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Next-generation (NextG) or Beyond-Fifth-Generation (B5G) wireless networks

have become a prominent focus in academic and industry circles. This is driven by the

increasing demand for cutting-edge applications such as mobile health, self-driving

cars, the metaverse, digital twins, virtual reality, and more. These diverse applica-

tions typically require high communication network performance, including spectrum

utilization, data speed, and latency. New technologies are emerging to meet the com-

munication requirements of various applications. Intelligent Reflecting Surface (IRS)

and Artificial Intelligence (AI) are two representatives that have been demonstrated

as promising and powerful technologies in NextG communications. While new tech-

nologies significantly enhance communication performance, they also introduce new

security concerns. Therefore, security remains a top priority within the communi-

cation community. This dissertation studies innovative solutions for the security in

NextG networks. Specifically, we will investigate the security applications of IRS

ix



and machine learning-based solutions to enhance security using wireless signal de-

noising and signal modulation recognition methods. Also, we will explore defending

AI-powered communication systems against adversarial attacks.

IRS can be utilized to flexibly re-configure the fundamental communication en-

vironment to realize low-cost, energy-saving, and low-interference wireless communi-

cations. However, one concern of the IRS is that malicious users may manipulate

it to their advantage, which presents significant security issues. We will propose se-

curity scenarios of IRS communication systems and investigate how the IRS affects

the Signal-to-Noise Ratio (SNR) with different experimental settings. Furthermore,

the SNR plays a critical role in wireless security. SNR is constantly degraded dur-

ing transmission in a practical communication environment due to interference from

malicious attackers or surrounding noise. To address the problems, we will develop a

Generative Adversarial Networks (GAN)-based signal denoising method to improve

signal quality. Moreover, active malicious physical layer attacks such as spoofing and

jamming can disrupt communications and bring unpredictable security risks. Auto-

matic modulation Recognition (AMR), which identifies the modulation types of active

attack signals, plays a crucial role in the physical-layer security of wireless communi-

cation. A new AMR method based on parallel neural networks will be proposed. In

addition, while AI technologies have recently been integrated into NextG networks,

the security threats and mitigation methods for AI-powered communication systems

in NextG networks have not been thoroughly investigated. Therefore, we will ex-

plore the performance of AI-powered communication systems under machine learning

adversarial attacks.

The main objectives of this dissertation on AI-driven innovations to security in

NextG networks are summarized as follows. We first introduce recent works on using

IRS in wireless communications and present basic security scenarios from construc-

x



tive and adversarial perspectives. Second, a GAN-based wireless signal-denoising

method will be developed and compared with traditional algorithms. Third, a deep

learning-based AMRmethod will be proposed and tested on various signal modulation

schemes. Last, we investigate the vulnerability of AI-driven NextG communication

systems under adversarial attacks and propose the defensive distillation mitigation

method to improve its robustness.
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CHAPTER 1

INTRODUCTION

In the last decade, we have witnessed the rapid evolution of wireless communication

networks, which have been widely applied to our daily lives, including autonomous

driving, real-time surveillance, smart cities, and intelligent transportation. Beyond

doubt, Fifth-generation (5G) and NextG wireless networks will continue significantly

contributing to our crucial societal infrastructure. While we increasingly rely on

such critical and essential services provided by the network infrastructure, it also

becomes the target of cybercriminals. Numerous cyber attacks are launched every

day, and the victims include high-profile companies and government agencies such

as the U.S. Office of Personnel Management, Google, and Capital One [1]. To this

end, security has become critically important to the network infrastructure and has

attracted significant attention recently.

1.1 Motivations

New emerging technologies such as the IRS have opened up new horizons and

could be integrated into developing secure intelligent 5G and NextG network systems.

It has been demonstrated as a promising solution to provide sustainable, cost-effective,

and resilient capabilities for NextG networks. IRS is an enabling technology to en-

gineer radio signal propagation and is capable of dynamically changing the wireless

channels to improve the performance of wireless communications. On the other hand,

malicious users may also utilize the powerful capability of the IRS to manipulate the

communication environment and launch security attacks such as eavesdropping and

1



jamming. Therefore, while the integration of IRS into wireless communications brings

promising and new opportunities, it also raises significant concerns from the security

perspective. However, the security perspective of IRS-assisted systems have not been

thoroughly examined. The literature indicates that security research in IRS systems

is still in its early stages, with only a few studies currently available.

Moreover, wireless signal strength plays a critical role in wireless security. For

instance, to prevent eavesdropping for security purposes, we can intentionally reduce

the signal power at a transmitter so that eavesdroppers have difficulty receiving the

signal due to weak strengths. Also, signals always deteriorate due to surrounding

noise and interference during transmission. Because of the above concern, a signal

denoising or enhancement method is needed to improve the signal strength. Further-

more, active physical layer threats such as spoofing and jamming can significantly

degrade the communication performance. AMR has been recognized as an essen-

tial part of identifying attacks. Hence, a new AMR method is desirable to alleviate

the physical layer attacks in NextG. Last but not least, AI has achieved tremendous

success in many fields, such as computer vision, natural language processing, and

so on. This breakthrough also motivated researchers to apply AI to NextG wireless

communications. However, limited studies have investigated the security threats and

mitigation methods for AI-powered NextG networks for several reasons, e.g., being

new and multidisciplinary.

1.2 Contributions

The research goal of this proposal is to secure NextG wireless communication by

leveraging new and AI technologies to address the challenges mentioned above. First

of all, this study provides a comprehensive literature review of the applications of

the IRS in NextG networks and groups them into two categories: 1) securing com-
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munication via the IRS and 2) launching attacks using the IRS. Then, we present

four typical scenarios of utilizing the IRS for security or threats to wireless commu-

nications. Second, we apply AI technology to achieve signal denoising to improve

the SNR of communications. Then, we conduct studies on AMR and develop an

AI-based wireless signal modulation recognition method. Last, we investigate the

vulnerability of AI-powered systems in NextG networks under adversarial machine

learning attacks. The defensive distillation mitigation method will also be discussed

to defend and improve the robustness of the systems. The above-mentioned research

has been published in three conference proceedings and two journals.

Our main contributions to this thesis can be summarized as follows.

1. We study the potential security impact of IRS on wireless communication sys-

tems from two categories: improving secure communication and launching se-

curity attacks using IRS. Simulations are conducted for four typical scenarios

and the impact of IRS on communication performance is examined by measur-

ing SNR to fully understand the capability of IRS and its impact on wireless

networks. This work has been published in a conference paper [1].

2. We develop an adversarial learning-based approach for wireless signal denois-

ing, which will correspondingly enhance signal strength. Specifically, we design

a conditional Generative Adversarial Network (cGAN) at the receiver to es-

tablish an adversarial game between a generator and a discriminator. Unlike

traditional signal denoising methods that estimate the noise or interference in

the noisy signals, our proposed method estimates and learns the features of

real noise-free signals, which is more adaptive to dynamic wireless communica-

tion environments. We also conduct simulations on signals with four different

modulations to evaluate the performance. This work has been published in a

3



conference paper [2].

3. We propose a parallel neural network architecture for AMR, which extracts spa-

tial features using CNN (Convolutional Neural Networks) layers and temporal

features using LSTM (Long Short-Term Memory) layers, respectively, in two

parallel routes. Afterward, the extracted features will be combined to predict

the modulation scheme of a signal. Extensive simulations are conducted on

signals with 11 different modulation methods at a wide range of SNR levels to

evaluate our proposed parallel feature extraction architecture. In addition, we

compare our solution against three other deep learning-based methods, and the

results verify that our method outperforms other methods regarding recognition

accuracy. This work has been published in a conference paper [3].

4. We explore the vulnerabilities of AI-driven NextG communication systems un-

der widely used adversarial attack methods in terms of attack success ratio and

identify the potential weakness in the communication system. We also pro-

pose a defensive distillation mitigation method to train a more robust model to

improve the robustness of the systems. This work has been published in two

journal papers [4, 5].

1.3 Dissertation Outline

In Chapter 1, the backgrounds, motivations, and contributions have been intro-

duced. The the rest of this dissertation is organized as follows. Chapter 2 introduces

IRS applications in NextG wireless networks and summarizes research on IRS-aided

wireless communication systems in security. Then, we propose four typical scenarios

of utilizing the IRS for security or threats to wireless communications and evaluate

the IRS-assisted system performance in terms of SNR affected by the IRS in those
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four scenarios. Chapter 3 proposes a conditional generative adversarial network-based

signal denoising approach and compares it to traditional algorithms to demonstrate

the superiority of our method. In chapter 4, we develop a deep learning-based au-

tomatic modulation recognition method that can identify the modulation scheme of

wireless signals. In chapter 5, we investigate the vulnerability of AI-driven NextG

communication systems against different adversarial attacks and analyze the robust-

ness of the undefended systems. The mitigation method will be applied to enhance

the robustness and reduce the vulnerability of systems. Chapter 6 summarizes all

research works in this dissertation and sheds lights on future research directions.
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CHAPTER 2

SECURITY AND THREATS IN IRS-AIDED WIRELESS

COMMUNICATION SYSTEM

2.1 Introduction

Although we have just entered the 5G wireless communication era, academia,

industries, and governments are enthusiastically looking into the future beyond 5G,

such as the NextG wireless networks that target meeting more stringent requirements

than 5G, e.g., ultra-high data rate, energy efficiency, high reliability, and connectivity.

To achieve the above goals, IRS has recently been proposed as a new emerging and

promising technology to enhance the performance of 5G and NextG networks. IRS

has received substantial attention in the literature due to its constructive or disruptive

capability of ‘reprogramming’ wireless communication environments. An IRS consists

of a large number of low-cost passive reflecting elements that can cause a phase change

for incident signals. All reflecting elements can jointly adjust their phase shifts to

make the reflected signals constructively or destructively added at the receiver [6].

As a result, a wireless communication environment could be dynamically programmed

to enhance or degrade the communication performance via IRS.

Researchers have applied IRS-aided wireless communications to enhance commu-

nication performance in various areas, including cellular networks, Non-Orthogonal

Multiple Access (NOMA) systems, and Unmanned Aerial Vehicle (UAV) [7, 8, 9, 10].

In [11], the authors propose a power-efficient scheme to design the transmit power al-

location and phase shift of the reflecting surface to ensure secure communications. In

[12], IRS is applied to resource allocation for vehicular communications to maximize
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the sum capacity of vehicle-to-infrastructure (V2I) links. The work in [13] studies

an IRS-aided single-cell wireless system to minimize the total transmit power at the

Access Point (AP) by jointly optimizing the transmit beamforming at the AP and

reflected beamforming at the IRS. IRS has also been studied in NOMA systems for

various situations [14, 15, 16, 17]. In [16], the throughput and energy efficiency of

non-orthogonal users are studied both in delay-limited and delay-tolerant transmis-

sion modes. In [14], the downlink communications of IRS-assisted NOMA systems is

investigated to maximize the system throughput. A design of IRS-assisted NOMA

downlink transmission is proposed in [15]. A symbiotic UVA-assisted IRS radio sys-

tem is introduced in [18], where the UAV is leveraged to help the IRS reflect its own

signals to the base station and meanwhile enhance the UAV transmission.

IRS-assisted networks have been demonstrated as promising solutions to pro-

vide sustainable, cost-effective, and resilient capabilities for 5G and beyond networks.

Nevertheless, the security perspectives of IRS-assisted systems have not been thor-

oughly examined. The literature indicates that security research via IRS is still in its

infancy. This chapter investigates the full potential in security when the IRS is intro-

duced to 5G and NextG systems to narrow the gap. In particular, we will examine

the scenarios for using IRS to secure or threaten communication. One benefit of inte-

grating IRS into communication networks is to increase the quality of communication

between legitimate transmitters and receivers through intelligently programming a

large number of reflecting elements. Further, IRS can also be used to mitigate the

negative effects of malicious attackers (e.g., eavesdroppers) by producing artificial

noise. On the other hand, malicious users may leverage IRS to introduce security

threats and threaten critical wireless communication systems as well. This chapter

will introduce and discuss these above-mentioned security scenarios.

The SNR is a critical performance metric to assess wireless communication sys-
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tems, including IRS-assisted communication systems. To fully understand the capa-

bility of the IRS and its impact on IRS-assisted wireless networks, in this chapter, we

mathematically derive the SNR for IRS-aided wireless communications. Simulations

are conducted for four typical security/threat scenarios, and the impact of IRS on

communication performance is examined by measuring SNR. Simulation results ver-

ify that IRS can considerably increase or decrease SNR in a wireless communication

system by controlling the position and phase shifts of the reflecting elements to either

enhance or degrade the security in wireless communication systems.

The remainder of this chapter is organized as follows. Section 2.2 reviews recent

works of IRS on security. Section 2.3 presents an IRS-assisted communication system.

Four basic security scenarios in IRS system are discussed in section 2.4. Simulation

results are presented in section 2.5. Section 2.6 provides a summary of the study in

this chapter.

2.2 Related Work

In this section, we summarize the research of IRS-aided wireless communications

systems in security. IRS is commonly proposed to enhance SNR and, hence, to

improve the quality of wireless signals. However, the use of IRS by malicious users

could introduce security threats as well. Therefore, there are two major categories

of research for using IRS in wireless communication in terms of security. The first

category secures wireless communications by increasing the secrecy rate or SNR,

which is a major performance metric for the legitimate receiver. The second category

of IRS research with regard to security is to implement an attack (e.g., jamming) to

degrade the receivers’ ability to get the intended signal or plays as an accomplice to

assist the eavesdropper [19]. The following surveys recent research in both categories.
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2.2.1 Secure Wireless Communications Using IRS

The first category of security research on IRS enhances the secrecy rate or SNR

of the communication between a legitimate transmitter and a legitimate receiver in

the presence of an eavesdropper. The ability of IRS to dynamically alter the wireless

channel is studied to enhance the secrecy rate with increased physical layer security

in [20]. [21] presents an IRS-aided wireless communication system for security where

an Access Point sends confidential messages to a user in the presence of a highly

correlated eavesdropper in space and when the eavesdropping channel is stronger

than the legitimate communication channel particularly. To maximize the secrecy

rate, an optimization algorithm is proposed by jointly designing the AP’s transmit

beamforming and the IRS’s reflecting beamforming.

