
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2024

Machine Learning Assisted Optimization for Calculation and Machine Learning Assisted Optimization for Calculation and

Automated Tuning of Antennas Automated Tuning of Antennas

Lauren Linkous
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Electromagnetics and Photonics Commons, and the Numerical Analysis and Scientific

Computing Commons

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/7841

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars
Compass. For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F7841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/271?utm_source=scholarscompass.vcu.edu%2Fetd%2F7841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=scholarscompass.vcu.edu%2Fetd%2F7841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=scholarscompass.vcu.edu%2Fetd%2F7841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/7841?utm_source=scholarscompass.vcu.edu%2Fetd%2F7841&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

1

Machine Learning Assisted Optimization for Calculation and Automated Tuning of Antennas

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University

by

 Lauren Linkous

Bachelor of Science, Electrical Engineering, Virginia Commonwealth University, 2018

Bachelor of Science, Physics, Virginia Commonwealth University, 2018

Master of Science, Computer Science, Virginia Commonwealth University, 2024

Director: Erdem Topsakal, Ph.D.,

Senior Associate Dean for Strategic Initiatives and Enrollment Management,

Department of Electrical and Computer Engineering

Virginia Commonwealth University

Richmond, Virginia

September 2024

2

Acknowledgements

I would like to express my deep appreciation to all those who supported me throughout the

completion of this work, and everything leading up to it. This would not have been possible without

my friends and family, who have my heartfelt gratitude for their unwavering encouragement and

enthusiasm, which kept me motivated during challenging times. Your belief in my abilities provided

me with the strength to persevere, and your love has been a constant source of inspiration throughout

this journey. I would also like to thank my advisor, who agreed to a dissertation with sparkly, glow-

in-the-dark cat-shaped antennas. Your support was monumental to my success and will have an

impact lasting much longer than all the glitter I have left in the lab.

