of PV generation, battery output, grid electricity, and total load over time 

 

In Figure 23, we can see specific cases of 0% data loss scenario for 50% PV penetration in the 

microgrid where Figure 23(a) represents the state of charge of the battery system during the day. 
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And in Figure 23(b), we can see how the total load is served by the PV generation, grid electricity, 

and battery output power during the whole day. In Figure 24-27, we can see other cases of 10%, 

30%, 50%, and 100% data loss scenarios for 50% PV penetration in the microgrid. 

 

 

(c) 

Figure 23. A specific case of 50% PV penetration scenario with no data loss in the microgrid (a) State of charge of 

the BESS, (b) Optimized power profiles of PV generation, battery output, grid electricity, and total load over time, 

(c) Battery charging/discharging command 
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(c) 

Figure 24. A specific case of 50% PV penetration scenario with 10% data loss in the microgrid (a) State of charge 

of the BESS, (b) Optimized power profiles of PV generation, battery output, grid electricity, and total load over time, 

(c) Battery charging/discharging command 
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(c) 

Figure 25. A specific case of 50% PV penetration scenario with 30% data loss in the microgrid (a) State of charge 

of the BESS, (b) Optimized power profiles of PV generation, battery output, grid electricity, and total load over time, 

(c) Battery charging/discharging command 



 
 
 

95 
 

 

 

(C) 

Figure 26. A specific case of 50% PV penetration scenario with 50% data loss in the microgrid (a) State of charge 

of the BESS, (b) Optimized power profiles of PV generation, battery output, grid electricity, and total load over time, 

(c) Battery charging/discharging command 
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(c) 

Figure 27. A specific case of 50% PV penetration scenario with 100% data loss in the microgrid (a) State of charge 

of the BESS, (b) Optimized power profiles of PV generation, battery output, grid electricity, and total load over time, 

(c) Battery charging/discharging command 

 

In Figure 23-27(c), we can see how different levels of data loss impact the charging-discharging 

schedule command of the battery system in the microgrid. Whenever the data is lost, the battery 

will neither be charged nor be discharged for this specific time slot and the system will wait for 

the next command to receive. 

Figure 28 illustrates the varying grid electricity costs of the microgrid under the same level of data 

loss. In each setup, with a 10% photovoltaic (PV) penetration and data loss amounts of 10%, 30%, 

and 50%, fifteen different simulations were conducted. There are instances where a 10% data loss 

leads to higher operational costs compared to a 50% data loss. This outcome is primarily influenced 

by the timing of data loss. If the battery command is lost during a period of high-priced grid 

electricity, when the battery should be discharged to meet the load demand, it significantly raises 

the operational cost of the microgrid. Consequently, even with a lower data loss percentage, the 

loss occurring during critical time slots can result in elevated operational costs. This highlights the 

importance of considering the timing and context of data loss in assessing its impact on microgrid 
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operation. In Figure 29, we can see the varying BESS cost for the same amount of data loss in 

different cases. 

 

 

Figure 28. Comparison of grid electricity cost for the microgrid with 10% PV penetration with varied amounts of 

data loss 

 

 

Figure 29. Comparison of BESS cost for the microgrid with 10% PV penetration with varied amounts of data loss 

 

In Figure 30 and Table XIX, we can see the average grid electricity cost for different PV 

penetration with varied amounts of data loss. We can notice that high PV penetration results in 
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less grid electricity cost in microgrid operation as it should. Also, with increasing data loss amount, 

the average grid electricity cost increased in most cases.  