An IRS-assisted Gaussian Multiple-Input Multiple-Output (MIMO) wiretap chan-

nel is carefully considered in [22]. The transmitter, receiver and eavesdropper are

equipped with multiple antennas. They propose an alternating joint optimization

algorithm to optimize the transmit covariance (R) at the transmitter and phase shift

coefficient (Q) at IRS to maximize the secrecy rate. Specifically, a numerical algo-

rithm is used to achieve the global optimal R when Q is fixed and the minorization-

maximization algorithm is proposed to find the local optimal Q when R is fixed. [23]

investigates an IRS-aided NOMA network and proposes a robust beamforming scheme

using artificial noise to defend against a multi-antenna eavesdropper. The designed

optimization scheme, which has two alternating steps is similar to [22]. [24] stud-

ies transmission optimization for IRS-aided multi-antenna systems where the source

transmit power is limited and the unit modulus imposed on phase shifts at the IRS is

constrained. Since this optimization problem is non-convex, they advocate an alter-

nating algorithm as well to the transmit covariance of the transmitter and then build
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a bisection search-based semi-closed form solution to the phase shift matrix of the

IRS. In [25], authors explore a double IRS-assisted system, the inter-surface signal

reflection is considered, to enhance the secrecy performance of the wireless transmis-

sion. Moreover, a product Riemannian manifold-based alternating algorithm is built

to optimize the beamformer at the transmitter and phase shift coefficients at the

double IRS.

Driven by its tremendous success in various fields such as image/speech recog-

nition, online recommendation, and drug discovery, AI has also become a popular

powerful tool in research on wireless communications in recent years, including IRS-

assisted communications. In wireless communications, AI-based intelligent signal

detection and user classification can promote better awareness of the communication

channel. Furthermore, they will help to handle the complexities of wireless signals.

The Intelligent Spectrum Learning (ISL) is used to tackle the interfering signals by

dynamically controlling the IRS elements in [26]. The ISL algorithm, which consists

of convolutional neural networks and fully connected layers, provides a multi-class

classification for the incident signals. Then, the IRS elements can be turned on/off

depending on the class of that signal using an IRS binary control. In the IRS sys-

tem, a dynamic ’think-and-decide’ function allows the reflection of incident signals

to be blocked or passed based on the state of the IRS element block [27]. The use

of online training and properly designed data could improve the SNR and reduce the

overall system workload. In [28], IRS is deployed to prevent the communications of

multiple legitimate users from eavesdropping in presence of multiple eavesdroppers.

They propose a novel deep reinforcement learning-based secure beamforming algo-

rithm to obtain the optimal beamforming policy since the system is highly dynamic

and complex. Overall, those studies all demonstrate that by adjusting phase shifts of

IRS elements, the signals reflected by IRS can be added constructively to the directed
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path to enhance the desired signal power at the receiver.

2.2.2 Security Attacks Utilizing IRS

As mentioned previously, the use of IRS by malicious users could introduce se-

curity threats to wireless communications as well. An attack (e.g., jamming) can be

realized by blocking the receivers’ ability to get the intended signal. Therefore, one

adverse application of IRS is that an IRS could be used as a green jammer to interfere

with the communication between two legitimate devices and, hence, to degrade the

SNR at the legitimate receiver [29]. Another adverse application of IRS is to help

eavesdroppers (Eve) successfully steal information from legitimate users. Further-

more, after Eve steals statistical channel state information from the legitimate pair,

it can establish synchronization with legitimate users and thus further conduct spoof-

ing attacks [30]. In general, to launch the above-mentioned security attacks utilizing

IRS, the main approach is to jointly optimize some critical factors related to IRS and,

hence, to decrease the SNR at the legitimate receiver or increase SNR at the attacker.

2.3 Typical IRS Communication System

This section introduces an IRS-assisted wireless communication system. We

then derive its SNR, one of the major performance metrics for evaluating a wireless

communication system.

An IRS is composed of a vast number of re-configurable reflective elements and

a microcontroller used to control the electromagnetic response of each reflector. All

reflective elements can jointly adjust their phase shifts to make the reflected signals

constructively or destructively added at the receiver. As illustrated in Fig. 1, an IRS

with N elements is deployed between the transmitter Tx and the receiver Rx. Consid-

ering the line of sight (LOS) communication between Tx and Rx as well as reflected
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signals by IRS, the received signal at the receiver, denoted by r(t), is represented as:

r(t) =
N∑

n=1

fn(αne
jϕn)h∗

n ·m(t)︸ ︷︷ ︸
N reflected path

+h∗
LOS ·m(t)︸ ︷︷ ︸
direct path

+ n(t), (2.1)

where m(t) is the transmitted signal from Tx and n(t) is noise; αn and ϕn are control-

lable magnitude and phase shift of the nth element; fn is the channel gain between

Tx and IRS for the nth reflected path, while h∗
n is the channel gain between IRS and

Rx. h∗
LOS is the channel gain for the direct path between Tx and Rx.

Tx

IRS(φ𝒏)

Rx

.  .  .

.  .  .

𝒇𝒏

𝒓(𝒕)

𝒉𝒏
∗

𝒉𝑳𝑶𝑺
∗

Fig. 1. IRS-assisted communication with one LOS path and N reflected paths.

We employ a channel model in the literature which provides the channel gains

gT , −→g and h∗
LOS [31]. Based on Eq. (2.1), the achievable SNR can be derived as:
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SNR =
Pt|gTΦh+ h∗

LOS|2

σ2
, (2.2)

where gT =
[
f1, f2, ..., fN

]
, h =

[
h∗
1, h

∗
2, ..., h

∗
N

]T
, and Pt is the transmission power

from Tx and σ2 is the additive white Gaussian noise (AWGN) power (i.e., σ2 =

E|n(t)|2), and Φ = diag
{
α1e

jϕ1 , α2e
jϕ2 , ..., αNe

jϕN , ...,
}
. In terms of phase shift, the

discrete phase-shift ϕn will be considered, which is more practical with less hardware

requirement (e.g., ϕn = {0, 2π/N. . . . . . 2π(N − 1)/N}) [31].

From Eq. (2.2), it can be seen that the SNR is affected by several factors,

including gT (channel gain vector between Tx and IRS), −→g (channel gain vector

between IRS and Rx), h∗
LOS (channel gain for the direct path between Tx and Rx),

the transmission power Pt and phase shift matrix Φ for IRS. By adjusting these

factors, different SNRs can be obtained as needed, and hence, further improve wireless

communications by increasing SNR or degrade communications by decreasing SNR.

2.4 Security and Threats Scenarios in IRS-Aided System

IRS can adaptively adjust the phase shifts of its reflecting elements to enhance the

intended signals or attenuate the undesired signals to secure wireless communication.

Therefore, we propose four basic security scenarios in the IRS-aided system from

the constructive and adversarial aspects. In the first two scenarios, IRS is used by

legitimate users and hence to protect the legitimate receiver from eavesdropping and

attacks. In the last two scenarios, IRS is manipulated by malicious users and used

for conducting hostile attacks such as eavesdropping and interfering with legitimate

users. The following presents four scenarios mentioned above.
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IRS

Base Station
(Legitimate Tx)

User
(Legitimate Rx)

BS-User Direct Link

Eve
(Eavesdropper)

Fig. 2. IRS enhances the communication between legitimate transmitter and receiver

by increasing the SNR between them.

Scenario A: IRS Protecting Legitimate Receiver from Eavesdropping

In this scenario, IRS is designed to prevent eavesdropping and enhancing the

SNR of the communication between a legitimate transmitter, e.g., a Base Station

(BS), and a legitimate receiver, e.g., a User, in the presence of an eavesdropper (i.e.,

Eve), as depicted in Fig. 2. To prevent eavesdropping, the BS transmits signals

with a lower power so that the eavesdropper cannot receive the signal from the BS

successfully. Meanwhile, an IRS is programmed to constructively reflect the signal

from the BS to the legitimate receiver. Hence, the user receives the direct signal from

the BS through BS-User direct link as well as constructive reflected signals via IRS

through IRS-User link at the same time. As a result, the SNR of the communication

between the BS and the legitimate user could be significantly increased while the

SNR between the BS and eavesdropper is sufficiently low.
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IRS

Malicious Attacker
(Illegitimate Tx)

User
(Legitimate Rx)

Direct Link

Fig. 3. IRS mitigates attack from the illegitimate transmitter for the legitimate re-

ceiver by decreasing the SNR between them.

Scenario B: IRS Mitigating Attack from Illegitimate Transmitter

In this scenario, IRS is implemented to assist the receiver in mitigating attacks

from a malicious attacker, as shown in Fig. 3. The malicious attacker sends the signal

to the user through the direct link. An IRS is programmed to reflect the malicious

signal destructively to the user through the Attacker-IRS-User link (i.e., MA-IRS

link and the IRS-User link in Fig. 3) by adjusting their reflection coefficients and

phase shift. Consequently, the SNR between the malicious attacker and user can be

significantly decreased. This efficiently mitigates the negative impact of malicious

signals and enhances the resilience and security of communication.
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(Legitimate Tx)

User
(Legitimate Rx)

Eve
(Eavesdropper)

IRS
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IR
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Fig. 4. IRS enhances the eavesdropping for the eavesdropper by increasing the SNR

between the legitimate transmitter and eavesdropper.

Scenario C: IRS Enhancing Eavesdropping for an Eavesdropper

In this scenario, we consider one possible adverse application of IRS that improves

the eavesdropping performance for the eavesdropper, as depicted in Fig. 4. A BS

sends signals to the user through the BS-User direct link, while Eve receives the

signals by the BS-Eve direct link. The eavesdropper controls IRS and makes the

reflected signals constructive from BS to Eve via the BS-IRS-Eve link (i.e., BS-IRS
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link and the IRS-Eve link in Fig. 4). Thus, the SNR of the communication between

the BS and the eavesdropper is increased. Consequently, Eve can successfully steal

information sent from the legitimate transmitter.

IRS

User
(Legitimate Rx)

Direct Link

IRS Controlled by
Malicious User

Base Station
(Legitimate Tx)

Fig. 5. IRS interferes with the communication between the legitimate transmitter and

receiver.

Scenario D: IRS Interfering Communication between a Legitimate Pair of Trans-

mitter and Receiver

In this scenario, IRS plays the role of a green jammer to interfere with the com-

munication between the legitimate transmitter and receiver, as illustrated in Fig. 5.

The BS transmits signals to the user through a direct link. IRS is controlled by the

jammer to reflect the signals from the BS to the user destructively through the re-

flected links (i.e., BS-IRS direct link and the IRS-User link in Fig. 5), so that the SNR

between BS and the receiver is decreased. IRS-based jammers, unlike conventional

jamming attacks, use legitimate signals directly by changing their reflection coeffi-
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cients and phase shifts instead of relying on internal energy to send strong signals to

a victim system. Due to its ability to interfere with a system without leaving any

energy footprint, IRS-based jamming is practically impossible to detect.

2.5 Performance Evaluation

As we discussed in Section 2.4, there are four major scenarios for IRS-aided

communications to enhance security or launch attacks. Those four scenarios can be

divided into two categories in terms of the impact of IRS on SNR. The first category

is the SNR improvement, in which the SNR is increased for a legitimate receiver to

improve the communication performance, as in Scenario A , or for an eavesdropper

to assist in eavesdropping, as in Scenario C. Another category is the SNR reduction

via IRS. We decrease the SNR for a legitimate receiver to mitigate attacks from

an illegitimate transmitter as in Scenario B or for malicious users to interfere with

legitimate communication as in Scenario D.

In this section, we will conduct simulations and measure the SNR of receiver, as

derived in Eq. (2.2), for both two categories. Some parameters in Eq. (2.2) can be

obtained using the SimRIS channel simulator [31]. For the simulation setting, an out-

door environment is considered with an IRS of N elements. The transmission power

from the Transmitter (Tx) is denoted as Pt and the noise is assumed as −100dBm.

For each category, SNR is examined with different IRS positions.

2.5.1 SNR Improvement by IRS

In this subsection, we will evaluate the performance for the first category, in-

cluding Scenario A and Scenario C. Specifically, we will conduct simulations and

examine SNR improvement by controlling the phase shift and positions of IRS. The

positions of transmitter (Tx) and receiver (Rx) are fixed at (x1 = 0, y1 = 25, z1 =
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Fig. 6. Tx, Rx and two IRS positions for simulations to improve SNR between Tx and

Rx.

20) and (x2 = 60, y2 = 70, z2 = 1) in meters. The coordinates of two IRS are

IRS1(x3 = 80, y3 = 90, z3 = 10) and IRS2(x3 = 85, y3 = 60, z3 = 10) in me-

ters, respectively. The total received signal at the receiver (Rx) consists of the di-

rect signal from Tx to Rx and N reflected signals. All IRS elements are configured

to have the same phase shift, e.g., ϕn = 2π
λ

(√
(x1 − x3)2 + (y1 − y3)2 + (z2 − z3)2 +√

(x3 − x1)2 + (y3 − y1)2 + (z3 − z1)2
)
.

With the above configurations, we evaluate SNR between Tx and RX when IRS

is deployed at two different positions to explore SNR improvement, respectively, as

shown in Fig. 6. The resulting SNR values for the two positions are plotted in Fig.

7 and Fig. 8, respectively. SNR is assessed versus Pt, without IRS as well as with
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Fig. 7. SNR improvement with IRS at position 1 (IRS1).

IRS consisting of N number of reflecting elements. These two figures reveal a trend:

(1) SNR at Rx is significantly improved thanks to IRS; and (2) SNR clearly improves

from 0dBm to 30dBm while the transmission power Pt increases. In addition, the

difference of SNR results between Fig. 7 and Fig. 8 suggests that the position of IRS

matters for SNR. Our results verify that IRS could be an important tool to improve

SNR with appropriate phase shifts of reflective elements.
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Fig. 8. SNR improvement with IRS at position 2 (IRS2).

2.5.2 SNR Reduction by IRS

In this subsection, we evaluate the performance for the second category, including

Scenario B and Scenario D. We examine the SNR reduction between Tx and Rx via

controlling IRS. The use of IRS to decrease the SNR at Rx is examined with the

following setting. The positions of Tx and Rx are fixed at (x1 = 0, y1 = 50, z1 = 6)

and (x2 = 0, y2 = 30, z2 = 2) in meters. The positions of two IRS are (x3 = 0, y3 =

10, z3 = 4) and (x3 = 0, y3 = 5, z3 = 3) in meters, respectively. The positions of Tx,

Rx, and two positions of IRS are shown in Fig. 9.
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Fig. 9. Tx, Rx and two IRS positions for simulations to decrease SNR between Tx and

Rx.