3

Table of Contents
List of Abbreviations ... 6

List of Figures ... 7

List of Tables ... 11

Abstract .. 12

CHAPTER 1 Background: Computation, Automation, and Tuning .. 13

1.1 Computational Electromagnetics and Simulation .. 14

1.2 Existing Resources for EM Software Suite Integration ... 19

1.3 Optimization, Machine Learning, and Surrogate Modeling .. 20

CHAPTER 2 The AntennaCAT Software Suite ... 24

2.1 Software Specifications .. 24

2.2 Template-Based Multi-Software Integration ... 25

2.3 User Interface ... 28

Design Options ... 29

Importing Existing EM Projects and Scripts ... 35

Simulation Options ... 36

Batch Options ... 38

Optimizer Options ... 40

Settings and ANCAT Files .. 42

2.4 Modular Scripting and Automation Process ... 44

Simulation Object and Simulation Integrator Instances .. 44

Template Creation ... 47

Antenna Tuning ... 49

2.5 Batch Data Collection ... 50

2.6 Open-Source and Availability .. 51

CHAPTER 3 Replication Studies ... 52

CHAPTER 4 AntennaCAT Optimization Suite ... 56

4.1 Boundary Condition Handling ... 61

4.2 Problem Constraint Handling .. 62

4.3 Single and Multi-Objective Optimization .. 62

4.4 Objective Function Handling for Repository Examples.. 62

4.5 AntennaCAT Optimizer Compatibility .. 63

4.6 Particle Swarm Optimizers .. 65

4

Traditional Particle Swarm ... 67

Particle Swarm with Time-Step Modulation .. 68

4.7 Cat Swarm Optimizers .. 70

Traditional Cat Swarm ... 70

Sand Cat Swarm ... 72

4.8 Chicken Swarm Optimizer ... 74

4.9 Quantum-Inspired Optimizers ... 76

Quantum Inspired Particle Swarm Optimizer .. 77

Quantum Inspired Cat Swarm Optimizer .. 80

Quantum Inspired Chicken Swarm Optimizer ... 82

4.10 Sweep Optimizer .. 84

Grid-Based Search .. 85

Random Search .. 86

4.11 MultiGLODS ... 87

4.12 Bayesian Optimizer with Surrogate Model Kernel ... 89

Radial Basis Function Network .. 92

Gaussian Process ... 93

Kriging .. 93

Polynomial Regression .. 93

Polynomial Chaos Expansion .. 93

K-Nearest Neighbors Regression.. 94

Decision Tree Regression .. 94

CHAPTER 5 Machine Learning Assisted Optimization Data Collection and Training 95

5.1. AntennaCAT MLAO Design Structure ... 96

5.2 Data Collection Methodology .. 98

5.3 Objective Functions: Single Input, Single Output .. 100

5.4 Objective Functions: Two Input, One Output .. 102

5.5 Objective Functions: Other Multiple Input, One Output .. 104

5.6 Objective Functions: One Input, Two Output .. 106

5.7 Objective Functions: Two Input, Two Output .. 109

5.8 Objective Functions: Multiple Input, Two Output .. 111

5.9 Objective Functions: Multiple Input, Multiple Output ... 113

5.10 Summarized Model Design, Training, and Results .. 115

5

5.11 Hyperparameter Prediction Network Model Expansion ... 117

CHAPTER 6 Applications for Antenna Design .. 119

6.1 Wi-Fi 6E Automated Tuning ... 119

6.2 Dual-Band 5 GHz, 6 GHz Wi-Fi Antennas ... 123

CHAPTER 7 Conclusion ... 126

CHAPTER 8 References.. 128

CHAPTER 9 Related Publications and Open-Source .. 139

9.1 Journals and Magazines .. 139

9.2 Conference Papers ... 140

9.3 Public Repositories ... 142

6

List of Abbreviations
Abbreviation Meaning

AntennaCAT Antenna Calculation and Autotuning Tool

API Application Programming Interface

BW Bandwidth

CAD Computer-aided design

CEM Computational Electromagnetics

EM Electromagnetic

FDM Finite Difference Method

FDTD Finite Difference Time Domain

FEM Finite Element Method

FETD Finite Element Time Domain

FLC Fuzzy Logic Controller

FNBW First Null Beamwidth

GP Gaussian Process

GUI Graphical User Interface

HF High Frequency

HFSS (Ansys) High Frequency Simulation Software

HPBW Half Power Beamwidth

KNN K-Nearest Neighbor

ML Machine Learning

MLAO Machine Learning Assisted Optimization

MOM Method of Moments

NN Neural Network

PCB Printed Circuit Board

PDE Partial Differential Equation

PSO Particle Swarm Optimization

RE Regular Expression

RF Radio Frequency

SDK Software Development Kit

SO (AntennaCAT) Simulation Object

SVM Support Vector Machine

VBA Visual Basic Analysis

7

List of Figures
Figure 1 Example groupings of .txt templates for EM simulation software integration in
AntennaCAT’s Simulation Object. ... 26
Figure 2 Examples of the AntennaCAT template library, with parameterized variables. a.) a script
example declaring parameterized values, b.) a script example creating a rectangle with
parameterized values, and c.) an example of a non-customized script template with placeholder
“INSERT_” values. .. 27
Figure 3 The main Design page after creating a new project or loading an existing project. The
Antenna Generator process has been used to create a rectangular patch antenna with the internal
calculator. ... 28
Figure 4 The generalized layout of AntennaCAT’s Design page for using a calculated topology in the
Antenna Generator. .. 29
Figure 5 A side-by-side comparison for creating planar rectangular patch antennas. Left, using the
internal antenna calculator. Right, the replication study topology. .. 30
Figure 6 The Custom Conductor tab with two import examples in Design Options. Left, a multi-
polyline import of a microstrip-fed rectangular patch. Right, the AntennaCAT logo imported as a
single layer. .. 32
Figure 7 The Design Option Layers tab showing the custom conductor material selection, substrate
layer options, and superstrate layer options. ... 33
Figure 8 Examples of a planar loop antenna on multi-layered substrates with positive and negative
angles of deflection. ... 34
Figure 9 Examples of a planar loop antenna on multi-layered substrates, with multi-layered
conductors to show consistent angle of deflection on all layers. .. 34
Figure 10 The Design Options window showing the Load Project tab where an existing project path
has been added into AntennaCAT and parameters have been added manually. 35
Figure 11 The Design Options window showing the Load Script tab where an existing Ansys HFSS
script has been loaded into AntennaCAT, with parameters automatically detected. 36
Figure 12 The Simulate page generalized layout, with fields for report selection, simulation and
solution setup, and output messages.. 37
Figure 13 The Simulate page for Ansys HFSS simulation and solution options. A script for a 2.4 GHz
patch antenna has been generated, and reports for Rectangular Plot and Rectangular Stacked plot
will be created after the simulation. .. 37
Figure 14 The Batch page featuring detected Controllable Parameters field with values from a
microstrip-fed rectangular patch antenna. .. 38
Figure 15 The Optimizer page featuring the initial simulation setup tab, controllable parameters
window, and status message window. ... 40
Figure 16 The default values for the Swarm Based optimizer tab on the Optimizer page. Two
optimizer targets, S11 and gain, have been selected as target values for PSO. 41
Figure 17 The AntennaCAT home screen for project selection. This page includes new project
creation and open project options, and a set of tabs for opening recent or pinned projects. 42
Figure 18 The Settings page for AntennaCAT featuring the EM software selection and user
information fields. .. 43

8

Figure 19 A high-level visualization of the modularity of the Simulation Object instances and the relation

to several compatible EM simulation software suites. The respective scripting languages for each software

are listed on the right. ... 45
Figure 20 The high-level simulation control process as seen by the AntennaCAT kernel. The kernel

controls the SO, which controls the script execution in the EM simulation software suite. 46
Figure 21 The high-level simulation control process with the invisible simulation integrator and EM

software suite specific template generator. The UI and kernel have been condensed visually, but the

process remains the same. ... 47
Figure 22 A block diagram of the patch antenna creation process for the first iteration of tuning. The

Simulation Object contains a collection of templates used to create a script file that can be used by the

selected EM software. .. 48
Figure 23 Features of the Tuning process, including the Simulation Object and core features of the

analysis and GUI report functions. ... 49
Figure 24 A selection of reference images for the replication studies available in AntennaCAT. a) a
simple loop antenna, b.) a microstrip fed rectangular patch antenna, c) a half-wave dipole, d) a
slotted patch antenna [57], e) a coplanar keyhole antenna [58], f) a microstrip E patch antenna [59],
and g) a dual band serpentine patch [60]. .. 52
Figure 25 The AntennaCAT Design page showing a selection of calculation and replication options
for antenna design. .. 54
Figure 26 The dual band serpentine replication study from [60] on the Design page. Left, the default
parameters. Right, the 3D preview including the probe location. .. 54
Figure 27 An overview of the optimization process. The Optimizer Integrator is used with a
dynamically declared optimizer class object so that new optimizers can be easily integrated with
AntennaCAT. .. 56
Figure 28 The initial Swarm Based optimizer group customization tab on the Optimizer page. 58
Figure 29 The MultiGLODS optimizer tab on the Optimizer page. It shows the dynamically detected
input parameters, the number of selected parameters, and the lower and upper bounds for the
selected parameters. ... 58
Figure 30 Particles making up a 50-agent swarm in a traditional PSO algorithm converging on the
single-objective Himmelblau’s function global minima at 2, 216, 394, and 687 steps. 65
Figure 31 Particles making up a 50-agent swarm in a traditional PSO algorithm converging on the
multi-objective function target on the Pareto front 2, 216, 394, and 687 steps............................... 66
Figure 32 The grid-based search option in the Sweep optimizer. On the right, the current and
previous search locations. On the left, the red star is the global minima target. The black circle on
the far right of the Global Best Fitness plot is the original evaluation, while the circle around the red
star is the best evaluation. .. 85
Figure 33 The random search option in the Sweep optimizer. On the right, the current and previous
search locations. On the left, the red star is the global minima target. The black circle on the far
right of the Global Best Fitness plot is the original evaluation, while the circle around the red star is
the best evaluation... 86
Figure 34 The current search locations of six particles generated by MultiGLODS and the global
best fitness record. On the right, the current and previous search locations. On the left, the red star
is the global minima target. The black circle on the far right of the Global Best Fitness plot is the
original evaluation, while the circle around the red star is the best evaluation. 87

9

Figure 35 The evolution of the surrogate model at 1, 2, 3, 4, 9, and 19 samples taken during the
Bayesian optimization process on a single-input single-output objective function. On the left of
each pair is the objective function ground truth represented by a dotted red line. The surrogate
model (using a Gaussian Process Mean) prediction is drawn in blue. Sampled points are red dots.
On the right, in green, is the plotted expected improvement of the acquisition function. 89
Figure 36 The evolution of the Gaussian Process surrogate model at 5, 6, 19, 44, 74, and 204
samples taken during the Bayesian optimization process on a two-input single-output objective
function. In each set of plots, the left plot is the objective function ground truth. The middle plot is
the acquisition function, with the plotted expected improvement in 2D space. The right plot is the
current surrogate model prediction of the objective function. In all three plots, the red dots indicate
the samples taken from the original model. ... 90
Figure 37 A high level overview of how the ‘Help me Choose’ Optimization Page option where
known values from the GUI are used to select which machine learning model will be used to predict
the hyperparameters. ... 97
Figure 38 The generalized process where the specific optimizer has been selected. The number of
controllable parameters and number of target values are first used as inputs to the model selector
to decide which machine learning model will be used to predict hyperparameters, and then as
inputs to predict the hyperparameters. ... 97
Figure 39 The nine functions used in the single-input, single-output objective function subset for
data collection. Top: eq. 19, eq. 20, eq. 21. Middle: eq. 22, eq. 23, eq. 24. Bottom: eq. 25, eq. 26,
eq.27. .. 100
Figure 40 The nine functions used in the two-input, single-output objective function subset for data
collection. Top: eq. 28, eq. 29, eq. 30. Middle: eq. 31, eq. 32, eq. 33. Bottom: eq. 34, eq. 35, eq. 36.
For each function, the left plot shows a 3D projection of the solution space, and the plot on the right
shows a top view of the solution space, with the global minima marked in red. 102
Figure 41 The three functions, with multiple variations, used for the multi-input one-output
objective function subset for data collection. Top row: DTLZ N1 (eqs. 37-39). Middle Row:
AntennaCAT Function 10 (eqs. 40-41) Bottom Row: AntennaCAT Function 10 (eqs. 40-41) and
AntennaCAT Function 11 (eq .42). For each function, the left plot shows a 3D representation of the
feasible decision space, some of which have been reduced to 3D space. The right plot shows the
feasible objective space for the function. .. 104
Figure 42 The six functions used in the single-input, two-output objective function subset for data
collection. Top: ZDT N.6 (eqs. 43-45), Kursawe (eqs. 46-47). Middle: ZDT N.2. (eqs. 48-50), ZDT N.3
(eqs. 51-53), Bottom: ZDT N.1 (eqs. 54 -56), Fonseca Fleming (eqs. 57-58). For each function, the
left plot shows a 2D projection of the Feasible Decision Space where the Y-axis is comprised of
filler values for graphical purposes, and the plot on the right shows the Feasible Objective Space
with the Pareto front marked in black. ... 106
Figure 43 The eight functions used in the two-input, two-output objective function subset for data
collection. First Row: CTP1 (eqs. 59-60), Constr Ex (eqs. 61-62). Second Row: Chankong and
Haimes (eqs. 63-64), Fonseca Fleming (eqs. 65-66), Third Row: Poloni 2-Objective (eqs.67-72),
Kursawe (eqs.73-74). Forth Row: Binh and Korn (eqs.75-76), Binh and Korn Test Function 4 (eqs.77-
78) For each function, the left plot shows a 2D projection of the Feasible Decision Space, and the
plot on the right shows the Feasible Objective Space with the Pareto front marked in black. 109

