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Abstract

DISSERTATION ON DEVELOPING MACHINE LEARNING AND TIME-SERIES

ANALYSIS METHODS WITH APPLICATIONS IN DIVERSE FIELDS

By Muhammed Aljifri

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2024.

Director: Yanjun Qian,

Assistant Professor, Department of Statistical Sciences and Operations Research

This dissertation introduces methodologies that combine machine learning mod-

els with time-series analysis to tackle data analysis challenges in varied fields. The

first study enhances the traditional cumulative sum control charts with machine learn-

ing models to leverage their predictive power for better detection of process shifts,

applying this advanced control chart to monitor hospital readmission rates. The sec-

ond project develops multi-layer models for predicting chemical concentrations from

ultraviolet-visible spectroscopy data, specifically addressing the challenge of analyz-

ing chemicals with a wide range of concentrations. The third study presents a new

method for detecting multiple changepoints in autocorrelated ordinal time series, us-

ing the autoregressive ordered probit model in conjunction with a genetic algorithm.

This technique is applied to the air quality index data for Los Angeles, aiming to

detect significant changes in air quality over time.
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CHAPTER 1

INTRODUCTION

Statistical techniques such as control charts and changepoint detection are widely

utilized to analyze data patterns over time. These methods are frequently employed

in quality control and process improvement settings to monitor and regulate system

variability or process variability. Control charts help identify cases when a process

is out of control and indicate a problem that needs to be addressed. Also, change-

point detection techniques are used to identify significant changes in the underlying

patterns or trends of data. It helps to identify the points in time when a change

occurs and estimate its magnitude and direction. Both control charts and change-

point detection use traditional models to model the relationships and calculate the

probabilities. However, traditional models have shown drawbacks due to their limita-

tions and strict assumptions. Recently, machine learning has emerged as a promising

tool for improving the accuracy and efficiency of these methods. By leveraging large

datasets and complex algorithms, machine learning models can identify patterns and

changes in the data that traditional models might miss.

Through this dissertation, we aim to investigate and innovate in statistical analy-

sis by leveraging the power of advanced techniques such as control charts, changepoint

detection methods, and machine learning models. This dissertation develops three

novel methods for improving statistical modeling and quality control by integrating

machine learning methods and statistical process monitoring techniques. First, we

developed risk-adjusted CUmulative SUM (CUSUM) control charts using machine

learning models to monitor significant changes in hospital readmission rates. We

1



compared our proposed method with traditional linear models to evaluate its perfor-

mance and effectiveness. Second, we introduced two innovative multi-layer models to

address the non-linearities of chemical concentrations in spectroscopic data. These

methods are applied in combination with two commonly used machine learning mod-

els to overcome the challenges of high dimensionality and multicollinearity found in

spectral data. Finally, we developed a new technique for detecting changepoints that

expands the use of multiple changepoint detection methods beyond continuous time

series to autocorrelated categorical time series, using the autoregressive ordered probit

model. A genetic algorithm addresses the searching challenge of detecting multiple

changepoint configurations.

The first part of the dissertation introduced the utilization of a statistical ap-

proach for monitoring the readmission rate of hospitals. Readmissions are a costly

issue for hospitals, as they can result in increased healthcare costs, longer hospital

stays, and poorer patient outcomes [1]. Hence, control charts can monitor the read-

mission rate and identify when the rate is outside of its expected variability. CUSUM

control charts are a type of control chart commonly used for monitoring readmis-

sion rates in healthcare. They are specifically designed to identify small or gradual

changes in a process mean, which may be difficult to detect using other control charts

[2]. To create a control chart for the readmission rate, it is essential to consider each

patient’s underlying risk level. This is necessary due to the potential impact of vari-

ations in patient characteristics on the effectiveness of CUSUM charts. Therefore,

an adjustment can be made to the CUSUM method by factoring in the patient’s

risk level along with the risk associated with the surgical procedure. This modifica-

tion is called risk-adjusted CUSUM charts [3]. Previous studies have primarily relied

on linear logistic regression to establish a connection between a patient’s individual

risk and surgical outcomes. However, such studies have identified certain limitations

2



associated with using this particular model [4]. This dissertation proposes a novel

risk-adjusted CUSUM chart that employs a machine-learning model. This new ma-

chine learning-based risk-adjusted CUSUM chart will be able to detect minor changes

more effectively by leveraging the improved accuracy of probabilities derived from a

powerful predictive model. In order to address the issue of overfitting, which arises

from the varying degrees of complexity in machine learning models, we have devised

an approach for comparing predictive models with different levels of complexity. By

implementing this approach, we can compare the models’ performance based on a

standardized metric and identify the optimal model that balances complexity and

accuracy.

In the second part of the dissertation, we proposed two novel multi-layer models

to tackle various challenges in predicting chemical concentrations from spectroscopic

data. These challenges include high-dimensional data with a large number of spec-

tral features, nonlinear relationships between these features, and multicollinearity

[5] [6] [7]. The two methods were employed to predict the concentrations of Nickel

and Sulfate ions, i.e., NiSO4 chemical. However, the concentration range of this

chemical compound was extremely wide, leading to a nonlinear relationship between

the features. To overcome this challenge, we developed dynamically layered regres-

sion and classified layered regression models, which help to predict concentrations

based on local linearity instead of the global one. By using these multi-layer models,

the accuracy of the concentration prediction was significantly improved compared

to standard methods. Furthermore, these multi-layer models have been designed to

complement two commonly used models in chemometrics: partial least squares and

principal component regression. Both models effectively handle high-dimensional

and multicollinear spectral data. Therefore, integrating the proposed methods fur-

ther enhances the accuracy and reliability of the concentration prediction from the

3



spectroscopic data.

The third part of this dissertation presents a newly developed technique for

detecting multiple changepoints in autocorrelated ordinal time series, a significant

advancement in this field of study. This project addresses the shortcomings of tra-

ditional single changepoint detection methods, which often need to be revised for

real-world phenomena where multiple changepoints are common [8]. The core of our

method involves using the autoregressive ordered probit model, now enhanced with a

pairwise likelihood function for more accurate parameter estimation. We also incor-

porate penalized likelihood methods for detecting changepoints and employ a genetic

algorithm to improve computational efficiency in handling complex datasets. To vali-

date our methods, we have conducted thorough simulation studies. Additionally, the

practical utility of our approach is demonstrated through its application to real-world

data, offering a concrete example of its effectiveness in analyzing complex time series

data.

The remainder of this dissertation is organized as follows. Chapter 2 proposes

a novel monitoring method to monitor hospital readmission rates. CUSUM con-

trol charts are specifically designed for this purpose, and a modification called risk-

adjusted CUSUM charts factor in patient risk levels. Chapter 3 presents two multi-

layer models designed for predicting chemical concentrations from spectroscopic data,

addressing challenges such as high dimensionality and nonlinearities. The proposed

methods were tested on the NiSO4 chemical and showed enhanced prediction accuracy

over standard approaches. They are compatible with established machine learning

techniques like partial least squares and principal component regression, offering a

valuable extension to current analytical methods. Chapter 4 proposes a new method

to detect multiple changepoints in autocorrelated categorical time series. The method

uses a model selection technique with a penalty term on the number and locations

4



of changepoints and a penalized likelihood-based approach optimized by the genetic

algorithm. The method is applied to real data to identify significant changes over

time. In Chapter 5, we present a summary of our main contributions and explore

potential future extensions of our work.
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CHAPTER 2

MACHINE LEARNING BASED RISK ADJUSTED CUSUM

CONTROL CHART FOR MONITORING READMISSION RATE

FOLLOWING PTBD CATHETER PLACEMENT

2.1 Introduction

The quality of hospital care is considered one of the most critical aspects of

the healthcare system, as poor quality of hospital care can lead to serious adverse

consequences. Nicolay et al. [1] stated that only 55% of patients receive proper care in

the USA, while between 44, 000 – 98, 000 patients died in hospitals due to preventable

medical errors. One critical indicator of hospital care is the readmission rate, defined

as the hospital admission in a short time (e.g., 30 days) after the original admission

[9]. Besides the high readmission rate’s negative impact on healthcare quality, the

financial burden of readmissions causes healthcare systems to encounter substantial

financial risk. For example, the Medicare Hospital Readmissions Reduction Program

(HRRP) penalizes around 2, 000 hospitals over $280 million in one year [10].

In response to this challenge, the literature on quality engineering proposed meth-

ods to analyze, optimize, predict, and monitor the readmission rate by leveraging

healthcare data sources. Statistical analysis is a popular tool to draw meaningful

interpretations and significant associations with the readmission rate. For instance,

Sarwar et al. [11] used a logistic regression model to investigate the causes of 30-day

readmission for patients who underwent percutaneous transhepatic biliary drainage

(PTBD) procedures. Using a multivariate logistic regression model, Pathak et al.

[12] calculated the odds of being readmitted after revision Total Hip Arthroplasty
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(rTHA) with different patient characteristics. Sarwar et al. [13] showed the asso-

ciation between 30-day readmission rates and 90-day mortality in a dataset with

3653 procedures in 12 different categories using chi-square tests and simple logis-

tic regression models. In a retrospective cohort study, Panagiotou et al. [14] found

that Medicare Advantage beneficiaries have higher 30-day readmission rates than tra-

ditional Medicare beneficiaries using a hierarchical logistic regression model. Those

statistical tools are suitable for finding causes and factors associated with the increase

in the readmission rate and performing the prediction task. However, when we want

to monitor and improve the readmission rate, they have limitations in detecting and

monitoring changes in a process [15]. Thus, statistical process control charts draw

much attention to handling this task.

Statistical Process Control (SPC) techniques are widely used in the industrial

field and healthcare for process monitoring and improving the quality of the pro-

cedure. One of the most effective SPC methods for monitoring the processes in

healthcare applications is control charts, which can visualize stability and variabil-

ity in automated processes over time [16]. Control charts were developed by Walter

Shewart at the AT&T Bell laboratories in the early 1920s [17]. Those chronological

graphs, which display the data process to better understand the process’s variability,

have been applied in a wide range of healthcare systems [2] [18]. For different types

of data processes, several control charts, such as x̄ charts, p charts, and c charts, have

been developed for data from normal, binomial, and Poisson distributions. Then,

more advanced charts have been developed, such as the Exponential Weighted Mov-

ing Average (EWMA) [19] and CUSUM control chart [20]. These charts are known as

control charts with memory, which indicates that they utilize both the previous and

the current information to calculate the plotted statistics, making them less sensitive

to outliers but good at detecting small but constant shifts [21]. Among charts with
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memory, the CUSUM chart has received more attention in the medical field because

of its intuitive formulation and the faster detection ability [22]. The CUSUM chart

was first introduced by Page [23]. De Leval et al. [24] proposed one of the first studies

that used the CUSUM chart in healthcare to monitor 104 consecutive neonatal switch

operations between 1987 and 1993. Neuburger et al. [25] showed that CUSUM charts

detected the changes in clinical performance rates faster than the Shewhart p-chart

and EWMA chart.

The standard CUSUM charts perform well as long as the process is naturally

homogeneous and there is no great variation among subjects. However, in the health

care application, we must consider the baseline risk for subjects, i.e., patients, due to

the heterogeneity that will affect the performance of CUSUM charts [26]. As stated

by Sego et al. [27], without adjusting the CUSUM chart using postoperative risk

for each patient, the outcomes will be confounded with the preexisting risk factors.

For this reason, the CUSUM method needs to be adjusted by adding the patient’s

risk to monitoring the procedure’s risk [3], known as risk-adjusted (RA) CUSUM

charts. Li et al. [28] indicated that using RA CUSUM charts helps reduce the bias

of the CUSUM outcomes due to heterogeneity among patients. Using a nonadjusted

CUSUM chart for high-risk operations might produce misleading and less accurate

outcomes than the risk-adjusted one. Grigg et al. [26] pointed out that the standard

CUSUM chart indicated the unrealistic performance of surgeons in cardiac surgeries

and suggested adjusting the risk in the chart to address this issue. Moreover, Novick

et al. [15] showed the incremental advantages of RA CUSUM charts over the standard

CUSUM charts using data that includes patients who underwent a coronary PROBIT

grafting (CABG) procedure. Likewise, Steiner et al. [3] claimed faster detection of RA

CUSUM charts than the standard CUSUM charts to monitor the surgical performance

by adding the Parsonnet score [29] of each patient as a prior risk using data from
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a UK center for cardiac surgery. At last, Rasmussen et al. [22] showed how RA

CUSUM charts help detect 30-day mortality rates in 24 hospitals in Denmark.

In the RA CUSUM procedure, most studies use a logistic regression model to

access the patient’s own risk based on his/her characteristics [3], [15], [22]. However,

recent work highlighted the limitations when using the generalized linear model re-

garding the model’s restrictions and its prediction performance. For instance, Rossi

et al. [4] proposed a risk-adjusted Bernoulli CUSUM (RA-B-CUSUM) chart to allevi-

ate this impact of changes in the parameters of the risk distribution on the outcomes

of RA CUSUM. Li et al. [28] introduced the varying-coefficient logistic regression

(VCLR) as a nonparametric model to reduce the modeling bias of the logistic regres-

sion in the case of nonlinear relationships among patient characteristics. Moreover,

other studies showed poor predictive performance of regression models compared to

other methods, especially advanced machine learning models. Thanks to the increas-

ing availability of healthcare data, machine learning models draw great attention in

healthcare applications, such as predicting readmission and mortality rates after sur-

gical procedures. In a systematic review study, Huang et al. [30] surveyed 25 studies

that used machine learning models to predict hospital readmission rates and found

Decision Trees and Random Forests were the most popular algorithms. Shin et al.

[31] discovered machine learning models such as Random Forests and Support Vector

Machines outperformed the traditional regression models for predicting heart failure

readmission and mortality rates in a comparison study. Also, Futoma et al. [32]

showed that Random Forests enjoy better predictive performance than the standard

logistic regression in predicting early readmission rates using a dataset that includes

around 3.3 million hospital admissions in New Zealand.

To further improve the performance of the RA CUSUM charts, we adopted ma-

chine learning models to estimate the probability of the risk when constructing the
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chart. With the help of these powerful models, the proposed RA CUSUM charts will

provide enhanced accuracy in detecting small changes in the readmission rate. To

select the most suitable machine learning method, we developed a model selection cri-

terion based on the area under the receiver operating characteristic curve (AUROC)

and the cross-validation, which achieves a trade-off between the model’s bias and vari-

ance. At last, we applied the proposed charts to monitor the Percutaneous Transhep-

atic Biliary Drainage (PTBD) catheter placement procedures, detecting a possible

decrease in the readmission rate after the improved post-procedure care paradigm.

2.2 Data and Methods

2.2.1 Retrospective and Prospective Datasets

We collected two readmission datasets from the electronic health record at the

medical college of Virginia Commonwealth University (VCU). A total of 243 PTBD

catheter placement procedures were recorded between January 2013 and May 2019

as the retrospective dataset. This dataset has 30 variables, including the primary

diagnosis type, the indicator for benign vs. malignant disease, American Society of

Anesthesiologists (ASA) classification score, lab test values prior to the procedure

such as creatinine (Cr), liver transaminases alanine transaminase (ALT)/aspartate

transaminase (AST), alkaline phosphatase (Alk Phos), total/direct bilirubin (T/D

bili), white cell count (WBC), hemoglobin (Hgb), platelets (Plt), and international

normalized ratio (INR). Moreover, the data records the patient’s characteristics, such

as age, gender, whether the patient is insured, race, and the procedure’s characteris-

tics, such as access position (Access), size in the French scale (Fr), and access type

(Type). After that, the last variable indicates whether the patient was readmitted

within 30 days after the procedure.
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Relatively high rates of readmissions have been reported in the literature follow-

ing the PTBD catheter placement [11]. The medical team at VCU hypothesized that

post-procedure care might be inadequate and inconsistent for these patients. Hence, a

new interdisciplinary standard of care paradigm was created for other patients based

on best practice guidelines after 2019. The new procedural paradigm includes stan-

dardized documentation, dedicated education to interventional radiology (IR) nurs-

ing on drain management, standardized order set in electronic health records (EHR),

ensuring care coordination consult and adequate supply for drain management post-

discharge, as well as follow-up phone calls two and seven days post-discharge. Then,

we collected a prospective dataset, including 67 PTBD procedures carried out after

implementing the new procedural care paradigm. The prospective dataset includes

the same set of variables in the retrospective dataset. In this study, we will design a

new technique of RA CUSUM charts to identify where there is a significant reduction

in the readmission rate after adopting the new procedural care paradigm for PTBD

catheter placement.

2.2.2 RA CUSUM Chart

A standard CUSUM chart can be adjusted by the patient’s prior risk pt, esti-

mated from his/her characteristics preoperatively. The characteristics are denoted

as a vector Xt where t = 1, 2, ... are the indices for the patients undergoing PTBD

procedures. The response is a binary variable yt to indicate whether the patient was

readmitted within 30 days. The details of predicting pt from Xt will be discussed

in Section 2.2.3. When interested in detecting a change in the readmission rate, the

hypotheses are based on the odds ratio of the readmission due to the procedure’s

risk [3]. In the RA CUSUM chart scenario, the odds ratio plays a crucial role in

quantifying the relationship between the odds of readmission for patients undergoing
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a specific medical procedure (e.g., PTBD procedures) and the odds of readmission

for other patients. It is computed as the ratio of the odds of readmission for patients

undergoing the procedure to the odds of readmission for those not undergoing the

procedure. Then, the null and alternative hypotheses are written as follows:

H0: odds ratio = R0 vs. H1: odds ratio = R1, (2.1)

where R0 indicates the current procedure performance and R1 corresponds to the new

readmission odds ratio we want to detect. The null hypothesis (H0) assumes that

the odds ratio is equal to a reference value (R0), typically representing the current

performance level of the medical procedure in terms of readmission rates. Conversely,

the alternative hypothesis (H1) posits a specific change in the odds ratio (R1) that

the analysis aims to detect. This change could signify either an improvement or

deterioration in the readmission rate following the procedure. R0 is usually set as 1

in default and R1 can be chosen in (0, 1) to detect a decrease in the readmission rate.

For a patient with the prior risk pt under H0, the combined odds of being readmitted

is R0pt/(1 − pt) and the corresponding probability is R0pt/(1 − pt + R0pt). Under

H1, the combined odds of being readmitted is R1pt/(1 − pt) and the corresponding

probability is R1pt/(1− pt +R1pt). Derived from those assumptions, the hypotheses

in Equation (2.1) are tested using the following two log-likelihood ratio scores [3]:

Wt =


log[ (1−pt+R0pt)R1

(1−pt+R1pt)R0
], if yt = 1, log[ (1−pt+R0pt)

(1−pt+R1pt)
],

if yt = 0.

(2.2)

Zt = max(0, Zt−1 +Wt), t = 1, 2, 3, ... (2.3)

where Wt is an assigned weight for each subject and Z0 = 0. Equation (2.3) only

assigns positive Zt, producing a one-sided CUSUM chart. A one-sided chart only
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focuses on the increasing trend of Wt, which means the alternative H1 becomes more

likely than H0. RA CUSUM charts will signal an alarm if the value of Zt > h,

indicating the process is in the out-of-control state H1; otherwise, it is in the in-

control state H0. The threshold h will be determined based on the targeted average

running length (ALR) of the charts, which will be discussed in Section 2.2.5. In our

study, we set R1 = 0.5 to detect halving of the odds of the readmission rate [3], and

also show the chart performances when R1 = 0.2 or 0.8.