 

Figure 30. Comparison of average grid electricity cost for varying PV penetration and data loss rate in microgrid 

 

Figure 31. Comparison of average BESS cost for varying PV penetration and data loss rate in microgrid 

 

Table XIX. Comparison of average grid electricity cost for varying PV penetration and data loss rate in microgrid 

Data Loss 

PV % 

Grid Electricity Cost (c/day) 

0 10 30 50 100 

10 969.64 977.63 982.33 1007.86 1021.10 

50 656.12 710.55 739.41 723.31 746.65 

100 414.53 417.04 421.50 432.63 448.88 
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For 10% PV penetration in the microgrid, 10%, 30%, 50%, and 100% data loss result in on average 

0.8%, 1.3%, 3.9%, and 5.3% increase in grid electricity cost respectively. For 50% PV penetration 

in the microgrid, 10%, 30%, 50%, and 100% data loss result in on average 8.3%, 12.7%, 10.2%, 

and 13.8% increase in grid electricity cost respectively. For 100% PV penetration in the microgrid, 

10%, 30%, 50%, and 100% data loss result in on average 0.6%, 1.7%, 4.4%, and 8.3% increase in 

grid electricity cost respectively. 

In Figure 31 and Table XX, we can see the average BESS cost for different PV penetration with 

varied amounts of data loss. We can notice that, with increasing data loss amount, the average 

BESS cost decreased. 

Table XX. Comparison of average BESS cost for varying PV penetration and data loss rate in microgrid 

Data Loss 

PV % 

BESS Cost (c/day) 

0 10 30 50 100 

10 11.77 11.38 9.46 6.70 0 

50 37.45 30.52 26.18 18.59 0 

100 27.93 19.55 15.37 10.15 0 

 

Despite the intuitive expectation that less data loss would always result in lower operational costs 

in a microgrid, this is not always the case. The timing of the data loss plays a crucial role in cost 

minimization. Additionally, the microgrid operates on a 24-hour ahead optimization basis, where 

control commands are generated using forecasted data for the next 24 hours. For instance, at noon, 

the optimization considers forecasted data 24 hours ahead to determine the optimal control 

commands. Consequently, when calculating the operational cost for a single day, it may not reflect 

the entire picture, as higher costs on a particular day may be part of an optimized set of actions 

within the 24-hour horizon. 
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4.7.2. Impact of FDIA 

Our microgrid simulation model comprises three buses interconnected in a radial configuration. 

There is a point of connection between bus 1 and the utility grid and bus 1 also accommodates a 

diesel generator and load. Bus 2 and bus 3 each integrate PV system, battery storage system, and 

load components (Figure 32). The total peak load of the microgrid amounts to 25 kW, while the 

combined PV capacity is 16.75 kW. The microgrid incorporates a diesel generator with a capacity 

of 25 kW and each battery storage system has a capacity of 75 kWh, with a maximum charging 

and discharging rate of 5 kW. The microgrid can operate both in grid-tied and islanded mode. In 

Figure 33, we can see the actual load profile, PV power output and utility grid electricity price 

during a day for the microgrid. 

In our simulation model, we conducted a thorough analysis of microgrid operation over a 24-hour 

period, exploring various scenarios by adjusting parameters such as microgrid operation methods, 

FDIA characteristics, and islanded mode operation time. We compared two microgrid operation 

methods: traditional optimization-based EMS and a hybrid EMS combining optimization-based 

strategies with adaptive control during FDIA attacks in islanded mode. Using two types of FDIA 

attack models, we manipulated load and PV generation data to assess economic impacts and 

system parameters like state of charge and load mismatch percentages. Each intensity level of 

FDIA underwent a minimum of 40 simulation runs to ensure accuracy, with average results 

calculated across these runs for reliability. Figure 34 illustrates the impact of a 20% intensity FDIA 

on the actual load profile and PV power output. Figure 35 illustrates the resultant SOCs of the 

BESSs and how the total load is served by the PV, utility grid, generator, and battery using the 

hybrid EMS approach of 24-hour microgrid operation under 20% FDIA type 1. 
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Figure 32. Microgrid Topology 

 

Figure 33. (a) Actual load profile, (b)Grid electricity price, (c) PV power output during a day 

