
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2024

Exploring End-User Environments for the Control and Exploring End-User Environments for the Control and

Programming of Collaborative Robots Programming of Collaborative Robots

Luiz Felipe Fronchetti Dias
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Computer and Systems Architecture Commons, and the Robotics Commons

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/7785

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has
been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass.
For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F7785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=scholarscompass.vcu.edu%2Fetd%2F7785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/264?utm_source=scholarscompass.vcu.edu%2Fetd%2F7785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/7785?utm_source=scholarscompass.vcu.edu%2Fetd%2F7785&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

Exploring End-User Environments for the
Control and Programming of

Collaborative Robots

Luiz Felipe Fronchetti Dias

Thesis submitted to
the Department of Computer Science
of Virginia Commonwealth University

in partial fulfillment
of the requirements
for the degree of

Doctor of Philosophy

Program: Computer Science

Advisor: Dr. Rodrigo Spinola

During the development of this work, the author received
financial support from NSF – Grant #2024561

Richmond, Virginia

July, 2024

Exploring End-User Environments for the
Control and Programming of

Collaborative Robots

Luiz Felipe Fronchetti Dias

This is the original version of the

final thesis prepared by candidate

Luiz Felipe Fronchetti Dias, as

submitted to the Examining Committee.

i

Acknowledgements

This work is dedicated to my mother, Márcia, who inspired me to be my best, gave me

more than enough support, and showed me that borders are made to be crossed. You will

always be my biggest inspiration.

Nothing is permanent in this wicked world – not even our troubles.

— Charlie Chaplin

(Image courtesy of Modern Times – Roy Export S.A.S.)

Abstract

Luiz Felipe Fronchetti Dias. Exploring End-User Environments for the Control and
Programming of Collaborative Robots. Thesis (Doctorate). Virginia Commonwealth

University, Richmond, Virginia, 2024.

The Fourth Industrial Revolution (4IR) is marked by the alignment between physical and digital tech-

nologies. Robots, only seen on industrial floors in the past, are now one of the promising technologies

in this revolution. Advancements in hardware and software are bringing robots to a collaborative level,

allowing users to interact directly with them to solve problems in multiple domains. Studies in the field

have shown that robots are qualified to perform tasks beyond the industrial floor, making the lives of

different professionals easier. Although robotics has been growing in the interest of a broader audience,

most programming technologies available for robots are still based on the same solutions from the last

century. To collaborate with the ongoing development of better programming solutions for robots, I propose

three research contributions for collaborative robot programming. The first study evaluates the block-based

paradigm as a potential alternative for end-users programming two-armed robots. In this study, a commercial

beginner-friendly solution is put in contrast with a block-based programming language implemented as part

of the contributions. Both programming solutions are evaluated by 52 participants in an experiment involving

a pick-and-place task. From this first study, important insights into human-robot collaboration emerged,

including challenges with robot positioning and interaction. The second study gave a sequence to the first

study and focused on the challenges end-users face while manually positioning robots in a workspace. This

study discusses the use of mixed-reality devices as a potential workaround to the manual positioning of

industrial and collaborative robots. Five different control interfaces implemented in mixed reality were used

in two experimental tasks involving 49 end-users and 11 experts from human-robot interaction. Finally,

the third study brings a discussion about learning challenges and the use of learning resources by novices

in robotics. In this last evaluation, 35 individuals without prior robot programming experience are invited

to solve an experimental task using a collaborative robot and a block-based environment. Participants are

instructed to report learning barriers faced throughout the experiment and to use a list of learning materials

available on a computer placed next to the robot. Results from this study suggest that even participants with

prior experience in programming tend to face challenges when trying a robot programming environment for

the first time. This study also highlights novices’ interest in videos and chatbots, rather than more traditional

learning resources such as textbooks and technical manuals. With this work, I expect to bring insights into

end-user robot programming and interaction, expanding the boundaries of applied research in Software

Engineering.

Keywords: End-user robot programming. Human-robot interaction. Collaborative robots.

v

Abbreviations

AR Augmented Reality

HMD Head-mounted display

MR Mixed Reality

ROY RobotStudio Online YuMi

VR Virtual Reality

IR Industrial Revolution

PLC Programmable Logic Controller

COBOT Collaborative Robot

VPL Visual Programming Language

PLC Programmable Logic Controllers

vi

List of Figures

1.1 Introduction: Study workflow. 4

2.1 Background: Example of one and two-armed collaborative robots. 9

2.2 Background: Example of robot controller and teaching pendant. 10

2.3 Background: Example of online programming. 11

2.4 Background: Example of an offline programming environment. 12

2.5 Background: Example of a pick-and-place solution in RAPID. 13

3.1 Related work: Wizard Easy Programming Tool 16

3.2 Related work: RobotStudio AR Viewer. 18

3.3 Related work: Up for grabs. 20

4.1 Duplo: Programming interface. 21

4.2 Duplo: Programming interface of RobotStudio Online YuMi. 22

4.3 Duplo: Experimental design and procedure. 25

4.4 Duplo: Experimental setup. 26

4.5 Duplo: Experiment solution. 28

4.6 Duplo: Percentage of participants who completed each sub-task in a pro-

gramming environment. 31

4.7 Duplo: Participants’ completion times in ascending order. 32

4.8 Duplo: Box-plots of occurrence numbers of the top 3 programming obstacles. 33

5.1 Mixed reality: Methodology. 42

5.2 Mixed reality: Illustrations of user interaction with the evaluated interfaces. 43

5.3 Mixed reality: Task performed by participants in the first experiment. . . 46

5.4 Mixed reality: Completion rates for groups trying each interface, and

average completion times for participants who finished the experiment. . 49

5.5 Mixed reality: Average usability scores. 50

5.6 Mixed reality: Trial performed by experts in the second phase. 53

vii

5.7 Mixed reality: Haptic gloves replacing hand tracking in the mixed reality

prototype. 58

5.8 Mixed reality: Distant manipulation applied to the interfaces in mixed reality. 59

6.1 Learning: Task solution. 68

6.2 Learning: Experiment workspace. 71

6.3 Learning: Demographic composition of participants. 74

6.4 Learning: Distribution of participants across completed requirements and

the distribution of requirements completed per participant. 74

6.5 Learning: Universal Robots Academy. 79

6.6 Learning: Wizard Easy Programming (Advertisement). 80

7.1 Conclusion: Programming in RoboArt. 84

7.2 Conclusion: Function-centric design for block-based environments. . . . 85

List of Tables

4.1 Duplo: Variables annotated by the proctor during the experiment. 29

4.2 Duplo: Average completion time for each sub-task. 32

4.3 Duplo: Programming challenges mentioned by participants in the post-

experiment questionnaire. 34

5.1 Mixed reality: Comments from the post-experiment questionnaire. 52

5.2 Mixed reality: Comments from experts during their interview. 57

6.1 Learning: List of software requirements given for the experimental task . 66

6.2 Learning: List of learning resources available on the help desk 70

6.3 Learning: Appearance of learning barriers per request 75

6.4 Leaning: Participants most used learning resources according to their format 77

6.5 Learning: Participants’ most frequent challenges faced while using learning

resources . 78

ix

Contents

1 Introduction 1
1.1 End-User Robot Programming . 2

1.2 Research Contributions . 4

1.2.1 Block-Based Programming For Two-Armed Robots 5

1.2.2 Evaluation of Robot Controls in Mixed Reality 5

1.2.3 Learning in End-User Robot Programming Environments 7

1.3 Structure . 8

2 Background 9
2.1 Collaborative Robots . 9

2.1.1 Programming Methods . 10

2.1.2 Programming Languages . 11

2.1.3 Known Challenges . 12

2.2 End-User Robot Programming . 14

3 Related Work 15
3.1 Visual Programming in Robotics . 15

3.2 Robot Programming Assisted by Virtual, Mixed and Augmented Realities 16

3.3 Learning Barriers in Software Development 19

4 Block-Based Programming For Two-Armed Robots 21
4.1 Overview . 21

4.2 Tools . 22

4.2.1 ROY: RobotStudio Online YuMi 23

4.2.2 Duplo: Block-based Cooperative Programming 24

4.3 Method . 25

4.3.1 Recruitment . 25

4.3.2 Experimental Setup . 25

4.3.3 Experimental Procedure . 26

x

4.3.4 Data Collection and Analysis . 29

4.4 Results . 29

4.4.1 Demographics . 30

4.4.2 Participant Performance . 30

4.4.3 Completion Times . 31

4.4.4 Programming Obstacles . 32

4.4.5 Program Analysis . 33

4.4.6 Feedback from Participants . 33

4.5 Discussion . 34

4.5.1 How Programming Environments Affect End-user Performance? 35

4.5.2 What Learning Barriers Do End-users Face? 37

4.6 Limitations . 38

4.7 Conclusion . 39

5 Evaluation of Robot Controls in Mixed Reality 41
5.1 Overview . 41

5.2 Study Stage 1: Evaluation of MR Control Widgets for Robot Positioning . 42

5.2.1 Control Interfaces . 42

5.2.2 Recruitment . 45

5.2.3 Training and Instruction . 45

5.2.4 Experimental Task . 46

5.2.5 Measures . 47

5.3 Study Stage 1: Results . 47

5.3.1 Demographics . 48

5.3.2 How Do Interfaces Affect Performance? 48

5.3.3 How Do Users Rate Interface Usability? 48

5.3.4 Which Aspects are Difficult and Easy to Understand? 49

5.4 Study Stage 2: Expert Feedback on Manipulating a Physical Robotic Arm 51

5.4.1 Prototype Implementation . 51

5.4.2 Interviews . 53

5.4.3 Interview Analysis . 54

5.5 Study Stage 2: Results . 54

5.6 Discussion . 57

5.6.1 Precision and Hand tracking . 57

5.6.2 Field of View . 58

5.6.3 Practical Applications . 59

5.7 Threats to Validity . 59

5.8 Conclusion . 61

xi

6 Learning in End-User Robot Programming Environments 63
6.1 Experimental Method . 64

6.1.1 Recruitment . 64

6.1.2 Experimental Task . 65

6.1.3 Wizard Easy Programming Tool 65

6.1.4 Workspace . 68

6.1.5 Help Desk . 69

6.1.6 Post-Experiment Questionnaire 72

6.1.7 Data Collection and Analysis . 72

6.2 Results . 72

6.2.1 Demographics . 73

6.2.2 Participants Performance . 73

6.2.3 Frequency of Learning Barriers 74

6.2.4 Usage of Learning Resources . 76

6.2.5 Outcomes from Questionnaire . 76

6.3 Discussion . 78

6.3.1 Chatbots and the Next Generation of Software Developers 78

6.3.2 End-user robot programming: Are We There Yet? 80

6.4 Limitations . 81

6.5 Conclusion . 82

7 Conclusion 83
7.1 Complementary Studies . 83

7.1.1 Artistic Robot Programming in Mixed Reality 83

7.1.2 Guided Decomposition in Larger Block-Based Programs 84

7.1.3 Language Impact on Programmable Logic Controllers 85

7.2 Papers Published . 86

7.3 Future Work . 87

References 89

1

Chapter 1

Introduction

The First Industrial Revolution (1760 - 1840) was marked by the transition from man-
ual labor to mechanized processes (Lowe and Lawless, 2021). The adoption of steam-
powered engines and the growth in manufacturing guided rural civilizations to factories,
revolutionizing production standards and ideals of economy (Vermeulen, 2020). In the
following years, the Second Industrial Revolution (1870 - 1914) reshaped the purposes
of mass production with assembly lines, bringing light to discoveries such as electricity,
internal combustion engines, and the telephone (Bernal and Sridhar, 2022). Later in the
same century, the Third Industrial Revolution (1960 - 1990) opened space for a complete
digitalization of our society. Computers and the internet renovated the ideals of human
collaboration, taking humankind to space for the first time (Dal and Debacq, 2020).

The Fourth Industrial Revolution is now on track, bringing attention to the fields of
robotics, artificial intelligence, cloud computing, and more (Schwab and Davis, 2018). If
robots were one day considered science fiction, they are now an integral part of our reality.
The International Federation of Robotics estimates that more than 2 million industrial
robots were installed in the last five years (2018 - 2022), with a positive prospect for the
future (I. F. o. Robotics, 2023). Most robots still operate at an industrial level, offering
automated labor in manufacturing processes such as welding, material handling, and
palletizing. But the domain is changing. Over the past decade, collaborative robots (also
known as cobots) have become one of the promising technologies in robotics (Grau et al.,
2020). Different from industrial robots, cobots are envisioned as units that should be safe
to work around humans and to be easy to operate (Tarantino, 2022).

The ability of cobots to operate safely around humans opened space for a new range
of robot applications, expanding the market of manufacturers to domains beyond the
industrial floors (Sherwani et al., 2020). Adjustments were made to traditional standards,
turning robots into "a tool that anyone can use" (Verlag, 2022a). However, while areas
like machine learning have consistently evolved during the Fourth Industrial Revolution,
the study of robots is considered a work in progress. Many of the software solutions
incorporated in cobots are seen as adaptations from industrial robots invented in the
last century, making them incompatible with the perspectives of a new generation of
customers (Aaltonen and Salmi, 2019). While computer developers now have access to
cutting-edge programming solutions (e.g., large language models), new clients adapting

2

1 | INTRODUCTION

cobots to their domain still depend on last-century programming languages and tools to
tell their robots what to do.

The challenges of promoting industrial and collaborative robots to new programming
standards are many. For researchers working in Software Engineering, the opportunities
are focused on building easy-to-use technologies to allow customers to program and
interact with their robots (Knudsen and Kaivo-Oja, 2020). Because robots can now
directly collaborate with humans, the number of companies interested in using such
units is increasing, creating a need for programming tools that are easier to program and
understand. Cobots in applications such as healthcare, security inspection, and personal
assistance, for example, are growing in numbers over the years (Taesi et al., 2023). The
question that applies to those researching new programming alternatives is: How do we
adapt robots for this new generation of consumers?

To respond to this question, an emerging topic named end-user robot programming
is attracting the attention of researchers in robotics (Ajaykumar, Steele, et al., 2021).
While end-user programming is concerned with users attempting to program their soft-
ware solutions, end-user robot programming investigates strategies to allow users to
program their robots (Barricelli et al., 2019). Different solutions have been tested so far:
Block-based languages are now replacing text-based solutions (Ritschel, Kovalenko,
et al., 2020). Lead-through programming is giving users the ability to program robots by
demonstration (Ragaglia et al., 2016). Virtual reality applications are allowing customers
to operate robots from distance (Burghardt et al., 2020), as many other technologies
are also expanding the boundaries of robot programming, making robots easier to use,
program, and comprehend.

1.1 End-User Robot Programming
The rise of collaborative robots started in 2008, with the introduction of the first units

from Universal Robots in Denmark (Tarantino, 2022; Niku, 2020). From that point, other
global robot manufacturers entered the collaborative industry, including FANUC from
Japan, ABB from Sweden-Swiss, and KUKA from Germany (Bogue, 2016). According to
the International Organization for Standardization (ISO), cobots are defined as "robots
that allow direct interaction with humans" (Cohrssen, 2021). In practice, while industrial
robots tend to be isolated from human collaboration and require specialized professionals
to operate them, cobots bring a new perspective to the use and application of robots, being
safe to work around humans and targeting ease of operation.

Many advancements have been made regarding the safety of collaborative robots,
but the ease of operating such units is a challenge that remains (Sherwani et al., 2020).
In a global survey with 1,650 companies operating in multiple areas of expertise, ABB
discovered that 53% of their clients "identified a lack of skills and training in using and
programming robots as a justification for not having made a switch to robotic automa-
tion" (Verlag, 2022b). To fill out this gap, a growing interest in solutions that make
robot programming understandable is converging into this new research topic known
as end-user robot programming. If end-user programming was at some point concerned
with users implementing computer applications in an office (Capers Jones, 1995), end-

1.1 | END-USER ROBOT PROGRAMMING

3

user robot programming now aims to give this same audience the ability to program
robots (Ajaykumar and Huang, 2020).

As end-user robot programming can be considered an emerging field, standard solutions
prioritized by researchers in this domain may not yet be clear. However, Ajaykumar,
Steele, et al., 2021 highlights some promising topics, including:

• Visual programming: The act of translating ideas into code can be a challenging
task for users without major experience in programming (Ko, B. A. Myers, et al.,
2004). One common approach to make the coding experience more intuitive for
end-users is to translate text-based instructions into visual components. A visual
programming language (VPL) implements this approach using visual elements such
as blocks, diagrams, icons, and forms to represent code (Kuhail et al., 2021). Through-
out the years, VPLs have gained popularity in the robotics domain, leading to the
creation of new programming solutions (Coronado et al., 2020). Open Roberta, for
example, is a block-based language for educational robots (Jost et al., 2014), and
the ABB Wizard Easy Programming tool is one of the first commercially available
block-based languages for one-armed cobots (ABB Ltd, 2020).

• Augmented and mixed reality: Different from computer programming, develop-
ing solutions for robots goes beyond the computer screen. Robots are, in practice,
mechanical units that must work in consonance with the environment where they
are installed (Hentout et al., 2018). Implementing a solution that does not make the
robot collide, for example, can be challenging to achieve without visual feedback,
and even harder to identify in a programming language. To create a more intuitive
experience for end-users, multiple studies investigate the use of augmented and
mixed reality technologies in support of robot programming (Walker et al., 2023).
Hörbst and Orsolits, 2022, for example, proposes a solution in mixed reality for
developers to control a collaborative robot via holographic gadgets (please, watch
the promotional video1). Other authors go beyond the point of using such devices
as assistive technologies, proposing complete programming environments in the
virtual domain (Mikhail Ostanin et al., 2020; Quintero et al., 2018).

• Natural language: If groundbreaking technologies can immerse end-users in robot
programming, nothing should beat the language they speak. Recently boosted by
the popularization of large language models, different studies investigate the use
of natural language as a trivial alternative to traditional robot programming meth-
ods (Taniguchi et al., 2019). Behrens et al., 2019, for example, proposes a multi-
modal system where users combine speaking in natural language with demonstra-
tion to dictate instructions for dual-arm robots. In social robotics, large language
models are being used to enhance human-robot interaction, reducing human dis-
comfort over new technologies, and increasing the adaptability of robots into new
workspaces (Zhang et al., 2023).

Although advancements have been made in the field, no ground truth was established
for end-user robot programming. Aiming to move things forward, this thesis is
concentrated on three new end-user studies, described in the following section.

1 https://www.youtube.com/watch?v=3Qv-cur4qxA

https://www.youtube.com/watch?v=3Qv-cur4qxA

4

1 | INTRODUCTION

1.2 Research Contributions

Figure 1.1: Study workflow: The first study is about block-based programming in two-armed robots.
The second is about mixed reality in robot motion control, and the third is about natural language in
the support of end-users programming robots. Other studies are also presented in the final chapter.

In my thesis, I move forward the knowledge about end-user robot programming
by exploring uncovered challenges in the aforementioned topics (See 1.1). My work is
divided into three studies (See Figure 1.1): In the first study, I investigate the adoption of
a block-based environment in the programming of two-armed robots. Although block-
based environments have already been explored in related studies, this is the first work
investigating their applicability for robots with two arms. In this work, I also provide a
one-to-one comparison of block-based programming with a commercial solution designed
for the same robot category, bringing insights for future end-user-related solutions. In the
second study, I investigate the usability and application of mixed reality components as an
alternative to the traditional controls found in articulated robots (e.g., joysticks and buttons).
This study can be interpreted as a supplement to the work of Hörbst and Orsolits, 2022,
bringing an experimental investigation with end-users and experts in robotics. Finally, in
the third study, I evaluate the use of learning resources to assist end-users facing difficulties
in robot programming tasks. This work involves an experimental task where individuals
are asked to program a collaborative robot while they have assistance from a help desk.
This work also lists common difficulties end-users faced while programming the robot,

1.2 | RESEARCH CONTRIBUTIONS

5

following the same strategies of prior studies in end-user and novice programming (Ko,
B. A. Myers, et al., 2004; Steinmacher, Silva, et al., 2014). A more detailed overview of
each study is given in the following subsections.

1.2.1 Block-Based Programming For Two-Armed Robots
Traditionally speaking, industrial and collaborative robots are programmed using

text-based languages (Kandray, 2010b). Different from computer programming, the lan-
guages available in a robot usually vary based on the manufacturer. Robots from FANUC,
for example, are restricted to Karel, a proprietary language similar to PASCAL. Due to
their complex nature, most languages are designed with roboticists in mind, making
them an unviable option for end-users (Rossano et al., 2013). To overcome this problem,
researchers have been investigating the applicability of block-based languages in the
field of robotics (Mayr-Dorn et al., 2021; D. Weintrop et al., 2017). The block-based
paradigm is historically known for being a viable alternative for novices without former
programming experience (Noone and Mooney, 2018). Although solutions have been
proposed for different robot categories, little is known about its use and application in
robots with two arms.

In this study, we introduce Duplo, a block-based programming environment designed
for end-users programming two-armed robots. Different from other block-based languages,
Duplo is focused on the challenges of making two arms operate together. Duplo positions
the program for each arm side-by-side, using the spatial relationship between blocks from
each program to represent parallelism in a way that end-users can easily understand. This
design was proposed by previous work (Ritschel, Kovalenko, et al., 2020), but never
implemented or evaluated in a realistic programming setting. This work dives into an
in-depth investigation of block-based programming using the end-user’s perspective. A
randomized experiment with 52 participants is applied to evaluate Duplo, including three
experimental tasks and a post-experiment questionnaire.

To provide readers with a reference for comparison, this work also contrasts Duplo with
RobotStudio Online YuMi (ROY), a commercial end-user-friendly programming solution
developed by ABB. From this study, we can notice that the known benefits of block-based
solutions are also observed in two-armed robot programming: Blocks are easier to add,
edit, and understand. If debugging can be a concerning task for those without former
experience in programming, Duplo makes it easier by allowing users to distribute chunks
of code over a canvas. Generally speaking, participants who tested Duplo performed the
same tasks in less time than those trying the commercial alternative. They also faced fewer
problems (e.g., collisions), making Duplo a suitable reference for the next generations of
two-armed robots. For a visual reference, a promotional video of Duplo is available2.

1.2.2 Evaluation of Robot Controls in Mixed Reality
Robot programming could be an undemanding task if its unique obstacle was writing

code (or using blocks). The truth is that programming a robot demands more than just code:
When a physical robot is used, developers must know how to move it around, deal with

2 https://www.youtube.com/watch?v=MDmuNLtOmC4

https://www.youtube.com/watch?v=MDmuNLtOmC4

6

1 | INTRODUCTION

the limitations of its joints (e.g., singularity points), overcome workspace obstacles, and
more (Kandray, 2010a). Among these tasks, efficiently moving the robot around can make
a difference in the life of someone learning robot programming. This is because robots are
precise machines, and minimal changes in translation and rotation can lead robots to colli-
sions or even incorrect solutions (Rossano et al., 2013). Industrial and collaborative robots
are usually embedded with a solution for this problem: joysticks and button controllers.
Although both may be considered reasonable tools, they contain imperfections: Button
interactions can be tiresome when complex movements are performed, and joysticks
depend on the manual ability of users to efficiently position a robot. As an alternative,
we investigate in this study the use of mixed reality interfaces in the manual control of
collaborative robots.

Recent advances in mixed reality (MR) have made it a viable solution for
robotics (Hoenig et al., 2015). The resolution and field of view of most devices are
now bigger, and groundbreaking features such as hand and speech recognition are
incorporated (Park et al., 2021). However, the most commonly used MR widgets have
been designed to manipulate virtual objects, not robots. They are based on traditional web
controls like buttons and sliders, making it unclear how effective they are at controlling
physical objects, such as robotic arms and grippers. To investigate which MR widgets
are the best for interacting with collaborative robots, we implemented five interfaces for
the Microsoft Hololens 2, an industry-leading headset. Each interface was based on a
widget from the headset’s development kit, including sliders, buttons, bounding boxes,
object manipulators, and a custom joystick that we designed to mimic best practices from
traditional robotics.

To evaluate the applicability of mixed reality in this context, we performed a random-
ized experiment with 49 participants. Participants were organized into five groups, each
testing a different mixed reality interface. In individual sessions, we asked the participants
to reposition a virtual robotic gripper over a target location and measured their perfor-
mance and accuracy throughout the process. We also collected their overall feedback to
calculate System Usability Scale (SUS) scores for each interface. This experiment showed
that participants performed well when using the Bounding Box interface and gave it the
most positive ratings, with a SUS score average of 77.8. Different from the traditional
joysticks and button controllers, the Bounding Box interface provided a more suitable
solution for users to grab and move the robot through specific axes.

Based on these results, we also implemented a robot control application in MR that
uses the Bounding Box widget in the manipulation of a collaborative robot in real-time.
We asked 11 professionals from different backgrounds to use the prototype and conducted
follow-up interviews to get their opinions. In these interviews, the experts suggested
additional use cases for the prototype and identified limitations restricting the widespread
adoption of comparable systems. Our findings provide insights for designers of MR-based
tools and can inform future research that aims to bridge the gap between robotics and
virtually assisted technologies.

1.2 | RESEARCH CONTRIBUTIONS

7

1.2.3 Learning in End-User Robot Programming
Environments

How much knowledge is necessary for an end-user to program a collaborative robot?
As professors play an important role in students’ success in a classroom, the robot expertise
end-users don’t have may play an essential role in their programming success (Ajaykumar,
Steele, et al., 2021). Although an expert could be of great benefit to end-users in robotics,
having someone on their back does not sound like a trivial solution, nor does it align
with the independent principles of end-user robot programming (Benotsmane et al., 2018;
Sherwani et al., 2020). To prepare end-users for the independence of writing their own
coding solutions, companies like Universal Robots have invested in e-learning platforms
designed to teach novices the essentials of the field3. Most of these e-learning platforms
have limited video tutorials and provide access to private communities. However, to the
best of our knowledge, no study in the literature investigates the use of different learning
resources in training end-users in robotics. Are video tutorials the appropriate way of
preparing end-users for robot programming tasks? We believe that the learning process
should be investigated in detail if the goal is to give end-users independence over their
implementation. Towards a similar end, we now see a rise in the popularity of large
language models (Meyer et al., 2023). If one-day independent learners were only supported
by their hired experts, conversational chatbots like ChatGPT and Google Bard now offer
them preprocessed knowledge for free (Gururangan et al., 2020).

Following the conversational model’s trend and the challenge of understanding end-
users needs for robot apprenticeship, we worked on a third study investigating how
different learning resources (e.g., videos, textbooks, and chatbots) can help novices complete
robot programming tasks. In this study, we also investigated what common learning
challenges users face when programming a collaborative robot for the first time using a
list of six common barriers found in end-user programming environments Ko, B. A. Myers,
et al., 2004. Although other studies have already discussed the use of natural language
in the field (Villani et al., 2018; Younis et al., 2023), we also contrast in our work the
success of traditional learning materials like textbooks and technical manuals with custom
large language models in the assistance of end-users in robotics. To achieve this goal, we
executed an experimental study with 35 end-users programming a one-armed robot. The
study asked participants to solve a pick-and-place task similar to the one used in Duplo,
with the difference that participants were able to access a help desk for assistance in the
process. The programming language of choice was the Wizard Easy Programming tool
from ABB, a block-based language designed for novices in robot programming.

Our results suggest that developers prefer video tutorials and conversations with
chatbots rather than more traditional learning resources when programming a robot
for the first time. Participants solving the experimental task opened 33 conversations
with our custom language model. From a post-experiment questionnaire, 30 out of 35
participants (86%) suggested videos as the most useful resource when learning about
programming, while 27 suggested the use of chatbots (77%). Technical manuals, the most
common type of learning material in industrial robotics, were suggested as useful by
only 15 participants (43%). From this experiment, we also learned that although end-user

3 https://academy.universal-robots.com/

https://academy.universal-robots.com/

8

1 | INTRODUCTION

programming environments may help novices program robotic tasks, these users still
face many challenges translating their solutions into code. Among the most frequent
challenges faced by participants with the Wizard Easy Programming Tool were barriers
related to understanding the features available in the language, barriers associated with
the difficulty of translating programming logic into instructions, and difficulties in dealing
with unexpected results.

1.3 Structure
The thesis is organized as follows: Chapter 2 provides background information on

collaborative robotics, including the most common programming methods, languages,
and challenges. This chapter also provides readers with an introduction to end-user
robot programming. Chapter 3 presents a collection of related studies, focusing on visual
programming languages and robot programming assisted by virtual, mixed, and augmented
realities. Chapter 4 presents the first contribution of this thesis, introducing a block-based
programming language for two-armed robots. Chapter 5 brings up the second study,
focused on the manual control of robots through mixed reality. Chapter 6 brings our
study about learning resources and barriers in end-user robot programming environments.
Finally, Chapter 7 presents a conclusion for this thesis, highlighting complementary studies,
papers published, and future work.

9

Chapter 2

Background

In this chapter, a brief introduction to collaborative robots is given, including their
definition, design, operation, and programming languages explained in detail. A quick
overview of end-user robot programming is also presented.

2.1 Collaborative Robots
By definition, industrial robots are re-programmable, multi-functional manipulators

designed to accomplish tasks using programmed motions (Hägele et al., 2016; Kutz, 2015).
They automate repetitive procedures, performing tasks such as material handling, welding,
and assembly (Saenz et al., 2018). Industrial robots can present a variety of structures,
forms, and sizes. My work is focused on a trending category of industrial robots known
as collaborative robots (or cobots). While some industrial robots are designed to work in
isolated environments and require high programming experience, collaborative robots are
made to work safely around humans and to be easy to use and operate (Tarantino, 2022;
Mihelj et al., 2019).

(a) Two-armed robot (ABB YuMi) (b) One-armed robot (ABB GoFa)

Figure 2.1: Example of one and two-armed collaborative robots.