2.2.3 Risk Prediction by Machine Learning

The readmission probability pt related to the patient’s own risk plays a critical

role in RA CUSUM charts. For cardiac surgery monitoring, a logistic regression based

on the Parsonnet score [29] is a popular choice [3]. However, there is a lack of such

existing work for the readmission of the PTBD procedures. Different types of machine

learning models can be applied to obtain pt from the preoperative characteristics Xt,

and the main differences between these models lie in their underlying assumptions,

the complexity of their decision boundaries, and the performance on different types

of data [30], [33]. In this study, we consider three popular models: logistic regression

[34], random forests [35], and gradient boosting machine [36], where the latter two

belong to tree-based models.

2.2.3.1 Logistic Regression

Logistic regression (LR) is one of the most widely used models for the rela-

tionships between the patient’s characteristics Xt and the surgical outcome. The

probability pt of a patient being readmitted (yt = 1) versus being not readmitted

(yt = 0) due to his/her own risk is predicted as a linear combination of elements in
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Xt after the logit transformation [34]:

logit(pt) = log(
pt

1− pt
) = β0 +

∑
j=1

βjXtj, (2.4)

where Xtj is the jth element in Xt. Then pt is calculated using the following equation:

pt =
eβ0+

∑
j=1 βjXtj

1 + eβ0+
∑

j=1 βjXtj
. (2.5)

The parameters β0 and βj can be estimated using the maximum likelihood estimation

(MLE) from the training data.

2.2.3.2 Tree-based Models

Despite the popularity of logistic regression in healthcare applications, the as-

sumption of the linear combination of characteristics in Equation (2.4) limits its pre-

diction performance for readmission rate. Tree-based models have been adopted for

this application to overcome the limitation. A decision tree has a hierarchical struc-

ture that starts from the top to the bottom, consisting of nodes Rm, m = 1, 2, ..., J

connected by branches. The classification task in a decision tree uses a sequence of

decision rules based on the value of Xtj, splitting the training data into terminal

nodes Rm. The proportion of the readmission for a single node Rm can be calculated

using the following equation [37]:

p̂m =
1

Nm

∑
Xt∈Rm

I(yt = 1) (2.6)

where Nm is the number of training observations in the terminal node Rm. The

proportion p̂m can be used to approximate the readmission probability of a new

observation falling in the node Rm [30].

The decision tree method suffers from its sensitivity to the training data [37].

Random forests (RF), introduced by Breiman [35], use the bagging to overcome this
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drawback. RF consists of B uncorrelated decision trees, where each tree carries

information from a bootstrap sample drawn from the training data. By averaging

those shallow decision trees, RF can alleviate the overfitting problem. Hence, it can

achieve accurate predictions from the averaging, even if some shallow trees are weak

estimators. The variance of the RF model will be reduced by B compared to a single

decision tree.

Gradient boosting machine (GBM) is another popular tree-based model for re-

gression and classification problems by adopting the boosting and gradient descent

methods [36]. GBM works by sequentially adding B decision trees to an ensemble,

and the final model is the sum of all the individual trees. GBM achieves state-of-the-

art performance for readmission prediction [33]. However, as the algorithm ensembles

decision trees sequentially, GBM is sensitive to overfitting and requires careful tun-

ing of hyperparameters, such as the number of trees, the shrinkage rate, and the

interaction depth of the input variables.

In the work, we skip the single decision tree due to its poorer performance com-

pared to RF and GBM [33]. We fix the number of trees B = 1000 for RF as its

prediction performance is robust to a large enough B. For GBM, we choose the

shrinkage rate as 0.01, the interaction depth as 4, and the number of trees B from

100 to 10, 000 to evaluate the effect of model complexity on the risk prediction. At

last, we also consider incorporating the variable selection [38] by choosing a subset of

the characteristics for model training.

2.2.4 Model Comparison for Risk Prediction

To ensure the performance of RA CUSUM charts, we need to find a suitable

model to predict the patient’s risk. To examine the prediction performance of different

models, we need to address challenges in model fitting using the retrospective dataset,
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such as small sample sizes and unbalanced response variables. We develop a pipeline

incorporating cross-validation and the AUROC for model comparison and selection

for risk prediction. The proposed pipeline can balance the prediction variance and

bias of the machine learning models with various complexities, which will be shown

in Section 2.3.2.

As there are only 243 patients in the retrospective dataset, models with high

complexity, such as GBMs with a large B, can overfit the training data. It will

provide the perfect predictions for observations used in training but poor results for

unseen ones. Thus, we need the cross-validation, first proposed by Larson et al.

[39], to evaluate the true prediction performance. The cross-validation will train and

evaluate the model by separating the data into two parts: one for training the model

and the second for validation. In theK-fold CV, the cross-validation procedure will be

iterated K times. For each iteration, K−1 folds are employed for training the model,

while the remaining fold is for evaluating the model. As cross-validation is able to

evaluate the model performance for future data, we adopt the 10-fold cross-validation

to compare different models’ risk prediction abilities.

Due to the small sample size of the retrospective dataset, a model with high

complexity may show an excessive prediction variance, even with a good training fit.

Such a model will provide a perfect prediction in the retrospective dataset and show

a CUSUM chart close to 0. If we apply such a chart to a new dataset, the false

alarm rate will be high. Thus, in the model selection, we must consider both the bias

and variance of the prediction, avoiding an overfitting model for the small training

dataset. In Section 2.3.2, we will demonstrate the prediction bias and variance for

each machine learning model, showing that the proposed selection pipeline can achieve

a trade-off for risk prediction.
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2.2.5 RA CUSUM Chart Evaluation

As explained in Section 2.2.2, an RA CUSUM chart signals when Zt exceeds a

limit value h. An optimal value of h is determined by the targeted performance of the

RA CUSUM procedure. We can measure the performance of the RA CUSUM chart

using the Average Run Length (ARL), which is the expected observation number

where a control chart from the start of the process triggers the first signal. The in-

control ARL is denoted as ARL0 while the out-of-control ARL is denoted as ARL1.

Ideally, as the process is in control, ARL0 should be large since the signals here

represent false alarms. On the other hand, ARL1 should be short while the process

is out of control to ensure an early detection [28]. We can also consider the role of

ARL0 as the Type I error and ARL1 as the power in the traditional hypothesis test

[3]. So, h should be selected to ensure a large ARL0, such as 500, using in-control

data, and ARL1 will be evaluated using out-of-control data with the selected h.

As there is no explicit formula of ARL for CUSUM charts, several approxima-

tion methods are recommended to determine the control limit h. Reynolds et al.

[40] suggested using Markov chain simulation, and Jones et al. [41] proposed using

a bootstrap resampling method to adjust the control limits. As there is no paramet-

ric model for the readmission risk of the PTBD procedure, we adopt the bootstrap

resampling method to compute the ARL. Given a control limit value h, we generate

MB bootstrap samples with length NB from the retrospective dataset. For the jth

sample, we predict each patient’s risk pjt and plot Zjt according to Equations (2.2)

and (2.3). The run length RLj is using the following equation:

RLj = inf(t : Zjt ≥ h, t = 1, 2, · · · , NB). (2.7)

Finally, the in-control ARL0 is estimated by
∑MB

j=1RLj/MB. The optimal h∗ will
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be found according to a targeted ARL0. An ARL can be evaluated using the same

procedure, resampling from the prospective data. To ensure the performance of the

ARL estimation, we choose MB as 1000 and NB as 5000.

We summarize all the steps in the proposed RA CUSUM charts in Algorithm

2.2.5.

1. Calculate the means and standard deviations of cross-validation AUROC using

the retrospective dataset for 8 machine learning models, including the logistic re-

gression, random forests (B = 1000), and GBMs with B ∈ {100, 200, 500, 1000,

2000, 5000}.

2. Select an appropriate machine learning model based on the cross-validation

AUROC and retrain the model using all retrospective data.

3. Estimate the patient’s risk pt for the retrospective and prospective datasets.

4. Find the optimal h∗ to let the retrospective ARL0 = 500 by bootstrap resam-

pling from the retrospective data.

5. Evaluate the prospectiveARL with h∗ by bootstrap resampling from the prospec-

tive data.

6. Plot the RA CUSUM charts for the retrospective and prospective datasets.

2.3 Results and Discussions

2.3.1 Data Summary and Preliminary Analysis

In the retrospective data, among 243 patients who underwent PTBD procedure,

there were 56.0% males. The procedure was performed due to benign obstructions in

47.7% of patients. Most patients were insured (89.3%), and the average age was 59.6
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years. Most catheters were positioned in the right biliary system (62.6%), and the

remaining were positioned in the left (33.7%) and bilateral (3.7%). 33.7% of patients

were readmitted within 30 days. On the other hand, the prospective data includes 67

patients who underwent PTBD with the new procedural paradigm. The procedure

was performed due to benign obstructions in 37.3% of patients. Most patients were

insured (95.5%), and the average age was 61.3 years old. The catheters were posi-

tioned in the right biliary system (47.8%), left (44.8%), and bilateral (7.4%). The

prospective readmission rate was slightly lower than the retrospective data (29.9%).

For more details, Tables 1 & 2 show the summary of all the categorical and numerical

variables, where the meaning of each characteristic can be found in Section 2.2.1.

We can identify different patterns in some characteristics between the two datasets,

justifying using an RA CUSUM chart.

Categorical characteristics % in retrospective % in prospective

Readmitted (vs. Not Readmitted) 33.7% 29.9%

Benign (vs. Malignant) 47.7% 37.3%

Male (vs. Female) 56.0% 58.2%

Insured (vs. Uninsured) 89.3% 95.5%

Type I/E (vs. Type E) 86.8% 86.6%

Race

Caucasian 63.8% 49.3%
African American 30.0% 37.3%

Asian 0.8% 3.0%
American Indian 5.4% 10.4%

Access
Left 33.7% 44.8%
Right 62.6% 47.8%

Bilateral 3.7% 7.4%

Table 1.: Summary of the categorical characteristics in retrospective and prospective

datasets.

Then, we apply a preliminary analysis to evaluate the relationship between those

characteristics and the readmission. Table 3 shows the estimated coefficients with

their confidence intervals (C.I.) and p-values of patients being readmitted vs. not
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Numerical characteristic Mean in retrospective Mean in prospective

Age 59.6 61.3

ASA 3.06 3.03

Cr 1.15 1.01

AST 141.6 254.3

ALT 137.9 183.7

Alk.phos 557.3 803.6

T.bili 8.04 9.98

D.bili 6.34 7.17

WBC 10.0 12.5

Hgb 10.6 9.78

PLT 260.1 260.5

INR 1.31 1.27

Size in Fr 8.87 9.24

Table 2.: Means of the numerical characteristics in retrospective and prospective

datasets.

readmitted for each characteristic in the retrospective and the prospective datasets

using a simple logistic regression model. We found that none of the listed related

characteristics has a significant linear relationship (p-value < 0.10) with the read-

mission variable in the retrospective dataset. Several significant characteristics are

identified from the prospective datasets, such as gender, WBC, and Plt. However,

considering the small sample size (67 patients), those results may not be reliable.

Thus, using those characteristics, a nonlinear model is preferred for the readmission

risk prediction.

As the simple logistic regression fails to find significant predictors for the read-

mission risk, we follow [38] to find important characteristics using the RF method.

The variable importance plots are shown in Figure 1, where the left and right figures

illustrate the average decrease in prediction accuracy and Gini index, respectively, if

the corresponding characteristic is removed. Here, we find a subset of the characteris-

tics that give us a positive decrease in accuracy and a relatively large decrease (> 6.0)
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Characteristics
Retrospective Prospective

Coefficients (95% C.I.) P-value Coefficients (95% C.I.) P-value

Benign (0) vs.
Malignant (1)

−0.14 (−0.67, 0.40) 0.61 −0.46 (−1.53, 0.62) 0.40

Male (0) vs.
Female (1)

0.07 (−0.47, 0.60) 0.81 1.07 (0.00, 2.18) 0.05

Type I/E (0) vs.
Type E (1)

0.03 (−0.78, 0.80) 0.94 −0.45 (−2.42, 1.08) 0.59

Insured (0) vs.
Uninsured (1)

−0.59 (−1.63, 1.31) 0.23 1.63 (−0.77, 4.74) 0.19

Caucasian (0) vs.
African American (1)

−0.03 (−0.63, 0.56) 0.92 0.73 (−0.39, 1.89) 0.20

Caucasian (0) vs.
Asian (1)

0.68 (−2.56, 3.93) 0.63 −15.4 (−∞, 250) 0.99

Caucasian (0) vs.
American Indian (1)

0.21 (−1.02, 1.36) 0.72 0.22 (−1.85, 1.97) 0.81

Left (0) vs.
Right (1)

0.11 (−0.45, 0.69) 0.69 1.01 (−0.10, 2.20) 0.08

Left (0) vs.
Bilateral (1)

−1.37 (−4.31, 0.40) 0.21 0.00 (−3.07, 2.14) 1.00

Age −0.009 (−0.028, 0.010) 0.35 −0.023 (−0.063, 0.016) 0.26
ASA −0.173 (−0.677, 0.320) 0.50 −0.661 (−2.070, 0.598) 0.32
Cr 0.080 (−0.161, 0.316) 0.50 −0.912 (−2.359, 0.061) 0.14
AST −0.001 (−0.003, 0.001) 0.43 −0.001 (−0.005, 0.001) 0.28
ALT 0.000 (−0.003, 0.002) 0.73 0.000 (−0.003, 0.002) 0.95

Alk.phos 0.000 (−0.001, 0.001) 0.99 0.000 (−0.001, 0.000) 0.41
T.bili −0.034 (−0.075, 0.005) 0.10 0.008 (−0.051, 0.063) 0.76
D.bili −0.037 (−0.090, 0.012) 0.15 0.014 (−0.068, 0.091) 0.72
WBC 0.016 (−0.031, 0.063) 0.49 −0.127 (−0.279, − 0.020) 0.06
Hgb 0.023 (−0.104, 0.151) 0.72 0.139 (−0.144, 0.429) 0.34
Plt 0.001 (−0.001, 0.003) 0.24 0.003 (−0.000, 0.007) 0.08
INR 0.120 (−0.596, 0.802) 0.73 −0.760 (−2.821, 0.832) 0.40

Size in Fr 0.097 (−0.137, 0.333) 0.42 0.211 (−0.283, 0.775) 0.43

Table 3.: Preliminary analysis for the relationship between each characteristic and

the readmission by the simple logistic regression.
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in the Gini index. The subset includes 8 variables: Age, AST, ALT, T.bili, D.bili,

Hgb, Plt, and INR. With a small sample size, using a subset can reduce overfitting

and improve risk prediction [37]. In Section 2.3.2, we will compare models with this

subset and with all available characteristics.
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Fig. 1.: The importance of all characteristics from the random forests model on the

retrospective dataset.

2.3.2 Predictive Model Comparison

Our preliminary analysis shows that a logistic regression model fails to identify

significant readmission prediction characteristics, indicating that tree-based models

could be more appropriate. We evaluate machine learning models with different com-

plexity using 10-fold cross-validation on the retrospective dataset. For each model,

we compare the performance between models with the subset identified in Section

2.3.1 and with all available patients’ characteristics. As the RF and GBM will gen-
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erate different models from the same dataset due to the randomness in their training

process, we keep the fold separation and repeat the cross-validation by 100 times,

obtaining the mean and standard deviation (s.d.) of the AUROC. The results of the

26 models are shown in Table 4, and the highest AUROC is marked in red.

From Table 4, we have the following discoveries for the risk prediction for the

PTBD procedure. First, the tree-based models, i.e., RF and GBM, work better than

the logistic regression, whose average AUROCs are less than 0.5 due to the weak

linear relationship and imbalanced classes. Second, the GBMs with relatively large

complexity achieve the highest AUROC, indicating the complicated association be-

tween the characteristics and a patient’s readmission risk. However, the performance

of GBMs using the subset begins to decrease when the complexity becomes too high.

Third, the models using all variables have smaller AUROCs than their counterparts

using the subset, which confirms that the important variables found by the RFs can

improve all those models. In future sections, we will only consider models trained by

the subset. At last, the best AUROC, about 0.57, is still not satisfying. However,

readmission risk prediction is a challenging problem. In their survey, Huang et al. [33]

achieved a 0.66 AUROC using 372, 293 patients’ information for pneumonia readmis-

sion. Considering the small training sample size, 243, we believe the current model

selection is comprehensive for the PTBD readmission prediction. Based on Table 4,

the best available model is the GBM with 3, 000 trees. If we use the “one-standard

error” rule[37], i.e., finding the most parsimonious model within one standard error

of the best one, the GBM with 2, 000 trees should also be considered. We will im-

plement the RA CUSUM charts with both models in the next sections to verify the

robustness of the detection.

At last, we take a close look at the cross-validation prediction using different

models with subset selection, shown in Figure 2. In each subfigure, we show the
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Model Mean ± s.d. (Subset) Mean ± s.d. (All)

Logistic Regression 0.4874± 0.0000 0.3936± 0.0000

Random Forests 0.5112± 0.0044 0.4992± 0.0052

GBM100 0.5204± 0.0095 0.4857± 0.0103

GBM200 0.5317± 0.0085 0.4922± 0.0095

GBM300 0.5403± 0.0075 0.4945± 0.0083

GBM500 0.5476± 0.0057 0.4952± 0.0075

GBM800 0.5578± 0.0061 0.4991± 0.0067

GBM1,000 0.5603± 0.0052 0.5014± 0.0064

GBM2,000 0.5664± 0.0051 0.5116± 0.0054

GBM3,000 0.5668± 0.0043 0.5165± 0.0045

GBM5,000 0.5665± 0.0033 0.5207± 0.0040

GBM8,000 0.5651± 0.0030 0.5234± 0.0037

GBM10,000 0.5640± 0.0031 0.5240± 0.0032

Table 4.: The average and standard deviation (s.d.) of AUROC using 10-fold cross-

validation for machine learning models with the subset in Section 2.3.2 and all vari-

ables.

boxplots for the predicted readmission risk for the not-readmitted and readmitted

patients. For a simple model, such as the logistic regression (LR) and the GBM with

only 100 trees (GBM100), the within-group variations are small, but the two groups

are almost not differentiable. That explains why such models only achieve AUROCs

close to 0.5. When we increase the complexity of the machine learning model, the

predicted risks of the two groups begin to show differences at the expense of a larger

within-group variation. However, if the model complexity is too high such as the

GBM with 5, 000 trees (GBM5000), the within-group variation decreases the model

performance. Thus, we must carefully choose the model by balancing its bias and

variance for the risk prediction of the RA CUSUM charts.
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Fig. 2.: The cross-validation prediction for readmitted vs. not readmitted groups for

the retrospective model using different machine learning models.
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2.3.3 Control Charts Construction and Evaluation

In this section, we construct the RA CUSUM charts using the PTBD retrospec-

tive (sample size 243) and prospective datasets (sample size 67). The RA CUSUM

procedure is divided into two phases: Phase 1 trains the model and estimates the

parameters using existing observations, and Phase 2 employs the obtained model to

monitor an ongoing process. The retrospective data is used in Phase 1, and the

prospective data is used in Phase 2 analysis. Based on the results in Section 2.3.2,

we use the GBM model with 3000 trees (GBM3000) trained from the retrospective

dataset to estimate the probability pt of the readmission rate due to the patient’s own

risk. We also consider the model selected by the “one-standard-error” rule, GBM2000.

