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Article I: Abstract: 

Nanomagnetic devices have emerged as a promising alternative to conventional complementary metal-

oxide-semiconductor (CMOS) devices due to their low energy dissipation and inherent non-volatility. 

However, the widespread adoption of these devices requires high-density, high-speed, reliable, 

scalable, and energy-efficient technologies. This thesis investigates the use of nanomagnetic memory 

devices as both conventional Boolean memory and multistate memory for hardware AI applications. 

Magnetic tunnel junctions (MTJs) are nanomagnetic memory devices that can be switched reliably and 

energy-efficiently using stress-mediated switching. However, realistic material inhomogeneity and 

scalability pose challenges for stress-mediated switching of MTJs scaled to lateral dimensions below 

50 nm. We demonstrate that resonant excitation of MTJs using surface acoustic waves can effectively 

address the scaling challenges associated with the high anisotropies required for sub-50 nm lateral 

dimensions.  

For hardware AI applications, in-memory computing using non-volatile devices offers energy-efficient 

alternatives to traditional von Neumann computing by bridging the gap between computation and 

memory units. This approach addresses the significant energy inefficiency caused by the constant 

shuttling of data between these units. We implemented classification hardware based on deep neural 

networks (DNNs) using in-memory computing with domain wall (DW)-based non-volatile synaptic 

devices. Our research shows these DW devices can achieve multistate memories using energy efficient 

voltage control, however, with low resolution and stochasticity. By devising a strategy to address 

device stochasticity and limited precision during DNN training, we demonstrated that competitive 

accuracy can be achieved compared to 32-bit precision synapses, with at least two orders of magnitude 

energy savings. Additionally, spintronic reservoirs leveraging the rich magnetization dynamics of 

confined skyrmions are explored for autonomous time series prediction, offering an efficient 

alternative to recurrent neural networks (RNNs) and long short-term memory (LSTM) networks for 

edge AI applications. 

Moreover, we investigate multiferroic structures and rare earth iron garnets (REIGs) for their potential 

in electric field control of magnetization, offering the possibility of ultra-low energy dissipation in 

high-density magnetic data storage applications. Our research includes the characterization of novel 

materials, such as bismuth-substituted yttrium iron garnet (Bi-YIG) on piezoelectric substrates, 

demonstrating voltage-induced control of magnetic properties. We also explore the static exchange 

coupling of magnetic multilayers consisting of thulium iron garnet (TmIG) with perpendicular 
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magnetic anisotropy and cobalt iron boron (CoFeB). Incorporating REIGs into MTJs is challenging 

due to their insulating nature. However, coupling REIGs to a magnetic metal could enable readout of 

the REIG magnetization if the metal forms the free layer of an MTJ. Additionally, we explore the 

dynamic coupling between REIGs and CoFeB driven by spin current exchange, excited by 

ferromagnetic resonance, revealing that the magnetic damping parameter can be controlled by non-

local relaxation and coupling. 

In summary, this thesis contributes to the development of energy-efficient spintronic devices for non-

volatile memory and hardware AI applications, addressing challenges in scalability, stochasticity, and 

material characterization, and paving the way for future advancements in these cutting-edge 

technologies. 
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Chapter 1: Introduction 

 

The exponential growth in computing power and the rapid advancement of artificial intelligence (AI) have 

led to unprecedented demands on energy consumption in the technology sector. Considering that the world's 

computing needs are increasing exponentially, and "computing" encompasses several aspects of our daily 

lives from a Google search, to using an Apple map while driving, or making a query on ChatGPT, it is 

vitally important to consider the energy and carbon footprint of computing. To put that into perspective, 

training a large language-based transformer model is responsible for 626,155 lbs of CO2 emission, whereas 

a car’s lifetime emission is 126,000 lbs [1]. Furthermore, the annual CO2 emission due to data centers and 

high-performance computing is estimated to be 100 billion kilograms [2]. In summary, even if the energy 

cost per computation is small, the enormous volume of activity makes the energy needed and the 

environmental impact significant. 

Another significant source of energy consumption is data processing, which has been centralized 

traditionally, with learning and inference performed in computers, servers, or high-performance data 

centers. However, an increasing number of Internet of Things (IoT) devices, from smart homes to industrial 

controls, processors in biomedical devices, self-driving cars, sensor networks, etc., need to process complex 

information at the edge. This necessitates inference at the edge, although learning can take place in servers 

given the large amount of data required for training and the relatively large computing power needed. 

Furthermore, some edge AI devices operate in constantly changing environments and need to learn in real-

time. While prior training can be applied to the new environment (transfer learning), a few layers would 

need to be retrained. Thus, performing all inference and some learning at the edge can be extremely 

beneficial as it is energy efficient since no communication is needed with a server, has low latency, enables 

real-time learning and inference (needed in self-driving cars), and is more cyber-secure as the computation 

is performed at the edge. Furthermore, edge devices are constrained by limitations in hardware resources 

and available energy. Thus, the need of the hour is to enable inference and learning on edge devices where 

available energy and hardware resources are severely constrained.  

As we approach the physical limits of traditional CMOS-based computing architectures, there is an urgent 

need for innovative solutions that can address the mounting challenges of energy efficiency, particularly in 

the domains of non-volatile memory and hardware AI implementations. This thesis explores the potential 

of energy-efficient spintronic devices to meet these critical needs, offering a promising pathway towards 

sustainable and high-performance computing systems. 
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The current computing landscape is dominated by the von Neumann architecture, which suffers from a 

fundamental bottleneck: the constant shuttling of data between processor and memory units. This 

inefficiency results in significant energy dissipation, a problem that is particularly acute in data-intensive 

tasks such as those required by deep neural networks (DNNs). Our research investigates various spintronic 

technologies that offer compelling alternatives to traditional volatile CMOS-based memory devices, aiming 

to bridge the gap between computation and memory storage.  

A primary focus of our work is on magnetic tunnel junctions (MTJs), which have emerged as promising 

candidates for non-volatile nanomagnetic memory devices. While spin transfer torque (STT) has been the 

predominant mechanism for magnetization switching in MTJs, our research explores alternative strategies 

such as strain-mediated and voltage-mediated switching. These novel approaches have the potential to 

substantially reduce energy consumption, pushing the boundaries of energy efficiency in memory devices. 

Our work includes detailed micromagnetic simulations that incorporate realistic factors such as thermal 

noise, material inhomogeneities, and edge roughness, providing a comprehensive understanding of 

magnetization dynamics in these devices under various conditions. 

Another key area of our research is the investigation of domain wall (DW) based magnetic structures for 

neuromorphic computing applications particularly for edge AI. By combining spin-orbit torque (SOT) with 

stress-induced modulation of perpendicular magnetic anisotropy (PMA), we demonstrate an innovative 

approach to controlling DW position in racetracks. This technique shows great promise for implementing 

energy-efficient synaptic devices that can be programmed in real-time, opening new avenues for hardware 

AI implementations. 

A critical aspect of our work focuses on bridging the gap between the theoretical capabilities of DNNs and 

the practical limitations of hardware implementations using spintronic devices. We address this challenge 

through the development of quantized DNNs specifically designed for implementation with low-resolution 

non-volatile magnetic domain wall racetrack-based memory. Our approach allows for weights to be 

represented with as few as two states (binary or 1-bit) or a limited number of states (e.g., 3-state or 5-state), 

aligning well with the characteristics of DW devices. We employ a mixed-precision framework where 

synaptic weights are maintained at low resolution in the DW devices, while gradient calculations and weight 

updates are performed in high precision. This strategy enables us to achieve classification accuracies 

comparable to full-precision networks while leveraging the energy efficiency and non-volatility of DW-

based memory. We also explore the scalability of our approach for complex data sets using convolutional 

neural networks (CNNs). We should mention that such device-aware training is equally applicable to other 

non-volatile technologies such as RRAM and PCRAM technologies and could be adopted for those equally 

well if future advances demand it.  
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Our research extends into the realm of recurrent neural networks (RNNs) and reservoir computing (RC), 

where we explore the use of spintronic devices, particularly those based on skyrmions, for temporal data 

processing tasks. We demonstrate that these systems can perform complex operations such as long-term 

prediction of chaotic time series and household power demand forecasting with high efficiency and low 

training cost. 

Furthermore, we delved into the study of multiferroic structures and rare earth iron garnets (REIGs) for 

their potential in electric field control of magnetization. These materials offer the exciting possibility of 

ultra-low energy dissipation in high-density magnetic data storage applications, potentially outperforming 

current-based technologies by several orders of magnitude. Our research in this area includes the 

characterization of novel materials such as bismuth-substituted yttrium iron garnet (Bi-YIG) on 

piezoelectric substrates, demonstrating voltage-induced control of magnetic properties. In addition, we 

explore static exchange coupling and dynamic coupling phenomena of magnetic multilayers consisting of 

thulium iron garnet (TmIG) having perpendicular magnetic anisotropy of magnetoelastic origin and cobalt 

iron boron (CoFeB) which has been a standalone choice for MTJ.  Coupling the REIG to a magnetic metal 

would enable readout of the magnetization of the REIG, which is otherwise challenging due to the insulating 

nature of REIGs, if the metal formed the free layer of an MTJ. 

Throughout this thesis, we emphasize the critical importance of energy efficiency in spintronic devices for 

non-volatile memory and hardware AI applications. By leveraging novel materials, device architectures, 

and control mechanisms, we aim to push the boundaries of what is possible in energy-efficient computing. 

Our work contributes to the ongoing effort to overcome the limitations of traditional computing paradigms 

and pave the way for next-generation technologies that can meet the growing demands of AI and big data 

processing while minimizing energy consumption. 

The implications of this research extend beyond academic interest, offering potential solutions to some of 

the most pressing challenges in modern computing. As we move towards an increasingly data-driven and 

AI-centric world, the need for energy-efficient computing solutions becomes ever more critical. Our work 

on spintronic devices aims to address this need, potentially enabling new classes of low-power, high-

performance computing systems that could revolutionize fields ranging from edge computing and Internet 

of Things (IoT) devices to large-scale data centers and supercomputers. 

In the following chapters, we will present detailed analyses of our various research directions, including 

device design, experimental results, theoretical modeling, and potential applications. Through this 

comprehensive exploration of energy-efficient spintronic devices, we hope to contribute significantly to the 
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ongoing transformation of computing technology and pave the way for a more sustainable and capable 

technological future. 

 

1.1 Background: 

1.1.1 Magnetic tunnel junctions: 

Magnetic tunnel junction (MTJ) is the fundamental building block of spintronic memory and computing.  

It consists of a ferromagnetic layer (free layer) whose magnetizations can be switched, one ferromagnetic 

layer (fixed layer) whose magnetization orientation is fixed. The layers are separated by a thin insulator 

layer (typically MgO). A synthetic antiferromagnet (SAF) layer to cancel dipole coupling from this fixed 

layer can be stacked on top of the fixed layer, not shown in Fig. 1-1 for the sake of simplicity. When a 

voltage is applied across the MTJ, electrons can tunnel through the insulator layer where the tunneling 

probability is largely dependent on the relative orientation of the two ferromagnetic layers. When the 

ferromagnetic layers are in parallel orientation, the tunneling probability is high and current passing through 

the tunnel barrier experiences less resistance (denoted as memory bit, 0). Conversely, with anti-parallel 

configuration, the current experience highest resistance (memory bit, 1).  This difference in resistance, 

known as tunneling magnetoresistance (TMR), is crucial for applications regarding magnetic memory and 

spintronic applications. Two types of MTJ geometries are common where the magnetic layers 

magnetizations are either in-plane or out-of-plane.  

 

Figure 1-1 Schematics of magnetic tunnel junction with magnetizations orientations of the ferromagnets oriented along in-plane 

and out of plane.  

1.1.2. Magnetic domain wall racetrack:  

A magnetic domain wall racetrack is a memory technology that uses the movement of magnetic domain 

walls within a nanowire to store and manipulate information. In this system, bits of data are represented by 

the position of domain walls, which separate regions of opposite magnetic orientation. By applying current 
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pulses or magnetic fields, these domain walls can be moved along the racetrack, allowing for high-speed, 

high-density, and non-volatile data storage.  

A domain wall magnetic tunnel junction (DW-MTJ) is a hybrid device where the racetrack hosting the 

magnetic domain wall acts as the free layer of the MTJ. An insulating tunnel barrier such as MgO and a 

fixed magnetic layer completes the DW-MTJ stack. As the domain walls are translated along the racetrack, 

the resistance of the devices varies resulting in multi-state memory, Fig. 1-2. 

 

Figure 1-2 Domain wall racetrack memory and corresponding DW-MTJ. The resistance states of the devices can be controlled by 

applying different strength current pulses.  

1.1.3 Deep neural networks: 

A deep neural network (DNN) is a neural network architecture that is characterized by one or several hidden 

layers in between the input and output layers as shown in Fig. 1-3. Each layer of a DNN consists of several 

interconnected neurons that apply nonlinear transformations to the input. During the learning, the DNN’s 

weights are adjusted based on the error between the predicted output and actual (true) output using 

backpropagation of errors and gradient decent methods.  

The sets of equation explaining the forward propagation of the DNN are shown below: 

 

𝑎𝑗 = 𝑓 (∑ 𝑤𝑖𝑗𝑥𝑖

𝑁

𝑖=1
+ 𝑏𝑗) 

𝑜𝑘 = 𝑔(∑ 𝑤𝑗𝑘𝑎𝑗

𝑀

𝑗=1
+ 𝑏𝑘) 

 

(1) 
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𝑓(𝑥) = 𝑔(𝑥) =
1

1 + 𝑒−𝑥
 

Here, x is the inputs of neurons, a is the activations, 𝑤𝑖𝑗 are the weights and b is the biases. In Eq. 1, the 

activation function is sigmoid. Other functions such as hyperbolic tan, SoftMax and rectified linear unit 

(ReLu) can be used as activation functions depending on the architecture and model for achieving high 

accuracy. 

 

 

Figure 1-3 Schematic of a DNN architecture showing the input, hidden and output layers neurons.  

The sets of equation explaining the backward propagation where the actual learning of the DNN is 

accomplished are the following: 

 

Cost: 𝐶 =
1

2
 ∑ (𝑦𝑘 − 𝑜𝑘)

2𝑃
𝑘=1  

𝛿 = ∑ 𝑤𝑗𝑘𝑎𝑗

𝑀

𝑗=1
+ 𝑏𝑘 

𝜕𝐶

𝜕𝑤1𝑘
=

𝜕𝐶

𝜕𝑜𝑘
.  

𝜕𝑜𝑘 

𝜕𝛿
.  

𝜕𝛿

𝜕𝑤1𝑘
 

𝑤1𝑘
𝑖𝑡𝑒𝑟+1 = 𝑤1𝑘

𝑖𝑡𝑒𝑟 − 𝜂.
𝜕𝐶

𝜕𝑤1𝑘
 

 

(2) 



7 
 

Where C is the cost function. 𝑦𝑘 and 𝑜𝑘 are the actual target value and the predicted value of the neural 

network. Stochastic gradient decent (SGD) is used to optimize the neural network weights where 𝜂 

represents the learning rate. We note that SGD is one of the popular choices for hardware DNN learning 

due to its simplicity where the DNN weights are updated at each of the input sample of the DNN. 

Quantization of the DNN:  

A quantized neural network (QNN) is a type of neural network where the precision of the weights or 

activations or both are reduced from floating-point to lower-bit representations, such as 8-bit integers to 

even binary values. This quantization process significantly reduces the computational and memory 

requirements, enabling the deployment of neural networks on resource-constrained devices and systems. 

Despite the reduced precision, QNNs can maintain high accuracy through careful training and optimization 

techniques. They offer a practical solution for implementing deep learning models in real-time applications, 

where efficiency and power consumption are critical considerations. 

 

 

Figure 1-4 Quantization of DNN weights. The corresponding equations shown at top and bottom for hidden layer neurons are for 

conventional DNN neurons and quantization approach respectively.    

Weight Quantization:  The number of states of the DNN weights can be selected arbitrarily with the interval,  

𝛥 =
𝑤𝑖𝑗

𝑚𝑎𝑥−𝑤𝑖𝑗
𝑚𝑖𝑛

𝐿
. If we assume the quantization function: 

 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒 (𝑤𝑖𝑗) = 𝑤𝑖𝑗
𝑞

 (3) 
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During the learning of the neural network, the derivative of quantized weight with respect to real weights 

are required. However, due to the discontinuity in quantization function, 
𝜕𝑤𝑖𝑗

𝑞

𝜕𝑤𝑖𝑗
  is indeterminate. Thus, 

backpropagation suffers. 

 
𝜕𝐶

𝜕𝑤1𝑘
=

𝜕𝐶

𝜕𝑜𝑘
.  

𝜕𝑜𝑘 

𝜕𝛿
.  

𝜕𝛿

𝜕𝑤1𝑘
𝑞 . 

𝜕𝑤1𝑘
𝑞

𝜕𝑤1𝑘
 (4) 

We use Straight-through Estimator (STE) approach [3] to address this issue.: 

 
𝜕𝑤1𝑘

𝑞

𝜕𝑤1𝑘
= 1 (5) 

1.1.4. Reservoir computing: 

Reservoir computing is a neural network architecture that consists of an input layer, an output layer, and an 

intermediate reservoir composed of a large number of interconnected neurons with recurrent connections 

(Fig. 1-5). It leverages the dynamical properties of the reservoir, where the interconnected nodes provide 

high-dimensional representations of the input data due to their complex and recurrent connections. The 

connection strengths (or weights) among the constituent nodes (or neurons) of the reservoir are fixed and 

do not need to be adjusted during learning, which greatly simplifies the training process. Only the weights 

of the output layer are trained. Due to the reservoir’s ability to capture temporal dependencies within the 

data, it can serve as a powerful alternative to recurrent neural networks (RNNs) or even long short-term 

memory (LSTM) networks. 

 

Figure 1-5 Schematic of a reservoir showing the recurrent connections among neurons.  

Spintronic devices show rich magnetization dynamics which are highly non-linear. In addition, they possess 

short term memory properties. These properties make them ideal candidates for reservoir computing. The 

non-linear dynamic properties of magnetic skyrmion are illustrated in Fig. 1-6.  
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Figure 1-6 Magnetic skyrmion acts as a physical reservoir. The magnetization of the patterned skyrmion oscillates due to 

modulation of perpendicular magnetic anisotropy (PMA).    

 

1.1.5 Imaging techniques for magnetic structure characterization:  

To characterize magnetic structures ranging from nanoscale to micrometer scale and magnetic films we use 

magneto-optical kerr microscopy (MOKE), vibrating sample microscopy (VSM) and magnetic force 

microscopy (MFM).  

Magneto optical Kerr Microscopy:  

Magneto-optical effects refer to the influence of magnetization direction on the optical constants of a 

material. Information about magnetic domains can be obtained through the reflected light, due to the Kerr 

effect, or the transmitted light, through the Faraday effect. Both effects involve a slight rotation of the 

polarization plane of incident light and can be observed with a polarization microscope. However, since 

most magnetic materials are not transparent, the Kerr microscope is typically used to observe domain 

images. The Kerr effect can be applied to any metal or light-absorbing material, while the Faraday effect is 

used for transparent media. 

In the following, we describe the Kerr effect based on the magnetization direction of the sample. Consider 

a sample with magnetization oriented perpendicular to the film surface, as shown in Fig. 1-7a. When 

linearly polarized light is incident on the sample, the electrons oscillate parallel to the plane of polarization, 

corresponding to the plane of the electric field, E. Normally reflected lights have the same polarization 
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plane as the incident light, we denote it as 𝑬𝑅,𝑁. Lorentz force, acting on the electrons at the same time 

exert a small motion, 𝜈𝐿 which is proportional to, 𝜈𝐿 = −𝒎 × 𝑬, where m is the magnetization vector. This 

motion generates the Kerr amplitude, 𝑬𝑅,𝐾 for reflections and the superposition of normal reflection 

component 𝑬𝑅,𝑁 with 𝑬𝑅,𝐾 creates the magnetization dependent rotation of the polarized light. Polar Kerr 

effects are shown in Fig. 1-7a where the sample magnetization is perpendicular to the plane. The effect is 

strongest when the angle, Θ=0°. The effect will be similar for incident lights polarized parallel or 

perpendicular to the incident plane due to the symmetry with respect to, Θ=0°. 

 

 

Figure 1-7 Schematics showing the a. polar b. longitudinal and c. transverse geometries of magneto-optical effects. 

For longitudinal effect, the plane of incidence is parallel to the direction of the sample magnetization and 

the magnetization is along the sample surface. Fig. 1-7b shows the longitudinal effects for incident light 

polarized parallel to the incident plane. The angle of the light beam cannot be zero, as the Lorentz motion 

will vanish for zero angle incident light. The longitudinal effect is proportional to the angle of incidence 

following sinΘ.   

For transverse effect, the plane of incidence is perpendicular to the magnetization direction where the 

magnetization is parallel to the sample plane, Fig. 1-7c. In reflection, the parallel polarized light (parallel 

to the plane of incidence) experiences Kerr rotation but along the same direction of the normal reflection. 

Thus, the transverse effect causes amplitude variation of the light, however, does not produce any 

appreciable contrast in the magnetic domain images. Similar to the longitudinal, the transverse effect is 

proportional to sinΘ.  
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The schematic of a high-resolution MOKE microscope is shown in Fig. 1-8. Light passing through a 

polarizer is reflected from the sample, experiencing normal amplitude reflection coefficients for the incident 

light. Additionally, Kerr amplitudes are excited depending on the polar, longitudinal, or transverse effect. 

The reflected light then passes through an analyzer of a specific configuration, which determines the total 

signal amplitude relative to the incident light. By using an oil immersion lens and shorter wavelength blue 

light, a minimum resolution of 0.3 µm can be achieved [4]. 

 

Figure 1-8 Schematic showing the operation of a MOKE microscope.  

Magnetic Force Microscopy:  

Magnetic Force Microscopy (MFM) is an imaging technique used to measure the magnetic information of 

the surface at nanoscale. It is a special form of atomic force microscopy (AFM) used to image and measure 

the magnetic properties of surfaces at the nanoscale. In MFM, a magnetic tip in a cantilever scan over the 

sample surface, and the sample-tip interactions causes deflections of the cantilever which is detected by a 

photodetector enabling the visualization of magnetic domains, domain walls, and other magnetic structures. 

Vibrating sample microscopy: 

Vibrating sample microscopy (VSM) works by vibrating a magnetized sample in a uniform magnetic field, 

inducing a voltage in pickup coils that is proportional to the sample's magnetic moment, allowing the 

magnetic properties of the sample to be determined. A simplified sketch of the VSM is shown in Fig. 1-9.  
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Figure 1-9 Schematic showing the operation of VSM. 

 

1.1.6. Microstructure and nanostructure patterning:  

Micro and nanoscale structures are patterned using maskless photolithography and electron-beam 

lithography. Fig. 1-10 shows the steps of patterning the magnetic structures using positive photoresist (or 

positive electron beam resist).  

Maskless Photolithography:  

Maskless photolithography, also known as direct-write lithography, is used to create patterns on substrates 

without the need for a physical mask. First, a substrate is coated with a light-sensitive photoresist layer. 

Then a digital pattern is created and subsequently projected onto the photoresist using a modulated light 

source such as a laser. This exposure step selectively alters the photoresist according to the digital pattern. 

After exposure, the substrate is developed in a chemical solution that removes either the exposed or 

unexposed regions of the photoresist, depending on whether a positive or negative photoresist is used. For 

positive photoresist, the exposed region will be removed after development. Then cohesive metals (such as 

Ti or Pt) and magnetic materials are deposited using ion-beam sputtering or electron-beam deposition 

method to transfer the pattern from the photoresist to the substrate itself. Finally, the remaining photoresist 

is stripped away, leaving behind the patterned structures.  

Electron-beam lithography: 

The process steps are similar to maskless photolithography except the resist coated substrate is radiated 

with e-beam in a vacuum. Here, electron-sensitive resist, such as PMMA is used. A digital pattern is 
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designed and the substrate is then exposed to a focused electron beam in an EBL system, which scans the 

resist according to the pattern. After development and material deposition, the remaining resist is removed 

using lift-off, leaving the desired nanoscale features on the substrate. 

 

 

Figure 1-10 Schematics showing operation steps of magnetic microstructures (maskless photolithography) or nanostructures (e-

beam lithography) patterning. 

  

1.1.7 Micromagnetic modeling of magnetization dynamics: 

Magnetization dynamics was simulated by solving the Landu-Lifshitz-Gilbert (LLG) equation in 

micromagnetic framework [5]. 

 (1 + 𝛼2)
ⅆ𝑚⃗⃗ 

ⅆ𝑡
= −𝛾𝑚⃗⃗ × 𝐻⃗⃗ 𝑒𝑓𝑓 − 𝛼𝛾 (𝑚⃗⃗ × (𝑚⃗⃗ × 𝐻⃗⃗ 𝑒𝑓𝑓)) (6) 

Here 𝛾 is the gyromagnetic ratio,  𝐻⃗⃗ 𝑒𝑓𝑓 is the effective field, 𝛼 is the damping, 𝑚⃗⃗  is the reduced or unit 

magnetization, 𝑀𝑠 is the saturation magnetization. 

𝐻⃗⃗ 𝑒𝑓𝑓 can be expressed as the contribution from several fields: 

 𝐻⃗⃗ 𝑒𝑓𝑓 = 𝐻⃗⃗ 𝑎𝑛𝑖𝑠 + 𝐻⃗⃗ 𝑑𝑒𝑚𝑎𝑔 + 𝐻⃗⃗ 𝑠𝑡𝑟𝑒𝑠𝑠 + 𝐻⃗⃗ 𝑒𝑥𝑐ℎ + 𝐻⃗⃗ 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 (7) 
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We assume first order uniaxial anisotropy field, 𝐻⃗⃗ 𝑎𝑛𝑖𝑠 : 

 𝐻⃗⃗ 𝑎𝑛𝑖𝑠 =
2𝐾𝑢

𝜇0𝑀𝑠
(𝑣 . 𝑚⃗⃗ )𝑣  (8) 

𝐾𝑢 is the first order anisotropy constant and 𝑣  represents the uniaxial anisotropy direction (i.e. perpendicular 

to plane).  

If a uniaxial stress is applied in plane (perpendicular to the out of plane anisotropy direction), the stress 

induced field due to the inverse magnetostriction (Villari) effect, 𝐻⃗⃗ 𝑠𝑡𝑟𝑒𝑠𝑠 can be expressed as:  

 𝐻⃗⃗ 𝑠𝑡𝑟𝑒𝑠𝑠 =
2𝐾𝑡

𝜇0𝑀𝑠
(𝑠 . 𝑚⃗⃗ )𝑠  (9) 

The effective stress anisotropy constant can be represented by  𝐾𝑡 =
3

2
𝜆𝑠𝜎, where 𝜆𝑠 is the saturation 

magnetostriction and 𝜎 is the stress amplitude and 𝑠  represents the stress direction. We note that stress 

induced in the in-plane direction perpendicular to the 𝑠   direction (which is opposite in sign) can add to the 

𝐻⃗⃗ 𝑠𝑡𝑟𝑒𝑠𝑠 . We do not include this term; thus, our stress estimation is conservative (though the qualitative 

dynamics remains unchanged as in chapter 2). 

Exchange field 𝐻⃗⃗ 𝑒𝑥𝑐ℎ has two contributions, one from Heisenberg exchange and another from the 

Dzyaloshinskii–Moriya interaction (DMI). DMI contribution to the exchange field is expressed in micro-

magnetic configuration as: 

 𝐻⃗⃗ 𝐷𝑀𝐼 =
2𝐷

𝜇0𝑀𝑠
[(∇⃗⃗ . 𝑚⃗⃗ )𝑧̂ − ∇⃗⃗ 𝑚𝑧] (10) 

Here, 𝑚𝑧 is the z-component of the unit magnetization vector 𝑚⃗⃗  and D is the effective DMI constant.  

Thermal fluctuation generates 𝐻⃗⃗ 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 in the following manner:  

 𝐻⃗⃗ 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 𝜂  √
2𝛼𝑘𝑇

𝜇0𝑀𝑠𝛾Ω𝛥
 (11) 

𝜂  is a randomly generated normal Gaussian distributed vector generated at each time step, 𝑘 is Boltzmann 

constant, Ω is the finite difference cell volume, 𝛥 is the step size. 

The effect of the STT torque in micromagnetics is included by means of augmented LLG equations which 

is called Landu-Lifshitz-Gilbert-Slonczewski equation: 



15 
 

 
(1 + 𝛼2)

ⅆ𝑚⃗⃗ 

ⅆ𝑡
= −𝛾𝑚⃗⃗ × 𝐻⃗⃗ 𝑒𝑓𝑓 − 𝛼𝛾 (𝑚⃗⃗ × (𝑚⃗⃗ × 𝐻⃗⃗ 𝑒𝑓𝑓)) − 𝛽𝛾(𝜀 − 𝛼𝜀′)(𝑚⃗⃗ × (𝑚⃗⃗ 𝑃 × 𝑚⃗⃗ )) 

+ 𝛽𝛾(𝜀′ − 𝛼𝜀)(𝑚⃗⃗ × 𝑚⃗⃗ 𝑃) 

(12) 

 𝛽 =
ℏ𝐽

𝜇0𝑒ⅆ𝑀𝑠
, 𝜀 =

𝑃𝛬2

(𝛬2 + 1) + (𝛬2 − 1)(𝑚⃗⃗ ⋅ 𝑚⃗⃗ 𝑝)
 (13) 

Here  ℏ is the reduced Planck constant,  𝐽 is the current density along z direction, ⅆ is the free layer 

thickness, 𝑒 is the electron charge, 𝜇0 is the permeability of free space, 𝑚⃗⃗ 𝑝 is the fixed layer unit 

magnetization. We assume Slonczewski parameter, 𝛬 = 1, secondary spin-torque parameter 𝜀′ = 0 and 

spin polarization 𝑃 = 0.5669. 

The effect of the spin orbit toque (SOT) on magnetization dynamics can be addressed by adding two spin 

orbit torques, damping like torques also called Slonczewski torque and a filed like toque expressed as 

follows: 

 

 
(1 + 𝛼2)

ⅆ𝑚⃗⃗ 

ⅆ𝑡
= −𝛾𝑚⃗⃗ × 𝐻⃗⃗ 𝑒𝑓𝑓 − 𝛼𝛾 (𝑚⃗⃗ × (𝑚⃗⃗ × 𝐻⃗⃗ 𝑒𝑓𝑓)) − 𝜏𝐷𝛾(𝑚⃗⃗ × (𝑚⃗⃗ × 𝜎 )) 

+ 𝜏𝐹𝛾(𝑚⃗⃗ × 𝜎 ) 

(14) 

Where 𝜎  is the spin polarization direction for the electrons that are accumulated at the interface of the 

ferromagnet and heavy metal. The direction of 𝜎  can be found from the direction of the SOT current. If, 

𝐽 𝑥  is the unit vector defining the direction of current flow and 𝑧   is the direction of inversion asymmetry 

then 𝜎 = 𝐽 𝑥 × 𝑧   .  𝜏𝐷 and 𝜏𝐹 are the constants associated with the damping like torque (Slonczewski torque) 

and the field like torque. We neglect the field like torque as it is typically small. The constant 𝜏𝐷 can be 

expressed as: 

 𝜏𝐷 =
ℏ𝐽𝜃

2𝜇0𝑒ⅆ𝑀𝑠
 (15) 

Here, 𝐽 is the value of current flowing through the heavy metal layer and 𝜃 is the spin Hall angle which is 

0.1 for Platinum. 

As there is no built-in function to address SOT in micromagnetic software MUMAX3 [5] we incorporate 

SOT by equating the SOT (Eq. 14-15) with the STT as described in Eq. 12-13. For that, we assume spin 

polarization to be 𝑃 = 1, Slonczewski parameter to be 𝛬 = 1 and 𝑚⃗⃗ 𝑃 = −𝜎 = −𝐽 𝑥 × 𝑧 . In addition, we 

consider secondary spin torque parameter to be 𝜀′ = 𝛼𝜀 and neglect the field like torque. 
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1.2 Organization of this dissertation proposal: 

Chapter 2 discuss the use of acoustically induced ferromagnetic resonance (FMR) for surface acoustic wave 

(SAW) assisted spin transfer torque (STT) switching of MTJs that can potentially scale to lateral dimensions 

< 50 nm.   

Chapter 3 presents energy efficient multistate non-volatile synapse based on translating domain walls 

(DWs) in racetracks with a combination of spin orbit torque (SOT) and voltage induced strain. The 

corresponding stochastic distribution of quantized weights in the presence of thermal noise and edge 

roughness are explained in detail.  

Chapter 4 presents energy efficient learning with low resolution stochastic DW synapse for deep neural 

networks (DNNs). The algorithm to train the DNNs implemented with such synapses and the corresponding 

results are explained in detail.  

Chapter 5 presents physical reservoir implemented with magnetic skyrmions for autonomous prediction 

and long-term household Energy load forecasting. 

Chapter 6 presents the details of experimentally achieved modulation of magnetic anisotropy in bismuth 

substituted yttrium iron garnet with voltage-controlled strain. The modifications in domain formation 

pattern due to the change in voltages observed are explained.    

Chapter 7 presents the details of interfacial exchange and magnetostatic coupling observed experimentally 

in the heterostructures consisting of REIG TmIG having perpendicular magnetic anisotropy of 

magnetoelastic origin and different thickness of magnetic metal CoFeB.  

Chapter 8 presents the details of the experimentally observed dynamic coupling found in the TmIG/CoFeB 

heterostructures due to exchange of non-equilibrium exchange of spin current when the magnetic layers are 

driven into resonance. 

Chapter 9 presents the conclusion and the future works. 
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Chapter 2: Acoustic Wave Induced FMR Assisted Spin-Torque Switching of Perpendicular 

MTJs with Anisotropy Variation 

 

We have investigated Surface Acoustic Wave (SAW) induced ferromagnetic resonance (FMR) assisted 

Spin Transfer Torque (STT) switching of perpendicular MTJ (p-MTJ) with inhomogeneities using 

micromagnetic simulations that include the effect of thermal noise. With suitable frequency excitation, the 

SAW can induce ferromagnetic resonance in magnetostrictive materials, and the magnetization can 

precesses in a cone with high deflection from the perpendicular direction. With incorporation of 

inhomogeneity via lateral anisotropy variation as well as room temperature thermal noise, the magnetization 

precession in different gains can be significantly incoherent. Interestingly, the precession in different grains 

is found to be in phase, even though the precession amplitude (angle of deflection from the perpendicular 

direction) varies across grains of different anisotropy. Nevertheless, the high mean deflection angle due to 

acoustically induced FMR can complement the STT switching by reducing the STT current significantly; 

even though the applied stress induced change in anisotropy is much lower than the total anisotropy barrier. 

This work indicates that SAW induced FMR assisted switching can improve energy efficiency while being 

scalable to very small dimensions, which is technologically important for STT-RAM and elucidates the 

physical mechanism for the potential robustness of this paradigm in realistic scenarios with thermal noise 

and material inhomogeneity. 

 

Magnetic tunnel junctions (MTJ) are finding increasing application as non-volatile nanomagnetic memory 

devices, which are an alternative to volatile CMOS based memory devices. The most prevalent scheme to 

accomplish magnetization switching of the free layer of an MTJ (i.e. writing bits) utilizes spin transfer 

torque (STT) [1, 2]. Although STT memory can be scaled to ~10 nm, the energy requirement has not 

decreased below 100 fJ/bit [3]. Therefore, alternative strategies such as strain mediated [4, 5] and voltage 

mediated MTJ [6, 7] switching have been investigated. However, scaling strain-based devices is 

challenging. As the volume (V) shrinks, to maintain an energy barrier with sufficient thermal stability (𝐸𝑏 =

𝐾𝑢𝑉 ~ 1𝑒𝑉), large perpendicular anisotropy (𝐾𝑢) is required. In such a scenario, the static stress (𝜎)  

required to erode the energy barrier, which is determined by 𝐸𝑠𝑡𝑟𝑒𝑠𝑠 = 3 2⁄ 𝜆𝑠𝜎𝑉 = 𝐸𝑏 , would also be very 

large. For example, to erode an energy barrier of Eb ~1eV in a circular nanostructure with lateral dimension 

of 20 nm and thickness 1 nm (i.e. volume, V ~314 nm3), and a saturation magnetostriction of 𝜆𝑠 = 200 ppm 

the stress amplitude could be as high as 1.7 GPa. This is possibly an order of magnitude higher than the 

stress that can be generated dynamically or applied for many cycles in a practical device. While using 
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material with higher magnetostriction such as Terfenol-D [8] may address this issue partly, there could be 

other concerns due to bidirectional coupling between magnetization and strain [9], and thus the stress 

requirement could still be high.    

In contrast to static stress, time varying stress can drive the magnetization to acoustically induced 

ferromagnetic resonance (A-FMR) [10]. This can lead to large amplitude magnetization precession even 

when the stress induced anisotropy change is substantially smaller than the total energy barrier as the 

amplitude of this precession grows due to the energy added over many cycles. Physically, time varying 

strain can be generated by surface acoustic waves (SAW) via interdigital SAW electrode deposited and 

patterned over a piezoelectric substrate. Previously, SAW driven FMR on Ni film [11] and magnetization 

switching for magnetostrictive Co nanomagnets has been experimentally reported [12]. Precessional 

magnetization switching [13] with SAW on (GA, Mn) (AS, P) film and field free switching with SAW for 

(Ga, As) P [14] has also been experimentally reported at low temperature. Laser pump induced SAW and 

their magnetization dynamics has been studied for single nanomagnet [15] and on patterned periodic 

nanodots [16] and their magnetization reversal has been numerically investigated in nanomagnets [17].  

SAW assisted STT induced magnetization reversal for in-plane and perpendicular MTJ based on 

simulations using macro-spin assumption has recently been reported [18]. The main purpose of the scheme 

is to induce magnetization rotation with SAW so that when the STT is applied, the magnetization 

experiences higher torque. However, macrospin assumption precludes modeling of incoherence in the 

magnetization dynamics, which could arise due to inhomogeneity in material properties. This 

inhomogeneity can be an intrinsic material property [19], or due to edge modifications [20], roughness 

variation [21], thickness variation over an extended area [22], etc. While the incoherence in magnetization 

mainly stems from the competition between the long ranged weak magnetostatic energy and short ranged 

strong exchange energy and the balance is ultimately decided by the size and shape of the nanomagnetic 

structure; the above-mentioned inhomogeneities can increase the incoherency even in smaller size 

nanomagnet by varying the local anisotropy field. 

In this study, we perform micromagnetic simulations that incorporate the incoherent magnetization 

dynamics in the presence of room temperature thermal noise as well as lateral variation in the uniaxial 

(perpendicular) anisotropy. Furthermore, the cell size of lateral dimensions 1.56 nm × 1.56 nm naturally 

includes an edge roughness ~ 1 nm that is consistent with lithography and fabrication limitations. It is 

expected that all these realistic variations could lead to incoherent magnetization precession. For example, 

the magnetization in different grains (Voronoi tessellation was used to create regions with an average lateral 

dimension ~ 10 nm) can precess at different cones when driven by a SAW as shown in Fig. 2-1c. This 

incoherent (non-uniform) magnetization precession reduces the net magnetization of the nanomagnet (as in 
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Fig. 2-1c although some regions precess in high cone, the net magnetization remains very low) and in 

extreme cases reduces it to zero. Therefore, we study this incoherent precession, particularly in the SAW 

induced FMR regime, to understand the underlying magnetization dynamics as well as its ramifications on 

the ability to significantly reduce the STT switching current. This has important implications towards 

implementation of energy efficient STTRAM that are scalable to small lateral dimensions.  