In our simulation setup, the FDIA begins at 5:00 am and ends at 8:00 pm. Additionally, the 

microgrid operates in islanded mode from 2:00 pm to 6:00 pm. The convergence of these events 

heightens the microgrid's vulnerability to FDIA. The microgrid primarily operates using the 

optimization-based EMS, except for 2:00 pm to 6:00 pm when it switches to the adaptive control 

mode for the hybrid EMS method. In each scenario, we have compared the results obtained using 

both methods. For the optimization-based EMS, as the FDIA intensity increases from 0% to 30%, 

the total cost for electricity per day generally increases. In Figure 36 and Table XXI, we can 
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observe that at 0% FDIA intensity, the total cost is 2840.02 c/day. However, at 30% FDIA intensity 

with type 1 attack, it rises to 5138.21 c/day, indicating an 81% increase. Similarly, at 30% FDIA 

intensity with type 2 attack, it increases to 4324.38 c/day, representing a 52% increase. Load 

shedding occurs when the FDIA intensity is 10% or higher, and the FDIA time coincides with the 

islanded mode operation of the microgrid, resulting in an increase in the total cost considering 

penalties for load shedding. At 0% FDIA intensity, there is no load shedding, while at 30% FDIA 

intensity with type 1 attack, it rises to 2.22%, and at 30% FDIA intensity with type 2 attack, it rises 

to 1.51%. 

 

Figure 34.(a) PV generation data under 20% FDIA, (b) Load profile data under 20% FDIA 
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Figure 35. (a) SOC of BESS1, (b) SOC of BESS2, (c) Power profiles of PV generation, battery output, grid 

electricity, generator output and total load over time using hybrid EMS method under FDIA type 1 

Similar to the optimization-based EMS, in the hybrid approach, increasing FDIA intensity leads 

to a rise in the total cost for electricity per day. In Figure 37 and Table XXI, we observe that at 0% 

FDIA intensity, the total cost is 2303.74 c/day. However, at 30% FDIA intensity with type 1 attack, 

it rises to 2375.28 c/day, indicating a 3.1% increase. Similarly, at 30% FDIA intensity with type 2 

attack, it rises to 2357.5 c/day, representing a 2.33% increase. There is no load-generation 

mismatch across all FDIA intensities, resulting in no change in the total cost. The BESS SOC 

varies marginally across different FDIA intensities, with no significant trends observed. From 

Table XXI, it is evident that the hybrid EMS generally exhibits lower total costs compared to the 

optimization-based EMS across various FDIA intensities, as there are no generation-load 

mismatches for the hybrid EMS, resulting in no additional penalty cost. On the other hand, the 
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optimization-based EMS approach results in a higher final SOC of the BESS systems at the end 

of the day compared to the hybrid approach, which is desirable for the next day's operation as this 

approach optimizes microgrid operation considering 24-hour horizon data. However, the 

optimization- based EMS is more sensitive to FDIA than the hybrid EMS approach, particularly 

when the attack time coincides with the islanded mode operation of the microgrid. As for attack 

model, FDIA type 1 tends to result in more frequent load shedding and higher costs compared to 

type 2. When the FDIA occurrence did not align with the islanded mode operation, the 

optimization-based EMS exhibited no generation-load mismatch. 

 
(a) 

 
(b) 

 

Figure 36. Total electricity cost and final SOC with increasing intensity of FDIA type 1(a) & type 2(b) in 24-hour 

microgrid operation for optimization-based EMS 



 
 
 

105 
 

 
(a) 

 
(b) 

 

Figure 37. Total electricity cost and final SOC with increasing intensity of FDIA type 1(a) & type 2(b) in 24-hour 

microgrid operation for hybrid EMS 

 

Table XXI. Summary of Microgrid Operation Under Various FDIA Scenarios 

Microgrid 

Operation 

Method 

FDIA 

time 

FDIA 

intensity 

(%) 

FDIA 

type 

Islanded 

mode 

operation 

time 

Total cost 

for 

electricity 

per day 

(c/day) 

SOC of 

BESS 

(%) at 

the end 

of the 

day 

Load 

shedding 

(%) 

Total cost 

considering 

penalty for 

load shedding 

(c/day) 