The random forests and logistic regression are compared to the two GBM models.

The RA CUSUM procedure is constructed to detect a halving of the odds of the

readmission R0 = 1 vs. R1 = 0.5, and the performance for R1 = 0.2 and 0.8 are also

evaluated. Since we have R1 < R0, an increase in the chart means an increase in the

likelihood of the alternative R1, which indicates a decrease in the readmission rate.

To highlight the effects of the risk adjustment, we implement a standard CUSUM

chart where the patient’s risk is set as a constant 0.337 estimated from the average

readmission rate of the retrospective dataset.

As it was explained in Section 2.2.5, we use ARL to measure the RA CUSUM

chart performance, where a good RA CUSUM chart will have a large ARL0 indicating

a low false alarm rate, and a short ARL1 indicating a fast detection. Using the

bootstrap method, we evaluate ARL using different control limits h and find the

optimal h∗ targeting the ARL ≈ 500 for the retrospective dataset. In our problem,

the retrospective dataset sets the baseline for the readmission rate. Thus, this ARL

can be considered as an in-control one. Then, we use the same procedure to evaluate
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the ARLs for the prospective dataset using h∗. Whether a change to the readmission

rate in the prospective dataset is unknown before the analysis, so we can not say that

its ARL is in control or out of control.

Table 5 displays the optimal h∗, ARL0 for the retrospective dataset, and ARL

for the prospective dataset for different alternative R1’s for RA CUSUM charts using

logistic regression, random forests, GBM2000 and GBM3000. We also show the results

using the CUSUM chart without risk adjustment as a baseline. The logistic regression,

which is the most popular in existing RA CUSUMs, gives us a longer ARL for the

prospective dataset than the ARL0 for the retrospective one. However, we do not

think it indicates no readmission rate change in the prospective dataset. In Figure 2,

the logistic regression failed to differentiate the not-readmitted and readmitted groups

in the cross-validation prediction for the retrospective data, and in Table 4, it gave an

average AUROC less than 0.5. We also find that the logistic regression’s h∗ is close

to the no-risk-adjusted one, and the prospective ARL is longer. Considering all those

results, we can conclude that the logistic regression risk adjustment is inappropriate

for monitoring the PTBD procedure readmission rate.

On the other hand, the three tree-based models, random forests, GBM2000,

and GBM3000, show much shorter ARL for the prospective dataset. For R1 =

0.5 and ARL0 ≈ 500 for the retrospective dataset, the prospective ARL is 27.9

for the random forests, 44.3 and 20.7 for the GBMs with 2000 and 3000 trees. A

larger R1 gives a longer ARL as closer null and alternative hypotheses will decrease

the power of control charts and the detection speed. For the GBMs, GBM3000

yields a smaller h∗ for the retrospective ARL0 ≈ 500 and a shorter prospective ARL

compared to GBM2000 as the former’s discriminant ability for the readmitted vs. non-

readmitted groups is better based on Table 4. Also, the random forests obtain similar

prospective ARL despite their different AUROCs. One possible reason is that the
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random forests model has a smaller in-group prediction variance than GBM2000 and

GBM3000, as shown in Figure 2, compensating for the former’s weaker discriminant

ability. In conclusion, the risk adjustment by the tree-based models, incorporating

the subset selection and complexity tuning, is able to identify possible readmission

changes between the retrospective and prospective datasets.

Model R1 h∗ ARL0 (Retrospective) ARL (Prospective)

No Risk-Adjustment
0.2 4.10 512.38 259.03
0.5 3.05 503.44 212.69
0.8 1.58 495.55 191.26

Logistic Regression
0.2 4.19 500.82 650.97
0.5 3.09 500.78 621.63
0.8 1.58 501.69 605.89

Random Forests
0.2 1.42 497.38 19.29
0.5 1.07 504.91 27.91
0.8 0.61 495.42 49.65

GBM2000
0.2 1.35 501.08 26.53
0.5 0.99 497.82 44.26
0.8 0.53 510.82 88.59

GBM3000
0.2 0.91 506.19 11.77
0.5 0.66 491.69 20.69
0.8 0.35 509.49 38.30

Table 5.: Average run length (ARL) for various R1 and machine learning models

estimated by bootstrapping from the retrospective and prospective dataset. h∗ is

tuned for ARL0 ≈ 500 using the retrospective dataset.

Figures 3 -7 show the no risk-adjusted CUSUM chart and the RA ones using

the four models in Table 5 for the combined retrospective and prospective datasets

when R1 = 0.5. The patient indices of the retrospective one range from 1 to 243, and

the prospective ones range from 244 to 310. The blue vertical lines separate the two

datasets, and we restart the CUSUM charts by setting Zt = 0 in Equation (2.3) when

the prospective dataset begins. The red dashed lines show the optimal h∗ found in

Table 5 for the retrospective ARL0 ≈ 500. If detected, the first out-of-control points
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Fig. 3.: The CUSUM chart without risk-adjustment for the combined dataset for

R1 = 0.5.
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Fig. 4.: The RA CUSUM chart by the logistical regression for the combined dataset

for R1 = 0.5.
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Fig. 5.: The RA CUSUM chart by the random forests for the combined dataset for

R1 = 0.5.
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Fig. 6.: The RA CUSUM chart by the GBM with 2000 trees for the combined dataset

for R1 = 0.5.
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Fig. 7.: The RA CUSUM chart by the GBM with 3000 trees for the combined dataset

for R1 = 0.5.

in the prospective dataset are marked as red crosses in the CUSUM charts.

The CUSUM chart using the logistic regression (Figure 4) gives similar plots for

the retrospective and prospective parts and provides no out-of-control point. The

chart is similar to the no-risk-adjusted one (Figure 3) in the retrospective part, and

its values in the prospective part are even lower. The linear regression provided an

AUROC of less than 0.5 in the cross-validation using the retrospective data, indicating

that the model has no or even negative effect in evaluating the risks for the readmitted

and not readmitted groups. Those two plots highlight the importance of the model

selection for the RA CUSUMs. Without a model with good discriminant power, the

risk adjustment cannot utilize the patient’s characteristics to improve the CUSUM

chart performance.

The remaining three charts show the results of RA CUSUM charts with tree-

based models. The random forests chart (Figure 5) finds the out-of-control signal

at the 24th patient in the prospective dataset, and the GBM2000 (Figure 6) and

GBM3000 (Figure 7) charts find the signals at the 34th and 24th patients, respec-
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tively. The retrospective curves no longer have oblivious peaks and fluctuate below

the control limits, thanks to the tree-based models’ flexibility for risk prediction. At

the same time, an increasing trend appears in the second half of the prospective

dataset. If we increase h∗ by a small margin in Figures 5 and 7, the three charts

will give similar locations for the out-of-control signals, around 30th patients in the

prospective procedures. Considering the discriminant ability of the random forests

and GBMs shown in Figure 2 and Table 4, it is reasonable to believe that those de-

tection results show real signal changes, indicating that the readmission rate of the

PTBD procedure begins to decrease after the new post-procedural care paradigm was

implemented by a certain period.

2.4 Conclusions

In this chapter, we propose RA CUSUM charts combined with machine learning

models for estimating the patient’s risk from their preoperative characteristics and

monitoring the change of the readmission rates in healthcare applications. The tree-

based models have demonstrated better discriminant ability and faster detection of

changes compared to traditional charts based on logistic regression. By evaluating

those models with cross-validation, AUROC, and bias-variance analysis, we show

that checking the models’ performance is critical before applying them to control

charts. Furthermore, the findings of the proposed charts show that implementing

a new post-procedural care paradigm has reduced readmission rates for the PTBD

procedure. Overall, this study provides an effective method in the field of healthcare

monitoring to improve patient outcomes while reducing healthcare costs. Also, we

demonstrate the use of advanced machine learning models in control chart design and

implementation.
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CHAPTER 3

MULTILAYER MODELING FOR WIDE-RANGE CHEMICAL

CONCENTRATION PREDICTION IN SPECTROSCOPIC

3.1 Introduction

In chemical experiments, various types of spectroscopic techniques are widely

used to analyze the characterization of the electronic and structural properties of a

wide range of chemical compounds. They are beneficial in analyzing solid and liq-

uid mixtures due to their simplicity, low cost, and fast analysis time [42]. However,

the complexity of spectra datasets and the presence of overlapping peaks make it

challenging to accurately quantify the composition of the mixture. In recent years,

there has been a growing interest in using statistical methods to analyze the spectra

data, as this can provide a more rapid and cost-effective alternative to traditional wet

chemistry methods, which typically require a significant amount of time, expertise,

and resources, and may be limited by the sensitivity and selectivity of the analytical

techniques used. However, analyzing spectra data presents challenges rooted in high

dimensionality, multicollinearity, and the absence of global linearity. The large num-

ber of variables complicates analysis and interpretation, while multicollinearity can

destabilize models. Moreover, the non-linear nature of spectral data poses difficulties

in capturing accurate relationships. These challenges underscore the need for tailored

statistical techniques to ensure robust and more efficient results.

In the next section, we will examine some of the most commonly used statistical

methods in different types of spectra datasets and their advantages and applications.

Each statistical method will be introduced to address a common challenge associated
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with spectra data.

3.1.1 High Dimensionality and Multicollinearity in Spectra Data

Analyzing spectra data presents a dual challenge involving both high dimen-

sionality and multicollinearity. The abundance of variables in spectra data intro-

duces the curse of dimensionality, complicating the development of accurate analyses.

Simultaneously, the presence of multiple highly correlated absorbance values gives

rise to multicollinearity, further complicating the identification of relevant variables

for predictive tasks. This interplay of challenges underscores the need for sophis-

ticated statistical techniques, emphasizing both dimensionality reduction strategies

and methods to address multicollinearity, extract meaningful insights, and enhance

the robustness of predictive models in spectroscopic analyses.

Principal component regression and partial least squares are valuable methods

in addressing the complexities of high dimensionality and multicollinearity in spectra

data. Principal component regression tackles dimensionality by transforming the

original variables into a reduced set of principal components, capturing the essential

variability in the data. This not only mitigates the curse of dimensionality but also

enhances computational efficiency. On the other hand, partial least squares combines

the strengths of dimensionality reduction and regression, allowing for the extraction of

latent variables that capture both the spectral information and the response variable.

partial least squares effectively mitigate multicollinearity challenges by emphasizing

the relationships between absorbance values and prediction targets.

Principal component regression and partial least squares thus serve as powerful

tools to address these challenges and build robust predictive models. In a study of

ultraviolet-visible spectra data of fingerprinting for quality control analysis of food

and functional food, Farag et al. [5] used principal component regression to reduce the
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dimensionality of large ultraviolet-visible datasets in the food sample [5]. The study

showed that after reducing the number of components, they were able to identify any

patterns or trends in the spectral data that are relevant to quality control and visualize

the spectra data. Also, Shi et al. [43] used principal component regression and other

methods to analyze spectral data from an online ultraviolet-visible spectrophotometer

to detect changes in the concentration of dissolved organic carbon in drinking water.

They stated that principal component regression helped improve the efficiency of the

data analysis process and make it easier to identify any significant changes in water

quality parameters [43].

For other spectra data such as infrared spectra data, Togkalidou et al. [44] com-

pared different forms of principal component regression models to predict the solute

concentrations in aqueous solutions obtained from Infrared spectroscopic data. The

study used the mean width of the prediction interval as a criterion in the model se-

lection [44]. Suhandy et al. [7] used Principal component regression to develop a

calibration model in the spectral data in the ultraviolet-visible region for the quan-

tification of adulteration in Indonesian Palm Civet coffee. The study found that the

principal component regression models effectively predicted luwak content in luwak-

arabica coffee blends with a high level of accuracy. Jiao et al. [45] extended the prin-

cipal component regression model and used interval partial least squares and Moving

Window Partial Least Squares (MWPLS) models to predict the enantiomeric compo-

sition of tryptophan using spectral data. The study results showed that MWPLS was

the best model to build a calibration model for the spectral region using leave-one-

out cross-validation. Moreover, In a study that obtained the spectroscopic data from

micro-Raman spectra, Chawla et al. [46] used Partial Least Squares Discriminant

Analysis (PLS-DA) with other statistical models to classify bacterial pathogens from

mixed data. The study showed that the accuracy of the prediction reached 80%.
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3.1.2 Non-Linearity of Spectra Data

Another critical issue with the spectroscopic data is that they do not always

exhibit a linear relationship. This non-linearity can occur for various reasons, such

as overlapping spectral features, the non-linear form of the response variable, and

the non-linear interaction between molecules [6] [47] [48]. However, when the rela-

tionship between the variables is nonlinear, using a linear regression model can lead

to biased and inaccurate predictions of the target variable. Some researchers handle

this problem by simply discretizing the numeric variable into discrete values (classes).

For example, Diaz et al. [49] defined five classes of organic acid concentrations based

on their clinical significance: low, low-normal, normal, normal-high, and high. They

used clinical reference values to determine the threshold concentrations for each class.

While other researchers keep the target variable in its numerical form by applying

techniques like logarithmic and exponential transformations. Kvalheim [50] used log-

arithmic transformation to study dissolved organic matter in natural waters. The

study showed that using the logarithm of the concentration or absorbance values, the

data can be compressed to a more manageable range, which makes it easier to visual-

ize and analyze. Also, the author used techniques such as Near-Infrared Spectroscopy

(NIRS) to predict the concentration of multiple compounds in raw coffee beans. NIRS

is a non-destructive analytical technique used to measure the chemical composition

of a sample. It is based on the absorption of near-infrared light by molecules in the

sample, which produces a unique spectrum that can be used to identify and quantify

the different chemical components. The authors stated that using NIRS spectra data

helped reduce the range of the samples’ composition when performing PLS models.

Moreover, Hossain et al. [6] used a non-linear kernel function for a machine

learning model, support vector machines, to detect the presence of disinfectants in
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drinking water samples obtained from spectroscopic data. On the other hand, other

studies utilize the capability of Artificial Neural Network (ANN) to address the non-

linear challenge of the spectra data. For instance, Takahashi et al. [47] compared

linear models, PLS-DA, and non-linear models, ANN, to identify the presence of

vinegar in blends using Ultraviolet-visible spectra spectroscopic data. The study’s

findings indicate that non-linear models using ANNs are better suited to identifying

the components of binary mixtures of vinegar compared to PLS-DA models, as they

demonstrate higher accuracy.

While the mentioned methods have demonstrated efficacy in handling non-linearity

in spectroscopic data, it is essential to note that they often assume global linearity in

the relationship between variables. Despite their successful applications, these tech-

niques encounter challenges when the concentration range is exceptionally wide, and

there is no clear global linearity present. The inherent assumption of a uniform rela-

tionship across the entire concentration spectrum may limit the accuracy of predic-

tions, especially in cases where the data exhibits significant variability or non-linear

patterns within different concentration ranges. Recognizing this limitation, novel

approaches are presented to address the unique challenges posed by spectroscopic

data that encompasses a wide concentration range. The proposed methods seek to

overcome these limitations by introducing innovative multi-layer models specifically

designed to adapt to the non-linearity inherent in wide-ranging concentration profiles.

This chapter proposes two novel multi-layer models to address the non-linearity of

chemical concentrations in spectral data. These proposed methods can be integrated

with commonly used regression models such as partial least squares and principal

component regression to address the dimensional and multicollinearity challenges as-

sociated with spectra data. By integrating these regression models with the proposed

methods, the chapter suggests a comprehensive solution for handling the challenges
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associated with chemical concentrations in spectral data.

3.2 Matrials and Methods

3.2.1 Materials and Instruments

Ultraviolet-Visible (UV-Vis) spectra employing wavelengths from 200-950 nm

were obtained using a model 440 UV-Vis spectrophotometer manufactured by SI Pho-

tonics, which uses tungsten and deuterium light sources for the visible light spectrum

and ultraviolet spectrums, respectively. The light source switches from deuterium to

tungsten at 460 nm. The cuvette was a semi-micro quartz cuvette with a path length

of 10 mm produced by Fisherbrand. To develop a baseline, a blank of deionized water

was collected before measuring the UV-Vis spectra for the sample, which was inserted

into the cell holder. The SI 400 program was utilized to collect each spectrum, and

the raw data was stored in CSV files.

To create the reflectance element, nickel sulfate hexahydrate (NiSO4 · 6H2O,

> 98%) obtained from Sigma-Aldrich was dissolved in deionized water at molar con-

centrations ranging from 1 × 10−6M to 0.9M , where M notates mol per liter. The

samples were prepared by taking 1M NiSO4 stock solution, diluting small samples of

stock to 0.1 − 0.9M samples, and then serial diluting by a factor of 10 down to the

order of magnitude of 10−6M . Each sample was vortexed for about 15 seconds before

the next step of dilution.

The spectra were collected in triplicate, meaning that each concentration was

sampled 3 times in the spectrometer, and each sample had 3 spectra taken each time.

This gives 9 total spectra for each concentration coming from the same batch. This

was done to maximize data collected from the same batch of solutions.
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3.2.2 Spectral Data Analysis

In the introduction section, it was highlighted that the analysis of spectral data

poses several challenges, including high dimensionality, multicollinearity, and non-

linear relationships among the predictor variables. To address these challenges, two

novel multi-layer methods will be introduced that aim to effectively reduce the wide

range of chemical concentrations, which is the main cause of non-linearity in spectral

data. These novel techniques have been designed to work in conjunction with two

widely used regression models in chemometrics: principal component regression and

partial least squares. By combining these regression models with the new multi-layer

methods, a comprehensive solution is proposed for handling the challenges associated

with chemical concentration variability in spectral data. The proposed approach can

help to improve the accuracy and robustness of chemometric models and facilitate

the analysis of complex chemical systems.

3.2.2.1 Principal Component Regression & Partial Least Squares algo-

rithms

In a multiple linear regression model with j predictor variables, the Ordinary

Least Squares (OLS) objective is to minimize the sum of squared differences between

the predicted values (Xβ) and the actual response (Y ):

min
β

||Y −Xβ||22, (3.1)

where X is a matrix of dimensions i × j, and i denotes the number of samples and

j represents the number of spectral variables. Also, an i × 1 vector Y represents

the true response variable, and β is the vector of coefficients to be estimated. OLS
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solution is given by:

βols = (XTX)−1XTY, (3.2)

and

Ŷ = Xβols. (3.3)

Now, let’s consider the case where j (the number of columns in X) exceeds i

(the number of observations). The matrix XTX becomes singular (non-invertible)

because its rank is at most i, and it cannot be inverted. Therefore, the solution for

β does not exist, and the OLS estimation fails [51].

Principal Component Regression (PCR) and Partial Least Squares (PLS) are

powerful statistical techniques employed in regression analysis to address the issue of

high-dimensional data. PCR entails projecting predictor variables onto a set of un-

correlated variables called principal components derived from a Principal Component

Analysis (PCA). These components, representing linear combinations of the original

predictors, are utilized in a linear regression model to predict the response variable.