10

Figure 44 The generalized process where the specific optimizer has been selected. The Known
Values have been expanded from Figure 37 to include information that supports an expansion of
the Hyperparameter Prediction Network. .. 118
Figure 45 The 6E Wi-Fi antenna created with the AntennaCAT logo. a.) The optimized resonant
frequency of -12 dB at 6 GHz, b.) The gain of the AntennaCAT logo patch antenna, c.) a front view of
the Ansys HFSS simulated patch antenna. .. 120
Figure 46 Six versions of epoxy-treated AntennaCAT logo cat-shaped antennas used for validating
optimizer results. ... 120
Figure 47 The five AntennaCAT logo antennas treated with glow-in-the-dark epoxy being excited by
UV light in a dark room. .. 121
Figure 48 The measured S11 of three of the glow-in-the-dark epoxy-treated milled AntennaCAT logos
antennas. .. 121
Figure 49 The measured gain of the milled AntennaCAT logo antenna treated with orange epoxy. The
maximum gain occurred with the azimuthal measurement at 6085 MHz, at 1.8 dB...................... 122
Figure 50 The dual-band 5 GHz and 6 GHz Wi-Fi antenna created with the simplified cat patch
planar antenna. a.) the gain plot for the 5 GHz frequency, b.) the gain plot for the 6 GHz frequency,
c.) a front view of the Ansys HFSS simulated patch antenna, and d.) the simulated S11. 123
Figure 51 Two milled variations of the dual-band 5 GHz and 6 GHz cat-shaped patch antenna used
for verifying optimizer results. The rectangular ground plane version was simulated and tuned using
the AntennaCAT software. The round version on the left differs only in ground plane construction.
 ... 124
Figure 52 The measured S11 of the milled cat-shaped patch antennas for 5 GHz and 6 GHz. Two
variations were simulated: the cat-shape design implemented with a rectangular ground plane, and
the cat-shape design with a round ground plane. ... 125
Figure 53 The measured gain of the milled cat-shaped patch antennas. Left, the azimuthal value
measuring the 5 GHz frequency polarized from cheek-to-cheek. Right, the elevation measuring the
top-to-chin polarized 6 GHz band. .. 125

11

List of Tables
Table 1 A summary of current designs included in the replication study set, the number of
controllable parameters related to the study, and the source(s) of their designs. 53
Table 2 The total number of parameter combinations for the seven optimizers used with the
objective function data collection. .. 98
Table 3 Constant values used in the automation process for the optimizer parameter sweep. 99
Table 4 The input and output dimensionality combinations for the multiple-input, multiple-output
objective function dataset .. 114

12

Abstract

This document introduces the Antenna Calculation and Autotuning Tool (AntennaCAT) software

suite, which automates the generation, computer-aided design (CAD) modeling, simulation, data

collection, and optimization process for antenna design. AntennaCAT is the first comprehensive

implementation of machine learning to automate, evaluate, and optimize the design process using

several well-recognized commercially available EM simulation software. In particular, this work

includes the capability to create and export structured datasets from the aforementioned EM

software for iterative improvement and includes an expandable selection of optimizers.

As part of the antenna generation process, AntennaCAT has an antenna calculator for three

topologies (a rectangular patch antenna, a half-wave monopole, and a quarter-wave dipole), and

an expandable internal library of parameterized, customizable replication study designs included

to encourage exploration. The AntennaCAT software also supports importing existing scripts and

loading in project references for file modification. All calculated, replicated, imported, and loaded

projects are compatible with the eleven optimizers included in the internal optimizer suite. This

optimizer suite includes eight swarm-based optimizers, a sweep optimizer with random and grid

search options, a Bayesian optimizer, a Python implemented MultiGLODS optimizer, and optional

surrogate model kernels compatible with these optimizers. In total, there are 90 optimizer-

surrogate model combinations, and additional configurations such as boundary condition handling

which may cause unique optimizer behavior. With the internal design options, this creates more

than 1,500 combination options for users to choose from, and then customize.

To address the breadth of designs AntennaCAT can optimize, a library of machine learning models

has been implemented to suggest optimizer hyperparameters. Data collected using a suite of single-

objective and multiple-objective benchmark functions was used to train a series of connected

machine learning models for suggesting optimizer hyperparameters based on knowledge of the

number of controllable problem variables and the number of target values being optimized. To

encourage replication of research, an expandable internal library of parameterized designs is

included for customization. Furthermore, this work integrates with several of the most frequently

used EM simulation suites in research today, allowing for dynamic CAD model generation,

optimization and tuning on most research platforms.

13

CHAPTER 1
Background: Computation, Automation, and Tuning

Antenna design is a complex process marked by the diverse requirements of modern

communication systems. To keep pace with evolving technology, antennas come in various shapes

and sizes, each designed for specific applications and operating frequencies. Antennas are essential

components in wireless communication systems and take forms from easily recognizable devices

such as radios, televisions, cell phones, and Wi-Fi routers, to complex networks of satellite

communication systems. Each of these applications demand a careful balance of performance

requirements, such as gain, bandwidth, impedance, and radiation pattern, and physical

specification constraints including size, materials, durability, bendability, and weather proofing [1-

6]. Achieving optimal performance requires navigating numerous challenges, including precise

knowledge of wave propagation, radiation behavior, environmental factors, and electromagnetic

interference, often necessitating advanced analytical tools and computational techniques [7-9].

Trade-offs between conflicting design parameters present additional challenges. For instance,

increasing gain may require sacrificing antenna size or narrowing bandwidth. Fabricating antennas

with precise geometries and material properties pose manufacturing challenges, particularly for

high-frequency designs or complex structures, where tolerances and fabrication techniques play a

critical role in performance.

Despite these challenges, effective antenna design is essential for enabling reliable and efficient

communication in modern wireless systems. Computational electromagnetics (CEM) involves

using numerical methods and computer simulations to analyze the behavior of electromagnetic

fields. In the context of antenna design, computational electromagnetics allows for the modeling

and simulation of antenna performance, predicting radiation patterns, analyzing impedance

matching, and optimizing designs without the need for costly physical prototypes. However, while

optimization techniques are employed to refine antenna designs and improve performance, this

process is intrinsically interactive, experimental, and time-consuming [3, 7, 10].

To address these obstacles, much work has been done in automating processes for integrating

optimization with electromagnetic (EM) simulation. EM simulation software suites may have built

in optimizers [11-14], or researchers may have implemented their own custom solutions to meet

14

specific needs [15-17]. However, there exist several key issues with these methods and current

resources, notably; 1) limitations with EM software-integrated optimizers, 2) lack of resources for

applying new optimizers, 3) difficulty of replication of research on alternate systems or setups, and

4) a high barrier to entry into the field for students or young researchers.

To understand the computational difficulties of CEM, and the existing resources for antenna

design, Chapter 1 provides a review of the current state of the art, and uses for automation,

optimization, replication, and machine learning. This provides the motivation for the Antenna

Calculation and Autotuning tool suite introduced in Chapter 2, the integrated optimization tools in

Chapter 3, and our efforts to make antenna design simpler, replicable, and more accessible in

Chapters 4-5, with example results in Chapter 6.