 

 

Figure 2-1 a. MTJ arrays and SAW electrode over piezoelectric substrate b. initial magnetization state of the inhomogeneous (i.e. 

granular) free layer c. application of SAW induces different angle precession and the resulting incoherency reduces the net 

magnetization, M d. final magnetization state after application of STT current. 

 

2.1 Model:   

We assumed the piezoelectric substrate to be Lithium Niobate and the SAW wave launched by the 

Interdigital transducer (IDT) patterned on top the piezoelectric is Rayleigh wave which is propagating along 

y-axis (Fig. 2-1a). Such a Rayleigh wave has three dominant strain components, normal strain along 

propagation direction y, normal strain along direction z and a shear strain in x-z plane. We only consider 

the strain component along the SAW propagation direction and neglect the normal strain along z-direction 

as the nanomagnet is not clamed on top and the shear strain is weak near the surface [23]. For simplicity, 

we do not consider Einstein-de Hass effect in the manner of Ref. [24].  

We performed micromagnetic simulation using mumax3 [25] where we divided our circular MTJ free layer 

with 50 nm diameter and 1.5 nm thickness into 32 × 32 × 1 cells. The cell size is well within the 

ferromagnetic exchange length √2𝐴𝑒𝑥 𝜇0⁄ 𝑀𝑠
2 ~ 6 nm. We simulate an inhomogeneous nanomagnet shown 

in Fig. 2-2 with 10 nm average lateral dimension grains (regions with different anisotropies created by the 

Voronoi tessellation). The anisotropy direction (easy axis) for all the grains is assumed to be the same and 

perpendicular to the plane (z-axis). The anisotropy constant, K1 (for details see eq. 4) is varied within the 

grains and the values of K1 have Gaussian distribution with mean value of 4.5837 × 105 J m3⁄  and standard 

deviation of 5%. The exchange stiffness constant, Aex which defines the strength of the interaction between 
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neighboring spins could be reduced at the grain boundaries but assumed to be constant for the sake of 

simplicity. For homogeneous nanomagnet the mean value of K1 is considered to be the anisotropy constant.  

 

Figure 2-2 Grain distribution of the inhomogeneous nanomagnet using Voronoi tessellation. The colormap is showing the values 

of the first order anisotropy constant, 𝐾1 (see eq. 4) for different grains. The values of 𝐾1 is choosen using gaussion distribution of 

mean 4.5837 × 105 𝐽 𝑚3⁄  and standard deviation of 5%.  

Magnetization dynamics in the presence of SAW induced stress and STT current was simulated by solving 

the Landu-Lifshitz-Gilbert-Slonczewski equation in MuMax3 [25] as explained in section 1.2.7. The 

material parameters for simulation are shown in Table 2-1. 

Table 2-1: FeGa material properties [26, 27] 

Parameters Fe81Ga19 

Saturation magnetostriction (𝜆𝑠) 350 ppm 

Gilbert damping (𝛼) 0.015 

Saturation magnetization (𝑀𝑠) 0.8 × 106 A/m 

Gyromagnetic ratio (𝛾) 2.21 × 105 m/A.s 

Exchange stiffness (𝐴𝑒𝑥) 18 pJ/m 

 

2.2 Results and discussion:  

We first simulate a perpendicular homogeneous nanomagnet with an energy barrier ~70 kT with uniform 

initial magnetization tilted (~2°) from the perpendicular z-axis. This assumption is conservative as thermal 

noise was found to tilt the mean equilibrium magnetization by ~20° . To investigate the magnetization 

precession behavior with time varying strain, we excite the nanomagnet with SAW of different frequencies 

at T= 0 K. In response, the magnetization starts to precess in a cone around the perpendicular axis as seen 

from Fig. 2-3a. The precession slowly settles to a mean deflection of ~35° from the perpendicular direction 
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when 100 MPa SAW excitation is applied for a sufficiently long time. However, we note that even a static 

200 MPa stress cannot induce any reasonable equilibrium deflection (< 1°), proving that the large deflection 

from the perpendicular direction is specifically a resonance effect. 

 

Figure 2-3 a. Evolution of magnetization deflection (θ) from the perpendicular z direction for 100 MPa 13.2 GHz SAW b. Average 

polar angle deflection (θ) for different excitation frequency for varying stress amplitude. Resonance point (highest deflection) shifts 

towards lower frequency with increasing stress. 

The average precession cone deflection angle (polar angle, 𝜃 see Fig. 2-1) is plotted for different excitation 

frequency in Fig. 2-3b for varying stress amplitude. As we can see from Fig. 2-3b, the highest deflection 

angle (resonant point) shifts towards the low frequency with increasing stress amplitude. As we increase 

the stress amplitude, the magnetization deflects more from the perpendicular direction and the effective 

field in the perpendicular z-direction decreases. This low effective field in the z-direction causes slower 

magnetization precession at resonance.  

Introducing inhomogeneity in nanomagnets (i.e. anisotropy variation between grain) could modify the 

overall (mean effective) anisotropic field strength along the z-direction and consequently alter the resonance 

frequency compared to the homogeneous nanomagnets. As different grains have different resonance 

frequencies, one may expect that the deflection angle vs. frequency is less steep (resonance is not sharp). 

However, it is likely that the strong exchange interaction forces the individual regions’ magnetization to 

precess nearly in phase. Therefore, the deflection angle vs. frequency (and resonance characteristics) was 

found to be similar to the homogeneous structure with a mere frequency shift because of mean anisotropy 

change. Similarly, in the presence of room temperature thermal noise (at T=300 K) the equilibrium 

magnetization fluctuates randomly producing a higher mean deflection angle. In such a situation, the 
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effective field in the z-direction is lower compared to the T=0 K case. Therefore, the resonant point was 

found to shift towards low SAW excitation frequency (not shown in Fig. 2-3b). 

The micromagnetic configurations of SAW induced magnetization dynamics are presented in Fig. 2-4. For 

the no grain case at T=0 K (Fig. 2-4a), the spins rotate coherently and eventually settle to an equilibrium 

cone. Similar behavior is observed for the case with inhomogeneous grains except the spin dynamics is 

incoherent as spins in different regions precess with different polar angle (𝜃) with respect to the z-axis (Fig. 

2-4b, 0.99 ns and 1.61 ns). However, at room temperature both homogeneous (Fig. 2-4c) and 

inhomogeneous case (Fig. 2-4d) become incoherent (details in Fig 2-5). Notably, for the incoherent cases, 

the average magnetization deflection can still be high. We next investigate the incoherency and how it 

affects the magnetization dynamics in SAW driven FMR. Local variation in anisotropy due to material 

inhomogeneity and thermal perturbation introduces significant incoherency in the nanomagnet as evident 

from different deflection angles of magnetization precession for different regions with SAW excitation. 

Notwithstanding the incoherency due to the different deflection angles (polar angle, 𝜃), when driven by 

resonant SAW that produces a sufficiently large 𝜃, magnetization in the different regions precess almost in 

phase (in-plane azimuth angle, ∅). This phase matching of the precessions can produce high net deflection 

from the perpendicular axis. 

 

FIG. 2-4. Evolution of magnetization states with time (shown at the left corner in nanosecond) under the excitation of SAW in a. 

homogeneous and b. inhomogeneous nanomagnets at T=0 K and c. homogeneous and d. inhomogeneous nanomagnets at T=300 

K. 
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Fig. 2-5a and 2-5b plots the spin configuration for inhomogeneous nanomagnet at T=300K, which show 

the evolution of polar angle (𝜃) and the in-plane phase angle/azimuth angle (∅) for individual spins 

respectively. Mean polar angle deflection (<𝜃>) of the magnetization at every time reference is also 

presented. From Fig 2-5a and 2-5b it is evident that spins in different regions are incoherent as they have 

non-uniform polar and phase angle. However, from Fig 2-5b it can be seen that spins are repeatedly 

precessing almost in phase (∅) while producing high mean polar angle (<𝜃>) (snapshot at 0.61 ns, 1.35 ns, 

2.12 ns in Fig. 2-5b) but out of phase (∅) for low mean polar angle (snapshot at 0.25 ns, 0.94 ns, 1.71 ns in 

Fig. 2-5b). This suggests that high polar deflection between the regions at resonance makes our SAW 

assisted scheme robust to inhomogeneities.  

 

FIG. 2-5. Spin configuration of inhomogeneous nanomagnet at T=300 K at different snapshots in time (in nanoseconds) in left 

corner and average magnetization polar angle (<𝜃>) a. polar angle (𝜃) in different regions implies incoherency for both high and 

low average magnetization polar angle (<𝜃>)  b. in-plane azimuth angle (∅) for individual spins shows that the spins are almost in 

phase while precessing in high polar angle (<𝜃>) but out of phase while precess in low polar angle. 

This large mean deflection in the presence of thermal noise and inhomogeneity improves the efficacy of 

SAW assisted STT devices. The STT effective field can be expressed as  𝐻⃗⃗ 𝑆𝑇𝑇 = 𝛽𝜀(𝑚⃗⃗ 𝑃 × 𝑚⃗⃗ ), which 

shows that the field magnitude is a function of 𝑠𝑖𝑛𝜃, where 𝜃 is the angle between fixed layer and free layer 

magnetization. Thus, the SAW induced high magnetization precession of the free layer can assist in building 

large STT torque compared to the no SAW case. We investigate the performance of SAW assisted STT 

switching scheme in the presence of room temperature thermal noise. Here, we assume the SAW 

simultaneously excites arrays of several MTJs and the STT current writes bits (Fig. 2-1a) and thus we do 

not consider a precise synchronization between the SAW and STT application.  This is simulated as follows: 

we excite the nanomagnets with SAW from t=0 to t=5 ns while STT current is applied for 1ns from t=3ns 

to t=4ns. Therefore, after the withdrawal of STT current, the SAW is still applied for 1ns (t=4 ns to t=5 ns) 

as the MTJs can be exposed to SAW even after the STT current pulse is withdrawn. We analyze the final 
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magnetization states of the MTJs after 2 ns of SAW withdrawal (t =7 ns). We assume the threshold for 

switching to be ~130°, which is conservative. Several switching trajectories for both the case with no grain 

(no inhomogeneity) and grain (inhomogeneity) are presented in Fig. 2-6, where the granular nanostructure 

is sketched in the inset of Fig. 2-6b. From Fig. 2-6a and 2-6b, we can see that the precession cone (polar 

angle, 𝜃) oscillates between highest and lowest peaks at ~ 1 GHz, which motivates the STT application 

window of 1 ns, so it coincides with at least one precession peak. 

 

FIG. 2-6. Switching trajectories of SAW assisted STT a. without grains b. with grains. The inset shows the grain configuration of 

the nanomagnet. 

Finally, to see the effectiveness of our SAW assisted STT switching scheme we simulate 100 switching 

trajectories for different stress amplitudes and varying STT current for both homogeneous and 

inhomogeneous nanomagnets (Fig. 2-7). For the no SAW case, STT current is applied for 1 ns and final 

magnetization state was evaluated 2 ns after the STT is withdrawn with timing details and reasons for their 

choice described earlier. From the switching probability curve, it is seen that SAW assisted STT scheme 

requires less STT current than the no SAW case. While the no SAW case requires a current density of 

2.0 × 1011 𝐴/𝑚2 for switching with 100% probability, in the presence of SAW the STT current can be 

reduced to at least 1.5 × 1011 𝐴/𝑚2. The energy dissipation due to SAW excitation is very low (see next 

section 2.3). Moreover, energy pumped from one SAW source is amortized over several MTJs. Therefore, 

energy dissipation is dominated by STT current as discussed in the next section where we show that the 

SAW energy at 50 MPa stress amplitude is less than 0.3% of the STT energy. Thus, our scheme provides 

~ 1.8 times improvement in energy efficiency by reducing the STT current with 50 MPa stress amplitude 

and this could be higher if we further optimize the design. If we can increase the stress to 100 MPa then at 

least two-times energy reduction is possible (section 2.3). The interesting result to be noted here is that 
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regardless of homogeneous or inhomogeneous nanomagnet studied the switching current is decreased by 

approximately the same amount for the same SAW amplitude. Therefore, the incoherent magnetization 

precession in granular nanomagnets does not degrade the performance of the SAW assisted STT switching. 

Moreover, for stress induced change in anisotropy is 4 times less than the total anisotropy barrier for 50 

MPa SAW that demonstrates that resonant SAW (acoustic FMR) allows extreme scalability not possible 

with static stress. 

 

FIG. 2-7. Switching probability vs. STT current at different resonant SAW amplitudes. Error bar shown in the inset corresponds to 

one of the data points (100 MPa SAW grain case at 1.2×1011 A/m2 current) for 1000 simulations.  

2.3 Energy dissipation: 

Our proposed device structure is shown in Fig. 2-8. The free layer (i.e. magnetostrictive layer) of the 

magnetic tunnel junction (MTJ) array is in contact with the piezoelectric substrate. A Rayleigh wave (SAW) 

is launched by applying a voltage across the interdigital transducer (IDT) electrodes delineated on top of 

the piezoelectric. As seen from Fig. 2-8, the Rayleigh wave propagates along in-plane y-direction. This 

propagating wave can generate periodic strain (tensile strain in one-half cycle and compressive strain in the 

other half) in the piezoelectric substrate, which is then mechanically transferred to the free layer. For 

materials with positive magnetostriction, such as FeGa, tensile (compressive) strain creates easy (hard) 

magnetization axes along the direction of the strain (in plane y-direction). This strain (stress) induced 

anisotropy competes with perpendicular (out of plane z-direction) magnetic anisotropy and consequently 

the magnetization deflects towards the in-plane y-direction. Resonant SAW can produce higher 

magnetization deflection than static strain which is then leveraged by a STT current to accomplish the 

magnetization reversal in our SAW assisted STT switching scheme.  
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Figure 2-8 Nanomagnet array and SAW electrode (IDT) patterned on top of the piezoelectric substrate. The nanomagnet center to 

center distance (R) and IDT beamwidth (W) are shown. 

The energy required to strain the magnetostrictive free layer of the nanomagnet is related to the frequency 

and beamwidth of the Rayleigh wave and the acoustic parameters of the piezoelectric media such as 

piezoelectric coefficient ⅆ33 and Rayleigh wave propagation speed. We assume Lithium Niobate as our 

piezoelectric substrate. Piezoelectric coefficient ⅆ33, defined by the ratio of the induced strain to the applied 

electric field where both strain and electric field are in the same direction, is reported to be ~ 34.45 pm/V 

for commercially available Lithium Niobate wafer [28]. However, some studies report much higher ⅆ33 

values ~400 pC/N (pm/V) [29, 30] for alkaline based Niobates. The SAW (Rayleigh wave) propagation 

speed in Lithium Niobate is reported to be 3488 - 4750 m/s [31]. 

To determine the total energy dissipation in nanomagnet for our resonant SAW assisted STT switching, we 

assume that all the strain generated in the piezoelectric is transferred to the nanomagnet on top of it. Note 

that the depth of penetration of the SAW in the Lithium Niobate is about one wavelength, which is a few 

100 nm, whereas any adhesion layer and MTJ layers are each a few nm, enabling close to 100% strain 

transfer. If the required stress for successful switching of the nanomagnet is 𝜎, then the strain that needs to 

be produced in the piezoelectric,  

 𝜀 = 𝜎 𝑌⁄  (11) 

Where Y~ 75 GPa is the Young’s modulus of FeGa [32]. For 𝜎= 50 MPa stress, the strain needs to be 

generated is, 𝜀 ~ 667 × 10−6. 

The surface potential, V, needed to produce the required strain in the piezoelectric can be found from the 

ⅆ33 coefficient and SAW wavelength. For the inhomogeneous nanomagnet we found the resonant 

frequency to be ~ 13 GHz at room temperature. For SAW propagation speed of 3488 m/s, the wavelength 

is found to be, 𝜆~268 nm. 
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Once the wavelength and the piezoelectric coefficients are known, we can find the strain from the particle 

displacement of the Rayleigh wave at the piezoelectric surface. We have only considered the strain due to 

particle displacement in the propagation direction, y and neglect the z-direction strain as the nanomagnet is 

not clamped from the top. In addition, the shear strain in the x-z plane is weak near the surface [23]. At a 

particular snapshot, the displacement along the acoustic wave propagation direction (i.e. y-direction) can 

be expressed as,  

 𝑢𝑦 = ⅆ33𝑉 sin
2𝜋𝑦

𝜆
 (12) 

As the normal strain is expressed by the slope of the displacement, 𝜀𝑦𝑦 =
𝜕𝑢𝑦

𝜕𝑦
, the maximum strain can be 

found around y=0. If the nanomagnet diameter is, D=50 nm then the displacement for 𝑦 = ±25 nm can be 

determined from the displacement Eq. 12 (see Fig. 2-9).  

The total displacement between the two extremes of the nanomagnet can be determined from the following, 

 𝑢𝑦|𝑦=+25𝑛𝑚
− 𝑢𝑦|𝑦=−25𝑛𝑚

= 2ⅆ33𝑉 sin
50𝜋

𝜆
 (13) 

Where 𝜆 is expressed in nm. Therefore, the maximum strain generated in nanomagnet is, 

 𝜀 =
𝑢𝑦|𝑦=+25𝑛𝑚

− 𝑢𝑦|𝑦=−25𝑛𝑚

𝐷
=

2ⅆ33𝑉 sin
50𝜋
𝜆

𝐷
 

(14) 

 

 

Figure 2-9 Displacement 𝑢𝑦 versus distance 𝑦 curve (in blue) in the delay line of the piezoelectric. Maximum strain is generated 

when the nanomagnet center is at any zero-crossing. 
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Combining the strain Eqs. 11 and 14 the required surface potential can be determined,  

 𝑉 =
𝜎 𝐷

2 𝑌ⅆ33 sin
50𝜋
𝜆

 (15) 

For 𝜎=50 MPa and ⅆ33= 34.45 pm/V, the maximum surface potential required is, V= 0.875 Volts. 

The power launched by the SAW IDT electrode can be determined from the IDT beamwidth W (Fig. 2-8), 

the surface potential and the admittance of the piezoelectric medium. The ac power dissipation can be 

calculated from the following equation [33], 

 
𝑃

𝑊
=

1

2
 |𝑉|2  

𝑦𝑎

𝜆
= 299.96 𝑤/𝑚 (16) 

Where, 𝑦𝑎 = 0.21 × 10−3(𝑆) is the admittance of Lithium Niobate [33]. 

Attenuation of the acoustic wave inside the piezoelectric medium is closely related to the frequency and 

should be considered for the energy calculation purpose. Acoustic attenuation in Lithium Niobate can be 

determined from the following equation [34], 

 𝛼 = 0.88 𝑓1.9 + 0.19 𝑓 (17) 

Where  𝛼 is expressed is in ⅆ𝐵 𝜇𝑠⁄  and 𝑓 is in GHz. For 𝑓=13 GHz attenuation is found to be 𝛼 =117.54 

ⅆ𝐵 𝜇𝑠⁄ . If 10% attenuation of the input power is allowed then the distance travelled by the SAW with speed 

𝑣𝑟=3488 m/s before 10% attenuation is, 

 𝐿 =
−10 log10(

0.9 𝑃
𝑃⁄ )

𝛼
 𝑣𝑟 = 13.58 𝜇𝑚 (18) 

If the IDT beamwidth is taken to be W= 600 nm (~4 times of the finger pitch which is  𝜆 2⁄  ~134 nm) and 

nanomagnet center to center distance in the array is taken to be, R=75 nm (Fig. 2-8), the number of 

nanomagnets that can be accommodated within the area of W×L is N ~1448.  

The energy dissipated per nanomagnet to produce a stress of 50 MPa can be calculated from the following, 

 𝐸𝑆𝐴𝑊 =
𝑃

𝑊
 𝑊 𝑡𝑆𝐴𝑊  

1

𝑁
= 1.51 × 105 𝑘𝑇 (19) 

Where SAW application interval is 𝑡𝑆𝐴𝑊 =5 ns. The STT current density required for 50 MPa SAW assisted 

case is,  𝐽𝑆𝑇𝑇−𝑆𝐴𝑊 = 1.5 × 1011 𝐴/𝑚2. If the MTJ resistance is taken to be,  𝑅𝑀𝑇𝐽 = 3.5 𝑘Ω [3], then the 

energy dissipation for the STT current is,  
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 𝐸𝑆𝑇𝑇−𝑆𝐴𝑊 = (𝐽𝑆𝑇𝑇−𝑆𝐴𝑊 𝐴)2𝑅𝑀𝑇𝐽 𝑡𝑆𝑇𝑇 =  7.39 × 107 𝑘𝑇 (20) 

Where A is the nanomagnet area, A=𝜋𝑟2 where r is the radius of circular nanomagnet and STT application 

period is, 𝑡𝑆𝑇𝑇 = 1ns.  

The energy dissipated due to the material damping can be found from the following, 

 𝐸𝑑𝑎𝑚𝑝 = ∫
𝛼 𝛾

(1 + 𝛼2)𝑀𝑠Ψ
|𝜏𝑒𝑓𝑓(𝑡)|

2
ⅆ𝑡

𝑡𝑇𝑜𝑡𝑎𝑙

0

 (21) 

Where 𝛾 is the gyromagnetic ratio (rad/Ts), Ψ is the nanomagnet volume and 𝜏𝑒𝑓𝑓 is the effective torque 

due to shape anisotropy, stress anisotropy, spin transfer toque and 𝑡𝑇𝑜𝑡𝑎𝑙 = 7 ns is the total time period. The 

damping energy dissipation is found to be ~ 115 kT which is negligible.  Finally, the total energy dissipated 

in a single nanomagnet for 50 MPa SAW assisted STT switching (dissipation for magnetic damping is 

neglected) is found to be  

 𝐸𝑆𝐴𝑊 + 𝐸𝑆𝑇𝑇−𝑆𝐴𝑊 = 7.4 × 107 𝑘𝑇 (22) 

It is evident that energy dissipation is dominated by STT current dissipation and hence the SAW energy 

dissipation can be neglected. 

Without the SAW assistance the required STT current density is,  𝐽𝑆𝑇𝑇 = 2.0 × 1011 𝐴/𝑚2. In that case, 

the total energy dissipation in a single nanomagnet is found to be, 

 𝐸𝑆𝑇𝑇 = (𝐽𝑆𝑇𝑇 𝐴)2𝑅𝑀𝑇𝐽 𝑡𝑆𝑇𝑇 =  1.31 × 108 𝑘𝑇 (23) 

The energy dissipation in STT-only case is ~ 1.8 times higher than the 50 MPa SAW assisted STT case. 

For higher stress amplitude such as 100 MPa stress the energy dissipation for SAW excitation is found to 

be, 𝐸𝑆𝐴𝑊 = 6.05 × 105 𝑘𝑇  which is 4 times higher than the 50 MPa stress case. The STT current density 

required for 100 MPa SAW assisted case is,  𝐽𝑆𝑇𝑇−𝑆𝐴𝑊 = 1.4 × 1011 𝐴/𝑚2  which translates to an energy 

dissipation of 𝐸𝑆𝑇𝑇−𝑆𝐴𝑊 = 6.43 × 107 𝑘𝑇. In addition, the damping dissipation is found to be ~ 150 kT. 

Therefore, the total energy dissipation is, 𝐸𝑆𝐴𝑊 + 𝐸𝑆𝑇𝑇−𝑆𝐴𝑊 = 6.49 × 107 𝑘𝑇 neglecting the damping 

dissipation, ~2 times less than the STT only case. 

2.4 Conclusions:  

In summary, we have studied magnetization precession dynamics with time varying stress generated by 

SAW for nanomagnets with inhomogeneity due to lateral variations in anisotropy as well as thermal noise. 

When SAW induces FMR in such inhomogeneous nanomagnets, different regions’ spins precess nearly in 
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phase at high net magnetization deflection, consequently lowering STT current required to switch the 

magnetization. While out of phase precession occurs at low deflection from perpendicular anisotropy axis, 

the precession in different regions synchronize (are in phase) for high amplitude magnetization deflection 

from anisotropy axis. Thus, the efficacy of the SAW that produces large resonant deflections does not 

degrade due to such incoherency in the presence of lateral anisotropy variations and thermal noise.   

Technologically, such SAW induced FMR assisted STT memory devices have potential to scale below ~20 

nm lateral dimensions even though the concomitantly high anisotropy energy density needed at such small 

volumes cannot be overcome by static stress. In addition, using well optimized SAW excitation frequency 

that can maximize the torque on the magnetization when STT is applied and choosing magnetostrictive 

materials with extremely low damping material one can potentially achieve over an order of magnitude 

energy reduction in write energy while being able to scale aggressively to very low lateral dimensions. 

Finally, such SAW induced FMR could have application in low power electronics beyond memory devices 

[35].  

Apart from inhomogeneous nanomagnets there could be additional challenges in the SAW mediated STT 

memory devices when a large arrays of nanomagnets are being excited with the SAW electrodes. 

Magnetostatic interactions between the nanomagnets can alter the resonance frequency. We observed 

reasonable magnetization precession for a wide range of SAW frequencies, but the range became narrower 

for small amplitude stress. The maximum stress amplitudes that could be transferred to magnetostrictive 

magnets depends on piezoelectric coefficients and magnetostriction and for most material systems those 

values are small. Furthermore, there could be additional unwanted transverse modes generated 

perpendicular to the directions of main mode of SAW induced vibration. This issue can be addressed by 

changing the shape and geometry of the SAW electrodes using the apodization method [36,37].      
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Chapter 3: Voltage Controlled Energy Efficient Domain Wall Synapses with Stochastic 

Distribution of Quantized Weights in the Presence of Thermal Noise and Edge Roughness 

 

We propose energy efficient voltage induced strain control of domain wall (DW) in a perpendicularly 

magnetized nanoscale racetrack on a piezoelectric substrate that can implement a multi-state synapse to be 

utilized in neuromorphic computing platforms. Here strain generated in the piezoelectric is mechanically 

transferred to the racetrack and modulates the Perpendicular Magnetic Anisotropy (PMA) in a system that 

has significant interfacial Dzyaloshinskii–Moriya interaction (DMI). When different voltages are applied 

(i.e. different strains are generated) in conjunction with SOT due to a fixed current flowing in the heavy 

metal layer for a fixed time, DWs are translated to different distances and implement different synaptic 

weights. We have shown using micromagnetic simulations that 5-state and 3-state synapses can be 

implemented in a racetrack that is modeled with the inclusion of natural edge roughness and room 

temperature thermal noise. These simulations show interesting dynamics of DWs with roughness induced 

pinning sites both at the beginning and end of the SOT current pulse for different PMA modulation. Thus, 

notches need not be fabricated to implement multi-state nonvolatile synapses. Such a strain-controlled 

synapse has an energy consumption of ~ 1 fJ and could thus be very attractive to implement energy-efficient 

quantized neural networks, which has been shown recently to achieve near equivalent classification 

accuracy to the full-precision neural networks. 

 

Neuromorphic computing outperforms traditional von-Neumann type processors in data-intensive 

classification tasks. Moreover, their in-memory computing architecture can reduce energy dissipation [1] 

required to shuttle data back and forth between processor and memory unit in traditional computing 

architectures. Examples of hardware realization for neuromorphic computing include phase change random 

access memory (PCRAM) [2-4], resistive random-access memory (RRAM) [5,6] and spin transfer torque 

random-access memory (STTRAM) [7]. While device variability is a persistent issue for all of the above-

mentioned devices, recent work in fully connected artificial neural network (ANN) [8] shows equivalent 

accuracy to software-based training. Unfortunately, PCRAM and RRAM based devices consume energy 

on the order of a few pJs per synaptic weight alteration event [9]. Hence, the future IoTs and edge-devices 

where power is limited will necessitate alternate neuromorphic hardware that are energy efficient and 

enable real time programing of synaptic weights so the networks can be trained in-situ.  

Recently, nanomagnet based synaptic devices have shown potential to be energy efficient compared to 

PCRAM and RRAM [9, 10, 11]. Among nanomagnet based neuromorphic devices, domain wall (DW) 
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based magnetic tunnel junctions (MTJs) are one of the most promising. To implement these devices, domain 

walls (DWs) are translated to different positions by externally applied magnetic field [12], an electric 

current that causes spin-orbit torque (SOT) [13-15], spin transfer torque (STT) [16-18] or a strain gradient 

[19-20]. Strain control of magnetization consumes ultra-low energy [21-27]. Hence, manipulation of DWs 

with strain can be utilized to implement energy efficient neuromorphic devices. Recently, strain-mediated 

control of DW has been reported [28, 29]. Strain gradient in conjunction with SOT or STT [10] has also 

been proposed to control DW position to implement energy efficient synaptic devices that can be 

programmed in real time. 

In this work, we propose to utilize SOT to translate the DW in a realistic nanoscale racetrack modeled with 

edge roughness and thermal noise where the DW position is controlled by modulating the perpendicular 

magnetic anisotropy (PMA) of the racetrack with the application of stress. Here, deterministic control of 

DW to realize different synaptic values is hard to achieve when different stress values are generated by 

applying voltage pulse of different amplitudes to the electrodes patterned on top of a piezoelectric. This is 

because equilibrium DW positions are often stochastic in nature and with the presence of defects [30], local 

imperfections [31] and thermal noise [32] it could be very difficult to achieve deterministic control. 

Nevertheless, the DW can be arrested by providing trap sites such as curved shape [33] and notch or 

protrusion [34], which can act as a potential well or barrier. Moreover, edge roughness [35-36] can 

introduce pinning sites for DW motion. In this study, we use edge roughness and obtain the statistical 

distribution of DW position from micromagnetic simulations which shows that the mean positions are 

different for different stress induced change of PMA for a fixed current induced SOT of a fixed “clock” 

time. Although the number of states (different DW positions) attained are limited and there are overlaps 

between the states, such a DW based racetrack as synapse is particularly attractive to implement quantized 

deep neural networks (DNN) [37-39] as these networks have been shown to reach accuracy very close to 

the infinite states network. The overlap between states can be addressed during the training stage of a 

learning network. Moreover, the stochastic variation of a state can be useful in generating stochastic weights 

for training the network which can work as DNN regularizer to reduce overfitting of training [40]. Studies 

have shown training with stochastically determined weights rather than deterministic ones can potentially 

increase the classification accuracies for some data sets [37]. 

 

3.1 Device architecture and simulation: 

The proposed device structure is illustrated in Fig. 3-1(a). The stack consists of a heavy metal layer and a 

magnetic tunnel junction (MTJ) containing the nanoscale racetrack as free layer, along with the tunnel 
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barrier and the hard layer. Such a stack is patterned on top of a piezoelectric substrate. We consider Pt/CoFe 

(soft or free racetrack layer)/MgO/CoFe (hard or fixed layer) as our stack materials where the heavy metal 

layer Pt will create perpendicular anisotropy and strong DMI at Pt/CoFe interface, which is known to favor 

the chiral Neel DWs [41]. We propose to arrest the DWs at different positions in the free layer of the MTJ, 

which will modify the resistance value of the MTJ stack. Thus, different synaptic weights, which define the 

strength between the neurons can be determined from the DW positions. Different layers of a DNN can be 

implemented by arranging the DW devices in the crossbar as shown in Fig. 3-1(c), where the DW devices 

provide the programmable conductances which are equivalent to the DNN weights.  

To arrest the DW at various positions we apply different amplitude stress in combination to a fixed 

amplitude and fixed duration SOT pulse. When a voltage is applied between the electrodes on top and 

bottom of the piezo-substrate as shown in Fig. 3-1(b), mechanical strain is generated. This strain is then 

transferred to the racetrack and consequently modulates the perpendicular anisotropy due to magnetoelastic 

interaction. In combination with stress, we apply a current pulse in the adjacent heavy metal Pt layer to 

exert SOT shown by red arrow in Fig. 3-1(b), which moves the DW through the nanowire racetrack to the 

other end of the nanowire. If we reverse the direction of current in the heavy metal layer, it will reverse the 

direction of DW motion and reset it to the other end.  

We have considered edge roughness that is present naturally in a nanoscale racetrack due to lithographic 

imperfection and pattern transfer process. Authors report [42] ~ 2nm rms edge roughness for 25 nm wide 

racetrack when they use a combination of electron beam lithography (EBL) and ion beam etching. Authors 

[36] also report ~ 2nm rms edge roughness for 80 nm wide racetrack using the same method. However, 

studies have shown higher rms edge roughness for low voltage EBL for racetrack of width 50 nm or higher 

[42]. For our simulation we have assumed Gaussian distribution for the edge roughness with a rms value 

of ~ 3nm considering the effect of high electron jitter from mean position for low voltage EBL. In addition 

to the local structure variation, microstructure in the racetrack such as grain boundary, defects can provide 

pinning sites and introduce stochasticity in the devices. We did not consider these in our simulation for sake 

of simplicity. The simulated racetracks have a length of 500 nm, maximum width of 50 nm and thickness 

of 1 nm. The magnetization dynamics in the presence of Spin Orbit Torque (SOT) is simulated in 

MUMAX3 [43] using the Landau–Lifshitz–Gilbert-Slonczewski equation as explained in section 1.2.7. 

Here, the effective field, 𝐻⃗⃗ 𝑒𝑓𝑓 accounts for the contributions from demagnetization, PMA, Heisenberg 

exchange interaction, Dzyaloshinskii–Moriya interaction (DMI), stress induced anisotropy and thermal 

noise.  𝐻⃗⃗ 𝑒𝑓𝑓 can be expressed as follows: 
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 𝐻⃗⃗ 𝑒𝑓𝑓 = 𝐻⃗⃗ 𝑎𝑛𝑖𝑠 + 𝐻⃗⃗ 𝑑𝑒𝑚𝑎𝑔 + 𝐻⃗⃗ 𝑠𝑡𝑟𝑒𝑠𝑠 + 𝐻⃗⃗ 𝑒𝑥𝑐ℎ + 𝐻⃗⃗ 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 
(1) 

 

The racetracks are discretized into 2 nm × 2 nm × 1 nm cells which are well within the ferromagnetic 

exchange length of √
2𝐴𝑒𝑥

𝜇ᴏ 𝑀𝑠
2 = 5.66 nm. We note that curved edges are difficult to approximate with finite 

difference method as it depends on staircase approximation. As a result, the demagnetization tensor is not 

computed properly [45-47]. However, we find similar trend in our result when we decrease the cell size 

(section 3.4). 

 PMA induced effective field can be expressed as, 𝐻⃗⃗ 𝑎𝑛𝑖𝑠 : 

 𝐻⃗⃗ 𝑎𝑛𝑖𝑠 =
2𝐾𝑢

𝜇0𝑀𝑠
(𝑢⃗ . 𝑚⃗⃗ )𝑢⃗  (2) 

Where 𝐾𝑢 is the first order anisotropy constant and 𝑢⃗  represents the uniaxial anisotropy direction (i.e. 

perpendicular to plane).  

If the electrodes patterned on top of the piezoelectric substrate have dimensions similar to the piezoelectric 

thickness and separated by one or two times the piezoelectric thickness, maximum stress is generated [48].  

In such a scenario, when a positive (negative) voltage is applied in the top electrode pair, the area underneath 

the electrode becomes stretched (compressed) in the out of plane direction and compressed (stretched) in 

the in-plane direction. Compression (tension) in the in-plane direction underneath the electrode surface 

creates tension (compression) in the nanoscale racetrack patterned in between the top electrodes due to 

strain-displacement compatibility. We assumed our electrodes to be rectangular with width b=piezoelectric 

thickness and length L=racetrack length. This is similar to having (L/b) number of square electrodes of 

(b×b) dimensions and therefore one can assume this electrode configuration will produce similar amount 

of stress as mentioned in Ref [46]. Fig. 3-1(b) shows the strain formation in the nanoscale racetrack in such 

a scenario. Stress produced in the in-plane direction of the racetrack induces anisotropy field due to the 

magneto-elastic effect in the same direction and modulates the PMA or the anisotropy constant 𝐾𝑢. The 

effect of the stress is modeled by the modulating 𝐾𝑢 in the micromagnetic simulation. For simplicity, we 

did not consider the strain that can be produced in the in-plane direction of the racetrack which is orthogonal 

to that shown in Fig. 3-1(b). 

The effective field due to the interfacial Dzyaloshinskii-Moriya interaction is expressed as follows [43]: 

 𝐻⃗⃗ 𝐷𝑀 =
2𝐷

𝜇0𝑀𝑠
 (

𝜕𝑚𝑧

𝜕𝑥
,
𝜕𝑚𝑧

𝜕𝑦
,−

𝜕𝑚𝑥

𝜕𝑥
−

𝜕𝑚𝑦

𝜕𝑦
)                (3) 
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Here, D is the DMI constant and 𝑚𝑥, 𝑚𝑦 and 𝑚𝑧 are the x, y and z component of unit magnetization vector 

𝑚⃗⃗  respectively.   

 

 

Figure 3-1 (a) Proposed device stack where the nanoscale racetrack act as the magnetic free layer of the MTJ. DW in the racetrack 

moves when a current is applied to the heavy metal layer underneath the racetrack (b) Stress generation mechanism in rough edge 

racetrack when a voltage is applied across the piezoelectric. (c) Implementation of layers of DNN with DW based synaptic devices. 

The devices are arranged in crossbar to provide programmable conductance equivalent to the DNN weights. 

Thermal noise induces a random effective field 𝐻⃗⃗ 𝑡ℎ𝑒𝑟𝑚𝑎𝑙  [49]:  

 𝐻⃗⃗ 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 𝜂  √
2𝛼𝑘𝑇

𝜇0𝑀𝑠𝛾Ω𝛥
 (4) 

Here, 𝜂  is a random variable with Gaussian distribution with mean zero and unit variance and independent 

(uncorrelated) in each of the 3 cartesian coordinates generated at each time step, 𝑘 is Boltzmann constant, 
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Ω is the cell volume, 𝛥 is the time step size. The parameters for the simulation are presented at table 3-1 

[50-52]. 

Table 3-1: Material parameters used for the CoFe soft layer in the Pt/ CoFe/MgO heterostructure  

Parameters Values 

DMI constant (D) 0.001 𝐽𝑚−2 

Gilbert damping (𝛼) 0.015 

Saturation magnetization (𝑀𝑠) 106 𝐴𝑚−1 

Exchange constant (𝐴𝑒𝑥) 2 × 10−11𝐽𝑚−1 

Saturation magnetostriction (𝜆𝑠) 250 𝑝𝑝𝑚 

Perpendicular Magnetic Anisotropy (𝐾𝑢) 7.5 × 105 𝐽𝑚−3 

 

The synaptic state of the proposed device could be read by the MTJ. For a read voltage applied between the 

read and GND terminal (as in Fig. 3-1(a)) the resistance is provided by the portion of the racetrack that is 

parallel (P) and antiparallel (AP) to the fixed layer and a small DW region where the magnetization is 

transverse to the fixed layer magnetization. The read current also counters a resistance from heavy metal 

layer however that is small compared to the tunnel magnetoresistance. If we assume the conductance of the 

racetrack is 𝐺𝑚𝑎𝑥,𝑃 when completely in P state with respect to the fixed layer and 𝐺𝑚𝑖𝑛,𝐴𝑃 when completely 

in AP state, then for any intermediate position q of the DW inside the racetrack of length L, the conductance 

of the synapse can be expressed as the following: 

 𝐺(𝑞) = 𝐺𝑚𝑎𝑥,𝑃 (
𝑞

𝐿
) + 𝐺𝑚𝑖𝑛,𝐴𝑃 (1 −

𝑞

𝐿
) + 𝐺𝐷𝑊               (5) 

3.2 Results and Discussion 

3.2.1. Effect of Edge Roughness on Domain Wall Motion 

In rough edge racetrack the racetrack width varies, so local pinning sites are created randomly along the 

length of the racetrack. Depending on the magnitude of the edge roughness (rms value or standard 

deviation) the pinning strength of the pinning sites varies. Studies have shown that higher magnitude edge 

irregularities require higher depinning current to translate DW in the racetrack [53-55]. This would become 

clear from Fig. 3-2, which plots the stable DW positions for 30 different nanowires of rms edge roughness 
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of 1.5 nm and another 30 different nanowires with edge roughness of 3 nm. For reproducibility and 

comparison purpose, the seed value to create the rough edges of different rms roughness nanowires are kept 

the same. The nanowires PMA was assumed to be Ku=7.5× 105 J/m3. The PMA was modulated to 

Ku=8.0× 105 J/m3 with a voltage pulse (1.2 ns) and a constant amplitude SOT current pulse of 24 × 1010 

A/m2 was applied simultaneously for 1.2 ns. All the DWs in the nanowires are nucleated at 450 nm and 

relaxed before applying the SOT. After the simultaneous withdrawal of voltage and current pulse we relax 

for 10 ns to find the stabilized DW positions. As expected, the DWs travel higher distances with low edge 

roughness. However, when we double the edge roughness the DWs mostly get pinned near the initial 

location. Thus, the strength of pinning sites created by the edge roughness influences the stabilized DW 

positions in the racetrack, which also determines the operating current for the DW racetrack device.  