By reducing data dimensionality and selecting a subset of principal components that

capture key information, PCR enhances model accuracy and addresses multicollinear-

ity concerns, especially in the presence of numerous correlated predictors [52]. On

the other hand, PLS constructs latent variables through linear combinations of origi-

nal predictors that explain maximum variation in the response variable. PLS proves

advantageous when the number of predictors surpasses the number of observations,

making it a valuable tool in scenarios characterized by substantial predictor dimen-

sions. Moreover, The PLS algorithm goes beyond merely maximizing variance; it

processes information from both predictors and predicted variables, seeking factors

that not only explain maximum variance but also provide maximum correlation be-

tween them. A notable advantage of PLS is its ability to assign equal importance to
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predictors and predicted variables [53].

The PCR approach involves a two-step process. First, it conducts a PCA on the

matrix X. In PCA, X is decomposed using its singular value decomposition:

X = RΛV T (3.4)

with

RTR = V TV = I, (3.5)

where R and V are matrices of left and right singular vectors, and Λ is a diagonal

matrix with singular values. These singular vectors are ordered based on their corre-

sponding singular values, representing the square root of the variance (or eigenvalue)

ofX explained by each vector. The columns of V , known as loadings, and the columns

of G = RΛ are the factor scores or principal components of X. In the second step, V

is used to predict Y through a standard linear regression as the following:

Xpc = XVk, (3.6)

α̂ = (XT
pcXpc)

−1XT
pcY, (3.7)

where

α̂ = Vkβ̂. (3.8)

The prediction will be:

Ŷ = Xpcα̂ (3.9)

where the original data matrix X is first transformed into a lower-dimensional space

using principal components Xpc, as represented in Equation 3.6, and Vk contains the

first k principal components from the SVD of X. The new regression coefficients α̂

are then estimated in this reduced space as shown in Equation 4.6, which leverages
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the least squares method. Equation 4.7 shows the final predictions by combining the

dimensional-reduced data with the new estimated coefficients α̂.

This process uses the captured variance in X to predict the response variable Y .

This method addresses the multicollinearity of the spectra data due to the orthogonal

nature of the singular vectors. However, it is crucial to note that these components

were initially chosen to explainX rather than Y . Therefore, there is no assurance that

the principal components, which optimally explain X, will necessarily be pertinent

for predicting Y . Hence, PLS emerges as a valuable alternative. PLS derives a set of

latent variables from the predictor matrixX with the aim of maximizing the predictive

power for the response matrix Y . Unlike PCR, which focuses on explaining variance

in X, PLS seeks to capture the covariance between X and Y in its components.

PLS includes a set of orthogonal factors or loadings that decompose the dependent

variables as:

X = TP T , (3.10)

where T is the scores matrix from the latent variables, and P is the loading matrix

for X. The relationship between the latent variables and the response matrix Y is

formulated as:

Y = TBQT , (3.11)

where B is a diagonal matrix of regression coefficients, and Q is the loading matrix

for Y . PLS iteratively extracts latent variables by maximizing covariance between

the residuals of X and Y . Here, the columns of T matrix are the latent variables.

Optimal estimation of Y is achieved with a subset of latent variables; using too many

can result in complexity akin to PCR without enhancing predictive performance.

The prediction for new data Xnew utilizes the latent variable space derived from the

original dataset. The scores Tpc are obtained by transforming Xnew using the loading
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matrix P :

Tpc = XnewP. (3.12)

The vector of fitted values from PLS can be represented by the first PLS linear

combinations in Tpc. The predicted response Ŷ is then calculated from these scores,

employing the regression coefficients matrix B and the loading matrix Q for Y :

Ŷ = TpcBQT . (3.13)

This approach is particularly advantageous in scenarios where predictors exhibit mul-

ticollinearity and the relationship between predictors and response is complex. By

focusing on the covariance between X and Y , PLS ensures that the components

selected are both representative of the predictors and relevant for predicting the re-

sponse [54].

3.2.2.2 Dynamical Layered Regression (DLR) Method

To obtain an initial estimate of each concentration from the training set, we

first fit a regression model. However, the wide range of concentrations from the

spectra data often leads to poor initial estimates. To address this, we dynamically

create narrower layers for each rough estimate by identifying neighboring data and

truncating any values outside the interval. By creating these narrower layers, which

only include data close to each rough estimate, we can improve the accuracy of our

predictions. After that, we fit the regression model again using the narrower layers

from the training data and obtain final estimates using the testing data. If the interval

contains very few data points, making the prediction inefficient, we replace the new

estimate with the original rough estimate. The following are the steps of the DLR

method:
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• Obtain an initial estimate y1 using the first layer regression model from all the

training data {X, y}.

• Define a scaling factor s, such that s > 1, to adjust the width of the range.

• Define the lower and upper bounds of the range as l = y1
s
and u = y1 ∗ s.

• Find a subset of the training data {XR, yR}, whose concentrations fall within

the range [l, u]:

For all y ∈ yR :
y1
s

≤ y ≤ y1 ∗ s. (3.14)

• If the size of the subset is too small, set y2 = y1.

• Otherwise, train the second layer regression model from the subset {XR, yR}

and then obtain the final prediction y2 using the new model.

Equation 3.14 defines the range as the set of values in XR that fall within the

range of y1/s to y1 ∗ s. Where y1 is the initial prediction from the model, XR is the

set of neighboring data used to fit the regression model, and s is the scaling factor

that adjusts the width of the range.

3.2.2.3 Classified Layered Regression (CLR) Method

Initially, the CLR method starts by dividing the training data into distinct classes

based on concentration values using a data-driven approach. To ensure objectivity

and avoid prior knowledge, we employ appropriate methods, such as the median

for two classes, to evenly divide the data into distinct class intervals. The number of

classes, denoted by C, determines the partitioning of the data into C non-overlapping

intervals. Each interval represents a separate class, indexed from 1 to C. As the

concentrations in the testing data are unknown, we utilize a classification model,
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PLS-DA, to predict their classes. In the case of two classes (C = 2), The results

of the PLS-DA model are then used to divide the testing data into high and low

layers similar to the training data. After that, the regression model is fitted for each

class. By dividing the data into classes, we can effectively reduce the wide range of

concentrations without refitting the model for each prediction. The following are the

steps of the CLR classes in case of two classes (High - Low):

• Divide the training data into high and low classes based on a predetermined

threshold (e.g., median):

Htr = {Xtr, ytr|ytr > median(ytr)}, (3.15)

Ltr = {Xtr, ytr|ytr ≤ median(ytr)}, (3.16)

where Htr is the set of training data in the high class Ltr is the set of training

data in the low class, ytr is the concentration value of a training data, and

median (ytr) is the threshold value.

• Train a classification model (such as PLS-DA) on all the training data to predict

the classes for the testing data.

• Divide the testing data into high and low classes based on the predicted class

labels (High - Low):

Hts = {Xts, yts|ŷts = High}, (3.17)

Lts = {Xts, yts|ŷts = Low}, (3.18)

where ŷts is the predicted class of testing data using the PLS-DA model. Hts is

the set of testing data in the high class, and Lts is the data set in the low class.

• Finally, obtain the prediction of each class (Hts and Lts) by fitting the regression

model from their corresponding training sets Htr and Ltr.
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3.2.2.4 Models Evaluation

Evaluation Metrics:

In this study, we evaluated the accuracy of the regression models trained to

predict the concentration of chemicals from spectral data. To assess the predictive

performance of these models, we used two commonly used measures: mean squared

error (MSE) and root mean squared error (RMSE). MSE is calculated as the average

of the squared differences between the predicted values and the actual values. On the

other hand, RMSE is the square root of the MSE and measures the typical magnitude

of the error in the predictions. A lower value of the MSE indicates that the model has

a smaller average error in its predictions, while a higher value of the MSE indicates a

larger average error. Similarly, a lower value of the RMSE indicates that the model

has a smaller typical magnitude of error, while a higher value of the RMSE indicates

a larger typical magnitude of error[55] [7].

MSE:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2. (3.19)

RMSE:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (3.20)

where yi are the actual values, ŷi are the predicted values, n is the number of obser-

vations.

Cross Validation:

In the K-fold cross-validation test, the original dataset undergoes a randomized

partition into K sets. These sets are iteratively employed as validation datasets, with

the remaining K − 1 sets serving as training datasets [49]. Mathematically, if N is

the total number of data points, each of the K folds will contain approximately N
K
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data points. During each iteration, the model is trained on K− 1 folds and validated

on the remaining fold. This process is repeated K times, ensuring that each data

point experiences inclusion in both training and validation phases exactly once. The

performance metric for each iteration is denoted as RMSEj. The overall average

RMSE, denoted as RMSE, is calculated as follows:

RMSE =
1

K

K∑
j=1

RMSEj, (3.21)

where RMSEj represents the RMSE for the j-th iteration of the cross-validation

process. K-fold cross-validation, using RMSE as the evaluation metric, provides a

robust assessment of the model’s generalization performance across different subsets

of the data, aiding in the prevention of overfitting or underfitting.

3.2.3 Parameter Tuning

Parameter tuning is a crucial aspect of employing the proposed multi-layer meth-

ods. These methods often rely on various parameters significantly influencing their

performance and predictive accuracy. The importance of parameter tuning lies in

its ability to enhance the generalization capabilities of the proposed methods. By

carefully adjusting these parameters, we ensure the models can effectively capture

underlying patterns and relationships within the data.

The parameter tuning process is not arbitrary or subjective; rather, it is a sys-

tematic approach to optimize the model’s performance. Through various techniques

like random search and cross-validation, we iteratively explore different combinations

of parameter values to identify the configuration that yields the best results. This

rigorous approach empowers us to fine-tune the models, making them better suited

to handle diverse datasets and real-world scenarios.
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3.2.3.1 Tuning Number of Components

In regression models like PLS and PCR, the number of components is crucial in

determining model performance. These techniques are especially useful for handling

high-dimensional data in spectroscopic datasets, where noise and multicollinearity

can pose significant challenges. High-dimensional spectroscopic datasets often con-

tain redundant or irrelevant information, leading to multicollinearity, where predictor

variables are highly correlated. This can adversely affect the stability of the regres-

sion models. By tuning the number of components, we aim to capture the most

relevant and informative latent factors while reducing the impact of noise and multi-

collinearity. PLS and PCR are dimensionality reduction techniques that project the

original high-dimensional data into a lower-dimensional space represented by the cho-

sen components. These components are combinations of the original variables that

explain the maximum variability in the data. By selecting an appropriate number

of components, we can retain enough information to make accurate predictions while

mitigating the effects of noise and multicollinearity [50] [56]. Selecting the best num-

ber of components is extremely important to avoid adding noise or losing important

information in the data.

3.2.3.2 Tuning Scaling Factor for DLR Method

Tuning the scaling factor, denoted as s, during the DLR method in Section

3.2.2.2 is important as it significantly impacts the accuracy and effectiveness of the

predictions. Here, s serves as a critical parameter that determines the width of the

response variable range in each layer of the method. Finding the right balance for s

is crucial because it involves a trade-off between two essential factors.

On one hand, if s is set too high, the resulting range becomes excessively wide. In
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this scenario, the range could encompass a large amount of data, potentially reverting

back to the initial estimate obtained from the first-layer regression model.

On the other hand, setting s too low results in very narrow ranges. While

this may capture localized information around each rough estimate more precisely, it

comes at the cost of excluding potentially relevant data points that lie just outside the

narrow range. As a result, critical information might be lost, leading to suboptimal

performance and reduced accuracy in the final predictions.

Hence, finding an appropriate value of s is crucial to strike the right balance

between these trade-offs. It allows the DLR method to dynamically adjust the width

of the range, ensuring that the subsequent regression models are trained on relevant

and informative subsets of the data.

3.2.3.3 Tuning Number of Classes in the CLR Method

The number of classes is another critical parameter in the effectiveness of the

proposed CLR method. The choice of the number of classes directly affects how the

data is categorized, subsequently impacting the training of the regression models. To

ensure a robust and objective classification model, it is important to make informed

decisions about the number of classes. This is especially important when dealing with

a wide range of response variables.

We employ a systematic approach to exploring different class configurations. By

selecting different setups and comparing two and three classes, we gain valuable in-

sights into how the classification results differ. This comparative analysis allows us to

understand how the choice of the number of classes affects the method’s performance,

especially when dealing with data that spans a wide range. The method’s sensitiv-

ity to the number of classes becomes particularly significant in scenarios where the

target variable varies significantly across the data. By tuning this parameter and
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investigating the classification outcomes, we can tailor the model to achieve optimal

results, ensuring it captures the underlying patterns effectively and adapts well to

diverse datasets.

3.3 Results and Discussion

3.3.1 Data Summary and Preliminary Analysis

In Figure 8, we observe a collection of 911 UV-Vis spectra, each coded from

blue to red, representing concentrations in the dataset. The x-axis corresponds to

wavelength, and the y-axis shows absorbance levels. This dataset stands out for its

high dimensionality due to the abundance of curves. Notably, red curves indicate

higher concentrations, while blue curves signify lower concentrations. The connection

between concentration and absorbance levels is evident, with red shades signaling in-

creased absorption. Moreover, the wavelength shows two distinct absorbance peaks,

contributing to non-linearities in the dataset. Also, correlations among variables are

evident throughout the entire dataset, offering a clear depiction of the interconnected

nature of the spectral variables. This observation proves instrumental in unravel-

ing patterns of association and potential dependencies within the intricate UV-Vis

spectroscopic dataset.

Figure 9 shows two boxplots of the concentrations. As shown in the left boxplot,

the concentrations in this dataset exhibit a wide range, spanning from 1e-06 to 9e-

02. The second boxplot, which follows the log transformation, demonstrates that the

concentrations become more uniformly distributed around the median value. This

transformation results in a more balanced distribution, helping to mitigate the impact

of the wide concentration range.

Given the repetitive nature of the dataset (explained in Section 4.2), wherein
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Fig. 8.: UV-Vis spectral measurements.

Fig. 9.: Boxplots of the concentrations before (left) and after (right) the log transfor-

mation.

51



each set of nine curves corresponds to a single concentration, we calculated the av-

erage of every three curves. This decision was guided by the inherent structure of

the provided data, where measurements are repeated three times for each concentra-

tion. Averaging every three curves allows us to capture the underlying trend more

robustly by mitigating the impact of potential outliers or fluctuations within each

set of three measurements. This approach aligns with the intrinsic repetition in the

dataset, providing a more reliable representation of the concentration-specific spec-

tral characteristics and enhancing the overall stability of the analysis. This can help

to alleviate redundancy within the dataset by condensing the information related to

each concentration. By doing so, we streamline the data while preserving its essential

characteristics, making it more manageable and easier to work with and preparing it

for further analysis. Figure 10 shows a pair of plots showing the nine and the three

curves of three different concentrations. In the first set of plots on the left, where

we have nine curves representing a specific concentration, we see all the fine details

and variations in the data. On the right set, the plots show a simpler representation

with only three curves, achieved through averaging. Importantly, both sets of plots

demonstrate that our data reduction process hasn’t altered the essential characteris-

tics of the data or these individual curves. We’ve managed to keep the main patterns,

variations, and trends intact.

3.3.2 Predictive Models Tuning

As explained in Section 3.2, our approach involves using two regression mod-

els, PLS and PCR. We further improved these models by integrating two innovative

multi-layer models, DLR and CLR. These modifications aim to address challenges

related to chemical concentrations in spectral data. We employed a cross-validation

method to fine-tune various parameters, such as the number of components for PLS
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Fig. 10.: Sample of concentrations curves before the average (left with nine curves)

and after the averaging (right with three curves).
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and PCR models, the scaling factor in the DLR method, and the number of classes in

the CLR method. Finally, we compared the original PLS and PCR models with the

proposed methods using the evaluation metrics discussed in Section 3.2.2.4. We first

split the entire dataset into training and testing datasets. With a split proportion

of 70% for the training set with 131 observations and 30% for the testing set with

56 observations. Figure 11 depicts the results of tuning the number of components

for both PLS and PCR models. The x-axis spans the range of 1 to 100 components,

while the y-axis illustrates the RMSE obtained through cross-validation. Notably,

the plots reveal that PLS achieved its minimum RMSE with 17 components, whereas

PCR attained the lowest RMSE with 39 components. The resulting plots exhibit a

U-shape, wherein both low and high numbers of components lead to high RMSE,

while the minimum RMSE is observed at a moderate number of components. This

characteristic U-shape pattern indicates the trade-off between model complexity and

predictive performance. When the number of components is too low, the model may

oversimplify, resulting in high RMSE due to an inability to capture essential patterns

in the data. Conversely, an excessively high number of components may lead to poor

prediction. Therefore, identifying the point where the U-shape occurs is pivotal for se-

lecting an optimal number of components, striking a balance that ensures both model

simplicity and accuracy in prediction. This nuanced approach to tuning contributes

to the models’ robustness in handling unseen data. This process of tuning the number

of components is crucial as it helps optimize the model’s performance. Achieving the

minimum RMSE signifies the ideal configuration for each model, contributing to their

effectiveness in the prediction task.

For the DLR method, we also tuned the value of s, which determines the width of

the concentration range in each layer of the method. Figure 12 shows the results of this

tuning process, illustrating the relationship between s values range 1 : 300 and RMSE
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Fig. 11.: Number of components vs RMSE values for PLS (left) and PCR (right).

for both DLR-PLS and DLR-PCR models. Interestingly, both plots exhibit what is

known as elbow shape, where the plot often resembles an arm, and the “elbow” point

is where the performance improvement begins to slow down, suggesting that adding

larger s values does not significantly improve the model’s performance. The figure

indicates that extreme values of s lead to higher RMSE, while an optimal balance

is achieved with balanced values. Specifically, for DLR-PLS, the minimum RMSE is

attained at s = 70, while for DLR-PCR, the minimum occurs at s = 69.

These findings align with the theoretical considerations discussed earlier. Setting

s too high widens the concentration range excessively, potentially incorporating irrel-

evant data and returning to the initial estimate. Conversely, setting s too low creates

overly narrow ranges, sacrificing relevant data and compromising the model’s accu-

racy. The observed minima for s in the plots reflect the optimal trade-off, allowing

the DLR Method to dynamically adjust the range width, ensuring that subsequent

DLR models capture informative subsets of data for precise concentration predictions.

Additionally, during the DLR process, we further refined our approach by tuning the
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number of components when re-fitting the regression models for each layer. The

inherent variability in the number of observations across layers, determined by the

width of the concentration range, necessitated a nuanced adjustment of the number

of components. Recognizing that each subset of the DLR models demands a tailored

tuning of the number of components, we aimed to ensure the selection of an optimal

number for each layer. This adaptive tuning strategy acknowledges the diverse char-

acteristics of the data subsets within the DLR method, contributing to the precision

and effectiveness of the regression models.