1.1 Computational Electromagnetics and Simulation
All computational electromagnetics begins with Maxwell’s equations. Maxwell’s equations are a

set of fundamental partial differential equations (PDE) in classical electromagnetism named after

the Scottish physicist James Clerk Maxwell who formulated them in the 19th century [18]. These

equations are:

1. Gauss’s law for electric fields

(∇ ⋅ 𝑬) =
𝜌

𝜖0
 (𝑒𝑞. 1)

Where 𝐄 is the electric field, 𝜌 is the charge density, and 𝜖0 is the permittivity of free space. This

describes how electric fields originate from electric charges.

2. Gauss’s law for magnetic fields

∇ ⋅ 𝑩 = 0 (𝑒𝑞. 2)

Where 𝐁 is the magnetic field. This describes how magnetic field lines in a system form closed

loops.

3. Faraday’s law of electromagnetic induction

15

∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡
 (𝑒𝑞. 3)

Where 𝐄 is the electric field and 𝐁 is the magnetic field. This connects the relation between electric

and magnetic fields, and how a changing magnetic field induces and electric field.

4. Ampère's law, with Maxwell's addition

∇ × 𝑩 = 𝜇0𝑱 + 𝜇0𝜖0
𝜕𝑬

𝜕𝑡
(𝑒𝑞. 4)

Where 𝐁 is the magnetic field, 𝐉 is the current density, 𝜇0 is the permeability of free space, and 𝜖0

is the permittivity of free space. This describes how magnetic fields are related to electrical currents

and changing electric fields, and how material permeability and permittivity affect this relation.

Together, these equations describe the interaction of electric and magnetic fields, and how they

propagate through space in the time domain. However, solving Maxwell's equations analytically

is often challenging, if not impossible, for complex geometries and many boundary conditions. To

address this, numerical methods are employed to approximate the solutions. One such method is

the Finite Element Method (FEM), which converts the PDEs above to a system of algebraic

equivalents.

Using this method, first, the set of Maxwell’s equations must be transformed into the phasor

domain. This simplifies the analysis of time-harmonic (steady-state) fields by representing fields

as complex exponentials, and equations can be expressed in terms of sinusoidal functions [18], and

the partial differential equations become algebraic equations. To simplify this step, and the

following steps, the equation set can be rewritten as the following equalities:

ϵ(∇ ⋅ 𝑬) = 𝛁 ⋅ 𝐃 = ρ (𝑒𝑞. 5)

Where 𝐃 is the electric displacement. ϵ is still permittivity, though not specifically the permittivity

of free space.

μ(∇ ⋅ 𝑯) = ∇ ⋅ 𝑩 = 0 (𝑒𝑞. 6)

Where 𝐇 is the magnetic field strength, or the magnetic field intensity vector. μ is still permeability,

though not necessarily the permeability of free space.

16

∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡
 = −jω𝜇𝑯 (𝑒𝑞. 7)

Where 𝐄 is still the electric field and 𝐁 is the magnetic field. ω is the angular frequency of the

electromagnetic wave, this represents the rate of oscillation of the electric and magnetic fields in

the phasor domain. μ is the permeability of the medium, not necessarily of free space.

Through the relations in equations 5 and 6, Ampère's law in equation 4 then becomes:

∇ × 𝑩 = 𝑱 +
𝜕𝑫

𝜕𝑡
(𝑒𝑞. 8)

For solving Maxwell’s equations in the frequency domain, and describing how waves propagate

in a medium, the next step is to derive the Helmholtz partial differential equation. First, apply the

curl to the phasor form of Faraday’s Law, resulting in the following:

Then, simplfy the equation by grouping coefficients into γ such that:

0 = 𝛻2𝑬 − 𝛾2𝑬 (𝑒𝑞. 9)

This results in the Helmholtz PDE, noting that γ is related to the wave number, k, such that γ2 =

 −𝑘2. The notation γ is used here to prevent confusion with the stiffness matrix, k, in the next

steps.

To be used to solve discrete problems, eq. 9 still needs to be rewritten via the finite element

method derivation. This process is, briefly:

First, rewrite Faraday’s law such that ∇ × 𝑬 = −𝑗ωμ𝑯 becomes:

17

 
∂U(𝑥)

∂x
= −jωμ

𝑈(𝑥)

η
(𝑒𝑞. 10)

Where U(x) is related to the integral of the magnetic field H, and η is the wave impedance.

Following that, let the y and z directions be represented as:

𝑬 = 𝑈(𝑥)𝒚 (𝑒𝑞. 11)

 𝑯 =
𝑈(𝑥)

𝜂
𝐳 (𝑒𝑞. 12)

The stiffness matrix, k, and the force (or load) vector, f, are defined as follows:

𝑘𝑗𝑖 ≔ ∫ (
(𝑑𝑁𝑖)

𝑑𝑥

(𝑑𝑁𝑗)

𝑑𝑥
+ 𝑁𝑖𝑁𝑗)𝑑𝑥

1

0

(𝑒𝑞. 13)

𝑓𝑗𝑖 ≔ ∫ (𝑥𝑁𝑗)𝑑𝑥
1

0

(𝑒𝑞. 14)

Where 𝑁𝑖 and 𝑁𝑗 are the shape functions (basis functions) for the i-th and j-th elements. The

stiffness matrix represents the system of linear questions that must be solved to approximate a

solution to a differential equation. The load vector, f, represents the impact of external forces,

source terms, or boundary conditions to the system. This vector becomes larger as more materials

and geometries are added to the problem, and thus more boundaries are added. The inclusion of

additional boundaries also increases the complexity of the problem, which emphasizes why PDEs

and a numerical solution are important to electromagnetics design.

The weak form of the PDE, eq. 9, is then multiplied by a test function, 𝑤(𝑥), in eq. 15, and solved

via integration by parts, and substitution, to isolate U(x), such that k, f, and U(x) are related as in

eq. 16.

∫𝑤(𝑥)(𝑈′′(𝑥) + 𝑘2U(x))dx = 0 (𝑒𝑞. 15)

18

𝒌𝑈(𝑥) = 𝒇 (𝑒𝑞. 16)

This derivation is extensively documented across various sources due to its significant utility in

electromagnetics and multiphysics computations. The finite element method presented here

becomes applicable for numerically solving discrete physical problems, which are traditionally

formulated as partial differential equations, only at the form in eq. 16. By translating these

problems into algebraic equations, this method enables more efficient computational resource

utilization, which becomes important in designs with complex geometries, multiple materials, and

with many boundary conditions. This is the basis of computational electromagnetics and

simulation.

Computational electromagnetics (CEM) is a field that focuses on using numerical methods and

computer simulations to solve approximations of Maxwell's equations to study electromagnetic

phenomena in various systems and structures. That is, CEM is the digital modeling of the

interaction between electromagnetic fields, physical objects, and the environment. CEM

encompasses a wide range of applications, including antenna design, microwave and radio

frequency (RF) circuits, medical imaging, material characterization, printed circuit board (PCB)

design, and more. Numerical methods used in CEM are based on discretizing space and time,

dividing the computational domain into small elements, and solving Maxwell's equations

numerically at discrete points or intervals. In simulation, solving at smaller intervals increases the

resolution of a solution. Common numerical techniques in CEM include finite difference methods

(FDM), finite element methods (FEM), finite difference time domain (FDTD) method, finite

element time domain (FETD) method, method of moments (MOM), and others [7, 18, 19], all of

which have their own unique advantages. CEM’s predictive, approximative modeling capabilities

allow for the optimization of electromagnetic systems, facilitating the identification of optimal

designs that meet specific performance criteria while minimizing costs and constraints.