 

Figure 3-2 Stabilized DW position distribution for 30 different nanowires for two different rms edge roughness values. The PMA 

of the nanowires is Ku=7.5× 105  J/m3 which is modulated to Ku=8.0× 105  J/m3 with a voltage pulse of 1.2 ns. SOT current pulse 

of 24 × 1010 A/m2 is also applied simultaneously for 1.2 ns. All the DWs are nucleated at 450 nm as seen from the top panel. After 

withdrawing the voltage and current pulse simultaneously the system is relaxed for 10 ns to determine the stabilized DW positions.  

In addition to the rms edge roughness, the pinning location distribution or the relative position of the pinning 

sites from DW start position and center of the racetrack influences the final DW position. The characteristic 

DW motion equation during the acceleration phase (at the time of SOT excitation) can be found by 

linearizing the 1-D DW equations [41,56] in q-𝜓 axis where q (t) and 𝜓 (t) are the DW position and DW 

magnetization angle is the racetrack respectively. 
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1 + 𝛼2

Δ

ⅆ𝑞

ⅆ𝑡
=

−𝛾𝐻𝐾

2
sin 2𝜓 +

𝜋

2
𝛾𝐻𝐷𝑀 sin𝜓 + 𝛼 (𝛾𝐻𝑃𝐼𝑁(𝑞) +

𝜋

2
𝛾𝐻𝑆𝐻 cos𝜓)  (6) 

 
(1 + 𝛼2)

ⅆ𝜓

ⅆ𝑡
= −𝛼 (

−𝛾𝐻𝐾

2
sin 2𝜓 +

𝜋

2
𝛾𝐻𝐷𝑀 sin𝜓) +  𝛾𝐻𝑃𝐼𝑁(𝑞) +

𝜋

2
𝛾𝐻𝑆𝐻 cos𝜓 

 (7) 

Where, 𝐻𝐷𝑀 is the DMI field, 𝐻𝑆𝐻 is the damping like spin hall effective field and 𝐻𝐾 is the shape 

anisotropy field from magnetostatic origin. 

 𝐻𝑆𝐻 =
ℏ𝐽𝜃

2𝜇0𝑒ⅆ𝑀𝑠
  (8) 

 
𝐻𝐷𝑀 =

𝐷

𝜇0∆𝑀𝑠
 

 (9) 

Here, 𝐽 is the value of current flowing through the heavy metal layer, 𝜃 is the spin Hall angle, 𝛼 is the 

damping,  𝛾 is the gyromagnetic ratio, 𝑀𝑠 is the saturation magnetization, ℏ is the reduced Planck constant, 

𝜇0 is the permeability of free space, 𝑒 is the electron charge and ⅆ is the thickness of the nanowire racetrack. 

The physical width of DW is 𝜋∆, and ∆ can be expressed as: 

 ∆~√
𝐴𝑒𝑥

𝐾𝑢 − 
1
2 𝜇0𝑀𝑠

2
  (10) 

When a current pulse is applied, the DW starts to accelerate and goes from Neel configuration of 𝜓 = 0, 𝜋 

to equilibrium Bloch configuration of 𝜓 =
𝜋

2
, −

𝜋

2
. Linearizing the above Eq. 1 and 2 with respect to  𝜓 =

𝜋

2
 

we can get the following equation: 

 1 + 𝛼2

𝛾2Δ

ⅆ2𝑞

ⅆ𝑡2
+

1

𝛾Δ
(𝛼𝐻𝐾 +

𝜋

2
𝐻𝑆𝐻)

ⅆ𝑞

ⅆ𝑡
= 𝐻𝑃𝐼𝑁(𝑞)𝐻𝐾 + (

𝜋

2
)
2

𝐻𝐷𝑀𝐻𝑆𝐻  (11) 

This characteristic DW equation is analogous to the Newton-like motion equation with DW velocity, 𝑣 : 

 𝑚∗
ⅆ𝑣

ⅆ𝑡
+

𝑚∗

𝜏
𝑣 = 𝐹 

 (12) 

Where the effective DW mass can be expressed as:  

 𝑚∗ =
1 + 𝛼2

𝛾2Δ
  (13) 

The friction force is: 
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 𝐹𝑓𝑟𝑖𝑐 =
𝑚∗

𝜏
𝑣 =

1

𝛾Δ
(𝛼𝐻𝐾 +

𝜋

2
𝐻𝑆𝐻)𝑣  (14) 

And the external force is: 

 𝐹 = 𝐻𝑃𝐼𝑁(𝑞)𝐻𝐾 + (
𝜋

2
)
2

𝐻𝐷𝑀𝐻𝑆𝐻 
 (15) 

The pinning field can be expressed as: 

 𝐻𝑃𝐼𝑁(𝑞) = −
1

2𝜇0𝑀𝑠𝑤ⅆ

ⅆ[𝑉𝑃𝐼𝑁(𝑞)]

ⅆ𝑞
  (16) 

Where 𝑉𝑃𝐼𝑁(𝑞) is the local pinning potential due to the roughness induced pinning locations and 𝑤 is the 

racetrack width, d is the thickness. 

From the linearized motion equation of the DW we can see that the roughness induced pinning sites induces 

an attractive force towards the pining site scaled by the magnetostatic field (𝐻𝑃𝐼𝑁(𝑞)𝐻𝐾 term in external 

force equation). This force is added to the SOT current induced force due to 𝐻𝑆𝐻. The lower the pining 

potential, 𝑉𝑃𝐼𝑁(𝑞), the higher the pinning strength and the attractive force exerted to the DW towards the 

pining sites. Thus, the pining sites exert attractive force and help to accelerate the DW. However, the DW 

takes time to accelerate, and the acceleration time constant can be expressed as:  

 𝜏 =
1 + 𝛼2

𝛾 (𝛼𝐻𝐾 +
𝜋
2

𝐻𝑆𝐻)
  (17) 

The acceleration time constant is calculated to be, 𝜏~ 0.3 ns when we assume 𝐾𝑢 = 8.0 × 105 𝐽

𝑚3  using, 

𝐻𝐾 =
𝑑𝑙𝑜𝑔(2)𝑀𝑠

𝜋∆
[57]. 

As the DW can be associated with an effective mass and it takes finite time to accelerate, the distance of 

the pinning sites from DW starting position is important. If the DW starting position is close to the pining 

site it may not attain enough kinetic energy to overcome that pining site and thus can be pinned to relatively 

weaker pinning sites. The relationship between the distance of the pining site to the DW and the required 

kinetic energy to overcome that pining site depends mostly on the competition between demagnetization 

field, 𝐻𝐾 and pining site induced field, 𝐻𝑃𝐼𝑁(𝑞) (as indicated by 𝐻𝑃𝐼𝑁(𝑞)𝐻𝐾 term in external force, 𝐹 

equation). The demagnetization field is maximum at both ends of the rectangular racetrack and starts to 

decrease and becomes minimum at the center of the racetrack. Similarly, the pining field induced attraction 

force is high (low) away from (close to) the pining site, however the range of this force is much more 

localized than the demagnetization force. In Fig. 3-3 we plot the depinning current vs the relative distance, 
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𝑥𝑑 of a pining location (created by a triangular notch) from the starting position of DW. For higher PMA, 

such as 𝐾𝑢 = 8.0 × 105 𝐽

𝑚3 the pinning potential is lower than demagnetization (magnetostatic) potential 

and thus the pinning sites exerts the dominating attractive force. In such case we see from Fig. 3-3 that the 

depinning current decreases with the distances, 𝑥𝑑 as the DWs can attain sufficient kinetic energy before 

interacting with the pinning sites. However, with PMA, 𝐾𝑢 = 7.5 × 105 𝐽

𝑚3 or lower, the trend flips. In this 

case, the attractive force due to demagnetization dominates over the pining sites and creates an energy well 

at the center which always pulls the DW towards the center. However, for  𝐾𝑢 = 7.8 × 105 𝐽

𝑚3 , a mixed 

trend is found. At the center portion of the racetrack the demagnetization field becomes low and the pining 

site induced field dominates, as a result the depinning current decrease with distance, 𝑥𝑑 . However, at both 

ends of the racetrack the demagnetization field dominates. At the near end of the racetrack DW gets help 

from the demagnetization field to overcome the pining sites but requires higher energy to overcome both 

demagnetization and pining site induced field at the far end.  

 

 

Figure 3-3 DW depinning current with respect to the relative distance, 𝑥𝑑  between the pinning location and the DW starting 

position for four different PMA (Ku). Racetrack of dimension 500 nm x 50 nm with the DW and pining site (triangular notch) is 

shown above with a sketch of demagnetization potential.      

Thus, in addition to the rms amplitude of the edge roughness the relative position of the pining sites from 

the DW starting position influences the stabilized DW position in a nanowire racetrack.  
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Now we will look at the deceleration phase of DW. After withdrawing the SOT current pulse, DW goes 

from Bloch configuration of 𝜓 =
𝜋

2
, −

𝜋

2
 to equilibrium Neel configuration of 𝜓 = 0, 𝜋. The characteristic 

equation of DW during deceleration phase can be found by linearizing the 1-D DW equations with respect 

to  𝜓 = 0. Linearizing the 1-D equations with respect to 𝜓 = 0 and assuming 𝐻𝑆𝐻 = 0 we get,  

 1 + 𝛼2

𝛾2Δ

ⅆ2𝑞

ⅆ𝑡2
+

𝛼

𝛾Δ
(𝐻𝐾 −

𝜋

2
𝐻𝐷𝑀)

ⅆ𝑞

ⅆ𝑡
= −(𝐻𝐾 −

𝜋

2
𝐻𝐷𝑀)𝐻𝑃𝐼𝑁(𝑞)  (18) 

The deceleration force can be expressed by: 

 𝐹 = −(𝐻𝐾 −
𝜋

2
𝐻𝐷𝑀)𝐻𝑃𝐼𝑁(𝑞)  (19) 

The deceleration time constant is found to be,  

 𝜏 =
1 + 𝛼2

𝛼𝛾 |𝐻𝐾 −
𝜋
2 𝐻𝐷𝑀|

  (20) 

The deceleration time constant is calculated to be, 𝜏~ 3.16 ns when we assume 𝐾𝑢 = 8.0 × 105 𝐽

𝑚3 . Thus, 

the DW takes approximately 3× 𝜏 to decelerate and settle to an equilibrium position which is approximately 

10 ns. We have also found a similar trend from our simulation where the DW settles after 10 ns of SOT 

withdrawal. From the above linearized equation, the deceleration force is generated by pining field 

𝐻𝑃𝐼𝑁(𝑞),  scaled by the difference of magnetostatic field, 𝐻𝐾 and DMI field 𝐻𝐷𝑀. For a fixed PMA, 

depending on the position of the DW at the time of SOT withdrawal, 𝐻𝑃𝐼𝑁(𝑞) and 𝐻𝐾 acted upon the DW 

changes (both functions of position), as a result the deceleration force changes. Thus, the position of the 

DW at the end of the SOT current pulse also influences the stabilized DW position at the racetrack.  

 

3.2.2 Non-thermal statistics due to different edge roughness profiles in different racetracks: 

For non-thermal simulations, we simulated the DW motion in 40 different racetracks with different edge 

roughness profiles. The PMA of the racetracks is considered to be 7.5 × 105 𝐽 𝑚3⁄ . The PMA can be 

decreased or increased uniformly over the whole racetrack by applying a suitable voltage to the electrodes. 

The clocking SOT current is applied simultaneously with this voltage pulse. We have assumed that the DW 

is initialized to a pinning site located at one end of the racetrack. The SOT current translates the DW while 

the PMA modulation helps to drive the DW to different positions when clocked with SOT for a fixed time. 

This could be explained as follows. The critical depinning current density 𝐽𝐶 of the DW is related to the 

anisotropy coefficient 𝐾𝑢 of the racetrack. When 𝐾𝑢 is higher, the potential well of a pinning site becomes 
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deep, so it requires high depinning current, 𝐽𝐶 to depin a DW siting in such a potential well or energy 

minima. On the contrary, lower 𝐾𝑢 is associated with a shallow potential well for the same pinning site 

hence requires lower threshold current to depin. Fig. 3-4(a) presents a sketch of an example racetrack where 

the DW is situated at a pinning site located near the right end of the racetrack and Fig. 3-4(b) plots the 

depinning current versus the anisotropy coefficient for that DW. From Fig. 3-4(b) we can see that critical 

depinning current 𝐽𝐶 is increased with the increase of anisotropy coefficient 𝐾𝑢.  

The DW velocity at steady state can be expressed by the following [56,58]:  

 
𝑣 =

𝜋

2

𝛾∆𝐻𝐷𝑀

√(1 + (
𝐽𝐷

𝐽 − 𝐽𝐶
)2)

 
(21) 

 𝐽𝐷 = 𝛼𝐽𝐻𝐷𝑀 𝐻𝑆𝐻⁄  (22) 

Empirical critical current density 𝐽𝐶 is used to account for the pinning effect which is validated by fitting 

1-D DW model to the experimental data [56].  

As seen from Fig. 3-4(b), the critical current density  𝐽𝐶 is high for higher 𝐾𝑢. As a result, for a higher 𝐾𝑢, 

for a fixed clocking SOT current 𝐽 >   𝐽𝐶  , the velocity becomes small as the denominator in Eq. 21 is large 

compared to the case of lower 𝐾𝑢  for which the denominator is small (low critical current density  𝐽𝐶) and 

velocity is high. In addition, when 𝐾𝑢 increases (decreases) the DW width ∆ in Eq. 10 decreases (increases) 

which increases (decreases) 𝐽𝐷 in Eq. 22 and the denominator in Eq. 21, consequently the velocity decreases 

(increases).   

The DW position for different anisotropy constant 𝐾𝑢 is shown in Fig. 3-4(c) for one rough edge racetrack 

where the SOT current of 24 × 1010 𝐴 𝑚2⁄  is applied for fixed 1.2 ns. The change in velocity with the 

change in 𝐾𝑢 is evident as the DW translates to different distances with the same SOT. After the 

simultaneous withdrawal of the SOT and strain, the DW further moves at terminal velocity due to the 

momentum gained because of the SOT. The lower the anisotropy constant the higher the velocity gain and 

the higher the distance travelled by the DW after the withdrawal of SOT as can be seen for the case of 𝐾𝑢 =

7.3 × 105 𝐽 𝑚3⁄ . Notably, the DW for 𝐾𝑢 = 7.0 × 105 𝐽 𝑚3⁄  also traveled same distance as 𝐾𝑢 =

7.3 × 105 𝐽 𝑚3⁄  as the velocity difference after SOT withdrawal is small and there is no suitable pinning 

site in between to pin and stop the DW at a different position due to the small velocity difference.  
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Figure 3-4 a. Initial pinning position of the DW in a PMA rough edge racetrack b. dependence of the DW depinning current on the 

anisotropy coefficient when the DW in racetrack 3-4a is in the initial pinning position c. DW positions with time in racetrack 3-4a 

for a fixed duration and amplitude current pulse exerting SOT and different stresses (different Ku). The SOT and stress are 

withdrawn at 1.2 ns. For different stresses respective DWs travel different distances and get pinned to different locations.  

We have simulated a total of 40 racetracks of ~ 3nm rms edge roughness where we varied anisotropy 

constant values 𝐾𝑢 to 8.0, 7.8, 7.5, 7.3 and 7.0 (× 105) 𝐽 𝑚3⁄  in each of these racetracks and applied SOT 

current of fixed amplitude 24 × 1010 𝐴 𝑚2⁄  for 1.2 ns. Each of the DW is initialized to a pinning site 

located near the right end of the racetrack. After the simultaneous withdrawal of the SOT and stress we 

wait for 10 ns to allow sufficient time for the DW to decelerate and get pinned to a specific position. We 

note that, the DWs usually settle within approximately  ± 4 nm of the equilibrium pinning locations after 

10 ns of SOT withdrawals which is approximately 3× of the deceleration time constant calculated from 1-

D DW equations. The distribution of the final DW position for the 40 racetracks is shown in Fig. 3-5.  

In Fig. 3-5 for each 𝐾𝑢 value we also overlay a gaussian distribution with identical mean and standard 

deviation of the data used to create the bins. Although the final position distribution does not follow 

Gaussian distribution, we see that the mean final positions are different for different stress (𝐾𝑢) values (Fig. 

3-5(a)-(e)). The mean DW positions shift to the left of the racetracks as we decrease the PMA. The primary 

source of the distribution of final DW positions for a specific 𝐾𝑢 could be attributed to the interaction of 

the DWs with the roughness induced pinning sites during the acceleration and deceleration phases of DW 

motion. During the acceleration phase the kinetic energy (or SOT current) required to overcome a pinning 
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site depends on the relative distance of the DW from the pinning sites. Different racetracks offer pinning 

sites at different locations, thus influencing the equilibrium DW positions distribution. Similarly, during 

the deceleration phase, DW loses momentum due to damping and begins to interact strongly with the edges 

due to the deceleration force exerted towards the roughness induced pinning sites (as seen from Eq. 19). 

DW-edge interaction varies among racetracks due to their different roughness profile (distribution of 

pinning sites is different). Moreover, for different racetracks the DWs begin deceleration from different 

positions so the deceleration forces acted on the DWs become different. All these factors contribute to the 

DWs being pinned at random positions for different racetracks. In addition to that, DWs in different 

racetracks are initialized from pinning sites that have different longitudinal positions and geometry for 

different racetracks. Pinning site geometry affects the depinning current 𝐽𝐶 vs. 𝐾𝑢 relationship and thus 

different geometry can add stochasticity to the final DW position. Adding a fixed geometry notch at one 

end of the racetracks for DW initial location could address this stochasticity (though it cannot be addressed 

fully due to different stray fields for different racetracks). However, more importantly, significant 

stochasticity still persists (in spite of the notch to have the same initial DW starting point) due to the above-

mentioned DW-edge interaction both at the beginning and end of SOT excitation. 

 

Figure 3-5 a-e. Equilibrium DW positions for 40 different racetracks at T=0 K for a fixed SOT and different stresses correspond to 

Ku values of 8.0, 7.8, 7.5, 7.3 and 7.0 (× 105) 𝐽 𝑚3⁄ . For each figure in 3-5(a-e) a Gaussian distribution plot is overlaid having a 

mean and standard deviation identical to the data used to create the bins f. combined plot of 3-5(a-e) shows different mean positions 

for different Ku values. 

(a) (b) (c)

(d) (e) (f)
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3.2.3. Thermal statistics: 

At room temperature, the thermal perturbation can dislodge the DW. Hence, edge roughness of ~ 3 

nm cannot offer similar pinning effect in thermal cases as in the non-thermal cases. As a result, the 

depinning current decreases in the presence of room temperature thermal noise for the same racetrack. For 

thermal simulation, we use a fixed clocking SOT current density of 15 × 1010 𝐴 𝑚2⁄  which is smaller than 

the current density we use in non-thermal case. The SOT and stress application time are kept the same as 

before (1.2 ns).  After the withdrawal of SOT and stress, we relax for 10 ns (as we did earlier for the non-

thermal case). Unlike non-thermal cases, the DWs do not settle to a specific pinning site but oscillate around 

this pinning site as the thermal energy causes the DW position to fluctuate around the equilibrium position. 

We found that DWs usually encounter a pinning site within 6 ns of SOT withdrawal. So, a relaxation time 

of 10 ns is enough for the DWs to reach an equilibrium position. We changed the anisotropy constant, 𝐾𝑢 

values to 8.0, 7.8, 7.5, 7.3 and 7.0 (× 105) 𝐽 𝑚3⁄  and ran the simulation for each 𝐾𝑢 value 100 times 

considering limited computational resources and time.  The equilibrium DW position distribution for one 

such racetrack of ~ 3 nm rms edge roughness is shown in Fig. 3-6. Here, we also overlay Gaussian 

distribution with identical mean and standard deviation of the data used to create the bins. The bins in Fig. 

3-6(a)-(e) are sized according to the standard deviation of the data. Although the distribution does not follow 

Gaussian distribution, the mean positions for different 𝐾𝑢  follow the same trend as in non-thermal case 

where for lower 𝐾𝑢 values the mean DW position shifts to the left. Due to the random variation of the DW 

internal magnetization angle in the presence of thermal noise, upon encountering a potential barrier (or a 

well), the DW could overcome the barrier (or gets attracted to the well) in some cases but not in other cases. 

This leads to a distribution. 

The settling time of 10 ns for the DW or a total write time 11.2 ns may indicate a slower device compared 

to SOT-MRAM based memory device where low switching time is expected. However, for hardware 

implementation of DNN, 11.2 ns write time is not considered too slow, as different layers in DNN are 

implemented with separate crossbars (as shown in Fig. 3-1(c)) thus can take advantage of parallel operation. 

Performing the weighted sum operation during the forward and backward pass of DNN consumes time 

(read operation), so does the activation function computation. Thus, when a crossbar implements forward 

pass or backward pass of one layer, the other crossbar devices can be programmed (write operation) to 

achieve target conductance values. 
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Figure 3-6 a-e. Equilibrium DW positions for one racetrack at T=300K for a fixed SOT and different stresses correspond to Ku 

values of 8.0, 7.8, 7.5, 7.3 and 7.0 (× 105) 𝐽 𝑚3⁄ .  For each figure in 3-6(a-e) a Gaussian distribution plot is overlaid having a mean 

and standard deviation identical to the data used to create the bins f. combined plot of 3-6(a-e) shows different mean positions for 

different Ku values. 

3.2.4. Determination of Synaptic State 

If the number of target states are 𝑛, and the maximum and the minimum conductance of the racetrack are  

𝐺𝑚𝑎𝑥,𝑃 and 𝐺𝑚𝑖𝑛,𝐴𝑃, then ~(𝐺𝑚𝑎𝑥,𝑃 − 𝐺𝑚𝑖𝑛,𝐴𝑃) can be divided into 𝑛 − 1 parts to represent one state. In 

such a scenario, the target conductances for each of the n states can be ~ 𝐺𝑚𝑖𝑛,𝐴𝑃 , 𝐺𝑚𝑖𝑛,𝐴𝑃 +
𝐺𝑚𝑎𝑥,𝑃−𝐺𝑚𝑖𝑛,𝐴𝑃

𝑛−1
, 

𝐺𝑚𝑖𝑛,𝐴𝑃+2 ∗
𝐺𝑚𝑎𝑥,𝑃−𝐺𝑚𝑖𝑛,𝐴𝑃

𝑛−1
, ….. , 𝐺𝑚𝑎𝑥,𝑃. For any programming voltage pulse, representing by a specific 

PMA or Ku, the probability by which any stabilized DW provides conductance 𝐺 that is within the range 

of target conductance 𝐺𝑇 such that  |𝐺 − 𝐺𝑇| <
1

2

𝐺𝑚𝑎𝑥,𝑃−𝐺𝑚𝑖𝑛,𝐴𝑃

𝑛−1
 , is the probability of that state for that 

programming condition. Fig. 3-7(a) and 3-7(b) plot the cumulative probability of DW device conductance 

at T=300 K for five and three different programming conditions that implement 5- and 3-state synapse. For 

the conductance calculation, Eq. 5 is used and the resistance area product and TMR are assumed to be 

4.04 × 10−12Ω𝑚2 and 120 % [9]. The value of 𝐺𝐷𝑊 is small and neglected for calculation. In Fig. 3-7, the 

black dotted lines represent the target conductance of a state, and the adjacent red dotted lines represent the 

state boundaries. For 5-state synapse the target conductances are chosen to be 3.22, 3.86, 4.5, 5.14 and 5.78 

mS which can be achieved by modulating the PMA to 8.0, 7.8, 7.5, 7.3 and 7.0 (× 105) 𝐽 𝑚3⁄  respectively. 



51 
 

For 3-state synapse the target conductances are chosen to be 3.22,4.5 and 5.78 mS.  Ideally one would want 

100% probability for a state for one programming condition or a specific Ku. However, in the case of 

stochastic DW, we get a finite probability for all the states for one programming condition. This leads to 

overlap of states which could degrade the DNN accuracy. These overlaps can be easily addressed by 

restricting the conductance of a state within the range of a target conductance (given by the adjacent red 

lines) by programming and then sensing or performing read-verify-write operation in a loop [58].  “Closed 

loop on device” [60] method can be used to perform read-verify-write operation for on-chip learning and 

“open loop off device” [61] method can be used for off-chip learning where the target conductance values 

are calculated beforehand by training a precursor neural network. Comparing Fig. 3-7(a) and (b) we can 

see that the state boundary is wide for 3-state synapse, thus one state can be programmed with smaller 

number of attempts.  

 

Figure 3-7 (a) Cumulative probability of device conductance for 5 different programming conditions (different 𝐾𝑢) implementing 

a 5-state stochastic synapse. The black dotted lines represent the 5 target conductances for the 5-state synapse. The red dotted lines 

represent the boundaries of each state to ensure that no overlap happens between adjacent states. (b) Cumulative probability of 

device conductance for 3-state synapse. The red dotted lines represent the state boundaries. of each state. For 3-state synapse the 

width of state boundary is high so one state can be programmed with a smaller number of attempts. 

While the nanoscale racetrack could be used as a synaptic device after addressing the state overlap issue, 

however, the presence of device-to-device variation (as in Fig. 3-5) and intra-device variation (as in Fig. 3-

6) are also evident. Intuitively such variation could be harmful to the functioning of the DW based synaptic 

device as an inference engine for classification task, as the synaptic weights obtained after software-based 

training cannot be programmed accurately during inference stage. However, recent studies [40] have shown 

that addressing the device variability during the training stage can achieve high inference accuracies that is 

very close to baseline accuracy (no device variability is assumed) and the accuracy is highest when the level 
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of noise (because of the device variability) injected during the training is on the same order as the noise of 

the device used for the inference task. 

 

3.3 Energy dissipation: 

Energy dissipation in our proposed device depends on charging the piezoelectric layer as well as 𝐼2𝑅 loss 

of the clocking current through the heavy metal layer. To introduce stress, we have to charge the 

piezoelectric layer. Energy required to charge this capacitive layer is  1 2⁄ 𝐶𝑉2, where 𝑉 is the voltage 

applied and 𝐶 is the capacitance of the piezoelectric layer between the metal contacts. 

In our proposed device, the racetrack PMA we have considered is 𝐾𝑢 =7.5 × 105 𝐽 𝑚3⁄  and the maximum 

change of PMA with voltage induced stress is ∆PMA=0.5 × 105 𝐽 𝑚3⁄  to achieve  𝐾𝑢 =7.0 or 8.0 (× 105) 

𝐽 𝑚3⁄ . The saturation magnetostriction of CoFe is, 𝜆𝑠=250 ppm. Using the above values, the maximum 

amount of required stress, σ is calculated to be,  
∆𝑃𝑀𝐴
3

2⁄ 𝜆𝑠
=133 MPa.  For CoFe with Young’s Modulus of 200 

GPa, the required strain is,  
133 𝑀𝑃𝑎

200 𝑀𝑃𝑎
 ~10−3. Previous study [48] showed that 10−3 strain is possible in Lead 

Zirconate Titanate (PZT) piezoelectric with an applied electric field of E=3𝑀𝑉𝑚−1 when the electrode 

dimensions are in the same order of the PZT thickness. If we consider our PZT layer to be b=50 nm thick 

(same as top electrode or racetrack width as shown in Fig. 3-1(b)) then a voltage of, E*b = 0.15 V applied 

at the top electrode pair can generate the required strain. If the top electrode length L=500 nm (same as 

racetrack length 500 nm) and width b=50 nm is considered, and relative permittivity of PZT is 𝜖𝑟=3000 

then the effective capacitance is calculated to be 
𝜖0𝜖𝑟(𝐿∗𝑏)

𝑏
 ~ 13.3 fF. This suggests a  1 2⁄ 𝐶𝑉2 loss of ~0.3 

fJ considering two top electrodes on both sides of the racetrack. 

For our SOT clocking, we assume resistivity of Pt layer is 100 Ω nm. We also assume Pt layer to be 5 

nm thick, which is greater than the spin diffusion length of ~2 nm [44] and the spin hall angle to be 0.1 

[44]. If a clocking current density of 24 × 1010 𝐴 𝑚2⁄  is applied through the Pt layer of length 500 nm, 

width 50 nm and thickness 5 nm for a clocking period of 1.2 ns, then the 𝐼2𝑅 loss incurred is calculated to 

be ~0.86 fJ. Therefore, our proposed DW based device can program the synapse with maximum energy 

dissipation of approximately 1.16 fJ. 

Energy consumption to program the proposed synapse to the maximum (or minimum) conductance value 

is 1.16 fJ which is much less than previously reported [10,11]. Recent study has shown DW based synapse 

with racetrack dimension of 1000 nm × 50 nm, where each synaptic state is programmed by applying SOT 

current pulse for 3 ns [9]. In their device they require ~ 8.64fJ to program the synaptic conductance from 
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one extreme to the other. While the state-of-the-art phase change memory (PCM) device and the metal 

oxide resistive random-access memory (RRAM) device can have a smaller footprint, however, the 

programming energy can be as high as several pJs [9, 62] because these devices involve physical movement 

of ions. Moreover, the endurance cycle of the of the PCM and the RRAM devices are low compared to 

spintronic DW devices [63]. 

 

3.4. Additional details:   

Demagnetization energy and grid size dependence of simulation results: 

Edges in a rough racetrack are difficult to approximate with finite difference method [43] as it relies on 

stair-case approximation. So, the demagnetization tensor is not calculated properly at the edges. Ref. [45] 

and ref. [46] prescribed corrections in finite-difference code to compensate for the effects of stair-case 

approximation. Ref. [47] provided corrections using factors that are computed with finer mesh before 

simulation with actual (larger) mesh to accurately account for the short-range magnetostatic interaction.  

To investigate the extent of magnetostatic interaction, we examined the effect of cell sizes on magnetostatic 

(demagnetization) and exchange energy densities by performing simulations for different cell sizes of 2 × 

2 × 1 𝑛𝑚3, 1 × 1 × 1 𝑛𝑚3 , 0.5 × 0.5 × 1 𝑛𝑚3 and so on. We chose a rectangular region of dimension 60 

× 50 × 1 𝑛𝑚3 as seen in Fig. 3-8 where the length of the rectangle is comparable with physical DW length. 

The rectangular region is centered around the DW. For each of the cell sizes, we initialized a DW in the 

racetrack at a particular pinning location and after relaxation we noted the energy densities for that 

rectangular region. The energy densities are presented in table 3-2. Form table 3-2, we can see that the 

difference in demagnetization energies becomes small at cell size 0.5 × 0.5 × 1 𝑛𝑚3 and beyond. We 

performed the simulation for our reported results using a cell size of 2 × 2 × 1 𝑛𝑚3. Reducing it to 0.5 × 

0.5 × 1 𝑛𝑚3 would require replacing 1 cell with 16 finer cells which require significant computational 

resources. However, we find similar trends for the final DW position when we reduce the cell size. We 

performed a comparison study for the cell size of 2 × 2 × 1 𝑛𝑚3 and 1 × 1 × 1 𝑛𝑚3.  

 

Figure 3-8 A rectangular region of dimension 60 × 50 × 1 𝑛𝑚3 marked in red is centered around the DW in a racetrack. The energy 

densities are calculated for the red rectangular region by changing the cell sizes of the simulation. The computed energy densities 

are shown in table 3-2. 
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Table 3-2: Energy densities for simulations with different cell sizes 

Energy 

Density (
𝐽

𝑚3⁄ ) 

2×2×1 

𝑛𝑚3
 

1×1×1 

𝑛𝑚3 

.5×.5×1 

𝑛𝑚3 

. 25 × .25×1 

𝑛𝑚3 

Anisotropy -58683 -58791 -58037 -58005 

Exchange 1023 1065 1012 1017 

Demagnetization 46697 46867 46339 46341 

Total -10962 -10859 -10685 -10646 

 

For both of the cell sizes, we initialized the DW at the same position in each of the 40 racetracks and applied 

the same current pulses (same amplitude and duration). We computed the equilibrium DW position 

distribution for the two extremes of the PMA, 𝐾𝑢= 8.0 × 105 and 7.0 × 105 𝐽 𝑚3⁄  . For both of the cell 

sizes studied, DWs translate to longer distances for lower PMA. The distributions are presented in Fig. 3-9 

and Fig. 3-10. The mean values that are computed from the distributions are close for both cell sizes for 

both of the PMAs (anisotropy coefficients, 𝐾𝑢). For 𝐾𝑢 =8.0 × 105  𝐽 𝑚3⁄  the mean values for DW 

positions are 244.8 nm and 259.5 nm for 1 × 1 × 1 𝑛𝑚3 and 2 × 2 × 1 𝑛𝑚3 cell sizes respectively. For 

𝐾𝑢 =7.0 × 105 𝐽 𝑚3⁄  the mean values for DW positions are calculated to be 65.7 nm and 87.85 nm for 1 

× 1 × 1 𝑛𝑚3 and 2 × 2 × 1 𝑛𝑚3 cell sizes respectively. Thus, the mean values for respective anisotropy 

coefficients, 𝐾𝑢 for different cell sizes follow similar trend for equilibrium DW positions. 

 

Figure 3-9 Distribution of equilibrium domain wall position in 40 different racetracks for anisotropy coefficient of 8.0 × 105 𝐽 𝑚3⁄  

for cell size (a) 1 × 1 × 1 𝑛𝑚3 and (b) 2 × 2 × 1 𝑛𝑚3. 
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Figure 3-10 Distribution of equilibrium domain wall position in 40 different racetracks for anisotropy coefficient of 7.0 × 105 

𝐽 𝑚3⁄  for cell size (a) 1 × 1 × 1 𝑛𝑚3 and (b) 2 × 2 × 1 𝑛𝑚3. 

3.5 Conclusion: 

In summary, we have proposed an energy efficient strain-controlled synapse where different synaptic 

weights have been achieved by applying different values of voltage induced stress in conjunction with a 

fixed clocking SOT current in chiral DW systems with significant DMI. While a uniform change in stress-

induced anisotropy cannot move the DW that is pinned in a trap site, it can influence the potential landscape 

such that the DW in a low PMA racetrack moves faster than in a high PMA one, when being driven by a 

fixed SOT current. We have shown that five different mean equilibrium DW positions with five different 

voltage induced stress values is achievable in a 500 nm long and 50 nm wide racetrack with edge roughness 

of ~3 nm. These suggest the feasibility of a 5-state synapse. A 3-state synapse can be also achieved using 

three different voltage induced PMA modulation. Recent progress in low precision quantized neural 

network to achieve near equivalent accuracy to full-precision network makes such a DW based synapse 

device specifically attractive as a powerful classification tool for edge devices where energy requirement 

is at a premium.  
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Chapter 4: Energy Efficient Learning with Low Resolution Stochastic Domain Wall 

Synapse for Deep Neural Networks 

 

In Chapter 3, we demonstrated voltage-controlled domain wall synapses using racetrack memory devices. 

The synaptic states that can be achieved with small-footprint racetracks are limited and exhibit stochastic 

behavior. In this chapter we demonstrate extremely low resolution quantized (nominally 5-state) synapses 

with large stochastic variations in synaptic weight can be energy efficient and achieve reasonably high 

testing accuracies compared to deep neural networks (DNNs) of similar sizes using floating precision 

synaptic weights. We propose both in-situ and ex-situ training algorithms, based on modification of the 

algorithm proposed by Hubara et al. [1] which works well with quantization of synaptic weights, and train 

several 5-layer DNNs on MNIST dataset using 2-, 3- and 5-state DW devices as a synapse. For in-situ 

training, a separate high precision memory unit preserves and accumulates the weight gradients which 

prevents the accuracy loss due to weight quantization. For ex-situ training, a precursor DNN is first trained 

based on weight quantization and characterized DW device model. Moreover, a noise tolerance margin is 

included in both of the training methods to account for the intrinsic device noise. The highest inference 

accuracies we obtain after in-situ and ex-situ training are ~ 96.67% and ~96.63% which is very close to the 

baseline accuracy of ~97.1% obtained from a similar topology DNN having floating precision weights with 

no stochasticity. Large inter-state interval due to quantized weights and noise tolerance margin enables in-

situ training with significantly lower number of programming attempts. Our proposed approach 

demonstrates a possibility of at least two orders of magnitude energy savings compared to the floating-

point approach implemented in CMOS. This approach is specifically attractive for low power intelligent 

edge devices where the ex-situ learning can be utilized for energy efficient non-adaptive tasks and the in-

situ learning can provide the opportunity to adapt and learn in a dynamically evolving environment. 

 

Deep neural networks (DNNs) have proven to be successful in image recognition and other big data driven 

classification tasks. However, implementing a DNN with traditional von-Neumann computing is time 

consuming [2] as it requires shuttling a large number of synaptic weight data stored in the memory to the 

processing unit to perform matrix-vector multiplication during the forward propagation and backward 

propagation stages. Moreover, shuttling data between the computational unit and memory unit is energy 

intensive [3], which hinders the implementation of such DNNs in edge devices where energy is at a 

premium [4-5]. 
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In-memory computing has been widely explored to reduce the physical separation between computation 

and memory units. In-memory computing is a non-von-Neumann computing paradigm where the 

computational memory units are arranged in a way that certain computational tasks take place in the 

memory itself [6-7]. Matrix vector multiplication, the most computationally intensive part of a DNN [8], 

has been demonstrated with in-memory computing [9-10]. When the computational memory units are 

connected in a crossbar and programmed to provide conductances equivalent to the DNN weights [11-12], 

the matrix-vector multiplication operation can be implemented in single time step [6,8] and with minimal 

data movement. Computational memory such as phase change random access memory (PCM) [13-14], 

resistive random-access memory (RRAM) [15-16], arranged in a crossbar array have been shown to classify 

handwritten digits [11,17] and recognize human faces [18]. However, these analog memory devices have 

stochastic and non-linear responses and provide limited resolution for synaptic weights. To achieve higher 

classification accuracy, these issues should be addressed with appropriate training algorithms. 

Recently spintronic memory devices have been widely explored for in-memory DNN implementation 

because of their non-volatility, high endurance, high speed of access, high scalability and compatibility 

with CMOS technology [2,19-24]. Among these spintronic devices, domain wall (DW) based 

computational memory [19-20] is promising and these devices can be programmed with a low energy 

budget [25]. However, similar to other analog devices, DW devices have limitations such as their stochastic 

behavior [26-29] and low resolution due to the relatively small on/off ratio of magnetic tunnel junctions 

(MTJs) which are 7:1, at best, at room temperature [30]. 

With recent advances in computing, researchers have shown fast and energy efficient implementation of 

DNNs with low resolution synaptic weights [1,31-34] where the weights’ values can only be binary (1-bit 

or 2-state) [31]. However, for updating weights, gradients are calculated in full precision to achieve high 

accuracy [1]. This idea of keeping full precision gradient information for training a network with limited 

precision synaptic weights can be useful for a DNN that is built from energy efficient DWs or other analog 

low-resolution devices.   