The SNR between Tx and Rx is assessed in a similar manner for each IRS posi-

tion. Results of SNR evaluation for the two positions are plotted in Fig. 10 and Fig.

11, respectively. The SNR is plotted versus Pt, the transmit power, without IRS as

well as with IRS consisting of N number of elements for both IRS positions. SNR in

this figure follows a similar trend: (1) SNR is significantly decreased by a malicious

user that controls IRS; and indeed (2) using IRS for malicious intent, SNR clearly

improves while the transmit power Pt increases. SNR changes between two positions

of IRS suggest that the location of the IRS affects the wireless communication chan-

nel. These results reveal that the use of the IRS in a harmful way could degrade

communication considerably by controlling phase shifts of reflective elements and the
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Fig. 10. SNR reduction with IRS at position 1 (IRS1).

position of the IRS.

2.6 Conclusion

The security of 5G and NextG networks has been a constant concern. The poten-

tial of integration of recent emerging technologies such as IRS into 5G and NextG may

provide promising solutions from the security perspective. IRS has been widely stud-

ied to support higher throughput and performance, whereas research on the security

of the IRS-aided system still lags. In this chapter, we have studied the potential secu-
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Fig. 11. SNR reduction with IRS at position 2 (IRS2).

rity impact of IRS on wireless communication systems from two categories: improving

secure communication and launching security attacks using IRS. Both categories ben-

efit from the flexibility of reprogramming a communication environment by adjusting

its position and phase shifts of reflecting elements. Simulations have been conducted

for four major scenarios. Our study is expected to shed light on a deep understanding

of IRS-assisted networks concerning security.
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CHAPTER 3

WIRELESS SIGNAL DENOISING USING CONDITIONAL GAN

3.1 Introduction

5G and beyond technologies are promising to unlock the potential benefits of

wireless networks, including higher capacity, faster data rate, low latency, massive

device connectivity, and reduced cost compared with traditional networks [1, 27].

Wireless security becomes one of the top concerns as 5G and beyond technologies

become more widely available [4]. Wireless signal strength plays a critical role in

wireless security. For instance, to prevent eavesdropping for security purposes, we

can intentionally reduce the signal power at a transmitter so that eavesdroppers have

difficulties of receiving the signal due to weak strengths. Although legitimate receivers

will also experience noise and interference during transmission, signal denoising tech-

niques can be used at the receiver side to boost the SNR.

Wireless signal denoising remains a challenge, and various methods have been

developed to tackle this challenge. There are two types of traditional methods: linear

and nonlinear methods [32]. It is not satisfactory to use linear algorithms since

they assume signals are stationary, while real signals are typically non-stationary.

Nonlinear methods are then developed and widely used, while the performance could

be limited if the basis function and threshold are not selected appropriately [33].

In the last decade, deep learning has achieved tremendous success in various areas,

such as computer vision, natural language processing, etc [34]. This breakthrough

motivated researchers to implement signal denoising via a learning manner. As an

example of machine learning-based solutions, Deep Neural Network (DNN) has been
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applied to signal strength improvement, which outperforms traditional methods [35,

36]. In [35], the authors demonstrated DNN could learn and analyze the noise and

interference characteristics of the wireless channels. Deep learning can perform better

than traditional methods when the wireless communication environment is complex,

where the signals are mixed with substantial noise.

In conclusion, both the traditional and DNN-based signal denoising methods are

mainly used to estimate the features of noise or interference and attempt to remove

them from the time or frequency domains. However, the wireless communication

environment changes dynamically, and the impact of noise or interference on the

signals is unpredictable, which makes it difficult to estimate and filter out the noise

or interference precisely. Therefore, a novel method is desired to estimate the features

of the wireless signals, instead of the noise or interference, to deal with the dynamic

environment.

To tackle the above-mentioned challenges in wireless signal enhancement, this

chapter proposes a novel machine learning-based solution. We will explore the po-

tential of GAN [37] to estimate the features of the noise-free signals in an adversarial

manner and then remove the dynamic noise and interference by generating the de-

noised signals directly [38]. Specifically, we propose to apply a conditional Generative

Adversarial Network (cGAN) for signal denoising [39] at the receiver, which estab-

lishes a min-max problem between a generator and a discriminator. The generator

attempts to generate a denoised signal without noise and interference. Meanwhile,

the discriminator aims to supervise the generation process to ensure the denoised

signal is from its corresponding noisy signal. After effective training, the well-trained

generator will be deployed to denoise incoming signals automatically at the receiver.

The main contributions of this chapter are summarized as follows.
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• We develop a conditional generative adversarial architecture that consists of two

crucial components: a generator and a discriminator for signal denoising. A loss

function specialized for wireless signal denoising is designed for training both

components. The proposed signal denoising method is an end-to-end model,

where the denoised signal can be generated automatically from the input noisy

signal without any manually designed feature extraction.

• The generator of an original GAN may randomly generate denoised signals that

do not correspond to the input noisy signals. The reason is that the generator

only learns the distribution of real noise-free signals and no control is imposed

to force the generated denoised signals related to the input noisy signals. To

overcome this shortcoming, we use the noisy signals as conditional information

for both the generator and discriminator. This will ensure that the resulting

denoised signal is from its noisy signal rather than an uncorrelated one.

• Simulations are conducted for four wireless signal modulation types (i.e., Binary

Phase-shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), Quadra-

ture Amplitude Modulation (QAM16), and QAM64) to evaluate the denoising

performance of our proposed method. The results verify the effectiveness and

feasibility of our method and show superior performance across all comparisons.

The rest of this chapter is organized as follows. Section 3.2 describes the related

work of signal denoising and GAN. Section 3.3 proposes the framework of the cGAN-

based wireless signal denoising method. We present the architecture of the cGAN-

based signal denoising method, the dataset preparation, and the training procedure

in section 3.4. In Section 3.5, we test the performance of our proposed method on

different types of noisy signals with comparisons to other approaches. Section 3.6

draw conclusions and future works.
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3.2 Related Work

In this section, we first summarized signal denoising methods into two groups:

traditional and Deep Learning (DL)-based methods to provide an overview of the

development of signal denoising. We then introduce the GAN and cGAN briefly.

3.2.1 Traditional Signal Denoising Methods

Traditional signal denoising methods can be classified into two groups: linear

methods and nonlinear methods [32]. Linear signal denoising methods have been

widely applied to remove noise due to their relative simplicity. Typical linear ap-

proaches of signal enhancement for received signals are based on the Least Mean

Square (LMS) or its variants [40]. However, the performance of these algorithms on

nonlinear signals is not satisfactory. It cannot provide an optimal solution for noise

and interference removal since these algorithms assume the signals are stationary,

while the real signals generally have non-stationary features. Nonlinear methods are

proposed and commonly used because they can simultaneously interpret the spectral

and temporal features of signals. The nonlinear threshold wavelet transform method is

widely used and adopted due to its strong local time-frequency analysis ability [41].

The basic idea is to separate signals into various segments according to frequency

range and filter out noise and interference by a reasonable threshold [33]. However,

those nonlinear methods lack the characteristics of self-adaptation. The denoising

performance could be limited if the selected wavelet basis function and threshold are

inappropriate. Thus, it is challenging for nonlinear denoising methods to tackle the

dynamic impacts on signals in the changing wireless communication environment.
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3.2.2 DL-based Signal Denoising Methods

DL has recently been applied to signal denoising. Specifically, DNN is proposed

for signal strength improvement, which outperforms traditional methods [35, 36, 42].

In [35], the authors demonstrated DNN could learn and analyze the noise and in-

terference characteristics of the wireless channels. Moreover, [36] proposed a signal

denoising method based on a convolutional neural network. The model can estimate

the noise in the signals, and the high-quality denoised signal can be obtained by

subtracting the estimated noise from the raw signal.

3.2.3 Conditional Generative Adversarial Network

GAN [37] is a promising tool for learning data distribution and has been used

for image denoising [43], and speech enhancement [38]. GAN typically comprises two

adversarial components: a generator G and a discriminator D. After they complete a

minimax game, the generator G can generate samples that are very close to the real

data. Both G and D could be non-linear mapping functions, such as a multi-layer

perception. This unique ability of GAN inspired us to investigate the feasibility of

applying GAN to signal denoising. However, there is no control over the modes of

data being generated in a typical GAN. To address this issue, cGAN [39] proposes to

add conditional information regarding the expected outputs of the model to control

the generation process.

3.3 cGAN-based Method for Signal Denoising

This section introduces our proposed approach to applying a cGAN for wireless

signal denoising. First, we describe two critical phases, the training and deployment

phases, and then discuss the tailored objective function for signal denoising.
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3.3.1 Wireless Signal Denoising Using cGAN

We adopt cGAN, instead of an original GAN, as our solution to wireless signal

denoising because the generator of an original GAN may randomly generate signals

based on the distribution learned from the real noise-free signals. In other words,

the generated signal from an original GAN does not match the corresponding noisy

signal well. Our proposed cGAN-based wireless signal denoising approach consists of

two phases, namely the training and deployment phases, which are presented below.
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Fig. 12. The training phase of our proposed method for wireless signal denoising. We

train the generator G and discriminator D in an adversarial manner using the

noisy signal SN as the condition.
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Training phase: Our goal is to learn the potential features in real noise-free

signal SR and then remove noise and interference in the noisy signal SN by generating

the denoised signal G(SN), which is expected to be very close to the real noise-free

signal SR. To achieve this goal, we treat the wireless signal denoising problem as a

conditional adversarial problem, as illustrated in Figure 12. Specifically, the noisy

signal SN is considered as the condition in cGAN. The generator G receives the con-

dition along with a random noise prior z [37], which has the same dimension with real

signal SR and then generates the denoised signal G(SN). The adversarial component

discriminator D is a typical binary classifier that receives the real noise-free signal

SR concatenated with the condition SN or the generated denoised signal G(SN) con-

catenated with the condition SN . The goal of the discriminator D is to distinguish

the real noise-free signal SR and the generated denoised signal G(SN). We train the

generator G and discriminator D simultaneously in an adversarial manner. During

the training, the generated denoised signal G(SN) will gradually become extremely

close to the corresponding real noise-free signal SR. The training phase is completed

offline.

Deployment phase: Once the generated signal G(SN) is indistinguishable by

the discriminator D during the training, we obtain the desired generator G that can

be deployed at the receiver for wireless signal denoising as illustrated in Figure 13.

Given a noisy signal not included in the training dataset, we concatenate it with a

random noise prior z and feed them into the well-trained generator G. The generator

G is able to subsequently output the denoised signal G(SN). It is noticeable that G

has learned the data distribution of the real signal SR rather than memorizing the

input-output pairs.

31



Deployment phase

G
Generator

Noise Prior Noisy Signal
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Fig. 13. The deployment phase of our proposed method for wireless signal denoising.

We deploy the generator G once the generated denoised signal G(SN) is in-

distinguishable by the discriminator D.

3.3.2 Objective Function Design

In this subsection, we will design a specialized objective function tailored for

wireless signal denoising. The objective function of the original cGAN does not work

effectively for signal denoising. We first point out its weakness and then propose a

new objective function considering two aspects.

We denote the real signal data distribution as SR ∼ pdata(SR) and the noise prior

distribution as z ∼ pz(z). For an original cGAN-based signal denoising approach, the

objective function of the min-max game between the generator G and discriminator

D is expressed as:
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min
G

max
D

V (D,G) = ESR∼pdata(SR)[logD(SR|SN)]

+ Ez∼pz(z)[log(1−D(G(z|SN)))],

(3.1)

where D(SR|SN) indicates the discriminator D labels the real signal and outputs

the expected value of 1. D(G(z|SN)) represents the discriminator D, which distin-

guishes the generated denoised signal and outputs the expected value of 0. During

the training phase, G tries to minimize log(1−D(G(z|SN))) and D aims to maximize

logD(SR|SN).

However, the cross entropy loss function in the Equation (20) may lead to the

vanishing gradients problem during the training phase. To address this problem, we

adopt the least square loss function [44] to the objective function, which is improved

as:

min
G

V (G) =
1

2
Ez∼pz(z)[D(G(z|SN))− 1]2,

min
D

V (D) =
1

2
ESR∼pdata(SR)[D(SR|SN)− 1]2

+
1

2
Ez∼pz(z)[D(G(z|SN))]

2.

(3.2)

In practice, the least square loss penalizes the samples located at a long distance from

the decision boundary, which has two benefits. First, it makes the samples generated

by the generator close to the decision boundary, and thus the generator can generate

denoised signals with higher quality. Second, it generates more gradients and thus

makes the training phase more stable than the original GAN. To make the generated

denoised signalsG(z|SN) close to the real noise-free signals further, we consider mixing

the objective function in Equation (22) with L1 and L2 loss. Therefore, the newly

designed objective function becomes:

O = min
G

V (G) + min
D

V (D) + L1(G) + λL2(G), (3.3)
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where L1(G) and L2(G) represent the L1 and L2 loss, as shown in the following two

formulas:

L1(G) = ESN ,SR,z[∥SR −G(z|SN)∥1], (3.4)

L2(G) = ESN ,SR,z[∥SR −G(z|SN)∥2], (3.5)

where ∥·∥p stands for the vector p−norm. L2 loss penalizes the objective function

heavier than L1 loss, which allows L2 loss to force the generated denoised signals

related to the noisy signals and have fewer outliers. However, L2 loss is too sensitive

to outliers in the early training stage. Therefore, λ in Equation (4.4) is used to strike

a balance between the L1 and L2 loss. In the early training stage, λ will be set to a

small value to encourage sparsity and make the model less sensitive to outliers. Then,

λ increases gradually as the model is being trained. We will discuss the details in

Section 4.4.2.

3.4 Implementation

In this section, we first describe the network structures of the generator and dis-

criminator. Then, the dataset preparation used for training and testing is introduced.

The training details are discussed as well.

3.4.1 Network Architecture

By conducting extensive preliminary experiments, we concluded the network

architectures for the generator G and the discriminator D as follows.