Table 6 shows a sample of new concentration ranges and the corresponding count

of observations within each layer using the optimal s value for both DLR-PLS and

DLR-PCR models. Notably, the table shows the impact of using only neighboring

observations that are related to a specific concentration. This approach results in a

narrower concentration range than all training observations with a wide range (1e-

06 to 9e-02). By considering these relevant observations within a more constrained

range, there is a potential enhancement in prediction performance. This approach

contrasts with standard regression models that incorporate all observations, as the

targeted focus on relevant data points contributes to refined and potentially more

accurate modeling results.

0.2

0.3

0.4

0.5

1 51 101 151 201 251
S values

R
M

S
E

DLR−PLS

0.3

0.4

0.5

0.6

0.7

0.8

1 51 101 151 201 251
S values

R
M

S
E

DLR−PCR

Fig. 12.: s values vs RMSE for DLR models
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Concentration Range (Count) DLR-PLS Range (Count) DLR-PCR

1e-06 1e-06, 1e-05 (14) 1e-06, 1e-05 (14)

2e-06 1e-06, 3e-05 (17) 1e-06, 3e-05 (17)

3e-06 1e-06, 1e-04 (29) 1e-06, 1e-04 (29)

4e-06 1e-06, 2e-04 (32) 1e-06, 1e-04 (29)

Table 6.: A example of the new range and number of observations in each layer for

both DLR-PLS and DLR-PCR models.

For the CLR method, we will tune the number of classes through various config-

urations to identify the most effective classification approach. Hence, we partitioned

the training data into two configurations (Two classes and Three classes). The classes

in the two configurations, named “High” and “Low”, leverage the median concentra-

tion value as the threshold. Similarly, in the three-class configuration, the classes are

named “High”, “Middle”, and “Low”. This approach utilizes quantile-based thresh-

olds, dividing the concentration values into three distinct groups, each representing a

third of the data range as calculated from the training dataset. Specifically, we use the

one-third and two-thirds markers of the concentration distribution as thresholds to

define these categories. This ensures a balanced distribution of data between the two

classes. The effectiveness of both configurations was assessed through cross-validation,

using RMSE as the metric. The evaluation revealed that the two-class configuration

had a superior performance, registering an average RMSE of 0.22, compared to the

three-class configuration, which had an average RMSE of 2. This assessment was con-

ducted for the PLS model, and similar outcomes were observed when applying the

PCR model. Consequently, we selected the two-class configuration for implementing

the CLR method as described below.
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The two-class classification resulted in 72 concentrations being assigned to the

High class and 59 concentrations to the Low class. Utilizing the median for data clas-

sification offers objectivity in-class assignment. Subsequently, the PLS-DA model was

trained on the classified training data to predict the classes for the testing dataset.

The purpose of building the PLS-DA model is to leverage its ability to classify ob-

servations with unknown concentrations in the testing data. The model identified 25

concentrations in the High class and 31 concentrations in the Low class. The clas-

sification performance is shown by the confusion matrix presented in Table 7. The

matrix reveals that out of 51 correctly classified observations, 20 belong to the Actual

High class and 31 to the Actual Low class. However, the model only misclassified 5

observations. The accuracy of the PLS-DA model is calculated as the ratio of correctly

classified observations to the total number of observations, resulting in an accuracy

rate of 91%. This robust classification performance demonstrates the effectiveness of

the PLS-DA model in accurately assigning concentrations to their respective classes.

This approach significantly narrowed down the concentration range within each class.

Originally spanning from (1e-06, 9e-02), the concentration range for the High class

now lies between (1e-06, 5e-05), while the Low class is confined to the range (6e-05,

9e-02) as demonstrated in Table 8. This reduction in concentration range provides a

more focused and specific context for the subsequent prediction task using CLR-PLS

and CLR-PCR models. By classifying the concentrations into distinct classes, the

model is better equipped to make precise predictions within these refined ranges.

Predicted High Predicted Low

Actual High 20 0

Actual Low 5 31

Table 7.: Confusion matrix of PLS-DA model.
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Data Range

Full data 1e-06, 9e-02

Classified data (Low class) 1e-06, 5e-05

Classified data (High class) 6e-05, 9e-02

Table 8.: The concentrations range of High and Low classes.

3.3.3 Predictive Models Comparison
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Fig. 13.: Predictive accuracy comparison by all models.

Table 9 and Figure 13 display the RMSE values for six models, highlighting the

consistent outperformance of our proposed multi-layer models in comparison to the

standard models, which establish the baseline performance, with RMSE values of

0.35 and 0.37, respectively. The CLR models exhibit notable improvement, reduc-

ing RMSE to 0.22 for CLR-PLS and 0.21 for CLR-PCR. Similarly, the DLR models

demonstrate significant performance, particularly with DLR-PLS reducing RMSE by

43% to 0.20. The success of our proposed multi-layer models lies in their effectiveness

in addressing challenges associated with wide concentration ranges. The proposed

models excel in capturing local linearity and narrowing concentration ranges, result-
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ing in a significant enhancement in predictive accuracy compared to the standard

models. Figures 14 and 15 show actual concentrations and predicted values for the

four proposed models. Due to the wide range of actual values, traditional plotting

made details less visible. To improve visualization, a log transformation was applied

to both actual and predicted values. This compresses the scale, making patterns more

apparent by reducing the impact of outliers. The plots of the proposed models clearly

demonstrate the improved fit of the regression line compared to the standard models,

especially at high concentrations, addressing the challenges associated with a wide

concentration range.

Model RMSE (PLS) RMSE (PCR)

Standard models 0.35 0.37

CLR models 0.22 0.21

DLR models 0.20 0.23

Table 9.: RMSE values for the standard and proposed models

3.4 Conclusions

This study tackles the challenge of predicting concentrations in spectroscopic

data, a task rendered complex by high dimensionality, multicollinearity, non-linearity,

and especially the wide range of concentrations. The introduction of DLR and CLR

methods marks a significant stride in addressing these issues. Both methods signifi-

cantly reduce the wide concentration range, with DLR employing dynamic layering

and CLR using strategic data classification to enhance predictive accuracy. Among

them, the DLR-PLS method particularly excels, demonstrating its efficacy in manag-

ing the wide range concentration, as reflected by its lower RMSE values. Crucially,

the success of these methods is also attributed to careful parameter tuning, under-

scoring its importance in optimizing their performance. This research, therefore,
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Fig. 14.: Actual concentrations vs predicted values of PLS model.
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Fig. 15.: Actual concentrations vs predicted values of PCR model.
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not only provides effective solutions for complex spectroscopic analysis but also sets a

new benchmark in chemometric methodologies, enabling more accurate and insightful

concentration predictions.
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CHAPTER 4

MULTIPLE CHANGEPOINT DETECTION FOR

AUTOCORRELATED ORDINAL TIME SERIES

4.1 Introduction

Changepoint detection is a powerful method used to identify significant changes

in the statistical properties of time series data. A changepoint can signal a change

in the time series data’s mean, variance, or correlation structure. This technique is

applicable in diverse fields, including climate, healthcare, and many others. In cli-

mate science, for instance, changepoint detection can help identify changes in climate

patterns, such as shifts in temperature, precipitation, and extreme weather events,

providing insights into the impacts of climate change on ecosystems and human so-

cieties [57]. Also, in the healthcare system, changepoint detection can be applied to

identify critical changes in patient health status over time, which can aid in diagnos-

ing and treating various diseases [58]. Overall, changepoint detection is a crucial tool

for recognizing significant shifts in data patterns. By identifying these shifts, we gain

a deeper understanding of how various systems change over time.

4.1.1 Advancing from Single to Multiple Changepoint Detection

There is a myriad of changepoint detection methods available. Several studies

have focused on detecting a single changepoint known as At Most One Changepoint

(AMOC) detection, which assumes that a time series data contains at most one sin-

gle changepoint. Various methods can be used to estimate a single changepoint in

time series data. Shi et al [59] compared the effectiveness of several AMOC meth-
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ods, including various CUSUM and likelihood ratio statistics tests (LRT). However,

applications that involve longer time series may require more nuanced assumptions.

In these contexts, the assumption of AMOC may not be appropriate, as there

may be multiple transitions or gradual changes over time [60] [8]. To address this issue,

multiple changepoint detection methods have emerged. These methods are designed

to detect multiple changepoints in a time series and estimate the time and location of

each change. According to [60], the detection of multiple changepoints in time series

analysis can be traced back to the 1980s. In the simplest piecewise stationary model,

the time series is divided into m + 1 distinct regimes by m unknown changepoints

occurring at times 1 < τ0 < τ1 < · · · < τm+1 ≤ N + 1, with boundary conditions

τ0 = 1 and τm+1 = N + 1. Each regime has its own distinct mean and contains the

data points Xτi+1, . . . , Xτi+1
.

The model can be expressed as a simple piecewise function:

Xt = µr(t) + ϵt, (4.1)

where Xt is the observed value at time t, r(t) the regime index at time t, µr(t) denotes

the regime mean, and ϵt represents the stationary causal and invertible ARMA(p, q)

noise term. The task of multiple changepoint detection is to estimate the number and

locations of changepoints. This problem is particularly challenging when the number

and locations of change points are unknown [61]. In the following section, we will

present some popular techniques utilized to detect multiple changepoints.

4.1.2 Multiple Changepoint Detection Methods

The various techniques for multiple changepoint detection can be categorized

into two main groups: sequential binary segmentation methods and model selection

methods [60]. The binary segmentation approach, first introduced by Scott and Knott
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[62], uses any AMOC method to estimate multiple changepoint configurations. The

process begins by testing the entire time series for a single changepoint. Once a

changepoint is identified, the series is divided into two subsegments, and each subseg-

ment is analyzed for additional changepoints using the AMOC strategy. This process

is repeated until no subsegment shows any evidence of a changepoint or a stopping

criterion is met. The binary segmentation method is particularly effective when the

changepoints are well separated, and the means of each segment are distinct.

However, basic binary segmentation struggles with detecting short segments

within long segments [59] [63]. Therefore, Olshen et al. [64] proposed Circular Binary

Segmentation (CBS) to improve the basic binary segmentation by splicing the seg-

ment ends into a circle and searching for short segments within it. Another extension

to binary segmentation is Wild Binary Segmentation (WBS) which was introduced by

Fryzlewicz [65]. WBS works by randomly partitioning the data into smaller segments

and applying binary segmentation to each segment independently. This allows WBS

to detect changepoints at different scales and reduces the algorithm’s computational

complexity.

Another approach to multiple changepoint detection involves fitting a model to

the data and then using the model to estimate the number and locations of change-

points. Since there are many possible changepoints in a time series, a penalty term can

be added to the objective function to discourage the detection of too many change-

points. This is because too many changepoints can lead to overfitting of the model.

The penalty term is added to the objective function to discourage the model from

fitting the data too closely. This is done by adding a cost to the model for each

detected changepoint. The cost of each changepoint is proportional to the penalty

term. The penalty term is chosen so that the model is penalized more for detecting

too many changepoints than for not detecting enough changepoints [59]:
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F (θ) = C(θ) + λP (θ), (4.2)

where θ represents the model parameters, including m changepoints at the times

τ1, ..., τm and other parameters, C(θ) is the cost function, P (θ) is the penalty function,

and λ is the penalty parameter that controls the trade-off between goodness of fit

and model complexity. The cost function C(θ) quantifies the cost or loss associated

with a particular model or set of model parameters. Where lower values of the cost

function indicate better model fit. The penalty function P (θ) is used to discourage the

detection of too many changepoints, as this can lead to the overfitting of the model.

It is typically a function of the number and locations of the changepoints detected by

the model. The specific form of the penalty function depends on the problem being

addressed. The goal of multiple changepoint detection is finding a configuration

that minimizes the objective function F (θ) with respect to the model parameters θ.

This involves finding the optimal number and locations of the changepoints that best

explain the data while balancing goodness of fit and model complexity [59].

Equation 4.2 incorporates a penalization term to the objective function in two

different methods: penalized least-squares-based methods and penalized likelihood-

based methods. The method of least squares and maximum likelihood are two ap-

proaches that can be used to estimate parameters in a statistical model. Least squares

minimize the sum of the squares of the differences between the observed data and the

model prediction, while maximum likelihood maximizes the likelihood function, which

is the probability of observing the provided data given the parameters. Ridge Re-

gression and Least Absolute Shrinkage and Selection Operator (LASSO) are popular

penalized least-squared methods. On the other hand, common penalized likelihood

methods involve the Akaike Information Criterion (AIC), the Modified Bayesian Infor-
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mation Criterion (mBIC), and the standard BIC. Also, Minimum Description Length

(MDL) is another popular penalty term [66] [59]. Bleakley et al. [67] proposed a

multiple changepoint detection method using the group fused LASSO, a least squares

penalized regression technique that promotes sparsity and clustering of the change-

points. The study demonstrated that the proposed method outperformed other ex-

isting methods when tested on different high-dimensional biological datasets. Also,

Lu et al. [61] used likelihood penalization with an MDL as the penalization term

to perform multiple changepoint detection. The method was evaluated on a simu-

lated dataset and was found to be effective in estimating the number and location of

changepoints. The method was also applied to a century of monthly temperatures

from Tuscaloosa, Alabama, and was able to identify the changepoints that occurred

in the data. In general, the likelihood-based approach is a more flexible and robust

method for estimating model parameters than the least squares-based approach. This

is because the likelihood-based approach does not carry any assumptions about the

data distribution, while the least squares-based approach assumes that the data is

normally distributed. On the other hand, the likelihood-based approach is more com-

putationally expensive than the least squares-based approach. However, the extra

computational cost of the likelihood-based approach is justified because it provides a

more complete and accurate picture of the uncertainty in the model parameters [66].

4.1.3 Multiple Changepoints in Categorical Time Series

In many cases, categories are employed to represent various aspects, such as sys-

tem states or user behaviors. The significance of analyzing categorical data is growing

steadily within industrial settings. Detecting changes in categorical data enables us

to detect shifts in the distribution of categories over time. By recognizing and un-

derstanding these changes, we gain valuable insights into the system, allowing us to
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take corrective measures and prevent potential issues from arising [68]. If the cate-

gorical variables possess an inherent order or ranking, incorporating this ordinality

into the analysis can provide valuable information and improve the accuracy of de-

tecting meaningful changes [69]. Within the domain of changepoint detection, the

significance of categorical data has yet to be considered by numerous studies, result-

ing in less accurate changepoint detection. However, there are studies that actively

take into account the categorical features when conducting changepoint detection.

For example, Wang et al. [70] used a modified log-linear model that incorporated a

continuous latent variable to represent the underlying structure of the ordinal cate-

gorical data. This modification allowed them to effectively capture and analyze the

ordinal information within their changepoint detection approach. Moreover, change-

point detection methods for categorical data often assume independent, identical,

and distributed errors. However, such assumptions don’t apply to hourly, daily, or

monthly data with recurring patterns and strong autocorrelations. As stated in [8],

ignoring these correlations can significantly distort changepoint findings, even con-

fusing positive autocorrelation with a mean shift. Hence, Li and Lu [8] employed a

CUSUM type test to detect a single changepoint within autocorrelated ordinal cat-

egorical time series data. Where an Autoregressive Ordered Probit (AOP) model is

used as an underlying model to describe ordinal categorical time series. The study was

demonstrated through a simulation and applied to real-world rainfall time series data

categorized by location in Albuquerque, New Mexico. Although these studies have

investigated changepoint detection for ordinal categorical time series data, a research

gap exists in multiple changepoint detection over autocorrelated ordinal categorical

time series data, based on the current extent of our knowledge. This unexplored

domain constitutes the foundational emphasis of our ongoing study.

This chapter primarily focuses on detecting multiple changepoints within auto-
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correlated ordinal time series data. Our methodology encompasses a comprehensive

approach, leveraging the AOP model for a nuanced analysis of such data. Param-

eter estimation within the AOP model is achieved through the pairwise likelihood

method, which supports our objective function and is further refined by a penalized

likelihood incorporating a penalty term. We employ a genetic algorithm for efficient

random walk searches to address the challenge of the extensive array of potential

multiple changepoint configurations. Among varying patterns and trends, it becomes

evident that not all potential changepoints significantly impact the data’s structural

interpretation. This insight prompts the introduction of the “effective changepoint”

concept, which distinguishes between statistical anomalies and meaningful shifts in

the time series. For comparative analysis and methodological enhancement, binary

segmentation, combined with the CUSUM type test, is utilized within the framework

of the AOP model used in [8]. Finally, The method is utilized on Los Angeles’ Air

Quality Index (AQI) data aiming to detect changes in air quality over daily data.

4.2 Methodology

4.2.1 AOP Model

In this section, we will adopt the AOP, which was introduced by Müller and

Czado [71]. An AOPmodel can be seen as a dynamic expansion of the familiar ordered

probit OP model. The AOP model keeps the conventional regression component of

the OP model while incorporating an autoregressive part [72].

Consider a discrete response time series represented as {Xt, t = 1, . . . , T}. The

values of Xt come from an ordered collection {1, . . . , K}, where K is an integer larger

than 1. Within this framework, there exists an underlying latent continuous process

{Zt, t = 1, . . . , T} that generates Xt through a clipping mechanism. In other words,
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Xt is determined by which interval Zt falls into:

Xt = k ⇐⇒ Zt ∈ {ck−1, ck}, k ∈ {1, . . . , K − 1}, (4.3)

and

Zt = µt + ϕ(Zt−1 − µt−1) + ϵt. (4.4)

The set of unknown threshold parameters that determine the boundaries of the

intervals denoted as {c1, c2, . . . , cK−1, cK}, satisfies the conditions:

−∞ = c0 < c1 < c2 < . . . < cK−1 < cK = ∞.

In Equation 4.4, Zt represents the latent process at time t. Where µt denotes the

mean of Zt at time t, which can vary with time. With εt ∼ N (0, σ2), representing

independent Gaussian distributed random variables. Additionally, ϕ is a parameter

associated with the autoregressive component. We assume that the autoregressive

part of the latent process is stationary, i.e., |ϕ < 1|. It’s important to recognize that

the AOP model differs from the standard cumulative probit model solely due to the

inclusion of the parameter ϕ, which brings about dynamic behavior. We set σ2 to

equal 1−ϕ2 in our model to avoid the identifiability problem between parameters. By

doing that, we ensure that the variability of the latent variable Zt remains constant

throughout the time series. In this context, the mean µt is expressed as follows:

µt = α0 +∆I(t≥τ), (4.5)

where α0 and ∆I(t≥τ) represent the intercept and a magnitude with a changepoint

indicator, respectively. We adopt the binary segmentation discussed in Section 1.2

utilizing the CUSUM type test with an AOP model employed in [8]. The AOP model,

tailored for ordered categorical responses, incorporates an autoregressive structure to
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capture temporal dependencies. Once a single changepoint is identified using the

CUSUM test, binary segmentation comes into play. This recursive application of

binary segmentation on the subsegments allows for identifying additional change-

points. The iterative process continues until no further changepoints are detected

or a predetermined stopping criterion is met. We will employ this combined binary

segmentation method and the CUSUM test (BS-CUSUM) as a baseline approach for

multiple changepoint detection, against which we will evaluate the performance of

our proposed method. In [8], a reconstructed latent variable, denoted as Z̃t was in-

troduced as an estimate of the latent variable Zt at time t, based on the observed

categorical variable Xt. It is calculated as the conditional expectation E(Zt|Xt),

representing the most likely value of Zt given Xt alone.