Optimization 

based EMS 

5:00 am 

– 

8:00pm 

0 1/2 

2:00pm  

–  

6:00pm 

2840.02 38.84 0 2840.02 

10 

1 

2457.88 34.40 1.18 3810.43 

20 2602.97 38.86 1.69 4542.23 

30 2585.11 40.11 2.22 5138.21 

10 

2 

2449.58 32.54 0.84 3419.93 

20 2502.83 35.62 1.04 3701.47 

30 2593.74 38.18 1.51 4324.38 

Hybrid EMS 

0 1/2 2303.74 30.11 0 2303.74 

10 

1 

2355.55 32.31 0 2355.55 

20 2358.37 32.00 0 2358.37 

30 2375.28 33.12 0 2375.28 

10 

2 

2349.81 31.11 0 2349.81 

20 2356.84 32.94 0 2356.84 

30 2357.51 32.04 0 2357.51 
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The successful implementation of our hybrid approach in real-world grid applications hinges on 

the validation of our model with real-world scenario data. Access to data on FDIAs in microgrid 

applications is crucial for validating the effectiveness and reliability of our model under actual 

operating conditions. By leveraging real-world data to validate our model, we can ensure its 

applicability and robustness in practical grid environments. Additionally, further study is needed 

to explore other attack models, attack scenarios, and more complex microgrid topologies. 

Conducting additional research on different types of cyber-attacks and their potential impacts on 

microgrid operations will enhance our understanding of grid vulnerabilities and resilience. By 

expanding the scope of our study to encompass a broader range of attack scenarios and microgrid 

configurations, we can develop more comprehensive and effective solutions to address cyber 

threats in grid environments. In summary, the validation of our model with real-world data and 

further study on other attack models and scenarios are essential steps for ensuring the successful 

implementation of our hybrid approach in real-world grid applications. By addressing these needs, 

we can enhance the reliability, security, and resilience of microgrid operations in the face of 

evolving cyber threats. 

4.8. Summary 

In conclusion, our study dives into the multifaceted challenges posed by data loss and false data 

injection attacks on microgrid energy management systems, offering insights and strategies to 

enhance system resilience and performance. 

Our analysis emphasizes the significant impacts of data loss on the economic performance and 

operational costs of microgrids. Timing emerges as a critical factor, with data loss potentially 

leading to suboptimal control actions during periods of high-priced grid electricity or peak load 
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demands. Moreover, the relationship between data loss and operational costs is nuanced, with even 

minor instances of data loss during critical time slots resulting in higher costs. These findings 

underscore the importance of robust optimization techniques and data loss mitigation strategies in 

microgrid energy management systems. By integrating reliable forecasting techniques and 

addressing data loss challenges, microgrid operators can bolster the efficiency and resilience of 

their systems. 

Examining the effects of FDIA on microgrid operation, we introduced a hybrid EMS strategy to 

ensure stability and reliability across diverse scenarios. Our findings reveal potential load balance 

discrepancies during islanded microgrid operation under FDIA, emphasizing the necessity for 

adaptive control methods. While the optimization-based EMS exhibited sensitivity to FDIA, the 

hybrid approach offered promising results, albeit with a trade-off in battery energy storage system, 

state of charge levels. The successful implementation of our hybrid approach in grid applications 

requires further infrastructure like FDIA detection model and redundancy in sensor and 

communication structure. Also, this model requires validation with real-world data and further 

study to explore additional attack models and scenarios. By addressing these needs, we can ensure 

the reliability, security, and resilience of microgrid operations in the face of evolving cyber threats. 

Our study lays the groundwork for future research aimed at incorporating artificial intelligence 

techniques to detect and resolve attacked data, thus enhancing the resilience of microgrid operation 

against FDIA and other cyber threats. 
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5. CONCLUSION AND FUTURE WORK 

This dissertation presents a comprehensive analysis of power grid vulnerabilities, focusing on the 

integration of renewable energy, cascading failures, and microgrid resilience. Through a series of 

investigations, the research aims to uncover the intricacies of modern power systems and propose 

effective mitigation strategies to enhance their reliability and security. 