Apart from the low resolution, stochasticity and non-linear response of the analog devices should be 

addressed during training to achieve higher classification accuracy [11]. To address the stochasticity of the 

analog devices, both online (in-situ) and offline (ex-situ) training of the DNN are proposed. For online 

training, multiple devices per synapse have been proposed with [35] or without ‘periodic carry’ [36] to 

address device variability and noise. In another work, a 3T1C module (consists of 3 CMOS transistors and 

1 capacitor) is used in conjunction with the stochastic PCM device to accumulate small linear updates and 

then periodically transfer them to the non-volatile PCM [37]. However, with online training, using the 

techniques mentioned above during the weight update stage, each of the synaptic weights in the crossbar 
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array are updated. This has great implications for the endurance of the devices as well as the energy 

consumed in training the device. Recently, a mixed precision framework [38-39] has been proposed where 

large computational loads, such as the weighted sum operation (matrix-vector multiplication) along with 

the conductance updates, are performed in a low precision computational memory unit and the weight 

updates are accumulated in a high precision unit. Using this framework, a large variety of DNNs have been 

shown to achieve high classification accuracy with significantly smaller number of weight updates [38].   

In contrast to the online training, for offline training the DNN is trained in software and the actual devices 

are programmed based on the learned weights from software. In this case, hardware nonidealities are 

characterized first and then included in the training process. To address stochasticity of the devices, 

Gaussian noise injection for the DNN weights has been proposed [40] and has shown excellent accuracy. 

Random gaussian noise is also added to the ternary weights (3-state weight) of a DNN [41]. Variation aware 

offline training algorithm is reported in [42-43] where the variation in device conductances and device 

defects are first characterized and then incorporated during the training of the DNN in software. In another 

case involving a deep convolutional neural network, the optimal weights for convolution layers and fully 

connected layers are learned via offline training before the fully connected layers’ weights being updated 

by online training [44].  

Although a significant amount of research has focused on addressing the device variability and non-

linearity, a largely unexplored area is quantized (low resolution) learning with these non-volatile devices. 

Even a high-resolution device (or a low granularity device) can behave as a low-resolution device, when 

device variability is taken into account. The limited numbers of synaptic states provided by low-resolution 

devices can strongly impact accuracy. At the same time, in neuromorphic computing applications, these 

devices offer advantages. An inherent benefit of the low-resolution devices can be their large inter-state 

interval. It provides an opportunity to train a neural network with significantly lower number of the weight 

updates with a standard learning rate. However, accuracy metrics need to be acceptable while using these 

devices for in-situ learning.  

In this study, we demonstrate that such low resolution and stochastic non-volatile devices can perform 

highly accurate in-situ classification tasks while taking advantage of significantly lower number of device 

updates (energy efficiency). In our proposed algorithm, weight gradients are accumulated in high precision 

(digital domain) before quantizing this information to program the low-resolution devices in analog domain. 

Using rigorous device model and simulations, we show that such in-situ training can achieve comparable 

accuracy to that of a 32-bit precision synapse. This demonstrates that there is a possible low-resolution 

weight space, which can provide an optimal solution to the classification problem with highly energy-

efficient non-volatile devices. In addition, we have shown ex-situ training strategies to achieve high 
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classification accuracy for DNN implemented with these highly stochastic (non-Gaussian) and extremely 

low resolution (nominally 2-state, 3-state, and 5-state for synaptic weights) analog DW based computational 

memory devices. 

The rest of the chapter is organized as follows. In the methods section, we detail the architecture of the DW 

device that can work as a synapse in the DNN and discuss the in-situ and ex-situ learning algorithms of 

such DW device based DNN. For both of the learning algorithms we adapt quantized neural network 

learning algorithm [1,31] with several modifications including the weight deviation tolerance from target 

weight to account for the programming noise intrinsic to such stochastic DW devices. For ex-situ training, 

we also incorporate the statistical distribution of the DW device conductance during the training, which 

helps to achieve higher test accuracy. This is followed by the results and discussion section, and then a 

conclusion. 

4.1. Methods: 

DW based Nano-Synapse and Micromagnetic Modeling for Device Stochasticity: 

We model our synapse on a magnetic DW based nanodevice, which is non-volatile in nature. Once the 

memory state (here the synaptic weight) is written, the information is retained for a long time. For the nano-

synapse device, we simulated a thin ferromagnetic racetrack having a dimension of 600 nm × 60 nm × 1 

nm with a DW initialized and stabilized in a notch at one end. In addition, we assume several engineered 

notches at regular intervals along the racetrack. The racetrack dimensions and notch intervals are shown in 

Fig. 4-1a. Moreover, we consider edge irregularities (rms roughness of ~ 2nm) in the racetrack to mimic 

the effect of lithographic imperfections by randomly removing or adding some finite difference cells from 

the edges [45-46]. We assume the racetrack is on top of a heavy metal layer that is patterned on top of the 

piezoelectric layer (see Fig. 4-1b). An insulator (MgO layer) and a reference ferromagnetic layer (one could 

also add a synthetic antiferromagnet (SAF) layer to cancel dipole coupling from this fixed layer) are stacked 

on top of the racetrack, these two layers combined with the racetrack ferromagnetic layer (free layer) forms 

a magnetic tunnel junction (MTJ) (see Fig. 4-1b), which facilitates the readout of the device. With this 

configuration, a combination of fixed amplitude and fixed time current pulse “or clocking signal” injected 

in the heavy metal layer and a varying amplitude “control” voltage pulse applied across the piezoelectric 

translates the domain wall into different distances along the racetrack. Different positions of the DW lead 

to different conductances of the MTJ thus forming a voltage programmable non-volatile synapse. 

 

 



66 
 

Magnetization Dynamics: 

The magnetization dynamics of the domain wall (DW) in the racetrack ferromagnetic layer which governs 

the conductance (synaptic state) evolution of the nano-synapse is simulated in MUMAX3 [47] using the 

Landau–Lifshitz–Gilbert-Slonczewski equation. The simulation parameters are listed in Table 4-1. The 

simulation details can be found in [29] and in section 1.2.7.  

Table 4-1: Simulation parameter 

Parameters Values 

DMI constant (D) 0.0006 𝐽𝑚−2 

Gilbert damping (𝜓) 0.03 

Saturation magnetization (𝑀𝑠) 106 𝐴𝑚−1 

Exchange constant (𝐴𝑒𝑥) 2 × 10−11𝐽𝑚−1 

Saturation magnetostriction (𝜆𝑠) 250 𝑝𝑝𝑚 

Perpendicular Magnetic 

Anisotropy (𝐾𝑢) 

7.5 × 105 𝐽𝑚−3 

 

Mapping Domain Wall Position to Conductivity: 

The distribution of equilibrium DW positions for five different programming voltages, represented by 

different perpendicular magnetic anisotropy (PMA) coefficient, 𝐾𝑢, in addition to fixed amplitude and fixed 

time spin orbit torque (SOT) generating current pulse (35 × 1010 𝐴 𝑚2⁄  applied for 1 ns) in the presence 

of room temperature thermal noise are shown in Fig. 4-1c. The mean equilibrium DW positions vary for 

different 𝐾𝑢, which implies that different programming voltages can be chosen for different synaptic states. 

For example, one can select five, three, or two different programming voltages to implement a 5-state, 3-

state or 2-state synapse. The number of states that can be obtained from the device is limited due to the fact 

that with the presence of Dzyaloshinskii–Moriya interaction (DMI), SOT current can cause DW titling long 

after the current stimulus is withdrawn [48]. Thus, in the presence of room temperature thermal noise and 

structural irregularities (edge roughness) DW motion becomes significantly stochastic. As a result, an 

average variance of ~ 90 nm can be seen for different DW mean positions in our modelled racetrack. 

Considering all of these factors contributing to the stochasticity, we choose a maximum 5-state for our 

modelled device as higher number of states can cause larger overlaps between the states, which is 

detrimental for DNN performance. While it is possible to increase the number of states by increasing the 

racetrack dimension (increase area footprint) and/or increase  the notch depth (increases energy as operating 

current increases), the main contributions of our study is to show that we can use extremely low precision 
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(5-state, 3-state, etc.) non-volatile synapses for in-situ (and ex-situ) DNN training and achieve classification 

accuracy that are comparable to that of full precision (32-bit) DNNs. 

 

 

Figure 4-1 a. Micromagnetic configuration of a ~2 nm rms rough edge racetrack with perpendicular magnetic anisotropy (PMA). 

Engineered notches are placed regularly at 75 nm intervals.  A DW is initialized at a notch 60 nm from the left of the racetrack. b.  

DW based nano-synapse device: racetrack ferromagnet/insulator/reference ferromagnet (MTJ) on top of a heavy metal layer on a 

piezoelectric substrate. A fixed amplitude current pulse, J in the heavy metal layer along with different amplitude voltage pulse, V 

across the piezoelectric changes the perpendicular anisotropy (PMA or 𝐾𝑢 constant) of the racetrack and translates the DW (shown 

in red rectangle) into different longitudinal positions along the racetrack. c. Distribution of equilibrium DW positions in the 

racetrack (shown in Fig. 4-1a) at room temperature T=300K for a fixed SOT generating current pulse of 𝐽 = 35 × 1010 𝐴 𝑚2⁄  

applied for 1 ns and five different PMA coefficients, 𝐾𝑢  (corresponds to five different programming voltages). Different mean 

positions for different 𝐾𝑢 implies that 5-state, 3-state or 2-state stochastic synapses can be implemented by choosing 5,3 or 2 

different programming voltages. d. distribution of average perpendicular magnetization, < 𝑚𝑧 > (which is equivalent to DNN 

weights according to Eq. 4) derived directly from DW positions. 

Equilibrium DW positions shown in Fig. 4-1c can be linearly mapped to a conductance value by means of 

the following equations: 

    𝐺𝑠𝑦𝑛𝑎𝑝𝑠𝑒 =
𝐺𝑚𝑎𝑥 + 𝐺𝑚𝑖𝑛

2
+

𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛

2
 < 𝑚𝑧 > (1) 
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where, < 𝑚𝑧 > is the average magnetization moment of ferromagnetic racetrack along z-direction and the 

reference ferromagnetic layer magnetization is assumed to point upward, +z-direction. The distribution of 

< 𝑚𝑧 > is shown in Fig. 4-1d, which can be derived directly from DW position. 𝐺𝑚𝑎𝑥 and 𝐺𝑚𝑖𝑛 are the 

maximum and minimum conductance of the synaptic device which occur when the racetrack and reference 

layer magnetizations are parallel and anti-parallel respectively.  

 

4.2. Learning of Fully Connected DNN with Domain Wall Nano-synapse 

Crossbar with DW Devices: 

We assume a crossbar architecture for the DW devices (Fig. 4-2b) that implements a fully connected DNN 

(Fig. 4-2a).  The task of the DNN studied here is classification of handwritten digits from MNIST database 

[49]. The network is trained with the MNIST training images each having 28 × 28 pixels or a total of 784 

pixels with intensity values ranging from 0-255. The pixel intensities of the image converted to binary 

values acts as input to the DNN and the corresponding linearly mapped voltages are supplied to the crossbar 

using peripheral circuits. We have considered 3 hidden layers for the DNN and the numbers of neurons for 

input layer, hidden layers and output layer are chosen to be 784-392-196-98-10. The reason for the choice 

is discussed in the results section.  The conductance of the devices can be scaled linearly to represent the 

weights 𝑊𝑖𝑗 of the DNN [19].  

 𝐺𝑖𝑗
𝑠𝑦𝑛𝑎𝑝𝑠𝑒

=
𝐺𝑚𝑎𝑥 + 𝐺𝑚𝑖𝑛

2
+

(𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛)𝑊𝑖𝑗

2 𝑊𝑚𝑎𝑥
  (2) 

Here,  𝑊𝑚𝑎𝑥 is the maximum absolute value for the weights of the DNN. DNN weights, 𝑊𝑖𝑗 can be both 

positive and negative; however, the DW devices can only provide positive conductance values. To address 

the issue, one can add a parallel conductance, 𝐺𝑃 =
𝐺𝑚𝑎𝑥+𝐺𝑚𝑖𝑛

2
 to each of the cross-points in the crossbar 

and feed this parallel conductance with a voltage that is of opposite polarity to the voltage applied to the 

DW device [19]. This parallel reference conductance, 𝐺𝑃 can be achieved using a similar dimension DW 

device as the nano-synapse with the DW being driven and pinned at the center of the racetrack (in this case, 

< 𝑚𝑧 > ~0 in Eq. 1). An engineered notch placed at the center of the racetrack can provide further pining 

strength to the DW in addition to the demagnetization potential minima, which acts near the center of the 

racetrack [29]. Stochasticity that could arise in programming the parallel conductances is not considered in 

our study. 

Two separate rows supplied with opposite polarity voltages connect the synaptic devices and parallel 

conductances to a single column of the crossbar (bit line (BL)) as shown in Fig. 4-2b. The additional read 
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line (RL), write word line (WWL) and source line (SL) shown in Fig. 4-2b are required to enable read and 

write operation. The WWL for the parallel conductances are not shown for the sake of simplicity. To read 

the column sum, RL is activated and WWL is deactivated, whereas a specific device can be read by 

activating RL and supplying read voltage to the corresponding input line. To program a device, WWL is 

activated and RL is deactivated and SL and BL are made high or low depending on the direction of the 

current in addition to a write voltage being supplied across the piezoelectric thickness. The effective 

conductance, 𝐺𝑖𝑗, at each cross-point would be,  

 𝐺𝑖𝑗 =
(𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛)𝑊𝑖𝑗

2 𝑊𝑚𝑎𝑥
              (3) 

Combining Eq. 1 and 2 and considering 𝑊𝑚𝑎𝑥 = 1, one can get,  

 𝑊𝑖𝑗 =< 𝑚𝑧 >                 (4) 

From the above equation it is clear that if we train the DNN shown in Fig. 4-2a with weights (both positive 

and negative) that are derived from micro-magnetics (see Fig. 4-1d) for different programming conditions, 

we are effectively implementing a hardware DNN with DW devices shown in Fig. 4-2b given that the 

peripheral circuitry is designed to provide the appropriate scaling. 

During backward propagation, linearly scaled voltages corresponding to the output layer, 𝐿, error signal,  

𝛿𝑖
𝐿 = 𝑦𝑖

𝐿 − ⅆ𝑖
𝐿, are supplied to the crossbar, where 𝑦𝑖

𝐿 and ⅆ𝑖
𝐿 are the predicted and desired outcomes of the 

output layer’s neuron 𝑖.  

Backpropagation and Learning Algorithm: 

For the training of the DNN, we update the weights by calculating the gradient of a cost function with 

respect to the weights. We considered mean square error, 𝐶 =
1

2
∑(𝑦𝑖

𝐿 − ⅆ𝑖
𝐿)2 as our cost function where 

the gradient of the cost function with respect to the output of the output layer neuron 𝑖 is expressed as , 

𝛿𝑖
𝐿 = (𝑦𝑖

𝐿 − ⅆ𝑖
𝐿) (we also call it error ). Once the output layer’s errors are determined, the preceding layer’s 

errors can be calculated using the backpropagation equation, 𝛿𝑖
𝑙 = 𝑊𝑖𝑗𝛿𝑗

𝑙+1 , which is different from the 

backpropagation equation, 𝛿𝑖
𝑙 = 𝑊𝑖𝑗𝛿𝑗

𝑙+1 𝑓′𝑙+1  reported in Ref [50] where 𝑓′𝑙+1 is the gradient of the 

activation function of layer 𝑙 + 1 neuron (we use sigmoid function as activation in our simulation). In other 

words, we do not backpropagate the gradients of activation function as it does not achieve high testing 

accuracy with quantized weights. Finally, the derivative of the cost function with respect to the weights is 

calculated, which determines the weight update signal, ∆𝑊𝑖𝑗 for the weights connected between layer 𝑙 

neuron 𝑖 and layer 𝑙 + 1 neuron 𝑗, 
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Figure 4-2 a. Architecture of a fully connected deep neural network (DNN). Any neuron 𝑖 in layer 𝑙 is connected to neuron 𝑗 in 

layer 𝑙 + 1 with synaptic weight 𝑊𝑖𝑗  . At forward propagation, inputs to neuron 𝑗 are summed and passed through an activation 

function 𝑓 to generate its output, 𝑥𝑗
𝑙+1. At backward propagation, errors of layer 𝑙 + 1 neurons are back propagated to calculate the 

error 𝛿𝑖
𝑙  of neuron 𝑖 in layer 𝑙   b. Implementation of the DNN in crossbar with DW devices. The peripheral circuit and the crossbar 

shown here implements DNN functionalities of only one layer (“𝑙”) and the next layer (“𝑙 + 1”) and the number of rows in the 

crossbar are determined by the number of neurons in layer, 𝑙 and the number of columns by the number of neurons in layer, 𝑙 + 1 

(shadowed region in Fig. 4-2a). At each cross point of the crossbar there is a DW device with conductance 𝐺𝑖𝑗
𝑠𝑦𝑛𝑎𝑝𝑠𝑒

 and a parallel 

conductance 𝐺𝑃 . The effective conductance at each cross point is equivalent to the DNN weights 𝑊𝑖𝑗  such that 𝐺𝑖𝑗 = 𝜇𝑊𝑖𝑗. Inputs 

and errors of neurons are scaled to voltages before feeding them into the crossbar. The flow of the training algorithm is shown at 

the right-hand side of the crossbar. For each of the DW devices there is a corresponding high precision weight (real weight) that is 

stored in a separate high precision memory unit. These high precision weights are updated after a forward and backward pass before 

passing it through a quantizer (i.e., 2, 3 or 5-level quantization, depending on the number of states of the device). The DW device 

conductances, 𝐺𝑖𝑗 (or the corresponding device weights, 𝑊𝑖𝑗 =
𝐺𝑖𝑗

𝜇
) are updated when they fall outside the prescribed range of the 

target quantized weights, 𝑊𝑞. Figure idea adopted from [38]. 

 

 ∆𝑊𝑖𝑗 = 𝜂𝑥𝑖
𝑙𝛿𝑗

𝑙+1𝑓′𝑙+1             (5) 

Here,  𝜂 denotes the learning rate. For our learning algorithm we propose to store the updated weights in a 

separate high precision memory unit. That way, the gradients with respect to the weights can be calculated 

accurately [1]. We note that these high precision weights are different from the actual synaptic weights (or 

equivalent conductances) provided by the DW device that are quantized and of low precision. However, 

we use these high precision weights to update the DW device weights (conductances). As we apply 
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stochastic gradient decent for optimization, these high precision weights are updated at each forward pass 

with an input image.  

As DW devices can only provide limited resolution in their synaptic weights we adopt weight quantization 

in our training algorithm. For that, the high precision weights are quantized at each forward pass during the 

training. For weight quantization, we use the following sets of functions in the manner of Ref [51]: 

 

𝑐𝑙𝑖𝑝(𝑚, 𝑎, 𝑏) = 𝑚𝑖𝑛(𝑚𝑎𝑥(𝑚, 𝑎) , 𝑏) 

𝛥 =
𝑏 − 𝑎

𝑛 − 1
 

𝑞 = [𝑟𝑜𝑢𝑛ⅆ (
𝑐𝑙𝑖𝑝(𝑚, 𝑎, 𝑏) − 𝑎

𝛥
)] × 𝛥 + 𝑎 

      (6) 

where, 𝑞 is the quantized value of the real valued number 𝑚, [𝑎; 𝑏] is the quantization range and 𝑛 is the 

level of quantization. The level of quantization depends on the number of distinct states (without significant 

overlap) the device that is used to implement the DNN crossbar arrays is capable of providing. After 

quantization, a programming pulse is generated to update the DW device weights to the quantized value, a 

target that is similar to the quantized neural network learning algorithm [1]. We note that, the cost gradients 

with respect to the prior quantization quantities is zero, so to backpropagate gradients through weight 

quantization we apply “straight through estimator” approach similar to that used in [1].  Typically, two 

types of training are possible for a DNN implemented with DW nano-synapse device: in-situ and ex-situ. 

In in-situ training the DNN is trained and tested in hardware. In contrast, in ex-situ training, a precursor 

DNN is first trained in software and then the DW devices are programmed to provide the equivalent learned 

weights prior to testing.  

1) In-situ Training: 

Here, we describe in detail the step-by-step in-situ training algorithm presented in Algorithm 4-1 and shown 

in Fig. 4-2b. This Algorithm 1 is based on the modification of quantized neural algorithms presented in Ref 

[1]. For each DW device in crossbar arrays there is a corresponding high precision weight that is stored in 

a separate digital memory unit to accumulate the weight gradients in full precision. Initially, these high 

(full) precision weights are chosen at random from a gaussian distribution. After each forward and 

backward pass in the analog crossbar array, these weights are updated according to Eq. 5. Then, these 

weights are clipped and quantized so that they lie between -1 to 1. After that, a programming pulse is sent 

to the DW device to update its synaptic weight value to the quantized value. For example, in 5-level 

quantization (5-state for the synaptic device) the quantized weights can be of any value from the set 𝑊𝑞 ∈
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(−1,−0.5, 0, 0.5 ,1). Five different programming voltages can be applied to the device, which results in 𝐾𝑢 

= 8, 7.75, 7.5, 7.25 and 7.0 (× 105) 𝐽 𝑚3⁄  to achieve five different quantized weights of -1, -0.5, 0, 0.5 and 

-1 respectively as seen from Fig. 4-1d (DW device weights, 𝑊𝑖𝑗 =< 𝑚𝑧 > according to Eq. 4). Because of 

the significant spread that exists in the DW device weights (or the < 𝑚𝑧 > distribution) due to the stochastic 

nature of the device we introduce a noise tolerance hyperparameter called alpha, 𝛼 (real valued) during 

training, as after applying a programming pulse (fixed current + control voltage) the device weights can be 

of a value other than the desired quantized weight. For instance, if we want to program a DW device to a 

quantized weight of 𝑊𝑞 then we would allow any values for the device weights that satisfy the condition, 

𝑊𝑞 − 𝛼 ≤ 𝑊𝑖𝑗 ≤ 𝑊𝑞 + 𝛼. Therefore, at each iteration following quantization, we read the states of the DW 

device (costs read energy but that is typically much lower than write energy) and only if it falls outside the 

noise tolerance margin, a programming pulse is sent to the device to write the corresponding quantized 

weight. However, due to the large inter-state interval in quantized learning, a quantized weight does not 

change at each forward pass (the backpropagated errors update the weights slowly due to low learning rate). 

Instead, it typically changes only after several passes. Therefore, the noise tolerance condition need not to 

be satisfied strictly at each iteration. Furthermore, if a DW device weight is programmed outside the 

tolerance margin, it is not rectified in the current iteration, as it has a chance to satisfy the window in the 

next several iterations. This relaxation over noise tolerance condition speeds up the training process without 

losing accuracy. Again, the DW device, which already satisfies the tolerance margin, need not be 

programmed for next several iterations due to same reason of the quantized weights not being updated 

frequently.  Introduction of noise tolerance hyperparameter, 𝛼, is critical during the training of this 

stochastic device based DNN. Without 𝛼, the DW device needs to be programmed a significantly large 

number of times to achieve a particular quantized weight. On the other hand, a high value of  𝛼 allows more 

imprecise weight update or higher variation of the DW device weights from the target values, which will 

degrade the accuracy. Thus, a proper balance needs to be found for selecting the value of 𝛼 so that it not 

only ensures high classification accuracy but also low programming energy. Once the DNN is trained, the 

learned DW device’s weights (or conductances) remains the same during testing, as these devices are non-

volatile. 

We have chosen two representative noise tolerance limits for our study that are 𝛼 = 0.15 and 𝛼 = 0.25 . 

Studies have shown that during training a Gaussian noise of standard deviation, 𝜎 that is up to 7.5% of the 

maximum magnitude of DNN weights does not degrade test accuracies significantly when no inference 

noise is assumed [40]. This motivates us to consider a noise tolerance limit of 𝛼 = 0.15 that is 15% of the 

maximum DNN weights (most of the weights in Gaussian distribution lies within 2 𝜎~ 15%). However, the 

DW device we studied here does have inference noise due to the device stochasticity. Furthermore, we 
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choose a maximum noise tolerance of 𝛼 = 0.25 that is 25% of the maximum DNN weights so that the state 

overlaps between two adjacent states can be restricted for 5-state networks (half of the interstate interval 

for 5-state is 0.25).      

We note that for 3-level quantization (3-state device), DW device can be programmed with control voltages 

to generate PMA of 𝐾𝑢 = 8, 7.5, and 7.0 (× 105) 𝐽 𝑚3⁄  that can achieve quantized weights of -1, 0, and 1 

respectively. For 2-level quantization (2-state device), the devices can be programmed to 𝐾𝑢 = 8 and 7.0 

(× 105) 𝐽 𝑚3⁄  to achieve weights of -1 and 1 respectively. During in-situ training, the device weights are 

selected randomly from the < 𝑚𝑧 > distribution of corresponding 𝐾𝑢 to program the DW device to a target 

quantized value. Although we have computed 250 instances for each of the programming conditions (in 

Fig. 4-1c-d) due to the limitation in computational resources, we note that there are dominant pinning sites 

in the racetrack because of the notches. As a result, the DWs tend to be stuck in or close to those pinning 

sites in most cases rather than the pinning sites offered by the rough edges of the racetrack (see section 4.5 

Fig. 4-9). Hence, generating more instances will likely follow the probability distribution, which already 

exists in the current distribution. 

 2) Ex-situ Training 

In this section, we discuss the steps of ex-situ training algorithm. The goal of ex-situ training is to achieve 

high testing accuracy in hardware although a precursor DNN is first trained in software. For this training, 

we also adopt weight quantization and allocate a separate memory in software where we store the high 

precision weights (similar to in-situ training) in addition to the DNN weights. The training algorithm shown 

in Fig. 4-2b remains the same for ex-situ training. After each iteration (forward and backward pass), high 

precision weights are updated and then quantized. Ideally, these quantized weights should be used as DNN 

weights for the next iteration in case of deterministic quantized neural network learning [1]. However, as 

we are dealing with a stochastic device for our inference engine, we include stochastic behavior of synaptic 

weights during learning. This stochasticity is obtained from a statistical distribution of the device (shown 

in Fig. 4-1d) rather than from uniform random distribution [1] or Gaussian distribution [40, 52]. For 

example, in 5-level quantization if the quantized weight is 0 then the DNN weight can be of any values 

selected randomly from the < 𝑚𝑧 > distribution of 𝐾𝑢 = 7.5 (× 105) 𝐽 𝑚3⁄  which is responsible for 

generating quantized weight of 0 (see Fig. 4-1d). The noise tolerance margin α is also used during ex-situ 

training. This will relax the stringent requirement of programming a stochastic DW to a predetermined 

learned weight value and potentially save a large number of programming attempts. More importantly, if 

the DNN becomes aware of the statistical distribution of the device during training it can perform well 

during inference as the same device based DNN is used for inference. 
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Once the ex-situ training is accomplished, the DNN weights (or the high precision weights) are quantized 

and transferred to the DW devices by suitable programming. Here, the learned weights and the programmed 

weights may not be the same due to the programming noise. During the programming, we allow the same 

noise tolerance margin, 𝛼 that is used during training. Thus, any programmed device weight, 𝑊𝑖𝑗 need to 

satisfy,  𝑊𝑞 − 𝛼 ≤ 𝑊𝑖𝑗 ≤ 𝑊𝑞 + 𝛼 for a target-quantized weight of 𝑊𝑞. The devices can be programmed by 

repeated programming or performing read-verify-write operation in a loop, which is called “Open loop off 

device” method [53]. As we have already trained our network with stochastic distribution of weights by 

introducing finite 𝛼, the network is expected to perform well during testing when we allow the same noise 

tolerance level for programming the device. 

Algorithm 4-1 In-situ training of a quantized neural network with crossbar array of DW devices. L is the 

number of layers, C is the cost function, 𝜆 is the learning rate decay and 𝛼 is the noise tolerance margin for 

writing the DW devices. Quantize () specifies how to quantize a weight with n-level quantization and Clip 

() specifies how to clip the weights based on Eq. 6. Update () specifies how to update weights once their 

gradients are calculated using stochastic gradient decent. These updated weights are accumulated in full 

precision (32-bit) in high precision memory unit. Program () specifies sending a voltage and current pulse 

to the DW device to write its conductance to a target quantized weight.  

Require: a set of inputs and desired label (𝑎0, ⅆ𝐿), previous DW device weights 𝑊𝑖𝑗,𝑑𝑒𝑣𝑖𝑐𝑒 and 

corresponding full precision weights 𝑊𝑖𝑗,𝑓𝑝, previous learning rate 𝜂. 

Ensure: updated full precision weights 𝑊𝑖𝑗,𝑓𝑝
𝑡+1 , corresponding DW device weights 𝑊𝑖𝑗,𝑑𝑒𝑣𝑖𝑐𝑒

𝑡+1  and updated 

learning rate 𝜂𝑡+1. 

   {1. Forward propagation in analog DW device crossbar:} 

   for 𝑘 = 1 to 𝐿 do 

   𝑎𝑘 ← 𝑎𝑘−1 𝑊𝑖𝑗,𝑑𝑒𝑣𝑖𝑐𝑒
𝑘  

   end for 

   {2. Backward propagation in analog DW device crossbar:} 

   {Gradients are computed in digital unit built from CMOS devices} 

   Compute gradient 𝑔𝑎𝐿 =
𝜕𝐶

𝜕𝑎𝐿 from 𝑎𝐿 and ⅆ𝐿 
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   for 𝑘 = 𝐿 to 1 do 

   𝑔𝑎𝑘−1 ← 𝑔𝑎𝑘  𝑊𝑖𝑗,𝑑𝑒𝑣𝑖𝑐𝑒
𝑘  

   𝑔
𝑊𝑖𝑗

𝑘 ← 𝑔
𝑎𝑘 
𝑇 𝑎𝑘−1 

   end for 

   {3. Accumulating the gradients in full precision in digital unit and update DW devices:} 

   for 𝑘 = 1 to 𝐿 do 

   𝑊𝑖𝑗,𝑓𝑝
𝑘,𝑡+1 ← Update (𝑊𝑖𝑗,𝑓𝑝

𝑘,𝑡  , 𝜂, 𝑔
𝑊𝑖𝑗

𝑘  ) 

   𝐿𝑒𝑣𝑒𝑙 ← 𝑛  // 𝑛 represents maximum number of states of DW device 

   𝑊𝑖𝑗,𝑞
𝑘,𝑡+1 ← Quantize (𝐶𝑙𝑖𝑝 (𝑊𝑖𝑗,𝑓𝑝

𝑘,𝑡+1, −1, 1), 𝐿𝑒𝑣𝑒𝑙) 

      if  | 𝑊𝑖𝑗,𝑑𝑒𝑣𝑖𝑐𝑒
𝑘,𝑡 − 𝑊𝑖𝑗,𝑞

𝑘,𝑡+1|  > 𝛼 do 

       𝑊𝑖𝑗,𝑑𝑒𝑣𝑖𝑐𝑒
𝑘,𝑡+1 ← Program ( 𝑊𝑖𝑗,𝑑𝑒𝑣𝑖𝑐𝑒

𝑘,𝑡  ,𝑊𝑖𝑗,𝑞
𝑘,𝑡+1 ) 

      end if 

   𝜂𝑡+1 ← 𝜆 𝜂𝑡 

   end for

 

Testing the DNN: 

During the testing stage, we computed the predicted class for all the image samples from the MNIST test 

dataset using the trained DNN and compared it to the desired class. The percentage accuracy is calculated 

by dividing the total number of accurate predictions to the total number of test samples. During the testing 

stage, we consider two scenarios depending on in-situ or ex-situ training. When both the training and testing 

is performed on simulated hardware, the testing accuracy we record is termed online testing accuracy. In 

contrast, when the training is performed offline (ex-situ) in software, and we program the hardware 

(simulated device in this case) prior to testing according to the learned weights then the testing accuracy 

we record is termed offline testing accuracy. 
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4.3. Results and Discussions 

DNN Configuration Selection: 

The focus of our paper is to demonstrate the ability to classify images using a DW device based DNN and 

benchmark its performance against a DNN with floating precision (32-bit) weights. The topography of the 

benchmark DNN can be arbitrary as the inference accuracy varies across the spectrum of the parameters 

such as hidden layer number, layer size ratio (ratio of neurons between a layer and the previous layer) and 

learning rate constant (see Fig. 4-8 in section 4.5). Thus, one can select multiple configurations for the DNN 

and achieve good accuracy. We select a benchmark DNN architecture consisted of a network with three 

hidden layers, an initial learning rate of 0.007 and a layer size ratio of  
1

2
. Also, we assume a learning rate 

decay of 10 % after each epoch and use stochastic gradient decent method as the optimizer. The selection 

criteria are detailed in section 4.5. After training the selected benchmark DNN for 10 epochs, the test 

accuracy we achieve is 97.1 %. We note that there are opportunities to improve the accuracy further in 

terms of topography, batch normalization, dropout layer and selection of different optimizers. However, 

the main goal of this study is to show how well a stochastic and low precision DW based DNN can perform 

in comparison to a similar architecture floating precision DNN. The selected topography mentioned above 

is used throughout the study to implement the DW device based DNN. 

Online (In-Situ) Training: 

After determining the DNN topography we investigate the test accuracies of the DNNs that are built from 

2-state, 3-state and 5-state DW devices and trained with the proposed online training algorithm. For 

simplicity, we did not consider additional hardware non-idealities that could arise from peripheral circuits 

or unresponsive devices as these factors would automatically be included as constraints during the online 

training [40] and would not result in a significant degradation in performance compared to our current work.  

The effectiveness of the proposed in-situ training algorithm is evident from Fig. 4-3a and Fig. 4-3b which 

plots the in-situ training accuracies for different state devices for low (𝛼 =0.15, 15% of maximum possible 

absolute weight) and high (𝛼 =0.25, 25% of maximum possible absolute weight) noise tolerance margin 

respectively. The results are also compared with baseline accuracy (accuracy of the same topography DNN 

with floating precision weights and no stochasticity). The training accuracies for DW device based DNNs 

increase with the number of device states and almost reach the baseline accuracy of ~ 99.6 % for low noise 

tolerance of 𝛼=0.15 as can be seen from Fig. 4-3a. However, the training accuracies with high noise 

tolerance, 𝛼=0.25 become slightly lower (see Fig. 4-3b) as these networks allow higher deviation from the 
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target quantized weights. Nonetheless, competitive training accuracies are achieved for both 3- and 5- state 

devices with high noise tolerance margins. 

 

 

Figure 4-3 Online training accuracy and online testing accuracy for DNNs with different state DW devices for two different noise 

tolerance margins. These accuracies are compared with a DNN trained and tested with full precision weights and no stochasticity 

(baseline accuracy) a. and b. show the online training accuracies with the numbers of epochs for  𝛼 = 0.15 and 0.25 respectively. 

c. and d. show online testing accuracies with numbers of epochs for 𝛼 = 0.15 and 0.25 respectively. 

After each epoch of the in-situ training we test the DNN with test images from MNIST dataset and compute 

the online test accuracy. Fig 4-3c and 4-3d plots online testing accuracies for low and high level of noise 

tolerance margin respectively. The baseline (DNN with floating precision weights and no stochasticity) test 

accuracies are plotted for comparison. For low noise tolerance margin of 𝛼=0.15, the test accuracy is highest 

for 5-state device and reaches ~ 96.67% after 10 epochs of training. This accuracy is very close to the 

baseline test accuracy of ~ 97.1 %. It is important to note that the 3-state device based DNN achieves a test 

accuracy of ~ 96.6 % after 10 epochs of training, which is similar to a 5-state device. When the noise 

tolerance margin is increased to 𝛼=0.25, the test accuracies for 5-state and 3-state devices are ~ 96.56% 

and ~ 96.36% after 10 epochs of training. Thus, a maximum decrease of accuracy of ~ 0.74 % from 32-bit 
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precision weight is recorded for a 3-state stochastic weight. We note that, the test accuracies for 2-state 

device are ~ 95.14% and ~94.64% for low and high noise tolerance margin respectively. Thus, the same 

topography networks for 2-state does not achieve comparable test accuracies. Changing the topography, 

such as increasing the number of neurons in hidden layers, can increase the accuracy of binary DNN [54]. 

Next, we analyze the total number of programming pulses that are applied to the DW devices during the 

course of the online training at various epochs. Because the network updates the high-precision weights, a 

single weight may have its high precision value updated many times before crossing the threshold to update 

the DW device weight. As the number of device updates is dependent on the number of times a high 

precision weight crosses the threshold, the larger the threshold the fewer the updates. Between the 2, 3 and 

5 state networks the 5-state has the smallest threshold, which increases the number of DW device updates 

as seen in Fig. 4-4. These DNNs are also compared with a DNN trained with floating precision weights 

(and no stochasticity). In floating precision DNN, all the weights are updated each time a training image is 

passed to the network. Thus, although the network is better trained with an increasing number of epochs, 

the weight update count remains almost constant as seen in Fig. 4-4. In contrast, for DNNs with limited 

state DW devices with the proposed training method, the programming instances decrease significantly 

with the number of epochs. As expected, with low noise tolerance margin the DNNs with DW devices 

become more selective and require higher number of weight updates during the course of the training 

(though this is much smaller than the case of floating precision weights). 

 

Figure 4-4 Comparison of the total number of programmed weights with the number of training epochs for different networks. A 

significantly lower number of weights are updated during the proposed online training compared to the floating precision weight 

network of the same architecture. 
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In Fig. 4-5, we show the convergence of DW device weights during the training. DNN weights whose noise 

tolerance are higher will converge to a value quicker, on an average, than a weight with a lower noise 

tolerance. In Fig. 4-5a and 4-5b, the DW device weights fall within ±𝛼 of the quantized weight value. In 

both cases, the DW device weight is closer to the high precision value than the quantized weight, which 

tends to provide a higher accuracy for our DW based DNN.  

 

Figure 4-5 Weight evolution of high precision weight, quantized weight and the DW device weight during the first few training 

images for two different noise tolerance margin a.  𝛼 = 0.15 0.15 b. 𝛼 = 0.25. The synaptic weight shown here is connected 

between the neurons located in hidden layers 2 and 3. 

Offline (Ex-Situ) Training: 

In this section, we first analyze the effectiveness of our proposed ex-situ training by comparing it with other 

techniques. For that, we train several precursor DNNs in software using different offline training algorithms 

(Fig. 4-6) and then test the DNNs, which are built from DW synaptic devices (3- state and 5-state hardware). 

Each of the DNNs are trained offline with a total of 10 epochs (train with entire training dataset 10 times) 

and prior to the testing the DW devices are programmed according to the weights that are learned offline. 

These results are shown in Fig. 4-6a and 4-6b when we consider a low (𝛼 = 0.15) and high (𝛼 = 0.25) 

value of noise tolerance margin to program the devices. In both Fig. 4-6a and 4-6b, for each of the hardware 

test accuracies, a corresponding software accuracy is presented side by side with green and yellow bar. 

When the exact learned weights (no programming noise is considered while transferring the learned weights 

to the device) are used to test the DNNs we call it software accuracy.  

When offline training is performed with both the floating precision and quantized weights cases, the test 

accuracies are low for low noise tolerance margin, as can be seen from Fig. 4-6a. After floating precision 

weight training, the learned weights need to be converted to 3- or 5-state to program the DW devices. Thus, 

for both of the 3- and 5-state hardware the test accuracies degrade compared to software accuracy of ~ 
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97.1%.  Converting floating precision learned weights to 5-state compatible weights (5-level quantization) 

generates smaller deviations compared to the 3-state weight (3-level quantization). Thus the 5-state device 

provides higher test accuracy which is ~ 87% compared to the 3-state which is only ~10%. 