To estimate the parameters of the AOP model, we assume that the number

of changepoints and their locations are known. Let θ =(c2, ..., ck−1, α0,∆, ϕ) be a

vector includes all the AOP model parameters. However, estimating parameters for

the AOP model can present challenges, especially when dealing with a full likelihood

function involving a high-dimensional Gaussian integral that’s difficult to numerically

assess [8]. As mentioned in [72], using a frequentist approach based on the likelihood

for parameter estimation in the AOP model can lead to high computational costs.

The estimation process of AOP models can be done using a range of methods. As

an example, Niu et al [60] introduced the utilization of Markov chain and hidden

Markov chain modeling for probit models. However, Varin and Vidoni [72] raised

concerns about the hidden Markov approach, pointing out that the number of pa-

rameters exponentially increases with the chain’s order. In response, they introduced

an alternative estimation technique based on pairwise composite likelihood, leveraging

bivariate Gaussian probabilities to address these issues. From a different perspective,

Müller and Czado [71] employed a Bayesian inference approach to address parameter
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estimation in the AOP model. Also, Li and Lu [8] considered a sequential parameter

estimation method to estimate the parameters of the AOP model. In the next section,

we will use the pairwise likelihood estimation method introduced in [72] for fitting

the AOP model.

4.2.2 Pairwise Likelihood Function for AOP Models

The AOP model assumes that the observed ordered categorical responses Xt at

time points t = 1, 2, . . . , n are generated from a latent continuous variable Zt. The

likelihood is the following Gaussian integral with n dimensions:

L(θ, X1, ...Xn) = P (X1, ...Xn; θ) =

∫
B(X1,...Xn)

P (Z; θ)dZ1 · · · dZn, (4.6)

where B(X1, ...Xn) = {Z = (Z1, . . . , Zn) : cXi−1 < Zi ≤ cXi
, i = 1, . . . , n} and

p(Z; θ) is the joint Gaussian density of Z = (Z1, . . . , Zn). Hence, when trying to assess

the classical likelihood function and compute the corresponding maximum likelihood

estimator, the process can become quite challenging due to the high dimensions of

n [72]. To address this challenge, we will approach it using the pairwise likelihood

function. The key advantage of using pairwise likelihood is that it significantly reduces

the computational load, making it feasible to handle high dimensional datasets [73].

Here, we create bivariate marginal distributions known as pairwise functions. Here, we

consider the probability of observing pairs of responses (Xi, Xj) for all combinations

of time points i and j where i < j. The pairwise likelihood LPL(θ,X1, ...Xn) is the

product of the bivariate probabilities for all unique pairs of observations:

LPL(θ,X1, ...Xn) =
n−1∏
i=1

n∏
j=i+1

Lij(θ;Xi, Xj), (4.7)

where Lij(θ,Xi, Xj) = P (Xi, Xj; θ), i = 1, . . . , n− 1, j = i+ 1, . . . , n and its loglike-

lihood is
∑n−1

i=1

∑n
j=i+1 log(P (Xi, Xj; θ)).
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Here, we will apply the pairwise likelihood method to the likelihood function of

the AOP model in Equation 4.6:

LPL(θ;X) =
n−1∏
i=1

n∏
j=i+1

P (Xi, Xj; θ) (4.8)

=
n−1∏
i=1

n∏
j=i+1

∫
B(Xi,Xj)

P (zi, zj; θ)dzidzj (4.9)

=
n−1∏
i=1

n∏
j=i+1

{
F (cXi

− µi, cXj
− µj; θ)− F (cXi

− µi, cXj−1 − µj; θ)

− F (cXi−1 − µi, cXj
− µj; θ) + F (cXi−1 − µi, cXj−1 − µj; θ)

}
,

(4.10)

where B(Xi, Xj) = {(zi, zj) : cXi−1 < zi ≤ cXi
, cXj−1 < zj ≤ cXj

}, and p(zi, zj, θ) and

F (·, ·, θ) indicate the bivariate Gaussian density and distribution function of the data

pair (Zi, Zj). Then, the log-likelihood function is:

log(LPL(θ;X)) = log
{n−1∏

i=1

n∏
j=i+1

P (Xi, Xj; θ)
}

(4.11)

=
n−1∑
i=1

n∑
j=i+1

log
{
P (Xi, Xj; θ)

}
(4.12)

=
n−1∑
i=1

n∑
j=i+1

log
{
F (cXi

− µi, cXj
− µj; θ)− F (cXi

− µi, cXj−1 − µj; θ)

− F (cXi−1 − µi, cXj
− µj; θ) + F (cXi−1 − µi, cXj−1 − µj; θ)

}
.

(4.13)

We aim to maximize this pairwise log-likelihood function in (4.13) with respect

to the model parameters. The optimization process involves finding the values of the

model parameters that maximize the log-likelihood function. Once optimized, these

parameter values serve as the estimates that best explain the observed data within

the AOP model framework.
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4.2.3 Objective Function and Model Selection

As outlined in Section 4.1.2, we add a penalty term to the negative log-likelihood

function in (4.6):

fobj = −2 log(LPL) + Penalty, (4.14)

where fobj is the objective function, and −2 log(LPL) is the negative log-likelihood

pairwise function. In Equation (4.14), we need to estimate the model parameters in

addition to different configurations of the number of changepoints and their locations;

this process is known as a model selection problem [63]. Here, the objective function

is a penalized likelihood function with two different penalty terms, MDL and mBIC:

MDL = −2 log(LPL) +
m+1∑
j=1

log(τj − τj−1) + 2
m∑
j=2

log(τj) + 2 log(m), (4.15)

and

mBIC = −2 log(LPL) +
1

2
[3m log(N) +

m+1∑
j=1

log(
τj − τj−1

N
)], (4.16)

where N is the length of the time series, m is the number of changepoints with

locations 1 = τ0 < τ1 < · · · < τj < · · · < τm+1 = N + 1. For a comprehensive

understanding of the derivation of the formulas for the aforementioned penalties,

please refer to [63] and [61] for the MDL penalty. Additionally, [59] and [74] provide

detailed explanations for the mBIC penalty.

The goal now is to find the value of m changepoints and locations τ1, ..., τm that

minimize the objective function 4.14. One way to do this would be to check the op-

timal model for every possible combination of m and τ1, ..., τm. However, in a series

of length N, there are 2N−1 configurations of a number of changepoints and their lo-

cations. Since the search process is computationally intensive, the genetic algorithm

offers a practical solution to expedite this process. The genetic algorithm efficiently
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explores and refines potential solutions by employing principles of natural selection

and evolution. This strategic exploration helps narrow the search space, enabling

faster and more efficient identification of optimal configurations [75]. As a result,

implementing the genetic algorithm becomes instrumental in mitigating the compu-

tational demands associated with multiple changepoint detection, making the overall

process more efficient and feasible. genetic algorithm has proven effective in multi-

ple changepoint detection, as demonstrated in various studies. For instance, Li and

Lund [63] applied a genetic algorithm to detect changepoints of annual precipitation

data from New Bedford, Massachusetts, and the tropical cyclone record in the North

Atlantic basin. Also, Lu et al. [61] used the genetic algorithm to analyze a century

of monthly temperatures from Tuscaloosa, Alabama. The following section provides

a detailed exploration of the genetic algorithm process.

4.2.4 Genetic Algorithm

Genetic Algorithm (GA) begins with an initial set of individuals, each represent-

ing a potential solution to the problem at hand. Every individual, or chromosome, in

this population is assessed based on the fitness function, which is a function that mea-

sures the performance of the represented solution. Individuals demonstrating higher

fitness levels are more likely to be chosen as parents during the subsequent repro-

ductive phase. During the crossover process, where genetic information is exchanged

between parents, offspring (children), are generated. This exchange imparts certain

characteristics of the parents to the offspring, yielding a combination of advantageous

characteristics. Following this, a mutation stage introduces randomness to the pop-

ulation by applying random alterations to individuals with a small probability. The

mutation process can enhance the overall diversity of the population and prevent the

algorithm from converging to a local minimum [76] [77] [61].
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The GA procedure unfolds through several key stages as the following:

Initial Populatoin: In the first batch, changepoint times were randomly and

independently chosen for each year. The size of this initial set might vary and can

be changed if necessary. We used 0.06 probability to match average changepoint

numbers as stated in [63].

Chromosome Representation: Establishing the representation of the chro-

mosome is an important step in the GA process. In this context, each individual is en-

coded as a set of parameters: the number of changepoints (m) and the specific change-

point locations τ1, ..., τm. This results in a chromosome, denoted as u = (m, τ1, ..., τm),

forming an integer vector of length m+1. We can see that the length of the chromo-

some relies on the number of changepoints in the population.

Crossover: The crossover process produces children in subsequent generations

by combining the fitter individuals from the initial generation. Two parents, repre-

senting mother and father, are selected through a linear ranking and selection method,

where selection probability is proportional to an individual’s rank in optimizing the

objective function. The selected parents contribute to creating the next generation’s

offspring through a crossover procedure, ensuring that a mother and father are dis-

tinct and not identical chromosomes.

Mutation: Mutation introduces chromosome diversity and prevents premature

convergence. This mechanism ensures occasional exploration of genetic combinations

different from the current generation, maintaining a diverse population and avoid-

ing suboptimal solutions. Typically governed by a low constant probability, muta-

tion involves modifying parameters, contributing to adaptability, and preventing zero

probability scenarios in the admissible parameter space.

We can summarize the GA process as the following:
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• Initialize a population with random solutions.

• Verify termination conditions: If the generation limit is reached, stop; otherwise,

proceed.

• Assess individual fitness and select the most promising for reproduction.

• Employ crossover and mutation to create a new generation of offspring.

• Evaluate the fitness of the newly generated offspring.

• Replace the least fit individuals in the population with the offspring.

• Return to the termination check.

Common termination conditions are:

• Discovery of a solution that satisfies minimum criteria.

• Reach a fixed number of generations.

• The ranking of the generation is not improving anymore; it’s reached its peak.

• Manual inspection and intervention.

Various improved versions of the GA exist. For instance, the GA process includes

migration through islands. Here, the population is strategically divided into islands,

enabling individuals with high fitness levels to migrate between them. Key param-

eters influencing this migration strategy include the number of islands (subpopu-

lations), migration frequency, the number of migrants per event, and the method

employed for selecting individuals for migration. This parallel approach facilitates

a more comprehensive exploration of the solution space, ultimately enhancing the

overall performance and efficiency of the GA.
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4.2.5 Effictive Number of Changepoints

In evaluating changepoint detection methods, it is crucial to compare the de-

tected changepoints against the true number of changepoints, denoted by m. How-

ever, this direct comparison might only sometimes reflect the practical challenges

encountered in various simulation settings, characterized by trends and influenced by

different parameters. Recognizing that some changepoints may be inherently difficult

to detect, we introduce the notion of the “effective number of changepoints.” This

concept shifts the focus from the actual number of changepoints to those that are

practically detectable, acknowledging the reality that certain changepoints, due to

their subtlety, may not significantly impact the analysis.

To quantify the effectiveness of changepoints, we propose a methodology based

on confidence intervals for each segment of the time series. These confidence intervals

are defined as follows:

CIupper = X̄seg[i] + Zα/2

√(
1 + ϕ

1− ϕ

)
/n, (4.17)

and

CIlower = X̄seg[i]− Zα/2

√(
1 + ϕ

1− ϕ

)
/n, (4.18)

where X̄seg[i] is the sample mean of the ith segment, n is the size of ith segment, ϕ is the

autocorrelation parameter, and Zα/2 represents the significance level corresponding to

the desired confidence interval. This method enhances traditional confidence interval

calculations by accounting for the margin of error influenced by the series’ autocorre-

lation. A changepoint is considered effective if the confidence intervals on either side

indicate a shift to different categories of ordinal data. In contrast, a changepoint is

deemed ineffective if the adjacent confidence intervals encompass the same categories,

suggesting that such a changepoint may not be significantly detectable. By adopting
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this criterion, our evaluation emphasizes the changepoints that meaningfully alter the

data’s structure and are critical for detection.

4.2.6 Evaluation Methods

This section outlines our approach to comparing various methods of detecting

multiple changepoints in time series data. Our comparison is grounded in a series of

simulations designed to rigorously test each method’s performance against two critical

criteria: the accuracy in detecting the number of changepoints and the precision in

identifying their exact locations. Firstly, to assess each method’s ability to determine

the number of changepoints correctly, we compute the proportion of simulations in

which the technique accurately identifies the true number of changepoints.

Shi et al. [59] present a novel approach to address the complexity of compar-

ing multiple changepoint configurations, especially when segmentations differ in the

number and exact locations of changepoints. Their method introduces a changepoint-

specific distance measure that simultaneously accounts for two crucial aspects of

changepoint analysis: the number of changepoints and their precise locations. This

approach provides a comprehensive and balanced metric for comparing changepoint

configurations. It is particularly effective when configurations have many change-

points, as it emphasizes differences in their count. In their simulations, they employed

this distance measure to compare estimated changepoint configurations against the

true configuration, offering a robust framework for evaluating the accuracy of multiple

changepoint detection methods.

In addition to the evaluation metrics mentioned above, we will use the con-

cept of effective number of changepoints (discussed in Section 4.2.5) to assess the

detection performance. This approach considers the differences between the true ef-

fective number of changepoints and the number detected by each proposed method
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for each time series in each simulation. We calculate the proportions of these differ-

ences, where ideally, a zero difference indicates a perfect match between the detected

and the true effective number of changepoints, thus signifying optimal performance.

Proportions concentrated at zero would indicate higher accuracy in detecting the ef-

fective changepoints. Positive differences indicate an overestimation (overdetection)

of changepoints, while negative values indicate an underestimation (underdetection)

of the true effective changepoints. By evaluating the proportions of these differences,

we gain additional insights into the performance of changepoint detection methods,

especially in their ability to discern changepoints that are substantively significant

within the data.

4.3 Simulation Studies

In this section, we will run different simulation studies to investigate the efficiency

of the proposed methods. All the simulations involve five hundred series of length

N = 500. We fixed the variance of the latent process to be Var(Zt) = 1. The

autocorrelation parameter selected was ϕ = 0.5, and the white noise variance was

Var(ϵt) = 1 − ϕ2. In our model, we set κ = ∆√
(σ2)

, which denotes the signal-to-

noise ratio, and we introduce the same changing magnitude ∆ between the adjacent

changepoints. The mean shifts are adjusted based on the signal-to-noise ratio ∆ =

κ
√
σ2. The magnitude of the mean shifts is critical. Whereas we increase κ, the

magnitude of the mean shifts becomes larger. Therefore, we examine three different

values of κ: 0.5, 1, and 2. Table 10 summarises the main parameter settings for the

following methods:

• Binary Segmentation + CUSUM on TRUE Zt (BS-CUSUM on Zt).

• Genetic Algorithm + MDL on TRUE Zt (GA-MDL on Zt).
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• Genetic Algorithm + mBIC on TRUE Zt (GA-mBIC on Zt).

• Binary Segmentation + CUSUM on Reconstructed latent Z̃t (BS-CUSUM Z̃t).

• Genetic Algorithm + MDL on Categorical Xt (GA-MDL on Xt).

• Genetic Algorithm + mBIC on Categorical Xt (GA-mBIC on Xt).

Parameters Value

Number of categories (K) 3

Time series length (Ts) 500

Auto-correlation (ϕ) 0.5

Var(Zt) 1

σ2 1− ϕ2

signal-to-noise ratio (κ) ∆√
σ2

Mean shift (∆) κ
√
σ2

Table 10.: Parameters of general setting.

For every simulation setting, we provide two plots. The upper plot displays

the time series of the latent variable Z, while the lower plot focuses on the time

series of the categorical variable X. In the plot corresponding to the latent variable,

each segment includes a confidence interval, as elaborated in Section 4.2.5. The blue

dashed line represents the upper confidence limit, and the red dashed line represents

the lower confidence limit. In the plot for the categorical time series, the red dashed

line signifies the sample mean for each segment. In addition, the positions of the

changepoints are highlighted by vertical green dashed lines, offering a clear visual cue

to identify significant transitions within the dataset.

4.3.1 Three Changepoints Setting (Up Down Up, κ = 2)

In this simulation set, we maintain the general specified parameters in Table 10

with the introduction of three changepoints. The changepoints are placed in times
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t= 125, 250, and 375. The mean shifts follow a uniform distribution across time

intervals. Specifically, µt starts at -0.5 for the first segment, then increases to 1.23 for

the second segment in times 126–250, then decreases to -0.5 during times 251–375,

and rises to 1.23 for the last segment. With κ = 2, since µt = α0 + ∆, if we have

α0 = −0.5, we will have the changepoint parameters, shown in Figure 16:

• α0 = −0.5, mean of first segment: µ1 = α0 = −0.5;

• ∆1 = 1.732, mean of second segment: µ2 = α0 +∆1 = 1.23;

• ∆2 = 0, mean of third segment: µ3 = α0 +∆2 = −0.5;

• ∆3 = 1.732, mean of forth segment: µ3 = α0 +∆3 = 1.23

Effective Percentages of Detected Changepoints
Up Down Up, κ = 2

Avg
Dist

0 1 2 3 4 5 6 m > 7

Effective
Changepoints:

0 0 0 100 0 0 0 0

BS+CUSUM: Zt 0 10.05 4.39 13.08 17.48 15.52 14.06 26.2 2.52

GA+MDL: Zt 0.78 0.19 1.17 96.97 0.87 0 0 0 0.05

GA+mBIC: Zt 8.00 12.69 0.29 78.71 0.29 0 0 0 0.60

BS+CUSUM: Z̃t 0 16.40 6.34 64.64 10.54 1.66 0.29 0.097 0.61

GA+MDL: Xt 0 0 0 99 1 0 0 0 0.03

GA+mBIC: Xt 0 0 0 77 20 32.3 0.33 0 0.28

Table 11.: Empirical proportions of the estimated number of changepoints, and the

average distance (Up Down Up, κ = 2). The true value of m is 3 in Zt.

4.3.2 Three Changepoints Setting (Up Down Up, κ = 1)

Similarly, we repeat the same pattern but with κ = 1. This simulation set keeps

the same pattern with a smaller mean shift. The following is the calculation of each

segment’s mean, shown in Figure 17:
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Fig. 16.: Time series plots of latent variable (Z) and categorical variable (X) for the

Up Down Up, κ = 2 setting.

• α0 = −0.5, mean of first segment: µ1 = α0 = −0.5;

• ∆1 = 0.866, mean of second segment: µ2 = α0 +∆1 = 0.366;

• ∆2 = 0, mean of third segment: µ3 = α0 +∆2 = −0.5;

• ∆3 = 0.866, mean of forth segment: µ3 = α0 +∆3 = 0.366
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Fig. 17.: Time series plots of latent variable (Z) and categorical variable (X) for the

Up Down Up, κ = 1 setting.