The mechanical structures of a collaborative robot are usually articulated, with three
or more interconnected joints rotating about a given axis and a shape similar to a human

10

2 | BACKGROUND

arm (Misra et al., 2020). Each robot usually contains no more than two arms and has
an end effector (i.e., a peripheral device) connected to its extremity, designed to interact
with the environment (See Figure 2.1). To operate a collaborative robot, users must first
access its operating system through the robot controller, a custom computer used to
operate robots. Users can access the system’s interface by connecting the controller to
a conventional computer using a computer network or manipulating it using a teaching
pendant, a multi-functional device similar to a tablet connected to the robot controller
(See Figure 2.2).

(a) Robot controller (b) Teaching pendant

Figure 2.2: Example of robot controller and teaching pendant.

Operators can manipulate the robotic arms from the operating system and access other
functionalities such as the program editor, file explorer, and system settings. In generic
terms, collaborative robots are mechanical units humans program through customized
computers to perform tasks. The difference between collaborative and other industrial
robots is that cobots are supposed to be safe, easy to use, and operate.

2.1.1 Programming Methods
Programming a collaborative robot usually involves teaching the robot a desired task.

To perform the task, the robot operator must define a path with positions that the robot will
follow, implement the logic of each position using programming languages, and test if the
robot performs the task correctly. More complex tasks may also involve other procedures,
such as the control of end effectors (e.g., welding torches, grippers), which can also be
implemented with programming languages. Different programming methods are defined
based on the interaction between the operator and the collaborative robot and can be
categorized in online or offline programming strategies (Heimann and Guhl, 2020; H. Liu,
2020).

Online Programming

In online programming methods, operators have direct contact with the robot while
developing their solutions (Salvendy, 2001). This usually means the robot is out of produc-
tion, and is used to test new code implementations. Teaching pendant and lead-through
programming are two common online programming strategies for collaborative robots.

2.1 | COLLABORATIVE ROBOTS

11

Both follow similar approaches, and their major difference is based on how the operator
manipulates the robot.

In lead-through programming, operators use their hands to lead the robot through the
positions of the desired solution (See Figure 2.3a). The operator then saves the positions
in the robot controller’s memory and programs the final implementation using a teaching
pendant or external computer. When the program is executed, the robot can repeat the
positions defined by the operator. In teaching pendant programming, instead of using
their hands, the operator controls the robot with the assistance of a pendant device
(See 2.2b).

Depending on the layout of the teaching pendant, users can use a joystick controller, a
touch-screen interface, or a set of directional buttons attached to the pendant case to move
the robot to new positions. The final solution is then implemented using the pendant or
with the assistance of an external computer. Other online methods may also be available
on certain collaborative robots (e.g., walk-through programming), and the terminologies
may vary from manufacturer to manufacturer.

(a) Lead-through programming (b) Teaching pendant programming

Figure 2.3: Example of online programming.

Offline Programming

In offline programming, operators use programming tools on external computers to
implement their solutions. These tools usually include simulation environments in which
operators can interact with virtual representations of their robots. In these methods,
there is no need for interaction between the operator and the physical robot as solutions
are only deployed once they are completed in simulation. The number of features in an
offline programming environment depends on the manufacturer. In ABB’s RobotStudio, for
example, the developer can simulate a real environment, including a virtual representation
of the controller, the teaching pendant, and the robot (See Figure 2.4).

2.1.2 Programming Languages
Unlike traditional computers, the programming languages available in industrial and

collaborative robots usually depend on the robot manufacturer. Most languages follow a
procedural approach, with the developer defining the robot’s steps through a sequence of
instructions. Most languages contain the exact mechanisms as traditional programming

12

2 | BACKGROUND

Figure 2.4: Example of an offline programming environment.

languages, including different data types (e.g., numbers, strings) and control structures (e.g.,
loops, conditionals). The major differences between these and traditional programming
languages are the additional features a robot programming language must support, such
as robot movement instructions (e.g., MoveJ) and robot-related data types (e.g., joint
values).

RAPID is the main programming language available for robots produced by ABB (See
Figure 2.5). It is based on a set of high-level instructions and follows a syntax similar to
PASCAL. Other manufacturers provide different languages, such as URScript (an extension
of Python) implemented by Universal Robots, and the KUKA Robot Language (also similar
to PASCAL) made by KUKA. Targeting users without experience in programming, some
manufacturers also provide beginner-friendly tools to assist novices in developing solu-
tions for robots. ABB Wizard Programming, for example, is a block-based programming
environment available in one-armed collaborative robots from ABB. Puzzle-shaped blocks
represent the robot instructions on a canvas, and every code produced in the environment
is translated to RAPID by the controller.

2.1.3 Known Challenges
Collaborative robots are becoming one of the key technologies in automation (Sher-

wani et al., 2020). Although such robots are changing how humans interact with industrial
machinery, many challenges still compromise their adoption (Vicentini, 2021; Knudsen
and Kaivo-Oja, 2020). On the manufacturing side, engineers have to worry about the
robots’ compliance with safety standards and deal with variables such as speed and quality
of work made by these machines (Ng et al., 2022; Malm et al., 2019). In the business
department, the challenge is to create a worldwide interest in cobots, spread their adoption,
and establish a new worldwide market (Bogue, 2016).

2.1 | COLLABORATIVE ROBOTS

13

Figure 2.5: Example of a pick-and-place solution in RAPID.

However, such challenges may be of inconsiderable importance compared to the
employability of such robots. How do manufacturers create interest in a product that
clients can not employ? In a survey with 1,650 companies, ABB found that 53% of their
clientele justified not having a robot due to "a lack of skills and training in using and
programming robots" (Verlag, 2022b). The same problem is reported in related studies
with cobots, emphasizing programming, interaction, and learning difficulties as major
problems found in collaborative robotics (Sherwani et al., 2020; Vicentini, 2021; Bisen
and Payal, 2022).

Programming barriers faced by users with different levels of experience should be
expected. Especially considering that most robots are restricted to a single language,
usually based on aged technologies such as PASCAL, and dependent on a heavy set of
robot-related commands. The same holds for learning if we compare, for example, the
wide range of materials available in more conventional languages (e.g., Python1) with
the limited resources from robot-related languages (e.g., RAPID2). Although technologies
such as lead-through programming may promote better human-robot interaction, the
interaction is also limited to basic physical and virtual commands, creating a need for
programming alternatives.

Considering such challenges, my study explores how programming-related challenges
can be mitigated with the adoption of research-proven strategies and up-to-date technolo-
gies. Using the knowledge acquired from studies with end-users in distinct programming
environments, I propose a set of solutions to support them in collaborative robot program-
ming such that the downsizes of using and programming cobots can be reduced. Related
to this, a brief introduction to end-user robot programming is given in the following
section.

1 https://www.python.org/doc/
2 https://library.abb.com/d/3HAC050947-001/

https://www.python.org/doc/
https://library.abb.com/d/3HAC050947-001/

14

2 | BACKGROUND

2.2 End-User Robot Programming
End-user programming relates to the idea of allowing users with different levels of

programming experience to develop software. The growing interest in the topic started
with the popularization of computers in the early nineties (C. Jones, 1995). While more
and more individuals started to deal with software solutions in their working routines, the
number of experts in software development did not grow at the same rate. At that point,
studies started to emerge on how to allow end-users to implement their own software
solutions. As a consequence, end-user software engineering gained popularity, delivering
multiple works and techniques, such as visual programming languages, programming by
demonstration, and more (Nardi, 1993; Smith et al., 1994; M. Burnett et al., 2004).

Nowadays, end-user programming can be considered a consolidated topic in Software
Engineering (Barricelli et al., 2019). Tools such as AppInventor and Scratch are now
disseminating programming concepts among users with different levels of expertise,
including, for example, high and middle school students (Resnick et al., 2009; Pokress
and Veiga, 2013). While researchers in Software Engineering have widely adopted the
topic, the challenges of the last century persist for developers in the robotics domain. With
robot manufacturers interested in promoting cobots as a viable solution for a broad range
of clients, users with limited robot programming knowledge are still dealing with the
difficulties of telling their robots what to do.

Ko, Abraham, et al., 2011 highlights that end-users are not necessarily novices in
programming. They state that users with different backgrounds should benefit from end-
user studies as an alternative to professional approaches. The authors also state that a
computer program in this context "is not primarily intended for use by a large number of users
with varying needs." Their perspective aligns with the current goals of robot manufacturers
and collaborative robotics. If cobots reach a wide range of users, programmers with different
backgrounds and programming experiences are expected. Professional programming
methods found in industrial robotics may not fit the diversity of their goals, interrupting
the applicability of such robots in a broader range of solutions.

Amid this scenario, end-user robot programming has become a prominent topic in
the robotics domain (Ajaykumar, Steele, et al., 2021). If end-user programming research
is focused on computers, end-user robot programming is concerned with robots. Many
strategies proposed for cobots are still based on knowledge from traditional end-user
programming studies. The use of visual programming as a replacement for more complex
text-based programming languages, for example, is one of the approaches in common.
However, because robot programming is also about understanding and interacting with the
physical environment, other concepts not so well-explored in end-user programming are
also being investigated, such as virtual, augmented, and mixed reality technologies.

The central point in end-user robot programming is to "democratize robot programming
by empowering end-users who may not have experience in it to customize robots to meet their
individual contextual needs" (Ajaykumar, Steele, et al., 2021). In my work, I contribute to
the democratization of robot programming by exploring alternatives to make robots easier
to interact and programming easier to understand. In the following chapter, I highlight
related studies connected to my work.

15

Chapter 3

Related Work

As stated by Hägele et al., 2016, "the range of feasible applications could significantly
increase if robots were easier to install, to integrate with other manufacturing processes, and to
program." This chapter highlights studies on programming-related tools that can contribute
to integrating collaborative robots in practice. Sections are divided into two end-user robot
programming methods aligned with my research contributions: visual languages and
virtual-assisted devices. A discussion section on learning barriers in software development
is also included.

3.1 Visual Programming in Robotics
The use of visual affordances in programming is not a recent idea. Tools such as

Boxer (diSessa and Abelson, 1986) and Fabrik (Ingalls et al., 1988) already explored the
advantages of programming using visual elements almost forty years ago. However, visual
programming languages go beyond the use of visual cues, as their syntax is intrinsically
connected to visual expressions (M. M. Burnett and McIntyre, 1995). While text-based
languages are purely based on writing, visual programming languages explore visual
means as an alternative way of programming (Chang, 2012). In practice, some studies
consider visual languages as introductory learning tools, with many of these languages
supporting a later transition to text-based programming (Noone and Mooney, 2018; Lin
and David Weintrop, 2021).

Visual languages provide significant support to end-users, and their strategies to
allow such users to program are diverse (Kuhail et al., 2021). Among the most common
methods, there is the block-based programming paradigm (Bau et al., 2017). In a block-based
programming language, statements are translated into puzzle-shaped blocks. One block
usually serves as the starting checkpoint, and all blocks connected in the sequence compose
the programming solution. The syntax of a block-based language tends to follow the same
structures of imperative text-based languages such as C, Java, and Python. One of the most
referenced block-based languages available is Scratch1, a language primarily designed for
kids learning the basics of computer programming (Maloney et al., 2010).

1 https://scratch.mit.edu/

https://scratch.mit.edu/

16

3 | RELATED WORK

If visual languages can serve as a transition to more complex languages in traditional
circumstances, the same transition should hold for robot-related languages. Based on a
similar hypothesis, programming environments such as Coblox (David Weintrop, Afzal,
Salac, Francis, B. Li, David C Shepherd, et al., 2018a) started to emerge in robotics.
Serving as a beginner-friendly interface for the RAPID language in ABB robots (See
Figure 2.5), Coblox translates RAPID text-based instructions into visual blocks. The blocks
are organized in categories such as Move, for robot movement commands, and Logic, for
conditional expressions (See Figure 3.1). Inexperienced developers learning the basics of
ABB’s collaborative robots are encouraged to start with Coblox as an introductory tool,
later transitioning their workflow to RAPID programming.

Figure 3.1: Wizard Easy Programming on a virtual teaching pendant.

However, this programming tool is not the only block-based language available in the
robotics domain (Coronado et al., 2020). Tools such as OpenRoberta (Jost et al., 2014),
designed for educational robots, and Procrob (Ziafati et al., 2017), supported by social
robots, are within the same scope. Other visual programming paradigms are also explored
by roboticists, including dataflow-based environments like RoboFlow (Alexandrova et al.,
2015) and the Microsoft Visual Programming Language (Johns and Taylor, 2009). The
significant difference between these environments and the block-based tools lies in the
representation of visual components. While blocks in block-based environments visually
represent instructions, dataflow programming represents instructions through directed
graphs, with nodes and edges dictating the program workflow (Sousa, 2012).

3.2 Robot Programming Assisted by Virtual, Mixed
and Augmented Realities

Programming a robot is different from programming a computer. While the correct-
ness of a computer program usually depends on the produced solution, programming a

3.2 | ROBOT PROGRAMMING ASSISTED BY VIRTUAL, MIXED AND AUGMENTED REALITIES

17

robot also involves its consonance with the physical environment (Ajoudani et al., 2018).
Positioning the robot in multiple locations and making it move without significant compli-
cations (e.g., collisions) are problems that most traditional programming environments do
not consider. To mitigate this issue, many studies in robotics have been proposing the use
of virtual-assisted devices for robot programming tasks. Devices supporting Virtual Reality
(VR), Augmented Reality (AR), and Mixed Reality (MR) are among the most common
solutions (Ajaykumar, Steele, et al., 2021; Shumaker and Lackey, 2015).

Although working on the same spectrum, these three concepts diverge in practice, and
their applicability depends on the devices available (Skarbez et al., 2021). VR devices, for
example, fully immerse individuals in virtual workspaces, providing limited interaction
with the real world (Casini, 2022). They are usually embedded in head-mounted displays,
and the interaction with the virtual environment is given through joystick controllers.
In robotics, VR has been used mostly as an alternative for offline programming envi-
ronments (Shumaker and Lackey, 2015). Developers recreate the robot and its working
objects in the VR domain, program them in the virtual workspace, and export the solution
to the physical robot in a later stage. Other applications, such as remote operation and
training, are also typical in this type of technology (Stotko et al., 2019; Matsas and
Vosniakos, 2017).

As a clear example of a VR-assisted solution, Wang et al., 2019 implemented a human-
robot collaborative welding system in VR. Their system allows welding operators to
perform their tasks remotely with the assistance of a collaborative robot. The application
displays the actual welding workspace in VR, and the user controls the welding tool in
real time via a joystick controller. In a more complex solution, RobotStudio provides a
collaborative programming environment in VR (ABB, 2023b). In this solution, users can
recreate robotics procedures, manipulate industrial and collaborative robots using joystick
controllers, and program new solutions using code instructions available through button-
based interfaces (Please, watch the video2). Multiple users can connect and interact in the
same environment, allowing a better design of robot solutions.

Many other applications are also available in the VR domain (Zhou et al., 2020; Moglia
et al., 2016). Different from simulation environments displayed on a computer screen, VR-
supported applications allow developers to have a better understanding of the interactions
between the robot and its workspace (O. Liu et al., 2017). A downside of this technology is
related to the fact that the quality of the implementation depends on the accuracy between
the environment recreated in VR and the actual workspace. If the VR environment does
not follow the same properties and sizes as its reference, the final program may result in
inconsistent solutions. Problems associated with the VR domain, such as tracking issues
and motion sickness, may also impact the applicability of this technology (Chattha et al.,
2020; Chandra et al., 2019).

Another common type of virtual-assisted technology for robotics is found in aug-
mented reality devices. With such technologies, users are not fully immersed in a virtual
workspace. Instead, virtual elements are over-positioned in the real environment, creating
the impression that they are part of the physical workspace. One of the most common

2 https://www.youtube.com/watch?v=WVUeJFIYBWs

https://www.youtube.com/watch?v=WVUeJFIYBWs

18

3 | RELATED WORK

access points for AR applications are smartphones and tablets. Using the device’s camera,
users can visualize AR objects in real-time and interact with them using the touchscreen.
Most mobile devices support AR features, and many popular applications use it in practice
(e.g., Pokemon Go, Polycam).

In robotics, many studies also explore this concept in programming-related
tasks (Makhataeva and Varol, 2020). A great example is presented in the work of
Gradmann et al., 2018, who used a tablet to control collaborative robots from a distance.
In their solution, a virtual representation of the robot is aligned next to the physical robot,
and a back-end application establishes a network communication between the tablet and
the robot controller. Among the features provided in their solution, users can move the
robot, operate the gripper, change the control mode, and code basic instructions using the
tablet interface. One of their outstanding features is the software’s ability to detect objects
in the physical workspace using the device’s camera. The objects detected are registered
into the application running on the mobile device, allowing users to incorporate them
into code.

On a commercial level, the offline programming platform RobotStudio is also available
on tablets and smartphones as an AR solution (ABB, 2023a). In this mobile application
implemented by ABB, developers can easily position their computer-generated robot
environments in physical workspaces (See Figure 3.2). Users can not only visualize if their
solutions would work in the real workspace but also interact with multiple robots, display
safety zones, and verify possible collisions in the working area. Other companies also
support robot programming in AR and VR, including but not limited to the KUKA and
Visual Components citepkukasim, visualcomp.

Figure 3.2: RobotStudio AR Viewer, an application to interact with computer-generated robot solutions.

Some augmented reality studies in robotics are also associated with the term mixed
reality. This term can be considered a synonym for augmented reality or a more robust
version of the concept (Speicher et al., 2019). Most solutions associated with MR use

3.3 | LEARNING BARRIERS IN SOFTWARE DEVELOPMENT

19

head-mounted displays instead of mobile devices (e.g., Microsoft Hololens 2, Varjo XR-3).
These displays usually come with see-through capabilities, allowing the user to interact
with the real world while playing with virtual objects (Salvendy and Karwowski, 2021).
Many displays also support features not available on mobile devices, such as hand-tracking
for virtual object manipulation and spatial mapping for environment understanding.

There are many studies in the literature discussing the use of MR displays for robot
programming (Quintero et al., 2018; Evlampev and Ostanin, 2019; Piccinelli et al., 2021).
Neves et al., 2018 discusses how such devices can be used in the programming of industrial
robots by exploring two basic concepts: path visualization and path manipulation. In
robotics, a path is defined as a sequence of positions the robot will follow in a program.
By displaying the robot positions as holograms using a Microsoft Hololens 2, the authors
investigated the applicability of MR devices in path programming procedures. The idea
behind the study was that by allowing developers to visualize and interact with the path
the robot will take in their program, programmers would get a better understanding of
their solution in real time.

Using a different perspective, Hörbst and Orsolits, 2022 explored the use of Microsoft
Hololens 2 for manual control and visualization of collaborative robots. In their solution,
holographic interfaces allow users to control a holographic copy of the robot (Watch ABB
Robotics, 2021). The movements made in the digital copy are translated in real-time to
the physical robot, making it move according to the MR commands instructed by the user.
The authors investigated two ways to control the robot manually: one by defining joint
values and another by moving the virtual copy to a specific position. In their solution, the
authors also discussed how MR can contribute to the visualization of important aspects of
a collaborative robot, such as the robot pose and torque.

In general, studies on VR/AR/MR propose a valuable experience for developers working
on robot programming tasks (Ajaykumar, Steele, et al., 2021). Although the constant
visualization of the physical environment in real-time can be considered a benefit of AR
and MR technologies, other limitations influence their applicability for robot programming
tasks, making VR also a considerable option (Billinghurst, 2021; Rokhsaritalemi et al.,
2020). Most limitations on these three technologies should vanish with advancements in
hardware and software, making them essential tools to combat programming challenges
beyond code in collaborative robotics. In my thesis, I explore different MR controls that
could be adopted by users implementing solutions for cobots.

3.3 Learning Barriers in Software Development
It is not uncommon for novices to face challenges with software implementation (But-

ler,Morgan, et al., 2007; Jimenez et al., 2018; Corno et al., 2019). Difficulties understanding
a specific programming feature or gluing multiple features together are just examples of
how complex programming tasks can be. In the open-source domain, Steinmacher, Silva,
et al., 2014 identified a series of development-related challenges new contributors face
when attempting to join open-source communities. They categorized these challenges as
a taxonomy of onboarding barriers. From difficulties in learning how to contact project
maintainers to issues in understanding the community’s documentation, their work ex-

20

3 | RELATED WORK

plores the onboarding process in open-source communities through the perspective of
inexperienced developers. Their work, extended by related studies (e.g., Padala et al.,
2020; Hannebauer and Gruhn, 2017), is helping open-source communities to understand
better the difficulties faced by newcomers and open space for solutions in the field. Among
the solutions created so far, Up For Grabs is a web portal created to help newcomers find
tasks to start their journey in the open-source domain (Steinmacher, Wiese, et al., 2015).
This work inspired our third study on learning barriers in robot programming tasks. We
believe that by exploring novices’ difficulties, we can better understand what solutions
they need.

Figure 3.3: Up for grabsa: a website to help newcomers find tasks in open-source communities.

a https://up-for-grabs.net/

In the end-user context, Ko, B. A. Myers, et al., 2004 realized an experiment with 40
programming novices to explore learning barriers in end-user programming systems. They
put novices to work on a programming task using Visual Basic3 and asked them to report
any difficulties throughout the process. In a posterior analysis, the authors summarized
the challenges in six categories: design (I don’t know what I want the computer to do..."),
selection (I think I know what I want the computer to do, but I don’t know what to use...),
coordination (I think I know what things to use, but I don’t know how to make them work
together...), use (I think I know what to use, but I don’t know how to use it...), understanding
(I thought I knew how to use this, but it didn’t do what I expected...), and information (I think
I know why it didn’t do what I expected, but I don’t know how to check...). At the end of their
study, the authors suggest design solutions for end-user programming systems. These six
categories of learning barriers are used in our third study, which is about the same topic
but in robot programming environments. We aim to extend the contributions once found
in computer programming environments to the robotics domain. In the following chapters,
I discuss my three contributions. The first is Duplo, a block-based programming language
for two-armed robots (Chapter 4). The second implements robot motion control interfaces
in mixed reality (Chapter 5). The third is a deep investigation of learning barriers and
resources in end-user robot programming tasks (Chapter 6).

3 https://learn.microsoft.com/en-us/dotnet/visual-basic/

https://up-for-grabs.net/
https://learn.microsoft.com/en-us/dotnet/visual-basic/

21

Chapter 4

Block-Based Programming For
Two-Armed Robots

4.1 Overview

This chapter presents Duplo, an easy-to-use block-based programming system for
cooperative programs that controls a collaborative robot with two arms. As illustrated
by Figure 4.1, Duplo presents users with two block-based programming canvases side-
by-side and features cross-canvas blocks that are synchronized between the canvases
to represent parallel commands. This design was explored by previous work through
mock-up programs and a front-end prototype but never implemented or tested with actual
robots (Ritschel, Kovalenko, et al., 2020). This work implements the design in a refined
form and evaluates the use of the block-based paradigm using a two-armed robot.

Figure 4.1: Interface of the Duplo programming language. Users can drag blocks from a toolbox on
the left onto the programming canvases and attach them to existing blocks to create a program. Blocks
that affect both arms are duplicated across canvases and vertically aligned.

22

4 | BLOCK-BASED PROGRAMMING FOR TWO-ARMED ROBOTS

In our evaluation of Duplo, we compare it to RobotStudio Online YuMi (ABB Ltd, 2015).
ROY is the only existing robotics tool we are aware of that targets end-users and supports
the programming of two-armed robots. In addition, ROY provides a similar set of features
as Duplo and targets the same two-armed robot model, with equivalent robot commands
being available in both languages. This makes ROY an ideal candidate for evaluating the
impact that the block-based editing paradigm and synchronized blocks have on end-users
programming two-armed robots.

Figure 4.2: RobotStudio Online YuMi programming interface for two-armed robots: Two canvases
show RAPID code for each arm side-by-side, with buttons allowing the quick insertion of commands
into the code.

To compare the two programming environments, we performed a randomized con-
trolled experiment with 52 end-user participants. Our participants, primarily university
students with little to no robot programming experience, were randomly assigned to one
of the two programming systems and given a brief introduction on how to use it. They
were then presented with a programming task that consisted of multiple stages in which
participants had to coordinate two robot arms to jointly carry and assemble a series of
items. We recorded whether participants completed each stage of the programming task,
how long they took to do so, the number and kind of programming mistakes they made,
and how many attempts they needed to test their programs. We found that participants
who used the Duplo block-based environment made fewer programming mistakes, were
able to solve the given tasks with greater success, and required less time on average to
complete the task.

4.2 Tools

This section provides a detailed overview of the two programming environments
compared in this experiment: the existing graphical-based, commercially available system,
RobotStudio Online YuMi (ROY), and the block-based programming tool Duplo, introduced
as the major contribution in this chapter.

4.2 | TOOLS

23

4.2.1 ROY: RobotStudio Online YuMi
RobotStudio Online YuMi (ROY) is a programming interface created by the robot

manufacturer ABB to control their two-armed collaborative robot YuMi. It is designed
to demonstrate the range of tasks that two robot arms can solve when they cooperate.
ROY is developed to be beginner-friendly and accessible to end-users who would be
overwhelmed by traditional tools like ABB’s RobotStudio (ABB Ltd., 2023a). To the best
of our knowledge, it is one of the only programming tools available in the market that
is both beginner-friendly and supports the programming of a two-armed collaborative
robot.

As Figure 4.2 illustrates, ROY’s main interface contains two canvases on the left where
the RAPID code is displayed and a panel on the right with graphical buttons used to
implement new robot instructions. The two canvases on the left contain the program
code for each robotic arm that is targeted by the environment and are used to visualize
instructions created by the user. When the user presses a button on the right panel,
the RAPID instruction assigned to that button is displayed on the canvas respective to
that robot arm. The instructions displayed on the canvases are similar to the ones from
professional tools of the same manufacturer, although boilerplate codes such as function
headers and variable definitions are hidden. As users compile and run their code (using
the button on the bottom right), the two programs are combined with their respective
boilerplate code and deployed onto their respective robot arms. The entire project can also
be saved into a single file and restored later to continue editing the code in ROY.

The programming process1 in ROY is purely based on button interactions on the
interface. The first button on the main interface, “Current position from both arms”,
generates code that simultaneously moves both arms to their current position. The second
row has two buttons, “Current Position this arm” for each arm, that generates code to move
only the corresponding arm. For these buttons, the target location is automatically set to a
variable that contains the current location of the connected physical robot at the moment
the button is clicked. The third row has four buttons, “Open Gripper” and “Close Gripper”
for each arm, that generate code to open or close the grippers in its respective canvas.
Lastly, the button on the left side of the bottom row adds a command to both canvases
that make the program being executed in each arm wait for each other, for example, when
one arm is supposed to remain idle while the other one conducts work.

All of the described buttons can only be used to insert new code at the currently
selected line number. However, users can also edit the program’s source code of each arm
using the “Edit this arm” button on top of each canvas. This button switches into a similar
interface that only shows a specific arm’s instructions. To edit existing commands, users
can manually delete code and replace it with new instructions using buttons on the “Edit
this arm” interface. Existing variables can also be overridden with a new location, allowing
users to fine-tune their existing programs without having to edit the code manually. By
providing a programming environment where beginners can implement programs for
two-armed robots using simple button interactions, ABB defines ROY as a “fast introduction
to robot programming” (ABB Ltd, 2015).

1 https://www.youtube.com/watch?v=jEbaaqNPh9c

https://www.youtube.com/watch?v=jEbaaqNPh9c

24

4 | BLOCK-BASED PROGRAMMING FOR TWO-ARMED ROBOTS

4.2.2 Duplo: Block-based Cooperative Programming
Duplo is a block-based programming tool that supports cooperative two-armed robot

programs. Duplo uses similar commands as existing beginner-friendly block-based pro-
gramming languages for robots (David Weintrop and Wilensky, 2015; Feng et al., 2015;
David Weintrop, Afzal, Salac, Francis, B. Li, David C. Shepherd, et al., 2018b), which
feature high-level commands such as “Move arm <speed> to <position>” and “Open grip-
per”. However, unlike previous block-based languages, which focused on a single robot
arm executing a single program, Duplo targets two robot arms at once and allows users
to write programs that are executed simultaneously. It further integrates lead-through
programming to define locations, similar to how positions are declared in ROY.

Figure 4.1 shows Duplo’s user interface. Similar to ROY, it features two programming
canvases side-by-side, each containing the program for one robot arm. On the left side of
the environment, a sidebar provides several drawers with available programming blocks.
The blocks are grouped thematically into movement commands, gripper commands, and
synchronization commands. Blocks can be dragged from the drawers onto one of the
two canvases and attached to existing blocks, as illustrated by their jigsaw shape. The
design of Duplo is based on the findings of previous work (Ritschel, Kovalenko, et al.,
2020), which evaluated different design alternatives for coordinating two-armed robots.
The Duplo environment follows the design approach that was deemed best by that work,
using explicit synchronization blocks and vertical alignment to represent concurrent robot
behavior. However, unlike previous work, which used mock-ups and front-end prototypes
to compare design alternatives, Duplo features a fully functional implementation that
targets a real two-armed robot2.

A unique feature of Duplo compared to other block-based languages is the availability
of blocks that target both robot arms at once, and that therefore exist in both of the
programming canvases. The “Wait for each other” block synchronizes the state of both
arms before proceeding to the next instruction, and the “Move arm <speed> to <position>
and follow on the other side” block is used to perform a simultaneous movement of both
arms at once. When a programmer drags one of these blocks onto one of the programming
canvases, it is automatically inserted into the other canvas as well. The blocks can be edited
and moved to a different point in the program by dragging either of the two representations,
with the other representation following along accordingly. The environment ensures that
complementary blocks are always vertically aligned, making it easy to identify how they
correspond to each other. This allows users to visually track the timing of the two programs
as they edit them and signals them to potentially add more synchronization blocks to
ensure the correct sequence of commands.