Generator: The network structure of the generator G is a five-layer neural

network composed of three convolutional layers and two deconvolutional layers, as

shown in Figure 14. The convolutional layers are designed to extract the features
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Fig. 14. The network structure of generator G. G is a five-layer neural network that

consists of three convolutional layers and two deconvolutional layers.

in noisy signals and map the noisy signals into feature maps. The deconvolutional

layers are applied to recall the extracted features and generate the denoised signal

based on the extracted feature maps. The convolutional layers and deconvolutional

layers play the roles of encoder and decoder, respectively. 1× 2 filters are applied in

the first convolutional and the stride is set to 2. The 1 × 3 filters are used and the

stride is set to 1 in the last four layers. There are no padding operations in any layers.

The Leaky-ReLU [45] activation function and batch normalization [46] are applied

for each layer except the last layer to speed up the training and make the training

process more stable. The tanh activation function is adopted to output the denoised

signals in the last layer.

1
 ×

3
 C

o
n

v

B
atch

N
o

rm

Le
aky R

e
LU

1
 ×

3
 C

o
n

v

B
atch

N
o

rm

Le
aky R

e
LU

1
 ×

3
 C

o
n

v

B
atch

N
o

rm

Le
aky R

e
LU

D
e

n
se

 Laye
r

Sigm
o

id

R
e

al Sign
al

N
o

isy Sign
al

C
lassifie

d
 Lab

e
l

D
en

o
ise

d
 Sign

al
N

o
isy Sign

al

OR

Fig. 15. The network structure of discriminator D. D is a four-layer neural network

that consists of three convolutional layers and one dense layer.
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Discriminator: The network architecture of discriminatorD is a four-layer neu-

ral network consisting of three convolutional layers and one dense layer, as illustrated

in Figure 15. The convolutional layers are used to extract the feature maps of the

input signals, and the dense layer is used to distinguish whether the input signals

are real noise-free signals or generated denoised signals. We use 1 × 3 filters in all

convolutional layers and set the stride to 2. We also use the Leaky-ReLU activation

function and batch normalization for each layer except the last layer. The sigmoid

function is used for binary classification in the last layer.

3.4.2 Dataset Preparation

To train and test our cGAN-based denoising method, we need to generate a wire-

less signal dataset that consists of the original real signals SR and the corresponding

noisy signals SN . We first generate the real signals and each signal sample is asso-

ciated with one specific modulation at a particular SNR. In our experiments, real

signals with four different modulations, i.e. BPSK, QPSK, QAM16, and QAM64, at

different SNR levels from -8 dB to 8 dB are generated in the time domain. Then the

corresponding noisy signals SN are constructed by adding additive Gaussian white

noise (AWGN) to SR and overlapping other types of signals with small amplitudes

over SR. We denote a pair of data as (SR, SN). A total of 200, 000 pairs denoted

as Ddata = {(SR, SN)}, were generated and the generation process is implemented

in Matlab. The generated data set Ddata is split into 90% training dataset and 10%

testing dataset.

3.4.3 Training Details

In the training phase, we sample batch data {(SR, SN)} from the training dataset,

and the batch size is set to 200. We first use the batch data to train the discriminator
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Fig. 16. The BERs of the denoised signals generated by the generator at every 100

epochs in the training phase.

t times to optimize the parameters of the discriminator. The reason is that the

discriminator D is too weak to distinguish the real signals and the generated denoised

signals at the beginning of the training phase, and thus, it can not provide useful

feedback to the generator G. t is suggested to be 5. Then, we train G one time, and

the learning rate is set as 10−5 with Adam optimizer for both D and G. We use the

alternative training manner above to train D and G in n epochs. Our preliminary

experiments observed that the generator could not significantly reduce the Bit Error

Rates (BERs) of noisy signals after 1000 training epochs. Therefore, the training

epochs n is set to 1000, and the BERs of the generated denoised signals at every 100

epochs during the training are shown in Figure 16. λ in the final object function

Equation (4.4) is set to 0 before 800 training epochs. In the last 200 epochs, λ
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Fig. 17. The denoising performance comparison of our SDGAN against Wavelet and

LMS on noisy signals with 16QAM at different SNR levels.

increases to 1 linearly.

3.5 Simulation Results

After the training phase, the generator is capable of reducing the BERs of

noisy signals and ready for deployment at the receiver. To evaluate the perfor-

mance of our proposed wireless signal denoising method (referred as Signal Denosing

GAN (SDGAN), we conduct simulations using the testing dataset. We also com-

pare SDGAN with the classical linear algorithm LMS and the nonlinear threshold

wavelet transform (referred as Wavelet) method. All simulations are implemented

using Nvidia GTX 1080Ti GPU with Pytorch.

We first choose noisy signals with 16QAM and 64QAM at different SNR levels for
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simulations and also compare it with the two traditional signal denoising algorithms.

The simulation results are shown in Figure 17 and Figure 18. The black line indicates

the BERs of the noisy signals before the denoising processing. The grey, blue, and red

lines represent the denoising results of LMS, Wavelet, and SDGAN, respectively. It

can be seen that all three methods are capable of reducing the BERs of noisy signals

at all SNR levels. However, SDGAN can reduce the BERs of noisy signals by over

50% and provide the best denoising performance across the simulations.
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Fig. 18. The denoising performance comparison of our SDGAN against Wavelet and

LMS on noisy signals with 64QAM at different SNR levels.

In addition, we also evaluate the denoising performance of SDGAN on noisy sig-

nals with BPSK or QPSK modulations to verify the general effectiveness of SDGAN

on different modulation types. As exhibited in Figure 19, the two blue lines with dif-

ferent shapes represent the BERs of noisy signals with BPSK and QPSK modulations.
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Fig. 19. The denoising performance of our SDGAN on noisy signals with BPSK and

QPSK at different SNR levels.

The two red lines with different shapes indicate the denoising results from SDGAN.

We can see that SDGAN is still effective on noisy signals with different modulations

at all SNR levels. Moreover, SDGAN can reduce the BERs of noisy signals to nearly

zero at SNR levels from 0 to 8. All these simulation results verify the effectiveness

and potential of the cGAN-based solution to wireless signal denoising.

3.6 Conclusion

In this chapter, we have formulated the wireless signal denoising process as an

adversarial learning problem and presented a novel approach based on conditional

generative adversarial networks. We designed an applicable loss function and the

architecture of networks to make the networks capable of estimating and learning the
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features of the wireless signals. To evaluate the effectiveness of our proposed method,

we conducted denoising simulations on noisy signals with four different modulations

at different SNR levels. The results demonstrated that our proposed method can

complete the signal denoising task in a learning manner and also achieved better

performance compared with two traditional signal denoising algorithms. The network

architecture will be improved further to unlock the full potential and capability of

GAN for wireless signal denoising.
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CHAPTER 4

DL-BASED SIGNAL MODULATION RECOGNITION

4.1 Introduction

Over the past few decades, there has been a significant surge in the advancement

of wireless communication systems, virtually impacting every sector of our daily lives

[47], [48]. Wireless transmission has diversified exponentially to meet a wide range of

application scenarios [27]. To transmit data efficiently, various modulation schemes

are adopted to modulate signals before transmission. Automatic modulation recogni-

tion refers to the intermediary process of automatically detecting and classifying the

modulation schemes of received signals without prior knowledge between signal de-

tection and signal demodulation [49]. The importance of AMR arises from its ability

to optimize spectrum utilization, detect interference, enhance wireless security, and

enable cognitive radios in wireless communication systems. The rapid and excep-

tional evolution of wireless communication technology has led to the development of

diverse modulation schemes to cater to increasingly complex communication scenar-

ios. Consequently, various AMR techniques have been developed to achieve effective

modulation recognition.

Generally, traditional AMR methods fall into two categories: likelihood-based

and feature-based [49]. However, the likelihood-based methods suffer from high com-

putational complexity, while feature-based methods cannot achieve optimal recogni-

tion. Motivated by the extraordinary development of DL, different DL-based AMR

approaches are proposed due to the powerful feature extraction capability of artificial

neural networks [49]. In terms of the architecture of networks, DL-based methods
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can be mainly classified into two groups: pure and hybrid models. The pure mod-

els are constructed by only one type of neural network, e.g., Convolutional Neural

Networks (CNN) or Recurrent Neural Networks (RNN) [50], [51]. By contrast, the

hybrid models combine the advantages of CNN and RNN by integrating them into a

single network architecture [52] to achieve better performance than the pure models.

On the one hand, the hybrid DL-based AMR models improve recognition perfor-

mance by stacking CNN and RNN layers together into a new network structure. On

the other hand, such hybrid AMR models bring a concern, i.e., the two attributes of

the signal could not be extracted efficiently. To be specific, the temporal features of

the signal could be lost after several CNN layers. Similarly, the spatial feature might

be degraded after stacking RNN layers. To overcome the weakness of these hybrid

AMR models, it is desirable to develop a new model that can extract spatial and

temporal features effectively and independently. This chapter proposes a novel and

parallel neural network architecture that extracts the spatial and temporal features in

two parallel routes. The first route is designed to learn the spatial feature map of the

modulated signal by applying CNN layers, while the second route aims to construct

the temporal feature map via LSTM (Long Short-Term Memory) layers. Afterward,

these two feature maps will be concatenated to identify the modulation type of the

modulated signal. Finally, to verify the effectiveness and evaluate the performance of

our proposed method, signals with the 11 most representative modulation schemes in

modern wireless communications are adopted for simulations. The main contributions

of our study are summarized as follows.

• To overcome the weakness of the hybrid DL-based AMR methods, we propose

a new neural network architecture consisting of two parallel routes to extract

the spatial and temporal characteristics independently. In this way, the two
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extraction routes do not interfere with each other.

• A CNN-based network dedicated to spatial feature extraction is designed, and

an LSTM-based network is built for temporal feature learning. The proposed

AMR method is an end-to-end model that learns the features of modulated

signals by CNN and LSTM layers and outputs the predicted label without any

manually designed feature extraction process.

• Extensive recognition simulations of our proposed method are conducted with

various modulated signals at different SNR levels. We also compare it to other

typical DL-based methods. The simulation results show that our method out-

performs others in terms of recognition accuracy.

The rest of this chapter is organized as follows. Section 4.2 introduces the related

work of both traditional and DL-based AMR methods. Section 4.3 formulates the

AMR problem as a multi-class classification and proposes the architecture of the

parallel architecture-based neural network for signal modulation recognition. The

adopted training dataset and the training procedure are discussed in section 4.4. In

section 4.5, we test the performance of our proposed method on different types of

modulated signals with comparisons to other approaches. Section 4.6 concludes and

sheds light on future studies.

4.2 Related Work

4.2.1 Traditional AMR methods

Traditional AMR methods are typically divided into two categories: likelihood-

based and feature-based. In likelihood-based AMR approaches, AMR is perceived as

a multi-hypothesis test and the likelihood function of a received signal is compared
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with a threshold under the assumption of the known probability density function

of the signal [53]. Likelihood-based AMR can achieve optimal performance in the

sense of Bayesian estimation but at the cost of high computational complexity or

the requirement for prior knowledge. In contrast, feature-based AMR approaches can

provide sub-optimal performance but with low computational complexity. Feature ex-

traction and classification are two major steps in feature-based AMR methods. First,

instantaneous features and/or statistical features are extracted from the received sig-

nals, and then decision-making methods are employed to classify the received signals

based on the extracted features. However, extensive domain knowledge and engineer-

ing expertise are required to design the handcrafted features in feature-based AMR

methods.

4.2.2 DL-based AMR methods

Over the past decade, remarkable advancements have been made through the

utilization of DL techniques in tackling various applications [34]. It is known that DL

is capable of solving applications that are challenging for conventional methods, in-

cluding computer vision and natural language processing. Inspired by its exceptional

performance, DL has also been applied extensively in the AMR field. It is worth not-

ing that neural networks can automatically extract complex features without manu-

ally designed features. AMR is defined as a multi-class classification problem in DL

implementation. DL-based AMR models can typically provide better classification

performance than traditional approaches.

One of the earliest DL studies in the AMR field was published in [54]. This paper

developed a CNN-based DL model to extract spatial features of modulated signals

for modulation classification. The simulation results demonstrated that the proposed

CNN-based model provides higher accuracy compared to traditional methods. In [51],
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an RNN-based model has been developed, which showed the capability of exploiting

the temporal features of received modulated signals. In [55], an adopted CNN and

RNN model classifies six types of signal modulations under different channel condi-

tions, such as Additive White Gaussian Noise (AWGN) and Rayleigh fading. Simula-

tion results verified that DL-AMR methods outperform traditional algorithms under

two fading channels. However, the above DL-based AMR methods have overlooked

the feature interaction because these methods rely only on the spatial or temporal

features of modulated signals.

To address this problem, the study [56] introduced a Convolutional Long Short-

term Deep Neural Network (CLDNN [57]) that includes four convolutional layers and

one LSTM layer to achieve an accuracy of approximately 88.5 % at high SNR level.

Furthermore, [58] proposed a hybrid architecture that combines the advantages of

CNN and LSTM to extract the spatial and temporal features of signals, respectively,

by using two signal representations. The experimental results showed that the perfor-

mance of DL-based AMR can be improved significantly by utilizing both modulated

signal attributes. The recent hybrid neural network architecture for AMR was pro-

posed in [59]. This model is built upon stacking Gated Recurrent Units (GRUs) and

CNN layers.

4.2.3 Convolutional Neural Networks

CNN represent a pivotal advancement in machine learning and artificial intelli-

gence and have demonstrated superior performance across a wide range of applica-

tions, from object detection and facial recognition to image analysis and autonomous

driving [60]. CNN leverages a specialized architecture designed to automatically and

adaptively learn spatial hierarchies of features from input data [61]. Specifically, CNN

applies a series of learnable filters to the input, producing feature maps highlighting
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various aspects of the data, such as edges, textures, and patterns [62]. In short, CNN

excels in spatial feature extraction and has succeeded tremendously in classification

and detection tasks [63].