Training with quantized weights (as proposed in Ref [1]) improves the test accuracies to ~ 90% for 5-state 

device (see Fig. 4-6a) as the network becomes aware about the limited states of the weights during the 

training period. However, the test accuracy remains low (software accuracy is ~ 96.74%). The accuracy 

loss is mainly due to the deviation of the programmed weights from the learned weights. We note that, with 

floating precision training, weight deviations occur in two ways: converting the floating precision weights 

to quantized weights and during the programming of the device where the target quantized weights are not 

achieved deterministically. However, with quantized training only the latter deviation occurs during the 

testing stage.   

In contrast, with our proposed training which we call quantized + stochastic training, the test accuracy 

increases and reaches up to ~ 96.63% for 5-state device, which is very close to the software accuracy of 

~96.67%. The accuracy improvement can be attributed to even smaller deviation of the programmed 

weights from the learned weights. Unlike quantized training, in our proposed training the weight 

quantization is also accompanied by training the DNN weights according to the statistical distribution of 

the device. As a result, during back propagation, the high precision weights are updated depending on the 

weighted sum performed over the imprecise DNN weights (which are mapped from the stochastic 

distribution of the device as in Fig. 4-1d).  In other words, the high precision weights are being tuned based 

on the stochastic signature of the device. Thus, the statistical distribution of the device is embedded in the 

learning. When the same devices are used for testing, the distribution matches better and this plays an 

important role in improving test accuracy. This finding is also supported by other works [40, 52]. Ref [40] 

shows that the DNN trained with Gaussian distributed weights of a certain standard deviation performs 

better when a weight distribution of same standard deviation is used for inference.  

With high programming noise, for both floating precision and quantized training, the programmed weights 

deviate more from the learned weights because of the higher noise tolerance. Thus, the test accuracies for 

3- or 5-state hardware degrade significantly compared to the software-based accuracies as seen from Fig. 

4-6b.  In contrast, with our proposed training method, the DNNs are made aware of the statistical 

distribution of the device thus resulting in significantly higher test accuracies compare than other offline 

training methods. (Note that as the device statistics are not Gaussian and instead heavily dominated by the 

pinning positions, training with Gaussian distributed weights does not improve accuracy and was not 

employed).  
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We also studied the evolution of offline test accuracies with the number of epochs for different state devices, 

which are presented in section 4.5 in Fig. 4-10. The influence of noise tolerance margin 𝛼 on training 

accuracy, online testing accuracy and offline testing accuracy for DNN with limited state device (5-state) 

is shown in section 4.5 in Fig. 4-11, which shows that offline testing accuracy is affected most by the choice 

of different 𝛼. 

 

Figure 4-6 Testing accuracy comparison of 3-state and 5-state DW device based DNNs for different ex-situ training algorithms 

with a programming noise tolerance margin of a. 𝛼 = 0.15 b. 𝛼 = 0.25. The networks are trained offline with floating precision 

weights, quantized weights, and stochastic quantized weights derived from micromagnetic simulation. Each of the networks is 

trained with a total number of 10 epochs. Once training is done, the 3-state and 5-state DW devices are programmed based on the 

quantized value of trained weights prior to testing. For different training algorithms and for each of the test accuracies of DNNs 

built from 3- and 5-state hardware, a corresponding software test accuracy (no programming noise is considered, and exact trained 

weights are used for testing the DNN) is plotted side by side with green and yellow bar. The error bar seen in the figure is calculated 

from 10 different test trials. For both noise tolerance margins, the test accuracy is highest when the DNNs are trained with proposed 

training algorithm (quantized + stochastic). 

 

4.4. Energy Dissipation  

The energy required to program a DW synapse is determined from charging the piezoelectric layer with a 

voltage pulse,  
1

2
𝐶𝑉2 and 𝐼2𝑅 loss due to the SOT current in the heavy metal layer. The maximum change 

in PMA is ∆𝑃𝑀𝐴 = 0.5 × 105 𝐽 𝑚3⁄ . For magnetic racetrack of CoFe the saturation magnetostriction is, 

𝜆𝑠=250 ppm. Thus, the maximum required stress, σ is,  
∆𝑃𝑀𝐴

3

2
𝜆𝑠

=133 MPa and the strain is,  
133 𝑀𝑃𝑎

200 𝐺𝑃𝑎
 ~10−3 , 

considering the Young’s Modulus of CoFe to be 200 GPa. When the electrode dimensions are in the same 

order as the piezoelectric thickness, previous study [55] demonstrated that 10−3 strain is possible in Lead 
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Zirconate Titanate (PZT) with an applied electric field of E=3 MV/m. If we consider PZT layer to be b=60 

nm thick (same as top electrode or racetrack width as illustrated in Fig. 4-1(b)) then a voltage of, E*b = 

0.18 V applied between the top electrode pair and the bottom electrode can generate the required strain. For 

a top electrode of length L=600 nm (same as racetrack length 600 nm) and width b=60 nm and a relative 

permittivity of PZT 𝜖𝑟=3000, the effective capacitance is calculated to be 
𝜖0𝜖𝑟(𝐿∗𝑏)

𝑏
 ~ 16 fF. This predicts a  

1

2
𝐶𝑉2  loss of ~0.5 fJ, considering two top electrodes on each side of the racetrack. 

The heavy metal layer is considered to be Pt and for 600×60×5 𝑛𝑚 3 dimension Pt layer the resistance is 

calculated to be 200 𝛺 assuming the resistivity of Pt to be 100 𝛺nm. The heat loss in the heavy metal layer 

is calculated to be 2.2 fJ for a fixed SOT generating current pulse of magnitude 35 × 1010 𝐴 𝑚2⁄  applied 

for 1 ns. Thus, the maximum energy dissipation to program a synapse is calculated to be 2.7 fJ.  

1) In-situ Training 

With in-situ training, the highest inference accuracy is achieved for a 5-state device when a low noise 

margin is considered during the training. However, with a higher noise tolerance margin similar test 

accuracy is obtained with fewer device updates as can be seen from Fig. 4-4. For 5-state device, if we 

consider a noise tolerance margin of 𝛼=0.25, the total number of weight updates are calculated to be ~ 48 

million after running the training for 10 epochs. Thus, the energy dissipation to program the DNN synapses 

is calculated to be ~13 pJ for one inference event followed by the weight updates (10000 test images in 

MNIST).  

2) Ex-situ Training 

With ex-situ training, highest inference accuracy is achieved for 5-state device when the noise margin to 

program the DW devices is considered to be low. Fig. 4-7 shows the cumulative probability of the DW 

device weights for different programming condition for a 5-state device. The solid black line represents the 

target quantized weights of 1, 0.5, 0, -0.5 and -1 (in this case -0.833) which can be achieved by a 

combination of fixed SOT current pulse and a varying amplitude voltage pulse which modulates the 

anisotropy of the racetrack to 𝐾𝑢 = 7, 7.25, 7.5, 7.75 and 8.0 (× 105) 𝐽 𝑚3⁄  respectively. The adjacent red 

dotted line in the figure shows the noise margin (𝛼 = 0.15) that is allowed while programming the DW 

device to a specific quantized state. From Fig. 4-7, it can be seen that the probability of programming the 

DW device weight to a quantized value of 1 is the lowest which is ~ 6 % meaning a number of ~ 20 attempt 

is required to program the device. If we consider the worst-case scenario, then after ex-situ training prior to 

the inference, we need 20 programing pulses to program each of the DW devices implementing the DNN 
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weights. Thus, for our network topology of 784-392-196-98-10 neurons, the energy dissipation to program 

the DW synapse is 2.8 pJ per inference event.  

The energy dissipation to program the DW devices in in-situ training is found to be 5× the dissipation 

incurred in ex-situ training, which is a moderately low provided that the training is performed over the 

entire 60000 training images for 10 times. This low-dissipation in-situ training is possible due to distinct 

features of proposed training algorithm that benefits from weight quantization and noise tolerance margin. 

Large inter-state interval in quantized learning helps to reduce the number of weight updates. Moreover, 

once the device is programmed within the noise tolerance margin, further write operation is avoided with a 

simple low cost read operation. We note that onsite learning is attractive in power constraint edge devices, 

where the learning itself needs to adapt and respond to a continuously evolving environment. Embedded 

medical systems [56], real time intrusion detection [57], and dialect specific speech recognition systems 

can benefit from such onsite learning. Ex-situ learning can perform inference tasks in edge devices with 

energy efficient manner (given the training is performed over cloud server), however the benefit can only 

apply to non-adaptive tasks. 

 

 

Figure 4-7.  Cumulative probability of normalized DW device weights for 5-state device under different programming conditions 

denoted by different 𝐾𝑢. Black solid line represents the target quantized weights and the adjacent dotted red lines represent the 

programming noise tolerance margin of 𝛼 = 0.15.  

Finally, the accuracy and energy consumption of our proposed DW based approach is compared with state-

of-the-art techniques in the literature. The accuracies that we achieve for 5-state DW are comparable to the 

RRAM [54] and PCM [38] and better than the DW approach presented in [48] that can provide 32-states 
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For energy comparison purpose, we first calculate the energy consumption of our proposed in-situ 

approach, including the energy expenditure for performing forward and backward propagation in the analog 

domain (crossbar devices) and weight gradient accumulation in the digital domain (high precision memory 

update). The details about energy calculation can be found in the next section. In addition, we estimate the 

energy consumption of a similar architecture deep neural network (DNN) with 32-bit precision weights 

(see section 4.5). Our proposed approach demonstrates a possibility of ~ 165× energy saving compared to 

the 32-bit precision DNN implemented with on-chip CMOS static random-access memory (SRAM).  

The estimated energy consumption of ~ 26 nJ per inference is comparable with state-of-the-art non-volatile 

technologies such as RRAM [54] and PCM [38]. Moreover, our proposed 5-state DW based DNN consumes 

less power compared to 32-state DW based DNN [48] for each synaptic weight update event as a 50 𝜇𝐴 

and 1 ns duration current pulse is used to program the 32-state synapses as opposed to our synapse that 

requires 21 𝜇𝐴 and 1 ns duration current pulse (Note that SOT clock dominates the energy consumed in our 

case). Further, the DW-based approach presented in [25] consumes an energy ~ 8.64 fJ to program the 

synapse from one extreme conductance to the other, compared to our ~ 2.7 fJ. However, Ref [25] does not 

take thermal noise and edge irregularities into consideration that could significantly reduce the number of 

distinguishable states due to device stochasticity. Finally, our algorithm ensures the number of times the 

weights are programmed are also significantly lower, making the training cost very small.  

 

4.5 Additional details 

Selection of Deep Neural Network (DNN) Architecture: 

The network topography we aim to optimize, in terms of training and testing accuracy, uses floating 

precision (32-bit) weights for the synapses. This optimized network will be used to benchmark the 

performance of the domain wall (DW) based DNN of the same network topography.  

To select the optimal network topography, multiple characteristics are considered: training accuracy, testing 

accuracy, network size, and overall fitness. An algorithm is designed to create, train, and test networks; 

each having a unique set of parameters such as number of hidden layers, the ratio of the number of neurons 

in a layer to the number of neurons in the previous layer or “layer size ratio” and a learning rate; the ranges 

for each being 0 to 9, 0 to 1, and 0 to 0.009 respectively. Parameters that remain consistent, during 

optimization, are the learning rate decay and the starting epoch of learning rate decay. All the networks are 

trained using only one epoch resulting in underfitting networks where the training accuracy was lower than 

the testing accuracy. It is also important to note that many networks, when trained for multiple epochs, can 
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achieve high training accuracies but at the expense of overfitting to the training data therefore limiting the 

number of epochs, to one, places priority on having high initial accuracies relative to other network 

topographies rather than achieving independent high accuracies. 

The learning rate decay is chosen to be 10 % for each epoch with the decay starting from the very first 

epoch. For example, if the initial learning rate is 0.007, the final learning rate at the end of the first epoch 

would be 90% of the initial learning rate i.e., 0.00693. The networks are trained on the full set of 60,000 

training images and tested on the full set of 10,000 testing images from the MNIST handwritten digits 

database. From hidden layer number variation results (not shown here) we find that the accuracy increases 

with the increase of the number of hidden layers, however, when the hidden layer number is greater than 3 

the accuracy does not increase appreciably. Therefore, we select a total of 3 hidden layers for our DNN 

configuration. Fig. 4-8 shows the height map for training accuracy, testing accuracy and the average of 

training and testing accuracies for different topography with 3-hidden layers. We can see from Fig. 4-8 that 

the accuracies are higher when the network’s learning rate is within 0.004 and 0.007 and the ratio of the 

number of neurons in a layer to the number of neurons in the previous layer is within 0.4375 and 0.5625. 

When the algorithm was left to run multiple times with different initialized weights, the topography that 

possessed the maximum accuracy changed each time but remained in the region of maximum training and 

testing accuracy as previously described. Thus, one can select several configurations of DNN and achieve 

good accuracies if the topography parameters fit within the previously mentioned region.  

We choose a layer size ratio of 0.5, whereas for the selected network the number of neurons for the first 

hidden layer is 0.5×  the number of neurons of the input layer and so on. We choose a learning rate constant 

of 0.007 as it would provide sufficient learning capacity with the increase of training epoch (learning rate 

decays by 10 % at each epoch). Thus, the final architecture consists of a network with three hidden layers, 

an initial learning rate of 0.007 and a layer size ratio of 0.5. 
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Figure 4-8 Height maps show the a. training b. testing and c. average of training and testing accuracies of a 3-hidden layer DNN 

for varying topographies of the network. The topographic features that are varied are the learning rate and the ratio of the number 

of neurons in a layer to the number of neurons in the previous layer or “layer size ratio”. The highlighted data point is the final 

topography chosen for our DW device based DNN as it gives high accuracies for a small number of synapses.  

Equilibrium DW position distribution with respect to dominant pinning sites (notches):  

The following Fig. 4-9b-f shows the equilibrium DW position distribution for the racetrack shown in Fig. 

4-9a for five different programming conditions represented by 𝐾𝑢 = 8, 7.75, 7.5, 7.25 and 7.0 (× 105) 𝐽 𝑚3⁄ . 

Although a few of the DWs are pinned stochastically due to the pinning sites offered by the edge roughness 

(~ 2nm rms) and room temperature (T=300 K) thermal noise, however, they are predominantly pinned at 

or near the location of the engineered notches. Thus, the distribution is heavily influenced by the dominant 

pining site locations or the notches.  
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Figure 4-9 a. Racetrack of dimension 600 nm × 60 nm × 1nm with rms edge roughness of ~ 2nm hosting a DW at an initial position 

of 60 nm from the left end. Engineered notches starting from 60 nm to the left of the racetrack are placed at a regular interval of 75 

nm. b.-f. Distribution of equilibrium DW positions along the racetrack shown in Fig. 4-9a for different programming conditions 

represented by different PMA coefficient, 𝐾𝑢 . The DWs are primarily pinned at or around the notches, thus the distribution become 

dominated by different notch locations for different programming conditions.   

Evolution of offline testing accuracies with training epochs:  

The offline testing accuracies with the number of epochs are presented in Fig. 4-10a and Fig. 4-10b for both 

low and high noise tolerance margins. The baseline testing accuracies when using floating precision weights 

and no stochasticity are also plotted for comparison. After each epoch of training, the trained weights are 

collected and the devices, in the crossbar arrays, are programmed. As we have allowed for a noise tolerance 

margin, 𝛼, during testing to program the devices, the programmed weights of the network during each 

testing trial could be different but within the range of tolerance. Therefore, we consider a total of 10 different 

trials for testing the DNNs. The error bar shown in the figure is computed from 10 different test trials after 

each epoch of the training. After 10 epochs of training for 5-state and 3-state devices as seen from Fig. 4-

10a, for a noise tolerance margin of 𝛼=0.15, the offline testing accuracies approaches the baseline testing 

accuracies. The highest offline test accuracy of ~ 96.63% is achieved for 5-state device which is very close 

to the baseline test accuracy of ~ 97.1%. However, for 𝛼=0.25, the test accuracies degrade for all the devices 

as can be seen from Fig. 4-10b. The highest offline test accuracy for 5-state, 3-state and 2-state devices are 

obtained after 10 epochs of training which are ~ 95.14%, ~95.93% and ~ 94.24% respectively.  
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Figure 4-10 Offline testing accuracies for DNNs of different state DW devices with two different noise tolerance margins, a. 𝛼 = 

0.15 and b. 𝛼 = 0.25 used during the training and programming of the devices. The accuracies are compared with a DNN trained 

and tested with 32-bit (floating) precision weights and no stochasticity (baseline accuracy). Error bar is calculated for a total of 10 

different test trials. 

Influence of Noise Tolerance Margin on Accuracy:     

To examine the influence of a noise tolerance margin on network accuracies; training accuracy, online 

testing accuracy (training is done in-situ) and offline testing accuracy (training is done ex-situ) of 5-state 

DW based DNNs are compared in Fig. 4-11 for high and low level of noise tolerance margin, 𝛼. From Fig. 

4-11a and 4-11b, we can see that the difference in noise tolerance margins does not appear to have a 

significant effect on the training or online testing accuracies. This is due to the fact that backpropagation is 

performed over the imprecise DW device weight which is then used to update the high precision weights 

for the network. In effect the potential values selected at random for the DW device weights are then known 

by the network and, through training, changes the DW device weights accordingly based on the quantized 

value of the high precision weights. Once trained in-situ, the learned weights remain the same during testing 

due to DW device non-volatility. In contrast, after ex-situ training the learned weights are transferred to the 

DNN, for testing, by programming the DW device with a noise tolerance margin that is used during the 

training. When the devices are programmed prior to testing, programming noises are added to the DW 

device weights. The higher the noise tolerance margin, the higher the amount of noise that could be added 

to the programmed device weights. Thus, the offline testing accuracy degrades with higher noise tolerance 

margin. For example, if the trained weight is 0.24 then the quantized weight would be 0 and after 

programming, with a noise tolerance margin of 𝛼 =0.25, the DW device weight could be -0.24. Thus, with 

the noise tolerance margin of 𝛼=0.25, the maximum deviation of the programmed weight from the learned 
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weights could be 2𝛼=0.5 whereas for a low noise tolerance margin 𝛼=0.15 the maximum deviation could 

be 2𝛼=0.3.    

 

Figure 4-11 a. Training accuracies b. Online testing accuracies and c. Offline testing accuracies for a 5-state DW device based 

DNN for two different noise tolerance margins of 𝛼. The training accuracy and online testing accuracy does not change appreciably 

for different noise tolerance margins. Offline testing accuracy decreases with high noise tolerance margin due to the higher 

deviation of device weights during the programming of the devices. 

Energy Dissipation Estimation of the Proposed Technique:   

The scope of the operations performed in the analog and digital domains for our proposed in-situ training 

of a DNN is presented in Fig. 4-12. The energy consumption in the analog domain depends on performing 

matrix vector multiplication during forward and backward propagation and updating the DW device 

weights. In the digital domain, energy is spent for computing neurons activation, error gradients, and 

accumulating gradients for weight update. During analog computation, energy is consumed in several 

stages, such as serially in and out data to and from the crossbar rows and columns, performing digital to 

analog conversion of the input data to read voltage pulses using Pulse-width modulation (PWM), regulating 

the column voltage to a specific value so that a corresponding read voltage drops across the DW devices, 

reading the analog weighted sum in the crossbar arrays, and performing analog to digital conversion (ADC) 

of the weighted sum before sending them to the crossbar for implementing the other layers of the DNN. 

The main supply voltage, read voltage, and the clock frequency are assumed to be 0.8 V, 100 mV and 2 

GHz. We consider 8-bit resolution for the PWM and ADC and assume the bit shifting energy to be 2 fJ/bit, 

PWM counter energy to be 50 fJ per counting step and the energy to buffer the PWM comparators output 

to be 10 fJ per turn on or turn off event [38]. The bias current for the operational transconductance amplifier 

used to regulate the column voltage is assumed to be 50 𝜇𝐴 [38] and considered to be turned on for one 

read pulse duration (2 ns). Further, the mean resistance of the DW-based MTJ device (and the devices for 

parallel conductances) is considered to be 20 kΩ [58] when computing the energy for the analog weighted 

sum. The ADC energy for 8-bit conversion is assumed to be ~330 fJ at a conversion delay of 15 ns, based 
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on [59]. Considering all the above parameters the energy consumption in the analog computation stage is 

estimated to be ~ 8 nJ for forward propagation and ~ 2.5 nJ for backward propagation for each of the 

training images. The detailed guidelines for energy calculation are presented in Ref. [38]. For DW device 

weight updates, an average of ~ 80 devices are updated during each training instance which results in an 

energy consumption of 220 fJ per training instance with a write energy of ~ 2.7 fJ/update. Thus, the total 

energy in the analog computation stage is estimated to be ~ 10.5 nJ per training instance. The energy 

dissipation in transistors for switching is negligible (~ 100 aJ [60]), thus omitted during the energy 

estimation. 

 

Figure 4-12 Proposed in-situ training of two successive DNN layers (green shadowed region). The scope of operations that are 

performed in analog and digital domain during the training is shown in two different colored boxes.   

For DW device weight updates, gradients are first accumulated in a digital unit using 32-bit precision 

memory (see Fig. 4-12). However, for weight gradient computation, if the neuron activations (forward 

propagation) and error gradients (backward propagation) are quantized to 3-bit, then a significantly lower 

number of 32-bit memory access is possible due to a small number of non-zero entries (due to quantization) 

without negatively impacting accuracy [38, 61]. Further, if the memory is accessed a number of times close 

to 1% of the total synapses (that is ~ 4044 synapses, which is 1% of 4,043,48 synapses), the weight update 

energy in the digital unit can be estimated to be ~ 122 nJ based on Ref. [38]. Moreover, in our design we 

require a quantizer (i.e., ADC) for quantizing the accumulated gradient before comparing it with existing 

DW device weights (by reading the device conductance) to allow for the DW device update within a noise 

margin. The quantization operation needs to be performed whenever there is an update in the 32-bit 
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precision memory (i.e., 4044 times) and read (and comparator) operation is performed for ~4044 times plus 

the extra number of times when the devices are updating within a targeted noise margin. Considering a total 

of ~ 20 attempts to program the device within noise margin (worst case scenario), a total of ~80×20 read 

(and comparator) operations is required on top of the number of quantization operation. By considering an 

analog read operation is preceded by PWM input signal (4-bit PWM suffices in this case as PWM output 

voltage resolution does not affect reading the device conductance), read voltage regulation and followed by 

an ADC operation, the total read energy is estimated to be ~ 13.8 nJ per training instances for reading the 

device conductances and the corresponding parallel conductances. Assuming the comparator energy to be 

equal to that of ADC energy ~ 330 fJ, the total energies for quantizer, read (and comparator) operations are 

estimated to be ~ 17 nJ per training instance.    

Furthermore, the amount of energy dissipated in a digital unit for computing neuron activations (in forward 

propagations), error gradients (in backward propagations) and correctly addressing the analog DW devices 

for sending write pulses can be extended from the application specific integrated circuit (ASIC) design 

implemented by Ref. [38] using on-chip static random access memory (SRAM).  In their design, the energy 

consumption in forward and backward passes on a digital unit are shown to be ~9 nJ and ~3 nJ per training 

instance. Since the number of synapses of our architecture are twice that of Ref. [38], we can have an 

estimate of energy consumption for our architecture of ~ 18nJ and ~6 nJ. Thus, the total energy consumption 

in the digital unit is estimated to be ~ 163 nJ per training inference. Combining the analog and digital units’ 

energy together, the energy consumption is estimated to be ~ 174 nJ per training instance and ~ 26 nJ per 

inference instance (energies for the forward propagations only).  

Next, we estimate the energy computation of a similar architecture 32-bit DNN. For the 32-bit system 

architecture, we refer to the design proposed by Ref. [38] which demonstrates an ASIC design optimized 

with on-chip SRAM (i.e., where off-chip data communications are avoided) using modern 14 nm low power 

plus (LPP) technology. The DNN architecture used in [38] is 784-250-10 (neurons in different layers). 

Thus, for our network architecture, of 784-392-196-98-10, the synapse counts are doubled which results in 

twice more memory registers and weight updates, as in 32-bit precision system all the weights are updated 

at each training instance. Extending their design for our DNN architecture, the energy consumption during 

in-situ training of 32-bit precision weights can be estimated to be ~ 29 𝜇J per training instance.  

Therefore, the energy consumption of our proposed design is significantly lower than the 32-bit precision 

DNN implemented with on-chip SRAM and demonstrates a possibility of ~ 165 times more energy savings 

with in-situ training. Furthermore, the estimated energy consumption of ~ 26 nJ per inference instance is 

comparable with state-of-the-art resistive random-access memory (RRAM) [54] and phase change memory 

(PCM) [38].  
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4.6 Conclusion 

We have shown that DNNs with extremely low resolution and stochastic DW device-based synapses can 

achieve high classification accuracy when trained with appropriate learning algorithms. In this study, both 

in-situ and ex-situ training algorithms are presented for DNNs that are implemented with 2-state, 3-state 

and 5-state DW devices. For in-situ training, a high precision memory unit is employed to preserve and 

accumulate the weight gradients, which are quantized to obtain target conductance for updating the low 

precision DW devices. A noise tolerance margin further allows for random deviations of the programmed 

conductances from the target conductance values. For ex-situ training, a precursor DNN is first trained in 

software by performing weight quantization and considering a noise tolerance margin from the quantized 

weight and later tested with an equivalent DNN of DW devices programmed with the same noise margin. 

While the energy dissipation statistics for programming the DNN synapses shows that ex-situ method is 

energy efficient, however, the in-situ training comes with an opportunity to learn and adapt to the changing 

environment with only 5× more dissipation (despite the fact that the in-situ training is performed over a 

vast number of training images for many epochs). This technology is specifically attractive for low power 

intelligent edge devices of future IoT where energy requirement is at a premium.  

Although our quantization-aware, stochastic domain wall (DW) device-based DNN demonstrated high 

accuracy in classification tasks, the effectiveness of the proposed methods for other neural network 

architectures, such as convolutional, recurrent, long short-term memory (LSTM), transformer, and 

autoencoder-based unsupervised learning, requires further investigation. Some of these architectures are 

discussed in Chapter 9. 
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Chapter 5: Spintronic Physical Reservoir for Autonomous Prediction and Long-Term 

Household Energy Load Forecasting 

 

In the previous Chapter 4, we explored the implementation of highly accurate DNNs for classification tasks 

using domain wall synapse-based racetrack memory devices. In this chapter, we examine another intriguing 

chiral magnetic texture, such as skyrmions, as a physical reservoir for autonomous time series forecasting 

tasks—typically performed by recurrent neural networks (RNNs) and long short-term memory (LSTM) 

networks. 

With the growing use of artificial neural networks (ANNs) in temporal data processing tasks, the cost of 

training for complex ANNs is an escalating concern. Physical reservoir computing (RC), a variation of 

RNNs, obviates the need for most data intensive matrix vector multiplication in the recurrent layer by 

evolving the RC’s internal states with the inherent nonlinear dynamics and short-term memory. In this 

chapter, we show that magnetic skyrmion confined in a fixed geometry forming the soft layer of a magnetic 

tunnel junction (MTJ) can work as a RC and perform autonomous long-term prediction of temporal data. 

Our proposed skyrmion reservoir allows for manipulation of spin dynamics with ultra energy efficient 

voltage controlled magnetic anisotropy modulation (VCMA) method. Furthermore, the boundary effect on 

the skyrmion from the geometric edges provides necessary consistency property of the reservoir. We 

employ our proposed reservoir for the modeling and prediction of the chaotic time series such as Mackey-

Glass and dynamic time-series data, such as household building energy loads. For autonomous run, the 

predicted output is fed to the input of the reservoir. By comparing our spintronic physical RC approach 

with energy load forecasting algorithms, such as LSTMs and RNNs, we conclude that the proposed 

framework presents good performance in achieving high predictions accuracy, while also requiring low 

memory and energy both of which are at a premium in hardware resource and power constrained edge 

applications. Further, the proposed approach is shown to require very small training datasets and at the 

same time being at least 16× energy efficient compared to the sequence-to-sequence LSTM for accurate 

household load predictions. Higher endurance, fast processing and well-established technology (i.e., MTJ) 

to integrate with CMOS technology makes such spintronic reservoir attractive over other emergent memory 

device-based reservoirs. 

 

Recurrent neural networks (RNNs) [1,2] are shown to be more suitable in temporal data processing tasks 

than the traditional feedforward neural networks (FNNs) because of the recurrent connections among 

constituent neurons. However, RNNs often suffer from vanishing and exploding gradients problem due to 
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the long-term dependencies that could arise in the recurrent layers. To circumvent these issues variations 

of RNN is proposed, i.e., long short-term memory (LSTM) [3] and reservoir computing (RC) [4,5]. In RC, 

the reservoir consists of an RNN which maps temporal inputs to higher dimensional features due to the 

short-term memory property that exists in the reservoir and a read-out layer that analyzes the features stored 

as reservoir states. The RNN connections are fixed and only the read-out layer is trained [4]. Thus, the 

training can be performed with simple learning rules such as linear regression which makes RC much 

simpler to implement with low training cost. Recently software-based RC systems have been shown to 

achieve state-of-the-art performance in speech recognition tasks [6] and superior performances in 

forecasting tasks, such as prediction of financial systems [7], water inflow [8], and chaotic system 

prediction [9].  

Since the essence of RC is to employ non-linearity to transform input to high dimensional space, any 

physical dynamic non-linear system can work as a reservoir.  For a typical RNN implemented on hardware, 

the required training is performed for all layers of the neural network [10]. This can be implemented on 

neuromorphic chips [11]. However, in RC the inference is performed using physical phenomena, and only 

linear regression is used to train weights between select physical reservoir states and the output. This makes 

information processing much faster and involves low training cost. These features make physical systems 

the preferred candidate for hardware implementations of RC. Towards this end, the choice of physical 

reservoir remains explorative, and researchers investigated electronic [12, 13], photonic [14, 15], 

memristive [16, 17], spintronic [18-22] reservoir and so on. The spintronic reservoir is most attractive due 

to its significantly higher endurance cycle and faster information processing. For instance, spintronic 

computational memory has an endurance over ~ 1015 cycle and write speed of ~ 1-10 ns [23]. Whereas the 

phase-change memory based memristor device exhibits an endurance of ~ 109 cycle and has a write speed 

~ 100 ns [24]. Also, the read (i.e., magnetoresistance) and write techniques (i.e., spin torques) of spintronic 

devices and associated integration with CMOS technologies are well established due to their historical use 

as magnetic hard drives, sensors and magnetic random-access memory devices [25]. In spintronic reservoir 

only one small-scale non-linear node (i.e., nanomagnets) can essentially capture non-linear dynamics. In 

comparison, electronic reservoirs (i.e., Mackey-Glass nonlinear circuit element with delayed feedback) 

[12], use a number of active (such as op-amps) and passive elements (such as resistors) for such capability 

which could cause prohibitive energy and memory footprint. While the photonic reservoir allows for faster 

processing, compact design with short time delays requires extremely fast input and output processing, a 

significant drawback for practical implementation [5]. Moreover, short range exchange interaction and 

long-range dipolar interaction in spintronic systems provides the opportunity to couple magnetic nodes 
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without any physical interconnections and allow more complex coupling otherwise absent in above-

mentioned alternative reservoirs. 

Various devices concepts are proposed for spintronic reservoir including nanoscale magnetic structures 

such as spin torque nano-oscillators [18], planner ensemble of nanomagnets interacting in dipole coupled 

[26,27] and spin wave mediated [20,28] systems and artificial spin ice (ASI) [29]. Chiral magnetic textures 

such as domain walls (DWs) [21,30], skyrmions [22,31] and skyrmion lattice [19,32] are also proposed. 

Individually accessing the dense arrays of ASI and planar nanomagnets [26] with addressable magnetic 

tunnel junction (MTJ) remains a fabrication challenge with modern technology. Furthermore, recent 

experiments with ferromagnetic resonance with ASI [29] and interconnected ring arrays with magnetic 

DWs [30] require external magnetic field for dynamic interaction, which is energy prohibitive. Moreover, 

low loss propagation of spin wave requires higher quality crystal growth (Yttrium Iron Garnet) and 

fabrication of nano-antennas to excite and detect spin waves which are prone to Ohmic losses [33]. While 

the spin-torque nano-oscillator based MTJ [18] shows excellent performance with a greater promise of low 

area footprint and energy cost, the fast-oscillatory signal cannot be used directly for postprocessing 

(microwave diode is used to capture amplitude variation). 

In contrast, chiral spin texture, skyrmion, confined in a fixed geometry working as a RC allows for external 

magnetic field free control and direct processing of the generated magnetoresistance signal. Moreover, 

skyrmion shows higher mobility and has low pinning potential than other chiral structures such as DWs, 

thus can be excited and translated with extremely low amplitude excitation [19]. In addition, confined 

skyrmion textures stacked within a magnetic tunnel junction (MTJ) device allows for ultra-energy efficient 

voltage controlled magnetic anisotropy (VCMA) modulation [34-39]. Furthermore, confinement of 

skyrmion provides necessary repulsion from boundary which ensures an essential consistency property to 

the reservoir [40], where the skyrmion needs to be relaxed to the same energy minima upon withdrawing 

the input excitation. 

Although physical RCs have been shown to implement prediction tasks, most of the works attempt to 

perform one-step ahead prediction. Long term prediction is important for real-world data as future evolution 

can facilitate more informed decisions and customized policy making. However, multi-step prediction itself 

is challenging due to the non-linear nature of most real-world data and typically inaccurate predictions of 

the immediate future accumulate very fast and cause divergence in the future predictions over longer times. 

Authors in [41] shown multi-step prediction for high spatial dimension data using spatiotemporal 

transformation and encoder-decoder like reservoir. However, this approach can fall short for univariate data 

such as individual household power consumption prediction. In household load forecasting tasks, usually 

the real time power value is readily available from wattmeter, however, the voltage, current values and 
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other parameters are unknown. In [42], autonomous multi-step prediction has been shown for chaotic 

Mackey-Glass (MG) series by feeding delayed output to the reservoir. However, the reservoir response is 

transformed using a non-linear function which could be costly, and also diminishes the benefits obtained 

from linear reservoir operation. Recently, delayed inputs [43] and polynomial transformation of the delayed 

inputs [44] are used to improve the prediction performance of the reservoir, however, these works attempt 

to solve the optimized one-step ahead prediction. In this study, we have shown multi-step autonomous 

prediction using spintronic magnetic skyrmion based RC system. For autonomous prediction, the predicted 

output is fed directly to the input. To adequately extract the non-linearity that arises in the reservoir 

dynamics, we include several previous states of the reservoir during the training. This obviates the need to 

perform any non-linear (i.e. trigonometric, polynomial) transformation of the reservoir states.  

For long-term prediction our skyrmion based RC employs the virtual node concept originally proposed in 

[45] and shown in Fig. 5-1. Instead of fabricating a large number of reservoir nodes to increase the reservoir 

dimensionality, a single physical nonlinear node subjected to delayed feedback acts as a chain of virtual 

nodes. First, we have shown long term prediction for chaotic MG time series since it has been frequently 

used for benchmarking forecasting tasks. Moreover, the long-term prediction can diverge more quickly due 

to the sensitivity of the chaotic systems to the error. Next, we have shown individual household power 

demand forecasting, which is an active research area. According to a recent study, the amount of energy 

wasted in a commercial building can reach up to 40% if energy consumption is not properly maintained 

[46]. With energy management system (EMS), a commercial building can save up to 25.6% of its total 

energy consumption [47]. EMS in a building requires accurate load forecasting to maintain stability, 

improve performance, and detect abnormal system behavior. However, accurate long-term forecasting, 

especially in a single household building, is very challenging due to the volatile and univariate nature of 

the household power consumption data. Traditional statistical approaches such as auto-regressive moving 

average (ARIMA) [48], time-series statistical model [49] suffer from low prediction accuracy due to the 

parameters assumed in the model and the complexity of the systems. Machine learning based models such 

as RNN [50] and LSTM [51] offer more flexibility in this regard as they do not depend on the parameters 

of the system.  Instead, they are driven by the observed past and present data, however, with significant 

training costs. RC can perform the prediction tasks with much more efficiency due to its low training cost 

and thus is very suitable to be implemented in edge computing platforms which are equipped with low 

power devices.  

We use three decoupled and patterned skyrmion devices as our reservoir where the temporal correlation of 

the inputs is captured by the inherent short-term memory of the breathing skyrmions. Upon excitation, the 

skrymions undergoes oscillations and the skyrmion states are read at a regular interval and processed with 
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linear regression for the prediction. Autonomous prediction up to 30-time steps for the MG time series and 

up to 23 hours (equivalent to 23-time steps as only hourly demand is typically required) for the household 

power prediction have been demonstrated by using the predicted output as the input for the next time step 

prediction.  

The rest of the chapter is organized as follows. In the section 5.1, we detail the architecture of the skyrmion 

reservoir and corresponding magnetization dynamics, in section 5.2 we describe the process to set up and 

train and test the reservoir and in section 5.3 we discuss the results and summarize our findings in the 

conclusion (section 5.4).   

 

5.1. Model: 

Proposed Physical Reservoir: 

Fig. 5-1a shows a conventional reservoir computing system which consists of an input layer, a reservoir 

block having recurrent connections among the constituent nodes and an output layer. The solid line arrows 

show the connections which are fixed and the dashed arrows are the connections which need to be trained. 

We propose to replace the reservoir block with three patterned and decoupled skyrmions whose 

magnetization dynamics we simulate. Each of the individual skyrmions is hosted in the ferromagnetic thin 

films with perpendicular magnetic anisotropic (PMA) as shown in Fig. 5-1b. A ferromagnetic reference 

layer, a tunnel barrier (MgO) and a synthetic antiferromagnetic (SAF) layer are patterned on top of the 

ferromagnetic free layer (that hosts the skyrmion) to create the MTJ as shown in Fig. 5-1c. This facilitates 

the read and write operation. The temporal inputs are linearly mapped into a voltage pulse and applied 

across the MTJs to modulate the PMA using the voltage-controlled magnetic anisotropy (VCMA) effect 

[52-54]. All the patterned skyrmions are subjected to the same set of inputs. When the PMA is modulated 

within a certain range, the skyrmions generate oscillatory response (skyrmion breathing) as shown in Fig. 

5-2. The responses of the skyrmions are read with MTJs and processed with linear regression to compute 

the predicted values of the temporal time series.  

For a typical reservoir consists of N number of nodes as seen in Fig. 5-1a, the time discretized states of the 

nodes, 𝑟𝑖
𝑛, can be represented as follows: 

 𝑟𝑖
𝑛+1 = 𝑓(∑ 𝑝𝑖𝑗𝑟𝑗

𝑛 + 𝑞𝑖𝑢
𝑛

𝑁−1

𝑗=0

)               (1) 
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Here, the 𝑝𝑖𝑗, 𝑞𝑖 are time-independent coefficients that are drawn from a random distribution having a mean 

of 0 and the standard deviations are adjusted for optimal performances. Also,  𝑓 is the activation function 

which can be linear or non-linear and 𝑢𝑛 is the input. Here, the “fading memory” or the short-term memory 

(an essential property of the reservoir) is achieved by using large number of nodes and their recurrent 

connections. In comparison, the skyrmion systems have inherent memory effect in their responses, thus 

instead of using several nodes only one skyrmion device can work as a reservoir. However, to increase the 

dimensionality, the states of this reservoir can be read at regular interval for a particular input, which acts 

as the virtual nodes of the reservoir. The concept is originally developed in reservoir with delayed feedback 

where a nonlinear node subjected to an input and delayed feedback acts as a chain of virtual nodes and 

provides performance similar to a typical reservoir [45]. Later, it has been shown the virtual nodes derived 

from reservoir responses subjected to only the input signal can provide optimal performance [17,18]. In 

such a scenario, if the virtual node interval (as shown by 𝜃 in Fig. 5-1d) is lower than the characteristic time 

(relaxation time) of the reservoir, the node states are not only influenced by their own previous states, but 

also the neighboring node states and the input excitation. This allows for non-linear coupling among the 

nodes.   