Several prevalent electromagnetic simulation software suites are discussed in the following

sections. These software suites utilize at least one numerical solution technique for simulating

antenna, and other electromagnetic-based, designs. Due to the complexity of solving CEM

problems, the rest of this document focuses on integrating with commercial software suites for

simulation and numerical solutions rather than suggesting improvements to existing software

19

directly. A modular approach has been taken using a custom two-layered application programming

interface (API) to automate the experimentation process for repeatable, accessible

experimentations.

1.2 Existing Resources for EM Software Suite Integration
While web-based antenna calculators for common topologies are plentiful [20- 23], there are very

few programs capable of integrating directly with EM simulation software. Regarding official

software, AntennaMagus [13] is the primary example for automating project creation that can then

be run with CST Studio Suite, which is owned by the same company. In 2022, Ansys released

official Python libraries, including integration for HFSS [24], which has been under continuous

development. Likewise, Altair Feko also has an official API [25-28] with other interface

information documented. Several independent, and often unsupported or defunct, libraries and

APIs have been created by individuals for integration with Ansys HFSS [29, 30]. While multiple

studies have used MATLAB and HFSS integration with success [31-35], these solutions are often

problem specific, do not modify easily, and require both a MATLAB and EM software license. A

cost-efficient alternative is utilizing third-party APIs. However, a core issue with existing third-

party APIs is that even when they are exceptionally well documented, they may require almost as

much software scripting knowledge to use as writing the scripts for the EM software directly (i.e.,

IronPython for HFSS, and Lua for FEKO). More script resources have been created for COMSOL

Multiphysics using their Java API [36, 37, 38, 39], but some existing APIs rely on a chain of

libraries and other APIs to interface with the EM simulation software. Few resources offer native

interfacing with an EM simulation software, and none offer interfacing options with multiple EM

simulation software.

This integration complexity highlights the need for a streamlined and accessible interface.

Streamlining the process for design, CAD, simulation, and analysis, and increasing the simplicity

of the user-facing process not only facilitates the replication of experiments by providing a

consistent and reproducible environment, but it also significantly lowers the barrier to entry for

students and young researchers. The software suite proposed in Chapter 2 and the replication

studies in Chapter 3 discuss this process. Automation is essential in CEM for ensuring

reproducibility, minimizing errors, improving efficiency, and integrating simulations with the

design process. By automating repetitive tasks and leveraging computational resources effectively,

20

researchers can focus on the design process. To further lower the barrier to entry at an institutional

level, this document proposes a modular approach to interfacing with multiple EM software suites

to increase accessibility. This removes software vendor as a limitation to cross-platform

replication.

1.3 Optimization, Machine Learning, and Surrogate Modeling

Optimization is almost as significant to antenna design as simulation in terms of performance. The

prevalent interest in design automation, simulation integration, and intelligent optimization has a

basis in the existence of a broad range of analytical, semi-analytical, and non-analytical models,

of which EM problems could be any. Some designs, such as rectangular patch antennas and basic

monopoles, are widely explored and analytically defined. These, and similar topologies, have little

variation in final physical design characteristics, and benefit much more from simulation than

advanced optimization. Other topologies, such as horn antennas, are mostly or semi-analytically

defined, where they can be mathematically approximated and then finalized in simulation. Other

designs, especially those created with multiple materials, or complex geometries, are likely non-

analytical in nature. The variation in design needs, provided the same or similar topologies, make

it impossible to create a singular solution, or to apply a singular optimizer for all needs.

Current machine learning methods in microwave research trend towards variations of machine

learning assisted optimization (MLAO) with the goal of blending individually controllable, but

variable, problem constraints, machine learning model prediction, and analytical verification into

streamlined methods for antenna design [10,40-46]. In practice, MLAO utilization is broad:

incorporating both online and offline learning; combining global, local, and multi-objective

optimization; implementing surrogate models jointly with optimizers to simplify the problem

space; and exploring the differences between parallel and sequential optimization on surrogate (or

reduced fidelity) models of given antenna designs. Understandably, EM simulations with complex

geometries, multiple materials, and those that operate at high frequencies are difficult to address

as the matrices needed to mesh these designs are large and time-consuming to solve. Low-

complexity surrogate models, which have a lower computational cost, are popular in existing

literature [40, 42] to address the issue of large mesh-geometries, but its widely recognized that this

21

comes at the cost of lower model fidelity. In some cases, reduced model fidelity is an acceptable

trade-off for lower computational costs, even if the number of simulations is slightly increased, as

the simulation time required is still lower due to not needing to calculate the large matrices of the

original problem. In [46], low fidelity models have also been used to influence higher fidelity

models that only use small amounts of high frequency (HF) data. However, due to the variety of

features that can be used in antenna design, surrogate models do not necessarily transfer across

designs. Irrelevant to the prediction confidence of the model, surrogate models (and surrogate

model-optimizer pairs) are restricted to a specific state space defined by the model they are meant

to represent. While all these methods are suitable for addressing certain groups of computational

or topological problems, selecting a suitable optimization method for a specific EM problem, and

then adjusting hyperparameters is an exercise in patience for your average researcher.

Furthermore, even after effort has been expended to tune hyperparameters experimentally, not all

models are a good fit for all problems and may still underperform or fail to converge.

Popular EM software suites may have optimizers integrated into the software suite, or as a

companion software with additional features [11-14]. Integrated optimizers are typically a limited,

set selection that rely on users to properly parameterize and define design boundaries, and offer no

or limited feedback on potential design incompatibilities. In some instances, there is also no ability

to recover progress from a simulation that fails to resolve or a software crash.

 Following the concept of No Free Lunch [47], it is expected that no optimizer will be efficient on

every problem, and not every problem can be solved by every optimizer. In the simplest case, an

optimizer that performs well on several common topologies may perform unexpectedly poorly on

a single topology or configuration, with no obvious explanation. In other cases, single objective

optimizers may be applied to multi-objective functions and may fail to present a complete solution,

or to resolve at all. Additionally, users might lack insight into how an optimizer behaves without

substantial preexisting knowledge and be unable to match optimizers to a design problem.

Expanding the set of integrated optimizers in an EM simulation software suite is also not accessible

to the average user or may not exist at all through the software or official APIs. These aspects

become increasingly important when developing complex antenna designs that may take hundreds

22

of simulations, or simulations that take days to weeks to resolve. The need for efficiency can be

somewhat addressed by properly tuning optimizers to the specific problem in cases where

problem-optimal hyperparameters are known. Different optimization problems may require

different settings for hyperparameters to achieve optimal performance [47]. Hyperparameter

tuning allows the optimizer to adapt to the specific characteristics of the problem at hand, such as

its dimensionality, complexity, and smoothness, improving the efficiency and effectiveness of the

optimization process. Optimizers with well-tuned hyperparameters can achieve better convergence

rates and solution quality, leading to more efficient optimization processes. This is particularly

important in real-world applications where computational resources are limited, and improving the

efficiency of the optimization process can have significant practical implications. Techniques to

improve the process of both hyperparameter tuning and the application of optimizers on complex

problems have included machine learning or machine learning assisted optimization and the usage

of surrogate models [10, 40-42]. It is imperative to address the need for both single and multi-

objective optimization for electromagnetics problems to cover optimization needs. Even as

research moves towards more efficient and intelligent solutions, all methods are still bound by

problem design requirements.