This implementation allows us to compare Duplo to ROY, which features a similar
complexity of programming features and targets the same robot model. Even though
both languages adopt distinct programming styles (block-based vs. graphical-based), the
similarities between Duplo and ROY make them suitable for comparison. Both are among
the few tools available for two-armed robot programming. They are specifically designed
to be user-friendly for individuals without experience in robot programming and offer

2 https://www.youtube.com/watch?v=MDmuNLtOmC4

https://www.youtube.com/watch?v=MDmuNLtOmC4

4.3 | METHOD

25

comparable movement and synchronization commands. The collaborative robot and the
lead-through capability used in both languages are also the same. In other words, equivalent
solutions can be implemented in both languages.

4.3 Method

Before the experiment

Participants invited via
mailing lists and local

advertising in a
university

After the experiment

Descriptive analysis of the
annotated data and

qualitative analysis based
on the feedback of
participants in the

questionnaire

Data Analysis

During the experiment

Group Assignment
52 participants randomly

assigned to try one of the two
programming tools

Participants had 105 minutes to
solve the three picking and

placing tasks

Task Resolution

Training
Video tutorials trained

participants about the assigned
tool and experiment task

Proctors observing
participants annotated
information about their

performance, completion
times, and mistakes

Data Annotation

Participants responded to
demographic questions and
gave feedback on the tool.

Questionnaire

Participants
Recruitment

Figure 4.3: Experimental design and procedure divided into three phases: before, during, and after the
experiment.

This section describes the controlled experiment conducted to compare Duplo and ROY
using a two-armed collaborative robot. Figure 4.3 presents an overview of the experimental
procedure and the individual steps that were split across three experimental phases. The
entire methodology was refined through a pilot study using feedback from 31 individuals
and approved in advance by an institutional review board.

4.3.1 Recruitment
The experiment was advertised to undergraduate students enrolled at a single university

in the United States. To ensure a diverse range of participant backgrounds, advertisement
emails were sent to different departments, and flyers were distributed to students around
the campus. The materials clearly described that the experiment involved a collaborative
robot programming task but emphasized that it was focused on end-users without any
previous programming experience. A 50 USD gift card for a local bookstore was offered as
an incentive to all participants.

4.3.2 Experimental Setup
Each participant was provided with one of the two programming environments and a

robot to execute their code and record positions via lead-through programming. The robot
used in the experiment was an ABB YuMi (ABB Ltd., 2023b), a collaborative robot with
lead-through capabilities. Figure 5.3 shows the physical layout of the experiment as it was
presented to participants. A laptop running the assigned programming environment was
placed on a table adjacent to the workstation where the two-armed robot was mounted.
Participants were able to program using either the laptop’s touch-screen monitor or
the built-in keyboard and touchpad. In addition to the robot, the workstation contained
3D-printed objects relevant to the task participants were asked to solve.

26

4 | BLOCK-BASED PROGRAMMING FOR TWO-ARMED ROBOTS

Figure 4.4: Experimental setup: Participants used a touch-screen-enabled laptop (left) to program a
two-armed collaborative robot (right).

4.3.3 Experimental Procedure
Participants were randomly assigned to one of two groups after they consented to join

the experiment. One group was assigned the Duplo environment, and the other group
used the ROY environment. Although participants were divided into two groups, each
participant was scheduled for an individual session to try the experimental procedure. The
only individual rather than the participant in a session was a proctor, who was instructed
not to provide extra information to the participants. Other than the assigned programming
environment and respective training, both groups were provided with the same setup
and task descriptions. The experiment was limited to a maximum of 120 minutes. During
the first 15 minutes of the experiment, participants were introduced to their assigned
programming environment and trained on how to use it. Next, participants received
the task they were to solve along with a clear understanding of what would constitute
successfully accomplishing the task. During the following 105 minutes, participants were
allowed to solve the given task at their own pace.

Training Procedure

The training for both environments was designed to be as similar as possible, consisting
of two brief videos (Please, watch the playlist 3). The first video explained how to use the
assigned programming environment. Although the two environments required different
instructions and consequently different videos, we made them as similar as possible in
both length and content. Each video was approximately 7 minutes long and covered all
the basic programming features of the respective environment. Neither video referenced
the concrete task that participants were expected to solve.

The second video was two minutes long and introduced the task to the participants.
This video introduced them to the 3D-printed objects they were to assemble. It also showed

3 https://www.youtube.com/playlist?list=PLQHWcSK2-Zw4bAUNAWVuZ1BAZ8oYiUt6I

https://www.youtube.com/playlist?list=PLQHWcSK2-Zw4bAUNAWVuZ1BAZ8oYiUt6I

4.3 | METHOD

27

them the desired, fully assembled state of the components after all steps of the task were
completed. The video did not show the assembling process, as we expected participants to
implement their own solutions. It did, however, suggest the order in which participants
could tackle the assembly steps, effectively breaking the task down into three smaller
sub-tasks that allowed participants to keep track of their progress.

After watching both training videos, the proctor supervising the experiment gave par-
ticipants a brief in-person introduction to the robot workspace. The proctor demonstrated
how to execute programs and how to move the robot arm in lead-through mode to capture
its current position. Participants were also given a “cheat sheet” with some reminders and
tips, including how to open and close the robot’s grippers while recording positions.

Task Procedure

The experiment task involved writing a program that could perform a series of steps
that involved picking and placing 3D-printed objects and executing this program on the
physical robot to assemble the final object. Pick-and-place tasks are commonly used in
robot experiments because they often occur in practice and typically lead to challenges
that participants encounter and have to overcome (Baumgartl et al., 2013). Participants
were asked to assemble three components using the two-armed robot. First, participants
had to pick up a “spacer”, a small cuboid-shaped plastic component, and place it onto
a narrow metal shaft in the center of the robot workstation. This part of the task only
involved one robot arm and was, therefore, suitable as a warm-up step. However, only one
of the two robot arms could reach the item, so this step also served as a check of whether
participants could identify and program the correct robot arm for the sub-task.

Second, participants were instructed to pick up a “gear”, a larger and differently shaped
component, and move it on top of the previously placed spacer. To solve this programming
step, participants had to use the robot’s second arm as only that arm was able to reach
the item. While this sub-task seems similar to the previous one (requiring only one robot
arm), it did involve coordination because the two tasks had to be executed in the right
order. This and the previous sub-task could be parallelized by picking up the two items
simultaneously and then placing them one after another, but the materials did not instruct
participants to solve them this way. However, a naive implementation is likely to cause a
concurrent execution of both tasks in both programming environments. If participants
decided to retain the parallelism, they had to ensure the two arms do not collide, which
can occur if they try to place objects simultaneously or do not move out of each other’s
way.

For the last sub-task, participants were asked to pick and place a “propeller”, a wide
plastic object that could not be carried and assembled accurately using a single robot
arm. Instead, participants had to carry the item with both robot arms and use synchro-
nized movements to move it into the correct position on top of the previously placed
items. Unlike in prior sub-tasks, this required the two arms to work in tandem. This also
required synchronization to ensure it was only executed after both previous sub-tasks
were completed. Figure 4.5 shows a potential solution for the assembly task, although
the specific sequence in which objects had to be placed was not specified or enforced in
the experiment. For example, while Figure 4.5 shows the order envisioned above (spacer

28

4 | BLOCK-BASED PROGRAMMING FOR TWO-ARMED ROBOTS

first, gear second, and propeller third), participants were allowed to start by placing the
propeller and then placing the gear or spacer. This means that participants could move
on to a different sub-task if they felt like they were stuck. The task description video did,
however, show the assembly in the order as shown in Figure 4.5, as this order was expected
to be the most appropriate difficulty curve for participants.

Figure 4.5: Potential solution: The spacer at the bottom (in blue), the gear in the middle (in red), and
the propeller at the top (in green) are all placed into the small metal shaft. There is no specific order of
how the objects had to be placed.

Participants were free to spend the 105 minutes provided for the experiment as they
wished. In particular, we did not direct them to move on to a new sub-task if they spent
longer than anticipated on a single step. The proctor would only intervene if participants
explicitly requested them to repeat previously given instructions or the task description,
or if there were technical issues. After participants indicated that had finished the task,
the proctor would ask them to run their program one final time to verify the solution.
If the program did not solve the task and there was time left, participants could resume
programming and try to fix their mistakes.

Post-Experiment Questionnaire

After completing the experiment, participants were asked to answer a post-experiment
questionnaire. The questionnaire was composed of eight questions: The first five questions
asked participants about their demographic information; this included participant age,
area of study, overall programming experience, experience with robot programming, and
whether they had ever used a block-based programming language before. The last three
questions were open-ended and asked what participants found easy, what they found
difficult, and if they had any other feedback about the experiment or the environment
they used.

4.4 | RESULTS

29

4.3.4 Data Collection and Analysis

A proctor supervised the experiment at all times and collected data in a spreadsheet
for later analysis. Using a digital clock, the proctor recorded the duration the participant
took to complete each sub-task in the experiment, from picking up their first object to
placing the last one. They also counted occurrences of particular events in the experiment,
including the number of times a participant executed their program solution, the number of
objects accidentally dropped during executions, and the number of times the robot collided
with itself or the surrounding workspace. Once a participant had successfully finished
the task, the proctor inspected the code and collected information about the participant’s
solution, including the number of used lines or blocks of code used and the number of
robot positions the participant defined in their solution. All the collected variables are
defined in Table 4.1.

The data collected by the proctors and provided in the post-experiment questionnaire
were analyzed after the experiment. While most experimental data was quantitative,
the written responses to the questionnaire required qualitative analysis. The analysis
was performed by three researchers using open card sorting to organize and categorize
responses (Spencer, 2009). The researchers were instructed to create codes for participant
comments that described features or attributes they found easy and difficult to use. At
first, each researcher performed the analysis individually. Once they were done with
their analysis, the researchers met to compare their results, aiming to arrive at a final,
common set of codes. Constant comparison was employed to guarantee consistency in the
codes (Corbin, 2015). Finally, two additional researchers inspected the final set of codes
to ensure they were easy to understand.

Type Variables

Integer
Program Executions, # Robot Positions Created,
< Blocks, Lines > Implemented, # Objects Dropped,
Robot Collisions with < Environment, Robot >

Datetime
When participant started the experiment,
When participant < picked / placed > the < spacer / gear / propeller >

Table 4.1: Variables annotated by the proctor during the experiment. Each variable corresponds to a
different column in the spreadsheet. Similar or equivalent variables are grouped using < symbols > in
the table.

4.4 Results

This section presents the major outcomes of the experiment. Starting with an analysis
of the demographic data, followed by the performance of participants throughout the
experiment. The feedback given by participants in the post-experiment questionnaire is
presented at the end of the section.

30

4 | BLOCK-BASED PROGRAMMING FOR TWO-ARMED ROBOTS

4.4.1 Demographics

A total of 52 participants joined and completed the experiment. Participants were
randomly assigned into one of two groups of 26 participants, with one group using
Duplo and the other using ROY for the experimental task. The participants indicated
that they pursued 31 distinct majors. Some were from computing-related domains such
as Electrical Engineering (4 participants) and Computer Science (4 participants), but the
vast majority were from other areas of study, such as Biology (6 participants), Cinema (3
participants), and Nursing (2 participants). The average participant age was 22 years (min:
17, max: 50, sd.: 6.61). When asked about their programming experience, 10 participants
using Duplo (38%) and 11 participants using ROY (42%) declared no prior programming
experience. The remaining participants declared some level of programming experience,
with 9 participants of each group (34%) indicating one or more years of experience in
programming. For Duplo, 12 participants (46%) indicated having at least some experience
with block-based languages, while only 5 participants testing ROY (19%) indicated the
same. Only 2 participants testing Duplo (8%) and 1 participant testing ROY (4%) indicated
at least some experience programming robots.

4.4.2 Participant Performance

During the experiment, the proctor recorded the times and outcomes at which partici-
pants completed the sub-tasks and the overall task. Figure 4.6 shows the success rates for
each sub-task in the experiment, split by their assigned programming environment. Note
that, as explained in Section 4.3.3, sub-tasks were not strictly sequential, so participants
might have completed later sub-tasks despite missing previous ones.

For Duplo, 21 out of 26 participants (80%) completed all sub-tasks successfully. All
participants in the Duplo group successfully completed the first sub-task, placing the
spacer on the rod. One participant failed to place the gear for the second sub-task. Four
participants could not pick up or place the propeller in the third sub-task. For the ROY
alternative, only 12 out of 26 participants completed all six sub-tasks (46%). 3 participants
failed to pick up the spacer during the first sub-task, and 2 more were unable to place it
correctly. For the second sub-task, 4 participants did not succeed at picking up the gear
and 3 more failed to place it. For the third sub-task, 11 participants failed to pick up the
propeller and 3 more were unable to place it.

The Chi-squared test of independence (Zibran, 2007) was employed to examine if the
sub-tasks completion rates differ among groups trying each programming environment.
The hypothesis that these variables were independent was rejected for p-values < 0.05.
The analysis yielded a significant result for the "Place Propeller" sub-task, with a p-value
equal to 0.008. The "Place Spacer" (p-value: 0.059), "Place Gear" (p-value: 0.054), and "Pick
up Propeller" (p-value: 0.066) tasks also presented p-values close to the threshold. Such
results suggest that there may be a difference in completion rates for certain sub-tasks
depending on the programming environment.

4.4 | RESULTS

31

(a) Duplo

26 26 26
25

22 22

4 4

20%

40%

60%

80%

100%

Pick up
Spacer

Place
Spacer

Pick up
Gear

Place
Gear

Pick up
Propeller

Place
Propeller

Pa
rt

ic
ip

an
ts

 (
%

)
Completed Did not complete

(b) ROY

23 21 22 19
15 12

3 5 4 7
11 14

0%

20%

40%

60%

80%

100%

Pick up
Spacer

Place
Spacer

Pick up
Gear

Place
Gear

Pick up
Propeller

Place
Propeller

Pa
rt

ic
ip

an
ts

 (
%

)

Completed Did not complete

Figure 4.6: Percentage of participants who completed each sub-task in a programming environment.
The bar labels provide the exact number of participants per sub-task.

4.4.3 Completion Times

During the experiment, the proctors also recorded participants’ completion times for
each sub-task and the overall task. Figure 4.7 shows the time participants took to com-
plete the experiment, with bar colors indicating each participant’s assigned environment.
Participants who ran out of time and did not complete all sub-tasks are marked with a
black circle. As the Figure illustrates, Duplo participants were more successful and faster
overall. This observation also holds when only considering participants who successfully
completed all sub-tasks. Those who completed all the sub-tasks using Duplo took 52.7
minutes on average to finish the experiment (min: 28, max: 97, sd: 22.06), and those who
used ROY took 74.6 minutes (min: 35, max: 105, sd: 18.33). Table 4.2 shows the participants’
average completion times for each sub-task, divided by their assigned group.

A survival analysis was also performed on the results (Goel et al., 2010). This statistical
method allows the comparison of the completion times of the two groups while factoring
in the unsuccessful participants who were cut off after 105 minutes. Note that “survival”
in this context means that participants have not yet completed the task at a given point in

32

4 | BLOCK-BASED PROGRAMMING FOR TWO-ARMED ROBOTS

time. A log-rank test on the survival curves (Wellek, 1993) found that there is a statistically
significant difference between the two groups (df = 1, 𝜒 2= 9.59, p < 0.005).

●●●●●●●●●●●●●●●●●●●

0
25
50
75

100
M
in
u
te
s

Figure 4.7: Participants’ completion times (in minutes) in ascending order. Each bar represents one
participant, and its color indicates the assigned environment (blue for Duplo, yellow for ROY). A black
circle marks participants who didn’t complete all sub-tasks.

Pick up
Spacer

Place
Spacer

Pick up
Gear

Place
Gear

Pick up
Prop.

Place
Prop.

Total

ROY 18.70 14.05 22.68 15.26 30.67 21.25 74.58
Duplo 8.15 5.45 9.27 11.24 14.64 14.50 52.67

Table 4.2: Average completion time for each sub-task (in minutes). Only participants who completed
the task were considered. The total average only considers participants who completed all sub-tasks.

4.4.4 Programming Obstacles
In addition to participant performance, the obstacles participants faced were also

investigated. Three errors ended up being the most common: dropping the object held by
the robot in the wrong position, collisions of the robot with its surrounding workspace,
and collisions of the robot with itself. Note that, unlike the other two errors, the robot’s
controller detected and automatically prevented self-collisions. This provided quicker
feedback to participants and prevented damage to the robot hardware.

Figure 4.8 shows how often participants encountered the top three programming
obstacles using each method. On average, participants using Duplo dropped blocks 4.7 times
during the experiment (min: 0, max: 15, sd.: 4.26), while participants using ROY dropped
blocks 6.9 times (min: 1, max: 21, sd: 5.22). For workspace collisions, the average number
of occurrences was also higher for ROY, with an average of 15.1 workspace collisions per
participant (min: 7, max: 33, sd: 6.32) compared to an average of 10.7 collisions (min: 1,
max: 27, sd: 8.84) from participants using Duplo. The number of collisions prevented by
the robot controller is closer for both languages: ROY users encountered an average of 2.0
prevented collisions (min: 0, max: 9, sd: 2.54), and Duplo users encountered 2.3 of them
(min: 0, max: 8, sd: 3.09).

To determine if there were significant differences between the obstacle occurrences
in both groups, the Mann-Whitney-Wilcoxon Test was conducted (Nahm, 2016). The
hypothesis that the occurrences were identical for both groups was rejected for p-values
< 0.05. A significant difference in the number of workspace collisions was found in both
groups (p-value: 0.008). However, the number of objects dropped (p-value: 0.067), and

4.4 | RESULTS

33

predicted collisions (p-value: 0.684) did not reach the threshold for statistical significance.
These results suggest that although two out of three obstacles were less frequent for Duplo
participants, it is not possible to confirm a statistically significant difference in occurrence
values.

(a) Objects Dropped

0 5 10 15 20 25 30 35 40

Duplo

ROY

Occurrences

(b) Collisions with environment

0 5 10 15 20 25 30 35 40

Duplo

ROY

Occurrences

(c) Collisions with the robot

0 5 10 15 20 25 30 35 40

Duplo

ROY

Occurrences

Figure 4.8: Box-plots of occurrence numbers of the top 3 programming obstacles.

4.4.5 Program Analysis
To gain further insight into the participants’ programming experience, their final code,

and the number of times they executed code while programming were also analyzed. Both
participant groups used approximately the same number of test executions during the
study: the Duplo group ran their code 37.4 times on average (min: 9, max: 85, sd: 18.59)
compared to the ROY group which ran theirs 37.1 times (min: 19, max: 64, sd: 12.27).
Duplo users required an average of 33 blocks to write their final solution for the entire
task (min: 22, max: 44, sd: 6.42), while participants using ROY wrote an average of 45
lines of text-generated code (min: 11, max: 68, sd: 36.61). Note that these numbers include
incomplete programs from unsuccessful participants but do not include empty lines in ROY.
Participants using ROY defined 24 robot positions (min: 8, max: 39, sd: 18.5) on average
using lead-through programming, compared to 16 on average for Duplo (min: 8, max: 29,
sd: 4.8). These results suggest that the necessary workforce to solve the tasks was similar
for both groups.

4.4.6 Feedback from Participants
Participants also had the opportunity to comment on the experiment and their assigned

programming environment after they completed the task. The only comments considered
were those in some way related to the programming interfaces. Comments that provided
feedback on the robot hardware, the training, or the experimental task were ignored in this
stage but saved for future studies. Table 4.3, presents an overview of the codes generated
during the qualitative analysis. These codes described programming challenges and their
prevalence in the provided feedback.

34

4 | BLOCK-BASED PROGRAMMING FOR TWO-ARMED ROBOTS

For ROY, the biggest challenge found was editing code, with 12 participants mentioning
this problem. Among their comments, participants highlighted that it was not possible to
reorganize lines of code without deleting them, that they were unable to rename robot
positions, that it was not possible to edit both arms at the same time, and there was no
option to undo changes. A further 5 participants also mentioned difficulties debugging code,
primarily because ROY does not always provide clear feedback when errors occur, which
makes it difficult to locate issues. Another 3 participants complained about not being able
to execute subsections of code (which could be useful for debugging), and two mentioned
how the MoveSync command, used to move both arms at the same time, was confusing to
them. For Duplo, participants mostly commented that using arm synchronization confused
them, including how to program both arms to execute different commands simultaneously.
They also mentioned issues understanding the “wait for each other” synchronization block.
Another 3 participants also mentioned issues with the position reteaching feature as it
is hidden in a drop-down menu and was not mentioned in the training tutorial. Lastly,
three more participants mentioned problems with debugging their code, similar to those
encountered in ROY.

Participants also commented on what aspects of the two systems they found particularly
useful or easy to use. These comments were mostly similar for both systems. For both
interfaces, participants mentioned that they were simple and more intuitive than writing
code manually. Also, for both interfaces, participants pointed out that defining positions
using lead-through programming was intuitive to them. Some participants also noted that
they liked the commands for synchronized movement (the MoveSync command in ROY
and the “follow other arm” block in Duplo, respectively). The only repeated comment we
identified that was specific to one environment was that 3 participants found it helpful
that they could review the definition of robot positions in Duplo.

ROY

Difficult to edit code. 12
Difficult to debug problems. 5
It is impossible to execute specific chunks of code. 3
MoveSync command is counter-intuitive. 2

Duplo

Arm synchronization features are confusing. 6
Difficult to reteach positions. 3
Difficult to debug problems. 3

Table 4.3: Programming challenges mentioned by participants in the post-experiment questionnaire.

4.5 Discussion
This section discusses the experimental findings and how different factors may have

influenced participants throughout the study. Speech balloons indicate feedback given by
participants in the post-experiment questionnaire.

4.5 | DISCUSSION

35

4.5.1 How Programming Environments Affect End-user
Performance?

The findings in Section 4.4.2 indicate that the programming environment assigned
to participants substantially affected how well they solved the given task. As shown in
Figure 4.6, while less than half of the participants (46%) using ROY completed the assigned
task, nearly twice as many (80%) Duplo participants succeeded. Participants testing Duplo
not only solved the task more effectively but did so faster. As Table 4.2 indicates, participants
using Duplo spent less than half the time required by participants using ROY on almost
all of the sub-tasks. The performance observations match our expectations, as Duplo
was designed to improve ROY’s usability. However, performance numbers alone cannot
account for Duplo as a better solution. The feedback given by participants should also be
considered.

As indicated in Table 4.3, 12 of the 26 participants using ROY (46%) complained about the
difficulty of editing code while using the interface. This feedback matches our observations,
as ROY’s graphical elements are only integrated with text-based editing on a superficial
level. Although inserting new code in ROY is easy, to edit an existing line of code, users must
either delete and re-write their code or access a secondary interface to redefine positions. It
was also not straightforward for users to move lines of code (for example, swap their order).
In ROY, users have to manually copy and paste code similar to text-based editing, which
can easily interfere with the alignment of instructions and the synchronization between
the two robot arms. This introduces a potential source of errors or confusion. Conversely,
in Duplo users can drag and drop blocks within the canvas as desired, automatically
updating the surrounding code’s alignment.

× Participant I (ROY/Difficult): “I couldn’t move lines of code after placing them,
so I had to delete them and remake them in the correct line.”

× Participant II (ROY/Difficult): “The fact that you could not move lines up and
down the sequence in the code was frustrating because errors could not easily be
fixed...”

× Participant III (Duplo/Easy): “It was very easy to use the blocks to ask the
robot to make actions, link the blocks together, and break them apart. It was also
easy to move the robot’s arms.”

× Participant IV (Duplo/Easy): “Organizing the actual commands was pretty
simple and intuitive.”

Another indicator that features affected our participants’ performance is present in the
second and third most frequent comment highlighted by ROY participants in Table 4.3:
the difficulty of debugging problems and being unable to execute specific chunks of
code. This feature is particularly important for a use case such as robot programming,
where commands can take several seconds to execute, making it tedious to repeatedly
re-execute long code sequences. Although we did receive a similar comment from a Duplo
participant, the block-based environment made it easier for users to test partial programs
because it allowed them to detach code from the main program. This feature, while
conceptually similar to commenting out code in a text-based system like ROY, ensures that

36

4 | BLOCK-BASED PROGRAMMING FOR TWO-ARMED ROBOTS

even temporarily unused code remains valid and is not accidentally forgotten. ROY, being
a fundamentally text-based environment, only had regular comments available, which
were also not graphically represented in the user interface. This might be responsible for
ROY users spending more time solving the given tasks.

Another debugging feature both environments provided is highlighting the currently
executed line of code when running a program. This feature is found in many end-user
languages, but for the specific use case of Duplo and ROY, it can become confusing for users
since there are two separate executions (for the left arm and the right arm) that take place
simultaneously. In Duplo, the vertical alignment of blocks guarantees that synchronized
blocks that get executed, such as synchronized movements, are always in a single line.
However, this is not necessarily the case in ROY, which creates additional mental effort
for users. We speculate that this additional mental strain might have been a factor in why
some ROY users found the command for synchronized movements unintuitive.

× Participant IV (ROY/Difficult): “It took me longer than it would have otherwise
taken me because I could not start in the middle of my program...”

× Participant V (ROY/Difficult): “Setting the robot back to a designated position
required running the program from the start and pausing before it began a new
cycle.”

× Participant VI (Duplo/Difficult): “Debugging, it was extremely difficult to
control the robot outside of a program. If I wanted to open the arms so that I could
replace a piece before another cycle, I had to start the program and stop it before
it got too far.”

Our previously discussed findings align with studies where block-based languages and
other end-user robot programming tools are evaluated (D. Weintrop et al., 2017; David
Weintrop, Afzal, Salac, Francis, B. Li, David C Shepherd, et al., 2018a;Mayr-Dorn et al.,
2021). In a study where participants had to program a pick-and-place task using Polyscope,
researchers pointed out design recommendations for new end-user programming interfaces
(Ajaykumar and Huang, 2020). According to the authors, “interfaces should minimize the
use of tabs and keep similar actions and commands coherently grouped together...”. They also
emphasized that “...end-user robot programming interfaces should have easy-to-use replay
capabilities to visualize contextualized portions of the robot program...”. The ROY interface
does not implement either of these features. One participant also highlighted the lack of
options to undo commands in ROY, another recommendation proposed by the same prior
study.

Summary 6.1: By representing robot commands as puzzle pieces, block-based pro-
gramming contributed to end-users ability to insert, edit, and debug code. The freedom
to reorganize blocks using the puzzle metaphor and the alignment of instructions on
vertical columns allowed Duplo participants to complete more tasks in less time. For future
work, other common features should be included, such as the ability for users to undo
commands.

4.5 | DISCUSSION

37

4.5.2 What Learning Barriers Do End-users Face?
Participants only had a short time to learn how to use either environment they were

assigned. Similar time constraints are not unusual when industrial workers have to learn
jobs on-task, and previous studies found that end-users can overcome learning chal-
lenges quickly as they get hands-on experience with a reasonably end-user-friendly
system (Ritschel, Sawant, et al., n.d.). Identifying and addressing potential learning
barriers can substantially improve how quickly end-users become familiar with a new
system.

In a study about learning barriers in end-user programming systems (Ko, B. A. Myers,
et al., 2004), researchers identified six categories of challenges end-users face while solving
tasks in a programming environment: design barriers (what to do?), selection barriers (what
to use?), use barriers (how to use?), coordination barriers (how to combine different things?),
understanding barriers (what is wrong?), and information barriers (how to check what is
wrong?). The difficulties highlighted by participants in our post-experiment questionnaire
show that neither of the evaluated systems is free of those barriers, although end-users
encounter them in different situations.

Understanding and information barriers. Programming a collaborative robot
involves the understanding of both virtual (software) and physical (mechanical) concepts.
For example, to teach a robot a new position, users have to use lead-through to manually
move the robot to a new physical location and use the programming environment to record
the position. If a defect occurs in their code, they must determine whether the problem is
in the programming logic or the physical workspace. In some cases, the logic behind the
code may be correct, but the physical locations taught to the robot may still produce errors
(e.g., collisions, robot singularities). In the proposed experiment, some users struggled to
identify what was wrong with their implementation and reported it as a difficulty in the
questionnaire.

× Participant VII (ROY/Difficult): “...I also did not like that it did not always
show me which movement code line had a problem if it was after a movement
error...”

× Participant VIII (ROY/Difficult): “...I didn’t know why there were errors some-
times when it looked like it worked... ”

× Participant IX (Duplo/Difficult): “Figuring out what I did wrong.”

We believe lead-through programming can make defining positions substantially easier,
and participants have echoed that sentiment in their feedback. However, there might be
room to provide more guidance or training for lead-through, for example in the form of
visual aids or immediate feedback during the programming process. This is discussed in
detail in Chapter 5.

Selection and use barriers. Some participants also reported difficulties understanding
certain features of both programming systems. In particular, both systems involved features
to program two arms simultaneously, and some users commented that the synchronization
commands provided were unintuitive (i.e., MoveSync in ROY, “wait for each other” in
Duplo). While this feedback was primarily received from ROY users, it was observed that

38

4 | BLOCK-BASED PROGRAMMING FOR TWO-ARMED ROBOTS

some participants in Duplo were not aware that the block-based language allows them
to access and review an already-defined location. This feature, which other participants
explicitly named as a useful tool to understand their programs, could have been represented
more prominently in the system to make users aware of its existence and explained better
to convey its usefulness.

× Participant (ROY/Difficult): “...I wasted a lot of time deleting sync steps before
I understood how to combine one-sided steps with sync steps... It would also be
nice to tell the robot, “move to the locations I told you in Step 10 and then stop”.
It’s unclear to me whether that’s possible to do. ”

× Participant (Duplo/Difficult): “... The first (difficulty) was thinking the “Wait
for each other” blocks could be placed anywhere instead of only in line with
each other. My solution was instead of placing those blocks, I slowed down the
movement speed of one of the arms (The block did come in handy later)...”

× Participant (Duplo/Difficult): “At first, I didn’t know which arm was the right
or left. Also, I didn’t know how exactly to reteach a position, but after a while, I
got it.”