Thus, the interconnection matrix in Eq. 1 is simplified in the skyrmion reservoir case where the virtual 

nodes are assumed to be connected in ring topology (as seen in Fig. 5-1d). The resulting node states of the 

reservoir can be expressed as: 

 

𝑟0
𝑛+1 = 𝑓(𝑟0

𝑛 + 𝑟𝑁−1
𝑛−1 + 𝑢𝑛) 

𝑟𝑖
𝑛+1 = 𝑓(𝑟𝑖

𝑛 + 𝑟𝑖−1
𝑛 + 𝑢𝑛) 

              (2) 

Here, we have used linear activation function, 𝑓(w)=w, thus the read-out reservoir states are used for 

training without any post-processing or non-linear transformation. 

The node states of the reservoir act as features, which are used to generate the output. Since we are using 

only linear activation, we also include several previous responses of the reservoir for generating the output. 

Due to the short term-memory effect inherent to the skyrmion dynamics, these previous states provide 

additional non-linear effects. The output of the reservoir can be expressed as follows: 

 𝑦 
𝑛 = ∑ ∑ 𝑤𝑖𝑗𝑟𝑖

𝑗

𝑁−1

𝑖=0

𝑛

𝑗=𝑛−𝑑

              (3) 
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Figure 5-1 a. A conventional reservoir computing system with input layer, reservoir block with recurrent connections among nodes 

and the output layer. b. The reservoir block is replaced by a set of patterned skyrmion devices where each of the ferromagnetic 

films with PMA host a single skyrmion. c. Stacks of a skyrmion device with metallic electrode and MTJ. d. Training of a skyrmion 

reservoir for autonomous prediction task. The temporal input data is mapped into voltage values which are applied to each of the 

skyrmion devices and the responses are collected. The responses are read at regular interval and the read-out values act as the 

virtual node as represented by 𝑟𝑖
𝑗
 . The states of the nodes (or reservoir responses) are used to predict the next time step value of 

the input time series. The weights are trained by computing the error of the predicted and target values and accomplished with 

simple pseudoinverse operation. e. During testing, the predicted output value is directly fed as input to the reservoir in order to 

perform multi-step autonomous prediction. 

 

Where, d represents the number of time-steps for which the previous reservoir responses are included. The 

optimal weights, 𝑤𝑖𝑗 can be obtained by optimizing a cost function. We use mean squared error as our cost 

functions: 

 𝑐 =< (𝑦 
𝑛 − 𝑡 

𝑛)2 >               (4) 

Where 𝑡 
𝑛 represents the teacher or target output of the system at nth time step. The optimization can be 

performed off-line using linear regression with regularization (ridge regression) or on-line using gradient 

descent optimizer.  
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During the training or weight optimization stage, the teacher input,  𝐼𝑛 = 𝑢𝑛 is applied to the reservoir to 

predict the next time step value 𝑦 
𝑛 = 𝑢𝑛+1 as seen from Fig. 5-1d. Once the optimized weights are 

obtained, the testing phase begins, where the inputs are disconnected and the output of the reservoir is 

connected directly to the input, 𝐼𝑛 = 𝑦 
𝑛−1 as can be seen in Fig. 5-1e. 

Magnetization Dynamics: 

Magnetization dynamics was simulated by solving the Landu-Lifshitz-Gilbert (LLG) equation in 

micromagnetic framework MUMAX3 discussed in detail in section 1.2.7.  

The magnetic films are discretized into cells with dimensions of 2 nm × 2 nm × 1 nm, which are much 

shorter than the exchange length (√
2𝐴𝑒𝑥

𝜇0𝑀𝑆
2). The simulations have been carried out without the thermal noise 

(T=0 K), however, from our previous study it has been shown that the short-term memory property of the 

skyrmion reservoir does not degrade much in the presence of room temperature thermal noise [31]. The 

simulation parameters are listed in table 5-1. 

Table 5-1: Simulation parameter 

Parameters Values 

DMI constant (D) 0.0006 𝐽𝑚−2 

Gilbert damping (𝛼) 0.015 

Saturation magnetization (𝑀𝑠) 106 𝐴𝑚−1 

Exchange constant (𝐴𝑒𝑥) 2 × 10−11𝐽𝑚−1 

Perpendicular Magnetic 

Anisotropy (𝐾𝑢) 
7.5 × 105 𝐽𝑚−3 

 

Dataset: 

We evaluated the long-term prediction performance of our proposed reservoir on two different time series 

forecasting datasets.  

1) Mackey-Glass Time Series 

The MG time series can be expressed as non-linear time-delay differential equation as follows: 

 
ⅆ𝑥

ⅆ𝑡
= 𝛼

𝑥(𝑡 − 𝜏)

1 + (𝑥(𝑡 − 𝜏))
𝑛 − 𝛽𝑥(𝑡) (9) 



107 
 

where x(t) is the MG time series value at time t, and 𝛼=0.2, 𝛽=0.1, n=10, 𝜏=17 and x (0) =1. The equation 

is solved using the Runge-Kutta method with integration time step, dt=0.1. The time series is down sampled 

to 10 and normalized between [-1,1]. Despite the deterministic form, forecasting this chaotic series is 

challenging, thus the system is used for benchmark forecasting tasks in literature [42-44]. 431-time steps 

data are considered where the first 30-time steps data (1-30) are discarded for the training, next 370-time 

steps data (31-400) are trained and the next 30-time steps data (402-431) are predicted with autonomous 

prediction.   

2) Individual Household Power Consumption 

The other dataset we worked on is a benchmark dataset of electricity consumption for a single residential 

customer, named “Individual household electric power consumption” [61]. The data set contained power 

consumption measurements gathered between December 2006 and November 2010 with a one-minute 

resolution. The dataset contained aggregate active power load for the whole house and three sub-metering 

for three sections of the house. In this paper, only the aggregate active load values for the whole house are 

used. The dataset contained 2075259 measurements. The hourly resolution data were obtained by averaging 

the one-minute resolution data. Multistep autonomous prediction is especially challenging for these types 

of datasets due to the stochasticity in the data that arises from erratic human behavior or seasonal change. 

284 hours of data are considered where, the first 20 hours data (1-20) are not trained, the next 220 hours of 

data (21-260) are used for training and the final 23 hours of data (262-284) are predicted with autonomous 

prediction. 

 

5.2. Reservoir Setup 

Skyrmion Reservoir: 

Three patterned ferromagnetic thin films with square geometry having the side lengths of 1000 nm, 800 nm 

and 700 nm are considered as the reservoir for MG time series prediction tasks as shown in Fig. 5-2. 15 nm 

thick slices are etched from all sides in the middle region, which leaves a 500 nm square block hosting the 

skyrmions. The etched block is used to prevent the propagation of spin waves, which is shown to negatively 

impact the short-term memory capacity of the skyrmion reservoir [31]. Moreover, the etched region will 

provide a boundary so that the skyrmion cannot be annihilated easily.  In addition, different length scales 

of the periphery will provide different strength of dipole coupling to the skyrmions and create variability in 

the reservoir response thus enhancing the robustness of the reservoir. We note, input multiplexing is used 

in previous studies to incorporate diverse response of a single reservoir node. However, we do not use input 
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multiplexing and the variation of responses is incorporated by using different geometry nodes.  The input 

time series values are transformed into voltage pulses with linear conversion between input magnitude and 

voltage applied. This voltage pulse translates to change in the perpendicular magnetic anisotropy using the 

VCMA coefficient, 𝜀 =
∆𝐾𝑠𝑖

∆𝑉/𝑡𝑀𝑔𝑂
 (described later in section 5.4) in the skyrmion devices. For modeling the 

response, we use voltage pulses which are applied sequentially with a 2 ns duration.  After applying each 

input pulse, the system is relaxed for 16 ns. We note that instead of applying the pulse for 18 ns we opt for 

a shorter write pulse which not only saves energy but also triggers rich dynamics that occurs during the 

relaxation phase of the skyrmion device. Moreover, the relaxation offers flexibility in terms of post 

processing time required for multi-step autonomous prediction (current prediction is provided as input for 

the next prediction). Fig. 5-2 shows the magnetization responses of the different reservoirs during the 

training phase of the MG time series at time step 231-235. The reservoir responses for a single period (18 

ns) is read at 3 ns interval (6 times). These 6 values act as the virtual nodes of the reservoir (see in Fig. 5-

2, the red diamond marks). Nodes more than 6 can be selected; however, this does not improve the 

performance as 6 nodes can adequately capture the amount of information in one period. Next, instead of 

using only the states in the current period (as been done in our previous study for one step ahead prediction 

[27,31]), we also include reservoir states from the previous 30 periods of data (total 31 periods, 31*6=186 

states for one skyrmion device) for the autonomous long-term prediction of the MG series. The short-term 

memory capacity of the patterned skyrmion is shown to be ~ 4 bits [31] (up to 4 periods). Thus, the reservoir 

is expected to remember inputs from the previous 4 periods and non-linearly transform its states based on 

the memorized inputs. However, when tasked with autonomous prediction using only the current states, the 

prediction quickly diverges (large prediction errors after third time-step). Thus, for multi-step prediction, 

previous responses are included to enable the RC to utilize important contexts from the past few 

observations.   Once the reservoir states are obtained from all three skyrmion devices, ridge regression 

(Tikhonov regularization) is performed for training and computing the optimal weights. The mean squared 

error is considered as the cost function (shown in Eq. 4) and the activation functions for the reservoir nodes 

are considered to be linear. With these assumptions, the optimal weights can be found using the following:  

 𝑤𝑖𝑗
𝑜𝑝𝑡

= (𝐴𝐴𝑇 + 𝜆𝐼)−1𝐴𝑇𝐵             (10) 

where, A is the reservoir response vector including the present and past observation for all the training 

inputs,  𝜆 is the regularization coefficient, B is the vector of labels containing the target output. For MG 

series forecasting we choose the regularization coefficient to be, 𝜆 = 10−8.    
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Figure 5-2 a.  Three ferromagnetic thin films each hosting a magnetic skyrmion worked as the RC. The responses of the respective 

skyrmion devices are shown side by side when the thin films are perturbed by the inputs of MG time series from time-step 231 to 

235 (inputs are mapped into voltage pulse amplitudes). The PMA modulation by the input voltage pulses is shown in orange color. 

The virtual nodes are marked in red diamond. 

For household power prediction tasks, slightly modified geometries are used. The ferromagnetic thin films 

of 1050 nm, 850 nm and 750 nm are used. The additional side lengths of the ferromagnetic regions provide 

stability to the skyrmions to the stochastic changes presented in the household load data. The etched region 

of 15 nm and 500 nm middle regions for hosting the skyrmions remain the same. The voltage pulse duration 

of 2 ns and relaxation period of 16 ns are kept the same. Here, the reservoir states for a total of 21 periods 

(current period, and previous 20 periods) are used for forecasting tasks. The optimal weights are computed 

using ridge regression where the regularization parameter is chosen to be, 𝜆 = 10−1. Due to the nonvolatile 
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and stochastic nature of the household load data, it is difficult to train the reservoir as accurately as possible 

without overfitting, thus a large regularization coefficient is required. 

Training and Testing the Reservoir: 

At first, for each input, the reservoir states are read at 3 ns interval up to 18 ns. The state vector can be 

expressed as 𝑅𝑛 = {𝑟0
𝑛, 𝑟1

𝑛, . . , 𝑟5
𝑛} , where the superscript n in r represents the nth input of the temporal series 

and the subscript represents the virtual node number. For MG series prediction task, all 400 training inputs 

are applied sequentially to all of the skyrmion devices and the corresponding 𝑅𝑛 are collected. The label, 

 𝑡 
𝑛 for the prediction task is the next time-step MG function value, 𝑡 

𝑛 = 𝑢 
𝑛+1, where 𝑢 

𝑛 is the MG function 

value at nth time step. The training could be performed using the reservoir response vector, A= 

[(𝑅1, … , 𝑅𝑑 , 𝑅𝑑+1 )
′,…, (𝑅𝑛−𝑑−1, … , 𝑅𝑛−2, 𝑅𝑛−1 )

′, (𝑅𝑛−𝑑 , … , 𝑅𝑛−1, 𝑅𝑛 )′] and the corresponding target 

output vector, B= [𝑡 
1, … , 𝑡 

𝑛−1, 𝑡 
𝑛] and using the ridge regression equation in Eq. 6. The “′” symbol denotes 

the transpose operation. Once the optimal weights are obtained after training the reservoir is ready for 

testing and performing autonomous prediction. 

In an actual hardware implementation, the weight optimization (such as pseudoinverse) operation can take 

time. By the time the optimal weights are computed, the reservoir can be sufficiently relaxed and loses its 

memory. Thus, before starting the testing phase, the reservoir needs to warm up [17,42]. The same temporal 

series used in training can be used for warm-up or initializing the reservoir. This adds computational 

overhead to the model. However, during such initialization step the reservoir is only excited with actual 

training data and reading the states of the reservoir is not required, which saves read energy cost. The 

overhead of the reservoir initialization can be avoided by allocating some of the training data for 

initialization. Depending on the postprocessing optimization time, instead of using all the training data for 

weight optimization, some of the training data can be saved for reservoir initialization. Alternatively, the 

optimal weights can be obtained using simple gradient descent method, which can be performed at the same 

time the training data are supplied to the physical reservoir. This is demonstrated by authors in their opto-

electronic reservoir implementation in FPGA [62]. Furthermore, the time complexity of matrix-vector 

multiplication (the most computationally expensive load of stochastic gradient decent optimization) could 

be further reduced to single time step using non-volatile computational memory device arranged in a 

crossbar. In the MG series prediction task, during the warm-up, the inputs are applied sequentially up to 

401th input. Once the reservoir responses are collected, we predict the 402th time step value of the series 

and then this predicted output is fed directly to the reservoir as input as shown in Fig. 5-1e. We repeatedly 

performed these steps to autonomously predict the time series up to 431th time step.  For autonomously 

predicting household power consumption, the reservoir is trained and initialized by providing input up to 

261th hour data. Then, the reservoir responses are collected and using the optimal weights, the 262th hour 
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data is predicted. The predicted output is then directly fed as the input. Autonomous prediction up to 284th 

hour is performed following these steps.  

Sequence-To-Sequence LSTM Architecture: 

The performance of the reservoir is also compared with state-of-the-art sequence-to-sequence (S2S) LSTM. 

S2S is an architecture that was proposed to map sequences of different lengths [63]. The architecture 

consists of two LSTM networks: an encoder and a decoder. As the input state for the decoder, the encoder's 

job is to transform input sequences of variable length into fixed-length vectors. Afterward, the decoder 

produces an output sequence with length n. In this case, the output is the energy load projection for the 

following n steps is the output sequence. This architecture's key benefit is that it accepts inputs of any 

length. In other words, the load for an arbitrary number of future time steps can be predicted using any 

number of available load measurements from previous time steps as inputs. The electricity load (active 

power) for a time step or multiple time steps in the future, given historical electricity load data, i.e., 𝑀 load 

measurements available, can be expressed as: 

 y =  {y [0], y [1], . . . , y[M − 1]}             (11) 

Where, y[t] is the actual load measurement for time step t, the load for the following 𝑇 − 𝑀 time steps 

should be predicted. The predicted load values can be expressed as: 

 ŷ  =  {ŷ [M], ŷ[M + 1], . . . ŷ[T]}           (12) 

For training, the encoder network is pre-trained to minimize the following error: 

 LE = ∑(𝑦[𝑖] − 𝑦̂[𝑖])2
𝑀

𝑖=1

        (13) 

Then the encoder is plugged into the decoder network and we train the two networks to reduce the objective 

function: 

 LD = ∑ (𝑦[𝑖] − 𝑦̂[𝑖])2
𝑇

𝑖=𝑀+1

            (14) 

The error of network is minimized using the backpropagation algorithm. Back-propagation signals are 

allowed to flow from the decoder to the encoder. Therefore, weights for both the encoder and decoder are 

updated in order to minimize the objective function expressed in Eq. 14. Both decoder and encoder are 

updated because the pre-training of the encoder alone is insufficient to achieve good performance. In this 
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paper, we tested multiple layers with different numbers of neuron units per layer and we found that the 

training dataset using a 2-layer network with 50 units in each layer gave the best performance. Increasing 

the capacity of the network did not improve performance on the testing data. 

 

5.3. Results and discussions 

Autonomous Prediction with Reservoir: 

Long-term prediction results of the proposed reservoir for MG time series prediction are shown in Fig. 5-

3a. After training the reservoir up to 400 time-step data, the input is disconnected and the predicted output 

is connected to the reservoir input. The reservoir is able to predict the next 30 time-step output with very 

good accuracy and with a root mean squared error (RMSE) of 0.0015. As the errors after 30-time steps 

prediction is extremely small, further prediction is possible. However, we restrict our effort due to the 

simulation complexity and limited hardware resources.  Fig. 5-3c and Fig. 5-3d show the phase plot of the 

training and testing data of the chaotic MG attractor. The overlapping plots in Fig. 5-3c and 5-3d show that 

the reservoir was able to accurately predict both of the training and test data. When the same task is given 

to the LSTM as shown in Fig. 5-3b, it performs well and the resulting RMSE was 0. 0000013. This 

performance improvement can be due to the dependencies that arise among the LSTM cell states in the 2-

layer deep architectures because of the use of forget gates (control how many previous states to remember). 

In addition, the non-linear activation functions are used for the input, output and forget gates which provide 

the non-linear transformation effect. Despite using much simpler architectures and linear activations, the 

reservoir is able to predict the chaotic trend with competitive accuracy. In our reservoir, during testing, the 

output is directly fed as the input, and this connection is not scaled or optimized (as has been done in [42]). 

Moreover, we did not use any non-linear transformation of the reservoir states, rather use the states as it is, 

and included several previous states. Thus, the success of the reservoir for long term prediction can be 

attributed to the use of previous reservoir states during the training and testing which provides the necessary 

non-linearity. Interestingly, here the non-linearity arises from the physical reservoir’s dynamic responses 

rather than using any external non-linear transformation (trigonometric or polynomial activation). 

Furthermore, we did not use any temporal mask to encode an input for generating diversified features, 

instead we used different geometry skyrmion devices for variability. The only parameter that is scanned 

and optimized during training is the number of previous reservoir states. For MG prediction, we used 

reservoir states for 30 previous inputs, which is shown to provide adequate non-linearity. For long term 

prediction with output feedback, it is extremely important to predict the immediate future steps as accurately 

as possible, as any error in the near future can accumulate fast and make the prediction divergent. 
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Previously, reservoir with delayed input is shown to improve the one-step ahead prediction of the reservoir 

[45], which demonstrates the importance of the non-linearity effect coming from the delayed input to the 

prediction performance. In our proposed reservoir, accuracy of the long-term prediction is maintained due 

to the inclusion of previous states (similar effect as of the delayed input).   

 

 

Figure 5-3 a. Long term autonomous prediction of chaotic MG time series with skyrmion reservoir.  The dataset is trained with 31-

400 time-step data. The reservoir is tasked to predict the next 30-time step data from 402-431. The overlapping of the predicted 

test data with actual label suggests accurate prediction b. prediction trend for MG time series with 2-layer deep sequence to sequence 

LSTM architecture. The LSTM is able to accurately predict the trend. Although, RMSE magnitude of the LSTM is lower than the 

reservoir, the prediction errors for both of the predictions remain extremely small. c. Phase diagram of the chaotic MG attractor 

during the training with reservoir. The predicted training data overlapped with the actual label implying the efficacy of the ridge 

regression training. d. Phase diagram of the reservoir for autonomous prediction. The superimposed plots suggest good prediction 

accuracy of the reservoir on test data. 

After the successful performance of the proposed reservoir for the long-term chaotic time series prediction 

task, we focus on forecasting the long-term individual household power consumption. The task is 

challenging due to the non-volatile and univariate nature of the data (only the power value is readily 
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available, other parameters are unknown) and especially when the dataset is small. However, we find that 

the proposed skyrmion reservoir can achieve good accuracy when we use several previous reservoir 

responses. The total number of previous states that are included in the training are optimized and reservoir 

states for 20 previous inputs are used. The autonomous long-term prediction results are presented in Fig. 5-

4a and 5-4b for the proposed reservoir and 2-layer deep S2S LSTM architecture respectively. From Fig. 5-

4a, it is clear that the reservoir is able to predict the household power demand with good accuracy. The 

RMSE after 23 hours of prediction is calculated to be 0. 0885. The prediction accuracy of the reservoir is 

good in the first several hours of the prediction (see the hourly RMSE plot in Fig. 5-5 labeled as reservoir: 

262-284). In contrast, the accuracy of the LSTM is poor at the beginning of the prediction, however, regains 

accuracy in the next few predictions and the overall RMSE is calculated to be 0.0831. The accuracy 

degradation of the LSTM for the first few predictions could be due to lack of training data, as LSTM 

typically requires large numbers of observations to find the underlying dependencies in the data.   

 

Figure 5-4 a. Long-term autonomous forecasting of individual household active power load with proposed reservoir. The reservoir 

is trained with 21-261 hours of data and tasked with predicting the next 23 hours of data. The predicted trend closely follows the 

actual load level suggesting good prediction accuracy with the skyrmion reservoir. b. The same task is performed with 2-layer 

sequence to sequence LSTM architecture. Although the LSTM is able to capture the trend, the prediction accuracy is less than the 

proposed reservoir for the first several hours of prediction. 

Further, the reservoir is tasked to predict the next 286-308 hours of data where the load consumption trend 

is significantly stochastic. The hourly RMSE for both the reservoir and LSTM prediction for two different 

intervals: 262 to 284 hours and 286 to 308 hours are presented in Fig. 5-5. The training and testing trend of 

the reservoir for 286 to 308 hours interval is shown in the inset of Fig. 5-5. From the RMSE plot we can 

see that, in 286 to 308 hours interval, the initial prediction of the reservoir is beyond the magnitude of the 

regularization (𝜆=0.1), however, the reservoir is able to minimize the error in the next few predictions and 
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follow the load trend. The large prediction error of the reservoir for the 286-308 hours of load compared to 

the previous set of prediction (262-284 hours) arises due to the significantly stochastic load behavior which 

is difficult to track with the reservoir. The limitation of the reservoir to track unstable stochastic trend is 

also observed in previous study [41].  

For both of the prediction intervals, the reservoir prediction accuracy starts to diverge after several hours. 

As mentioned earlier, the long-term prediction with feedback depends on the accurate prediction of the 

immediate future. However, due to nonvolatile and stochastic trend of the household load data, the 

prediction accuracy degrades quickly, nonetheless good accuracy is found up to 20 hours. Compared to the 

reservoir, the LSTM prediction accuracy is poor for such stochastic load trends. The steady and higher 

prediction accuracy of the reservoir compared to the LSTM further proves the efficacy of the RC for the 

smaller dataset. 

Finally, the RMSE of our proposed RC is compared with recent transformer [64] and generative recurrent 

unit (GRU) based optimization algorithms [65]. The RMSE of the RC for household power prediction task 

is computed to be ~ 0.6 kW and the LSTM sequence to sequence model RMSE is 0.66 kW [51]. The best 

performance with regards to RMSE for the selective update and adaptive power optimization based GRU 

method is shown to be ~ 0.15 kW [65]. On the other hand, the sparse transformer-based model with 

adversarial network learning-based approach [64] has RMSE ~ 0.30 kW (~ 50% higher RMSE error 

compared to GRU based approach [65]). Although GRU and transformer-based approach shows higher 

prediction performance, they incur huge computational burden and associated energy cost for training. The 

computational complexity of the self-attention (most data intensive task in transformer) is quadratic as such 

the complexity for each position of a transformer can be expressed as O (d.𝑁2) where d is the dimension 

of each position of a sequence length of N. Additional complexity comes from feedforward linear operation, 

positional encoding, layer normalization. In GRU network based adaptive optimization approach, the 

hidden state information is compared at each time step which incurs an additional complexity of O (d) on 

top of the GRU unit’s computational complexity of O (N.k.d), where d is the dimension of hidden state 

vector and k is the number of GRU unit. Furthermore, to incorporate temporal dependency in gradient flow, 

the author proposes an additional hyperparameter called memory factor which requires additional 

multiplication and addition operation compared to conventional optimizer. Furthermore, the optimal value 

for the hyperparameter needs to be scanned using grid search, which is a computationally extensive process. 

In comparison, the reservoir states evolved by the internal dynamics of spintronic device. Thus, only a 

single feedforward layer needs to be trained to predict the future trajectories of the time-series. For a P × 1 

layer feedforward network (P is the number of reservoir internal states that are read, and the RC output is a 

single prediction), the computational complexity can be expressed as O(P) which is significantly smaller 
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than the transformer, GRU and LSTM based networks. Thus, physical RC based approach could be a viable 

solution for edge intelligence especially in the scenario where we can trade-off accuracy in favor of limited 

resources.      

5.4. Energy Dissipation  

There are two main contributions to the energy consumed for reservoir computing discussed here. First, 

energy is needed to modulate the PMA of the ferromagnetic layers. Maximum change in PMA coefficients 

is, ∆𝑃𝑀𝐴 = 0.75 × 103 𝐽 𝑚3⁄ . Thus, the maximum change in the surface anisotropy coefficients is 

estimated to be, ∆𝐾𝑠𝑖 =
∆𝑃𝑀𝐴

𝑡𝐶𝑜𝐹𝑒𝐵
= 

0.75×103

1×10−9 = 0.75 × 1012. Assuming the VCMA coefficient of the MTJ to be, 

𝜀 =
∆𝐾𝑠𝑖

∆𝑉/𝑡𝑀𝑔𝑂
=31 fJ [66], the thickness of the tunneling barrier MgO to be, 𝑡𝑀𝑔𝑂=1 nm, the magnitude of 

voltage to perform the maximum PMA modulation can be calculated to be, ∆𝑉=0.24 V. Assuming the 

relative permittivity of MgO to be 7, the total capacitance can be calculated to be, C=
𝜖0𝜖𝑟(𝐿∗𝐿)

𝑡𝐶𝑜𝐹𝑒𝐵
 ~62 fF. Here, 

we assume L=1050 nm (so our estimate is conservative) for the length of the side of the square region of 

ferromagnetic layer. Thus, the total write energy to charge the capacitive tunneling region is estimated to 

be  
1

2
𝐶𝑉2~ 2 fJ.  Second, the reservoir responses that are read after certain interval (3 ns) known as virtual 

nodes also consume energy. The read energy can be estimated to be ~1.24 fJ with a read delay of ~ 0.3 ns 

[67] (which is well within 3 ns interval). In a period of 18 ns, the read operation is performed 6 times. Thus, 

the total energy for the write (PMA modulation) and read energy is calculated to be ~ 9.44 fJ. For the 

household prediction task, a total of 21 hours of data (which translates to 21 discrete data points for the 

reservoir computing) are used to predict the next-hour household power. Thus, the total energy dissipation 

for one skyrmion reservoir is = 21*9.44~ 198 fJ. During the reservoir initialization stage, the PMA is 

modulated.  However, the states are not read. The total energy during the reservoir initialization stage is 

estimated to be ~ 440 fJ.  Including the reservoir initialization energy, the total energy consumption for 3 

skyrmion reservoirs to predict one future value of individual household energy consumption is estimated 

to be ~ 651 fJ (assuming worst case scenario). For LSTM implementation, the GPU energy is calculated to 

be ~0.68 J per prediction. With reservoir implementation, the output layer is a feedforward layer that is 

implemented in a GPU as well for fair comparison. The GPU energy consumption for the reservoir 

feedforward layer is calculated to be 0.043 J per prediction. Thus, the reservoir is able to predict one 

instance with 16× lower energy compared to the LSTM. We note that further reduction in energy 

consumption with reservoir can be achieved by implementing feedforward output layer with crossbar array 

of non-volatile memory using in-memory computing [68,69]. Thus, we could get an overall (at the system 

level which is the key metric of interest) 10× to 100× reduction in the computing energy needed to predict 
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building energy.  At the individual RC MTJ device level, the energy savings would be enormous (pico-

Joules instead of milli-Joules) but we do not use this metric as it is not a fair comparison if overall 

architecture and systems are not considered.  

 

Figure 5-5 a. Hourly RMSE of the prediction accuracy for individual household load forecasting task for both of the proposed 

reservoir and LSTM. RMSE plots for two different long-term autonomous predictions, 262-284 hours and 286-308 hours are 

shown. The inset shows the prediction trend of the reservoir for prediction from 286 hour to 308 hours. The RMSE plots indicate 

higher prediction accuracy of the proposed reservoir compared to LSTM, even for much stochastic trend such as in 286-308 hours 

of data. 

5.5 Conclusion 

We have shown long-term autonomous prediction with a skyrmion reservoir. The reservoir is tasked with 

predicting the chaotic MG time series and real-world individual household load forecasting and is able to 

predict long-term trends with competitive accuracy. The proposed reservoir is set up using three patterned 

skyrmions having slightly different geometries. All the skyrmions are provided with the same temporal 

input series and the resulting skyrmions’ oscillation is read at regular intervals and processed with simple 

linear regression. After training, the output is fed as the reservoir input to perform autonomous long-term 

prediction. The prediction performance greatly improves due to inclusion of previous states in addition to 

the current states of the reservoir as these previous states provide the non-linear effect necessary for accurate 

prediction. Furthermore, the physical reservoir does not consider masking the input and only the output 

weights and the number of previous states included during training are optimized. Energy consumption 

estimation shows that skyrmion reservoir can perform autonomous prediction with an energy consumption 
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of 0.043 J/per prediction which is at least 16× less than the LSTM based approach. In addition, we show 

that with our proposed physical RC one can achieve competitive accuracy with a much smaller dataset. 

Furthermore, with VCMA control, the skyrmion reservoir can be operated with ultra-low power as the 

anisotropy modulation is performed with voltage as opposed to energy hungry current control. Since in RC 

only the last layer is trained, thus our skyrmion reservoir provides a pathway to implement extremely energy 

efficient long-term prediction of real-world problem with high accuracy, which is specifically attractive in 

hardware and memory constraint edge computing platforms, where energy is at a premium.   
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Chapter 6: Magnetic Anisotropy Modulation in Bismuth Substituted Yttrium Iron Garnet 

with Voltage Controlled Strain 

 

In Chapter 2, we demonstrated energy-efficient magnetic memory devices by resonantly exciting 

magnetostrictive nanomagnets deposited on a piezoelectric substrate using voltage-induced strains. The 

efficiency of these devices can be further enhanced by utilizing magnetic materials with extremely low 

damping constants. As illustrated in the resonance characteristics of an oscillator in Fig. 6-1, damping is 

associated with the quality factor (Q-factor), which governs the rate at which the oscillator loses energy. 

Magnetic materials such as Bismuth-substituted Yttrium Iron Garnet (Bi-YIG), which exhibit extremely 

low damping constants (1.3-3× 10−4), can provide higher Q-factors and sustain higher amplitude 

magnetization precessions for longer periods of excitation. This motivates our study of the electric field 

tunability of Bi-YIG films deposited on a piezoelectric substrate. 

In this chapter, we report magnetic anisotropy modulation in Bi-YIG thin films deposited on PMN-PT with 

the application of voltage-induced strain. The Bi content is selected for low coercivity and higher 

magnetostriction than that of YIG, yielding significant changes in the hysteresis loops through the 

magnetoelastic effect by application of voltage-induced stress. The piezoelectric substrate is poled along 

its thickness, which is the [011] direction, by applying voltage across the PMN-PT/SiO2/Bi-YIG/Pt 

heterostructure. In-situ magneto-optical Kerr microscopy (MOKE) reveals the modulation of magnetic 

anisotropy with voltage-induced strain. Furthermore, voltage control of the magnetic domain state of the 

Bi-YIG film at a fixed magnetic field produces a 90° switching of the magnetization easy axis above a 

threshold voltage. The magnetoelectric coefficient of the heterostructure is 1.05 × 10−7 s𝑚−1 which is 

competitive with that of other ferromagnetic oxide films on ferroelectric substrates. Our results demonstrate 

electric field control in a multiferroic heterostructure relevant to applications in energy efficient non-volatile 

memory and in-memory computing devices.  

 

Figure 6-1. Sketch of resonance curves of an oscillator for different damping coefficients and increasing Q factors.  
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Electric field tunability of magnetization is particularly appealing for high density magnetic data storage 

with low energy dissipation [1,2] compared to current-based technologies [3,4]. In this regard, multiferroic 

structures with coupled ferroelectric (FE) and ferromagnetic properties have been well studied due to their 

ability to control the electric and magnetic ordering simultaneously through the converse magnetoelectric 

effect (CME) [5,6]. The electric current requirement is on the order of 1011 A/m2 with 10 fJ [7] dissipation 

compared to 1-100 aJ dissipation in capacitive multiferroic devices [7, 8]. Although single phase 

multiferroic materials [9,10] are desirable, composite heterostructures provide three to four orders of 

magnitude greater magnetoelectric effect and excellent stability at room temperature [11,12]. Several 

mechanisms have been explored for harnessing CME from composite heterostructures, such as transferring 

mechanical stain from the FE to the ferromagnet [13-15], modulation of the spin-up and spin-down densities 

of states at the FE-ferromagnet interface [16], and modification of an oxide ferromagnet through voltage 

driven migration of oxygen [17]. Strain transfer mechanisms demonstrate low heat dissipation per switching 

cycle and higher magnetoelectric coefficient compared to other mechanisms [18]. 

Relaxor ferroelectric materials such as PMN-PT show large piezoelectric coefficients when operated near 

the morphotropic phase boundary (x=0.3) and are often used to transfer strain to a ferromagnetic material 

[19].  Ferromagnetic materials with low to moderate magnetostriction such as Ni [20], Co [13,14], CoFeB 

[15, 21], or FeGa [22] have been fabricated on top of PMN-PT to investigate magnetoelectric effects.  In 

these composites, the magnetic films and patterned dots are often amorphous or polycrystalline in nature, 

thus electric field induced magnetoelastic anisotropy dominates magnetocrystalline anisotropy enabling 90° 

switching of the magnetic easy axis when a voltage is applied. Complete 180° switching was demonstrated 

in patterned Co/PMN-PT by sequentially applying voltages in the electrode pairs [23]. In contrast to 

ferromagnets, ferrimagnetic materials such as oxides offer more efficient and faster control of 

magnetization state due to their low damping and moderate saturation magnetization. Ferrimagnetic oxides 

such as yttrium iron garnet (YIG) and rare-earth iron garnet (REIG) have been used to demonstrate spin 

wave propagation and spin torque phenomena. In addition, the saturation magnetization, magnetostriction, 

anisotropy and Gilbert damping parameter can be modified by inserting rare earth ions [24].  Despite these 

advantages, the growth of ferrimagnetic garnets on piezoelectric compounds poses a significant challenge 

due to lattice incompatibility, thus limiting the potential to harness the benefit of electrical control. 

Previously, we have shown remnant strain induced anisotropy modulation of yttrium-substituted 

dysprosium iron garnet (YDyIG) film crystallized on PMN-PT [25]. 

In this study, we grow bismuth-substituted yttrium iron garnet (Bi-YIG) on PMN-PT and show 

magnetoelectric control by applying different electric fields across the heterostructure while characterizing 

their hysteresis loops in-situ using magneto-optical Kerr microscopy (MOKE). Bi-YIG has great 
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technological significance for magneto-optical and magnetoelectric applications such as microwave 

splitters, optical isolators [26], magnetic sensors and spin wave carriers with extremely low dissipation and 

eddy current loss. Magnetic domain wall propagation in a BiYIG racetrack was demonstrated recently using 

low power rf pulses with duration of 1 ns and above [27]. In this chapter we first discuss the growth and 

magnetic properties of the BiYIG film on a PMN-PT substrate, then show that the magnetic easy axis of 

Bi-YIG films can be reoriented by 90° degrees by applying an electric field across the heterostructure 

composite. Furthermore, MOKE shows domain wall nucleation and propagation in BiYIG films for varying 

amplitudes of the electric field. We then demonstrate voltage induced strain control of the magnetic domain 

at a fixed magnetic field and estimate the magnetoelectric coefficient. These results suggest a path towards 

control of magnetic bits in a BiYIG domain-wall device using a combination of voltage and current pulses 

[28,29,30]. 

6.1 Sample growth and characterization: 

The heterostructure samples employed in our experiments were grown by our collaborator at MIT. The 

(011)-oriented PMN-PT [PbMg0.33Nb0.67O3)1-x(PbTiO3) x; x=0.29-0.33 substrates (supplied by MTI Corp.) 

were coated with 2.4 nm SiO2 by magnetron sputtering. The 45.6 nm thick BiYIG films were grown via 

pulsed laser deposition (PLD) by co-deposition from stoichiometric YIG (Y3Fe5O12) and BFO (BiFeO3) 

targets. A 248 nm KrF excimer laser was used at an energy of 600 mJ, a repetition rate of 10 Hz, and was 

focused to a fluence of 2 J cm-2 at the target. The laser shots on each target were adjusted based on the 

calibrated growth rates. The chamber was pumped to a base pressure of 1 x 10-5 Torr and an oxygen pressure 

of 20 mTorr was maintained during the deposition. The films then underwent ex-situ anneal in a furnace 

for 72 hours at 600 °C in ambient temperature to crystallize the garnet. Fig. 6-2a shows the Grazing 

incidence x-ray diffraction (GIXD) images which show the growth of Bi-YIG on SiO2/PMN-PT substrate. 

We note that, ~ 5 nm thick SiO2 diffusion barrier is deposited on top of PMN-PT before depositing BiYIG 

to avoid forming perovskite structure which is undesirable. Next, the hysteresis loops of the deposited 

heterostructures are measured for external fields along in-plane and out of plane directions. The sample 

hysteresis in Fig. 6-2b shows the magnetizations prefer to orient along an in-plane direction. The saturation 

magnetization is measured to be 101 kA/m and the in-plane coercivity is around 10 mT. The scanning 

electron microscopy (SEM) images are presented for the BiYIG deposited on Si and SiO2/PMN-PT in Fig. 

6-3. Although a few tiny amorphous regions are observed, overall, the BiYIG sample deposited on 

SiO2/PMN-PT shows excellent crystallinity across the heterostructure.  
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Figure 6-2 a. GIXD diffraction image shows Bi-YIG growth on SiO2/PMN-PT substrate. Data has been shifted vertically for clarity. 

b. Hysteresis loops taken via vibrating sample magnetometry of the BiYIG/SiO2/PMN-PT sample. The curves were measured out 

of plane (OP) and in plane (IP) to the sample surface. 

 

Figure 6-3 Top surface SEM images of a) BiYIG/Si and b) BiYIG/SiO2/PMN-PT.   