Adding to the problem difficulty, antenna design and optimization via CEM is a broad and

constantly expanding field with many moving parts. As designs, materials, and environmental

constraints become more complex, the ability to replicate and reproduce research becomes more

important. These studies are crucial for validating and verifying scientific findings, ensuring the

reliability and robustness of research outcomes, and expanding on innovative discoveries. By

independently replicating previous studies, researchers can assess the consistency and

reproducibility of results, identify errors or discrepancies, and confirm the generalizability of

conclusions across different contexts. In a 2016 survey [48] across fields, respondents reported

that potentially 70% of researchers had attempted and failed to reproduce research. It is proposed

that the majority of factors behind this are benign (i.e., inherent variability in an experimental

system, limited ability or inability to control complex variables, chance, lack of experimental rigor,

etc.), but may also include pressure to publish. Introducing automation into the experimental

process not only reduces the barrier to entry and decreases time spent on iterative design, allowing

more researchers to explore complex practices, but it introduces some inherent standardization to

23

the experimental process that reduces human error by exclusion rather than introducing additional

research guidelines to the process.

Increasing the availability of open-source resources for replication and experimentation can help

in addressing these issues. Chapter 3 presents a series of internal, and expandable, replication

studies based on a selection of literature that have been integrated into the software suite presented

in Chapter 2. Many of these designs have also been used in optimization studies and are all

compatible with the proposed software suite’s internal optimizer library. Additionally, replication

studies provide opportunities for education, training, and skill development among students and

researchers. Ultimately, these studies play a vital role in building a solid foundation of evidence-

based knowledge, driving scientific progress, and addressing challenges with confidence and

accuracy.

There are eleven optimizers included in the software suite presented in Chapter 2. The core eleven

optimizers include Particle Swarm Optimization, Cat Swarm Optimization, Chicken Swarm

Optimization, a basic sweep optimizer, a Bayesian-based optimizer with a Gaussian Process (GP)

kernel, and a MultiGLODS optimizer. Several variations of each optimizer are included, which

are detailed in Chapter 4 of this document. Ten of the optimizers are also then compatible with the

surrogate model library, expanding the potential optimization options. To accommodate a broad

variety of EM problems, the optimizer function suite available at [49] was used to create a dataset

to train machine learning models to suggest hyperparameters. The Hyperparameter Prediction

Network model, including machine learning models and a controller, is discussed in Chapter 5,

and the expansion discussed in Chapter 7.

24

CHAPTER 2
The AntennaCAT Software Suite

2.1 Software Specifications
The Antenna Calculation and Autotuning Tool (AntennaCAT) is an open-source software suite

designed for antenna design, experimentation, and optimization. AntennaCAT [50, 51] provides a

user-friendly interface with dynamic visualization of designs created using the internal calculator

or replication modules. Built on Python 3.9, the AntennaCAT software suite uses no EM software

specific APIs or libraries to interface with commercial CEM solver software. AntennaCAT must

be run locally with the EM simulation software, and licenses for the EM simulation software are

required. These licenses are not included in AntennaCAT and cannot be saved in AntennaCAT.

AntennaCAT was developed using Ansys HFSS as that was the licensed software available for

testing. Other EM software suites are compatible and are in the early stages of integration.

The Graphical User Interface GUI is created using wxPython (4.2.0), and all plots, 3D previews,

and other visualizations are handled with Matplotlib (3.5.3). A custom graphics library has been

built to work with Matplotlib to display dynamic antenna design previews that can be manipulated

by users in 3D space. The internal design library uses these graphics to display parameter

manipulation in real time.

Functions for .DXF generation and export utilize ezdxf (1.0.3), and the Gerber files generated by

the internal calculator use pcb-tools-extension (0.9.3). Templates generated by AntennaCAT for

various EM software suites are written in the required language for the EM software and are run

by their respective software. For example, while AntennaCAT is written in Python, the template

library for Ansys HFSS is written in IronPython, but stored as .txt files. This method streamlines

a process where templates can be loaded, filled in, combined, and saved as the corresponding file

type necessary to run with the specified EM software suite. This approach facilitates the integration

of new features, new EM software suites, and to accommodate updates without affecting other

existing program aspects.

The internal optimizers use numpy (>1.24.3) for calculations and data manipulation. When

necessary, pandas (>2.0.1) is used to export debug logs as .csv files. The quantum inspired

optimizers do not use quantum computing inspired libraries or software development kits (SDK)

25

such as Qiskit. This is intended to mimic early literature approaches and is discussed in later

sections.

The most recent versions of AntennaCAT are available as open-source software from [52]. This

repository also contains progress for EM simulation software integration. In cases where a specific

EM simulation software is not compliant with Virginia state law, collaboration efforts have been

pursued to further development.

2.2 Template-Based Multi-Software Integration
AntennaCAT is EM simulation software agnostic, providing compatibility with multiple platforms

rather than a unified API. Rather than creating a command dictionary for individual EM software

suites and attempting to continuously match development updates, AntennaCAT employs a

modular, template-based for integration ensuring consistency across all supported EM software.

This process is consistent across all integrated EM software suites. Figure 1, below, shows the

general groupings of the internal template library structure. The exact process for creating scripts

from templates and executing them is discussed in the Simulation Object section (2.4, Simulation

Object and Simulation Integrator instances) of this chapter. Each integrated EM software has its

own template library. This library is comprised of a dictionary linking to a series of .txt files

containing functionally complete actions split into elements that have been reduced to the fewest

steps possible. The actions (e.g., open, save, close, delete) are written in the scripting language of

the corresponding EM simulation software.

26

Figure 1 Example groupings of .txt templates for EM simulation software integration in AntennaCAT’s Simulation Object.

This template-based approach takes advantage of parameterization used by EM software. This

parameterization is used for CAD dimensions (i.e., length, width, height, gaps, etc.), materials,

(i.e., copper, vacuum, FR4, etc.), and other mutable variables in simulation. Advantages for

parameterizing designs include ease of adjusting modeling during the design process, and for

replication. For templating, in terms of the replication studies and internal AntennaCAT scripts, it

allows for limitless variations of the existing designs in terms of variable and material

manipulation. This encourages students to experiment with these designs in a repeatable and

consistent environment.

The template groupings in Figure 1 are used for example and are not exhaustive. The Default

Template Group shows a sample of scripts for the default calculation and replication design. These

are complete design templates that have place holders for parameter values. When the Antenna

Generator tab is used to customize a selected design, the parameters from the GUI are written into

memory and used to fill in the template when a script is generated. Each script in this collection is

27

fully self-contained and can be run in its respective EM simulation software suite when the

placeholder values have been replaced. Other scripts represented by the groups in Figure 1 are not

complete, executable scripts. However, they are complete actions that can be chained together by

AntennaCAT into executable scripts.

Figure 2 Examples of the AntennaCAT template library, with parameterized variables. a.) a script example declaring
parameterized values, b.) a script example creating a rectangle with parameterized values, and c.) an example of a non-
customized script template with placeholder “INSERT_” values.

Figure 2 shows three examples of parameterization needed to generate scripts via AntennaCAT. In

Figure 2.a and 2.c two samples have been pulled from a genetic-algorithm script to show the

declaration, 2.a, of variables $seed_width and $seed_length, and their usage in the creation of a

rectangle at the origin of a CAD model in Ansys HFSS, Figure 2.c. Figure 2.b. shows an example

of a raw template where the placeholder “INSERT_” variables have not been replaced. These

“INSERT_” variables are used as placeholders in all AntennaCAT templates. When a design has

been selected, the appropriate script is loaded into memory, and regular expressions (RE) are used

to replace these text strings with their user-selected, or program generated, values. This is done

28

using an EM software compatible Simulation Integrator, which is discussed in the Simulation

Object section.