4.2.4 Long Short Term Memory

RNN are commonly applied to learn persistent features of sequence data. LSTM

is a particular type of RNN that is efficient in learning long-term dependencies and

is heavily used for natural language processing and signal processing [64]. The major

components in an LSTM cell are three gates, namely the input gate, the forget gate,

and the output gate, which are used to control how the information propagates in

the network. The gating mechanism allows LSTM cells to memorize information for

extended periods, thus realizing continuous feature learning. The key equations of an

LSTM cell are listed below:

it = σ(xtU
i + ht−1W

i + bi)

ft = σ(xtU
f + ht−1W

f + bf )

ot = σ(xtU
o + ht−1W

o + bo)

Ĉt = tanh(xtU
g + ht−1W

g + bc)

Ct = ft ⊙ Ct−1 + it ⊙ Ĉt

ht = ot ⊙ tanh(CtU
o)

(4.1)

where xt is input vector, it is input gate vector, ft is forget gate vector, ot is output

gate vector, ct is cell state vector, ht is hidden state vector, bi, bf , bo, bc are bias

vectors, U,W is parameter matrices, and σ, tanh are activation functions. ⊙ denotes

the Hadamard product for the element-wise product of matrices.
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Fig. 20. The proposed parallel architecture includes two parallel routes to extract the

signal features in AMR. The two routes extract the spatial and temporal

features using CNN-based and LSTM-based networks, respectively.

4.3 System Model

In this section, the AMR problem is first formulated as a multi-class classification

task. Then, we propose a parallel feature extraction neural network architecture to

solve the ARM problem.

4.3.1 Problem Statement

In wireless communication, the received signal is often represented as a waveform

or mathematical expression that carries the transmitted information. The expression

essentially depends on various factors, including the modulation scheme used, channel

conditions, noise, and interference. For simplicity, the received signal can be modeled

as:

y(t) = x(t) ∗ h(t) + n(t), (4.2)
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where x(t) represents the modulated signal with a certain modulation method from

the transmitter at time t. h(t) is the channel impulse response of the transmitted

wireless channel. n(t) denotes the AWGN. y(t) denotes the received signal, which

generally consists of two components: In-phase and Quadrature (I/Q) for flexible

hardware design and efficient mathematical operations [65].

The goal of the AMR task is to identify the modulation scheme of x(t) based on

the received signal y(t). In the DL field, this task can be described as a multi-classes

classification problem, which can be formulated as the two equations below:

P
(
x(t) ∈ Ci

∣∣y(t))= F(y(t); Θ)
, (4.3)

Ĉi = argmaxP
(
x(t) ∈ Ci

∣∣y(t)), (4.4)

where F(·) is the model function with parameters Θ. The output of the model is the

conditional probability P that the modulated signal x(t) belongs to the ith modulation

scheme Ci based on the observation of the received signal y(t). The Equation 4.4

outputs the predicted label Ĉi of the modulation scheme of x(t) by maximizing P .

Table 1. The parameters of CNN layers

Parameters
CNN layer

#1 #2 #3

Filter size 1× 3 2× 3 1× 3

Number of Filters 256 256 80

Padding (0× 2) (0× 2) (0× 2)

Stride 1 1 1

Dropout rate 0.25 0.25 0.5

4.3.2 Model Architecture

In this subsection, we propose the parallel neural network architecture, as il-

lustrated in Figure 20, to solve the AMR problem. The architecture is concluded
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Fig. 21. The CNN-based neural network for spatial feature extraction of the modulated

signal in Route 1.

empirically by preliminary simulations. It has two parallel routes to extract the two

types of features independently.

In the first route, the modulated signal in I/Q format is fed into a CNN-based

network to extract the spatial feature, as shown in Figure 22 (a). By conducting
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extensive comparative experiments, we selected the architecture, which consists of

three convolutional layers followed by a flattened layer and a dense layer. The num-

ber of filters used in the three 2-dimensional CNN layers is 256, 256, and 80 with

sizes 1 × 3, 2 × 3, and 1 × 3, respectively. The stride of each CNN layer is set to 1,

and the zero-padding operation is used before each CNN layer. The Batch Normal-

ization (BatchNorm) [46] and Rectified Linear Unit (ReLU) activation function [66]

are applied after each CNN layer. In addition, to avoid overfitting and improve the

generalization of our model, the dropout technique [67] is adopted, and the dropout

rate p is 0.25 for the first two CNN layers. For the third CNN layer and the last two

layers, p is set to 0.5. Table 1 presents the settings of CNN layers more intuitively.

The final output of this model is a 128× 1 dimensional spatial feature map.

In-phase component

Quadrature component

Dense layer

Temporal feature map

LSTM layer, 

256 cells

LSTM layer, 

128 cells

Fig. 22. The LSTM-based neural network for temporal feature extraction of the mod-

ulated signal in Route 2.

51



In Route 2, an LSTM-based neural network is adopted for exploiting the tem-

poral feature of the signal, as exhibited in Figure 22 (b). Essentially, the intuition

behind applying LSTM for temporal feature extraction is that the modulated signal

has continuous temporal attributes and LSTM can learn these temporal features ef-

fectively. This network consists of two LSTM layers followed by a dense layer. The

first LSTM layer has 256 cells, while the second LSTM includes 128 cells. This model

takes the modulated signal with I/Q representation as the input, and the dense layer

outputs the temporal feature map that is a 128× 1 dimensional vector. Furthermore,

the dropout method with p = 0.5 is applied on both LSTMs and dense layers.

After extracting spatial and temporal features in two parallel routes, both feature

maps are concatenated to a 256× 1 vector which is passed to a dense layer with the

ReLU activation function. Finally, the output layer generates the probabilities of

each modulated scheme using the Softmax function. The predicted class corresponds

to the modulated scheme with the highest probability.

4.4 Implementation

In this section, we first describe the dataset used for simulations and then discuss

the training details.

4.4.1 Dataset Description

To train our model and evaluate the recognition performance of our proposed ap-

proach, the radio ML dataset (RML2016.10a) [68] is adopted for simulations, which is

publicly available and widely used in AMR research as the benchmark. The dataset

is synthetically generated by utilizing GNU Radio with practical modulation parame-

ters. It has 220,000 signal samples and each sample is associated with one modulation

at a specific SNR. A sample is composed of a 256-dimensional vector, including 128
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in-phase and 128 quadrature components. The data samples are generated at 20

different SNR levels from -20 dB and 18 dB with an interval of 2 dB. There are

11 different modulations, including BPSK, QPSK, 8PSK, QAM16, QAM64, CPFSK,

GFSK, PAM4, WBFM, AM-SSB, and AM-DSB, which are prevalent in modern wire-

less communication systems. Notably, RML2016.10a also considers realistic channel

imperfections, e.g., channel frequency offset, sample rate offset, and noise, which

result in challenging recognition. More specific generation and parameters of this

dataset are available at [68].

4.4.2 Model Training

The RML2016.10a dataset is split into 60% training set, 20% validation set,

and 20% testing set. In the training phase, the adopted loss function is categorical

cross-entropy loss expressed as

L(Θ) = − 1

N

N∑
i=1

C∑
j=1

yijlog(pij), (4.5)

where N indicates the mini-batch size set to 400, and C is the number of modulation

methods. For each signal sample i, we have the predicted probabilities pi1, pi2, ..., piC ,

which represent the estimated probability of the signal belonging to each modulation

scheme. yij denotes the true modulation class labels. The Adam optimizer with the

initial learning rate of 0.001 is used to optimize Θ of our model for loss function

minimization. The learning rate is halved if the validation loss does not decrease

within five (5) epochs and the training phase is stopped if the validation loss remains

stable within 50 epochs. The training process and the simulations in Section 4.5 are

conducted on a laptop with an Nvidia GTX 1080Ti GPU and Keras with Tensorflow

as the backend.
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Fig. 23. Recognition accuracy comparison of our proposed method with three

DL-based AMR methods on the RadioML dataset.

4.5 Simulations

After the training procedure, our proposed model can classify the modulation

schemes of signals. To evaluate the performance of our method, we have conducted

extensive simulations. In this section, we first introduce the AMR models chosen for

comparisons and then discuss the simulation results.

4.5.1 AMR Models for Comparisons

To ensure fair and diverse comparisons, three typical DL-based AMR models are

adopted. The first AMR model is based on two CNN layers (referred to as CNN-

AMR) which have been widely accepted as the baseline model in AMR research [68].

The second AMR model is an LSTM-based model (referred to as LSTM-AMR) [65],
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and the last AMR model is CLDNN [56], which is composed of four CNN layers

and one LSTM layer. Specifically, the CNN-AMR and LSTM-AMR models are pure

models, while CLDNN is a hybrid model.

Fig. 24. Confusion matrix of our proposed method on 100 random RadioML signal

samples at 6dB SNR.

4.5.2 Results and Discussion

The recognition accuracy of all four models on the testing set is shown in Fig-

ure 23. The blue, red, black, and purple lines represent the results of our method,

CLDNN, CNN-AMR, and LSTM-AMR, respectively. Our method provides the best
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Fig. 25. Confusion matrix of our proposed method on 100 random RadioML signal

samples at 0dB SNR.

average accuracy across all SNR levels. It recognizes modulated signals at an accu-

racy of over 90% in SNR ranging from 0dB to 18dB, demonstrating that our method

can combine the advantages of CNN and LSTM and outperform them. Although

CLDNN is a hybrid model consisting of the CNN layer and LSTM layer, CLDNN

cannot outperform LSTM-AMR at SNR higher than 0dB. It verifies that our method

with two parallel routes can extract and learn the features of modulated signals more

efficiently than CLDNN.

To describe the recognition performance of our method in detail, we also provide
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Fig. 26. Confusion matrix of our proposed method on 100 random RadioML signal

samples at -6dB SNR.

the confusion matrices at different SNR levels. The vertical axis of each matrix

represents the true label, while the horizontal axis represents the predicted label.

As shown in Figure 24, almost all modulation schemes can be recognized accurately,

excluding WBFM which could be classified as AM-DSB, when SNR is 6dB. The

reason behind this is that WBFM and AM-DSB include some similar attributes,

e.g., interludes and off-time [58]. Similarly, it becomes more difficult to separate

QAM16 and QAM 64 signals at the SNR of 0dB, as presented in Figure 25. This is
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caused by the factor that QAM16 is the subset of QAM64 and they have overlapping

constellation points.

Figure 26 shows that the overall misclassifications increase with the decrease in

SNR. Nevertheless, AM-DSB, AM-SSB, and PAM4 can still be identified successfully

with relatively acceptable accuracy. The discussions above demonstrate that our

proposed method can recognize most modulated signals with SNR higher than 0 dB

with higher accuracy.

4.6 Conclusion

In this chapter, we have formulated the recognition of wireless modulated signals

as a multi-class classification problem in DL and proposed a parallel feature extraction

neural network architecture. Compared to most current hybrid AMR models that

extract both features step by step via CNN-RNN-like architectures, our model adopts

a parallel manner utilizing both spatial and temporal features of the signal extracted

by a CNN-based and LSTM-based network, respectively. Therefore, the two feature

extraction processes can be performed independently and will not interfere with each

other. Extensive simulations are conducted to demonstrate that our proposed parallel

model can not only complete the AMR task but also outperform pure CNN or RNN

models as well as a typical hybrid model. In future work, the potential research

directions can be summarized in the following aspects. First, we will evaluate our

model by using different modulated signal datasets to investigate the generalization of

our model. Second, the recognition accuracy of modulated signal with SNR lower than

0dB is unsatisfactory. Hence, it is necessary to improve the model by integrating signal

enhancement algorithms into AMR. Last, DL-based AMR models usually require a

large number of labeled modulated signal samples during the training, which is not

feasible in realistic wireless communications. Therefore, the exploration of utilizing
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smaller data sizes for training models without compromising performance will be

considered.

59



CHAPTER 5

AI-POWERED WIRELESS COMMUNICATIONS UNDER

ADVERSARIAL ATTACKS

5.1 Introduction

In recent years, NextG or 5G and beyond has been paying more attention

to academia and industry, along with high demand and new ways of communica-

tion needed from consumers. According to the report released by the International

Telecommunication Union (ITU), the mobile data traffic based on NextG will con-

stantly increase yearly and reach thousands of exabytes in 2030 [69]. NextG networks

aim to connect billions of devices, systems, and applications to meet high data rates

and low latency requirements to support new applications. Fortunately, NextG net-

works can satisfy these requirements and support these applications with advanced

communication, computing, and AI technologies [70]. AI is an extraordinary contrib-

utor among them in NextG networks [4]. Recent studies have demonstrated that AI

and Machine Learning (ML) based solutions outperform across all aspects of next-

generation networks, from the physical layer to the application layer [71, 72, 73]. A

conceptual model for 6G has been presented in [74], which emphasizes the importance

of AI/ML-powered solutions at each layer of the model to meet the requirements of

next-generation wireless networks in terms of latency, power allocation, privacy, se-

curity, and more.

Inspired by the tremendous achievements of AI, AI-powered models have also

been applied to IRS-driven wireless communication in NextG wireless networks to

improve performance [75, 76, 27, 77]and many AI-based AMR automatic modulation
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recognition methods have been proposed. However, the security threats (e.g., model

poisoning or adversarial machine learning attacks) and mitigation methods (e.g., ad-

versarial training or defensive distillation) have not been investigated in AI-powered

applications of NextG networks due to being new, complicated, and multi-disciplinary

topics (e.g., next-generation communications, cybersecurity, and AI) [4, 78].

To fill this gap, this chapter will focus on an AI-powered IRS model in 5G and

beyond networks and their vulnerabilities, which have received limited attention.

The vulnerabilities of an AI-powered model are among the top security concerns and

deserve a thorough investigation. For example, a trained AI model might be manipu-

lated by adding noise to the data, i.e., targeted and non-targeted adversarial attacks.

The adversarial attacks are generated by adding a perturbation to a legitimate data

point, i.e., an adversarial example, to fool the AI-powered models. The mitigation

methods will be provided to improve the robustness of the model as well. In addition,

the robustness of the deep learning-based AMR method proposed in Chapter 4 will

also be analyzed.

The remainder of this chapter is organized as follows. Section 5.2 provides the

background information about the common adversarial attacks. Section 5.3 evaluates

the performance of an AI-powered IRS system under adversarial attacks. Section

5.4 investigates an AI-based AMR model under adversarial attacks in both SISO

(Single-Input and Single-Output) and MIMO (Multiple-Input and Multiple-Output)

scenarios. Section 5.5 concludes this chapter.

5.2 Related Work

ML-based models are trained to automatically learn the underlying patterns and

correlations in data using algorithms. Once an ML-based model is trained, it can

be used to predict the patterns in new data. The accuracy of the trained model is
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essential to achieving a high performance, which can also be called a generalization.