Summary 6.2: Because Duplo eliminated many of the programming challenges for end-
users, it enabled the identification of second-order problems. Primary among these was
physical positioning and mapping. It became clear that end-users had trouble mapping
between position names (e.g., "AboveGround") and physical positions in 3D space.

4.6 Limitations
This section discusses some of the limitations found in this study.

Number and background of participants. This study was conducted with 52 par-
ticipants, which required a substantial effort to recruit, considering the time and effort
participants had to invest in the in-person experiment. The recruitment process aimed
at students from diverse backgrounds to represent the wide range of possible end-users
interacting with collaborative robots. However, it is possible that the limited number of
participants and the fact that they were all students from the same university limit how
well this group of participants represents the overall population of end-users.

The fact that 12 out of 26 participants testing Duplo had prior experience with block-
based programming may also limit the conclusions made. To evaluate this issue, the
Pearson’s Chi-squared test of independence was executed to compare participants’ success
with their experience in block-based programming. It was found a significant association
between the variables (p-value < 0.05). The same association wasn’t found for other
demographic values, such as general and robot programming experience. We hope that
our findings inspire additional work that can be evaluated more thoroughly with other
end-users of robotic systems.

Training and time constraints. Time to train participants and allow them to work
on the given task was limited. It is likely that with more available time or resources,

4.7 | CONCLUSION

39

participants of both groups might have performed better overall when solving the task.
However, as outlined in Section 4.5.2, we believe that restrictive time constraints are not
uncommon in practice and can be particularly useful in investigating a system’s learnability
and usability qualities.

Task choice. One unique task was evaluated in this study, which could also be consid-
ered a limitation. However, the task was split into several sub-tasks that required different
forms of coordination. We believe the combination of sub-tasks covered various challenges
and requirements end-users face in practice. Future work is needed to investigate other
tasks, particularly those requiring coordination in ways neither of the tested environments
supports.

Selected tools. Comparing Duplo and ROY introduces limitations to our work as
these programming environments make specific implementation decisions that may not
generalize to all programming tools. The difference in programming method (ROY is
graphical-based while Duplo is block-based) provides insight into these different methods
but also introduces some confounds. Although differences exist between the two program-
ming systems, both are designed to be beginner-friendly and represent two of the most
capable end-user tools available for two-armed industrial robots, making them a nice pick
for comparison.

4.7 Conclusion
The work proposed in this chapter presents Duplo, a new block-based programming

environment for real-world two-armed robots. Duplo is the first practical evaluation of a
design concept that uses blocks to visualize the flow of time and coordination between two
robot arms. The system was evaluated in comparison to ROY, a commercial tool that uses
graphical elements as an alternative to text-based programming and targets end-users. We
found that Duplo allowed participants to solve a complex two-armed pick-and-place task
faster and more successfully. Based on our observations and our participants’ responses,
we have identified which differences between the two environments might have caused
this effect. We have further identified barriers that remain when participants try to learn
either system. We believe that this work can inform future work on how to design robot
programming environments that are more user-friendly and make use of the strengths of
existing visual frameworks.

41

Chapter 5

Evaluation of Robot Controls in
Mixed Reality

5.1 Overview
Mixed Reality (MR) devices allow workers to access and manipulate virtual elements

in real-world environments. Thanks to the advancements in MR technology, entirely
new workflows have been introduced in several applications, allowing, for example, car
designers to simulate prototype consoles inside real cars (Ghiurãu et al., 2020; Goedicke
et al., 2022), and enabling stage designers to visualize their work before construction (Szed-
mák, 2021). While seminal work on MR has taken place decades ago (Milgram et al.,
1995), its adoption and the interest in studying its benefits and limitations has recently
accelerated (Flavián et al., 2019; Rokhsaritalemi et al., 2020). The growing popular-
ity of MR devices such as Microsoft Hololens and Oculus Quest are opening new bor-
ders for human-computer collaboration, making it a key technology for collaborative
robotics (Makhataeva and Varol, 2020).

To contribute to the advancement of MR control mechanisms in robotics, this chapter
presents an experimental study investigating the usability of MR widgets for the manual
control of collaborative robots. Figure 5.1 provides an overview of this study, which took
place in two stages:

1. In the first stage, five robot control interfaces based on common MR widgets were
implemented using the Microsoft Mixed Reality Toolkit for Hololens 2 (MRTK2). A
user study with 49 undergraduate participants who were trained to use the Microsoft
Hololens 2 headset was conducted in sequence. Participants were randomly divided
into five groups, each assigned to a control interface. Each participant was asked to
reposition a virtual robotic gripper that was projected into the real world via MR.
The time and accuracy of participants were measured, and a survey was conducted to
evaluate their satisfaction with the widget assigned. The first stage showed that one
control widget, the Bounding Box, offered the best combination of user performance
and satisfaction for manually controlling grippers in MR.

2. In the second stage, a fully functional prototype using the Bounding Box widget

42

5 | EVALUATION OF ROBOT CONTROLS IN MIXED REALITY

was implemented for users to control a collaborative robot. A series of qualitative
interviews was conducted with 11 experts, including robotics, computer science,
and user experience professors. In these interviews, interrogators focused on the
experts’ perception of the interface, especially on the challenges and limitations that
need to be addressed before using MR in real-world applications. The study and
interviews contribute to the understanding of how users can interact with physical
collaborative robots in mixed reality and outline directions for future research to
improve such interactions.

Figure 5.1: Method description, divided into two stages: first, a study with undergraduate students to
compare MR controls in a gripper positioning task, and second, an implementation of the best-evaluated
control revised by experts in semi-structured interviews.

5.2 Study Stage 1: Evaluation of MR Control Widgets
for Robot Positioning

In the first stage, the goal was to compare five control interfaces for manipulating
robot arms in mixed reality. To evaluate the interfaces, an experiment where participants
positioned a robot gripper using a Microsoft Hololens 2 headset was designed. This task,
although simple, mimics the control challenges posed by more complex robotics tasks in
MR. For the experiment, 49 undergraduate students were recruited. The participants were
divided into five groups, each testing one of five interfaces in MR. For each participant, their
success in completing the task was recorded, and, in case of success, how long they took to
complete the task. Feedback about the prototype was also collected from each participant.
In the remainder of this section, the elements of the study design are detailed.

5.2.1 Control Interfaces
The proposed investigation focused on the widgets available in the Microsoft Mixed

Reality Toolkit 2 (MRTK2) (Ong and Siddaraju, 2021), a toolkit that can be used with

5.2 | STUDY STAGE 1: EVALUATION OF MR CONTROL WIDGETS FOR ROBOT POSITIONING

43

(a) Buttons (b) Sliders

(c) Object Manipulator (d) Bounding Box

(e) Joystick

Figure 5.2: Illustrations of user interaction with the evaluated interfaces in mixed reality.

44

5 | EVALUATION OF ROBOT CONTROLS IN MIXED REALITY

the Unity gaming engine to implement applications for Microsoft Hololens 2 (Park et al.,
2021; Speicher et al., 2019). The interfaces created using each specific widget are described
below:

∙ Buttons (Figure 5.2a): From arcade machines to web pages, buttons are well-
understood by users in both physical and virtual settings. MRTK2 provides buttons for
use in mixed reality, where the user can press the mixed reality button with their hand,
mimicking pressing a physical button. An interface to control a holographic gripper using
these buttons was implemented. For both translation (i.e., positioning the gripper without
rotating it) and rotation, buttons were divided in a per-axis base, with pairs of buttons
used to increase and decrease the gripper’s relevant coordinate or rotation value. Six
buttons were used to translate the gripper, one for each dimension in three-dimensional
space and six for rotation. To interact with the buttons, users trying the mixed reality
headset could touch them using their own hands as if they were real. All buttons react
to being pushed with feedback animations so individuals can determine when they have
successfully pressed a button.

∙ Sliders (Figure 5.2b): Sliders are a popular widget in many applications, from mixing
music to selecting a departing time for an upcoming flight, as they allow users to change
a quantity relatively without caring about the exact value. Six different sliders, three for
rotation and three for translation, were used to create a slider-based gripper control. The
slider handle begins in the middle, and users pinch the handle with their fingers to move
it left or right, increasing or decreasing the respective axis they are controlling.

∙ Object manipulator (Figure 5.2c): While previous controls were familiar in more
general domains, some controls are specific to MR. The object manipulator is a simple
yet powerful new control enabled by MRTK2. Instead of introducing indirect control, the
object manipulator allows users to directly pinch a given virtual object, translating and
rotating that object by simply moving their pinched fingers. Using artificial intelligence to
interpret the user’s intent, the user pinches near or on the virtual gripper and then moves
and rotates their closed fingers to control the object. This approach resembles the intuitive
lead-through alternatives found in industrial robots but might be a less efficient approach
to perform precise positioning tasks (Gupta A.K., 2017).

∙ Bounding Box (Figure 5.2d): The bounding box control is also specific to MRTK2.
This interface consists of handles that are set around the holographic gripper. Six blue
handles, when pinched, are used to translate the gripper in the three-dimensional space,
while twelve yellow handles are used to rotate it. This interface offers much of the flexibility
of the object manipulator but with the ability to isolate movements to a certain axis, which
can help with exact positioning.

∙ Joystick (Figure 5.2e): As the last option, an interface that resembles a traditional
joystick control system found on commercial robots was also implemented (Aryania et al.,
2012). Since the joystick is not a standard control provided by MRTK2, a custom version
of a joystick in MR was implemented by combining objects from the Unity gaming engine
(i.e., spheres and planes) and interaction assets of MRTK2. This interface consists of two
joysticks, each represented by a sphere on a plane, one used to control the translation of the
holographic gripper and the other to control the rotation. Note that these joysticks work as
a traditional joystick found on commercial robots—moving the joystick moves/rotates the

5.2 | STUDY STAGE 1: EVALUATION OF MR CONTROL WIDGETS FOR ROBOT POSITIONING

45

gripper along the X and Y axes– but it can also be rotated clockwise or counterclockwise
to control the gripper in the Z axis.

5.2.2 Recruitment
Undergraduate students in Computer Science were recruited from two user-experience

classes taught at a large North American research university. Email invitations were
distributed online, inviting the students to participate in the user study and get a chance
to experience programming in MR. Sixty participants confirmed their participation and
were divided into five groups of 12 individuals, each testing one of the prototype widgets.
In the end, 49 participants showed up to the experiment: 12 participants tested the buttons
interface, 7 participants the sliders, 11 participants the object manipulator, 10 participants
the bounding box, and 9 participants the joystick interface. The experimental processes
described in the study were approved in advance by an institutional review board.

5.2.3 Training and Instruction
Using MR for the first time can be a disconcerting experience, as controlling holographic

objects by pinching and moving your hands mid-air is odd for most users. The correct
positioning of the headset (i.e., keeping your hands in view of the headset) also dramatically
affects accuracy, and users must be trained on how to position the headset. To mitigate
the learning effects of MR, two training sessions were conducted with the participants. As
revealed in prior studies, training new MR participants may contribute to a more consistent
experiment (Benedict et al., 2019). The first training session focused solely on using the
Microsoft Hololens 2 headset and experiencing the MR environment for the first time.
Participants were asked to familiarize themselves with the system and were given simple
MR controls to interact with, including an interface to resize geometric shapes. During this
session, participants were free to ask questions and encouraged to become familiar and
comfortable with the MR environment. Each participant’s session lasted 30 minutes.

The second and final training session was held immediately before participants started
the experimental task and focused on explaining their assigned interface and the task
to them. The training started with the participants watching two videos. The first video
introduced participants to the interface they would use for the experiment, and the second
video introduced the task (Please, watch the playlist1). The first video was filmed in a
first-person perspective with detailed instructions on how to use the interface and visual
examples of moving the robotic gripper along each axis. Because different interfaces had
different complexities, the first video’s length differed for each group, but none exceeded 4
minutes. The second video introduced participants to the concrete task that they should
perform. This video also introduced a window behind the robotic gripper that would
guide them on where to position the gripper and when they had successfully completed
the task. In total, this training session took participants approximately 10 minutes to
complete.

1 https://www.youtube.com/playlist?list=PLQHWcSK2-Zw5qIpRAZgEsMKL8Bzx1rmho

https://www.youtube.com/playlist?list=PLQHWcSK2-Zw5qIpRAZgEsMKL8Bzx1rmho

46

5 | EVALUATION OF ROBOT CONTROLS IN MIXED REALITY

5.2.4 Experimental Task

Figure 5.3: Illustration representing the task performed by participants in our first experiment.
Participants were required to move a holographic gripper to a specific position and orientation in the
mixed-reality space. A console provided the axes values that participants should reach to complete the
task, and a box was provided as a reference for the final position. In this example, the bounding box
interface is being used.

Immediately after each participant finished watching the two instructional videos,
they were asked to put on the MR headset and begin solving their task. Participants were
given 15 minutes from this point to complete the task. For participants who exceeded the
time limit, proctors counted the task as failed and asked them to stop. This cut-off time
was intended to be generous, as successful informal test runs rarely took longer than 5-8
minutes. As illustrated in Figure 5.3, participants were asked to move a virtual robotic
gripper to a specific, pre-defined position that required movement and rotation on all three
axes. The virtual display panel, seen in the upper right (blue in mockup view), specified
the goal position and the current position.

To give the user feedback on their progress towards the goal, if the axis location or
rotation values moved into an acceptable range, the text of that axis would turn green.
The task was considered complete once all positional and rotational values were within an
acceptable range. As additional guidance, participants were also provided with a virtual
small shipping box as a reference point (shown in Figure 5.3). Once positioned correctly,
the robotic gripper would fit perfectly around the box as if it were supposed to pick it up.
This box made the goal of the task more intuitive for participants, providing them with a
visual goal, not just a numerical goal.

Due to the limited number of Hololens 2 headsets available, the experiment took place
over a period of five days, where participants of the same group were assigned to different

5.3 | STUDY STAGE 1: RESULTS

47

hours on the same day. The training was also staggered to avoid bias due to different
delays between the first training session and the experiment. Therefore, all participants
had an almost identical delay between their first training session and the experiment.
While proctors monitored participants, they were not allowed to help participants use the
interfaces or answer questions related to them. They were, however, allowed to clarify
other elements of the task, such as how they could tell when the task was complete.
Proctors had to step in and reset the experiment for a small number of participants when
they encountered unexpected technical issues (e.g., the application closed, the headset
turned off). In these cases, the duration time required to reset the experiment was not
counted towards the participants’ task completion time.

5.2.5 Measures
There were two main ways of measuring the effects of the MR interfaces on participants:

measuring performance and surveying satisfaction. To measure their performance on
the tasks, proctors annotated whether participants were successful at completing the
positioning task and, if so, the time in minutes and seconds that it took for them to
complete the task. After participants had completed the experiment, either successfully or
due to running out of time, they were asked to complete a brief post-experiment survey.
The survey consisted of three parts, and there was no fixed time limit to complete it.

The first part of the survey consisted of a set of demographic questions, where partici-
pants were asked about their major, current year in college, and experience with mixed
reality and robotics. The second part of the post-experiment survey consisted of a standard-
ized questionnaire to determine the System Usability Score (SUS) of the used system. The
SUS was developed as a straightforward way for users to quantify the perceived usability
of a system (Bangor, P. T. Kortum, et al., 2008). This standard questionnaire contains ten
Likert-style items on a 5-point scale that are general enough for different application types.
Once completed, participants’ responses were converted into a single score ranging from 0
to 100 points. Since the SUS has been determined for a wide range of systems, comparing
their usability and determining the percentile of a system’s score is possible.

Following the SUS questionnaire, there was the third part of our survey, where partici-
pants were asked two open-ended questions about their assigned interface, one where they
could report what they found easy when using the interface and another what they found
difficult. These questions were analyzed qualitatively using open card sorting and constant
comparison by three researchers contributing to the experiment (Spencer, 2009; Dye
et al., 2000). While these questions were optional, most participants responded to them,
allowing researchers to understand the difficulties they might have faced. At the end of
the questionnaire, an open space was also provided for participants to report their overall
experience while participating in the experiment. Although this final feedback was not
analyzed in the qualitative analysis, it can be used as a reference for future studies.

5.3 Study Stage 1: Results
This section discusses the results of the first phase of this work, starting with de-

mographics, followed by participants’ performance, and then their usability scores and

48

5 | EVALUATION OF ROBOT CONTROLS IN MIXED REALITY

feedback.

5.3.1 Demographics
A total of 49 participants attended the study. Overall, 12 participants used the button-

based interface, 11 participants used the object manipulator, 10 used the bounding box, 9
participants used the joystick, and 7 participants used the slider-based interface. As the
study was advertised through Computer Science classes, all participants except for two
had Computer Science as their primary field of study, with the remaining participants
being in Biomedical Engineering and Music. Participants were also asked about their
level of studies. A total of 33 participants (67%) indicated being seniors, 14 being juniors
(29%), 1 being a sophomore student, and 1 part of a graduate program (2% each). When
asked about their experience with mixed reality, 37 of our participants (76%) reported
no prior experience. Forty-one participants (83%) reported that they had never worked
with robots before in any context or through any mode of interaction. Participants were
randomly assigned to an interface, and a post-hoc sanity check showed an approximately
even distribution across interfaces for both MR and robot experience.

5.3.2 How Do Interfaces Affect Performance?
The primary focus of the first phase was to evaluate how well participants performed on

the task using the different interfaces they were assigned. Figure 5.4 shows the completion
rates and average time participants spent using each interface. The x-axis shows the
different interfaces, while the bar charts illustrate the completion rates per group using
each interface. The black dots show the participants’ average time to complete the task
using each interface.

Overall, 27 participants (55%) were able to complete the task. However, substantial
differences can be observed among the different interfaces. All the 7 participants who
used the Sliders interface could complete the task, followed by 10 out of 11 participants
who used the Buttons (92%) and 8 out of 9 participants trying the Bounding Box interface
(89%). In contrast, only 1 out of 8 participants who used the Joystick interface completed
the task (11%), followed by the Object Manipulator interface with 1 out of 11 participants
completing the task (9%). Fisher’s exact test was employed to verify if there is an association
between the success of participants and the interfaces they tested (Kim, 2017). The test
results rejected the null hypothesis (p-value < 0.05), suggesting an association between
the success in completing the assigned task and the interface participants used.

5.3.3 How Do Users Rate Interface Usability?
Following the performance analysis, the average SUS score was calculated for each

interface based on the feedback given by participants in the post-experiment questionnaire.
As suggested by prior studies (Harrison et al., 2013), SUS scores can not be compared
on a linear scale, so the average percentile scores for each interface are reported. Figure
5.5 shows the results of the SUS analysis. The dashed black line is based on literature and
depicts the percentile curve that was derived from scores reported across a wide range of
systems. The vertical lines represent the average usability scores of each interface analyzed

5.3 | STUDY STAGE 1: RESULTS

49

0

3

6

9

12

0%

25%

50%

75%

100%

Sliders Buttons Bounding Box Joystick Object
Manipulator

Ti
m

e
(M

in
u

te
s)

Pa
rt

ic
ip

an
ts

 (
%

)
Completed Did not complete Average Time

Figure 5.4: On the left axis, completion rates (in percentage) for groups of participants trying each
interface. On the right axis average completion times (in minutes) for participants who finished the
experiment.

in this experiment. By determining the intersection of the percentile curve and each
interface’s vertical line, one can determine their percentile rank across all systems.

The Bounding Box interface achieved the highest average score of 77.8 (min: 70, max:
92.5, sd: 7.3), placing it in the 80th percentile of all interfaces. This was the only interface
to fall into the “Good” or “Acceptable” category, according to the commonly used SUS
interpretation (Bangor, P. Kortum, et al., 2009). All other interfaces were “Marginal” or
worse. The Buttons interface was rated with an average score of 69.4 (min: 50, max: 87.5,
sd: 11.7), placing it around the 58th percentile. The Sliders interface, reaching an average
score of 57.5, ranked a little lower than the 30th percentile (min: 35, max: 75, sd: 12.2). The
Joystick and the Object Manipulation interfaces were rated the worst, scoring respectively
41.4 (min: 22.5, max: 67.5, sd: 15.0) and 42.5 (min: 20, max: 67.5, sd: 15.0), placing them
both in the 10th percentile.

5.3.4 Which Aspects are Difficult and Easy to Understand?
In addition to the SUS questionnaire, participants were asked about the aspects of each

system that they found easy or hard to use. Table 5.1 summarizes participants’ feedback
broken down by interface. Several users pointed out issues that were related to hardware
limitations. These issues are highlighted in orange or blue. Issues in orange are fully
caused by hardware limitations, and issues in blue are at least partially caused by hardware
limitations.

For instance, Joystick users mentioned that “[positioning was imprecise] due to the
HoloLens not always picking up hand movements”, “if the [HoloLens] camera moved out of
the arms view you lose the ability to move/control the arm”, and “The FOV of the object also
was very narrow, which provided some difficulty”. Similar hardware issues were mentioned
for other interfaces and have been highlighted in orange or blue. Note that these hardware

50

5 | EVALUATION OF ROBOT CONTROLS IN MIXED REALITY

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

SU
S

Pe
rc

en
ti

le

SUS Score (Average)

SUS Percentile Curve

Bounding Box (Average: 77.8)

Buttons (Average: 69.4)

Sliders (Average: 57.5)

Object Manipulator (Average: 42.5)

Joystick (Average: 41.4)

Figure 5.5: Average usability score for each mixed reality interface. The dashed black line defines a
SUS score threshold line from a wide range of evaluated systems.

issues are often due to the relative immaturity of MR technology and will likely decrease
or even disappear as improved hardware is released.

The top of Table 5.1 contains comments from those that used the Bounding Box interface.
Most participants (7 of 10) commented that this interface was easy-to-use for them, saying
“I thought moving it around was easy” and “..it was easy to physically grip the objects used
to move the arm and move them”. Several mentioned specifically that this interface was
intuitive, saying “..being able to determine which actions would be performed by the different
motions you could do was pretty self-explanatory” and “[it was] easy-to-tell where I was
supposed to grab/use”.

Next, the responses of participants who used the Object Manipulator are shown. Most
participants (8 of 11) mentioned that, with this interface, achieving precision was dif-
ficult, saying “precision movements were very difficult to use”, “doing fine motions is
near impossible. I am not myself a robot; I cannot hold my hand perfectly still, as this task
required”, and “it was basically impossible to position the object with a fine degree of control”.
Despite these complaints, several participants praised its direct and easy-to-understand
manipulation. They thought it was effective for gross positioning, saying “..you could
roughly approximate an orientation and position with relative ease”, “..general movement
was easier”, and “easy to move the object around ..generally”.

Participants gave mixed feedback for the Sliders interface, although all seven partic-
ipants successfully used it. Several users found the interface easy to comprehend and
operate, but opinions on its fit for precise movements were split. In theory, sliders allow
very fine-grained adjustments, but it appears that some users found it hard to control the
interface with the necessary level of precision, saying “[I had a] difficult time to get the exact
number” and “..minute changes are difficult”. As with other interfaces, some users mentioned
problems related to hardware limitations, such as difficulty grabbing the slider handles
in MR (e.g., “[I had difficulty] having my gesture register in the interface”).

Participants gave mixed feedback on the Buttons interface. Several participants (6 of 10)
had difficulties getting the interface to recognize their button presses, again a symptom of

5.4 | STUDY STAGE 2: EXPERT FEEDBACK ON MANIPULATING A PHYSICAL ROBOTIC ARM

51

MR hardware immaturity, saying “the biggest issue I found was the button only registered
every 3-5 clicks” and “it wouldn’t register some taps so I would have to tap more than once”.
Despite these difficulties, participants found this interface easy to understand. The proctors
confirmed that participants understood and were able to use this interface, but they also
noted that, because it often took many button presses to position the robot correctly, this
interface took time to use, an insight that is corroborated by its average completion time
which is the highest of the top three interfaces.

The participants’ feedback for the Joystick interface was overwhelmingly negative.
Many participants stated that they struggled with the joystick moving the robot arm in
multiple axes simultaneously, saying “trying to manipulate one axis after adjusting another
(i.e., doing the z-axis after the x) moved the different coordinates as well, which confused me
a lot” and “..it was really difficult to move just X or Y by itself, often the sensitivity was so
high that if I moved it in the X direction, it would simultaneously move in the Y direction
as well, and the Z direction would activate almost every time I grabbed the ball”. Although
joysticks may be a great physical controller for cobots, their implementation in MRTK2
still suffers from hardware limitations.

5.4 Study Stage 2: Expert Feedback on Manipulating a
Physical Robotic Arm

In the second stage of the study on MR interfaces, the best-rated interface from Stage 1
was used: the Bounding Box interface. The hypothesis in the second stage is that such an
interface could facilitate the manipulation of a physical robotic arm and gripper. A full
interface prototype was implemented based on an almost identical user-facing presentation
from Stage 1. The primary difference for this study stage was that the prototype targeted
a physical robot arm and gripper instead of a virtual robotic gripper. A total of 11 experts
in the field were recruited to conduct interviews and gather their opinions on this final
prototype. They were asked about its potential use and limitations. The following section
explains in detail how the second stage of this study was conducted.

5.4.1 Prototype Implementation
A prototype that targets a collaborative ABB GoFa CRB 15000 robot arm was imple-

mented. As shown in Figure 5.6, the Bounding Box control interface was placed in the same
position as the physical gripper installed on the robot. Users were able to use the Bounding
Box holders to control the gripper and, consequently, the robot. A panel with two sliders
was also placed beside the robot so users could control the robot’s movement speed and
open and close the robot’s gripper hand. To implement this prototype, a similar approach
from the first phase was used. The Unity engine and the Mixed Reality Toolkit 2 (MRTK2)
were used to implement the application in mixed reality, and the ABB Externally Guided
Motion (EGM) interface was used to establish communication with the robot hardware. To
make the robot move with little delay as users adjusted the Bounding Box, any updates in
MR were continuously converted to physical joint parameters, making the robot move into
the updated state. Using this approach, the response time between the Bounding Box and
robot hardware was less than one second. The robot speed available in the slider interface

52

5 | EVALUATION OF ROBOT CONTROLS IN MIXED REALITY

Bounding Box
Comment Occurrences
It is easy to identify and use bounding box handles to move objects. 7
It is difficult to release objects with precision (**). 4
It is difficult to position objects with precision (**). 3
The layout is easy and intuitive. 2
The field of view was small (*). 2

Object Manipulator
Comment Occurrences
The interface was too sensitive and made it difficult to be precise (**). 8
It is easy to pick up objects. 6
It is easy to translate objects. 6
It is difficult to release objects with precision (**). 5
It is easy to understand how the overall manipulation works. 3
It is not possible to manipulate a singular axis at a time (**). 2

Sliders
Comment Occurrences
It is difficult to grip the slider (**). 4
It is easy to manipulate the slider handle. 3
It is difficult to perform precision movements (**). 3
It is easy to grip the slider handle. 2
It is easy to get precise values with the slider handle. 2
The field of view made it difficult to handle the slider while positioning the object (*). 2

Buttons
Comment Occurrences
It is difficult to press the buttons (**). 6
It is difficult to recognize a button being pressed (**). 5
Pressing the buttons is easy. 3
The buttons are intuitive to use. 2
The interface is well organized and easy to understand. 2

Joystick
Comment Occurrences
It is difficult to manipulate one axis at a time. 5
It is easy to translate the object using the joystick control. 3
It is difficult to perform precision movements (**). 3
It is difficult to grab the joystick control (**). 3
It is easy to pinch the joystick control. 2

Table 5.1: Most frequent comments from participants in the post-experiment questionnaire. Comments
highlighted in blue (*) represent issues fully caused by hardware limitations, and issues in green (**)
at least partially caused by hardware limitations.

5.4 | STUDY STAGE 2: EXPERT FEEDBACK ON MANIPULATING A PHYSICAL ROBOTIC ARM

53

was also controlled with the EGM interface, and the opening of the gripper was controlled
using the REST API provided by the gripper manufacturer.

Figure 5.6: Illustration representing the trial performed by experts in the second phase. The bounding
box was adjusted to fit the robot manipulated by the users. A panel with sliders allowed users to adjust
the gripper opening and robot speed.

5.4.2 Interviews
A total of 11 expert participants were invited to use the prototype and participate in

follow-up interviews. The recruitment process was focused on professionals with expertise
in related fields, as they were expected to have the highest likelihood of using similar
systems and, therefore, the ability to compare the prototype to other technologies. Nine of
the participants invited were employees of the same university in the United States, and
the other two were invited researchers from nearby institutions. Among their backgrounds,
there were three professors in Computer Science, one in Design, and two in Electrical and
Computer Engineering. Two Ph.D. students in Computer Science and three in Mechanical
Engineering also participated.

A proctor scheduled a private session for each participant to try the experiment and
perform the interview. The same proctor instructed the participant on how to use the
prototype by following predefined guidelines2. The experimental workspace consisted
on the Hololens 2 running the prototype, the ABB robot connected to the prototype
application, and three cubes on the table where the robot was mounted to. The participants
were not instructed to solve any concrete task but were suggested to interact with the
cubes while playing with the prototype. We considered that picking the cubes up at the

2 https://github.com/fronchetti/TOCHI-2024/blob/main/resources/proctors_guide_experts.pdf

https://github.com/fronchetti/TOCHI-2024/blob/main/resources/proctors_guide_experts.pdf

54

5 | EVALUATION OF ROBOT CONTROLS IN MIXED REALITY

right angle would be a valuable way for participants to explore the robot’s controls and
the precision of its positioning in MR.

Each interview lasted approximately 45 minutes, and three questions guided the
discussion: First, the proctor asked each expert about their overall impression of the
prototype. Then, participants were questioned about the practical applications for which
they could see the prototype being used. Finally, the proctor asked the participants how
the prototype could be improved, for example, to make it more widely applicable or to
overcome existing limitations.