 

6.2 Magnetic Hysteresis Modulation with Strain 

The magnetic properties of the ferromagnetic material in a FE-ferromagnet heterostructure can be 

modulated by utilizing the piezoelectric properties of the FE crystal. Applying a voltage across the thickness 

of the PMN-PT (i.e. along the film normal, defined as 𝑧̂, the [011] direction) generates an electric field E 

leading to a piezoelectric strain in the FE-crystal along the two orthogonal in-plane directions, 𝑥, [100] and 

𝑦̂, the [011̅] direction as shown in the heterostructure schematic in Fig. 6-4a. When the electric field is zero, 

the BiYIG shows isotropic magnetic behavior. An electric field along 𝑧̂ leads to compressive strain along 

𝑥 and tensile strain along 𝑦̂ of the substrate, breaking the degeneracy of the BiYIG in-plane hysteresis loops.  
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To characterize the magnetoelectric behavior of the composite, we first poled the BiYIG/SiO2/PMN-PT by 

applying 450 V along 𝑧̂ (E = 9 kV/cm) for 90 min, then set the voltage to zero. We then applied voltages in 

50V increments, measuring the longitudinal and polar MOKE hysteresis loops at each voltage, Fig. 6-3a 

and Fig. 6-4b. Blue light (wavelength ~ 465 nm) was used because BiYIG has a high MOKE response at 

this wavelength. The as-deposited sample is isotropic in plane and showed similar magnetic hysteresis loops 

along 𝑥 and 𝑦̂. Poling and subsequent relaxation leads to a remnant strain in the PMN-PT, which is tensile 

along 𝑥 and compressive along 𝑦̂ [25,31]. Hence, after poling the Bi-YIG shows a harder direction (lower 

remanence and squareness) along 𝑥 and an easier direction along 𝑦̂ at 0 V compared with the as-grown 

state, consistent with a negative magnetostriction [32,33]. When voltage is subsequently applied to the 

poled sample, the PMN-PT experiences increasing compressive strain along 𝑥 due to the negative 

piezoelectric coefficient, ⅆ31 of PMN-PT [31], and tensile strain along 𝑦̂ due to the positive piezoelectric 

coefficient ⅆ32 of PMN-PT. This leads to an anisotropy reorientation in the Bi-YIG with 𝑥 becoming the 

easy in-plane direction for a sufficiently large voltage. 

With reference to 𝜃 and 𝜑, the polar and azimuthal angles of magnetization shown in Fig. 6-4a, the 

magnetoelastic energy can be expressed as 𝐹𝑚𝑒 = −
3

2
𝜆𝑠

𝑌

1+𝜗
𝜀𝑥𝑥𝑠𝑖𝑛

2𝜃𝑐𝑜𝑠2𝜑 −
3

2
𝜆𝑠

𝑌

1+𝜗
𝜀𝑦𝑦𝑠𝑖𝑛

2𝜃𝑠𝑖𝑛2𝜑, 

where 𝜀𝑥𝑥  and 𝜀𝑦𝑦 are the strains along 𝑥 and 𝑦̂,  𝑌 is the Young’s modulus, and 𝜗  is the Poisson’s ratio 

of BiYIG. There is no stress along 𝑧̂ due to the free boundary condition at the top surface. The saturation 

magnetostriction coefficient of BiYIG is, 𝜆𝑠 ≈ -4× 10−6 [32,33], and the energy is lowered when the 

magnetization is aligned along a compressively strained direction.  

Fig. 6-4a shows the hysteresis loops become squarer along 𝑥 as the voltage is increased from 0 to 450 V.  

The coercive field increases from 24.8 mT at 0 V to 27.1 mT at 450 V, and the field at which the loop closes 

decreases to 55±0.5 mT field at 450 V compared to 70±0.5 mT at 0 V. Opposite trends are observed along 

𝑦̂: the loop becomes less square with increasing voltage and the coercivity decreases from 30 mT at 0 V to 

24.2 mT at 450 V, Fig. 6-4b.  A high squareness ratio, defined as Sq = Mr/Ms where Mr and Ms are the 

remanent and saturation magnetization respectively, indicates the easy axis. Sq increases (decreases) along 

𝑥 (𝑦̂) with increasing voltage, Fig. 6-4a, 6-4b. A butterfly-like hysteresis loop is observed for Mr vs. V, Fig. 

6-4c, illustrates the magnetoelectric coupling between the applied voltage and remanent magnetization. The 

loop measured along the poling direction, 𝑧̂, shows little change with voltage, Fig. 6-4d. 
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Figure 6-4 a,b. Hysteresis loops obtained from MOKE magnetometry for different voltages applied along the thickness of the 

heterostructure, PMN-PT/SiO2/BiYIG when the magnetic field is applied along the in-plane direction a. 𝑥̂. b. 𝑦̂. Black arrows 

indicate the trend for increased voltage. The inset in (a) shows a schematic of the heterostructure with the direction of the applied 

voltage, principal axes and the polar angle, 𝜃 and azimuthal angle, 𝜑 of the BiYIG film magnetization, M.  c. ratio of remanent 

and saturation magnetization vs the applied voltage for both in-plane directions, 𝑥̂ and 𝑦̂.  d. hysteresis loops as a function of 

voltage obtained from polar MOKE for the out of plane direction, 𝑧̂. 

In Fig. 6-5 we analyze the magnetization switching of the poled heterostructure for two cases, 0V and 450V 

for the in-plane directions 𝑥 and 𝑦̂. Initially, a reference background image is taken from which the images 

acquired at different magnetic fields are subtracted. At positive saturation, +88 mT, predominant white 

contrast domains are observed. The arrows in Fig. 6-5b and 6-5d indicate specific domains, with upward 

(downward) arrows representing magnetization along the +𝑥 (-𝑥) or +𝑦̂ (-𝑦̂) direction. The images in Fig. 

6-5b and 6-5d correspond to the positions marked on the hysteresis loops in Fig. 6-5a and 6-5c respectively. 
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Figure 6-5 a. Hysteresis curves with external fields applied along the in-plane direction x when the heterostructure is subjected to 

an applied voltage of 0 V and 450 V. b. longitudinal MOKE images showing magnetization reversal process. The corresponding 

field values for which the images are taken are also marked in the hysteresis loops. The upward (downward) arrows represent 

domain magnetizations that are pointed along the +𝑥̂ (-𝑥̂) directions. c. hysteresis loops for in-plane direction y for 0 V and 450 V 

and d. corresponding magnetization reversal images. The upward (downward) arrows represent domain magnetizations oriented 

along the or +𝑦̂ (-𝑦̂) directions.  

As the external field is increased in the negative direction, reversal is indicated by the black contrast. For 

fields applied along 𝑥, when the voltage is 0 V, the switching corresponds to a gradual change in contrast, 

and no significant domain wall propagation is observed (compare the images at -29.4 mT and -33.4 mT in 

bottom panels of Fig. 6-5b). Also, the change in contrast starts to appear early at 0 V and the sample is not 

saturated at -55 mT. However, at 450V, abrupt switching is accomplished by domain wall nucleation and 

growth and the sample saturates at -55mT. This behavior is consistent with 𝑥 being the easy axis at 450 V 

but a hard axis at 0 V. Along 𝑦̂  direction the easy axis switching process occurs with domain wall nucleation 

and propagation at 0 V, but a gradual contrast change is observed at 450 V, consistent with 𝑦̂ becoming a 

hard axis with increasing voltage.  

 

 



131 
 

6.3 Magnetization evolution with electric field:  

Fig. 6-6 shows the effect of voltage on the magnetic domain pattern for a fixed magnetic field. The sample 

was first saturated at -70 mT applied field, then the field was set to +27 mT and the domains were imaged 

as a function of voltage. The change in the domain formation pattern is most significant at 27 mT, which is 

close to the coercive fields for both of the in-plane directions.  

 

 

Figure 6-6 MOKE images showing domain reversal along in-plane direction 𝑥̂  //[100] for varying voltages. The sample is first 

saturated with a -70 mT field and the reversal field is set to + 27 mT, then a voltage of 450 V was applied and reduced in steps of 

50 V.  

The sample was poled by applying 450 V and subsequently relaxed to 0 V. For image acquisition in the 𝑥 

-direction, the voltage is then reset to 450 V, and a magnetic field of -70 mT was applied. In this 

configuration, domains with black contrast are predominant. The external field is then increased to 27 mT. 

White-contrast domains indicate the onset of reversal, which increases as the voltage is stepped downwards 

in increments of 50 V while keeping the magnetic field at a constant 27 mT. The domain pattern shows 

little change for voltages below 100 V. The behavior is explained by the 𝑥 axis being the easy axis at 450 

V but becoming unfavorable as the voltage decreases. The reduction in anisotropy leads to the reorientation 

of the magnetization towards the 𝑦̂ -axis, reduction in domain sizes and a weakening of contrast. At low 

voltages, 𝑥 is a hard direction and the magnetization orientation within domains is governed by the balance 

between the magnetoelastic anisotropy and the Zeeman energy. An analogous but opposite trend is found 
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when the field is applied along 𝑦̂, shown in Fig. 6-7. Thus, the preferred axis of magnetization shifts from 

𝑦̂ to 𝑥  as the voltage is increased from 0 V to 450 V and a 90° switching of the easy axis is accomplished. 

 

 

Figure 6-7 MOKE images showing domain reversal along in-plane direction 𝑦̂ // [011̅] for different voltages. The sample is first 

saturated with a -70 mT field and the reversal field is set to + 27 mT, the voltage is increased in 50 V steps from 0 V to 450 V.  

The magnetoelectric coefficient, 𝛼𝐸 = 𝜇0
∆𝑀

∆𝐸
  [34] of the Bi-YIG/SiO2/PMN-PT is calculated from Fig. 6-

4c (in-plane direction, 𝑥), where the applied field strength is 0 mT. Thus, ∆𝑀, is the change in the remnant 

magnetization, ∆𝑀𝑟 and, ∆𝐸 =
∆𝑉

𝑡  
  , where 𝑡 is the thickness of the heterostructure, E is the electric field 

and V is the applied voltage across the heterostructure. The highest value of 𝛼𝐸 is determined to be 1.05 

× 10−7 s𝑚−1 as illustrated in Fig. 6-8, which is achieved when the voltage is changed from 0 V to -50 V 

with a maximum change in remnant magnetization of ≈ 8.36 kA/m. This value is smaller than our 

previously studied yttrium substituted dysprosium iron garnet (YDyIG) which yielded a magnetoelectric 

coefficient of 2.8 × 10−7 s𝑚−1 [25]. However, the 𝛼𝐸 value is comparable to, or even surpasses, those 

obtained in previous studies involving magnetic oxide films on ferroelectric substrates. For instance, 

La0.7Sr0.3 MnO3/PMN-PT exhibited 𝛼𝐸  = 6.4 × 10−8 s𝑚−1 [35], while YIG/PMN-PZT achieved a 

maximum of 𝛼𝐸  = 1.8 × 10−7 s𝑚−1 [36]. Nevertheless, this value is still lower than those recorded for 

metallic magnetic films such as, FeGa/PMN-PT (2.7 × 10−6 s𝑚−1) [37], FeRh/BaTiO3 (1.6 × 10−5 

s𝑚−1)[38], and Co2FeSi/PMN-PT (1 × 10−5 s𝑚−1) [39]. Furthermore, the reported magnetoelectric 

coefficient exceeds that of the 4.9 μm YIG/PMN-PT which yielded 5.4 ×10−9 s𝑚−1 [40], and the 10–40 

μm YIG-PZT, which reported values ranging from 1 × 10−9 s𝑚−1 to 1.5 × 10−9 s𝑚−1 [41]. Although the 
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reported magnetoelectric coefficient is lower than the metallic magnetic film, the damping coefficient of 

BiYIG is shown to be as  low as 1.3-3× 10−4 [42,43] compared to the damping of 0.042-0.2 for FeGa 

[44,45], 2.3-3.5× 10−3 for FeRh [46,47] and 8 × 10−3 for Heusler alloy (Co2FeSi)  [48]. Thus, the BiYIG 

with moderate magnetoelectric coefficient coupled with low damping coefficient can allow for faster 

magnetization dynamics and low energy dissipation in voltage controlled spintronic devices.    

Finally, to check the reproducibility property of the studied heterostructure, we investigated another sample 

with 55 nm thickness. This sample shows similar trend in strain induced anisotropy modulation and the 

magnetoelectric coefficient is found to be 0.9× 10−7s𝑚−1.  

 

Figure 6-8 Magnetoelectric coefficient with respect to the electric field applied across the Bi-YIG/SiO2/PMN-PT heterostructure. 

6.4 Summary and conclusion 

In summary, we have shown 90° switching of the magnetization easy axis of a multiferroic heterostructure, 

Bi-YIG/SiO2/PMN-PT by using voltage induced strain. The sample is fabricated using pulsed layer 

deposition and the ratio of Bi and YIG is optimized for lower coercivity and high saturation magnetization. 

An intermediate SiO2 diffusion layer is deposited between PMN-PT and BiYIG for high quality crystal 

growth. The MOKE magnetometry and domain reversal image shows large changes in domain wall 

nucleation and propagation in BiYIG films with the change in electric field. Our study shows electric field 

control of a multiferroic structure incorporating a ferrimagnet by utilizing the magnetoelastic effect, which 

is significant in realizing energy efficient voltage controlled spintronic devices for storage and 

neuromorphic implementations. Although the magnetoelectric coefficient is moderate compared to 
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magnetostrictive metal/PMN-PT, a combination of moderate magnetoelectric coefficient and low damping 

can stimulate novel devices that use resonant effects [49-51] with high quality factors. 
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Chapter 7: Interfacial Exchange and Magnetostatic Coupling in a CoFeB/Perpendicular 

Ferrimagnetic Thulium Iron Garnet Heterostructure 

 

In Chapter 6, we demonstrated the electric field tunability of heterostructures incorporating Bi-YIG thin 

films deposited on a piezoelectric substrate. Similar to Bi-YIG, rare earth iron garnets (REIGs) grown on 

piezoelectric substrates exhibit a low damping constant. Additionally, REIGs display perpendicular 

magnetic anisotropy (PMA), making them a highly attractive candidate for implementing racetrack memory 

devices, offering extremely efficient and rapid control of domain walls. However, due to the insulating 

nature of the iron garnet films, its incorporation to a magnetic tunnel junction (MTJs) is challenging. 

Coupling the iron garnet films to a ferromagnetic metal can address the issue.  

In this chapter, we investigate the exchange coupling between a ferrimagnetic insulator (FI) Thulium Iron 

Garnet (TmIG) deposited on a gadolinium gallium garnet (GGG) substrate, which shows perpendicular 

magnetic anisotropy (PMA) of magnetoelastic origin and a ferromagnetic metal (FM) stack with oxide 

capping that consists of CoFeB(x)/W(0.4 nm)/CoFeB(0.8 nm)/MgO(1 nm)/W(5 nm). Detailed vibrating 

sample magnetometry (VSM), magneto optical Kerr microscopy (MOKE) and first order reversal curves 

(FORCs) studies, coupled with micromagnetic simulation are used to analyze the extent of the coupling 

between these layers. Strong interlayer exchange coupling and magnetostatic coupling are observed in the 

samples where the relative strength between these interactions can be controlled by varying the thickness 

of the CoFeB layer. CoFeB with thickness x ≤ 1 nm is found to be strongly exchange coupled whereas the 

magnetostatic coupling dominates when the thickness x ≥ 3 nm. These findings have important implications 

towards realizing fast and energy efficient spintronic devices using a ferrimagnetic insulator, while its 

coupling to the ferromagnetic layer can be used for effective electrical read out of the magnetic state. 

 

Rare earth iron garnets (RE3Fe5O12) including thulium, terbium, samarium, and other REIG films with 

perpendicular magnetic anisotropy (PMA), have been developed for spintronic applications [1,2]. 

Heterostructures such as Pt/TmIG and Pt/Bi:YIG have demonstrated spin orbit torque switching [1,3,4], 

chiral spin textures [3,5,6], and a relativistic domain wall velocity approaching the magnon group velocity 

[7], making these materials promising for memory or logic devices. Specifically, REIG materials exhibit 

ferrimagnetic characteristics due to the antiparallel superexchange coupling between the tetrahedral and 

octahedral Fe sublattices [8]. As mentioned earlier, the insulating nature of the REIG precludes its 

incorporation into a magnetic tunnel junction. Coupling the REIG to a magnetic metal would enable readout 

of the magnetization of the REIG, if the metal formed the free layer of a MTJ. FM metal/REIG multilayers 
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could also be useful in magnon-based spintronics for high frequency application and low power computing. 

This motivates study of the strength and mechanism of exchange coupling between thin films of magnetic 

metals and REIGs. 

The ground states of a magnetic multilayers are dictated by the competition and interplay of long range 

magnetostatic or dipole interaction, short- range exchange interaction and local anisotropy variation that 

are often determined by the composition and thickness of the individual layers. Previously, exchange-

coupled ferromagnetic multilayers in direct contact [9-11] and separated by non-magnetic spacer [12-16] 

and hybrid spacer [17] were studied. Dynamic coupling between the ferrimagnetic insulator (FI) and 

ferromagnetic metal (FM) in heterostructures due to exchange of non-equilibrium spin currents are 

identified by investigating broadband ferromagnetic resonance and spin torque ferromagnetic resonance 

[18-20]. However, few studies are performed on static interlayer exchange coupling between FI/FM 

heterostructures [21-24]. It has been reported that ion sputtered Fe of 5 nm to 10 nm on 100 nm thick YIG 

can replicate the stripe domain wall pattern of YIG due to exchange coupling [22]. In addition, static and 

dynamic magnetization response is characterized in heterostructures of 0.5 um thick (YBiLu)3(FeAl)5O12 

and 30 nm thick permalloy film [23]. In this system, strong exchange coupling is attributed to the increased 

domain wall periodicity after permalloy deposition and no domain wall imprinting is reported. In another 

study, a 2 nm Co thin film is deposited on different um scale thick YIG, which shows change in domain 

wall geometry of YIG films suggesting magnetostatic coupling [24].  

In this study, we chose Thulium Iron Garnet (TmIG) as the FI layer. When deposited on a gadolinium 

gallium garnet (GGG) substrate, TmIG shows perpendicular magnetic anisotropy (PMA) of magnetoelastic 

origin. To make the FI/FM heterostructure, an FM compound consisting of CoFeB(x)/W (0.4 

nm)/CoFeB(0.8 nm)/MgO(1 nm)/W(5 nm) is deposited on top of the FI using ion beam sputter deposition 

method. The thickness of CoFeB that is in direct contact with TmIG is varied to investigate the extent of 

exchange and magnetostatic interaction. Specifically, we chose TmIG due to its soft magnetic properties, 

which is useful for magnetic memory devices and CoFeB as it has been a standalone choice in current 

MRAM technologies. Fig. 7-1(a) shows the heterostructures investigated, where the magnetic ground state 

can be preferentially oriented along out of plane or in-plane depending on the thickness of the CoFeB 

overlayer. Detailed magnetometry analysis using vibrating sample magnetometry (VSM), and magnetic 

imaging with magneto-optical Kerr microscopy (MOKE) is performed to investigate the coupling 

phenomena. First order reversal curves (FORCs) are obtained to analyze the magnetic interactions in the 

heterostructure layers and detailed micromagnetic simulations are performed to quantify the extent of 

competing interactions from the inter-layer exchange and magnetostatic interaction.  
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Figure 7-1 a. The prepared FM stack CoFeB(x)/W(0.4)/CoFeB(0.8)/MgO(1)/W(5) are deposited on FI stack GGG/TmIG(40)  to 

investigate FI/FM coupling. All the numbers in the parenthesis are thickness in nm. b. The FM stacks with CoFeB of x=1 nm and 

lower thickness have magnetization predominantly oriented along the out of plane direction whereas in stacks with x=3 nm and 

higher thickness the magnetizations are predominantly along in-plane. The resulting magnetizations in FI/FM stacks are canted 

with respect to out of plane and in-plane due to interfacial exchange coupling and magnetostatic interaction.   

 

7.1 Sample preparation and characterization 

The heterostructure samples used in the experiments were grown by our collaborators at MIT and NIST.  A 

40 nm thick TmIG was deposited on top of the GGG (111) substrate using a pulsed laser deposition (PLD) 

system with base pressure ≤ 7 x 10-4 Pa (5 x 10-6 Torr). After loading the substrates, a 20 Pa (150 mTorr) 

O2 partial pressure environment is maintained through continuous O2 flow during substrate temperature 

ramp-up to 650 °C, during the deposition, and while cooling down post-deposition. A 248 nm KrF excimer 

laser focused to a fluence of 2 J/cm2 on a stoichiometric TmIG target at a frequency of 10 Hz. 

The GGG/TmIG samples are transferred to a 12-target, 200 mm ion beam sputtering cluster with base 

pressure ≤ 3 x 10-6 Pa (2 x 10-8 Torr). In this chamber, the sample structure of 

CoFeB(x)/W(0.4)/CoFeB(0.8)/MgO(1)/W(5), (the number in parentheses reflects thicknesses in nm) is 

grown in an Ar working pressure of 0.03 Pa (2 x 10-4 Torr). Using a Co20Fe60B20 stoichiometric target, a 

thickness series where x ranges across the nominal thicknesses: 0.84 nm, 1 nm, 3 nm and 4 nm. A control 

sample for each CoFeB thickness was deposited on Si substrate with a 300 nm thick thermally oxidized Si 

overlayer simultaneously with the TmIG/GGG samples. All samples were processed in a rapid thermal 

annealer under vacuum at 300 °C for 10 min. The W spacer layer is employed as a boron sink during the 

annealing and to achieve high perpendicular magnetic anisotropy in the CoFeB layer [25]. 

The control samples are characterized by measuring the hysteresis loops for in-plane and out-of-plane 

external fields using vibrating sample magnetometry (VSM) as shown in Fig. 7-2. The layer sequences of 

the samples and corresponding saturation magnetization, easy axis direction and the coercive field along 
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the easy axis directions are presented in Table 7-1. The uncertainty while estimating the coercive field is ~ 

10 % and comes from measurement uncertainty and fitting error.  For x = 1 nm and below, the FM stack 

shows a predominantly out of plane easy axis. On the other hand, samples with x = 3 nm or higher, the 

magnetic easy axis is in-plane. Independent of the lower CoFeB layer of variable thickness, the fixed 0.8 

nm CoFeB layer above the few atomic layers of W, which is in contact with a top MgO, is expected to have 

perpendicular magnetic anisotropy (PMA) [26]. Furthermore, strong ferromagnetic exchange coupling is 

expected between these two CoFeB layers, which may further influence both of their magnetization states. 

When the variable CoFeB layer thickness is 1 nm or lower, PMA from the MgO as well exchange coupling 

from the top PMA CoFeB layer can force the magnetization to orient along perpendicular direction. For 

CoFeB of x ≥ 3 nm, the sample magnetization remains in-plane due to dominant magnetostatic effects. In 

this case, the surface anisotropy from MgO/CoFeB is not enough to orient the overall magnetization along 

the perpendicular direction.  

Table 7-1: Magnetic properties of control samples 

Layer sequence Saturation 

magnetization 

(kA/m) 

Easy axis  Coercive field 

(mT) 

along easy axis 

Si/CoFeB(4)/W(0.4)/CoFeB(0.8)/MgO(1)/W(5) 970 ± 7.5 In-plane 0.33 

Si/CoFeB(3)/W(0.4)/CoFeB(0.8)/MgO(1)/W(5) 940 ± 5 In-plane 0.25 

Si/CoFeB(1)/W(0.4)/CoFeB(0.8)/MgO(1)/W(5) 545 ± 9 Out-of-plane 0.52 

Si/CoFeB(0.84)/W(0.4)/CoFeB(0.8)/MgO(1)/W(5) 365 ± 11 Out-of-plane 1.54 

 

 

Figure 7-2 a. Out of plane and b. in-plane hysteresis loops for control samples, Si/CoFeB(x)/W(0.4)/CoFeB(0.8)/MgO(1)/W(5) for 

variable thickness, x of CoFeB.  
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No appearance of multiple loops and or zero moment crossing is noted in the hysteresis loops, which 

suggests substantial ferromagnetic coupling between the CoFeB layers. The saturation magnetization of 

thickest, x = 4 nm sample is measured to be 970 ± 7.5 kA/m, which decreases with CoFeB layer thickness, 

and estimated to be 365 ± 11 kA/m for the thinnest, x = 0.84 nm sample. The out of plane coercivity of the 

CoFeB samples for x = 1 nm and x = 0.84 nm are estimated to be 0.52 mT and 1.54 mT respectively.  

Next, the magnetic hysteresis loops of the FI/FM heterostructure are obtained for variable CoFeB thickness 

using the VSM measurements and shown in Fig. 7-3(a)-(d). The layer sequences of the FI-only stack and 

the FI/FM stacks along with the measured saturation magnetization, easy axis directions and the coercive 

field along the easy axis directions are presented in Table 7-2. Two distinct trends are seen between the 

samples with CoFeB thickness of x = 1 nm or below (Fig. 7-3(a)-(b)) and 3 nm or above (Fig. 7-3(d)-(e)). 

For comparison, the hysteresis loops of pristine GGG/TmIG (FI only stack) are also presented. The out-of-

plane coercivity of the FI /FM increases to 2 mT for low thickness CoFeB (x = 1 nm or below), compared 

to the coercivity of the pristine FI of 0.22 mT and control FM stack which is 0.52 mT for x = 1 nm and 1.54 

mT for x = 0.84 nm. This shows that the exchange coupling between the two layers modifies their PMA. 

However, the coupled samples do experience domain wall nucleation/annihilation during reversal 

(confirmed by FORC later in section III) and characterized by the more gradual transition towards saturation 

in Fig. 7-3(a).  This suggests static exchange coupling between the FI and FM stacks. From in-plane 

hysteresis loops in Fig. 7-3(b) for samples with x ≤ 1 nm, we see that the loop shapes are less square, and 

the remanent magnetizations are much lower compared to the out of plane loops in Fig. 7-3(a). Also, the 

FI/FM loops are more canted, and the resulting magnetization saturates at higher fields,  𝜇0𝐻∥ > 130 mT 

compared to the FI-only case where the magnetization saturates at 100 mT. This suggests an increase in 

hard axis anisotropy and PMA of the FI/FM stack compared to the FI-only stack due to the exchange 

coupling between FI and FM stacks. Perpendicular magnetic anisotropy of the FI-stack, control FM stack 

and the FI/FM heterostructure can be estimated from the hard axis anisotropy, 𝐻𝑘 obtained from the in-

plane hysteresis loops [27] (see supplementary of Ref. 27). Specifically, the effective anisotropy, 

𝐾𝑢,𝑒𝑓𝑓 = 𝐻𝑘𝑀𝑠,𝐹𝑀 2⁄  is a measurable quantity as the 𝐻𝑘 and 𝑀𝑠 are known from VSM. The PMA 

coefficient, 𝐾𝑢  can be estimated using the expression,  𝐾𝑢 = 𝐾𝑢,𝑒𝑓𝑓 + 
1

2
𝜇0𝑀𝑠

2. From Fig. 7-2(b), for x=1 

nm the PMA energy of the FM stack is estimated to be 244 ± 25 kJ/m3. Using Fig. 7-3(b), the PMA of FI-

only stack and FI/FM are estimated to be 7.8 ± 0.8 kJ/m3 and 10.74 ± 1.1 kJ/m3 respectively. Thus, the 

exchange coupling in FI/FM heterostructure results in a PMA that is in between the lower PMA of TmIG 

and the higher PMA of CoFeB (for x ≤ 1 nm).  

 



144 
 

Table 7-2. Magnetic properties of the FI-only stack and FI/FM heterostructures 

Layer sequence Saturation 

magnetization 

(kA/m) 

Easy axis  Coercive field 

(mT) 

along easy 

axis 

GGG/TmIG(40) 82± 1.6  Out-of-

plane 

0.22 

GGG/TmIG(40)/CoFeB(0.84)/W(0.4)/CoFeB(0.8)/MgO(1)/W(5) 91.5 ± 1.7 Out-of-

plane 

2.03 

GGG/TmIG(40)/CoFeB(1)/W(0.4)/CoFeB(0.8)/MgO(1)/W(5) 95 ± 1.4 Out-of-

plane 

1.81 

GGG/TmIG(40)/CoFeB(3)/W(0.4)/CoFeB(0.8)/MgO(1)/W(5) 143 ± 2.5 In-plane 9.60 

GGG/TmIG(40)/CoFeB(4)/W(0.4)/CoFeB(0.8)/MgO(1)/W(5) 169 ± 2.31 In-plane 3.35 

 

 

Figure 7-3 a. Out of plane and b. in-plane hysteresis loops of FI/FM heterostructure samples, 

GGG/TmIG(40)/CoFeB(x)/W(0.4)/CoFeB(0.8)/MgO(1)/W(5), with CoFeB thickness, x ≤ 1 nm. c. out of plane and d. in-plane 

hysteresis loops with CoFeB thickness x ≥ 3 nm. The out of plane and in-plane hysteresis loops of the pristine GGG/TmIG(40) 

sample are presented for comparison. 
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As we increase the CoFeB thickness, such as x ≥ 3nm, the out of plane loops become more canted and the 

CoFeB layer magnetization is now forced to the perpendicular direction in a reversible manner as an 

increasing portion of the CoFeB film (which is beyond the interlayer exchange length, estimated later using 

micromagnetic simulation) is not strongly coupled to the PMA TmIG and tends to be in-plane. Indeed, a 

large saturation field, 𝜇0𝐻⊥ > 1000 mT (see inset of Fig. 7-3(c)) is required to saturate the heterostructure 

along the perpendicular direction. Furthermore, the in-plane loops of the FI/FM become squarer, 

particularly for larger thickness, x = 4 nm CoFeB. Also, the coercive field of the FI/FM along in-plane 

direction increases to 3.35 mT and 9.60 mT compared to the control FM stacks with x = 4 nm and x = 3 nm. 

This suggests, in thick CoFeB heterostructure (x ≥ 3nm) the exchange interaction from perpendicular TmIG 

bottom layer is not strong enough to orient the entire CoFeB magnetization along perpendicular direction 

and exhibit PMA.   

Thus, investigation on the magnetometry loops of different FI/FM samples with varying CoFeB thickness 

suggests the samples are coupled and switched together, however, the strength of exchange interactions 

varies with CoFeB thickness.      

7.2. Interlayer exchange and magnetostatic coupling 

Polar magneto-optical Kerr microscopy (MOKE) is carried out to observe the domain pattern for the 

heterostructure sample during the switching process to investigate the extent of the coupling in the FI/FM 

heterostructures. The representative MOKE images of the samples are shown in Fig. 7-4 for external fields 

applied along the out-of-plane direction. The samples are first demagnetized, and a reference image is taken 

at 50 mT amplitude and 5 Hz ac applied field. All the subsequent images are then subtracted from the 

reference image for each of the samples. Then the samples are saturated by applying a positive 50 mT 

external field and the images are taken by reducing the fields from positive saturation. Clearly 

distinguishable and regularly spaced labyrinth domain patterns are observed for the TmIG sample (FI-only 

stack) when the applied field is reduced to -1mT.  Domains with black contrast are seen to be nucleated in 

Fig. 7-4, which expands further with the decreasing field and saturates the sample around -10 mT. To extract 

the domain wall periodicity, the radial FFT intensity profile of the images is measured as shown in Fig. 7-

5 where the peak location of the Gaussian FFT intensity denotes the most predominant domain wall 

periodicity and approximately the mean domain wall periodicity (as the distribution is almost symmetric, 

i.e. the distribution is almost Gaussian). The domain wall periodicity of the TmIG only sample is estimated 

to be 4.90 μm. For TmIG/CoFeB (x) with x=1 nm, significant domain wall nucleation is not observed up to 

-2 mT which suggests increased coercivity stemmed from strong interlayer exchange coupling and 

subsequent pinning of TmIG magnetization to the CoFeB magnetization. Around -3 mT, dendritic domain 

patterns with black contrast are observed, which nearly overtake the regions of the sample with white 
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domains. The black domains expand quickly and saturate the regions around -11 mT applied field similar 

to what we observe for the TmIG only sample. The periodicity of the domain wall reduces to 3.2 μm for 1 

nm CoFeB overlayer, which suggests increased resultant magnetic moment of the sample compared to 

TmIG sample. We note that the sample with x = 0.84 nm CoFeB behaves similarly to that of x = 1 nm 

CoFeB sample. 

 

Figure 7-4 Polar MOKE magnetometry for FI only stack and FI/FM samples where the CoFeB thickness is varied to x = 1 nm, 3 

nm and 4 nm. All the samples are first saturated to +50 mT and then the out of plane external fields are decreased. The snapshots 

are taken at fields of 0 mT, -1 mT, -3 mT, -5 mT and -13 mT.  Labyrinthine domains with regular periodicity are observed for FI 

only stack, GGG/TmIG (40). Labyrinthine domains with dendritic patterns are observed with CoFeB overlayers. The periodicity 

of the domain wall periodicity decreases with increased CoFeB overlayer thickness implying higher magnetostatic coupling.  

The periodicity of the dendritic domain decreases with the increase of the CoFeB layer thickness. For 

TmIG/CoFeB (x) with x = 4 nm, the domain wall starts to nucleate well before 0 mT suggesting strong 

magnetostatic interaction accompanied by large increase in the resulting magnetic moment of the 

heterostructure. At 0 mT, domain walls with multiple periodicities are observed as seen from the mostly 

flattened gaussian distribution with one barely distinguishable peak around 0.93 μm. Although the reversed 

black contrast domains are seen to nucleate early for the thicker samples (x ≥ 3nm), the domains expand 

gradually, and a large field is needed to saturate the film (around -25 mT not shown in the images). Contrary 

to the TmIG only and heterostructure samples with thin CoFeB, in thicker CoFeB heterostructures tiny 

sized domains with white contrast can be still seen in the images at -13 mT, which suggests dominant 

magnetostatic coupling in addition to the exchange coupling. As seen in the magnetometry loop and in the 
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FORC analysis later, once opposite domains are nucleated in the TmIG, it is significantly hard to saturate 

those domains due to in-plane magnetization component of the CoFeB which facilitates flux closure of anti-

parallel TmIG domains, Fig. 7-7(c).  

 

Figure 7-5 a. Domain wall pattern for TmIG, TmIG/CoFeB heterostructures with 1 nm and 4 nm variable CoFeB layer thickness 

at the corresponding fields. b. Radial FFT intensity to determine the periodicity of the domain wall for the respective samples.  

The domain wall periodicity values serve as an important indicator to the competition between exchange 

interaction and magnetostatic coupling. Large exchange prefers a smaller number of domain walls due to 

the increased energy penalty for creating the domain walls. In contrast, increased dipolar coupling favors a 

greater number of domain walls and oppositely oriented lateral regions to minimize the dipolar energy. As 

a result, with increasing dipolar contribution, the domain wall periodicity decreases. The stripe domain 

width (𝐿𝑠), within the limit when the  film thickness is much smaller than the domain period, can be found 

from the analytical model reported by Kaplan and Gehring [28], 𝐿𝑠 = 𝑡𝑒(
𝜋𝑎

2
+1)𝑒

𝜋𝜎𝑤

𝜇0𝑀𝑠
2𝑡, where t is the film 

thickness, 𝑀𝑠 is the saturation magnetization and 𝜎𝑤 is the domain wall energy, a is the model dependent 

parameter with a value of -0.666. As the film thickness and saturation magnetization increases the model 

predicts lower value of domain wall periodicity. In our studied samples, the domain wall periodicity is the 

lowest in the heterostructure with thick CoFeB, x = 4 nm.   For x=1 nm and 0.84 nm samples, the resulting 

saturation magnetization is smaller and the domain wall periodicity is higher than the samples with x=3 nm 

and x = 4 nm. 
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Thus, MOKE microscopy images of domain wall patterns show inserting a CoFeB layer alters the domain 

wall periodicity and geometry of the heterostructures which suggests coupling of TmIG magnetization.  

Next, we carried out first order reversal curves (FORCs) experiments [29-34] to investigate further the 

interlayer exchange coupling that exists between the FI and FM layers. The FORC analysis is performed in 

collaboration with our collaborator in Georgetown University. VSM is used to measure the FORCs in the 

following manner. After driving the sample to positive saturation, the magnetic field is adjusted to a reversal 

field 𝐻𝑅. The magnetization is then measured as the magnetic field, H is gradually increased from 𝐻𝑅 until 

the sample returns to positive saturation, forming a FORC. A series of FORCs is obtained by changing the 

𝐻𝑅 values in steps, as illustrated in Fig. 7-6(f). The FORC distribution is defined by a mixed second-order 

derivative: 𝜎(𝐻𝑅 , 𝐻) =
𝜕𝑀

2

𝜕𝐻𝑅
𝜕𝐻

 , which effectively removes the purely reversible components of 

magnetization. Attaining reversible features from FORC analysis requires special attention as the reversible 

feature first appear around H=𝐻𝑅. Extended FORC method is used to obtain the reversible feature, where 

the data is extended by assuming M (H < 𝐻𝑅) ≡ M (𝐻𝑅). Thus, any nonzero value of 𝜎 in the H-𝐻𝑅 plane 

in the range H< 𝐻𝑅  indicates irreversible switching processes, such as domain nucleation and annihilation 

and the reversible process at H≈ 𝐻𝑅. 

Fig. 7-6(c) shows the FORC distribution 𝜎 corresponding to the M-H loops in Fig. 7-6(f) for the 

TmIG/CoFeB(x =1nm)/W/CoFeB/MgO/W sample subjected to out-of-plane external fields. Three line-

scans corresponding to the reference circles in Fig. 7-6(f) (indicating different reversal fields, 𝐻𝑅) are 

marked in Fig. 7-6(c) with dashed lines. For 𝜇0𝐻𝑅 < 0 mT, the sample remains mostly saturated, thus, 

appreciable FORC features are not observed. As 𝜇0𝐻𝑅 is decreased, -3.2 mT < 𝜇0𝐻𝑅 < 0 mT, the 

magnetization starts to switch by the nucleation and propagation of reversed domains. A horizontal FORC 

feature appears in Fig. 7-6(c) as denoted by is by region 1, indicates the propagation of reverse domains 

followed by steady domain evolution and then rapid growth of positively oriented domains. With further 

decrease in reversal field, -10.4 mT < 𝜇0𝐻𝑅 < -3.2 mT a vertical FORC feature is observed denoted by 

region 2. In this interval, the magnetization evolution remains steady for external field,  𝜇0𝐻𝑅 < 𝜇0H < 0.8 

mT, followed by rapid growth of positively oriented domains around 0.8 mT < 𝜇0H < 2.7 mT. Thus, the 

vertical feature in FORC represents annihilation of reversed domain after large portions of the samples 

become negatively saturated.  For 𝜇0𝐻𝑅 < -11 mT, the sample remains negatively saturated and the 

successive FORC scans does not show any appreciable change in the magnetization reversal process.  

The FORCs distribution for out of plane fields of FI-only (TmIG-only) sample, a representative control FM 

stack with x=1 nm and FI/FM with x= 1 nm, 3 nm and 4 nm are presented in Fig. 7-6(a)-(e). The FORC 

diagrams of both the FI-only and FI/FM heterostructure samples reveal two prominent features: a horizontal 
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ridge parallel to the H axis and a vertical ridge parallel to the 𝐻𝑅 axis, as previously described and typically 

observed in films with PMA [30,35-37]. There is no clear splitting in the FORC ridges of the heterostructure 

samples in Fig. 7-6(c)-(e), that suggests there are no strongly separated modes of reversals for the individual 

FI and FM layers [38]. Thus, FI and FM layers are coupled and switched together although part of the 

thicker CoFeB layers switch at higher fields. However, the strength of exchange coupling and magnetostatic 

interaction also varies with the thickness of the CoFeB layer. We explain this as follows.  

 

 

Figure 7-6 FORC distributions for samples with a. FI-only b. control FM stack with x= 1 nm CoFeB and FI/FM heterostructures 

with variable CoFeB layer thickness of c. x= 1 nm d. x= 3 nm e. x= 4 nm for out of plane external fields, 𝐻⊥ . f. Family of FORC 

curves determined for different reversal fields, 𝐻𝑅  for FI/FM sample with x= 1 nm CoFeB.  

For the pristine TmIG, horizontal ridge centers around 𝜇0𝐻𝑅= -0.2 mT and the vertical ridge around, 𝜇0H 

=0.2 mT as illustrated in Fig. 7-6(a) (see the horizontal and vertical dashed magenta lines). In contrast, the 

control FM stack with x= 1 nm, does not exhibit any horizontal or vertical FORC features. Rather the 

features are concentrated along the H=𝐻𝑅 line, indicating the magnetization switching is process 

predominantly reversable, Fig. 7-6(b).  