However, the trained model can be manipulated by targeted and non-targeted ad-

versarial ML attacks to fool the models. There are various kinds of adversarial ML

attacks, such as evasion attacks, data poisoning attacks, and model inversion attacks.

Liu et al. [79] conducted a comprehensive survey on adversarial ML for wireless

and mobile systems. Adversarial ML approaches can be used to generate and detect

adversarial samples, which are samples that have been specifically designed to deceive

a machine-learning model. These samples can fool a model into misclassifying an

input and can be used to exploit certain blind spots in image classifiers. The article

reviews the state-of-the-art adversarial ML approaches to generating and detecting

adversarial samples. It provides detailed discussions highlighting the open issues and

challenges these approaches face.

An evasion attack aims to cause the ML-based models to misclassify the ad-

versarial examples as legitimate data points, i.e., targeted and non-targeted evasion

attacks. Targeted attacks aim to force the models to classify the adversarial example

as a specific target class. Non-targeted attacks aim to push the models to classify the

adversarial example as any class other than the ground truth. Data poisoning aims

to generate malicious data points to train the ML-based models to find the desired

output. It can be applied to the training data, which causes the ML-based models

to produce the desired outcome. Model inversion aims to generate new data points

close to the original data points to find the sensitive information of the specific data

points.

These adversarial attack types are given as follows.
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5.2.1 Fast Gradient Sign Method (FGSM)

FGSM is one of the most popular and straightforward approaches to construct-

ing adversarial examples. It is called one-step gradient-based attack. It is used to

compute the gradient of the loss function with respect to the input, x, and then the

attacker creates the adversarial example by adding the sign of the gradient to the

input data. It was first introduced by Goodfellow et al. in 2014 [80]. The gradient

sign is computed using the backpropagation algorithm. The steps are summarized as

follows:

• Compute the gradient of loss function, ∇xℓ(x,y)

• Add the gradient to the input data, xadv = x+ ϵ× sign(∇xℓ),

where ϵ is the budget. FGSM attack has been used in [81] to attack models.

5.2.2 Basic Iterative Method (BIM)

BIM is one of the most popular attacks called an iterative gradient-based attack.

This attack is derived from the FGSM attack. It is used to compute the gradient

of the loss function with respect to the input, x, and then the attacker creates the

adversarial example by adding the sign of the gradient to the input data. The gradient

sign is computed using the backpropagation algorithm. The steps are summarized as

follows:

• Initialize the adversarial example as xadv = x

• Iterate i times, where i = 0, 1, 2, 3, ..., N

– Compute the gradient of loss function, ∇xℓ(xadv,y)
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– Add the gradient to the input data,

xadv = xadv + ϵ× sign(∇xℓ),

where ϵ is the budget, and N is the number of iterations. The BIM attack has been

used in [81] to attack models.

5.2.3 Projected Gradient Descent (PGD)

PGD is one of the most popular and powerful attacks [82]. It is used to compute

the gradient of the loss function with respect to the input, x, and then the attacker

creates the adversarial example by adding the sign of the gradient to the input data.

The gradient sign is computed using the backpropagation algorithm. The steps are

summarized as follows:

• Initialize the adversarial example as xadv = x

• Iterate i times, where i = 0, 1, 2, 3, ..., N

– Compute the gradient of loss function, ∇xℓ(xadv,y)

– Add random noise to the gradient,

∇̂xℓ(xadv,y) = ∇xℓ(xadv,y) + U(ϵ)

– Add the gradient to the input data,

xadv = xadv + α× sign(∇̂xℓ),

where ϵ is the budget, N is the number of iterations, and α is the step size. PGD can

generate stronger attacks than FGSM and BIM.

5.2.4 Momentum Iterative Method (MIM)

MIM is a variant of the BIM adversarial attack, introducing momentum and

integrating it into iterative attacks [83]. It is used to compute the gradient of the loss
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function with respect to the input, x, and then the attacker creates the adversarial

example by adding the sign of the gradient to the input data. The gradient sign is

computed using the backpropagation algorithm. The steps are summarized as follows:

• Initialize the adversarial example xadv = x and the momentum, µ = 0

• Iterate i times, where i = 0, 1, 2, 3, ..., N

– Compute the gradient of loss function,

∇xℓ(xadv,y)

– Update the momentum,

µ = µ+ η
ϵ
×∇xℓ(xadv,y)

– Add random noise to the gradient,

∇̂xℓ(xadv,y) = ∇xℓ(xadv,y) + U(ϵ)

– Add the gradient to the input data,

xadv = xadv + α× sign(∇̂xℓ),

where ϵ is the budget, N is the number of iterations, η is the momentum rate, and α

is the step size.

Note that there are many types of adversarial attacks and defenses. The existing

defenses and adversarial attacks for images can be applied to attack and defend on

intelligent reflecting surfaces and other fields [84, 85, 86, 87]. The cleverly designed

adversarial examples can fool the deep neural networks with high success rates on

the test images. The adversarial examples can also be transferred from one model

to another model. In our experiments, we generated the adversarial inputs with

untargeted attacks.
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5.3 AI-powered IRS Communication System Under Adversarial Attacks

5.3.1 System Model Overview

It is challenging to acquire channel knowledge to estimate the Tx-IRS and IRS-Rx

channel link in an IRS-assisted system since all the reflecting elements are expected

to be nearly passive. Authors in [88] propose a new IRS architecture where all ele-

ments are passive except for a few active sensing elements and adopt a deep learning

technique to assist the IRS in addressing this problem. Specifically, the transmitter

and receiver first transmit two orthogonal uplink pilots to the active elements of IRS,

and the active elements estimate the sampled channel vectors to construct the multi-

path signature as the environment descriptors. Motivated by recent advances in deep

learning, that paper proposes to train a neural network to observe the environment

descriptors and predict the achievable rate with each IRS interaction vector. Based

on the predictions, the IRS interaction vector corresponding to the highest predicted

achievable rate will be used to reflect the transmitted data from the transmitter to the

receiver. In this study, we refer to the model above as the AI-powered IRS model and

will investigate and examine the vulnerability of this model and apply the defensive

distillation mitigation method. As we briefly discussed above, a neural network is de-

signed to map the observed environment descriptors to the predicted achievable rate

in the AI-powered IRS model. This subsection below introduces the neural network

architecture, dataset, and training details.

5.3.1.1 Neural Network Architecture

The input of the neural network model is defined as a stack of environment de-

scriptors (i.e., uplink pilot signals) received from both transmitter and receiver. Since

the training process is designed to build function mapping descriptors for reflection
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vectors, the output target of the neural network is to be a set of predictions on the

achievable rates of every possible reflection beamforming vector. The neural network

is built as a Multi-Layer Perceptron (MLP) network, which is well-demonstrated as

an effective universal approximator. The MLP is adopted to establish the connection

between the environment descriptors and the predicted achievable rates using reflec-

tion beamforming vectors, as shown in Figure 27. The MLP is composed of four fully

connected layers. ReLU activation function is adopted, and a dropout layer is added

after the activation function for every layer except for the last layer. The MLP con-

sists of the following dimensions: M(Input), [M , 2M ](Layer1), [2M , 4M ](Layer2),

[4M , 4M ](Layer3), [4M , M ](Layer4), whereM is the number of the antenna elements

on IRS.

Fig. 27. The adopted neural network architecture is composed of four fully connected

layers. The number of the neurons of the four layers is (2M , 4M , 4M , M),

where M indicates the number of the antenna elements on IRS.

5.3.1.2 Dataset Preparation

To examine the performance of the AI-powered IRS model, a publicly available

ray-tracing-based DeepMIMO dataset [89] is adopted to generate the training dataset.
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Fig. 28. The adopted ray-tracing scenario where the Large Intelligent Surface (i.e.,

IRS) is deployed to reflect the signal from the fixed transmitter to the candi-

date receivers.

The DeepMIMO dataset is a parameterized dataset designed for constructing the

MIMO channels based on ray-tracing data obtained from the accurate ray-tracing

scenario simulation. Similar to the simulation setup in [88], the outdoor ray-tracing

scenario ’O1’ is selected as shown in Figure 28. Base Station 3 (BS 3) is set as an IRS,

which is equipped with a UPA (Uniform Planar Array) with 32 × 32 (M = 1024) or

64 × 64 (M = 4096) antennas at the mmWave 28GHz setup. The transmitter is fixed

in row R850 and column 90, and the candidate receiver locations are in the uniform

x-y grid from row R1000 to R1300 (i.e., 54300 points). Both the transmitter and

receiver are assumed to have a single antenna. The antenna elements have a gain of

3dBi and a transmit power of 35dBm. Table 2 summarizes the adopted parameters

in the DeepMIMO dataset. The generated DeepMIMO dataset includes the channel
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vectors between the IRS and the transmitter/receiver of the specified subcarriers for

all candidate user locations in the x-y grid. With these channel vectors and given

the randomly selected active elements, we can construct the sampled active channel

vectors between the active elements of IRS and the transmitter/receiver. Note that

the channel vectors depend on the various elements of the surrounding environment

[88]. Therefore, the sampled active channel vectors (i.e., environment descriptors) can

be used to describe the wireless environment and fed into the deep neural networks

described earlier.

Table 2. The adopted DeepMIMO dataset parameters

DeepMIMO Dataset Parameter Value

Frequency band 28GHz

Active BSs 3

Number of Antennas (Mx, My, Mz) ∈ {(1, 32, 32); (1, 64, 64)}

Active users (receivers) From row R1000 to R1300

Active transmitter row R850 column 90

System bandwidth 100MHz

Number of OFDM subcarriers 512

OFDM sampling factor 1

OFDM limit 64

Number of channel paths 1

Antenna spacing 0.5λ
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5.3.1.3 Training Details

The training dataset has 54300 data samples since the candidate receiver loca-

tions contain 54300 points. The dataset is split into two sets, namely a training set

and a testing set with 85% and 15% of the points, respectively. To measure the

quality of the predictions and make the predicted achievable rates close to the real

achievable rates in the dataset, we define the loss function with Mean-Squared-Error

(MSE) between them. In the training process, the batch size is set to 500 samples,

and the training epochs are set to 20. The dropout rate is set to 50%, and a L2 reg-

ularization term with the factor of 10−4 is added to the loss function. The learning

rate decreases by 50% every three epochs, starting at 0.1 with the Stochastic Gradient

Descent (SGD) optimizer.

5.3.2 Defensive Distillation

As mentioned previously, in this study, we leverage the defensive distillation

mitigation method to improve the robustness of our AI-powered IRS model. Defensive

distillation is a method that applies defensive knowledge distillation to train a more

robust model [90]. Knowledge distillation was previously introduced by Hinton et

al. [91] to compress the knowledge of a large, densely connected neural network

(the teacher) into a smaller, sparsely connected neural network (the student). It has

been shown that the student could achieve a similar performance as the teacher by

mimicking the output of the teacher, and the teacher would be used as a soft label

to train the student. Furthermore, the student could be trained to be more resistant

to adversarial attacks than the teacher by using the label of the teacher as the label

of the student [92].

The architecture of the defensive distillation consists of the following steps:
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• Step 1: Train a model with cross-entropy loss as the classification task-based

model (teacher).

• Step 2: Train the same model (teacher) with defensive distillation loss (soft

label + cross-entropy) to generate the respective soft label.

• Step 3: Train a model with the soft label generated in step 2 as the label

(student) to obtain the robust model.

The defensive distillation loss function is defined as

LD (θ) = (1− λ)LCE (θ) + λLKL (PT (y|θ) , PT (y)) , (5.1)

where LCE (θ) and LKL (PT (y|θ) , PT (y)) denote the cross entropy and Kullback

Leibler (KL) divergence losses, respectively. PT (y|θ) is the output of the teacher

model with parameters θ. PT (y) is the output of the soft label. λ is a trade-off

parameter between cross entropy and KL divergence losses. Algorithm 1 shows the

pseudocode.

5.3.3 Performance Metric

This study evaluates the AI-powered IRS model through the Mean Squared Error

(MSE) performance metric. MSE scores are utilized to analyze the model vulnera-

bilities under undefended and defended conditions. The equation regarding the MSE

score is given below.

MSE =

∑
(Yt − Ŷt)

2

n
(5.2)

where :

• Yt : The actual tth instance,

71



Algorithm 1 Training the defensive distillation.

1: Input: Training data set D, base model MT , λ, α, ϵ, number of iterations N

2: Output: Defensive distillation model MD

3: Train the base model MT by minimizing the cross entropy loss LCE on D

4: Initialize the defensive distillation model MD = MT

5: while iter < N do

6: Get a batch of samples X and labels Y from D

7: Calculate the cross entropy loss LCE and KL divergence loss LKL of X

8: Calculate the defensive distillation loss LD using Eq. 5.1

9: Calculate the adversarial samples Xadv by FGSM, BIM, MIM and PGD with ϵ

10: Calculate the new loss L′
D with the adversarial samples Xadv

11: Update the weights of the defensive distillation model MD by minimizing the

new loss L′
D

12: iter ← iter + 1

13: end while

14: return MD =0

• Ŷt : The forecasted tth instance,

• n: The total number of instance

MSE score measures the average squared difference between the actual and pre-

dicted values. A high MSE score represents a high prediction error.

5.3.4 Experimental Results

This section analyses the results obtained from the experiments related to AI-

powered IRS models against adversarial machine learning attacks. Results are repre-
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sented in three ways: (1) bar plots showing the impact of each adversarial machine

learning attack on the performance of undefended and defended models, i.e., MSE,

(2) histogram plots showing the MSE metric values for each attack of defended and

undefended models, and (3) the table showing the prediction performance results of

defended and undefended models for each adversarial attack. Figure 29-30 show the

bar plots, while Figure 31-37 show the histogram plots. Table 3 shows the prediction

performance results of the defended and undefended AI-powered IRS models against

the attacks.

The trained AI-powered IRS model is implemented using Python 3.7.13 and the

TensorFlow 2.8.2 framework running on Google Colab Tesla T4 GPU with 16GB of

memory. Adversarial inputs are generated using Cleverhans 4.0.0. library.
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Fig. 29. MSE values of the undefended models for each adversarial machine learning

attack under different attack powers (ϵ)
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The adversarial attack on AI-powered models has become more popular with

various attack methods. This study uses FGSM, MIM, BIM, and PGD methods to

generate adversarial examples. The performance of each model is evaluated through

the MSE metric.