2.3 User Interface

Figure 3 The main Design page after creating a new project or loading an existing project. The Antenna Generator process
has been used to create a rectangular patch antenna with the internal calculator.

Figure 3 displays the main Design screen after creating a new project or loading an existing

.ANCAT project. The GUI, built with wxPython widgets, adapts to the operating system’s theme,

leading to potential appearance variations on different platforms. Creating a new project and

selecting a specific EM software is covered later in this chapter.

The GUI is designed to streamline the setup for design and simulation for experimentation through

a top-to-bottom workflow that guides users in providing necessary information. In Figure 4, below,

a generalized layout for the Design page is presented. The button menu on the left is consistent

across the Design, Simulation, Batch, Optimizer, and Settings options. These can be used at any

time to change the GUI’s page without losing progress. The menu bar at the top uses ‘File’ for

traditional file saving and opening options, ‘Home’ to return to the project creation page, and

29

‘Help’ for providing additional details. The following subsections summarize the available options

in the AntennaCAT GUI.

The Design Options section covers several ways that antenna can be created via calculation,

replication, and several advanced options including adding layers, bending, and importing. Imports

can include custom conductor .DXF files, existing scripts, and existing projects for EM simulation

software suites. The Simulation Options subsection briefly covers the simulation options available

for Ansys HFSS. However, there are direct equivalents for other AntennaCAT compatible EM

simulation software. In the Batch Options subsection, using AntennaCAT for batch data collection

is covered. Settings and creating a new project are shown in the Settings and ANCAT Files section.

The Optimizer page is briefly covered in terms of GUI functionality in Optimizer Options. The

optimizers and their use are discussed in the Optimizer chapter.

Design Options

Figure 4 The generalized layout of AntennaCAT’s Design page for using a calculated topology in the Antenna Generator.

30

The Design Options field has several tabs for generating antenna designs, creating custom

conductors, creating layered designs, bending layers, and loading scripts or importing existing EM

simulation software project paths. The 3D design preview window and the summary and message

fields are always displayed on the Design page. The design preview window is updated as design

choices are confirmed, while status messages are displayed with calculation, generation, script

output, and other actions.

The Antenna Generator tab on the Design page has two layout formats; one featured when

selecting topologies that use the internal antenna calculator [53, 54], and one featured when using

a replication study topology. This distinction is shown in Figure 5, with the window on the left

showing a calculated rectangular patch, and the window on the right showing a replication study

version of the rectangular patch. On the left image of Figure 5, users provide material and dielectric

constant values that are then used to calculate the physical parameter values. On the right, these

physical parameter values are set by the user.

Figure 5 A side-by-side comparison for creating planar rectangular patch antennas. Left, using the internal antenna
calculator. Right, the replication study topology.

31

The Antenna Generator tab in Figure 5 has three primary parts, starting at the top with the design

configurations where a series of topologies with their own unique parameter sets can be selected.

When using the AntennaCAT GUI for design, users control factors such as the desired target

resonance, substrate dielectric constant and height, the feed method (microstrip or probe, when

selection available), and conductor and substrate materials selected from an internal materials

library. If a topology using the internal antenna calculator is selected, then fields for the calculator

results and export options are displayed. The calculation and export options are handled by the

AntennaCalculator [54], which calculates values for three topologies: a rectangular patch antenna,

a half-wave monopole, and a quarter-wave dipole. Working with the user provided information,

the open-source AntennaCalculator returns parameter values that are then used in template-based

CAD creation. If replication study topologies are selected, images with the corresponding

parameter locations are displayed. In both cases, material properties and other physical

characteristics of these designs are user controllable.

The second tab in Design Options is the Custom Conductor, which allows users to import a .DXF

file that can be converted to a custom conductor for a planar antenna. Currently, support for

importing .DXF files for non-planar antennas does not exist but may be an expansion in future

work. Figure 6, below, shows two example imports. On the left is a design created using the

Antenna Generator, exported as a .DXF file, and then re-imported. This design has several

polylines that appear in the 2D preview window at the top, each of which can be assigned in

‘Assign Shapes’ at the bottom of the left side. In cases such as the one in Figure 6 where a

microstrip feed has been imported, the manual assignment of port location happens in the preview

window. On the right side, the AntennaCAT logo has been imported as a .DXF as a single object.

Due to the difference in .DXF file structure, the AntennaCAT logo only has one identifiable layer,

and individual polylines are not identified. This difference is caused by the creation of the .DXF,

and how ezdxf processes polylines. In the case of the AntennaCAT logo, due to the number of line

segments (>4000), the .DXF was imported as a single object to reduce issues with scaling and

processing.

32

Figure 6 The Custom Conductor tab with two import examples in Design Options. Left, a multi-polyline import of a
microstrip-fed rectangular patch. Right, the AntennaCAT logo imported as a single layer.

Material assignment for imports is not handled in the Custom Conductor tab. If no material is

assigned, copper will be used for any solids as a default. Under the Layers tab, shown in Figure 7,

the imported conductor can be used as a template for the conductor shape. The top input box for

Conductor Layers can then be used to either leave the conductor as a singular layer, or to

dynamically create multiple layers.

Similarly, substrate (below the conductor layer) and superstrate (above the conductor layer)

options can be used to create multi-layer materials. If no conductor is selected, the substrate and

superstrate boxes can be used to create designs with multi-layered materials. By default, these are

rectangular boxes with length of 50 mm and width of 60 mm, with the length and width

individually parameterized. To configure these layers, the Bend and Shape tab can be used to select

an angle of deflection. This angle of deflection is calculated based on equations in [55], and can

be used to create convex or concave shapes.

33

Figure 7 The Design Option Layers tab showing the custom conductor material selection, substrate layer options, and
superstrate layer options.

Due to the complex nature of dynamically creating antennas on layered substrates, the conductor

layer is not adjusted to retain a specific frequency when applied to a new substrate combination.

If a calculated topology is used with the Layers tab, the calculated values become static, and

recalculation must occur to change conductor size. This does not affect the thickness of the size of

the layers.

34

Figure 8 Examples of a planar loop antenna on multi-layered substrates with positive and negative angles of deflection.

Figure 9 Examples of a planar loop antenna on multi-layered substrates, with multi-layered conductors to show
consistent angle of deflection on all layers.

Figures 8 and 9 show examples of planar loop antennas made with a custom replication study

option. These figures demonstrate the bend functionality (a dynamic angle of deflection) with

multi-layered substrates. Figure 8 uses a single layer conductor and shows positive and negative

angles of deflection. Figure 9 shows exaggerated thicknesses for the multiple layered loop antenna

to demonstrate the consistency of the angle of deflection. In the custom Matplotlib graphics library,

the arc length and thickness of each layer are preserved. Actual implementation of the bend

depends on the EM simulation software suite, and if the preferred method is to use equation defined

planes or to project 2D designs onto a curved surface. This difference affects if a conductor, or

uniquely shaped substrate, can be drawn directly with polylines or if it must be projected.

35

Importing Existing EM Projects and Scripts
Importing projects and scripts exists as part of the Design Options tab collection on the Design

page. Using this functionality, if a project has been created in a compatible EM simulation software

suite, it can be loaded into AntennaCAT as a file path. Loaded projects are not parsed for

parameters or other project information. For them to be usable in AntennaCAT, several conditions

must be met. First, there must be at least one EM simulation software license related to the

imported project on the computer running AntennaCAT. Secondly, the project must be

parameterized as AntennaCAT cannot create parameters in the CAD model for an existing design.

Finally, users must manually enter parameters by name, exactly as they appear, in the EM

simulation software project. An initial value for the parameter must be entered into the Load

Project tab, as shown in Figure 10.