4.3.3 Three Changepoints Setting (Up Down Up, κ = 0.5)

Here, we set κ = 0.5, leading to smaller shifts in the mean. Below, we present

the computation of each segment’s mean, shown in Figure 18:

• α0 = −0.5, mean of first segment: µ1 = α0 = −0.5;

• ∆1 = 0.433, mean of second segment: µ2 = α0 +∆1 = −0.067;

• ∆2 = 0, mean of third segment: µ3 = α0 +∆2 = −0.5;
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Effective Percentages of Detected Changepoints
Up Down Up, κ = 1

Avg
Dist

0 1 2 3 4 5 6 m > 7

Effective
Changepoints:

0 0.6 8.2 91.2 0 0 0 0

BS+CUSUM: Zt 0.8 2.7 1 17.6 18.1 19.1 16.1 25.6 2.44

GA+MDL: Zt 49.8 16.2 24.8 9.2 0 0 0 0 2.07

GA+mBIC: Zt 80.6 18.0 0.5 0.9 0 0 0 0 2.77

BS+CUSUM: Z̃t 4.68 12.5 3.12 50 20.3 7.81 1.56 0 0.93

GA+MDL: Xt 24 11 43 21 0 0 0 0 1.4

GA+mBIC: Xt 2.6 13 9.3 63 10.6 0.33 0.33 0 0.65

Table 12.: Empirical proportions of the estimated number of changepoints and the

average distance for the setting Up Down Up, κ = 1. The true value of m is 3 in Zt.

≤ −4 -3 -2 -1 0 1 2 3 ≥ 4
Effective
Avg Dist

BS+CUSUM: Z̃t 0 5.4 11.2 5.2 49.8 18.6 7.2 2.0 0.6 0.80

GA+MDL: Xt 0 18 11 42 28 1 0 0 0 1.02

GA+mBIC: Xt 0 1 12 10 65 10 1 0.3 0 0.54

Table 13.: Differences from an effective number of changepoints for the setting Up

Down Up, κ = 1.

• ∆3 = 0.433, mean of forth segment: µ3 = α0 +∆3 = −0.067

Table 11 shows the empirical proportions of estimated changepoints for the Up

Down Up configuration with three changepoints; we observed distinct performance

characteristics among the GA+MDL, GA+mBIC, and BS+CUSUM methods on the

ordinal categorical variable Xt. GA+MDL demonstrated high precision in detecting

the exact number of changepoints (m = 3) in 99% of simulations, illustrating its

effectiveness in detecting significant changes within the data with minimal overesti-

mation, as indicated by an average distance of 0.03. This suggests that GA+MDL

can accurately capture the underlying structure of categorical time series data. Con-

versely, the GA+mBIC on Xt method, while also showing a propensity for correct
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Fig. 18.: Time series plots of latent variable (Z) and categorical variable (X) for the

Up Down Up, κ = 0.5 setting.

changepoint detection in 77% of cases, exhibited a higher overestimation rate with

an average distance of 0.28. This tendency to detect additional changepoints beyond

the true count indicates a slight bias towards over-sensitivity in identifying changes.

The BS+CUSUM on Xt method presented a more varied distribution of detected

changepoints, correctly identifying the three changepoints in 64% of simulations but

also showing instances of both underestimation and overestimation. This variability,

along with an average distance of 0.61, indicates a less consistent performance in

accurately detecting the exact number of changepoints than the GA-based methods.
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Effective Percentages of Detected Changepoints
Up Down Up, κ = 1

Avg
Dist

0 1 2 3 4 5 6 m > 7

Effective
Changepoints:

34 24 31 11 0 0 0 0

BS+CUSUM: Zt 15.8 11.4 10.0 18.4 15.6 9.0 7.6 12.2 2.09

GA+MDL: Zt 3 12 41 35 8 1 0 0 1.16

GA+mBIC: Zt 1 18 40 34 6 0 0 0 1.16

BS+CUSUM: Z̃t 55.0 25.8 8.8 7.8 2.0 0.6 0 0 2.38

GA+MDL: Xt 85 10 2 0 0 0 0 0 2.82

GA+mBIC: Xt 51 27 17 3 2 3 0 0 2.31

Table 14.: Empirical proportions of the estimated number of changepoints and average

distance for the setting Up Down Up, κ = 0.5. The true value of m is 3 in Zt.

≤ −4 -3 -2 -1 0 1 2 3 ≥ 4
Effective
Avg Dist

BS+CUSUM: Z̃t 0 5.67 17.3 13.3 46 9.67 5 2.34 0.6 1.02

GA+MDL: Xt 0 9 26 25 36 3 1 0 0 0 1.04

GA+mBIC: Xt 0 4 14 22 47 7 5 0 1 0.96

Table 15.: Differences from the effective number of changepoints for the setting Up

Down Up, κ = 0.5.

In the second simulation setting, three changepoints (Up, Down, Up) with κ = 1,

smaller mean shifts introduce a slightly more challenging detection environment com-

pared to the first scenario with κ = 2. As indicated in the Table 12, not all simulations

maintain three effective changepoints due to subtler shifts; 91.2% are identified with

three effective changepoints, while 8.2% effectively have two, highlighting instances

where the third changepoint does not significantly alter the data structure to be

deemed effective. The comparison of GA+MDL, GA+mBIC, and BS+CUSUMmeth-

ods when κ = 1 reveals varying degrees of sensitivity and accuracy. Table 13 shows a

reasonable performance for BS+CUSUM, exhibiting the highest concentration of zero

difference (49.8%) from the effective number. This suggests a balanced detection ca-
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pability, albeit with instances of both under and overestimation. However, GA+MDL,

with 28% of simulations perfectly matching the effective number of changepoints, ex-

hibits a tendency towards underdetection, as evidenced by a significant proportion

of simulations indicating fewer detections than effective changepoints. Conversely,

GA+mBIC shows an improved alignment with the effective changepoint model, with

65% of simulations achieving zero difference. This indicates a more accurate detection

capability that aligns well with the nuanced reality of effective changepoints, though it

still encounters challenges with overestimation. Moving to the scenario with κ = 0.5,

we observe reduced mean shifts, thereby escalating the detection challenge. As illus-

trated in Table 14, the distribution of the effective number of changepoints shows less

concentration around three changepoints in comparison to earlier settings: 100% for

κ = 2, 91% for κ = 1, and decreasing to 11% for κ = 0.5. This reduction leads to

most methods underestimating detecting the true number of changepoints, and some

methods, like GA, detected zero changepoints. Table 15 indicates that the proposed

methods have a lower rate of exact matches between the detected changepoints and

the true effective changepoints. This highlights the challenges in accurately detecting

the true number of changepoints. Additionally, the increase in average distances in

this scenario, compared to previous settings, points out the challenge of correctly de-

tecting both the number and locations of the changepoints. However, the GA+mBIC

method accurately matches the true number of changepoints in approximately half of

the cases (47%) with a lower average distance than the remaining methods. Overall,

the decrease in mean shift magnitude at κ = 0.5 accentuates the necessity for care-

ful consideration in selecting changepoint detection methodologies. While GA+MDL

and GA+mBIC present promising solutions for accurately detecting significant shifts

in data with subtler variances with the mean shifts.
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4.3.4 Three Changepoints Cetting (Up Up Up, κ = 2)

This simulation differs from the previous setting by presenting a scenario where

mean shifts consistently increase, each with equal magnitude. Changepoints are also

placed at t = 125, 250, and 375, indicating transitions across segments with uniform

time distributions. Similarly, the mean of the first segment starts at -0.5 for the first

segment, and then the second segment will increase with µ = 1.23. Further, the third

segment increases to 2.964, and finally, the last segment increases to 4.696, shown in

Figure 19:

• α0 = −0.5, mean of first segment: µ1 = α0 = −0.5;

• ∆1 = 1.732, mean of second segment: µ2 = α0 +∆1 = 1.23;

• ∆2 = 3.464, mean of third segment: µ3 = α0 +∆2 = 2.964;

• ∆3 = 5.196, mean of forth segment: µ3 = α0 +∆3 = 4.696

Effective Percentages of Detected Changepoints
Up Down Up, κ = 1

Avg
Dist

0 1 2 3 4 5 6 m > 7

Effective
Changepoints:

0 42.4 57.6 0 0 0 0 0

BS+CUSUM: Zt 0 0 5 17 14 19 17 28 2.51

GA+MDL: Zt 0 0 0.2 99.2 0.6 0 0 0 0.027

GA+mBIC: Zt 0 0 0.1 99.7 0.2 0 0 0 0.022

BS+CUSUM: Z̃t 0 29 57 13 7 1 0 0 1.27

GA+MDL: Xt 0 0 99 1 0 0 0 0 1.01

GA+mBIC: Xt 0 0 88 11 1 0 0 0.97

Table 16.: Empirical proportions of the estimated number of changepoints and the

average distance in the setting Up Up Up, κ = 2. The true value of m is 3 in Zt.
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Fig. 19.: Time series plots of latent variable (Z) and categorical variable (X) for the

Up Up Up, κ = 2 setting.

≤ −4 -3 -2 -1 0 1 2 3 ≥ 4
Effective
Avg Dist

BS+CUSUM: Z̃t 0 0 0 8.6 59.8 27.8 3.4 0.2 0.2 0.46

GA+MDL: Xt 0 0 0 0 61 39 0 0 0 0.32

GA+mBIC: Xt 0 1 0 0 50 45 5 0 0 0.56

Table 17.: Differences from the effective number of changepoints for the setting Up

Up Up, κ = 2.
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4.3.5 Three Changepoints Setting (Up Up Up, κ = 1)

This simulation set keeps the same increasing pattern with a smaller mean shift.

The mean shifts should be smaller after we reduce κ since ∆ = κ
√

1− ϕ2. The

changepoints are placed in times t= 125, 250, and 375. The mean shifts follow a

uniform distribution across time intervals. Starting with µt at -0.5 for time steps

1–125, then escalates to 0.366 for times 126–250. Further, it increases to 1.232 during

times 251–375 and undergoes another increment to 2.098 for times 376–500. This

configuration illustrates mean shifts in a consistent direction (Up Up Up), with all

shifts characterized by identical magnitudes, shown in Figure 20:

• α0 = −0.5, mean of first segment: µ1 = α0 = −0.5;

• ∆1 = 0.866, mean of second segment: µ2 = α0 +∆1 = 0.366;

• ∆2 = 1.732, mean of third segment: µ3 = α0 +∆2 = 1.232;

• ∆3 = 2.598, mean of forth segment: µ3 = α0 +∆3 = 2.098

Effective Percentages of Detected Changepoints
Up Down Up, κ = 1

Avg
Dist

0 1 2 3 4 5 6 m > 7

Effective
Changepoints:

0 2.6 66.8 30.6 0 0 0 0

BS+CUSUM: Zt 1 4 0 23 19 21 12 20 2.29

GA+MDL: Zt 0 0.1 92.9 6.9 0.1 0 0 0 0.99

GA+mBIC: Zt 0 29.0 65.9 5.1 0 0 0 0 1.28

BS+CUSUM: Z̃t 0 2 45 44 8 1 0 0 0.68

GA+MDL: Xt 0 0 98.3 1.6 0 0 0 0 2.03

GA+mBIC: Xt 0 1.6 47.3 42.3 7 2 0 0 0.28

Table 18.: Empirical proportions of the estimated number of changepoints and average

distance for the setting Up Up Up, κ = 1. The true value of m is 3 in Zt.
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Fig. 20.: Time series plots of latent variable (Z) and categorical variable (X) for Up

Up Up, κ = 1 setting.

4.3.6 Three Changepoints Setting (Up Up Up, κ = 0.5)

In this simulation set, we use the same pattern as the previous simulation but

with κ = 0.5. This reduction in the mean shift should make the detection more

challenging than the previous setting. Initially, the mean µt is set at −0.5 for the first

125 time steps, then increases slightly to −0.067 for the interval 126–250. It elevates
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≤ −4 -3 -2 -1 0 1 2 3 ≥ 4
Effective
Avg Dist

BS+CUSUM: Z̃t 0 0 0.2 13.4 41.2 34.8 9.8 0.6 0 0.61

GA+MDL: Xt 0 0 0 35 60.6 4.3 0 0 0 0.43

GA+mBIC: Xt 0 1 0 15 50 28 6 0 0 0.52

Table 19.: Differences from the effective number of changepoints. For the setting Up

Up Up, κ = 1.

again to 0.366 in the span of 251–375, and experiences a further rise to 0.799 for

the final segment 376–500. This configuration delineates a sequence of mean shifts

moving in an upward direction, maintaining uniform magnitude throughout. With

κ = 0.5 and an initial setting of α0 = −0.5, the specified changepoint parameters

highlight the increase in mean values across the series, shown in Figure 21).

• α0 = −0.5, mean of first segment: µ1 = α0 = −0.5;

• ∆1 = 0.433, mean of second segment: µ2 = α0 +∆1 = −0.067;

• ∆2 = 0.866, mean of third segment: µ3 = α0 +∆2 = 0.366;

• ∆3 = 0.433, mean of forth segment: µ3 = α0 +∆3 = 0.799

Moving to the three changepoints setting (Up Up Up) under varying mean shift

magnitudes, denoted by κ. Our findings reveal a nuanced landscape of detection chal-

lenges and methodological effectiveness as influenced by the magnitude of κ. This

divergence primarily stems from the subtler mean shifts, especially for the last change-

point, which tends to merge with the categories of preceding segments. Observations

from the analysis of the true effective number of changepoints (Tables 16, 18 and

20) reveal a notable pattern: the proportion of the third (last) changepoint decreases

as the mean shift is increased by increasing κ. Where the proportions of the last

changepoint as an effective changepoint are as the following: 46% when κ = 0.5,
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Fig. 21.: Time series plots of latent variable (Z) and categorical variable (X) for Up

Up Up, κ = 0.5 setting.

30% when κ = 1, and 0% when κ = 2. This trend underscores the nuanced im-

pact that increasing mean shifts have on the detectability of subsequent changepoints

within the series. This scenario highlights the necessity of the “effective number of

changepoints” concept, illustrating that the assumption of three changepoints may

not always align with the practical detectability within the data. In assessing the

performance of the detection methods, it’s evident that the traditional approach of

assuming a fixed number of changepoints across all simulations does not provide a

fair comparison. The discrepancies between the expected and effective number of
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Effective Percentages of Detected Changepoints
Up Down Up, κ = 1

Avg
Dist

0 1 2 3 4 5 6 m > 7

Effective
Changepoints:

0 5.2 48.6 46.8 0 0 0 0

BS+CUSUM: Zt 0 7.0 15.8 19.8 14.8 16.6 10.0 26 2.10

GA+MDL: Zt 1.6 22.6 75.8 0 0 0 0 0 1.37

GA+mBIC: Zt 3.8 91.4 4.8 0 0 0 0 0 2.03

BS+CUSUM: Z̃t 0 32.2 35.8 20.8 7.8 1.6 1.4 0.6 1.29

GA+MDL: Xt 0 25 75 0 0 0 0 0 1.36

GA+mBIC: Xt 0 49.5 39.5 10 1.0 3 0 0 1.5

Table 20.: Empirical proportions of the estimated number of changepoints and average

distance for the setting Up Up Up, κ = 0.5. The true value of m is 3 in Zt.

≤ −4 -3 -2 -1 0 1 2 3 ≥ 4
Effective
Avg Dist

BS+CUSUM: Z̃t 0 0 14 33.6 28.8 15.8 4.2 2.2 1.4 1.05

GA+MDL: Xt 0 0 12 42 43 3 0 0 0 0.82

GA+mBIC: Xt 0 0 20 44 28.5 6.5 1 0 0 1.03

Table 21.: Differences from the effective number of changepoints for the setting Up

Up Up, κ = 0.5.

changepoints necessitate reevaluating how detection accuracy is measured.

Starting with the setting at κ = 2, this configuration offers an insightful starting

point. With the largest mean shifts among our test cases, it presents a seemingly ad-

vantageous scenario for changepoint detection. Table 16 illustrates that the proposed

methods predominantly identified two changepoints, aligning closely with the pro-

portions observed for the effective number of changepoints. The empirical evidence

strongly supports the efficacy of the proposed methods, showcasing a remarkable

adaptability in accurately identifying the effective number of changepoints. Table 17

demonstrates that GA+MDL matches the true number of effective changepoints with

a 61% accuracy rate. Additionally, GA+MDL records the smallest effective average
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distance at 0.32, indicating its effectiveness in accurately detecting the number and

locations of changepoints.

Transitioning to κ = 1, this intermediate scenario maintains the positive de-

tection outcomes observed with κ = 2, albeit with slightly reduced mean shift

magnitudes. Despite this adjustment, the GA+MDL and GA+mBIC methods out-

performed the BS+CUSUM baseline method with proportions of 60% and 50% for

GA+MDL and GA+mBIC respectively as shown in Table 19. This consistency high-

lights their robustness across varying levels of data variability, affirming their role

as promising approaches for changepoint analysis in ordinal time series. Introduc-

ing the final setting at κ = 0.5 escalates the detection challenge considerably due

to the reduced mean shift magnitude. This scenario unveils a divided landscape of

effective changepoints, with empirical proportions balancing between two and three

changepoints. Such a distribution indicates the heightened complexity in discern-

ing the subtler shifts within the data, particularly affecting the detectability of the

final changepoint. The empirical proportions presented in Table 20, revealing an

underestimation of the number of changepoints, clearly highlight the challenges de-

tection methods encounter in this intricate setting. This underscores the importance

of methodological flexibility in response to smaller mean shifts. However, GA+MDL

outperformed all other methods with a 43% accuracy rate in matching the true effec-

tive number of changepoints and attained the smallest effective average distance of

0.82.

The progression from κ = 2 to κ = 0.5 delineates a clear trajectory of increas-

ing detection difficulty, inversely related to the mean shift magnitude. Through this

exploration, the indispensable role of considering the effective number of change-

points becomes evident, challenging traditional notions of changepoint detection and

urging a nuanced understanding of method performance across different dynamical
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landscapes within time series data. Table 21 depicts that the GA-based method out-

performed the BS+CUSUM method with lower average distances. The GA+MDL

method, in particular, emerges as a notably adaptable tool capable of navigating the

complexities introduced by varying κ values with commendable success.

4.3.7 Comparing Different Values of the Auto-correlation Parameter

In exploring changepoint detection within time series data, particularly under the

Up Down Up configuration with a signal-to-noise ratio of κ = 2, we extend our inves-

tigation to examine the influence of varying autocorrelation levels. Autocorrelation,

denoted by ϕ, represents the correlation between values in a time series separated

by a specific lag. It is a critical factor in the temporal structure of time series data,

affecting the detection and interpretation of changepoints. To this end, we systemat-

ically assess the impact of different ϕ values on detecting changepoints. The chosen

values, ϕ = {−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75}, span both negative and positive

correlations, offering a comprehensive view of how autocorrelation influences the de-

tection process. This range allows us to observe the effects of both inverse and direct

correlations between successive observations in the series, providing insights into how

these dynamics affect the detection of true changepoints.

This simulation setting aims to illuminate the role of autocorrelation parameter

ϕ in changepoint detection, enhancing our understanding of its implications for ac-

curately identifying shifts in complex time series data. By varying ϕ, we delve into

how temporal dependence within the data influences the effectiveness of changepoint

detection methodologies, thereby refining our approach to analyzing time series with

diverse autocorrelation characteristics.