Figure 29 shows MSE values for the selected attack methods under attack powers

from ϵ = 0.01 to ϵ = 0.8. MSE values look similar for MIM, BIM, and PGD methods,

i.e., around 0.09, for all attack powers. On the other hand, MSE values increase

along with a higher attack power (ϵ > 0.5) for BIM attacks and go from 0.009 to

0.0128. The results also indicate that AI-powered models are dramatically vulnerable

to adversarial attacks.

Mitigation methods have been widely used to increase the robustness of the AI-

powered model against adversarial attacks. In this study, the defensive distillation

method is applied to the model to reduce vulnerability against adversarial attacks.

The performance of the AI-powered model is evaluated in terms of MSE after applying

the mitigation method. Figure 30 shows the performance of models, i.e., MSE values,

against adversarial attacks from ϵ = 0.01 to ϵ = 0.8 after applying the selected

mitigation method. The figure shows that the AI-powered model is still sensitive to

adversarial attacks. However, the robustness is better against adversarial attacks.

According to the figure, the model can resist any attack under low attack power

(ϵ < 0.3). The MSE values increase along with a high attack power (ϵ > 0.3) as

expected. However, the impact of the mitigation method on the performance is not

the same for all attacks. For example, the MSE values can increase up to 0.006

and 0.008 under the PGD and MIM attack, respectively, while only going up to

0.003 under the BIM attack with a very high attack power (ϵ = 0.8). It is very

interesting that there is no impact on the attack power under the FGSM attack

if the mitigation method is applied to the model. The results also indicate that
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the defensive distillation method significantly contributes to the model’s robustness

against adversarial attacks.
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Fig. 30. MSE values of the defended models for each adversarial machine learning

attack under different attack powers (ϵ)

The histogram plots investigate the distribution of MSE values for undefended

and defended models under adversarial attacks. In Figure 31-37, (a) represents the

undefended models, while (b) represents defended models for each attack, i.e., FGSM,

BIM, MIM, and PGD, respectively. According to the results, the undefended models,

i.e., (a), represent a little right-skewed distribution, which has a peak to the left of the

distribution and data values that taper off to the right. MSE values vary from 0.005

to 0.025 for all attack types, and around 50% percent of MSE values are between

0.006 and 0.009. It is compatible with Figure 29-30. On the other hand, it is difficult

to define the histogram plots for defended models, i.e., (b). According to the results,
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Fig. 31. Distribution of MSE values for undefended models under the FGSM attack

Figure 31, 33, 37 (b) represents a little right-skewed distribution like the undefended

model ones, while Figure 35 (b) does not represent any distribution. The most MSE

values are clustered around 0.0, i.e., 30% - 60%. This means the AI-powered model

can correctly predict the target values. It is also clear that the percent of the high

MSE values (< 0.015) is much lower than the undefended model. The defended

models are more effective against FGSM and BIM attacks, as shown in Figure 31 and

33. It is obvious that the mitigation methods can dramatically improve the model

robustness under FGSM attacks, i.e., 90% of MSE values are less than 0.005. On the

other hand, the defended models are not successful against MIM and PGD attacks

compared to FGSM and BIM, as shown in Figure 35 and 37. Although low MSE

values, i.e., < 0.005, are clustered around 50%, the MSE values still go up to 0.015

for MIM and PGD attacks.

Table 3 shows the impact of a specific ϵ value on the MSE performance met-
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Fig. 32. Distribution of MSE values for defended models under the FGSM attack
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Fig. 33. Distribution of MSE values for undefended models under the BIM attack

77



0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
MSE

0
5

10
15
20
25
30
35
40

Pe
rc

en
t

Fig. 34. Distribution of MSE values for defended models under the BIM attack
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Fig. 35. Distribution of MSE values for undefended models under the MIM attack
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Fig. 36. Distribution of MSE values for defended models under the MIM attack
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Fig. 37. Distribution of MSE values for undefended models under the MIM attack
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Fig. 38. Distribution of MSE values for defended models under the MIM attack

Table 3. Prediction performance results in terms of the MSE metric.

ϵ values

0.01 0.1 0.3 0.5 0.7 0.8

FGSM
Undef. 0.009161 0.009162 0.009169 0.009177 0.009187 0.009193

Distil. 0.000632 0.000631 0.00063 0.000628 0.000628 0.000629

BIM
Undef. 0.009205 0.009308 0.009191 0.010089 0.011761 0.012642

Distil. 0.000555 0.000625 0.001321 0.002208 0.002895 0.002957

MIM
Undef. 0.009206 0.009402 0.009402 0.009269 0.009438 0.009539

Distil. 0.00057 0.000663 0.003606 0.006696 0.008069 0.00836

PGD
Undef. 0.009206 0.009398 0.009582 0.009382 0.00937 0.009389

Distil. 0.000555 0.00065 0.00294 0.005439 0.00618 0.006191
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rics of the AI-powered IRS model for each adversarial attack in detail. The value

of ϵ ranges from 0.01 to 0.8. The higher the value of ϵ means, the more powerful

attack on the AI-powered model is expected. Except for BIM, the MSE values are

usually around 0.0092-0.0095 for undefended models under any attack power and

type. It reaches up to 0.012 under a high attack power (BIM and ϵ = 0.8). How-

ever, MSE values dramatically decrease, e.g., from 0.0091/0.0092 to 0.0005/0.0006

for FGSM/BIM/MIM/PGD, once the mitigation method is applied. It is clear that

the mitigation method significantly affects the robustness of the model, but not for

all types of attacks. For example, MSE values are the same for the defended model

under the FGSM attack at all attack powers. The mitigation method can handle

FGSM-type attacks because of its simplicity. However, MSE values increase for the

defended model under the other types of attacks at a high attack power level. For

example, MSE values go from 0.0005 to 0.002, 0.0005 to 0.008, and 0.0005 to 0.006

for BIM, MIM, and PGD attacks, respectively. MSE values are the highest under

the MIM attack (0.008 at 0.8 of the attack power). The MIM is the most effective

adversarial attack type among the selected attacks.

5.3.5 Discussion

This study investigates AI-powered IRS models in NextG networks and their vul-

nerabilities against adversarial attacks and the contribution of mitigation methods to

the model’s robustness. The models’ vulnerabilities are studied for various adversar-

ial attacks, i.e., FGSM, BIM, MIM, and PGD, as well as the mitigation method, i.e.,

defensive distillation. The results show that AI-powered IRS models are vulnerable

to adversarial attacks. On the other hand, the mitigation methods can significantly

improve the model’s robustness under adversarial attacks. According to the results,

adversarial attacks on AI-powered IRS models and the use of the proposed mitigation
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method can be summarized as:

Observation 1 : AI-powered IRS models are vulnerable to adversarial attacks, espe-

cially BIM with a high attack power (ϵ > 0.5).

Observation 2 : There is no significant impact of the attack power (ϵ) on some adver-

sarial attacks, i.e., FGSM.

Observation 3 : The defensive distillation mitigation method significantly increases

the model robustness, especially under FGSM and BIM attacks.

Observation 4 : The MSE values histogram usually represents a smaller right-skewed

distribution, especially for the undefended models.

Observation 5 : Around 50% percent of MSE values are between 0.006 and 0.009 for

the undefended models.

Observation 6 : The most MSE values are clustered around 0.0, i.e., 30% - 60% for

the defended model.

Observation 7 : The most effective adversarial attack types are BIM and MIM for

undefended and defended models, respectively.

5.4 Defending AI-based AMR models Against Adversarial Attacks

AMR is one of the critical steps in the signal-processing chain of wireless net-

works, which can significantly improve communication performance. AMR detects

the modulation scheme of the received signal without any prior information. Re-

cently, many AI-based AMR methods have been proposed, inspired by the consid-

erable progress of AI methods in various fields. On the one hand, AI-based AMR

methods can outperform traditional methods in terms of accuracy and efficiency. On

the other hand, they are susceptible to new types of cyberattacks, such as model poi-

soning or adversarial attacks. This section explores the vulnerabilities of an AI-based

AMR model to adversarial attacks in both single-input-single-output and multiple-
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input-multiple-output scenarios.

5.4.1 System Model Overview

In this subsection, we first introduce the dataset preparation for both SISO and

MIMO scenarios and then describe the adopted LSTM-based AMR model in the

simulations. SISO refers to a communication system with only one antenna at the

transmitter and one at the receiver while MIMO represents a communication system

with multiple antennas at both the transmitter and the receiver. MIMO systems are

used in modern wireless communication standards, such as 4G LTE, 5G, and beyond,

to improve the data throughput, increase the range, and enhance the reliability of

the communication link. The critical differences between SISO and MIMO systems

are antenna configuration, channel capacity, complexity, and performance. MIMO

systems typically provide higher data rates, longer ranges, and better reliability than

SISO systems, especially in environments with multipath propagation and interfer-

ence.

5.4.1.1 Dataset Preparation for SISO Scenario

To investigate the performance and vulnerability of the AI-based (i.e., LSTM-

based) AMR model in a SISO scenario, the GNU radio ML dataset RML2016.10a

[68] is adopted for simulations since this dataset is publicly available and widely used

in research as the benchmark. There are 220,000 signal samples in the GNU radio

ML dataset RML2016.10a, and each sample is associated with one modulation at

a specific SNR level. Each sample consists of a 256-dimensional vector comprising

128 in-phase and 128 quadrature components. There are 11 different modulations,

including BPSK, QPSK, 8PSK, QAM16, QAM64, CPFSK, GFSK, PAM4, WBFM,

AM-SSB, and AM-DSB. The data samples are constructed at 20 different SNR levels
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from -20 dB and 18 dB with an interval of 2 dB.

5.4.1.2 Dataset Preparation for MIMO Scenario

MIMO system with precoding is adopted from [49]. It is a common MIMO system

that consists of a transmitter with Nt antennas and a receiver with Nr antennas. The

transmitter and receiver are assumed to have full knowledge of the channel, and

the transmission is over a flat fading channel. With the MIMO system above, we

generate the dataset with three different antenna setting groups: (Nt = 4, Nr = 2),

(Nt = 16, Nr = 4) and (Nt = 64, Nr = 16). The signal samples are modulated with

six different modulations, i.e., 2PSK, QPSK, 8PSK, 16QAM, 64QAM, and 128QAM,

at different SNR levels from -10 dB to 20 dB. 500 samples are prepared per SNR for

each modulation, and the number of symbols transmitted per signal sample is 128.

5.4.1.3 Model Description

This subsection explains the LSTM-based AMR model adopted from [65]. RNN

is commonly applied to learn persistent features of sequence data. LSTM is a particu-

lar type of RNN that is efficient in learning long-term dependencies and is heavily used

for natural language processing and signal processing [64]. The major components in

an LSTM cell are three gates, namely the input gate, the forget gate, and the output

gate, which are used to control how the information propagates in the network. The

gating mechanism allows LSTM cells to memorize information for extended periods,

thus realizing continuous feature learning.

The adopted LSTM-based AMR model consists of two LSTM layers followed by

a fully connected layer and a softmax layer, as shown in Figure 39. The in-phase

and quadrature components of modulated signals are fed to the model as a two-

dimensional vector. The first two LSTM layers have 128 LSTM units each, and the

84



In-phase component
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Softmax layer

Predicted class

Fig. 39. The architecture of the LSTM-based AMR model. This model is trained for

signal modulation recognition using the amplitude-phase signal.

output of the last LSTM layer is a 128-dimensional vector, which is passed to the

following fully connected linear layer and softmax layer. In the SISO scenario, the

softmax layer maps the features learned from previous layers to one of 11 output

classes indicating the 11 modulation schemes. In the MIMO scenario, the softmax

layer maps the features learned from previous layers to one of 6 output classes since

there are six different modulations in the MIMO dataset. Essentially, the reason for

using an LSTM model for signal classification is that signals with different modulation

schemes contain different amplitude and phase features, and the LSTM model is
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capable of learning these temporal features effectively.

To train the LSTM model for modulation recognition, first, the SISO and MIMO

datasets are split into training, validation, and test sets at a ratio of 6:2:2 for SISO

and MIMO scenarios, respectively. The loss function used is categorical cross-entropy,

and the initial learning rate is set to 0.001 with the Adam optimizer. The learning

rate will be halved if the validation loss does not decrease within 5 epochs, and the

training process will be stopped if the validation loss remains stable for 50 epochs.

The batch size is set to 400, and the training process is conducted using an Nvidia

GTX 1080Ti GPU and Keras with Tensorflow as the backend.

5.4.2 Experiments

This section provides the experimental results for the SISO and MIMO scenarios

using LSTM-based AMR undefended and defended models, with the attack success

ratio. The attack success ratio refers to the ratio of successfully transmitted malicious

data or signals to the total amount of data or signals transmitted. It is also widely

used in communication systems to assess their security and measure how vulnerable

the system is to different types of attacks. In this study, the experimental results

are obtained by averaging across multiple iterations, i.e., 30 times. The analysis

focuses on the attack success ratio of four different adversarial attack methods (BIM,

FGSM, MIM, and PGD) with and without applying a mitigation method (defensive

distillation). The objective is to identify potential weaknesses in the communication

system.

A grid search approach is employed to determine the optimal parameters for de-

fensive distillation-based adversarial ML attack mitigation. The grid search involved

systematically exploring a predefined parameter grid to find the parameter combi-

nation that yielded the best performance. The parameters considered in the grid
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search included the temperature parameter for defensive distillation, the regulariza-

tion strength, and the learning rate. The combination that resulted in the highest

model robustness against adversarial attacks was identified by exhaustively searching

the parameter grid. This grid search methodology ensures a comprehensive explo-

ration of parameter space, leading to an informed selection of the optimal parameters

for defensive distillation in the context of adversarial ML attack mitigation.

5.4.3 Simulation Results in SISO Scenario

In a SISO scenario, the transmitter sends a single signal, which is received by

the receiver over a single channel. This type of system is commonly used in simple

point-to-point communication links, such as those between a mobile phone and a base

station. Fig. 40 illustrates the attack success ratio of the undefended SISO model for

each adversarial attack, i.e., BIM, FGSM, MIM, and PGD. According to the figure,

the developed model is not robust under BIM, MIM, and PGD attacks, i.e., the attack

success ratio can go up to 1.0 even under attack powers ϵ < 0.06. However, the FGSM

attack has a low success ratio compared to other attack methods, i.e., the maximum

attack success ratio is 0.6 under a heavy attack power ϵ = 1.0. It means the developed

AMR model is robust against FGSM attacks. In some cases, FGSM attacks may be

less effective than other more sophisticated attacks, such as BIM, MIM, and PGD

attacks. Therefore, it is important to carefully consider the threat model and evaluate

the effectiveness of different attack methods under different scenarios.