5.4.3 Interview Analysis
A qualitative analysis of the interviews was performed to get insights from the feedback

provided by the experts, following the same open card sorting and constant comparison
strategies used in Stage 1. First, one reviewer transcribed each interview in its entirety, and
the three different discussion topics were separated. Then, the same reviewer divided each
topic into multiple paragraphs, each containing one statement made by the participants or
a question or response by the proctor. This raw material allowed a more in-depth analysis
of the interview responses.

The remaining qualitative analysis was performed by three researchers collaborat-
ing in this study, over three separate rounds. In the first round, researchers randomly
selected three out of the eleven interviews to establish a common coding standard. Each
researcher analyzed the selected spreadsheets independently. For each statement made by
a participant, they assigned several codes that they found appropriate. The codes assigned
by the authors were discussed in a follow-up meeting with all of them present. During
the meetings, the researchers organized the codes in a table for use in the subsequent
rounds. They also calculated their agreement by dividing the number of rows where all
the researchers agreed and by the total number of rows. During this stage, the agreement
rate was 58%.

In the second round, researchers selected two more of the remaining spreadsheets
to validate the codes established in the first round. The researchers applied the codes
from the first round and potentially added additional ones. Repeating the same process of
discussing and refining the codes, the researchers reached an agreement of 85% during this
second round. Considering the high agreement reached in the second stage, researchers
used a different approach for the third coding stage. They divided the six spreadsheets
that had not been analyzed in the first rounds among the three researchers, with two
individually assigned to each researcher. In a final meeting, they discussed the codes
generated and created a final set of codes to make them self-explanatory and unambiguous
for later presentation. All three researchers organized the final codes in a table and mapped
previous codes to the final set.

5.5 Study Stage 2: Results
In this section, the codes generated in the qualitative analysis of the second stage are

presented. Table 5.2 presents the final set of codes derived from interview responses, as well

5.5 | STUDY STAGE 2: RESULTS

55

as the number of participants in whose responses the code appears. For conciseness, only
comments that at least two interviewed participants have made were listed. The table is
divided into three parts: general impressions (related to the interview question: “What were
your impressions on using this interface to move the robot?"), practical applications (related
to the interview question: “How could this interface be utilized in real-world settings?"), and
improvement suggestions (related to the interview question: “How this interface could be
improved?").

When asked about their overall impression of the prototype, participants once again
highlighted hardware and software limitations found in Microsoft Hololens 2. However,
this time, their responses were more fine-grained, and they commented on their frustration
about the physical object (i.e., the gripper) obstructing their interactions with the Bounding
Box. The most frequent comment highlighted by 8 participants (72%) was that pinching an
object in mixed reality was challenging to them. Because the Bounding Box was placed
around a robot gripper, some of the interface’s handles were harder to reach, and the
physical presence of the robot gripper seemed to make these handles more challenging to
pinch. One participant said: "The challenge I’m having is grabbing anything. Because of the
way these are all positioned, [let’s] say, in the center of the Bounding Box, it makes it very
difficult to grab them".

Often, the hand detection system did not work as expected, replicating issues with
pinching that were already present in phase one of the study: "I’m going correctly to the
handle; but, when I close my hand sometimes it does not respond correctly to my command."
While some issues reported by experts were indeed caused by the presence of the physical
object—if the gripper was between the headset and the hand, the headset could not scan
the hand movements—we do not believe that this was the most common cause for their
frustration. Instead, it was observed that the success rate of the participants as they tried
to pinch increased substantially throughout their session with the tool. We speculate that
part of their issues might be caused by a lack of experience in interacting with physical
objects through mixed reality.

Another frequent comment participants made was about the limited field of view of
Microsoft Hololens 2. Similar comments were reported in the first stage. This issue is
related to the inherent limitations of the used hardware and could not be fixed. A total of 7
participants (63%) mentioned the field of view as being too small for this specific interface
and task. One said: "Honestly, (it would be better) if the lenses were bigger. Um, because
currently, like, I can’t see the whole box at the same time. Like I can (only) see the middle
section, or the top section, or the bottom section." Note that the Bounding Box used in this
prototype was pretty large as it covered the gripper and the extreme part of the robot arm.
The limited field of view would be less of an issue for smaller physical objects.

Another five users (45%) complained about the behavior of the Bounding Box interface
being unclear or not intuitive to them. Among their comments, participants mentioned
difficulty in understanding how to use the interface: "I thought maybe the robot was not
tied to how the Bounding Box is (moving), but, as I’m watching its motion, it is." This issue
may have occurred mostly because participants were unfamiliar with this specific type of
manipulator and because they did not receive explicit training materials or instructions.
As most participants quickly became better at using the interface throughout their session,

56

5 | EVALUATION OF ROBOT CONTROLS IN MIXED REALITY

this wasn’t considered to be a substantial issue. Systems in production typically come with
clear instructions or training tools, which was not the case for this experiment.

Participants also made other, less frequent comments, including the difficulty of using
mixed reality without proper training, issues while manipulating the gripper interface,
issues with the pinpointing feature used to manipulate objects from a distance, and the
lack of interaction between the mixed reality workspace and the physical environment. In
general, most of their issues are related to hardware limitations of the headset or would
only require minor changes to the prototype to be addressed. Incremental improvements
in mixed reality devices and more extensive user testing of interfaces could eliminate most
of these issues.

When asked about improvement suggestions, 6 participants (54%) mentioned the idea
of moving specific handles to more reachable positions, which could potentially solve
the challenges of pinching them, as pointed out by one participant: "The ones [handles]
on the back are useless. So if you could give me this one right here [from the back] in the
front..." While this is a reasonable suggestion, it is valid to note that even “back” handles
can be easily reached by moving to the opposite side of the table, a solution unique to
MR that might not have been obvious to participants. Another 3 participants (27%) also
suggested the idea of including visual markers to support users during the manipulation of
the interface. One said: "I think the color of when grabbed it [the gripper] and when you’ve
let go [should change]. I think that would help you know that you have actually let it go."
This suggestion seems quite reasonable, and we expect it to be incorporated into future
versions of the underlying widget library. Additionally, 3 participants (27%) suggested
explicit training tools to support first-time users of mixed reality. A few participants also
made other suggestions, such as the use of other types of control to manipulate the robot,
design suggestions for the gripper interface, and an increase in the size of the Bounding
Box handles.

When asked about how the Bounding Box interface could be used in practice, 5 partici-
pants (45%) suggested it as valuable to manipulate objects remotely. One said: "I guess if
you got to be dealing with toxic chemicals or something. You’re on one side of, like, an airlock
or something and got to do something from the other side." Another participant combined the
idea of precision with distant manipulation: "I think the best use case for me would be: I have
to stand off from something and manipulate it, but the automated algorithms can’t do what I
want it to do. I have to do it in a more precise way. That’s where I think it would be useful."
Other similar ideas were given by the participants, including manipulating heavy objects,
which would require a certain distance from the robot, manipulating sensitive objects, and
using this interface in assistive health care. While these suggestions are certainly valid,
they focus on a different use case than those we targeted, remote manipulation. Our study
intended to investigate the physical-virtual interaction through in-person manipulation.
Manipulating heavy or dangerous objects without direct touch may be good in-person use
cases to consider.

5.6 | DISCUSSION

57

General Impressions
Comment Occurrences
Pinching in mixed reality is challenging. 8
The field of view of the headset view is small. 7
The interface behavior is not clear. 5
The gripper interface may not work as expected. 2
Pinpointing in mixed reality is challenging. 2
The mixed reality application has no sense of its physical workspace. 2

Improvement Suggestions
Comment Occurrences
Some bounding box controls should be moved to reachable positions. 6
Markers could be included to improve visual feedback. 3
Training on mixed reality should be given to first-time users. 3
Other types of controls could be included within the interface (e.g., joystick). 2
The grippers’ interface should be redesigned. 2
The size of the bounding box controls should be increased. 2

Practical Applications
Comment Occurrences
The interface could be used to manipulate distant objects. 5
The interface could be used to manipulate heavy objects. 3
The interface could be used in assistive health care. 2
The interface could be used to manipulate sensitive objects. 2

Table 5.2: Most frequent comments from experts during their interview (i.e., commented by > one
participant).

5.6 Discussion
This section summarizes discussions over the two phases of this study. The focus of

this section is to bring light to future studies, illustrating how MR can be applied in the
manual control of cobots.

5.6.1 Precision and Hand tracking
Many of the issues that were pointed out by both the novices and experts in the

proposed study can be traced to a lack of precise hand tracking, including problems with
object positioning and pinching detection. Because many MR headsets use some form
of hand-tracking technology to interact with the user interface, it is expected that this
problem will persist, independent of the used hardware. However, the Microsoft Hololens
2 hardware used in this study amplifies the problem further, as hands must be visible
in the limited field of view of the headset to be detected. Although it is convenient to
manipulate an object using only one’s hands, industry-level applications may require
additional tools to achieve higher precision. Other studies have already explored the
restricted capabilities of hand-tracking features in MR devices, and proposed solutions

58

5 | EVALUATION OF ROBOT CONTROLS IN MIXED REALITY

for this problem (Peddie, 2023; Soares et al., 2021; Miller et al., 2020). For instance, the
performance of object positioning could be improved to millimeter accuracy by combining
MR with other technologies, such as haptic gloves and external hand trackers. This trade-off
between the ease of use and the current limitations in MR technology should be considered
by developers who target applications where precision is essential. We hope that further
studies and prototypes can provide them with additional insights into the best compromise
that can be achieved with currently available technologies.

Figure 5.7: Illustration representing how haptic gloves (in brown) could replace hand tracking in our
prototype. A robot operator visualizes and controls a Slider interface on the right side of the robot,
while he also manipulates a Bounding Box interface positioned over the robot gripper without looking
at it.

5.6.2 Field of View
The limited field of view in mixed reality was another common issue among participants.

However, the related problems with hand tracking might have caused them to pay more
attention to this issue than they would have otherwise. If, instead of hand tracking, an
alternative input method not tied to the field of view of the headset was used, the field of
view would likely become less of an issue for most users. They would be able to rely on the
feedback from the real robot when it is moved by the controller, as well as the information
in the field of view of the headset.

Based on our experience using the Microsoft HoloLens 2, we believe that its field of
view might be sufficient if the confounding hand-tracking issue is removed. Figure 5.8
illustrates how the replacement of hand tracking could minimize issues associated with the
field of view. Although additional devices may enhance the experience of users controlling
robots in MR, it is essential to highlight that each device may impose new limitations on
users’ experience, and further studies are necessary to understand better which solutions

5.7 | THREATS TO VALIDITY

59

work best for collaborative robots.

5.6.3 Practical Applications
Using holographic projections to allow a user to manipulate a robot from further

distances was the most frequently suggested application for the final prototype. Prior
studies have also suggested this use case in the context of applications for alternative
MR interfaces Makhataeva and Varol, 2020. Remote operation is not only a standard
application in industrial and collaborative robotics but is also especially important when
safety concerns may impose restrictions on human collaboration Sheridan, 2016. Many
industrial robots can work in hazardous environments but depend on human interaction
to be programmed. For a long time, the manipulation of robots in hazardous environments
depended on the use of cameras, physical controls, and computer screens Trevelyan
et al., 2016. Mixed reality might be able to introduce new ways for users to interact with
holographic copies of robots and controls in real time without depending on the limited
capabilities of solutions such as VR-based environments.

Figure 5.8: Illustration representing how distant manipulation could be applied to mixed reality. An
operator uses Hololens to manipulate a holographic copy of a robot to manipulate it from another
room. The robot is placed in a room where radioactive objects are placed.

5.7 Threats to Validity
We have identified the following threats to validity regarding the presented work:

Construct Validity: The five interfaces compared in the first phase were prototype
implementations based on frameworks provided by MRTK2. These prototypes might not be
comparable to commercial-grade, more thoroughly polished, and tested implementations.

60

5 | EVALUATION OF ROBOT CONTROLS IN MIXED REALITY

The results provided are relative to these prototypes, and the design decisions made in our
implementation may have impacted the outcomes found for this study. In addition, while
we tried to cover a wide range of interface types, other interfaces or frameworks might
use MR differently or more effectively. Also, the Microsoft Hololens 2 MR device in this
study, although well-established in the market and used in literature, could be replaced by
other device options, resulting in different user feedback and performance.

It is important to stress that the joystick interface created was not based on a native
feature of MRTK2 but mirrored the design of an analog joystick. Although we used the best
of our knowledge to implement it, we believe that it could function better if it were adapted
more thoroughly to the capabilities of MR. The task provided for participants trying the
interfaces in the first phase may have also impacted the results of this study.

Internal Validity: When we trained our participants, we attempted to re-create a realistic
experience where users were first exposed to MR and later given a realistic task in a
separate session. However, one session might not have been sufficient to introduce our
participants to the environment, and they might have performed better overall if more
thorough or differently staged training had been made available to them. While we believe
that this bias would have affected all of the environments we compared similarly, we
cannot verify whether this is the case.

External Validity: Our study was performed on undergraduate students, who might not
be representative of real-world end-users using MR interfaces as part of their work. In
particular, robot workers or programmers might have more experience with manipulating
robot arms through other non-MR means, and that experience might affect their perfor-
mance. In addition, the task we asked users to solve was only one example of a practical
MR task. While we designed this task to capture a wide range of positioning steps, real
tasks might bring different challenges or focus on different steps that our task was not
able to emulate.

To better evaluate how mixed reality interfaces can be used for real-world tasks, the
Bounding Box interface was implemented to control a real-world system. The Bounding Box
interface was chosen for this development because it contained the highest usability score
from the experiment completed in this paper. To connect the Bounding Box with a real-
world system, a mixed-reality application was created that utilized WiFi to communicate
with an ABB Gofa robot. The application consisted of a Bounding Box that would be used
to control the positioning of the robot. In addition, a slider interface was used to vary
the speed at which the robot repositioned itself. This was to enhance the precision of the
system. Several experts in robotics were asked to evaluate the application and provide
feedback on the system. This feedback was provided via an open discussion led by the
following prompts: "Tell us your impressions about using Mista to move the robot."; "Do
you believe that Mista could be utilized for real industrial applications? Why or why not?"
; "For future developments, how would you improve Mista?". After analyzing the feedback
provided by these users, several trends were discovered.

For the project’s future development, the weaknesses of some interfaces could be
enhanced or joined with other interfaces. For example, as one participant mentioned,
rather than allowing the robot to move whenever the button is pressed, a feature could be
implemented that would move the robot whenever the button is pressed and held down.

5.8 | CONCLUSION

61

This would create a less repetitive method for moving the robot. In addition, multiple
interfaces could be used together so that the strengths of each feature could complement
each other.

One idea would be that a slider or button interface would be used to change the speed
at which the robot will move, and the Bounding Box would be used to implement the
position. This means that a higher value of speed could be used for more general positions,
where precision is not as necessary, and then a slower value of speed would allow users to
position the robot in the location they would like.

Another additional tool that could be implemented with the robot would be path
programming. Currently, our experiment seeks to analyze the positioning of a robot at a
single point in space. Path programming is another programming method used in robot
applications today. Path programming utilizes a succession of many points in space to
accomplish a task. Using MR, multiple points could be implemented in the virtual space,
where some could be more precisely defined if so desired. We also leave this suggestion
for future studies.

5.8 Conclusion
In this chapter, mixed reality (MR) was explored as an alternative solution to the

manual control of collaborative robots. The study was divided into two phases: The first
phase identified which MR interface was the most appropriate for the manual control
of a virtual robotic gripper and what challenges users still face in MR, especially given
the early stage of the hardware. The second phase identified how experts thought the
best-evaluated interface should be deployed in a real context. Experts in the second phase
had the opportunity to play with a real collaborative robot and control it using a prototype
in MR. From this study, it was possible to identify important challenges that still limit the
applicability of MR devices in robotics, including hardware constraints (e.g., limited field
of view) and software-related issues (e.g., low accuracy of hand tracking systems). Future
work is necessary to expand the knowledge about MR in industrial and collaborative
robotics.

63

Chapter 6

Learning in End-User Robot
Programming Environments

Collaborative robot programming is usually carried out in an industrial setting (Sher-
wani et al., 2020). As most cobots are sold to factories, the practices followed by robot
manufacturers are still based on industrial standards, and ignore what works best for
end-users (El Zaatari et al., 2019). While in computer programming learners have ac-
cess to many informative resources online, technical manuals are the primary source of
information for developers in cobot programming. Furthermore, robots are so expensive
that most developers do not have access to one, which stunts the growth of online user
communities that would otherwise produce shared learning materials (Hentout et al.,
2018). If a novice decides to learn a computer programming language (e.g., Java), they have
instant access to a huge array of learning resources. In contrast, a novice learning a robot
programming language (e.g., RAPID) is largely on his own (Rossano et al., 2013).

Robot manufacturers are beginning to understand that they must provide prospective
customers with the learning resources they need to operate and program their robots. ABB1

and Universal Robots2, for example, have been investing in online learning academies,
conducting in-person robot training, and creating publicly available training videos. But
what kind of learning resources work best to support novices? What learning challenges
do they tend to encounter? To investigate these questions, we invited 35 students with
(some) previous experience in general purpose programming to try collaborative robot
programming for the first time. We asked them to solve a pick-and-place task using a
one-armed robot. To program the robot, they used the Wizard Easy Programming Tool3, a
block-based programming approach released by ABB Robotics in 2020.

To assist participants with any learning barriers, we provided them with a help desk. On
the help desk, participants had access to a web application containing learning resources
divided into three categories: videos, textbooks, and a chatbot trained to answer questions
about robot programming. Every time a participant accessed the help desk, we asked them

1 ://new.abb.com/products/robotics/service/training/online-learnings
2 https://academy.universal-robots.com/
3 https://new.abb.com/products/robotics/software-and-digital/application-software/wizard

https://academy.universal-robots.com/
https://new.abb.com/products/robotics/software-and-digital/application-software/wizard

64

6 | LEARNING IN END-USER ROBOT PROGRAMMING ENVIRONMENTS

to describe what challenge/barrier they were facing. To help them classify their problem,
we listed six learning barriers from a study on end-user programming systems (Ko, B. A.
Myers, et al., 2004). The list included learning barriers associated with programming, such
as "I think I know what I want the robot to do, but I don’t know what to use..." and "I think I
know what to use, but I don’t know how to use it...".

Our experimental study identified that participants prefer chatbots when getting
assistance in a robot programming task. Of the 35 students, only 25 used the helpdesk
during the experimental task. Of those 25, 16 preferred the chatbot, 6 the videos, and 3
the textbooks. Among the most frequent challenges that participants faced while trying
to program our collaborative robot were on how to translate programming logic to the
block-based environment (i.e., "I think I know what I want the robot to do, but I don’t know
what to use..."), how to use the programming features available (i.e., "I think I know what
to use, but I don’t know how to use it..."), and how to deal with mistakes (i.e., "I thought
I knew how to use this, but it didn’t do what I expected..."). In the following sections, we
explain how we designed our robot programming task and how we captured participants’
learning barriers and favorite learning resources. We also explain in detail our results and
discuss outcomes to the robot programming domain.

6.1 Experimental Method
Our study aims to explore learning barriers and potential learning resources in end-user

robot programming environments. To this end, we conducted a robot programming exper-
iment involving a one-armed robot and a block-based programming environment. Thirty-
five participants were invited to implement a solution equivalent to a data sorting algorithm
in Computer Science. Throughout the process, we captured their feedback regarding the
challenges they faced in implementing the experimental task. We also provided partici-
pants with different types of learning materials to evaluate how different learner-content
interactions can help end-users program robot solutions. In the following subsections, we
provide details about the development and execution of this experiment.

6.1.1 Recruitment
We recruited participants from two software engineering classes within a single Com-

puter Science department to participate in our experiment. Our goal was to explore
learning barriers in robot programming, so we targeted students with former program-
ming experience to avoid learning barriers not associated with robotics (e.g., difficulties in
comprehending relational or conditional expressions). Other robot programming studies
have followed a similar approach, showing students can be an effective participant pool for
studying robot programming (Djuric et al., 2017; Karli et al., 2024; Fronchetti, Ritschel,
Schorr, et al., 2023).

Our recruitment process involved sending out personalized invitations via email, ex-
plaining the purpose and benefits of the study, and verbally advertising the experiment in
class. Each participant was scheduled for an individual session through an online schedul-
ing platform. Participation was voluntary and performed in person in our laboratory,
with a maximum completion time of one hour and twenty minutes per participant. As

6.1 | EXPERIMENTAL METHOD

65

compensation, students who tried our experiment received extra credit points in class. All
participants had their involvement approved by an institutional review board.

6.1.2 Experimental Task
Our goal in designing the task was to exercise most of the programming features

available in the Wizard Easy Programming Tool, as we wanted the participants to learn the
entire programming system. To achieve this goal, we designed a queue sorting exercise,
similar to those found in a typical data structure course. We proposed a task where
participants would rearrange an existing queue of values into two new queues. In the
beginning, the queue would be randomly filled with two types of values (e.g., zeros and
ones). By the end of the experiment, one queue should contain only zeros and the other
queue should only contain ones.

To represent the two queues and the binary values in a physical environment, we used
coffee cans containing two distinct flavors of coffee and two can dispensers (See Figure 6.2.
The cans represented the binary values and were randomly placed in the dispensers
representing the queues. We asked participants to implement an application that allows a
robot to rearrange the cans among the two dispensers. To avoid using a computer vision
system, which would complicate the programming task, we allowed users to interactively
indicate to the robot which type of coffee it currently held using a prompt. By the end of
the experiment, the cans containing one flavor should be in the first dispenser and the
remaining ones in the second dispenser.

Participants were treated as the developers responsible for implementing this software
application, and a list of nine software requirements was presented to them before the
beginning of their session (See Table 6.1). To complete the experimental task, participants
should follow all nine requirements. They were given a printed copy of the software
requirements, along with guidelines on how to operate the robot and the block-based
programming language proposed for this experiment. A proctor also read for them the
guidelines and the requirements out loud before the beginning of the experiment as a form
of training.

6.1.3 Wizard Easy Programming Tool
Participants were restricted to a single programming environment to implement a

solution for the experimental task. The environment of choice was the Wizard Easy
Programming Tool (See Figure 3.1). This tool consists of a block-based programming envi-
ronment for collaborative robots made by the ABB robot manufacturer. It supports most of
the manufacturer’s collaborative robots, including the one used in this experiment, the ABB
GoFa. The programming environment translates complex robot commands into colorful
blocks that are easy to use and understand, and it is one of the few programming options
available for end-users in robotics. In this experiment, participants programmed in the
environment using the robot’s teaching pendant. They were responsible for implementing
every software requirement using only the blocks available.

The Wizard Easy Programming Tool provided eight categories of blocks: message, move,
“stop and wait”, procedures, loops, signals, logic, and variable. Under the message category,

66

6 | LEARNING IN END-USER ROBOT PROGRAMMING ENVIRONMENTS

Software Requirements

R1. Your software should only use the features available in the block-based language.

R2. Your software should only use the robot positions available in the block-based
environment. You should not create new robot positions for your solution, but you can
instantiate as many other variables as you want (e.g., numbers, strings).

R3. Customers should not interact directly with your code, including but not limited
to moving your blocks or editing your variables.

R4. Your software must be written within a single file, provided for you beforehand
by the experiment. You should not create or load other files in the programming
environment or even rename the one opened for you.

R5. Your software must start printing a welcome message to clients on the teaching
pendant screen.

R6. Your software must receive the customer’s input to decide the next actions of the
robot, and the customer’s input must be received as touchscreen interactions on the
teaching pendant screen.

R7. In terms of actions, the robot must be able to move the coffee cans from one
organizer to the other and to move the first can of each organizer to the last position of
the same organizer, based on the customer’s input, while your application is running.

R8. Customers should be informed about which one of the actions the robot
is performing.

R9. Your software must allow customers to decide when to stop the application. This
decision must be received as a touchscreen interaction on the teaching pendant screen.

Table 6.1: List of software requirements given for the experimental task.

four blocks were available to receive user commands through touchscreen interactions and
to print messages on the teaching pendant. To capture user commands, developers could
use a "ask a question" block and receive the user input in numerical format (a numeric
answer is inserted by the user in a text field and saved as a variable) or categorical format
(a list of categorical options is selected by the user through button interactions on the
screen and saved as a numeric variable).

Two blocks under the move category were available for developers to move the robot
around the workspace, one using linear and other joint-based movements. Three blocks
under the "stop and wait" category were available to make the program execution stop
or make the robot wait for a defined period. In the procedures category, developers could
encapsulate a set of blocks by creating custom procedures (i.e., functions) in the language.
This category displayed all the custom procedures created by the developer, plus a call
block to run them during execution time. Each participant started the experiment with
three custom procedures to manipulate the robotic gripper: open gripper, close gripper,
and restart gripper. Restart was used in cases where the gripper stopped working after a
problem in the execution (e.g., after a collision with the environment). The participants

6.1 | EXPERIMENTAL METHOD

67

were allowed to create as many procedures as they judged necessary.

The loops category contained two loop blocks, one representing a for and another a
while loop. The signals category was available to manipulate input and output signals
in the robot’s controller. Participants in this experiment were instructed to ignore this
category, as no input/output manipulation was required for the experimental task. The
logic category contained four blocks for developers to control the execution flow of their
programming, including conditional blocks and operators. Finally, the variables category
provided a set of blocks for users to set, update, and use variables. Three types of variables
were available for implementation: numbers, booleans, and strings.

Figure 6.1 presents an example of an expected solution for the experimental task,
covering all the nine software requirements. The program starts displaying a welcome
message on the teaching pendant screen (R5). The robot is moved to a starting position
named Home. A boolean variable and a while block keeps the program running in a loop.
A question is displayed on the screen at the beginning of every loop iteration to capture
the user input (R6). Five input options are available for the user to choose from: (a) Move
the can from the first dispenser to the second dispenser, (b) move the can from the second
dispenser to the first dispenser, (c) move the can from the first dispenser to the last position
of the same dispenser, (d) move the can from the second dispenser to last position of the
same dispenser, (e) stop the loop and close the software application (R7).

The user decision is saved in a variable named Command, and if statements are used
to control the execution flow. A message is printed on the teaching pendant screen for
every possible decision (R8). For each movement decision, custom procedures are used to
encapsulate move blocks and the opening and closing of the gripper. A final condition is
used to close the application (R9). The program is executed every time a user presses a start
button on the teaching pendant. This solution and the experimental task requirements
cover most of the block categories available in the Wizard Easy Programming tool. The
only categories not used to complete the task are the “stop and wait” and signals, although
stop blocks could also be used to make the program flow smoother. This solution also
indirectly covers the first four requirements not mentioned above.

68

6 | LEARNING IN END-USER ROBOT PROGRAMMING ENVIRONMENTS

Figure 6.1: Potential task solution. The solution is composed of multiple block categories and complies
with the nine software requirements proposed for the experimental task.

6.1.4 Workspace
Each participant visited our laboratory at a time to participate in the experiment. Figure

6.2 displays the workspace presented to participants during their session. On the right side
was the robot operating area. The robot was fixed on a table behind two dispensers filled
with cans of coffee. Predefined in the robot operating system, there were robot positions for
the robot to reach the upper and bottom parts of the two dispensers. A proctor randomly

6.1 | EXPERIMENTAL METHOD

69

organized the cans and tested the robot before the beginning of every session. Participants
were instructed not to interact with the robot workspace as they only needed to use the
block-based environment to complete the task.

The teaching pendant and a desktop computer were placed on the left side of the
experiment area. Participants accessed the block-based environment and programmed their
solution through the pendant device, which also contained physical buttons to play and
stop the program’s execution. Before the beginning of every session, a proctor instructed
the participants on using the teaching pendant. We also provided the participants with a
desktop computer acting as a “help desk”. Participants were advised that they could use the
computer at any time to assist them in completing the task. Running on the computer, a
website for this experiment was available for the participants. Participants were instructed
not to use any other applications other than the website during the experiment.

6.1.5 Help Desk
The website presented participants with a workflow divided into three pages. On

the first page, participants were asked to complete a form containing a multiple-choice
question and a text field. The question asked participants what learning challenge they
faced, and the text field asked them to describe their request in detail. The available choices
for the question were based on six learning barriers of end-user programming systems
discovered in a related study (Ko, B. A. Myers, et al., 2004), including:

1. “I don’t know what I want the robot to do. . . "

2. “I think I know what I want the robot to do, but I don’t know what to use. . . "

3. “I think I know what things to use, but I don’t know how to make them work together. . . "

4. “I think I know what to use, but I don’t know how to use it. . . "

5. “I thought I knew how to use this, but it didn’t do what I expected. . . "

6. “I think I know why it didn’t do what I expected, but I don’t know how to check. . . "

An “Other” option was also available where participants could define a challenge
not described by the six learning barriers available. This first page captured participants’
learning challenges and their descriptions. Once they filled out the form, participants were
redirected to the resources page. In this second stage, multiple learning materials were
listed for use in three categories: video, text, and chat. Our goal was to provide participants
with potential resources to help them overcome their learning barriers and evaluate how
different resources impact their understanding of the programming task. Table 6.2 shows
the complete list of learning resources available at the help desk.

For the video category, we provided participants with all the tutorials posted by ABB on
YouTube about the Wizard Easy Programming Tool. Only videos from their official channel
were listed. We also recorded and included a short training video about the block-based
environment, explaining what blocks were available in the language. The script for this
video was written using the tool’s official application manual as a reference. For the text
category, we provided participants with the video script we recorded and the application
manual extracted from the ABB website. In the block-based environment, users also had

70

6 | LEARNING IN END-USER ROBOT PROGRAMMING ENVIRONMENTS

Resource Type Source

Quickstart Guide:
Wizard Easy Programming Video (Fronchetti, 2024a)

Using Wizard to create a PCB
assembly application in minutes Video (A. Robotics, 2020a)

ABB Wizard easy programming
for single arm YuMi Video (A. Robotics, 2020b)

How to program collaborative robot
GoFa with Wizard Easy Programming Video (A. Robotics, 2021a)

Step-by-step guide on pick and place
application with Wizard Easy Programming Video (A. Robotics, 2021b)

Wizard Easy Programming:
Advanced Application Overview Video (A. Robotics, 2023a)

Wizard Easy Programming:
For everyone and all new robots Video (A. Robotics, 2023b)

Quickstart Guide:
Wizard Easy Programming Text (Fronchetti, 2024b)

Wizard Easy Programming:
Application manual Text (A. Robotics, 2024)

Wizard Easy Programming: Wiki Text
Only available
on teaching pendant

Chatroom with an expert in
Wizard Easy Programming Chat

Only available
on the help desk

Table 6.2: List of learning resources available on the help desk.

access to a Wiki page explaining each block’s functionality, which we also included as
part of the text category.