The research begins with an exploration of power grid vulnerabilities in the context of increasing 

renewable energy integration. A full ACPF model with modified OPF for power balance has been 

used in the simulation process to accurately mimic the most likely evolution path of CF process 

and to make the study more accurate. Blackout size and number of tripped lines have been used as 

measuring tools to assess vulnerability to CF. It is found that higher penetration from renewable 

energy leads to higher number of trip count and larger amount of load shedding. The proposed 

model has also been able to identify that after a certain level of RE penetration, some system may 

deteriorate rapidly and preventive measures should be taken if and when RE penetration level 

exceeds that limit. This initial investigation sets the stage for a deeper exploration into cascading 

failure risk analysis, which involves statistically analyzing key metrics using historical utility data 

and simulation data. The severity of a cascading failure process in the power grid can be measured 

by the number of lines that got tripped during the event, the duration of the whole CF process, and 

the amount of load needed to be shed to restore the balance of the system. In this study, we have 

analyzed these different parameters of a cascading failure process using historical utility data and 

two synthetic test cases. We have considered both uniform and non-uniform probability 

distribution of initial line trips and compared our results with the results from historical data. It is 
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found that non-uniform distribution of initial line trips gave better estimations on mean outage 

number and cascade duration. Additionally, by validating our findings with real-world outage data, 

we have gained valuable insights into the distribution of risk factors, such as the duration and 

number of outage lines, associated with cascading failure events. This validation process 

strengthened the credibility and practical relevance of our simulation model. 

Shifting focus to microgrid resilience, the research meticulously explores data integrity attacks and 

proposes mitigation strategies to safeguard microgrid operations. A multi-layered microgrid 

simulation model with an optimization-based energy management system is developed to 

investigate the impact of renewable energy penetration and data loss. Additionally, two practical 

FDIA model have been developed to simulate attack scenarios in microgrid operation and a hybrid 

approach is proposed to ensure stable microgrid operation in the face of false data injection attacks, 

integrating optimization-based energy management with adaptive control schemes. Through 

simulation analyses, we have demonstrated the effectiveness of our strategy in safeguarding 

microgrid operation, while also paving the way for further enhancement of our initial model 

through the integration of AI techniques for real-time detection and resolution of FDIAs. 

While this dissertation has made significant strides in understanding power grid vulnerabilities, 

cascading failures, and microgrid resilience, there are numerous avenues for future research and 

exploration. The field of microgrids, in particular, offers a wealth of opportunities for further 

investigation and innovation. Below are some potential areas for future research: 

1. Enhancing microgrid resilience through the integration of AI techniques for cyber threat 

detection and mitigation. Real-time analysis of system behavior by AI algorithms can 

effectively identify anomalies and potential security breaches, bolstering system resilience. 
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2. Validating research findings and simulation models using real-life microgrid data will 

provide critical insights into the applicability and robustness of proposed strategies and 

algorithms in practical scenarios. 

3. Exploring the potential benefits and challenges of interconnected microgrid systems to 

understand how cooperation between grids can enhance overall system resilience and 

reliability. 

4. Assessing the impact of emerging technologies like blockchain and IoT on microgrid 

operation and cybersecurity to leverage their potential benefits while addressing any 

associated challenges. 

5. Conducting additional simulations across diverse test cases to gain a deeper understanding 

of threshold levels and system vulnerabilities to cascading failures with increasing RE 

penetration. This will involve considering the unique characteristics of each power system 

to ensure accurate vulnerability assessments. 

6. Further simulations are required to compare different probability distribution functions 

accurately for cascading failure risk analysis. Obtaining detailed information about BPA 

control area load will enhance test case accuracy, while exploring the impact of renewable 

energy penetration levels on cascading failure risk analysis will contribute to improved grid 

resilience. 

Addressing these areas of future research will enable researchers to advance the field of microgrid 

technology, vulnerability analysis regarding renewable energy penetration, and cascading failure 

risk analysis. This will enhance the power grid's capabilities and resilience, allowing it to adapt to 

evolving challenges and opportunities in the energy landscape.  
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