Table 4 shows the attack success ratio of different types of attacks along with

different levels of attack strength for the undefended SISO model in detail. The first

row shows the attack strength, ranging from 0.01 to 1.0, and the first column shows

the names of the attack types, i.e., BIM, FGSM, MIM, and PGD. According to the

table, BIM, MIM, and PGD have a high success ratio for most attack powers (ϵ),
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Fig. 40. Attack success ratio of the undefended SISO model.

while FGSM has a lower success ratio. This indicates that the other three attacks

may be more effective than FGSM in generating adversarial attacks. For example,

the BIM attack had a success ratio of 0.38, the FGSM attack had a success ratio of

0.06, the MIM attack had a success ratio of 0.75, and the PGD attack had a success

ratio of 0.50 at an attack strength of 0.01. On the other hand, the values of the

success ratio go up to 1.00, 0.58, 1.00, and 1.00 for BIM, FGSM, MIM, and PGD

attacks at the highest attack power (ϵ = 1.0), respectively.

Fig. 41 shows the attack success ratio of the defended SISO model under the

selected attacks, i.e., BIM, FGSM, MIM, and PGD. According to the figure, all attack

success ratio values decrease under all attack types compared to the undefended
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model. BIM, MIM, and PGD show similar trends. However, the attack success ratio

values vary between around 0.1 to 0.6 under light (ϵ = 0.01) and heavy attack powers

(ϵ = 1.0). As expected, the FGSM attack has a low success ratio compared to other

attack methods; i.e., the maximum ratio is around 0.1 under all attack powers ϵ, and

the developed model is more robust against FGSM attacks.

Table 5 provides detailed information about the performance of different attack

methods on a machine learning model in terms of attack success ratio at different levels

of attack power. The table is organized in a grid format, with the rows indicating

the attack methods (BIM, FGSM, MIM, and PGD) and the columns indicating the

strength of the attack (ranging from 0.01 to 1.0). Each cell in the table represents the

success ratio of the corresponding attack method at the corresponding level of attack

power. For instance, the success ratio of the BIM at 0.01 attack power is 0.11, while

the attack success ratio at 1.0 attack power is 0.55. Similarly, the attack success ratio

of MIM attack at 0.1 power is 0.04, while its attack success ratio at 1.0 attack power

is 0.58. Note that the FGSM attack method has the least impact on the machine

learning model, as its success ratio is consistently low at all levels of attack power.

The minimum success ratio for FGSM is 0.00, while the maximum success ratio is

0.13 (at attack power of 0.9 and 1.0). On the other hand, the BIM, MIM, and PGD

attack methods are more effective at compromising the model’s performance. For

BIM/MIM/PGD, the minimum success ratios are 0.11, 0.04, and 0.12 (at an attack

power of 0.01), respectively. The maximum success ratios for these methods are 0.61,

0.60, and 0.67 at a high attack power, respectively.

5.4.4 Simulation Results in MIMO Scenario

In a MIMO scenario, multiple signals are transmitted simultaneously over mul-

tiple channels, and the receiver uses advanced signal processing techniques to sep-
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Fig. 41. Attack success ratio of the defended SISO model.

arate and decode the signals. Fig. 42 shows the attack success ratio of the de-

fended MIMO model under the selected adversarial attacks. According to the figure,

BIM/MIM/PFG attacks are very effective, and the attack success ratio values can

achieve 1.0 (i.e., 100%) even at mid-level attack powers, ϵ >= 0.5. As in the previous

scenario, the FGSM attack has a low attack success ratio compared to other attack

methods, i.e., the maximum attack success ratio is around 0.4 under heavy attack

powers ϵ = 1.0. It is obvious that the attack success ratio increases with the attack

power in parallel. The details will be investigated in the following table.

Table 6 presents the attack success ratio for the selected four adversarial attacks

(FGSM, BIM, MIM, and PGD) on the developed undefended MIMO model at differ-
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Fig. 42. Attack success ratio of the undefended MIMO model.

ent levels of attack powers (from 0.01 to 1.0). According to the table, all attack types

except FGSM seem very effective, as they achieve a 100% attack success ratio on sev-

eral high attack powers. Among them, BIM and MIM are the most effective attack

methods against the model, as they achieve a high success ratio across a wide range

of strength levels. On the other hand, FGSM is not very effective at lower strength

levels (0.01 and 0.1) but becomes more effective as the strength level increases.

Fig. 43 illustrates the attack success ratio of the defended MIMO model for the

same attacks and attack powers as in the previous scenario. The figure shows that

the attack success ratio values significantly decrease for the defended MIMO model,

especially for mid-level attack power. BIM/MIM/PGD attacks exhibit similar trends,
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Fig. 43. Attack success ratio of the defended MIMO model.

i.e., having a low attack success ratio at low attack power and a high attack success

ratio at high attack powers. As expected, the FGSM attack method has the least

impact, i.e., almost none, as its success ratio is consistently low at all levels of attack

power, i.e., around 0.1. Some results show a zero (0) attack success ratio, meaning

the attack success ratio is very low or almost 0.

Table 7 provides more detailed information regarding the attack success ratio

of different adversarial attack methods on the defended MIMO model at different

attack powers. According to the table, the FGSM attack has almost no impact on

the defended MIMO model at all attack powers, i.e., the maximum attack success

ratio is 0.11. Other attack types (BIM/MIM/PGD) still impact the defended model.
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For example, in the BIM attack, at 0.01 attack power, the success ratio is 0.0, meaning

the attack was not successful. However, at 0.7 attack power, the success ratio jumps

to 0.75. For the MIM attack, the success ratio for 0.01 attack power is 0.0, but

it increases to 0.09 for 0.02 attack power. The success ratio remains low for the

following attack powers but increases substantially for higher attack powers, reaching

a maximum success ratio of 0.75 for 0.9 attack power. For the PGD attack, the

success ratio remains 0.0 for 0.01 attack power, but it increases to 0.20 for 0.02 attack

power. The success ratio then varies between 0.0 and 0.5 for different attack powers

and reaches a maximum value of 0.60 for 1.0 attack power.

5.4.5 Discussion

This study aims to investigate the performance and vulnerabilities of AI-based

AMR models under popular adversarial attacks, such as FGSM, BIM, MIM, and

PGD, as well as the impact of the selected mitigation method (defensive distillation)

on performance improvement. The simulation results indicate that AI-based AMR

models are vulnerable to model poisoning attacks, but the impact can be reduced or

eliminated with mitigation methods. Based on the findings, the following observa-

tions can be made:

Observation 1 : Adversarial attacks are effective in compromising the accuracy of deep

learning models, with attack success ratios ranging from 0% to over 100% depending

on the attack method and power.

Observation 2 : The attack success ratio of adversarial attacks tends to increase with

the attack power. In most cases, attack success ratios increase rapidly as the attack

power goes from 0.01 to 0.1 but then plateau or increase more slowly for larger attack

powers.

Observation 3 : Mitigation methods can reduce the attack success ratios of adversarial
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attacks, but their effectiveness varies depending on the attack method and power.

Observation 4 : MIMO models can provide better defense against adversarial attacks

compared to single-input single-output (SISO) models.

Observation 5 : Adversarial attacks significantly impact both undefended and de-

fended SISO/MIMO models in terms of attack success ratio, particularly for BIM,

MIM, and PGD attacks.

Observation 6 : FGSM attack method has the least impact on models, as its success

ratio is consistently low at all levels of attack power.

Observation 7 : PGD is the most effective attack against the defended SISO model,

with an attack success ratio of 0.67.

Observation 8 : MIM is the most effective attack against the defended MIMO model,

with an attack success ratio of 0.75.

5.5 Conclusion

The next-generation networks, i.e., NextG or 5G and beyond, have dramatically

enhanced along with advanced communication, computing, and AI technologies in

the last decade. AI is the most important contributor to the improvement of NextG

in terms of performance. This chapter investigates the vulnerability of AI-powered

IRS models against adversarial attacks (i.e., FGSM, BIM, PGD, and MIM) and the

impact of the proposed mitigation method, i.e., defensive distillation, on improving

the robustness of AI models in NextG networks. The results indicate that the AI-

powered NextG networks are vulnerable to adversarial attacks. On the other hand,

mitigation methods can make the models more robust against adversarial attacks.

According to the overall results, the most effective adversarial attack types are BIM

and MIM for undefended and defended models, respectively. The proposed mitigation
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method can provide better results for the attacks, including FGSM, BIM, MIM, and

PGD, in terms of increasing the model robustness and reducing the vulnerability.

In addition, we evaluated the performance of AI-based AMR models and their

robustness against various adversarial attacks (i.e., FGSM, BIM, PGD, and MIM)

with and without the selected mitigation method (defensive distillation). The experi-

mental results demonstrate that both undefended and defended SISO/MIMO models

are vulnerable to adversarial attacks, with attack success ratio values significantly

increasing at high attack power. In the defended SISO model, the PGD attack has

the highest success ratio, followed by BIM and MIM attacks. In the defended MIMO

model, the MIM attack has the highest success ratio, followed by BIM and PGD

attacks. The FGSM attack had minimal impact on the attack success ratio for both

undefended and defended SISO/MIMO models compared to other adversarial attack

types due to its simplicity and limitations, i.e., linear approximation, limited pertur-

bation strength, and knowledge of the model. The experimental results also reveal

that mitigating methods significantly impact model robustness, reducing the attack

success ratio of all attacks. These findings highlight the need to develop more se-

cure and robust AI-based models for next-generation communication technologies to

protect against adversarial attacks.

In future work, we will focus on adversarial attack detection in AI-based commu-

nications models, which is the necessary step before attack mitigation. Furthermore,

we will attempt to develop better defense mechanisms against adversarial attacks

for the AI-based communication models, improving the security of machine learning

systems. While the current study provides valuable insights into the effectiveness

of defensive distillation for defending AI-based models against adversarial attacks, it

is acknowledged that further comparisons and sensitivity/stability analyses are war-

ranted. These additional analyses, planned as part of future work, will enable a more
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comprehensive evaluation of the proposed approach, including comparisons with al-

ternative mitigation methods and assessment of the sensitivity of models to different

attack scenarios and stability over varying conditions. This will provide a more robust

and convincing evaluation of the AI-based communication models.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

The preceding chapters have explored the security and machine learning applications

in NextG networks. Specifically, the security scenarios for IRS-aided communication

systems are studied. Two deep learning-based models for wireless signal denoising and

signal modulation recognition are developed. The vulnerability of two AI-powered

communication systems under machine learning adversarial attacks is also investi-

gated. This chapter summarizes the main contributions of this thesis in Section 6.1

and discusses potential future directions in Section 6.2.

6.1 Conclusions

The main contributions of this dissertation can be summarized in the following

four aspects.

1. We have studied the potential security impact of the IRS on wireless commu-

nication systems from two perspectives: improving the security of communica-

tions and committing security threats using the IRS in four scenarios. Both

perspectives benefit from the flexibility of reprogramming a communication en-

vironment by adjusting its position and phase shifts of reflecting elements. Ex-

tensive simulations have been conducted for all scenarios.

2. Wireless signals are not only weakened by the communication environment but

also disrupted by malicious attackers. To enhance the signal quality, we devel-

oped a generative adversarial networks-based wireless signal denoising method.

Simulations on different types of wireless signals have demonstrated that our
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proposed method outperforms traditional signal denoising techniques in a dy-

namically changing environment.

3. AMR is an essential component in wireless communications and can be applied

to various scenarios. We defined AMR as a multi-class classification task in

deep learning and proposed a model that extracts the spatial and temporal fea-

tures from wireless signals in parallel. Simulations are conducted using wireless

signals with 11 different modulation methods. Our proposed method delivers

a more convincing performance compared to typical deep learning-based AMR

techniques.

4. Although integrating AI into NextG wireless communications brings new oppor-

tunities and improves performance in various aspects, it leads to a significant

security concern, i.e., adversarial attacks. We evaluated the performances of

two AI-powered communication systems under four common machine-learning

adversarial attacks and discussed their vulnerabilities. In addition, a defensive

distillation method is introduced to protect AI-powered models and mitigate

attacks.

6.2 Future Works

NextG promises ultra-fast speeds, extremely low latency, and increased capacity

to support a massive number of devices. This will enable advancements in various

fields, including autonomous vehicles, smart cities, and advanced healthcare solutions.

IRS and AI have been recognized as crucial components in contributing to advanced

networks. Researchers have been actively integrating IRS and AI into NextG to im-

prove communication performance from different aspects. However, several concerns

and challenges remain to be addressed.
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• Recent research on IRS-aided wireless communications primarily focuses on

optimizing the phase shift coefficients at the IRS while considering various con-

straints such as total transmit power and the presence of eavesdroppers. How-

ever, these works are based on a strong assumption that the IRS is able to

identify the signal sources so that the IRS can be controlled to strengthen or

weaken the total received signal strength. Therefore, an efficient signal identifi-

cation method is desirable to assist the operations of IRS-aided communication

systems.

• It is extremely challenging to acquire the full channel state information (CSI)

in IRS-aided communication systems due to the large number of IRS elements.

In many research works, it is generally assumed to be known. However, hav-

ing full CSI can significantly enhance the performance and security of wireless

communication systems by enabling adaptive techniques, improving resource

management, and reducing interference. Therefore, a scalable approach to ob-

taining the CSI for IRS needs to be developed.

• As more devices connect to NextG networks, the communication scenarios will

become increasingly complex. AI is adaptive and intelligent, with immense

potential to transform wireless communication. It can be applied to allocate re-

sources and configurations for efficient network management. Additionally, AI

can enhance channel estimation accuracy and develop dynamic channel models,

especially in complex and dynamic environments. In addition to adversarial

attacks, AI-driven communication systems are also vulnerable to other threats,

including model manipulation, inference attacks, and backdoor attacks. Conse-

quently, a thorough investigation into the robustness of AI-driven communica-

tion systems is necessary.
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