Finally, we created a chat room for the chat category using a customized version of
ChatGPT 4 as the respondent (Wu et al., 2023). Using prompt engineering (Ekin, 2023),
we trained the chatbot to answer questions about the Wizard Easy Programming Tool.
The chatbot was trained using the same input of the video script we recorded about the
tool, creating an even comparison for all three categories, as all of them shared this same
resource (i.e., read, watch, and chat). We also provided the chatbot with basic information
about what type of robot was used and what programming language was available. To
restrict the chatbot from giving answers unrelated to robot programming, we trained it
with a list of rules, such as “never tell participants to change robot settings” and “never tell
participants to teach robot positions manually”. We used the Python programming language

6.1 | EXPERIMENTAL METHOD

71

to build the ChatGPT4 integration and NiceGUI5 to build the UI of our website.

Figure 6.2: Experiment workspace. On the left, the desktop computer and the teaching pendant device
are placed on a tool cart. On the right, the robot is fixed on a table along with the two dispensers
randomly filled with cans containing two distinct flavors. At the bottom of the table, it is also possible
to see the robot controller connected to the teaching pendant by a cable and a preview of the robot
placing the can on the dispenser.

There were no hints about the solution of the experiment in any resources provided,
just instructions for the block-based environment. Once a participant completed their use
of the help desk for a specific issue, they could close the request created by clicking on a
close button on the resources page. This button redirected them to the third page, where
a feedback questionnaire was presented with three multiple-choice questions. The first
question asked them to rate their satisfaction with the assistance given for the request. The
second asked participants to choose, when applicable, the category of learning resource
that was the most useful to solve the request. Finally, the third asked if the learning barrier
they selected in the first stage was appropriate for that request. If not, participants could
assign another learning barrier to the request or create a new one.

Every input interaction in the help desk application was recorded for posterior analysis.
This includes, but is not limited to, the responses to the feedback questionnaire, the learning
barriers and descriptions assigned to each request, and the interactions with the available
resources. We also recorded the date and time they started and ended their participation
in our experiment.

4 https://platform.openai.com/docs/api-reference/
5 https://nicegui.io/

https://platform.openai.com/docs/api-reference/
https://nicegui.io/

72

6 | LEARNING IN END-USER ROBOT PROGRAMMING ENVIRONMENTS

6.1.6 Post-Experiment Questionnaire

As the final step of our experiment, we invited participants to answer a post-experiment
questionnaire. We used this questionnaire to get their overall feedback regarding the experi-
ment, the block-based tool, the learning barriers and resources, and the robot programming
task. The questionnaire was divided into four pages. The first page asked participants
for demographic information, including their experience with robotics, block-based pro-
gramming, and robot programming languages. No sensitive information was collected
through the questionnaire. On the second page, we asked participants about their learning
experience in computer and robot programming, when applicable. For each programming
domain, we asked them two questions: what learning resources do they use the most
(e.g., videos, textbooks, audiobooks), and what challenges do they typically face when
consuming these learning materials (e.g., outdated information, information not concise,
or clear)? On the third page, we asked participants about their overall experience with the
help desk, including what category of learning materials were most useful to solve the
programming task and their feedback regarding the materials available. On the last page,
we allowed them to give feedback about the Wizard Easy Programming Tool and their
experience in our study.

6.1.7 Data Collection and Analysis

This study’s main data sources are the post-experiment questionnaire and the forms
and interactions from the help desk application. We also saved the solution implemented by
our participants. As most data is considered quantitative information, descriptive statistical
methods were used to analyze them. We applied a qualitative description approach for the
open-ended questions and forms, with two researchers analyzing the data and describing
the participants’ feedback in detail. We opted for a more immediate qualitative approach as
the information collected throughout the experiment was insufficient for a more detailed
analysis (e.g., open card sorting). The same researchers also analyzed the program solutions
made by participants to check if they completed the task. Each participant was identified
in our dataset by a unique identifier based on the date and hour they participated in our
experiment. No sensitive information was recorded.

6.2 Results

In this section, we present the outcomes of our study. Our analysis focused on the
existence of learning barriers in robot programming tasks and the interaction of end-users
with different learning materials. We start introducing the demographic information of our
participants, followed by an analysis of their performance in the experimental task. We
follow the section presenting the learning challenges faced by participants while program-
ming our experimental task and their interactions with learning materials in our help desk.
At the end, we also highlight answers from our post-experiment questionnaire.

6.2 | RESULTS

73

6.2.1 Demographics
Thirty-five students participated in our experiment, with 33 students being undergrad-

uate (94%) and 2 master students (6%). Among the undergraduate ones, we found 21 seniors
(60%), 9 juniors (26%), and 3 sophomores (9%). Figure 6.3 shows their computer, block-based,
and robot programming experiences. Regarding computer programming, 4 participants
reported more than five years of experience (11%), 16 participants between four to five
years (46%), 14 participants between one to three years (40%), and 1 participant less than
one year of programming experience (3%). For experience with block-based languages, only
one participant reported more than five years of experience (3%), 5 participants between 1
and 3 years of experience (14%), 10 participants had less than one year of experience (29%),
and 19 participants had no experience with block-based environments (54%).

Regarding experience with robot programming, 4 participants reported less than one
year of experience (11%), and 31 participants stated no experience in the area (89%). In
another question we also asked participants about their overall experience with robotics,
whether it is part of industrial robotics or not. Twelve participants reported limited experi-
ence in robotics (34%), while 21 suggested no domain experience (60%). The demographic
composition of our participants suggests they fit in our definition of end-users in robotics
and the target population of our experimental task, as most participants are experienced
in computer programming but have limited to no experience in robotics. We also hold a
reasonable sample size compared to other studies in the field.

6.2.2 Participants Performance
Two authors of this study manually inspected the solutions made by participants using

the nine software requirements (See Table 6.1). A requirement was considered complete if
the participant satisfied its definition. For example, requirement five (R5, "Your software
must start printing a welcome message to clients on the teaching pendant screen.") was
considered complete if the participant used a message block to print a welcome message
on the pendant screen. Figure 6.3b presents the number of participants who completed
each software requirement, and Figure 6.3c the number of requirements completed per
participant. All 35 participants completed the first four requirements (R1, R2, R3, and R4).
In contrast, 31 participants (89%) wrote the welcome message on the teaching pendant
screen (R5), 23 participants (66%) used input blocks to receive customers’ directions over
the next actions of the robot (R6), and 19 participants (54%) used blocks to move the cans
between the organizers (R7).

Only 10 participants (29%) informed users about which one of the actions the robot
was performing (R8), and 14 participants (40%) implemented a logic that allowed the
user to stop the application (R9). Regarding the number of requirements completed per
participant, we have that 3 participants (9%) completed only 4 out of 10 requirements,
8 participants (23%) completed 5 requirements, and 6 participants (17%) completed 6
requirements. On higher completeness, we found that 3 participants (9%) completed 7
requirements, 7 participants (20%) completed 8 requirements, and 8 participants (23%)
completed all 9 software requirements. Using a secondary application on the help desk,
the proctors computed the time taken per participant to complete their participation in
the experiment. On average, participants spent one hour and five minutes working on the

74

6 | LEARNING IN END-USER ROBOT PROGRAMMING ENVIRONMENTS

experimental task, fifteen minutes below the expected time limit.

(a) Computer Programming Experience

0 10 20 30

No experience
< 1 Year

1 - 3 years
4 - 5 years

> 5 Years

Participants

(b) Block-Based Programming Experience

0 10 20 30

No experience
< 1 Year

1 - 3 years
4 - 5 years

> 5 Years

Participants

(c) Robot Programming Experience

0 10 20 30

No experience
< 1 Year

1 - 3 years
4 - 5 years

> 5 Years

Participants

Figure 6.3: Demographic composition of participants: Computer programming experience, block-based
programming experience, and robot programming experience.

(a) Participants Across Completed Requirements

0

10

20

30

R1 R2 R3 R4 R5 R6 R7 R8 R9

Pa

rt
ic

ip
an

ts

Requirement

(b) Requirements Completed Per Participant

0

2

4

6

8

10

4 5 6 7 8 9

Pa

rt
ic

ip
an

ts

Requirements

Figure 6.4: Distribution of participants across completed requirements and the requirements completed
per participant. See Table 6.1 for requirements list.

6.2.3 Frequency of Learning Barriers
In total, thirty-six help requests were opened on the help desk, with an average of one

request per participant (min: 0, max: 4, sd.: 1). Regarding the barrier assigned for each
request, participants stated in three requests, "I don’t know what I want the robot to do. . . ".
Seven requests were related to "I think I know what I want the robot to do, but I don’t know
what to use. . . ". Six requests were associated with "I think I know what things to use, but I

6.2 | RESULTS

75

don’t know how to make them work together. . . ". Seven requests were related to "I think I
know what to use, but I don’t know how to use it. . . ", and seven requests to "I thought I knew
how to use this, but it didn’t do what I expected. . . ". When accessing the help desk, none
of our participants selected the learning barrier, "I think I know why it didn’t do what I
expected, but I don’t know how to check. . . ". However, six other requests were assigned with
the "Other" option, stating that the help request created was not associated with one of
the six barriers available. None of these six requests provided substantial information to
organize a new learning barrier. Table 6.3 summarizes the frequency of learning barriers
in help requests.

Learning Barrier # Requests

I thought I knew how to use this,
but it didn’t do what I expected. . . 7

I think I know what to use,
but I don’t know how to use it. . . 7

I think I know what I want the robot to do,
but I don’t know what to use. . . 7

I think I know what things to use,
but I don’t know how to make them work together. . . 6

I don’t know what I want the robot to do. . . 3
I think I know why it didn’t do what I expected,

but I don’t know how to check. . . 0

Other 6

Table 6.3: Appearance of learning barriers per request.

Along with the barriers, participants also provided a description of the reason they
requested help. Two authors of our study organized their descriptions into three categories
according to the context of each request. The requests were related to programming, bugs,
and context issues. The programming category covered requests related to difficulties with
the programming environment. Twenty-two out of the thirty-six requests were found in
this category. Examples of descriptions associated with this category included questions
such as "How do I save a response from a question to a variable so I can use it in an if
statement?", "How can I end the program using user input?", and "How do I copy more than
one block at the same time?". In another category, ten out of the thirty-six requests were
related to participants complaining about bugs/problems in the workspace. Descriptions
in this category include "The robot is stuck in a position, and it is not moving no matter how
many times I run..." and "I am running the code to go to the left dispenser and close the grip,
but it keeps getting stuck...". The four descriptions left were grouped in a generic category,
as they didn’t belong to any of the categories above. The examples included questions
related to the experiment, such as "What is the role of the customer?" and "I’m confused
about what you meant by what the client wants."

76

6 | LEARNING IN END-USER ROBOT PROGRAMMING ENVIRONMENTS

6.2.4 Usage of Learning Resources
We also quantified the use of the learning resources at the help desk. Participants used

the resources available sixty-eight times throughout the experiment, with the chatbot being
used 33 times (49%), videos 24 times (35%), and textbooks 11 times (16%). Each participant
used, on average, two learning materials per request. We counted a video or textbook
used when the participant opened it in our web application. For the chatbot, we counted
the number of requests where a new chatroom was opened. In the video category, the
most watched videos were the "Quickstart Guide: Wizard Easy Programming" (Fronchetti,
2024a) with 9 views, followed by "Using Wizard to create a PCB assembly application in
minutes" (A. Robotics, 2020a) with 5 views. The videos "How to program collaborative
robot GoFa with Wizard Easy Programming - Tutorial for beginners" (A. Robotics, 2021a)
and "Wizard Easy Programming: Advanced Application Overview" (A. Robotics, 2023a)
received both 3 views. The videos "Wizard Easy Programming – For everyone and all new
robots" (A. Robotics, 2023b) and "Step-by-step guide on pick and place application with
Wizard Easy Programming tool" (A. Robotics, 2021b) received 2 views.

The remaining video, "ABB Wizard easy programming for single arm YuMi" (A.
Robotics, 2020b) didn’t receive any views. The lack of interest from participants in
this video may be justified by the fact that this is the only video that uses another type
of robot. In the text category, we only counted the views for the materials available on
our web application. The most used textbook was the "Application Manual of the Wizard
Easy Programming Tool" (A. Robotics, 2024) with 7 views, followed by the "Quickstart
Guide for the Wizard Easy Programming Tool" (Fronchetti, 2024b), with 4 views. In the
chat category, participants exchanged 152 messages with ChatGPT, averaging 5 messages
per chatroom/request. The majority of the messages sent by participants were simple
questions about programming, such as "Does the if statement work with strings?", "How
do I receive user input?", "Is there an else if feature?", and "How to reset robot to original
position?". On average, participants spent 13 minutes talking to the chatbot (min: 1, max:
53, sd.: 15), 5 minutes watching videos (min: < 1, max: 41, sd.: 10), and 2 minutes reading
textbooks (min: < 1, max: 8, sd.: 2). These results suggest the chatbot as the most engaging
learning resource available on the help desk.

When asked about their satisfaction level with the resources available in a post-request
form, 4 participants (11%) declared being very satisfied, 16 participants were satisfied
(44%), 14 participants were neutral (39%), and 2 participants (6%) were dissatisfied with the
learning materials at the help desk. Regarding the most useful category of information,
participants selected the chatroom 20 times as their favorite category (56%), the textbooks
6 times (16%), and the videos 2 times (6%). For 8 times (22%), participants opted out from
selecting one of the categories. In the same post-request form, we asked participants
whether the learning barrier they assigned for the request was correct or should be
replaced. Participants kept the same learning barrier for 29 requests (81%) and replaced 5
of them (14%). In 2 requests (5%), participants opted for not answering this question.

6.2.5 Outcomes from Questionnaire
On the post-experiment questionnaire, we repeated the question about what categories

of learning materials were useful to solve the task. At this point, participants could choose

6.2 | RESULTS

77

more than one category as useful. Their answer repeated similar trends from the post-
request form, with 16 participants (46%) choosing the chatbot as the best learning resource,
6 participants choosing the videos (17%), and 3 participants choosing textbooks (9%).
Fifteen participants (43%) stated that they did not use the help desk at any moment,
and 3 participants stated that no categories were useful to them (9%). Throughout the
questionnaire, we also asked participants what type of learning materials they use the
most while studying computer programming and what challenges they face when using
these resources. For those with experience in robotics, we repeated the same questions
using robot programming as context. These questions were not a requirement to complete
the questionnaire. For both questions, participants could select multiple options from a
predefined list of options and add new ones if necessary. The predefined options were
based on two related studies (Al-Fraihat et al., 2020; Abdulrahaman et al., 2020).

Table 6.4 presents the most used resource types according to our participants. The
table is divided into two columns, one for the first question asking all participants about
computer programming and the second for those with experience in robotics. Regarding
the most used resource types, while studying computer programming, videos were selected
by 30 out of 35 participants (86%), followed by learning from online communities and
chatbots, both selected by 27 participants (77%). Twenty-six participants also selected
lecture materials (74%) as a common resource used while studying computer programming.
In the last positions, we found textbooks selected by 14 participants (40%), technical
documentation selected by fifteen participants (43%), and audiobooks selected by just one
participant (3%).

Resource Type
Computer Programming

(N = 35)
Robot Programming

(N = 11)

Videos 30 (86%) 10 (91%)
Textbooks 14 (40%) 2 (18%)

Audiobooks 1 (3%) 1 (9%)
Online Communities 27 (77%) 6 (55%)

Lecture Materials 26 (74%) 5 (45%)
Chatbots 27 (77%) 9 (82%)

Technical Documentation 15 (43%) 5 (45%)

Table 6.4: Participants most used learning resources according to their format. Each column represents
the number of participants who chose a format for a specific programming domain. N is the number
of individuals who selected at least one format.

Eleven participants selected the resource types they used the most to study robot
programming. Similar trends from computer programming were found with students in
robotics, with 10 of them (91%) selecting video as their favorite resource type, followed by
chatbots (82%) and online communities (55%). The least used types also presenter similar
numbers, starting with lecture materials and technical documentation (45%), followed by
textbooks (18%) and audiobooks (9 %). In Table 6.5, we present participants’ most frequent
challenges while consuming learning materials in the computer and robot programming
domains. For the computer programming domain, 20 out of 35 participants (57%) com-
plained about the materials not providing sufficient information, not being concise and

78

6 | LEARNING IN END-USER ROBOT PROGRAMMING ENVIRONMENTS

clear, and not being organized into logical and understandable components. Fourteen
participants (40%) also complained about the information and resources not being readily
useable.

Nine participants (26%) reported problems with resources not being up to date, and
eight participants (23%) stated that resources are not always accessible. One participant
added a challenge to the list, stating, "the materials are so scattered that it takes time to
gather them for your specific case." The eleven participants who selected their favorite
resource types to study robot programming also reported the challenges they usually face
with learning resources in this domain. Five out of six challenges listed for participants
were selected by six participants (17%). The only challenge that did not receive the same
selection was the one about information not being up to date, selected by five participants
(14%). Participants did not include custom challenges in this question.

Challenges
Computer Programming

(N = 35)
Robot Programming

(N = 11)

The materials do not provide
the sufficient or required information 20 (57%) 6 (17%)

The information and resources
are not always accessible 8 (23%) 6 (17%)

The information and resources are not
in a form that is readily useable 14 (40%) 6 (17%)

The information and resources
are not concise and clear 20 (57%) 6 (17%)

The information and resources
are not organized into logical

and understandable components
20 (57%) 6 (17%)

The information and resources
provided are not up to date 9 (26%) 5 (14%)

Table 6.5: Participants most frequent challenges while using learning resources. Each column represents
the number of participants in a specific programming domain. N is the number of individuals who
selected at least one challenge in a domain.

6.3 Discussion
In this section, we discuss some of the outcomes of this chapter.

6.3.1 Chatbots and the Next Generation of Software
Developers

With the advancements of the Internet, a multitude of learning technologies is now
available online for those interested in learning computer programming. Not only are the
resources made by programming language maintainers and manufacturers available, but
a universe of professionals is also engaged in teaching newcomers the path to software

6.3 | DISCUSSION

79

development. In recent years, chatbots sustained by large language models have attracted
the attention of those attempting to learn something new, and results have shown that
they can also support learners in software development. If one day, all a programmer
had was the printed manual of a programming language, now one-on-one support is also
available from a language model.

This chapter shows that incoming professionals in software development are opting
for new learning representations. Twenty-seven out of thirty-five undergraduate students
in Computer Science who participated in our experiment are using chatbots to study
computer programming. Videos and online communities like Stack Overflow are also
widely used by students as more recent forms of learning. On the other hand, less than
50% of our participants mentioned the use of more traditional formats, such as textbooks
and technical documentation. But does the same hold for novices in robot programming?
What resources do they access when working on a programming task? Our experimental
task reinforces the same trends in the robotics domain. Our chatbot was voted the most
useful learning resource at the help desk, receiving 33 votes. The videos and textbooks
available received 24 and 11 votes, respectively. If companies like Universal Robots are now
investing in e-learning academies filled with video tutorials (See Figure 6.5), maybe training
a chatbot to support their prospective programmers should also be considered.

Figure 6.5: Universal Robots Academya: e-learning platform for novice robot programmers.

a https://academy.universal-robots.com/

However, it is important to emphasize that chatbots’ work in traditional programming
environments may not work in robotics, as the answers generated by the language model
will depend on context information such as the robot type, brand, and infrastructure. Defin-
ing these rules is necessary to avoid common challenges in participants’ understanding of
robot programming. As shown in Table 6.5, although the digital revolution in education
is bringing new ways of learning computer programming, problems already seen before,
such as lack of information clarity, are still present in students’ perceptions nowadays. In
future studies, we expect to explore strategies to support robot companies in releasing
valuable learning resources to newcomers in robotics.

https://academy.universal-robots.com/

80

6 | LEARNING IN END-USER ROBOT PROGRAMMING ENVIRONMENTS

6.3.2 End-user robot programming: Are We There Yet?
This chapter also explores participants’ interaction with a commercial block-based

programming environment designed for end-users in robotics. The tool of choice is one of
a few programming options for end-users working on collaborative robots. Created by
the ABB robot manufacturer, the Wizard Easy Programming Tool promises to empower
first-time robot users to "program collaborative and industrial robots easily, quickly, and
efficiently in a wide range of applications" (See Figure 6.6). In our evaluation, we asked
participants with computer programming experience to try a collaborative robot of their
brand for the first time. Only four participants had minimal robot programming experience
in our sample. Our results suggest that, although most users could implement code using
ABB’s block-based tool, only eight out of thirty-five participants (23%) could complete the
pick-and-place task assigned in our experiment. One may argue that these results tell more
about the experimental task than the language itself, but the learning challenges identified
in our help desk also tell the opposite. As shown in Table 6.5, seven times, participants who
accessed the help desk had difficulties trying to comprehend what to use in the block-based
environment. Participants also had problems translating instructions to blocks and had
difficulties dealing with mistakes in the block-based environment. These results suggest
that more in-depth studies are necessary on block-based programming environments for
robotics.

Figure 6.6: Advertisement for the Wizard Easy Programming Tool at ABB websitea.

a https://new.abb.com/products/robotics/software-and-digital/application-software/wizard

Although it might be challenging for end-users to program robot solutions, participants’
feedback about the block-based language they tried was mostly positive. One participant
said: "I think block-based programming can be easy for people to learn because a lot of technical
theory and other stuff is abstracted. It helps people learn programming at a very basic level,
which is useful." We believe that combining end-user programming environments and
suitable learning resources may be the right direction to make robot programming an
easier task. In future work, we plan to expand our understanding of this combination

https://new.abb.com/products/robotics/software-and-digital/application-software/wizard

6.4 | LIMITATIONS

81

to other scenarios, including their applicability in offline programming environments,
non-collaborative robots, and applications other than pick-and-place tasks.

6.4 Limitations
In this section, we highlight some of the limitations of this chapter:

Experimental task and choice of programming environment. In this work, we
explore end-user learning barriers and the use of learning resources in robot programming
tasks. We use a commercial block-based environment and a custom robot programming
task for evaluation. To reduce the complexity of the task given to participants, we asked
them to implement a simple pick-and-place procedure using the block-based environment.
Pick-and-place tasks are among the most common types of robot programming proce-
dures and are easy to understand due to their simplicity. We also provided them with
experiment guidelines and a list of software requirements. We comprehend that choosing
a block-based tool rather than other programming designs for end-users may impact
our outcomes, including but not limited to the conclusions about learning barriers and
participant feedback. We also understand that the design proposed for our experimental
task impacts our results and that other tasks could lead to distinct conclusions.

Learning barriers and resources. As our goal was to evaluate learning barriers and
learning resources in robot programming environments, the choice of barriers listed on
the help desk and the resources provided may also influence participants’ perceptions.
We tried to mitigate this issue by using a predefined list of barriers from a related study
working in a similar context and by providing only the learning resources made by the
robot manufacturer. We also allowed participants to include new learning barriers at
the help desk and opened space for them to give feedback about the resources in the
post-experiment questionnaire.

Training and time constraints. One may argue that the amount of time and training
given to participants is too small. We understand that these decisions may impact our
results, but, at the same time, we must emphasize that they were made based on our
prior experience with the Duplo experiment and a pilot study with four participants. Each
participant received a printed copy of the experiment guidelines and the software require-
ments they should follow. A proctor read these copies to the participant before starting
the experiment and was allowed to answer any questions regarding these documents.
We did not provide any hints on solving the task, as we expected participants to access
the help desk when necessary. The expected time limit was calculated based on the time
participants took in the pilot study and the complexity of the task. The time definition
was also made in agreement with an institutional review board.

Number and origin of participants. Due to budget and time constraints, partici-
pants in this experiment were students recruited from two software engineering classes.
Thirty-five students participated in our experimental task, all with previous experience in
computer programming and a few with very limited experience in robotics. To increase
participation, we offered students with extra credits in class. We understand that the
recruitment process and the sample size may also impact our outcomes. College students
may not totally represent end-users in robotics, and the conclusions made throughout

82

6 | LEARNING IN END-USER ROBOT PROGRAMMING ENVIRONMENTS

our work may be limited by the feedback given by a small sample of participants. To
validate our conclusions, we comprehend that future work will be necessary with more
participants and a more diverse experiment design.

6.5 Conclusion
Learning resources are important in helping beginners understand a subject, especially

when they face challenges that hinder the learning process. In this chapter, we explore how
robotics novices learn to use a block-based tool to solve a simple robot programming task.
We provided them with learning resources to master the tool and asked them to report
what challenges they faced throughout the process. We learned from their interactions
and feedback that although end-user environments are a promising technology in robotics,
users without experience in the field still face difficulties in solving simple programming
tasks. As robots are present in the physical domain, translating the programming logic
to a movable arm can be more challenging than traditional programming exercises. Our
results also highlight that the new generation of robot developers is interested in less
traditional learning resources, opting for videos and conversations with chatbots rather
than technical textbooks and manuals. For future work, we plan to explore the use of
chatbots in collaborative robot programming tasks, and the use of other learning resources
in the process.

83

Chapter 7

Conclusion

End-user robot programming is a domain with many open questions to explore. In
this thesis, I expand the domain by investigating: the use of block-based languages in
two-armed robots (Chapter 4), the application of mixed-reality interfaces to the manual
control of articulated robots (Chapter 5), and how learning resources can contribute to
collaborative robot programming tasks (Chapter 6). In the following sections, I present a
collection of complementary studies executed throughout my doctorate to complement this
work. I also introduce my published papers and a brief description of future work.

7.1 Complementary Studies
The studies presented in this thesis are part of my main investigation into end-user

robot programming. However, I have also participated in other related studies in software
engineering and human-robot interaction, and this section summarizes three of them.
Other studies published throughout the Ph.D. can also be found in Section 7.2.

7.1.1 Artistic Robot Programming in Mixed Reality

Paper:
Fronchetti, Popiela, et al., 2024

Articulated robots are attracting the attention of different areas worldwide, including
the artistic domain. Due to their precise, tireless, and efficient nature, robots are now being
deployed in different forms of creative expression, such as sculpting (Ma et al., 2021),
choreography (H. Peng et al., 2018), and cinematography (Gschwindt et al., 2019). While
there is a growing interest among artists in robotics, programming such machines is a
challenge for most professionals in the field, as robots require extensive coding experience
and are primarily designed for industrial applications and environments.

To enable artists to incorporate robots in their projects, we created a robot program-
ming application using an intuitive spatial computing environment designed for Microsoft
Hololens 2. This solution could be considered an extension of our work in robot manipula-
tion using mixed reality and our first practical application for a non-engineering domain.

84

7 | CONCLUSION

This application synchronizes the robot’s movements with a mixed-reality hologram via
network communication. Using natural hand gestures, users can manipulate, animate,
and record the hologram movements, similar to 3D animation software. The hologram
animation is then translated to robot coordinates, making the robot move in the path
taken by the hologram. Our solution allows artists to translate their creative ideas and
movements into industrial and collaborative robots. It also makes human-robot interaction
safer, as robots can accurately and effectively operate from a distance.

The solution has two modes of hologram interaction: animation and creation mode.
In animation mode, the hologram’s movements are recorded over a period of time (See
Figure 7.1a). The user can then save and replay these movements in the robot through a
control interface in the mixed-reality application. In creation mode, the movements are
dictated by 3D vertices inserted by the user in the mixed-reality workspace. A sequence of
vertices represents the path that the robot will replicate. To evaluate our technological
intervention, we invited a group of artists from Virginia Commonwealth University to
try it in a preliminary study. The artists recorded a light trail through a timelapse using
LED lights attached to an industrial robot (See Figure 7.1b). Although their feedback was
mostly positive, we expect to evaluate our intervention in detail in a future study.

(a) Animation mode in RoboArt (b) Art created using the tool

Figure 7.1: Example of path programming and artistic solution created in RobotArt.

7.1.2 Guided Decomposition in Larger Block-Based Programs

Papers:
Ritschel, Fronchetti, et al., 2022a, Ritschel, Fronchetti, et al., 2022b, Ritschel,

Fronchetti, et al., 2024

Block-based environments may be considered an inviable solution for more complex
problems involving collaborative robots. Organizing and debugging large chunks of blocks
can be as challenging as difficulties found in non-beginner-friendly solutions. In this
complementary study, we propose a function-centric block-based environment that enables
end-users to write larger programs by decomposing their solutions into functions (See
Figure 7.2). In our approach, the block-based environment is divided into two canvases
aligned side by side. On the left canvas, users use function blocks to define tasks that the
robot will accomplish. By clicking on a function block, users can program a solution for
the respective task on the right canvas using a set of robot commands, also represented as
blocks. In the current state of our implementation, a simple simulation environment on
the right side of the block-based environment is available for study.

7.1 | COMPLEMENTARY STUDIES

85

This block-based design aims to provide a scaffolded environment where end-users
can implement functions without struggling with more advanced concepts (e.g., function
overloading). To evaluate how this environment would hold in a practical scenario, an
online user study was conducted with 92 participants from Amazon Turk. They were
randomly assigned to two groups, one group testing this new approach and another testing
a traditional block-based environment with support for functions. The findings suggest
that the function-centric environment encourages end-users to organize their code into
functions, enabling the implementation of larger block-based solutions. In a future study,
we aim to expand our analysis to a real scenario, where we will ask users to solve tasks in
different workstations using a mobile industrial robot.