Table 22 and Figure 22 depict the effects of varying autocorrelation levels on

changepoint detection within time series data, revealing insights into how these
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ϕ
0.75 −0.5 0.25 0 0.25 0.5 0.75

BS+CUSUM: Zt 0.72 0.79 0.73 0.70 1.08 2.6 6.46

GA+MDL: Zt 0.006 0.007 0.01 0.012 0.012 0.05 2.23

GA+mBIC: Zt 0.001 0.002 0.01 0.013 0.023 0.33 2.74

BS+CUSUM: Z̃t 0.63 0.73 0.57 0.65 0.51 0.72 1.86

GA+MDL: Xt 0.005 0.005 0.006 0.007 0.01 0.03 0.37

GA+mBIC: Xt 0.005 0.005 0.01 0.01 0.03 0.28 1.88

Table 22.: Average Distances for varies values of ϕ, for the setting Up Down Up,

κ = 2.
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Fig. 22.: Average distance with varies values of ϕ for the setting Up Down Up, κ = 2.

The true number of changepoints m = 3 in Zt

methodologies adapt to temporal dependencies. As we systematically adjust ϕ across

a spectrum from negative to positive, we observe a consistent pattern: an increase in
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ϕ correlates with heightened challenges in changepoint detection. This phenomenon

is quantitatively captured through the average distance metric, which escalates as

ϕ progresses towards stronger positive autocorrelation. This pattern confirms that

higher autocorrelation complicates the discernment of true changepoints due to the

enhanced similarity between sequential observations.

Among the proposed methods, GA+MDL and GA+mBIC, when applied to both

latent and categorical processes, demonstrate remarkable robustness against the vari-

ations in ϕ. They maintain relatively low average distances across the range, show-

casing an adeptness at navigating the complexities introduced by autocorrelation.

Notably, GA+MDL on Xt stands out for its consistently low average distances across

nearly all values of ϕ and outperforming all the remaining methods. GA+MDL strikes

a good balance in changepoint analysis, effectively detecting the number and exact

locations of changepoints despite the challenges posed by higher autocorrelation. In

contrast, conventional approaches like BS+CUSUM reveal a pronounced susceptibil-

ity to higher levels of autocorrelation, evidenced by a significant uptick in average

distances as ϕ increases.

4.4 Los Angeles City AQI Data

The time series plot in Figure 23 (top panel) illustrates daily AQI measurements

in Los Angeles, USA. The dataset extends from January 1, 2020, to June 18, 2022,

encapsulating a period critical for understanding air pollution trends in a major urban

center. Monitoring air quality is vital for public health, environmental policy-making,

and urban planning, particularly in densely populated areas such as Los Angeles.

The city’s complex topography and meteorological conditions contribute to variable

air quality levels, making it an important case study for environmental and health

research.
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The categorized AQI time series is plotted in the bottom panel of Figure 23.

The data groups daily AQI readings into three distinct categories based on the AQI

value: Category 1 signifies ’Good’ air quality with 258 observed instances, Category

2 denotes ’Moderate’ air quality with 596 instances, and Category 3 represents ’Un-

healthy’ air quality with 46 instances. These categories are defined by cutoff points

on the continuous AQI scale, where the cutoff for ’Good’ category is 0-50, the cutoff

for ’Moderate’ category is 51-100, and the cutoff for ’Unhealthy’ category is greater

than 100. The dataset, comprising 900 daily observations, is a pivotal resource for

studying the impact of urbanization, climate change, and regulatory measures on air

quality.

In fitting our models with the GA, we set a population size of 30 individuals,

structured across 5 islands. Crossover and mutation were applied with probabili-

ties of 0.95 and 0.1, respectively, while the probability assigned for changepoints in

each time series was set at 0.06. The fitted GA+MDL model detected two change-

points at 116 April 2020 and 847 April 2022. While GA+mBIC model detected

four changepoints at 108 Apr 2020, 508 Jun 2021, 586 Aug 2021, and 839 Apr 2022.

These periods may reflect changes in environmental regulations, seasonal variations

in air quality, or other socio-economic activities affecting the urban atmosphere. For

example, both GA-based models detected a changepoint at the time (April 2020).

This detection aligns with the onset of global changes in human activity due to the

COVID-19 pandemic, which caused an environmental impact of pandemic-related

lockdowns, manifesting in significant air quality improvements. On the other hand,

the changepoint detected in April 2022 by the GA+mBIC model corresponds with

the publication of the American Lung Association’s ”State of the Air” report in 2022,

which highlighted Los Angeles and several other California cities as having the coun-

try’s most polluted air during the period of April 2022. While the GA+mBIC model
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exhibited tendencies of over-detection in certain simulation settings, the GA+MDL

model accurately detected the most plausible changepoints within this time series

data, demonstrating its effectiveness in detecting significant shifts.
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Fig. 23.: Continuous (Z) (Top) and the categorical (X) daily AQI time series in Los

Angeles from 2020 to 2022.
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4.5 Conclusions

This project proposes GA-based methods, namely GA+MDL and GA+mBIC,

for changepoint detection in ordinal categorical time series data, utilizing the AOP

model to effectively handle the data’s inherent ordinal categorical characteristics.

The study refines changepoint analysis by introducing the concept of the “effective

number of changepoints” offering a more nuanced assessment of changepoints’ signif-

icance. This adjustment addresses the limitations of evaluating detection methods

based solely on the number of changepoints, ensuring a fairer comparison across di-

verse configurations. Applied to simulated studies with different configurations and

parameters, the proposed methods showcased robustness and superior performance

compared to traditional changepoint detection techniques. This approach is applied

to AQI data from Los Angeles to detect changepoints, indicating significant shifts in

air quality over time.
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CHAPTER 5

SUMMARY AND FUTURE WORK

The main objective of this dissertation is to leverage ML and time series analysis

methods to address challenges across different domains. Each project contributes to

the overarching theme of enhancing analytical methodologies and their application in

real-world scenarios.

The first project aims to develop an RA CUSUM control chart that integrates ML

models for more precise probability estimation. This method expands on traditional

techniques by applying advanced ML to improve the RA CUSUM chart’s capabil-

ity to monitor small changes in the process. The project uses data from hospital

readmissions to accurately assess patients’ risk based on their preoperative charac-

teristics and to observe changes in readmission rates within healthcare applications.

Using tree-based ML algorithms, the project shows how these analytical tools can

enhance the creation and implementation of RA CUSUM charts in healthcare set-

tings, presenting a new solution for process monitoring. Furthermore, it introduces a

strategy for comparing predictive models with different levels of complexity, offering

a balanced approach to model comparison.

An intriguing direction for future work is suggested by the present project’s lim-

itation to a binary classification of the response variable. The methodology employed

thus far has only considered two classes for the response variable in constructing the

control chart. However, extending this work to include multiple classes for the re-

sponse variable would considerably expand the RA CUSUM charts’ applicability and

analytical depth. Adopting a multi-class approach would enable the control chart
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to encompass a broader spectrum of information, rendering it a more intricate and

thorough monitoring instrument.

In the second project, the focus shifts to the field of chemical analysis, addressing

the challenges of high dimensionality, multicollinearity, and non-linearity in spectro-

scopic data. It introduces the DLR and CLR methods, integrated with PLS and

PCR, to adeptly manage the complexities of predicting chemical concentrations. The

DLR and CLR showcase outperformed standard PLS and PCR models in accurately

predicting concentrations across various chemical compounds, marking a significant

advance in chemometric methodologies.

The third project in the dissertation delves into detecting multiple changepoints

in autocorrelated ordinal time series data. It introduces models based on the GA

(GA+MDL and GA+mBIC), demonstrating superior performance compared to the

traditional BS+CUSUM technique. Utilizing the “effective changepoints” concept,

these models enhance the precision of detecting significant shifts in data. Their

efficacy is corroborated through a range of simulation studies. The application of

these models is further illustrated by detecting multiple changepoints in the AQI data

from Los Angeles, showcasing their practical utility in environmental data analysis.

A notable limitation arises with the handling of larger time series. The computa-

tional time required by the GA-based methods may become burdensome as the length

of the time series increases. In addition, future work could delve more profoundly

into the concept of “effective number of changepoints”, focusing on its definition and

utility in scenarios with diverse magnitudes of mean shifts. Such an investigation

would not only refine the methodologies for detecting changepoints but also enhance

the interpretability and applicability of the results, offering a more nuanced under-

standing of the dynamics within the data. This future direction promises to augment

the precision and relevance of changepoint analysis in complex time series data.

104



REFERENCES

[1] C. Nicolay, S. Purkayastha, A. Greenhalgh, et al., “Systematic review of the ap-

plication of quality improvement methodologies from the manufacturing indus-

try to surgical healthcare,” Journal of British Surgery, vol. 99, no. 3, pp. 324–

335, 2012.

[2] J. C. Benneyan, “The design, selection, and performance of statistical control

charts for healthcare process improvement,” International Journal of Six Sigma

and Competitive Advantage, vol. 4, no. 3, pp. 209–239, 2008.

[3] S. H. Steiner, R. J. Cook, V. T. Farewell, and T. Treasure, “Monitoring surgical

performance using risk-adjusted cumulative sum charts,” Biostatistics, vol. 1,

no. 4, pp. 441–452, 2000.

[4] G. Rossi, S. D. Sarto, and M. Marchi, “A new risk-adjusted bernoulli cumu-

lative sum chart for monitoring binary health data,” Statistical Methods in

Medical Research, vol. 25, no. 6, pp. 2704–2713, 2016.

[5] M. A. Farag, M. Sheashea, C. Zhao, and A. A. Maamoun, “Uv fingerprinting

approaches for quality control analyses of food and functional food coupled

to chemometrics: A comprehensive analysis of novel trends and applications,”

Foods, vol. 11, no. 18, p. 2867, 2022.

[6] S. Hossain, C. W. Chow, G. A. Hewa, D. Cook, and M. Harris, “Spectropho-

tometric online detection of drinking water disinfectant: A machine learning

approach,” Sensors, vol. 20, no. 22, p. 6671, 2020.

105



[7] D. Suhandy and M. Yulia, “The use of partial least square regression and spec-

tral data in uv-visible region for quantification of adulteration in indonesian

palm civet coffee,” International Journal of Food Science, vol. 2017, 2017.

[8] M. Li and Q. Lu, “Changepoint detection in autocorrelated ordinal categorical

time series,” Environmetrics, vol. 33, no. 7, e2752, 2022.

[9] S. Upadhyay, A. L. Stephenson, and D. G. Smith, “Readmission rates and

their impact on hospital financial performance: A study of washington hos-

pitals,” INQUIRY: The Journal of Health Care Organization, Provision, and

Financing, vol. 56, 2019.

[10] Centers for Medicare and Medicaid Services. readmissions reduction program,

http://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/

AcuteInpatientPPS/Readmissions- Reduction- Program.html, Accessed:

2014-05-26, 2014.

[11] A. Sarwar, C. A. Hostage Jr, J. L. Weinstein, et al., “Causes and rates of 30-

day readmissions after percutaneous transhepatic biliary drainage procedure,”

Radiology, vol. 290, no. 3, pp. 722–729, 2019.

[12] N. Pathak, C. A. Kahlenberg, H. G. Moore, P. K. Sculco, and J. N. Grauer,

“Thirty-day readmissions after aseptic revision total hip arthroplasty: Rates,

predictors, and reasons vary by surgical indication,” The Journal of Arthro-

plasty, vol. 35, no. 12, pp. 3673–3678, 2020.

[13] A. Sarwar, L. Zhou, N. Chakrala, et al., “The relevance of readmissions after

common ir procedures: Readmission rates and association with early mortal-

ity,” Journal of Vascular and Interventional Radiology, vol. 28, no. 5, pp. 629–

636, 2017.

106

http://www.cms.gov/Medicare/Medicare-Fee-for-Service-Pa yment/AcuteInpatientPPS/Readmissions-Reduction-Program.html
http://www.cms.gov/Medicare/Medicare-Fee-for-Service-Pa yment/AcuteInpatientPPS/Readmissions-Reduction-Program.html


[14] O. A. Panagiotou, A. Kumar, R. Gutman, et al., “Hospital readmission rates

in medicare advantage and traditional medicare: A retrospective population-

based analysis,” Annals of Internal Medicine, vol. 171, no. 2, pp. 99–106, 2019.

[15] R. J. Novick, S. A. Fox, L. W. Stitt, T. L. Forbes, and S. Steiner, “Direct

comparison of risk-adjusted and non–risk-adjusted cusum analyses of coronary

artery bypass surgery outcomes,” The Journal of Thoracic and Cardiovascular

Surgery, vol. 132, no. 2, pp. 386–391, 2006.

[16] J. C. Benneyan, “Statistical quality control methods in infection control and

hospital epidemiology, part i introduction and basic theory,” Infection Control

& Hospital Epidemiology, vol. 19, no. 3, pp. 194–214, 1998.

[17] W. A. Shewhart, Economic control of quality of manufactured product. Macmil-

lan and Co Ltd, London, 1931.

[18] M. A. Mohammed, K. Cheng, A. Rouse, and T. Marshall, “Bristol, shipman,

and clinical governance: Shewhart’s forgotten lessons,” The Lancet, vol. 357,

no. 9254, pp. 463–467, 2001.

[19] J. M. Lucas and M. S. Saccucci, “Exponentially weighted moving average con-

trol schemes: Properties and enhancements,” Technometrics, vol. 32, no. 1,

pp. 1–12, 1990.

[20] D. M. Hawkins and D. H. Olwell, Cumulative sum charts and charting for

quality improvement. Springer Science & Business Media, 1998.

[21] M. Aslam, A. Shafqat, M. Albassam, J.-C. Malela-Majika, and S. C. Shongwe,

“A new cusum control chart under uncertainty with applications in petroleum

and meteorology,” Plos One, vol. 16, no. 2, 2021.

107



[22] T. B. Rasmussen, S. P. Ulrichsen, and M. Nørgaard, “Use of risk-adjusted

cusum charts to monitor 30-day mortality in danish hospitals,” Clinical Epi-

demiology, vol. 10, p. 445, 2018.

[23] E. S. Page, “Continuous inspection schemes,” Biometrika, vol. 41, no. 1/2,

pp. 100–115, 1954.

[24] M. R. De Leval, K. François, C. Bull, W. Brawn, and D. Spiegelhalter, “Anal-

ysis of a cluster of surgical failures: Application to a series of neonatal arte-

rial switch operations,” The Journal of Thoracic and Cardiovascular Surgery,

vol. 107, no. 3, pp. 914–924, 1994.

[25] J. Neuburger, K. Walker, C. Sherlaw-Johnson, J. van der Meulen, and D. A.

Cromwell, “Comparison of control charts for monitoring clinical performance

using binary data,” BMJ Quality & Safety, vol. 26, no. 11, pp. 919–928, 2017.

[26] O. Grigg and V. Farewell, “An overview of risk-adjusted charts,” Journal of

the Royal Statistical Society: Series A (Statistics in Society), vol. 167, no. 3,

pp. 523–539, 2004.

[27] L. H. Sego, M. R. Reynolds Jr, and W. H. Woodall, “Risk-adjusted monitoring

of survival times,” Statistics in Medicine, vol. 28, no. 9, pp. 1386–1401, 2009.

[28] J. Li, J. Jiang, X. Jiang, and L. Liu, “Risk-adjusted monitoring of surgical

performance,” Plos One, vol. 13, no. 8, 2018.

[29] V. Parsonnet, D. Dean, and A. D. Bernstein, “A method of uniform strati-

fication of risk for evaluating the results of surgery in acquired adult heart

disease.,” Circulation, vol. 79, no. 6 Pt 2, pp. I3–12, 1989.

108



[30] Y. Huang, A. Talwar, S. Chatterjee, and R. R. Aparasu, “Application of ma-

chine learning in predicting hospital readmissions: A scoping review of the

literature,” BMC Medical Research Methodology, vol. 21, no. 1, pp. 1–14, 2021.

[31] S. Shin, P. C. Austin, H. J. Ross, et al., “Machine learning vs. conventional

statistical models for predicting heart failure readmission and mortality,” ESC

Heart Failure, vol. 8, no. 1, pp. 106–115, 2021.

[32] J. Futoma, J. Morris, and J. Lucas, “A comparison of models for predict-

ing early hospital readmissions,” Journal of Biomedical Informatics, vol. 56,

pp. 229–238, 2015.

[33] Y. Huang, A. Talwar, Y. Lin, and R. R. Aparasu, “Machine learning methods to

predict 30-day hospital readmission outcome among us adults with pneumonia:

Analysis of the national readmission database,” BMC Medical Informatics and

Decision Making, vol. 22, no. 1, pp. 1–14, 2022.

[34] J. C. Stoltzfus, “Logistic regression: A brief primer,” Academic Emergency

Medicine, vol. 18, no. 10, pp. 1099–1104, 2011.

[35] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32,

2001.

[36] J. H. Friedman, “Greedy function approximation: A gradient boosting ma-

chine,” Annals of Statistics, pp. 1189–1232, 2001.

[37] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The elements

of statistical learning: data mining, inference, and prediction. Springer, 2009,

vol. 2.

[38] R. Genuer, J.-M. Poggi, and C. Tuleau-Malot, “Variable selection using random

forests,” Pattern Recognition Letters, vol. 31, no. 14, pp. 2225–2236, 2010.

109



[39] S. C. Larson, “The shrinkage of the coefficient of multiple correlation.,” Journal

of Educational Psychology, vol. 22, no. 1, p. 45, 1931.

[40] M. R. Reynolds Jr and Z. G. Stoumbos, “A cusum chart for monitoring a pro-

portion when inspecting continuously,” Journal of Quality Technology, vol. 31,

no. 1, pp. 87–108, 1999.

[41] M. A. Jones and S. H. Steiner, “Assessing the effect of estimation error on

risk-adjusted cusum chart performance,” International Journal for Quality in

Health Care, vol. 24, no. 2, pp. 176–181, 2012.

[42] J. S. Ribeiro, T. d. J. G. Salva, and M. B. Silvarolla, “Prediction of a wide range

of compounds concentration in raw coffee beans using nirs, pls and variable

selection,” Food Control, vol. 125, 2021.

[43] Z. Shi, C. W. Chow, R. Fabris, J. Liu, and B. Jin, “Applications of online

uv-vis spectrophotometer for drinking water quality monitoring and process

control: A review,” Sensors, vol. 22, no. 8, p. 2987, 2022.

[44] T. Togkalidou, M. Fujiwara, S. Patel, and R. D. Braatz, “Solute concentration

prediction using chemometrics and atr-ftir spectroscopy,” Journal of Crystal

Growth, vol. 231, no. 4, pp. 534–543, 2001.

[45] L. Jiao, S. Bing, X. Zhang, and H. Li, “Interval partial least squares and moving

window partial least squares in determining the enantiomeric composition of

tryptophan by using uv-vis spectroscopy,” Journal of the Serbian Chemical

Society, vol. 81, no. 2, pp. 209–218, 2016.

[46] K. Chawla, A. Bankapur, M. Acharya, J. S. D’Souza, and S. Chidangil, “A

micro-raman and chemometric study of urinary tract infection-causing bac-

110



terial pathogens in mixed cultures,” Analytical and Bioanalytical Chemistry,

vol. 411, pp. 3165–3177, 2019.

[47] M. B. Takahashi, J. Leme, C. P. Caricati, A. Tonso, E. G. Fernández Núñez,
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