For FI/FM with x=1 nm the horizontal FORC ridge shifts to 𝜇0𝐻𝑅= -1.2 mT and the vertical ridge shifts to 

𝜇0H= 1.8 mT as can be seen in Fig. 7-6(c). The shift in FORC ridges compared to pristine TmIG sample 

indicates that large fields are required to either nucleate the reversed domains or coercively annihilate the 

domains of the heterostructures. This suggests pinning of the TmIG magnetization from the thin CoFeB 
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layer due to interlayer exchange coupling. Furthermore, no reversible FORC features around H=𝐻𝑅 line is 

observed indicating the CoFeB and TmIG magnetizations are coupled and switched together. Similar FORC 

features are also observed for FI/FM samples with x=0.84 nm (not shown) suggesting strong interlayer 

exchange coupling in samples with x ≤ 1 nm.  

In contrast, when the CoFeB thickness is increased to x=4 nm, the vertical ridge shifts to negative 𝜇0H = -

1.8 mT and the horizontal FORC ridge shifts to positive values of 𝜇0𝐻𝑅= 2 mT, Fig. 7-6(e). This indicates 

that the nucleation and annihilation field occur sooner, as the in-plane anisotropy of the thick CoFeB layer 

promotes out-of-plane switching of FI/FM heterostructure at lower fields. This is consistent with increased 

dipolar interactions, which will promote early (lower field) domain nucleation [39] during reversal. In the 

PMA TmIG layer, lateral domains will have anti-parallel alignment due to uniaxial anisotropy, thus leading 

to strong dipolar fields. A portion of the thicker CoFeB layer that is beyond the interlayer exchange coupling 

length (~ 1nm for CoFeB obtained from micromagnetic simulation in section 7.4) orients along the in-plane 

direction. Thus, the magnetic flux lines emanating from the oppositely oriented lateral domains are followed 

by the in-plane oriented CoFeB magnetization to form closed flux paths (see Fig. 7-7(c)) and minimizes 

the magnetostatic energy. In addition, the horizontal FORC ridge elongates significantly up to 𝜇0H = 20 

mT as seen in Fig. 7-6(e) compared to TmIG or heterostructures with thin CoFeB where the horizontal 

FORC ridge extends up to 6 mT. This suggests in heterostructures with thick CoFeB once reversed domains 

are formed in TmIG, they become magneto-statically coupled with in-plane CoFeB magnetization. As a 

result, large fields are required to bring the reversed domains to positive saturation.  

The heterostructure with x=3 nm behaves similarly to the heterostructure with x= 4 nm CoFeB excepts the 

horizontal FORC features shifted along negative value of 𝜇0𝐻𝑅= -0.2 mT and the vertical ridge along the 

positive value 𝜇0H= 0.6 mT, Fig. 7-6(d). Although magnetostatic interaction is the dominating interaction, 

in the x = 3 nm heterostructure sample, more of the CoFeB layer is exchange-coupled to TmIG layer 

compared to x=4 nm sample. Additional features are observed in between the dominant horizontal and 

vertical FORC ridges for x ≥ 3 nm CoFeB heterostructures in Fig. 7-6(d)-(e). To confirm if those features 

are coming from any separate modes of reversal, we also performed FORC distribution for in-plane fields 

for x= 3 nm heterostructures as shown in Fig. 7-7(a)-(b). One single peak of the FORC distribution in Fig. 

7-7(a) is observed suggesting the FM and FI layers are switching together for in-plane fields as well. 

Thus, the FORC study on the heterostructure samples confirms that the individual FI and FM layers are 

coupled and switched together. The interaction is dominated by exchange coupling for sample with x ≤ 1 

nm CoFeB, whereas magnetostatic coupling dominates in samples with x ≥ 3 nm CoFeB.   
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Figure 7-7 a. FORC distributions and b. family of FORC curves determined for different reversal fields for sample 

TmIG/CoFeB(3nm) with in-plane field direction. c. Schematic showing flux closure in heterostructure with CoFeB thickness, x=3, 

4 nm.     

7.3 Micromagnetic simulation 

Micromagnetic simulations are carried out using Mumax3 [40] to investigate the strength of interlayer 

exchange interaction for varying CoFeB overlayer thickness in the FI/FM heterostructures. We choose 

micromagnetic simulation over the macroscopic Stoner-Wolfarth model due to its ability to account for 

non-uniform magnetization, domain structures, and complex magnetic interactions in magnetic multilayers. 

Excellent qualitative match is found to the hysteresis loops from VSM, and the domain reversal obtained 

from MOKE experiments. A representative thin and thick CoFeB overlayer sample with x=4 nm and 1 nm 

are studied considering the computational complexity of simulating all the samples. The simulation 

geometry is assumed to be 2.048 μm × 2.048 μm × (40+x) nm with finite different discrete cells of 4 × 4 

× 1 nm3 and 8 × 8 × 1 nm3 cells for x= 4 nm and 1 nm respectively. The small lateral dimensions were 

needed to ensure the micromagnetic simulations are computationally feasible. Furthermore, periodic 

boundary conditions are used to adequately capture the magnetostatic energy of the larger film geometry. 

The exchange stiffness of TmIG is considered to be  𝐴𝐹𝐼= 2 pJ/m and the uniaxial perpendicular anisotropy 

is  𝐾𝑢,𝐹𝐼=7 kJ/m3 consistent with the values found in the literatures [41]. A 5% variation in 𝐾𝑢,𝐹𝐼 across 

grains is considered with an average grain size of ~ 400 nm. The saturation magnetization 𝑀𝑠,𝐹𝐼 is 80 kA/m 

measured from the VSM. For the FM stack, CoFeB(x)/W (0.4 nm)/CoFeB(0.8 nm)/MgO(1 nm)/W(5 nm) 

both of the CoFeB layers are considered with saturation magnetization of 𝑀𝑠,𝐹𝑀 of 970 KA/m and 550 

kA/m for x= 4 nm and 1 nm sample respectively. For x= 1 nm sample, the perpendicular anisotropy of 

MgO/CoFeB is considered to be 𝐾𝑢=250 kJ/m3. The exchange stiffness of the CoFeB is considered to be 

𝐴𝐹𝐼= 14 pJ/m [42-43]. The exchange stiffness and saturation magnetization are kept the same for the other 
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CoFeB layer. The exchange interaction between the CoFeB layers separated by a very thin 0.4 nm W spacer 

is strongly ferromagnetic as seen from the VSM loops, thus assumed to be only reduced by 20%. The lateral 

cell size we considered is within the exchange length of TmIG,  √𝐴𝐹𝐼 0.5⁄ 𝜇0𝑀𝑠,𝐹𝐼
2 ~ 40 nm and CoFeB,  

√𝐴𝐹𝑀 0.5⁄ 𝜇0𝑀𝑠,𝐹𝑀
2~ 4.9 nm and 8.6 nm for x=4 nm and x=1 nm CoFeB respectively. The interlayer 

exchange coupling (IEC) between TmIG/CoFeB is varied and a qualitative match is found with IEC=1.34 

mJ/m2 and 0.25 mJ/m2 for x=4 nm and x=1 nm sample respectively. The results are presented in Fig. 7-8 

which shows the out of plane simulated hysteresis curves for total FM/FI heterostructures and the individual 

FM and FI layers. For x= 4 nm sample, the sample saturates at  𝜇0𝐻⊥ > 1000 mT (not shown here) and the 

domains starts to nucleate around 5 mT (see green circle in the top panel in Fig. 7-8), qualitatively similar 

to what we obtained from VSM measurements where the saturation filed is beyond 1000 mT and the domain 

nucleation starts around  4 mT (when the field is decreased from positive saturation). The pinched 

magnetometry loop observed in VSM is well predicted in micromagnetic simulation. Increasing the IEC 

from 1.34 mJ/m2 results in much slower magnetization evolution towards saturation, while decreasing the 

IEC results in faster evolution, however the nucleation field becomes higher than 5 mT.  

For x= 1 nm sample, with IEC= 0.25 mJ/m2 the out of plane coercivity is predicted to be ≈ 2.3 mT which 

is comparable to the coercivity measured from VSM, 1.82 mT. Decreasing the IEC from 0.25 mJ/m2   

increases the coercive field from 2.3 mT. Although increasing the IEC decreases the coercive field, in these 

scenarios, when the magnetization reverses, it progresses much slowly towards saturation compared to what 

we observed in VSM loop in Fig. 7-3(a).  

Micromagnetic snapshots with magnetization orientation in the finite difference cells for the 2.048 um × 

2.048 um regions are presented for the total heterostructure, the top CoFeB layer and the bottom TmIG 

layers are also presented in Fig. 7-8. The black and white contrast in the snapshots represents the 

magnetization directions along the negative and positive out of plane directions respectively and the 

different colors show the magnetization orientations along in-plane directions. For x=4 nm samples, the top 

layer CoFeB magnetization has smaller projections in the out of plane direction than the bottom TmIG layer 

magnetizations as seen from the hysteresis loops in the top panels of Fig. 7-8. This is due to the fact that, 

with the determined value of IEC=1.34 mJ/m2, a small portion of the CoFeB that is within the exchange 

length is coupled with perpendicular TmIG bottom layer and large portions are oriented along in-plane to 

support flux closure as can be seen from the cross-sectional view of the micromagnetic spin configuration 

near the domain walls in Fig. 7-9. Thus, magnetostatic coupling dominates over exchange coupling for the 

heterostructure with thick CoFeB. Also, changes in magnetization values along the depths of the TmIG are 

observed due to the fact that interlayer exchange coupling is short range interaction, and the coupling 
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strength diminishes significantly outside the exchange length. The TmIG portion that is in direct contact 

with CoFeB aligns closely with the in-plane CoFeB magnetization while the TmIG magnetization that is 

further away from the CoFeB and in direct contact with substrate predominantly aligns to perpendicular to  

the sample plane (see Fig. 7-9(a) and different color contrasts between the two micromagnetic snapshots of 

bottom TmIG layer at different depth specifically that are in contact with top CoFeB layer and in contact 

with substrate GGG in Fig. 7-8). Moreover, the nucleation and annihilation of the domains and 

corresponding patterns during the switching process found from micromagnetic simulations are 

qualitatively the same as seen in MOKE microscopy. Weak imprinting of TmIG domains on thick CoFeB 

overlayer is predicted in micromagnetic simulation, which is similar to what we observed from MOKE 

images where the domains are seen to possess less sharp intensity contrast (bottom panels in Fig. 7-4).  

Furthermore, dendritic domains with maximum size of ~ 0.39 um are observed at 0 mT applied field 

following positive saturation, which is close to what we found from domain reversal images from MOKE 

experiments (0.46 um, half of the domain wall periodicity).  

 

Figure 7-8 Hysteresis loops along the out of plane directions derived from micromagnetic simulations for the total heterostructure, 

top layer CoFeB and bottom layer TmIG are shown for samples with x=4 nm and x=1 nm. The micromagnetic snapshots for both 

of the samples for total magnetizations, top CoFeB layer and bottom TmIG layers magnetizations are shown. For the bottom TmIG 

layer, two snapshots taken at different depths of TmIG (contact to FM denotes the TmIG layer that is directly in contact with CoFeB 

and contact to sub. shows the TmIG layer that is in direct contact with the GGG substrate). 
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In contrast to the thick CoFeB, heterostructure with thin CoFeB sample (x=1 nm) shows distinctive 

difference where the domains in TmIG are clearly seen to be strongly imprinted on the CoFeB layer as seen 

from Fig. 7-8. The CoFeB top layer magnetization exhibits large out of plane projections. With the 

determined interlayer exchange coupling, IEC= 0.25 mJ/m2, it mostly couples the CoFeB layer.  Also, the 

out of plane projections of TmIG magnetization and total heterostructure magnetization are larger than the 

thick CoFeB sample and qualitatively similar to what we have seen in VSM measurements as shown in Fig. 

7-3(a). Depth dependent magnetization in the TmIG bottom layer is also simulated in the sample as the 

exchange length cannot encompass the whole extent of the 40 nm thick TmIG layer (see Fig. 7-9b). 

Qualitative matches between the domain wall patterns during the switching process are observed. Domain 

patterns at -3mT applied field following positive field saturation exhibits dendritic domains with maximum 

width of ~ 1.76 um which is qualitatively same as the width of the domain wall observed in MOKE images. 

 

Figure 7-9 Micromagnetic spin orientation in FI/FM heterostructures with a. x=4 nm and b. x= 1 nm along the cross-section of 

domain walls for out of plane external field, 𝜇0𝐻⊥=0 mT and 𝜇0𝐻⊥ =-3 mT respectively. The number of spins is down sampled 

from actual micromagnetic simulations for better visibility.  

7.4 Summary and conclusion 

Magnetometry loops from VSM, mean field interaction study using FORCs and micromagnetic simulation 

indicate coupling in the studied FI/FM heterostructure. The coupling is mediated by interlayer exchange 

and magnetostatic interactions with their relative strength determined by the thickness of the CoFeB 

overlayer. The resulting trend for different thickness CoFeB can be explained as follows. The exchange 

interaction prefers parallel alignments of the respective magnetization in the FI and FM layers. The 

exchange energy per unit area can be expressed as, 𝐼𝐸𝐶. (𝑚⃗⃗ 1. 𝑚⃗⃗ 2), where the IEC is the interlayer exchange 

energy coefficient and  𝑚⃗⃗ 1and  𝑚⃗⃗ 2 are the reduced average magnetization of the FI and FM layer 
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respectively. For TmIG/CoFeB (1 nm) sample, the 𝐼𝐸𝐶 is determined to be in the range of 0.25 mJ/m2 from 

micromagnetic simulation, which shows a qualitative match in the hysteresis loop to that measured in VSM 

by considering practical material parameters. With IEC=0.25 mJ/m2, the exchange length for the CoFeB 

layer is 𝑙𝑒𝑥,𝐶𝑜𝐹𝑒𝐵~ 0.88 nm (𝑙𝑒𝑥~√
𝐼𝐸𝐶.  𝑐𝑧

1

2
𝜇0𝑀𝑠,𝐹𝑀

2
 , where, 𝑐𝑧 is the cell size along film normal and 𝑀𝑠,𝐹𝑀 is the 

saturation magnetization of the FM layer). This suggests that in the TmIG/CoFeB (1 nm) sample, most of 

the CoFeB layer is within the exchange length and coupled strongly with perpendicular TmIG. Extending 

the analysis for the thicker CoFeB sample with x=4 nm, with IEC=1.34 mJ/m2, the exchange length for the 

CoFeB layer is determined to be 𝑙𝑒𝑥,𝐶𝑜𝐹𝑒𝐵~ 1.1 nm. This suggests that a large portion of the CoFeB is 

beyond the exchange length hence is not perpendicularly coupled to the TmIG bottom layer.  Thus, the 

magnetizations in the CoFeB layer mostly align along in-plane and the resulting in-plane hysteresis shows 

square loop as seen in Fig. 7-3(d). Furthermore, the interaction between the FM and FI layers is now 

dominated by magnetostatic interaction where the in-plane CoFeB supports flux closure paths during the 

domain formation in the TmIG layer (Fig. 7-9(a)). Although the exchange coefficient determined from 

micromagnetic simulations is higher for heterostructures with thick CoFeB compared to the thin one, the 

interlayer exchange lengths in CoFeB are found to be similar for both samples. This is due to the fact that 

the saturation magnetization is higher in heterostructure samples with a thick CoFeB layer.   

The interlayer exchange coupling between a ferrimagnetic insulator with PMA, GGG/TmIG (40) and a 

ferromagnetic compound CoFeB(x)/W (0.4)/CoFeB (0.8)/MgO (1)/W (5) is studied by varying the 

thickness of the variable CoFeB layer. The relative strength of the competing interactions such as the 

interlayer exchange and magnetostatic coupling is found to be strongly dependent on the thickness of the 

CoFeB layer. When deposited on silicon, the ferromagnetic compound with CoFeB thickness x≤ 1 nm 

exhibits PMA, however, the PMA is weak and the magnetization switching occurred predominantly in 

reversible manner as seen from the FORC features. When the same ferromagnetic compound with x≤ 1 nm 

CoFeB is deposited on GGG/TmIG, the PMA of the heterostructure increased compared to pristine TmIG. 

Both of the CoFeB and TmIG magnetizations are observed to switch together with domain nucleation and 

propagation events as confirmed from the dominant FORC features. Thus, strong exchange coupling 

contributes to the modified PMA of the heterostructure samples, compared to pristine TmIG and control 

CoFeB sample with thickness x ≤ 1 nm. When ferromagnetic compound with x ≥ 3 nm thick CoFeB are 

deposited on PMA TmIG, magnetostatic coupling is observed to dominates over exchange coupling as 

confirmed from MOKE domain reversal images and FORC analysis which suggests increased saturation 

magnetization weakens the exchange interaction and facilitate flux closure paths through the thick CoFeB 

for minimizing magnetostatic energy. The findings of our study provide important insights towards 

realizing fast and efficient spintronic memory device controlled by voltage-induced strain [44-50], voltage-
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controlled magnetic anisotropy (VCMA) [51-53], current [54-55], and combination of voltage and current 

[56-58] and consists of a ferrimagnetic insulator. 
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Chapter 8: Dynamic Coupling in a CoFeB/Perpendicular Ferrimagnetic Thulium Iron 

Garnet Heterostructure 

 

In addition to the static coupling observed in the FI/FM heterostructure GGG/TmIG(40 

nm)/CoFeB(x)/W(0.4 nm)/CoFeB(0.8 nm)/MgO(1 nm)/W(5 nm) discussed in Chapter 7, we explored 

dynamic coupling arising from the exchange of non-equilibrium spin currents when the magnetic 

multilayers in these heterostructures are excited with broadband ferromagnetic resonance. When either of 

the ferrimagnetic (FI) layer (GGG/TmIG(40 nm)) or ferromagnetic (FM) layer (CoFeB(x)/W(0.4 

nm)/CoFeB(0.8 nm)/MgO(1 nm)/W(5 nm)) is driven into resonance, the precessing magnetization 

generates spin currents that are absorbed by the non-resonating layer, dissipating spin momentum. This 

process induces a relaxation torque on the resonating layer, thereby altering its intrinsic damping properties. 

Consequently, dynamic coupling serves as a non-local medium for modulating magnetic properties such as 

damping. 

 

8.1 Sample preparation: 

The studied samples are the same as studied in chapter 7.  

 

8.2 Results and discussion: 

The magnetization dynamics of a uniform magnetizations, 𝒎𝒊  can be expressed using the LLG equation 

as follows: 

ⅆ𝒎𝒊

ⅆ𝑡
= −𝛾𝒎𝒊 × 𝑯𝒆𝒇𝒇 + 𝛼0𝛾𝒎𝒊 ×

ⅆ𝒎𝒊

ⅆ𝑡
 

Where, the first term represents the torque induced by the effective field, 𝑯𝒆𝒇𝒇 = 
𝜕𝑓

𝜕𝑴
, where the free energy 

𝑓 comprises of Zeeman energy, magnetostatic energy, magnetic anisotropy and exchange interaction. The 

second term is the Gilbert damping term which governs the relaxation to the equilibrium.  

In heterostructures samples consisting magnetic multilayers, if magnetizations in any one of the layers 

undergoes resonant precession, it pumps spin current to the other magnetic layer which in in direct contact 

with it. The pumped spin current can be expressed as follows [1-3]:  

𝑰𝒊
𝒑𝒖𝒎𝒑

=
ℏ

4𝜋
 (𝑔𝑅𝑒

↑↓ 𝒎𝒊 ×
ⅆ𝒎𝒊

ⅆ𝑡
+ 𝑔𝐼𝑚

↑↓ 𝒎𝒊) 
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Where 𝑔𝑅𝑒
↑↓  and 𝑔𝐼𝑚

↑↓  are the real and imaginary part of the spin mixing conductance. Spin mixing 

conductance dictates the transport of spins that are non-colinear to the magnetization direction. This is also 

a measure of spin transfer across any interface such as FI/FM or FM/NM (NM is a non-magnetic metal). 

For most materials the imaginary part of the spin mixing conductance is small [1] and hence neglected in 

the ensuing discussion. There could be spin backflow due to the spin accumulation at the interface or due 

to the spin pumping from the other magnetic layers into the layer that is in consideration. The spin backflow 

reduces the efficiency of spin transfer across an interface.  Thus, the net spin currents in the FI/FM can be 

expressed as, 

𝑰𝒔𝒊 = 𝑰𝒊
𝒑𝒖𝒎𝒑

+ 𝑰𝒊
𝒃𝒂𝒄𝒌 

When both of the magnetic layers’ magnetizations undergo precession, both layers pump spins towards 

each other. In this scenario, the net spin current in any one of the magnetic layers can be expressed as [4]:  

𝑰𝒔𝒊 =
ℏ

4𝜋
 

𝑔𝑖
↑↓𝑔𝑗

↑↓

𝑔𝑖
↑↓ + 𝑔𝑗

↑↓
(𝒎𝒊 ×

ⅆ𝒎𝒊

ⅆ𝑡
− 𝒎𝒋 ×

ⅆ𝒎𝒋

ⅆ𝑡
) 

In FI/FM heterostructure, 𝒎𝒊 and 𝒎𝒋 are the FI and FM magnetizations and 𝑔𝑖
↑↓ and 𝑔𝑗

↑↓ are the real valued 

spin mixing conductance for FI/FM and FM/FI interfaces respectively. 

The LLG equation of magnetization, 𝒎𝒊 considering the magnetization precession in both layers can be 

expressed as: 

ⅆ𝒎𝒊

ⅆ𝑡
= −𝛾𝒎𝒊 × 𝑯𝒆𝒇𝒇 + 𝛼0𝛾𝒎𝒊 ×

ⅆ𝒎𝒊

ⅆ𝑡
+

𝛾

𝑀𝑠𝑖𝑉

ℏ

4𝜋
 

𝑔𝑖
↑↓𝑔𝑗

↑↓

𝑔𝑖
↑↓ + 𝑔𝑗

↑↓
(𝒎𝒊 ×

ⅆ𝒎𝒊

ⅆ𝑡
− 𝒎𝒋 ×

ⅆ𝒎𝒋

ⅆ𝑡
) 

Where, 𝑀𝑠𝑖 and V are the saturation magnetization and volume of magnetic layer, i,  𝛼0 is the intrinsic 

damping. Due to the spin pumping, the intrinsic damping, 𝛼0 will be modified. Specifically, the effective 

damping of layer, i will be increased to 𝛼𝑖 = 𝛼0+𝛼𝑖
′, where the damping enhancement can be expressed as 

the following:   

𝛼𝑖
′ =

𝛾

𝑀𝑠𝑖𝑉

ℏ

4𝜋
 

𝑔𝑖
↑↓𝑔𝑗

↑↓

𝑔𝑖
↑↓ + 𝑔𝑗

↑↓
 

We see that the damping enhancement of a layer is inversely proportional to its saturation magnetization 

and volume.  

To investigate the extent of dynamic coupling of the FI/FM heterostructure shown in Fig. 8-1a, we 

performed a broadband ferromagnetic resonance (FMR) study. The magnetization is forced to resonate by 
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applying microwave power. The FMR is measured by measuring the absorption of microwave power as a 

function of the applied filed, H by applying a small microwave field of frequency, 𝑓 perpendicular to H. 

To account for the different anisotropies of the FI and FM layer, FMR measurements are also carried out 

by changing the applied field angle, 𝜃  with respect to the sample plane as indicated in the Fig. 8-1b. The 

absorption due to the imaginary part of the susceptibility 𝜒′′ of the rf magnetization component is fitted 

with Lorentzian to calculate the inflection point which is resonant frequency and the full width half 

maximum which is linewidth. Fig. 8-1c shows experimentally measured absorption and corresponding 

fitting for different field angles for FI/FM samples with x= 1 nm CoFeB. In the FMR measurements, we 

observed two peaks due to the TmIG and CoFeB layers magnetizations which are identified and fitted with 

two Lorentzian, after background subtraction from the raw FMR data. Initially at small field angle, 𝜃, the 

CoFeB mode are observed to the left of the TmIG mode. As we increase the angle, the two modes almost 

merges at 𝜃=60°. With further increase in the field angle the CoFeB modes shifts to the right of TmIG 

mode.   

 

Figure 8-1 a. FI/FM heterostructure, GGG/TmIG(40)/CoFeB(x)/W(0.4)/CoFeB(0.0)/MgO(1)/W(5). All the numbers in 

parenthesis are in nanometers. b. The schematic of the FI/FM stack under the application of microwave power, the applied field, 

H and the angle of the field, 𝜃 are indicated in the figure. c.The FMR absorption data and the corresponding fitting with two 

Lorentzian for TmIG and CoFeB modes for FI/FM heterostructure with x= 1 nm CoFeB. The applied field angle for the FMR 

measurements is shown. 

To investigate damping enhancement, we performed FMR measurements on pristine FI sample, 

GGG/TmIG (40 nm) and FM/FI heterostructure samples with variable CoFeB layer thickness of x= 0.84 

nm, 1 nm and 3 nm. The external field, H is applied perpendicular to the sample plane by keeping the field 

angle at constant 𝜃=90°. The resonance frequency, 𝐻𝑟𝑒𝑠 is fitted by the Kittel equation for perpendicular 

geometry to extract the effective magnetization, 𝑀𝑒𝑓𝑓  and Lande g-factor [5]: 
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𝐻𝑟𝑒𝑠 =
2𝜋𝑓

|𝛾|𝜇0
+ 𝑀𝑒𝑓𝑓 

Where, f is the excitation frequence and 𝛾 =
𝑔𝜇𝐵

ℏ
,  𝜇𝐵 is the Bohr magnetron and ℏ is the reduced Planck 

constant. 𝑀𝑒𝑓𝑓 can be further expressed as [6], 

𝑀𝑒𝑓𝑓 = 𝑀𝑠 −
2 (𝐾𝑢 −

1
2
𝜇0𝑀𝑠

2)

𝜇0𝑀𝑠
 

𝑀𝑠 is the saturation magnetization and 𝐾𝑢 is the perpendicular anisotropy of the sample. 

The damping, 𝛼 and inhomogeneous full width half maximum linewidth, ∆𝐻0 values are obtained by fitting 

the linewidths, ∆𝐻 using the following equation [7,8]: 

∆𝐻 =
4𝜋𝛼𝑓

|𝛾|𝜇0
+ ∆𝐻0 

Where ∆𝐻 is the experimentally measured linewidths determined by fitting the absorption due to the 

complex susceptibility as explained above.  

Fig. 8-2 shows the experimentally extracted linewidths, ∆𝐻 of the TmIG mode observed in the pristine 

TmIG and the heterostructure samples. The corresponding line fittings are shown where the slopes of the 

lines give the damping coefficients. The intercepts of the fitted line in the linewidth axis represents 

inhomogeneous linewidth broadening,  ∆𝐻0. The damping coefficient of pristine TmIG sample is estimated 

to be 𝛼=0.0147. After inserting CoFeB layers, the damping of the TmIG mode enhances. The enhancement 

is significant for heterostructure samples with thick CoFeB, x= 3 nm, where the damping is increased to 

𝛼=0.0226. The heterostructure with thin CoFeB such as x=0.84 nm and x= 1 nm also show damping 

enhancement; however, the increase is smaller (𝛼=0.0173). We explain this in the following. When the 

TmIG magnetizations are resonantly excited, spins are pumped into the adjacent CoFeB layer. The spin 

coherence length, 𝜆𝑠𝑐 in transition metal (such as Fe, Co, Ni) is a few Angstroms. Thus, most of the pumped 

spins out of the TmIG are absorbed in thicker CoFeB (such as x= 3 nm) which acts as spin sink. However, 

in thin CoFeB sample (x<= 1 nm), the pumped spins form TmIG are not entirely absorbed in the CoFeB 

layer. Thus, spin accumulation may happen in the TmIG/CoFeB interface which results in backflow of spin 

currents. As a result, the net spin current, 𝑰𝒔 reduces which decreases the enhancement of damping. This is 

analogous to the case found in ferromagnetic and non-magnetic (NM) multilayers (FM/NM), where the 

spin accumulation can be quantified as the backflow factor [9], 
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𝛽 =
1

𝑔 
↑↓√

4𝜖
3 tanh (

𝑡
𝜆𝑠

)

 

Where, 𝜖 and 𝜆𝑠 represents spin-flip scattering probability and spin diffusion length [10] in NM and t is the 

thickness of NM. Considering backflow, the effective spin mixing conductance is as follows [9,11]: 

1

𝑔𝑒𝑓𝑓
↑↓

=
1

𝑔 
↑↓

+ 𝛽 

As the thickness, t decreases the backflow factor 𝛽 increases, which decreases the effective spin mixing 

conductance. Similar to the FM/NM multilayer, in FI/FM multilayer as the FM layer thickness decreases, 

the spin backflow increases which decreases the net spin current and subsequently the effective spin mixing 

conductance, thus resulting in a smaller enhancement in the damping coefficients. 

 

 

Figure 8-2 The FMR linewidths of the TmIG modes for pristine TmIG sample and the heterostructure samples with different 

thickness CoFeB are plotted as a function of the rf field frequencies. The corresponding line fits are shown where the slopes 

indicate the values of the damping coefficients. Damping enhancement of the TmIG modes in heterostructures compared to the 

pristine TmIG sample are evident. The enhancement is highest for samples with x= 3 nm CoFeB. 
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Interesting phenomena due to this dynamic coupling are observed when both of the FI and FM layers in the 

heterostructure are resonantly excited by tuning the angle of the external fields. Due to different anisotropy 

of the FI and FM, when the field angle is swept, the resonant fields match at some specific field angle. 

Interestingly, the damping enhancement vanishes when equal resonance conditions are satisfied. Referring 

to the previous LLG equation, when one of the magnetic layers become resonant while the other is not, the 

change in magnetization in the non-resonating layer can be extremely small, 
𝑑𝒎𝒋

𝑑𝑡
 ≈ 0. This case is shown 

in Fig. 8-3a-b. In this scenario, the damping enhancement of the resonating layer is the highest. However, 

when both the magnetic layers are resonating spins are pumped into each other as shown in Fig. 8-3c. In 

this scenario, the damping of both resonating layers reaches close to their bulk damping values.      

 

 

Figure 8-3 Schematics of conditions where a. FM layer magnetization is resonantly excited b. FI layer magnetization is 

resonantly excited and c. both of the FM and FI layers’ magnetizations are resonantly excited. 

This scenario is tested by sweeping the field angles from  𝜃=0° to 𝜃=90° and measuring the FMR spectra 

for FI/FM heterostructure sample with x= 3 nm and 1 nm CoFeB. For x= 3 nm sample, the FMR 

measurements are carried out with a rf field frequency, f= 14 GHz. The individual TmIG and CoFeB modes 

are identified from the FMR spectra for the field angle sweep. Fig. 8-4a and 8-4b show the resonant fields 

and linewidths for different field angles. From Fig. 7-4a we see that when the field is applied parallel to the 

sample plane, 𝜃=0°, the resonant field of the TmIG is highest which decreases in a sinusoidal manner and 

reaches to a minimum at 𝜃=90°. This confirms that the TmIG layer has perpendicular magnetic anisotropy 

(PMA). The CoFeB mode shows opposite trend which confirms the 3 nm thick CoFeB has predominant in-

plane anisotropy. By sweeping the field angle, the resonance fields of the TmIG and CoFeB magnetization 

are tuned to match, and the resonance field becomes almost identical at 𝜃=72°. We see a simultaneous 

decrease in the linewidths of both the CoFeB and TmIG mode at this crossover field angle. Specifically, 

the linewidth of the TmIG mode reaches 22.15 mT which is close to the linewidth of the pristine sample (~ 

22.40 mT at 14 GHz). The overall trend is explained as follows. Initially the linewidths of both of the 

CoFeB and TmIG are seen to decrease with field angle (𝜃<70°). This is due to the fact that, before crossover, 

only one of the magnetic layers was resonant. Thus, the pumped spins from the resonating layers are 
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absorbed in the non-resonating which increases the damping and the linewidths. As the two resonant fields 

become identical, non-equilibrium spin currents pumped from the resonating layers almost cancel each 

other.  Thus, the net spin current becomes nearly zero which suppresses the damping enhancements, and 

the linewidth of the modes almost reaches the bulk values of pristine samples. As we increase the field 

angle, 𝜃 <74°, the separation in resonance fields become higher which further enhances the resonance 

linewidths for both of the TmIG and CoFeB modes. Similar trends are also observed in heterostructures 

involving FM/NM/FM in previous studies [12].  

 

 

Figure 8-4 a. Resonant fields vs the filed angle for the CoFeB and the TmIG modes in FM/FI heterostructure with x= 3 nm. b. 

linewidths vs the filed angles of the two modes for the same heterostructures. The FMR measurements are carried out for rf field 

frequency of 14 GHz. 

 

Similar trends are observed for FI/FM sample with x= 1 nm CoFeB. Fig. 8-5a and 8-5b show the resonance 

fields and the linewidths of the individual TmIG and CoFeB modes. For this sample, the resonant field 

crossover occurs near  𝜃=60°. Simialr to the sample with x=3 nm, the linewidths of the modes become 

minimum at the crossover resonant field. At this equal resonance condition, the linewidth of the TmIG 

mode is measured to be ~ 22.14 mT which is close to the pristine TmIG sample (~ 20 mT at 11 GHz). 
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Figure 8-5 a. Resonant fields vs the filed angle for the CoFeB and the TmIG modes in FM/FI heterostructure with x= 1 nm. b. 

linewidths vs the filed angles of the two modes for the same heterostructures. The FMR measurements are carried out for rf field 

frequency of 11 GHz. 

 

8.3 Conclusion: 

In summary, we have shown dynamic coupling in magnetic heterostructures consist of 

GGG/TmIG(40)/CoFeB(x)/W(0.4)/CoFeB(0.0)/MgO(1)/W(5) due to the exchange of non-equilibrium spin 

currents. When one of the FM or FI layers becomes resonant, it emits spin currents which are absorbed by 

the non-resonating layer. Thus, the absorbing layers act as the nonlocal spin momentum brake by dissipating 

spin moments and applying a relaxation torque on the resonating layer. The damping of the resonating layer 

is observed to be enhanced. When both magnetic layers are tuned into equal resonance condition by 

adjusting the applied field angle, the damping enhancement is suppressed as confirmed from the linewidth 

minima. Our study shows modulation of magnetic damping is possible in heterostructures by nonlocal 

relaxation and dynamic coupling.   
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Chapter 9: Conclusion and Future Works 

 

In this thesis, we have investigated energy efficient spintronic devices for non-volatile memory and 

hardware AI applications. Our study on magnetization precession dynamics with surface acoustic wave 

(SAW) induced ferromagnetic resonance (FMR) in nanomagnets with inhomogeneity and thermal noise 

has shown the potential for scaling spin-transfer torque (STT) memory devices below 20 nm lateral 

dimensions while achieving significant reduction in write energy. We have also proposed an energy 

efficient strain-controlled synapse utilizing domain wall (DW) motion in chiral systems with 

Dzyaloshinskii-Moriya interaction (DMI), demonstrating the feasibility of multi-state synapses for edge 

computing applications. 

Furthermore, we have developed deep neural networks (DNNs) with extremely low resolution and 

stochastic DW device-based synapses, achieving high classification accuracy when trained with appropriate 

in-situ and ex-situ learning algorithms. This technology is particularly attractive for low power intelligent 

edge devices in future Internet of Things (IoT) applications. We have also demonstrated long-term 

autonomous prediction using a skyrmion reservoir, which can perform predictions with significantly lower 

energy consumption compared to Long Short-Term Memory (LSTM) based approaches, making it suitable 

for hardware and memory constraint edge computing platforms. 

Our investigation of interlayer exchange coupling between a ferrimagnetic insulator with perpendicular 

magnetic anisotropy (PMA) and a ferromagnetic compound has provided insights into the relative strength 

of competing interactions, which can be tuned by varying the thickness of the ferromagnetic layer. Strong 

coupling can ensure efficient readout of the ferrimagnetic insulator which has great potential in realizing 

high-density magnetic data storage with ultra-low energy dissipation. We have also shown dynamic 

coupling in ferrimagnetic insulator/ferromagnetic (FI/FM) layers due to the exchange of non-equilibrium 

spin currents, demonstrating the modulation of magnetic damping through nonlocal relaxation and 

coupling. 

Lastly, we have demonstrated 90° switching of the magnetization easy axis in a multiferroic heterostructure 

using voltage-induced strain, highlighting the potential for electric field control of spintronic devices 

utilizing the magnetoelastic effect. This is significant for realizing energy efficient voltage-controlled 

spintronic devices for storage and neuromorphic implementations. 
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Through the comprehensive exploration of energy-efficient spintronic devices presented in this thesis, we 

hope to contribute significantly to the ongoing transformation of computing technology and pave the way 

for a more sustainable and capable technological future. 

In future we are planning to pursue the followings: 

9.1. DW-MTJ for complex neural network architectures and tasks: 

Our research has demonstrated the potential of energy-efficient DW-MTJ devices for implementing deep 

neural networks (DNNs). Moving forward, we plan to explore the application of our developed framework 

to more complex tasks using advanced neural network architectures. Recent studies from our group have 

shown successful classification of images from the CIFAR-10 dataset using a VGG-8 convolutional neural 

network with DW-MTJ [1]. By employing 5-state quantization, we achieved competitive accuracy 

compared to 32-bit precision weights (CMOS-based design), while realizing improvements of 9.6×, 3.5×, 

and 13.8× in overall energy efficiency, latency, and area, respectively. Furthermore, we have demonstrated 

the feasibility of using DW-MTJ for autoencoder-based unsupervised learning in anomaly detection tasks, 

utilizing quantized neural network learning [2]. Given the success and prospects of DW-MTJ based 

spintronic devices for efficient DNN implementation, our future work will focus on exploring more 

complex networks, such as transformers, to be implemented with DW-MTJ and other non-volatile memory 

technologies. 

9.2. Demonstration of DW-MTJ based DNN: 

As a preliminary study, we patterned DW racetracks and associated electrode pads for injecting current 

pulses using photolithography and electron beam lithography at VCU. Our collaborators then used ion beam 

sputtering to deposit Pt(3nm)/Ta(3nm)/Co(0.3nm)/Ni(0.7nm)/Co(0.3nm)/Ta(0.3nm) and performed lift-

off, while we also have the capability to perform the deposition at VCU. The prepared racetrack exhibits 

dominant perpendicular magnetic anisotropy (PMA). Figure 9-1 shows polar magneto-optical Kerr 

microscopy (MOKE) images of the racetrack stack when it is perpendicularly magnetized with 

magnetizations in the upward direction, DW nucleation and propagation under an external applied magnetic 

field, and when the racetrack magnetizations are pointing in the downward direction. The next step involves 

applying current pulses across the Pt(3nm)/Ta(3nm) layer of the electrodes, which will exert spin-orbit 

torque (SOT) on the racetrack magnetization to control the motion of the DW along the racetrack. We will 

first characterize the racetrack devices by evaluating the equilibrium DW position distribution within the 

racetracks in response to various amplitude and duration SOT current pulses. Based on the device 

characteristics, we will build a reduced-order model of our racetrack device. Secondly, using this model, 

we will train and optimize our neural networks. Finally, we will connect several racetracks to the contact 



172 
 

pads to mimic the functionality of a compact neural network and evaluate the implemented network's 

performance. Based on the device performance, we can further tune the neural network architecture for 

higher accuracy. 

 

Figure 9-1 Polar MOKE images during the DW nucleation and propagation along the racetrack stacks of Pt (3 nm)/Ta(3nm)/Co 

(0.3 nm)/Ni (0.7 nm)/Co (0.3 nm)/Ta (0.3 nm) exhibiting perpendicular magnetic anisotropy (PMA).  
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