Figure 7.2: Example of a function-centric solution in the proposed environment. The current program
state shows the inner blocks of the "Rotate Box" function executed in Station B in the simulation
(right-most canvas).

7.1.3 Language Impact on Programmable Logic Controllers

Paper:
Fronchetti, Ritschel, Holmes, et al., 2022

Robots are not the only technology participating in the fourth industrial revolution.
Programmable Logic Controllers (PLCs), a type of computer that controls industrial equip-
ment, are also growing in popularity. As in robotics, most programming environments
available for PLCs are restricted to outdated languages from the last century, restricting
their adoption by a broader audience. To investigate the challenges of PLC programming,
this study proposes an online survey with 175 technical employees from an industrial
manufacturer. Participants were invited to respond to a set of questions related to Ladder
Logic, the most popular programming language available in PLCs.

The online survey was divided into four stages. The first stage asked participants about
their demographic information. Nearly half of the participants claimed to have over five
years of programming experience (100 out of 175), with most of the respondents being
engineers. Aiming to support participants with lower levels of experience, the second
stage provided a video tutorial on PLCs and Ladder Logic. The third and most crucial stage
asked participants to solve ten simple automation tasks using Ladder Logic (e.g., turn on a

86

7 | CONCLUSION

light using a button). The questions were divided into interpretative and writing questions.
In the fourth and final stage, participants were invited to respond to a questionnaire
containing a system usability scale and an open-ended question regarding their opinion
about the respective programming language.

The study pointed out significant problems in participants understanding of basic
concepts in Ladder Logic. Approximately 70% of the participants, including those with
more than five years of experience in programming, failed at least one of the tasks. In
terms of usability, the 175 participants rated Ladder Logic as a marginal system (50th
percentile) and stated that certain characteristics of the language make it harder to read
and understand. This study expands the discussion on the difficulties most programmers
face in industrial programming settings. In future work, we plan to bring up solutions that
could also benefit developers working on PLCs.

7.2 Papers Published
The papers published during the execution of my thesis are listed in this section:

• Software Fairness Debt
(2024) ACM TOSEM 2030 Software Engineering

• Blocks? Graphs? Why Not Both? Designing and Evaluating a Hybrid Programming
Environment for End-users
(2024) IEEE/ACM 46th International Conference on Software Engineering: Companion
Proceedings

• RoboART: Artistic Robot Programming in Mixed Reality
(2024) IEEE Conference on Virtual Reality and 3D User Interfaces: Abstracts and Workshops
(VRW)

• Block-based Programming for Two-Armed Robots: A Comparative Study
(2024) IEEE/ACM 46th International Conference on Software Engineering

• Ready Worker One? High-Res VR for the Home Office
(2023) ACM 29th Symposium on Virtual Reality Software and Technology

• Enabling end-users to implement larger block-based programs
(2022) ACM/IEEE 44th International Conference on Software Engineering: Companion
Proceedings

• Project-sized scaffolding for software engineering courses
(2022) First International Workshop on Designing and Running Project-Based Courses in
Software Engineering Education

• Language impact on productivity for industrial end users: A case study from Pro-
grammable Logic Controllers
(2022) Elsevier Journal of Computer Languages (Volume 69)

• Can Guided Decomposition Help End-Users Write Larger Block-Based Programs?
A Mobile Robot Experiment
(2022) ACM SIGPLAN 13th Conference on Systems, Programming, Languages, and Applica-
tions: Software for Humanity

7.3 | FUTURE WORK

87

7.3 Future Work
Although contributions have been made in this thesis, we have many open questions

for future studies. In future work, we plan to extend the applicability of robot control
in mixed reality to two-armed robots. As in block-based programming, controlling two
arms in synchrony may bring new challenges to our mixed reality solution, and an in-
depth investigation is necessary. We also want to extend robot control in mixed reality to
other domains, including but not limited to mobile robots and drones. Considering the
increasing popularity of large language models, we also plan a more detailed investigation
of their applicability in robot programming tasks, extending our current work to more
complex features such as code generation and analysis by chatbots. Our plans also explore
their ability to support end-users in robot programming tasks. Finally, we expect that our
conglomerate of future studies will also contribute to generating a taxonomy of challenges
end-users face in robot programming tasks, providing researchers and industry with a
better understanding of their difficulties for future work.

89

References

[Aaltonen and Salmi 2019] Iina Aaltonen and Timo Salmi. “Experiences and expec-
tations of collaborative robots in industry and academia: barriers and development
needs”. In: Procedia Manufacturing 38 (2019), pp. 1151–1158 (cit. on p. 1).

[ABB 2023a] ABB. ABB AR Viewer. https://new.abb.com/products/robotics/robotstudio/
ar-viewer-app. [Accessed: November-2023]. 2023 (cit. on p. 18).

[ABB 2023b] ABB. RobotStudio. https://new.abb.com/products/robotics/robotstudio/
robotstudio-desktop. [Accessed: November-2023]. 2023 (cit. on p. 17).

[ABB Ltd 2015] ABB Ltd. “RobotStudio Online YuMi”. In: URL: https://apps.microsoft.
com/store/ detail/9NBLGGH2SQFM (2015) (cit. on pp. 22, 23).

[ABB Ltd 2020] ABB Ltd. ABB Industrial Robots Get Wizard Easy Programming Soft-
ware. Dec. 2020. url: https://new.abb.com/news/detail/72178/abb-industrial-
%20robots-get-wizard-easy-programming-software (cit. on p. 3).

[ABB Ltd. 2023a] ABB Ltd. “Robotstudio suite”. In: URL: https://new. abb. com/products/
robotics/robotstudio (2023) (cit. on p. 23).

[ABB Ltd. 2023b] ABB Ltd. “Yumi - irb 14000 collaborative robot”. In: URL:
https://new.abb.com/ products/robotics/robots/ collaborative-robots/yumi/irb-14000-
yumi (2023) (cit. on p. 25).

[ABB Robotics 2021] Jakob Hörbst ABB Robotics. GoFa AR Control by HoloLens 2.
https://www.youtube.com/watch?v=3Qv-cur4qxA. [Accessed: November-2023].
2021 (cit. on p. 19).

[Abdulrahaman et al. 2020] MD Abdulrahaman et al. “Multimedia tools in the teach-
ing and learning processes: a systematic review”. In: Heliyon 6.11 (2020) (cit. on
p. 77).

[Ajaykumar and Huang 2020] Gopika Ajaykumar and Chien-Ming Huang. “User
needs and design opportunities in end-user robot programming”. In: Companion
of the 2020 ACM/IEEE International Conference on Human-Robot Interaction. 2020,
pp. 93–95 (cit. on pp. 3, 36).

https://new.abb.com/products/robotics/robotstudio/ar-viewer-app
https://new.abb.com/products/robotics/robotstudio/ar-viewer-app
https://new.abb.com/products/robotics/robotstudio/robotstudio-desktop
https://new.abb.com/products/robotics/robotstudio/robotstudio-desktop
https://new.abb.com/news/detail/72178/abb-industrial-%20robots-get-wizard-easy-programming-software
https://new.abb.com/news/detail/72178/abb-industrial-%20robots-get-wizard-easy-programming-software
https://www.youtube.com/watch?v=3Qv-cur4qxA

90

REFERENCES

[Ajaykumar, Steele, et al. 2021] Gopika Ajaykumar, Maureen Steele, and Chien-
Ming Huang. “A survey on end-user robot programming”. In: ACM Computing
Surveys (CSUR) 54.8 (2021), pp. 1–36 (cit. on pp. 2, 3, 7, 14, 17, 19).

[Ajoudani et al. 2018] Arash Ajoudani et al. “Progress and prospects of the human–
robot collaboration”. In: Autonomous Robots 42 (2018), pp. 957–975 (cit. on p. 17).

[Alexandrova et al. 2015] Sonya Alexandrova, Zachary Tatlock, and Maya Cak-
mak. “Roboflow: a flow-based visual programming language for mobile manipu-
lation tasks”. In: 2015 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2015, pp. 5537–5544 (cit. on p. 16).

[Aryania et al. 2012] Azin Aryania, Balazs Daniel, Trygve Thomessen, and Gabor
Sziebig. “New trends in industrial robot controller user interfaces”. In: 2012 IEEE
3rd International Conference on Cognitive Infocommunications (CogInfoCom). IEEE.
2012, pp. 365–369 (cit. on p. 44).

[Bangor, P. Kortum, et al. 2009] Aaron Bangor, Philip Kortum, and James Miller.
“Determining what individual SUS scores mean: adding an adjective rating scale”.
In: Journal of usability studies 4.3 (2009), pp. 114–123 (cit. on p. 49).

[Bangor, P. T. Kortum, et al. 2008] Aaron Bangor, Philip T. Kortum, and James T.
Miller. “An empirical evaluation of the system usability scale”. In: International
Journal of Human–Computer Interaction 24.6 (2008), pp. 574–594. doi: 10.1080/
10447310802205776. eprint: https://doi.org/10.1080/10447310802205776. url:
https://doi.org/10.1080/10447310802205776 (cit. on p. 47).

[Barricelli et al. 2019] Barbara Rita Barricelli, Fabio Cassano, Daniela Fogli, and
Antonio Piccinno. “End-user development, end-user programming and end-user
software engineering: a systematic mapping study”. In: Journal of Systems and
Software 149 (2019), pp. 101–137 (cit. on pp. 2, 14).

[Bau et al. 2017] David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, and Franklyn
Turbak. “Learnable programming: blocks and beyond”. In: Communications of
the ACM 60.6 (2017), pp. 72–80 (cit. on p. 15).

[Baumgartl et al. 2013] Johannes Baumgartl, Thomas Buchmann, Dominik Hen-
rich, and Bernhard Westfechtel. “Towards easy robot programming-using
DSLs, code generators and software product lines.” In: ICSOFT. Citeseer. 2013,
pp. 548–554 (cit. on p. 27).

[Behrens et al. 2019] Jan Kristof Behrens, Karla Stepanova, Ralph Lange, and Ra-
doslav Skoviera. “Specifying dual-arm robot planning problems through natural
language and demonstration”. In: IEEE Robotics and Automation Letters 4.3 (2019),
pp. 2622–2629 (cit. on p. 3).

https://doi.org/10.1080/10447310802205776
https://doi.org/10.1080/10447310802205776
https://doi.org/10.1080/10447310802205776
https://doi.org/10.1080/10447310802205776

REFERENCES

91

[Benedict et al. 2019] Jacob D Benedict, Jacob D Guliuzo, and Barbara S Chaparro.
“The intuitiveness of gesture control with a mixed reality device”. In: Proceedings
of the Human Factors and Ergonomics Society Annual Meeting. Vol. 63. 1. SAGE
Publications Sage CA: Los Angeles, CA. 2019, pp. 1435–1439 (cit. on p. 45).

[Benotsmane et al. 2018] Rabab Benotsmane, L Dudás, and Gy Kovács. “Collaborat-
ing robots in industry 4.0 conception”. In: IOP Conference Series: Materials Science
and Engineering. Vol. 448. 1. IOP Publishing. 2018, p. 012023 (cit. on p. 7).

[Bernal and Sridhar 2022] Joey Bernal and Bharath Sridhar. 1.3.4 moving forward
and the fourth industrial revolution. 2022. url: https://app.knovel.com/hotlink/
khtml/id:kt0134OFW2/industrial-iot-architects/moving-forward-fourth (cit. on
p. 1).

[Billinghurst 2021] Mark Billinghurst. “Grand challenges for augmented reality”.
In: Frontiers in Virtual Reality 2 (2021), p. 12 (cit. on p. 19).

[Bisen and Payal 2022] Asmita Singh Bisen and Himanshu Payal. “Collaborative
robots for industrial tasks: a review”. In: Materials Today: Proceedings 52 (2022),
pp. 500–504 (cit. on p. 13).

[Bogue 2016] Robert Bogue. “Europe continues to lead the way in the collaborative
robot business”. In: Industrial Robot: An International Journal 43.1 (2016), pp. 6–11
(cit. on pp. 2, 12).

[Burghardt et al. 2020] Andrzej Burghardt et al. “Programming of industrial robots
using virtual reality and digital twins”. In: Applied Sciences 10.2 (2020), p. 486
(cit. on p. 2).

[M. Burnett et al. 2004] Margaret Burnett, Curtis Cook, and Gregg Rothermel.
“End-user software engineering”. In: Communications of the ACM 47.9 (2004),
pp. 53–58 (cit. on p. 14).

[M. M. Burnett and McIntyre 1995] Margaret M Burnett and David W McIntyre.
“Visual programming”. In: COmputer-Los Alamitos- 28 (1995), pp. 14–14 (cit. on
p. 15).

[Butler, Morgan, et al. 2007] Matthew Butler, Michael Morgan, et al. “Learning
challenges faced by novice programming students studying high level and low
feedback concepts”. In: Proceedings ascilite Singapore 1.99-107 (2007) (cit. on p. 19).

[Casini 2022] Marco Casini. 6.3.1.1 virtual reality technologies. 2022. url: https://app.
knovel.com/hotlink/khtml/id:kt012RPRT4/construction-4-0-advanced/virtual-
reality-technologies (cit. on p. 17).

https://app.knovel.com/hotlink/khtml/id:kt0134OFW2/industrial-iot-architects/moving-forward-fourth
https://app.knovel.com/hotlink/khtml/id:kt0134OFW2/industrial-iot-architects/moving-forward-fourth
https://app.knovel.com/hotlink/khtml/id:kt012RPRT4/construction-4-0-advanced/virtual-reality-technologies
https://app.knovel.com/hotlink/khtml/id:kt012RPRT4/construction-4-0-advanced/virtual-reality-technologies
https://app.knovel.com/hotlink/khtml/id:kt012RPRT4/construction-4-0-advanced/virtual-reality-technologies

92

REFERENCES

[Chandra et al. 2019] Ananth N Ramaseri Chandra, Fatima El Jamiy, and Hassan
Reza. “A review on usability and performance evaluation in virtual reality sys-
tems”. In: 2019 International Conference on Computational Science and Computa-
tional Intelligence (CSCI). IEEE. 2019, pp. 1107–1114 (cit. on p. 17).

[Chang 2012] Shi-Kuo Chang. Visual languages. Springer Science & Business Media,
2012 (cit. on p. 15).

[Chattha et al. 2020] Umer Asghar Chattha et al. “Motion sickness in virtual reality:
an empirical evaluation”. In: IEEE Access 8 (2020), pp. 130486–130499 (cit. on p. 17).

[Cohrssen 2021] Barbara Cohrssen. 12.4.1 industrial robots - risk management. 2021.
url: https://app.knovel.com/hotlink/khtml/id:kt012XLV17/pattys-industrial-
hygiene/risk-manag-industrial (cit. on p. 2).

[Corbin 2015] Juliet M. Corbin. Basics of qualitative research : techniques and procedures
for developing grounded theory. eng. Fourth edition. Thousand Oaks, California:
SAGE, 2015. isbn: 1412997461 (cit. on p. 29).

[Corno et al. 2019] Fulvio Corno, Luigi De Russis, and Juan Pablo Sáenz. “On the
challenges novice programmers experience in developing iot systems: a survey”.
In: Journal of Systems and Software 157 (2019), p. 110389 (cit. on p. 19).

[Coronado et al. 2020] Enrique Coronado, Fulvio Mastrogiovanni, Bipin In-
durkhya, and Gentiane Venture. “Visual programming environments for
end-user development of intelligent and social robots, a systematic review”. In:
Journal of Computer Languages 58 (2020), p. 100970 (cit. on pp. 3, 16).

[Dal and Debacq 2020] Jean-Pierre Dal and Marie Debacq. 5.1.3.2 the period 1960-
1990. 2020. url: https://app.knovel.com/hotlink/khtml/id:kt012IQIO1/process-
industries-2/the-period-1960-1990 (cit. on p. 1).

[diSessa and Abelson 1986] Andrea A. diSessa and Harold Abelson. “Boxer: a recon-
structible computational medium”. In: Communications of the ACM 29.9 (1986),
pp. 859–868 (cit. on p. 15).

[Djuric et al. 2017] Ana Djuric, Jeremy L Rickli, Vukica M Jovanovic, and Daniel Fos-
ter. “Hands-on learning environment and educational curriculum on collaborative
robotics”. In: (2017) (cit. on p. 64).

[Dye et al. 2000] Jane F Dye, Irene M Schatz, Brian A Rosenberg, and Susanne T Cole-
man. “Constant comparison method: a kaleidoscope of data”. In: The qualitative
report 4.1/2 (2000), pp. 1–9 (cit. on p. 47).

[Ekin 2023] Sabit Ekin. “Prompt engineering for chatgpt: a quick guide to techniques,
tips, and best practices”. In: Authorea Preprints (2023) (cit. on p. 70).

https://app.knovel.com/hotlink/khtml/id:kt012XLV17/pattys-industrial-hygiene/risk-manag-industrial
https://app.knovel.com/hotlink/khtml/id:kt012XLV17/pattys-industrial-hygiene/risk-manag-industrial
https://app.knovel.com/hotlink/khtml/id:kt012IQIO1/process-industries-2/the-period-1960-1990
https://app.knovel.com/hotlink/khtml/id:kt012IQIO1/process-industries-2/the-period-1960-1990

REFERENCES

93

[El Zaatari et al. 2019] Shirine El Zaatari, Mohamed Marei, Weidong Li, and Zahid
Usman. “Cobot programming for collaborative industrial tasks: an overview”. In:
Robotics and Autonomous Systems 116 (2019), pp. 162–180 (cit. on p. 63).

[Evlampev and Ostanin 2019] A Evlampev and M Ostanin. “Obstacle avoidance for
robotic manipulator using mixed reality glasses”. In: 2019 3rd School on Dynamics
of Complex Networks and their Application in Intellectual Robotics (DCNAIR). IEEE.
2019, pp. 46–48 (cit. on p. 19).

[Feng et al. 2015] Annette Feng, Eli Tilevich, and Wu-chun Feng. “Block-based pro-
gramming abstractions for explicit parallel computing”. In: Proceedings of the 2015
Blocks and Beyond Workshop. IEEE. 2015, pp. 71–75 (cit. on p. 24).

[Flavián et al. 2019] Carlos Flavián, Sergio Ibáñez-Sánchez, and Carlos Orús. “The
impact of virtual, augmented and mixed reality technologies on the customer
experience”. In: Journal of business research 100 (2019), pp. 547–560 (cit. on p. 41).

[Al-Fraihat et al. 2020] DimahAl-Fraihat, Mike Joy, Jane Sinclair, et al. “Evaluating
e-learning systems success: an empirical study”. In: Computers in human behavior
102 (2020), pp. 67–86 (cit. on p. 77).

[Fronchetti 2024a] Felipe Fronchetti. Quickstart Guide: Wizard Easy Programming.
Youtube. 2024. url: https://www.youtube.com/watch?v=2y1DmG-57JA (cit. on
pp. 70, 76).

[Fronchetti 2024b] Felipe Fronchetti. Replication Package, Thesis. Quick Start Guide:
Wizard Easy Programming. GitHub. 2024. url: https://github.com/fronchetti/
thesis (cit. on pp. 70, 76).

[Fronchetti, Popiela, et al. 2024] Felipe Fronchetti, Miles Popiela, Rodrigo
Spinola, and Shawn Brixey. “Roboart: artistic robot programming in mixed
reality”. In: 2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts
and Workshops (VRW). IEEE. 2024, pp. 1192–1193 (cit. on p. 83).

[Fronchetti, Ritschel, Holmes, et al. 2022] Felipe Fronchetti, Nico Ritschel, Reid
Holmes, et al. “Language impact on productivity for industrial end users: a case
study from programmable logic controllers”. In: Journal of Computer Languages
69 (2022), p. 101087 (cit. on p. 85).

[Fronchetti, Ritschel, Schorr, et al. 2023] Felipe Fronchetti, Nico Ritschel, Lo-
gan Schorr, et al. “Block-based programming for two-armed robots: a comparative
study”. In: 2024 IEEE/ACM 46th International Conference on Software Engineering
(ICSE). IEEE Computer Society. 2023, pp. 494–505 (cit. on p. 64).

[Ghiurãu et al. 2020] Florin-Timotei Ghiurãu, Mehmet Aydın Baytaş, and Casper
Wickman. “Arcar: on-road driving in mixed reality by volvo cars”. In: Adjunct
Publication of the 33rd Annual ACM Symposium on User Interface Software and
Technology. 2020, pp. 62–64 (cit. on p. 41).

https://www.youtube.com/watch?v=2y1DmG-57JA
https://github.com/fronchetti/thesis
https://github.com/fronchetti/thesis

94

REFERENCES

[Goedicke et al. 2022] David Goedicke et al. “Xr-oom: mixed reality driving simulation
with real cars for research and design”. In: CHI Conference on Human Factors in
Computing Systems. 2022, pp. 1–13 (cit. on p. 41).

[Goel et al. 2010] Manish Kumar Goel, Pardeep Khanna, and Jugal Kishore. “Under-
standing survival analysis: kaplan-meier estimate”. In: International journal of
Ayurveda research 1.4 (2010), p. 274 (cit. on p. 31).

[Gradmann et al. 2018] Michael Gradmann, Eric M Orendt, Edgar Schmidt, Stephan
Schweizer, and Dominik Henrich. “Augmented reality robot operation interface
with google tango”. In: ISR 2018; 50th international symposium on robotics. VDE.
2018, pp. 1–8 (cit. on p. 18).

[Grau et al. 2020] Antoni Grau, Marina Indri, Lucia Lo Bello, and Thilo Sauter.
“Robots in industry: the past, present, and future of a growing collaboration with
humans”. In: IEEE Industrial Electronics Magazine 15.1 (2020), pp. 50–61 (cit. on
p. 1).

[Gschwindt et al. 2019] Mirko Gschwindt et al. “Can a robot become a movie di-
rector? learning artistic principles for aerial cinematography”. In: 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE. 2019,
pp. 1107–1114 (cit. on p. 83).

[Gupta A.K. 2017] Westcott Jean Riescher Gupta A.K. Arora S.K. 16.5 lead-through
programming. 2017. url: https://app.knovel.com/hotlink/khtml/id:kt0119K69L/
industrial-automation/lead-through-programming (cit. on p. 44).

[Gururangan et al. 2020] Suchin Gururangan et al. “Don’t stop pretraining: adapt
language models to domains and tasks”. In: arXiv preprint arXiv:2004.10964 (2020)
(cit. on p. 7).

[Hägele et al. 2016] Martin Hägele, Klas Nilsson, J Norberto Pires, and Rainer
Bischoff. “Industrial robotics”. In: Springer handbook of robotics (2016), pp. 1385–
1422 (cit. on pp. 9, 15).

[Hannebauer and Gruhn 2017] Christoph Hannebauer and Volker Gruhn. “On the
relationship between newcomer motivations and contribution barriers in open
source projects”. In: Proceedings of the 13th International Symposium on Open
Collaboration. 2017, pp. 1–10 (cit. on p. 20).

[Harrison et al. 2013] Rachel Harrison, Derek Flood, and David Duce. “Usability of
mobile applications: literature review and rationale for a new usability model”. In:
Journal of Interaction Science 1.1 (2013), pp. 1–16 (cit. on p. 48).

[Heimann and Guhl 2020] Oliver Heimann and Jan Guhl. “Industrial robot program-
ming methods: a scoping review”. In: 2020 25th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA). Vol. 1. IEEE. 2020, pp. 696–
703 (cit. on p. 10).

https://app.knovel.com/hotlink/khtml/id:kt0119K69L/industrial-automation/lead-through-programming
https://app.knovel.com/hotlink/khtml/id:kt0119K69L/industrial-automation/lead-through-programming

REFERENCES

95

[Hentout et al. 2018] AbdelfetahHentout, AouacheMustapha, Abderraouf Maoudj,
and Isma Akli. “Key challenges and open issues of industrial collaborative
robotics”. In: 2018 The 27th IEEE International Symposium on Workshop on Human-
Robot Interaction: from Service to Industry (HRI-SI2018) at Robot and Human Inter-
active Communication. Proceedings. IEEE. 2018 (cit. on pp. 3, 63).

[Hoenig et al. 2015] Wolfgang Hoenig et al. “Mixed reality for robotics”. In: 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.
2015, pp. 5382–5387 (cit. on p. 6).

[Hörbst and Orsolits 2022] Jakob Hörbst and Horst Orsolits. “Mixed reality hmi
for collaborative robots”. In: International Conference on Computer Aided Systems
Theory. Springer. 2022, pp. 539–546 (cit. on pp. 3, 4, 19).

[Ingalls et al. 1988] Dan Ingalls, Scott Wallace, Yu-Ying Chow, Frank Ludolph,
and Ken Doyle. “Fabrik: a visual programming environment”. In: ACM SIGPLAN
Notices 23.11 (1988), pp. 176–190 (cit. on p. 15).

[Jimenez et al. 2018] Yerika Jimenez, Amanpreet Kapoor, and Christina Gardner-
McCune. “Usability challenges that novice programmers experience when using
scratch for the first time”. In: 2018 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE. 2018, pp. 327–328 (cit. on p. 19).

[Johns and Taylor 2009] Kyle Johns and Trevor Taylor. Professional microsoft robotics
developer studio. John Wiley & Sons, 2009 (cit. on p. 16).

[C. Jones 1995] C. Jones. “End user programming”. In: Computer 28.9 (1995), pp. 68–70.
doi: 10.1109/2.410158 (cit. on p. 14).

[Capers Jones 1995] Capers Jones. “End user programming”. In: Computer 28.9 (1995),
pp. 68–70 (cit. on p. 2).

[Jost et al. 2014] Beate Jost, Markus Ketterl, Reinhard Budde, and Thorsten Le-
imbach. “Graphical programming environments for educational robots: open
roberta-yet another one?” In: 2014 IEEE International Symposium on Multimedia.
IEEE. 2014, pp. 381–386 (cit. on pp. 3, 16).

[Kandray 2010a] Daniel E. Kandray. 7. robot programming. 2010. url: https://app.
knovel.com/hotlink/khtml/id:kt007WJHZ6/programmable-automation/robot-
programming (cit. on p. 6).

[Kandray 2010b] Daniel E. Kandray. 7.3 robot programming languages. 2010. url:
https : / / app . knovel . com / hotlink / khtml / id : kt007WJI41 / programmable -
automation/robot-programming-languages (cit. on p. 5).

https://doi.org/10.1109/2.410158
https://app.knovel.com/hotlink/khtml/id:kt007WJHZ6/programmable-automation/robot-programming
https://app.knovel.com/hotlink/khtml/id:kt007WJHZ6/programmable-automation/robot-programming
https://app.knovel.com/hotlink/khtml/id:kt007WJHZ6/programmable-automation/robot-programming
https://app.knovel.com/hotlink/khtml/id:kt007WJI41/programmable-automation/robot-programming-languages
https://app.knovel.com/hotlink/khtml/id:kt007WJI41/programmable-automation/robot-programming-languages

96

REFERENCES

[Karli et al. 2024] Ulas Berk Karli, Juo-Tung Chen, Victor Nikhil Antony, and Chien-
Ming Huang. “Alchemist: llm-aided end-user development of robot applications”.
In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot
Interaction. 2024, pp. 361–370 (cit. on p. 64).

[Kim 2017] Hae-Young Kim. “Statistical notes for clinical researchers: chi-squared test
and fisher’s exact test”. In: Restorative dentistry & endodontics 42.2 (2017), pp. 152–
155 (cit. on p. 48).

[Knudsen and Kaivo-Oja 2020] Mikkel Knudsen and Jari Kaivo-Oja. “Collaborative
robots: frontiers of current literature”. In: Journal of Intelligent Systems: Theory
and Applications 3.2 (2020), pp. 13–20 (cit. on pp. 2, 12).

[Ko, Abraham, et al. 2011] Amy J Ko, Robin Abraham, et al. “The state of the art in
end-user software engineering”. In: ACM Computing Surveys (CSUR) 43.3 (2011),
pp. 1–44 (cit. on p. 14).

[Ko, B. A. Myers, et al. 2004] Amy J Ko, Brad A Myers, and Htet Htet Aung. “Six learn-
ing barriers in end-user programming systems”. In: 2004 IEEE Symposium on Visual
Languages-Human Centric Computing. IEEE. 2004, pp. 199–206 (cit. on pp. 3, 5, 7,
20, 37, 64, 69).

[Kuhail et al. 2021] Mohammad Amin Kuhail, Shahbano Farooq, Rawad Hammad,
and Mohammed Bahja. “Characterizing visual programming approaches for end-
user developers: a systematic review”. In: IEEE Access 9 (2021), pp. 14181–14202
(cit. on pp. 3, 15).

[Kutz 2015] Myer Kutz. 11.4.3 robot control and programming. 2015. url: https://app.
knovel.com/hotlink/khtml/id:kt011JIPL1/mechanical-engineers/robot-control-
programming (cit. on p. 9).

[Lin and David Weintrop 2021] Yuhan Lin and David Weintrop. “The landscape of
block-based programming: characteristics of block-based environments and how
they support the transition to text-based programming”. In: Journal of Computer
Languages 67 (2021), p. 101075 (cit. on p. 15).

[H. Liu 2020] Hui Liu. 3.1.4.4 programming method. 2020. url: https://app.knovel.com/
hotlink/khtml/id:kt012LA462/robot-systems-rail-transit/programming-method
(cit. on p. 10).

[O. Liu et al. 2017] Oliver Liu, Daniel Rakita, Bilge Mutlu, and Michael Gleicher.
“Understanding human-robot interaction in virtual reality”. In: 2017 26th IEEE
international symposium on robot and human interactive communication (RO-MAN).
IEEE. 2017, pp. 751–757 (cit. on p. 17).

[Lowe and Lawless 2021] Andrew Lowe and Steve Lawless. 1.3.5 the industrial revo-
lutions. 2021. url: https://app.knovel.com/hotlink/khtml/id:kt0132UFIA/artificial-
intelligence/industrial-revolutions (cit. on p. 1).

https://app.knovel.com/hotlink/khtml/id:kt011JIPL1/mechanical-engineers/robot-control-programming
https://app.knovel.com/hotlink/khtml/id:kt011JIPL1/mechanical-engineers/robot-control-programming
https://app.knovel.com/hotlink/khtml/id:kt011JIPL1/mechanical-engineers/robot-control-programming
https://app.knovel.com/hotlink/khtml/id:kt012LA462/robot-systems-rail-transit/programming-method
https://app.knovel.com/hotlink/khtml/id:kt012LA462/robot-systems-rail-transit/programming-method
https://app.knovel.com/hotlink/khtml/id:kt0132UFIA/artificial-intelligence/industrial-revolutions
https://app.knovel.com/hotlink/khtml/id:kt0132UFIA/artificial-intelligence/industrial-revolutions

REFERENCES

97

[Ma et al. 2021] Zhao Ma et al. “Stylized robotic clay sculpting”. In: Computers & Graph-
ics 98 (2021), pp. 150–164 (cit. on p. 83).

[Makhataeva and Varol 2020] Zhanat Makhataeva and Huseyin Atakan Varol.
“Augmented reality for robotics: a review”. In: Robotics 9.2 (2020), p. 21 (cit. on
pp. 18, 41, 59).

[Malm et al. 2019] Timo Malm, Timo Salmi, Ilari Marstio, and Iina Aaltonen. “Are
collaborative robots safe?” In: Automaatiopäivät23. Suomen automaatioseura. 2019,
pp. 110–117 (cit. on p. 12).

[Maloney et al. 2010] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silver-
man, and Evelyn Eastmond. “The scratch programming language and environ-
ment”. In: ACM Transactions on Computing Education (TOCE) 10.4 (2010), pp. 1–15
(cit. on p. 15).

[Matsas and Vosniakos 2017] Elias Matsas and George-Christopher Vosniakos. “De-
sign of a virtual reality training system for human–robot collaboration in manu-
facturing tasks”. In: International Journal on Interactive Design and Manufacturing
(IJIDeM) 11 (2017), pp. 139–153 (cit. on p. 17).

[Mayr-Dorn et al. 2021] Christoph Mayr-Dorn, Mario Winterer, Christian Sa-
lomon, Doris Hohensinger, and Rudolf Ramler. “Considerations for using
block-based languages for industrial robot programming-a case study”. In: 2021
IEEE/ACM 3rd International Workshop on Robotics Software Engineering (RoSE).
IEEE. 2021, pp. 5–12 (cit. on pp. 5, 36).

[Meyer et al. 2023] Jesse G Meyer et al. “Chatgpt and large language models in
academia: opportunities and challenges”. In: BioData Mining 16.1 (2023), p. 20
(cit. on p. 7).

[Mihelj et al. 2019] Matjaž Mihelj et al. “Collaborative robots”. In: Robotics (2019),
pp. 173–187 (cit. on p. 9).

[Milgram et al. 1995] Paul Milgram, Haruo Takemura, Akira Utsumi, and Fumio
Kishino. “Augmented reality: a class of displays on the reality-virtuality con-
tinuum”. In: Telemanipulator and telepresence technologies. Vol. 2351. Spie. 1995,
pp. 282–292 (cit. on p. 41).

[Miller et al. 2020] Jack Miller, Melynda Hoover, and Eliot Winer. “Mitigation of
the microsoft hololens’ hardware limitations for a controlled product assembly
process”. In: The International Journal of Advanced Manufacturing Technology 109
(2020), pp. 1741–1754 (cit. on p. 58).

98

REFERENCES

[Misra et al. 2020] Ashwin Misra, Anuj Agrawal, and Vihaan Misra. “Robotics in
industry 4.0”. In: Handbook of Smart Materials, Technologies, and Devices: Appli-
cations of Industry 4.0. Ed. by Chaudhery Mustansar Hussain and Paolo Di Sia.
Cham: Springer International Publishing, 2020, pp. 1–35. isbn: 978-3-030-58675-1.
doi: 10.1007/978-3-030-58675-1_68-1. url: https://doi.org/10.1007/978-3-030-
58675-1_68-1 (cit. on p. 10).

[Moglia et al. 2016] Andrea Moglia et al. “A systematic review of virtual reality simu-
lators for robot-assisted surgery”. In: European urology 69.6 (2016), pp. 1065–1080
(cit. on p. 17).

[Nahm 2016] Francis Sahngun Nahm. “Nonparametric statistical tests for the continu-
ous data: the basic concept and the practical use”. In: Korean journal of anesthesi-
ology 69.1 (2016), pp. 8–14 (cit. on p. 32).

[Nardi 1993] Bonnie A Nardi. A small matter of programming: perspectives on end user
computing. MIT press, 1993 (cit. on p. 14).

[Neves et al. 2018] João Neves, Diogo Serrario, and J Norberto Pires. “Application
of mixed reality in robot manipulator programming”. In: Industrial Robot: An
International Journal 45.6 (2018), pp. 784–793 (cit. on p. 19).

[Ng et al. 2022] AHC Ng et al. “Challenges for manufacturing smes in the introduction
of collaborative robots”. In: SPS2022: Proceedings of the 10th Swedish Production
Symposium. Vol. 21. IOS Press. 2022, p. 173 (cit. on p. 12).

[Niku 2020] Saeed B. Niku. 1.19 social issues. 2020. url: https://app.knovel.com/hotlink/
khtml/id:kt0137S7C1/introduction-robotics/social-issues (cit. on p. 2).

[Noone and Mooney 2018] Mark Noone and Aidan Mooney. “Visual and textual pro-
gramming languages: a systematic review of the literature”. In: Journal of Com-
puters in Education 5 (2018), pp. 149–174 (cit. on pp. 5, 15).

[Ong and Siddaraju 2021] Sean Ong and Varun Kumar Siddaraju. “Introduction to
the mixed reality toolkit”. In: Beginning Windows Mixed Reality Programming.
Springer, 2021, pp. 85–110 (cit. on p. 42).

[Mikhail Ostanin et al. 2020] Mikhail Ostanin, Stanislav Mikhel, Alexey Evlampiev,
Valeria Skvortsova, and Alexandr Klimchik. “Human-robot interaction for
robotic manipulator programming in mixed reality”. In: 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2020, pp. 2805–2811 (cit. on
p. 3).

[Padala et al. 2020] Hema Susmita Padala et al. “How gender-biased tools shape new-
comer experiences in oss projects”. In: IEEE Transactions on Software Engineering
48.1 (2020), pp. 241–259 (cit. on p. 20).

https://doi.org/10.1007/978-3-030-58675-1_68-1
https://doi.org/10.1007/978-3-030-58675-1_68-1
https://doi.org/10.1007/978-3-030-58675-1_68-1
https://app.knovel.com/hotlink/khtml/id:kt0137S7C1/introduction-robotics/social-issues
https://app.knovel.com/hotlink/khtml/id:kt0137S7C1/introduction-robotics/social-issues

REFERENCES

99

[Park et al. 2021] Sebeom Park, Shokhrukh Bokijonov, and Yosoon Choi. “Review of
microsoft hololens applications over the past five years”. In: Applied sciences 11.16
(2021), p. 7259 (cit. on pp. 6, 44).

[Peddie 2023] Jon Peddie. “Technology issues”. In: Augmented Reality : Where We Will
All Live. Cham: Springer International Publishing, 2023, pp. 253–364. isbn: 978-3-
031-32581-6. doi: 10.1007/978-3-031-32581-6_8. url: https://doi.org/10.1007/978-
3-031-32581-6_8 (cit. on p. 58).

[H. Peng et al. 2018] Hua Peng, Jing Li, Huosheng Hu, Changle Zhou, and Yulong
Ding. “Robotic choreography inspired by the method of human dance creation”.
In: Information 9.10 (2018), p. 250 (cit. on p. 83).

[Piccinelli et al. 2021] Marco Piccinelli, Andrea Gagliardo, Umberto Castellani,
and Riccardo Muradore. “Trajectory planning using mixed reality: an experi-
mental validation”. In: 2021 20th International Conference on Advanced Robotics
(ICAR). IEEE. 2021, pp. 982–987 (cit. on p. 19).

[Pokress and Veiga 2013] Shaileen Crawford Pokress and José Juan Dominguez
Veiga. “Mit app inventor: enabling personal mobile computing”. In: arXiv preprint
arXiv:1310.2830 (2013) (cit. on p. 14).

[Quintero et al. 2018] C Perez Quintero et al. “Robot programming through aug-
mented trajectories”. In: VAM-HRI Workshop at The International Conference on
Human Robot Interaction. 2018 (cit. on pp. 3, 19).

[Ragaglia et al. 2016] Matteo Ragaglia, Andrea Maria Zanchettin, Luca Bascetta,
and Paolo Rocco. “Accurate sensorless lead-through programming for lightweight
robots in structured environments”. In: Robotics and Computer-Integrated Manu-
facturing 39 (2016), pp. 9–21 (cit. on p. 2).

[Resnick et al. 2009] Mitchel Resnick et al. “Scratch: programming for all”. In: Com-
munications of the ACM 52.11 (2009), pp. 60–67 (cit. on p. 14).

[Ritschel, Fronchetti, et al. 2022a] Nico Ritschel, Felipe Fronchetti, Reid Holmes,
Ronald Garcia, and David C Shepherd. “Can guided decomposition help end-
users write larger block-based programs? a mobile robot experiment”. In: Pro-
ceedings of the ACM on Programming Languages 6.OOPSLA2 (2022), pp. 233–258
(cit. on p. 84).

[Ritschel, Fronchetti, et al. 2022b] Nico Ritschel, Felipe Fronchetti, Reid Holmes,
Ronald Garcia, and David C Shepherd. “Enabling end-users to implement larger
block-based programs”. In: Proceedings of the ACM/IEEE 44th International Confer-
ence on Software Engineering: Companion Proceedings. 2022, pp. 347–349 (cit. on
p. 84).

https://doi.org/10.1007/978-3-031-32581-6_8
https://doi.org/10.1007/978-3-031-32581-6_8
https://doi.org/10.1007/978-3-031-32581-6_8

100

REFERENCES

[Ritschel, Fronchetti, et al. 2024] Nico Ritschel, Felipe Fronchetti, Reid Holmes,
Ronald Garcia, and David C Shepherd. “Blocks? graphs? why not both? designing
and evaluating a hybrid programming environment for end-users”. In: Proceed-
ings of the 2024 IEEE/ACM 46th International Conference on Software Engineering:
Companion Proceedings. 2024, pp. 326–327 (cit. on p. 84).

[Ritschel, Kovalenko, et al. 2020] Nico Ritschel, Vladimir Kovalenko, Reid Holmes,
Ronald Garcia, and David C Shepherd. “Comparing block-based programming
models for two-armed robots”. In: IEEE Transactions on Software Engineering 48.5
(2020), pp. 1630–1643 (cit. on pp. 2, 5, 21, 24).

[Ritschel, Sawant, et al. n.d.] Nico Ritschel, Anand Ashok Sawant, et al. “Training
industrial end-user programmers with interactive tutorials”. In: Software: Practice
and Experience () (cit. on p. 37).

[A. Robotics 2020a] ABB Robotics. Using Wizard to create a PCB assembly application
in minutes. Youtube. 2020. url: https://www.youtube.com/watch?v=nj0X8fLj1SE
(cit. on pp. 70, 76).

[A. Robotics 2020b] ABB Robotics. Webinar | ABB Wizard easy programming for
single arm YuMi. Youtube. 2020. url: https : / /www.youtube.com/watch?v=
OKlcUcLMHQM (cit. on pp. 70, 76).

[A. Robotics 2021a] ABB Robotics. How to program collaborative robot GoFa with
Wizard Easy Programming - Tutorial for beginners. Youtube. 2021. url: https :
//www.youtube.com/watch?v=zPnEOQX4jUA (cit. on pp. 70, 76).

[A. Robotics 2021b] ABB Robotics. Step-by-step guide on pick and place application
with Wizard Easy Programming tool. Youtube. 2021. url: https://www.youtube.
com/watch?v=eUgqXsWMmwI (cit. on pp. 70, 76).

[A. Robotics 2023a] ABB Robotics. Wizard Easy Programming – Advanced Application
Overview. Youtube. 2023. url: https://www.youtube.com/watch?v=CVfQJoM8KsY
(cit. on pp. 70, 76).

[A. Robotics 2023b] ABB Robotics. Wizard Easy Programming: For everyone and
all new robots. Youtube. 2023. url: https : / / www. youtube . com / watch ? v =
Kmv5jUI3WF0 (cit. on pp. 70, 76).

[A. Robotics 2024] ABB Robotics. Wizard Easy Programming: Application Manual.
ABB. 2024. url: https://new.abb.com/products/robotics/software-and-digital/
application-software/wizard (cit. on pp. 70, 76).

[I. F. o. Robotics 2023] International Federation of Robotics. World Robotics. https:
//ifr.org/img/worldrobotics/2023_WR_extended_version.pdf. [Accessed: January-
2024]. 2023 (cit. on p. 1).

https://www.youtube.com/watch?v=nj0X8fLj1SE
https://www.youtube.com/watch?v=OKlcUcLMHQM
https://www.youtube.com/watch?v=OKlcUcLMHQM
https://www.youtube.com/watch?v=zPnEOQX4jUA
https://www.youtube.com/watch?v=zPnEOQX4jUA
https://www.youtube.com/watch?v=eUgqXsWMmwI
https://www.youtube.com/watch?v=eUgqXsWMmwI
https://www.youtube.com/watch?v=CVfQJoM8KsY
https://www.youtube.com/watch?v=Kmv5jUI3WF0
https://www.youtube.com/watch?v=Kmv5jUI3WF0
https://new.abb.com/products/robotics/software-and-digital/application-software/wizard
https://new.abb.com/products/robotics/software-and-digital/application-software/wizard
https://ifr.org/img/worldrobotics/2023_WR_extended_version.pdf
https://ifr.org/img/worldrobotics/2023_WR_extended_version.pdf

REFERENCES

101

[Rokhsaritalemi et al. 2020] Somaiieh Rokhsaritalemi, Abolghasem Sadeghi-
Niaraki, and Soo-Mi Choi. “A review on mixed reality: current trends, challenges
and prospects”. In: Applied Sciences 10.2 (2020), p. 636 (cit. on pp. 19, 41).

[Rossano et al. 2013] Gregory F Rossano, Carlos Martinez, Mikael Hedelind, Steve
Murphy, and Thomas A Fuhlbrigge. “Easy robot programming concepts: an
industrial perspective”. In: 2013 IEEE international conference on automation science
and engineering (CASE). IEEE. 2013, pp. 1119–1126 (cit. on pp. 5, 6, 63).

[Saenz et al. 2018] José Saenz, Norbert Elkmann, Olivier Gibaru, and Pedro Neto.
“Survey of methods for design of collaborative robotics applications-why safety
is a barrier to more widespread robotics uptake”. In: Proceedings of the 2018 4th
International Conference on Mechatronics and Robotics Engineering. 2018, pp. 95–101
(cit. on p. 9).

[Salvendy 2001] Gavriel Salvendy. 12.8.4.2 robot simulation. 2001. url: https://app.
knovel.com/hotlink/khtml/id:kt006IXYV5/handbook-industrial-engineering/
robot-simulation (cit. on p. 10).

[Salvendy and Karwowski 2021] Gavriel Salvendy and Waldemar Karwowski.
30.2.1.1 Augmented Reality and Mixed Reality Technology, Handbook of human
factors and ergonomics. John Wiley & Sons, 2021 (cit. on p. 19).

[Schwab and Davis 2018] Klaus Schwab and Nicholas Davis. Shaping the future of the
fourth industrial revolution. Currency, 2018 (cit. on p. 1).

[Sheridan 2016] Thomas B. Sheridan. “Human–robot interaction: status and chal-
lenges”. In: Human Factors 58.4 (2016). PMID: 27098262, pp. 525–532. doi: 10.
1177/0018720816644364. eprint: https://doi.org/10.1177/0018720816644364. url:
https://doi.org/10.1177/0018720816644364 (cit. on p. 59).

[Sherwani et al. 2020] Fahad Sherwani, Muhammad Mujtaba Asad, and Babul Salam
Kader K Ibrahim. “Collaborative robots and industrial revolution 4.0 (ir 4.0)”. In:
2020 International Conference on Emerging Trends in Smart Technologies (ICETST).
IEEE. 2020, pp. 1–5 (cit. on pp. 1, 2, 7, 12, 13, 63).

[Shumaker and Lackey 2015] Randall Shumaker and Stephanie Lackey. Virtual, Aug-
mented and Mixed Reality. Springer, 2015 (cit. on p. 17).

[Skarbez et al. 2021] Richard Skarbez, Missie Smith, and Mary C Whitton. “Revisit-
ing milgram and kishino’s reality-virtuality continuum”. In: Frontiers in Virtual
Reality 2 (2021), p. 647997 (cit. on p. 17).

[Smith et al. 1994] David Canfield Smith, Allen Cypher, and Jim Spohrer. “Kidsim:
programming agents without a programming language”. In: Communications of
the ACM 37.7 (1994), pp. 54–67 (cit. on p. 14).

https://app.knovel.com/hotlink/khtml/id:kt006IXYV5/handbook-industrial-engineering/robot-simulation
https://app.knovel.com/hotlink/khtml/id:kt006IXYV5/handbook-industrial-engineering/robot-simulation
https://app.knovel.com/hotlink/khtml/id:kt006IXYV5/handbook-industrial-engineering/robot-simulation
https://doi.org/10.1177/0018720816644364
https://doi.org/10.1177/0018720816644364
https://doi.org/10.1177/0018720816644364
https://doi.org/10.1177/0018720816644364

102

REFERENCES

[Soares et al. 2021] Inês Soares, Ricardo B. Sousa, Marcelo Petry, and António Paulo
Moreira. “Accuracy and repeatability tests on hololens 2 and htc vive”. In: Multi-
modal Technologies and Interaction 5.8 (2021), p. 47 (cit. on p. 58).

[Sousa 2012] Tiago Boldt Sousa. “Dataflow programming concept, languages and
applications”. In: Doctoral Symposium on Informatics Engineering. Vol. 130. 2012
(cit. on p. 16).

[Speicher et al. 2019] Maximilian Speicher, Brian D Hall, and Michael Nebeling.
“What is mixed reality?” In: Proceedings of the 2019 CHI conference on human
factors in computing systems. 2019, pp. 1–15 (cit. on pp. 18, 44).

[Spencer 2009] Donna Spencer. Card sorting: Designing usable categories. Rosenfeld
Media, 2009 (cit. on pp. 29, 47).

[Steinmacher, Silva, et al. 2014] Igor Steinmacher, Marco Aurélio Graciotto Silva,
and Marco Aurélio Gerosa. “Barriers faced by newcomers to open source projects:
a systematic review”. In: Open Source Software: Mobile Open Source Technologies:
10th IFIP WG 2.13 International Conference on Open Source Systems, OSS 2014, San
José, Costa Rica, May 6-9, 2014. Proceedings 10. Springer. 2014, pp. 153–163 (cit. on
pp. 5, 19).

[Steinmacher, Wiese, et al. 2015] Igor Steinmacher, Igor Wiese, Tayana Uchoa
Conte, and Marco Aurelio Gerosa. “Increasing the self-efficacy of newcomers to
open source software projects”. In: 2015 29th Brazilian Symposium on Software
Engineering. IEEE. 2015, pp. 160–169 (cit. on p. 20).

[Stotko et al. 2019] Patrick Stotko et al. “A vr system for immersive teleoperation and
live exploration with a mobile robot”. In: 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE. 2019, pp. 3630–3637 (cit. on p. 17).

[Szedmák 2021] Borbála Szedmák. “Business model innovation and the first steps of
digitalization in the case of symphony orchestras”. In: (2021) (cit. on p. 41).

[Taesi et al. 2023] Claudio Taesi, Francesco Aggogeri, and Nicola Pellegrini. “Cobot
applications—recent advances and challenges”. In: Robotics 12.3 (2023), p. 79 (cit. on
p. 2).

[Taniguchi et al. 2019] Tadahiro Taniguchi et al. “Survey on frontiers of language
and robotics”. In: Advanced Robotics 33.15-16 (2019), pp. 700–730 (cit. on p. 3).

[Tarantino 2022] Anthony Tarantino. 13.9 collaborative robots. 2022. url: https :
/ / app . knovel . com / hotlink / khtml / id : kt013ETGU1 / smart - manufacturing -
lean/collaborative-robots (cit. on pp. 1, 2, 9).

[Trevelyan et al. 2016] James Trevelyan, William R Hamel, and Sung-Chul Kang.
“Robotics in hazardous applications”. In: Springer handbook of robotics (2016),
pp. 1521–1548 (cit. on p. 59).

https://app.knovel.com/hotlink/khtml/id:kt013ETGU1/smart-manufacturing-lean/collaborative-robots
https://app.knovel.com/hotlink/khtml/id:kt013ETGU1/smart-manufacturing-lean/collaborative-robots
https://app.knovel.com/hotlink/khtml/id:kt013ETGU1/smart-manufacturing-lean/collaborative-robots

REFERENCES

103

[Verlag 2022a] VDE Verlag. 51.2 cobots and people - the best of both worlds. 2022.
url: https://app.knovel.com/hotlink/khtml/id:kt01380C91/54th-international-
symposium/cobots-people-best-both (cit. on p. 1).

[Verlag 2022b] VDE Verlag. 51.7 the gateway to the workers of the future. 2022. url:
https : / /app.knovel .com/hotlink/khtml/ id :kt01380CG1/54th- international-
symposium/gateway-workers-future (cit. on pp. 2, 13).

[Vermeulen 2020] Andreas François Vermeulen. 13. fourth industrial revolution (4ir).
2020. url: https://app.knovel.com/hotlink/khtml/id:kt01340CU1/industrial-
machine-learning/industrial-fourth-revolution (cit. on p. 1).

[Vicentini 2021] Federico Vicentini. “Collaborative robotics: a survey”. In: Journal of
Mechanical Design 143.4 (2021), p. 040802 (cit. on pp. 12, 13).

[Villani et al. 2018] Valeria Villani, Fabio Pini, Francesco Leali, Cristian Secchi, and
Cesare Fantuzzi. “Survey on human-robot interaction for robot programming in
industrial applications”. In: Ifac-PapersOnline 51.11 (2018), pp. 66–71 (cit. on p. 7).

[Walker et al. 2023] Michael Walker, Thao Phung, Tathagata Chakraborti, Tom
Williams, and Daniel Szafir. “Virtual, augmented, and mixed reality for human-
robot interaction: a survey and virtual design element taxonomy”. In: ACM Trans-
actions on Human-Robot Interaction 12.4 (2023), pp. 1–39 (cit. on p. 3).

[Wang et al. 2019] Qiyue Wang, Yongchao Cheng, Wenhua Jiao, Michael T. Johnson,
and YuMing Zhang. “Virtual reality human-robot collaborative welding: a case
study of weaving gas tungsten arc welding”. In: Journal of Manufacturing Pro-
cesses 48 (2019), pp. 210–217. issn: 1526-6125. doi: https://doi.org/10.1016/j.
jmapro.2019.10.016. url: https://www.sciencedirect.com/science/article/pii/
S1526612519303330 (cit. on p. 17).

[D. Weintrop et al. 2017] D. Weintrop, D.C. Shepherd, P. Francis, and D. Franklin.
“Blockly goes to work: block-based programming for industrial robots”. In: Proc.
of Blocks and Beyond Workshop (B&B). 2017, pp. 29–36 (cit. on pp. 5, 36).

[David Weintrop, Afzal, Salac, Francis, B. Li, David C Shepherd, et al. 2018a]
David Weintrop, Afsoon Afzal, Jean Salac, Patrick Francis, Boyang Li,
David C Shepherd, et al. “Evaluating coblox: a comparative study of robotics
programming environments for adult novices”. In: Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems. 2018, pp. 1–12 (cit. on pp. 16,
36).

[David Weintrop, Afzal, Salac, Francis, B. Li, David C. Shepherd, et al. 2018b]
David Weintrop, Afsoon Afzal, Jean Salac, Patrick Francis, Boyang Li,
David C. Shepherd, et al. “Evaluating CoBlox: a comparative study of robotics
programming environments for adult novices”. In: Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems. ACM, 2018, 366:1–366:12
(cit. on p. 24).

https://app.knovel.com/hotlink/khtml/id:kt01380C91/54th-international-symposium/cobots-people-best-both
https://app.knovel.com/hotlink/khtml/id:kt01380C91/54th-international-symposium/cobots-people-best-both
https://app.knovel.com/hotlink/khtml/id:kt01380CG1/54th-international-symposium/gateway-workers-future
https://app.knovel.com/hotlink/khtml/id:kt01380CG1/54th-international-symposium/gateway-workers-future
https://app.knovel.com/hotlink/khtml/id:kt01340CU1/industrial-machine-learning/industrial-fourth-revolution
https://app.knovel.com/hotlink/khtml/id:kt01340CU1/industrial-machine-learning/industrial-fourth-revolution
https://doi.org/https://doi.org/10.1016/j.jmapro.2019.10.016
https://doi.org/https://doi.org/10.1016/j.jmapro.2019.10.016
https://www.sciencedirect.com/science/article/pii/S1526612519303330
https://www.sciencedirect.com/science/article/pii/S1526612519303330

104

REFERENCES

[David Weintrop and Wilensky 2015] David Weintrop and Uri Wilensky. “To block
or not to block, that is the question: students’ perceptions of blocks-based pro-
gramming”. In: Proceedings of the 14th International Conference on Interaction
Design and Children. ACM. 2015, pp. 199–208 (cit. on p. 24).

[Wellek 1993] Stefan Wellek. “A log-rank test for equivalence of two survivor func-
tions”. In: Biometrics (1993), pp. 877–881 (cit. on p. 32).

[Wu et al. 2023] Tianyu Wu et al. “A brief overview of chatgpt: the history, status quo
and potential future development”. In: IEEE/CAA Journal of Automatica Sinica
10.5 (2023), pp. 1122–1136 (cit. on p. 70).

[Younis et al. 2023] Hussain A Younis, Nur Intan Raihana Ruhaiyem, Wad Ghaban,
Nadhmi A Gazem, and Maged Nasser. “A systematic literature review on the
applications of robots and natural language processing in education”. In: Electronics
12.13 (2023), p. 2864 (cit. on p. 7).

[Zhang et al. 2023] Ceng Zhang, Junxin Chen, Jiatong Li, Yanhong Peng, and Ze-
bing Mao. “Large language models for human-robot interaction: a review”. In:
Biomimetic Intelligence and Robotics (2023), p. 100131 (cit. on p. 3).

[Zhou et al. 2020] Tianyu Zhou, Qi Zhu, and Jing Du. “Intuitive robot teleoperation
for civil engineering operations with virtual reality and deep learning scene
reconstruction”. In: Advanced Engineering Informatics 46 (2020), p. 101170 (cit. on
p. 17).

[Ziafati et al. 2017] Pouyan Ziafati et al. “Procrob architecture for personalized social
robotics”. In: Robots for Learning Workshop@ HRI. 2017, pp. 6–9 (cit. on p. 16).

[Zibran 2007] Minhaz Fahim Zibran. “Chi-squared test of independence”. In: Depart-
ment of Computer Science, University of Calgary, Alberta, Canada 1.1 (2007), pp. 1–7
(cit. on p. 30).

	Exploring End-User Environments for the Control and Programming of Collaborative Robots
	Downloaded from

	Introduction
	End-User Robot Programming
	Research Contributions
	Block-Based Programming For Two-Armed Robots
	Evaluation of Robot Controls in Mixed Reality
	Learning in End-User Robot Programming Environments

	Structure

	Background
	Collaborative Robots
	Programming Methods
	Programming Languages
	Known Challenges

	End-User Robot Programming

	Related Work
	Visual Programming in Robotics
	Robot Programming Assisted by Virtual, Mixed and Augmented Realities
	Learning Barriers in Software Development

	Block-Based Programming For Two-Armed Robots
	Overview
	Tools
	ROY: RobotStudio Online YuMi
	Duplo: Block-based Cooperative Programming

	Method
	Recruitment
	Experimental Setup
	Experimental Procedure
	Data Collection and Analysis

	Results
	Demographics
	Participant Performance
	Completion Times
	Programming Obstacles
	Program Analysis
	Feedback from Participants

	Discussion
	How Programming Environments Affect End-user Performance?
	What Learning Barriers Do End-users Face?

	Limitations
	Conclusion

	Evaluation of Robot Controls in Mixed Reality
	Overview
	Study Stage 1: Evaluation of MR Control Widgets for Robot Positioning
	Control Interfaces
	Recruitment
	Training and Instruction
	Experimental Task
	Measures

	Study Stage 1: Results
	Demographics
	How Do Interfaces Affect Performance?
	How Do Users Rate Interface Usability?
	Which Aspects are Difficult and Easy to Understand?

	Study Stage 2: Expert Feedback on Manipulating a Physical Robotic Arm
	Prototype Implementation
	Interviews
	Interview Analysis

	Study Stage 2: Results
	Discussion
	Precision and Hand tracking
	Field of View
	Practical Applications

	Threats to Validity
	Conclusion

	Learning in End-User Robot Programming Environments
	Experimental Method
	Recruitment
	Experimental Task
	Wizard Easy Programming Tool
	Workspace
	Help Desk
	Post-Experiment Questionnaire
	Data Collection and Analysis

	Results
	Demographics
	Participants Performance
	Frequency of Learning Barriers
	Usage of Learning Resources
	Outcomes from Questionnaire

	Discussion
	Chatbots and the Next Generation of Software Developers
	End-user robot programming: Are We There Yet?

	Limitations
	Conclusion

	Conclusion
	Complementary Studies
	Artistic Robot Programming in Mixed Reality
	Guided Decomposition in Larger Block-Based Programs
	Language Impact on Programmable Logic Controllers

	Papers Published
	Future Work

	References