Figure 10 The Design Options window showing the Load Project tab where an existing project path has been added into
AntennaCAT and parameters have been added manually.

Initial parameter values need not be exact and will default to millimeters if units are not specified.

These values will be used in the Batch and Optimizer processes for creating ranges for parameter

manipulation. If using AntennaCAT for simulation setup and exporting results, these values will

not be overwritten in the project.

Parameters do not need to be manually entered into AntennaCAT if importing an existing script,

which is the preferred method for incorporating existing projects. This can be done in the Load

36

Script tab. Figure 11 shows an Ansys HFSS script selected and imported from an existing

AntennaCAT project. As Ansys HFSS is one of the compatible EM simulation software suites,

AntennaCAT’s file parser can extract existing parameterized values. Proper parameter naming and

adherence to the software’s conventions are necessary for accurate parsing. However, errors can

be corrected in this window by selecting the name or value and typing the correction.

Figure 11 The Design Options window showing the Load Script tab where an existing Ansys HFSS script has been loaded
into AntennaCAT, with parameters automatically detected.

Simulation Options
The Simulate page in AntennaCAT remains consistent for all compatible EM simulation software

suites. On the left side of the window in Figure 12, there are tabs for simulation and solution setup

(top), and report selection (bottom). Half of the page is designated for simulation configuration

summary messages and status updates to properly display configurations for simulation settings.

Figure 13 shows simulation options for Ansys HFSS. The differentiation in EM software suite is

made to highlight that report settings, and output options, may differ slightly between software

suites due to naming conventions or terminal/modal compatibility.

37

Figure 12 The Simulate page generalized layout, with fields for report selection, simulation and solution setup, and output
messages.

In the Solution Setup tab, top left on the Simulate page, there is the option to use multiple

frequencies in simulation, including multiple deltas should there be a need to change resolution. If

the multiple frequency checkbox is marked, but one or fewer frequencies are entered, the user will

be prompted to enter frequencies.

Figure 13 The Simulate page for Ansys HFSS simulation and solution options. A script for a 2.4 GHz patch antenna has
been generated, and reports for Rectangular Plot and Rectangular Stacked plot will be created after the simulation.

38

Report Settings for Ansys HFSS include tabs for Modal Solutions, Terminal Solutions, Far Field

reports, Data Tables, and Antenna Parameter outputs. When possible, there are options to export

S, Z, or both parameters. All reports featured in the Report Settings tabs are native to their

respective EM simulation software and may differ slightly in name between software suites. If a

simulation software has been selected, the design and simulation created in AntennaCAT can be

run directly from this window using the Run Simulation button, or a script can be saved to be

manually run using the Export Script button.

Batch Options
Unlike the Design and Simulate pages, the Batch page does not change fields based on selected

projects or designs. This page is designed to help users quickly select parameters and ranges to

sweep in iterating simulations for data collection purposes. The simulation and parameter changes

with this process are fully automated via the Tuning process. Reports for return loss, gain, and

directivity are exported with numbers corresponding to the parameter combination for later

references.

Figure 14 The Batch page featuring detected Controllable Parameters field with values from a microstrip-fed rectangular
patch antenna.

39

On the Batch page, parameters from imported scripts, manually entered from loaded projects,

calculated designs, or replication study designs can be selected from memory and parsed into the

Controllable Parameters field at the top of the page. This process is automated using the Detect

button. Parameters will be split into columns for the name of the parameter, the original value,

units, type of value (range, constant, material, parameter), a variation percentage, a range, and a

delta for incrementing values within the range bounds. On the far right is a checkbox for ‘use

original’ to make a parameter static.

When using the variation percentage or range, there are several options. Entering a percentage will

set the boundary above and below the original value. However, the boundary can be set manually

by entering values directly into the Variation Range field. Changing the delta will change the step

size sweeping through the variation range. By default, the delta value is set to 1.

The Run Settings tab on the lower left controls how many simulation licenses can be used during

this process. AntennaCAT natively manages parallel simulation coordination, and can constrain its

own license usage, but has no method to track the actual licenses assigned to a machine or allowed

per user. Export settings allow users to select if parameter variation occurs in the same simulation

file, or if a new simulation project is created each time. Currently, there is no option to select which

reports are generated and exported, but that feature is in development.

40

Optimizer Options

Figure 15 The Optimizer page featuring the initial simulation setup tab, controllable parameters window, and status
message window.

AntennaCAT includes an internal optimizer suite. Features of the optimizer suite are discussed in

Chapter 4 of this document, including details of specific optimizers and the hyperparameter tuning.

The GUI includes simulation setup on this page that imports simulation options from the Simulate

page if previously set. However, if a project was imported the process is streamlined by including

the basic simulation setup as a tab on this page. There are no options for generating reports on the

optimizer page; based on selected target values (i.e., return loss, gain, etc.) on the specific

optimizer tab AntennaCAT will log data in a .csv compatible file for reference, but exports specific

reports to simplify parsing.

Similar to the Batch page, the Controllable Parameters of the Optimizer page are parsed from

memory into parameter name, original value, units, upper bounds, and lower bounds. There is less

emphasis on tuning parameter bounds for the optimizers. These bounds are absolute limits and are

used to control internal features such as random number generation, step size, decision space

sweeping, and others. When applicable, resolution options for an optimizer replaces the Batch

page’s delta. Otherwise, the optimizers control how samples are taken in the feasible decision

space.

41

Figure 16 shows an example of the swarm-based selection prior to optimizer selection. On the far

left, the Parameter Summary field indicates the total number of detected controllable input

parameters, the selected parameters that will be mutable for the optimizer, and the lower and upper

bounds for the parameters. The center field shows the selectable Optimizer Targets, which include

S11, gain, bandwidth (BW), directivity, and efficiency. These five metrics were selected as they are

commonly used for performance evaluation. Experimentally, S11 and gain were the most relevant

to achieve desired performance results. However, the other metrics are extremely valuable for

evaluation and are often desired beam characteristics themselves. The Parameter Summary and

Optimizer Targets are consistent across all optimizers. The Optimizer Targets list may be expanded

in the future, but currently focuses on several practical features for optimization.

Figure 16 The default values for the Swarm Based optimizer tab on the Optimizer page. Two optimizer targets, S11 and gain,
have been selected as target values for PSO.

In all optimizer tabs, the fields on the right of the GUI are used to select optimizer parameters

(hyperparameters) for the chosen optimizer. Some tabs, such as the Swarm Based tab, have

multiple optimizer options, while others such as the MultiGLODS and Bayesian tabs have singular

optimizers. When applicable, options for compatible surrogate models are selectable.

The ‘Help Me Choose’ tab is discussed in Chapter 4 as part of the Hyperparameter Prediction

Network model interface, with the results of utilizing machine learning on the data set collected

using the objective function library. This tab is used to suggest hyperparameters based on the

chosen optimizer, the number of input controllable parameters, and the number of targets being

optimized for.

42

Settings and ANCAT Files

Figure 17 The AntennaCAT home screen for project selection. This page includes new project creation and open project
options, and a set of tabs for opening recent or pinned projects.

When an instance of AntennaCAT is started for the first time, the home page in Figure 17 is shown.

A new .ANCAT project can be created with the New Project button, or an existing project can be

opened with Open Project. If a new project is created, the Settings page in Figure 18 will be

automatically opened to configure the EM simulation software suite selection.

43

Figure 18 The Settings page for AntennaCAT featuring the EM software selection and user information fields.

The Settings page (Figure 18) features several compatible EM software suites for selection. For

AntennaCAT to properly control the simulation process, the software executable must be selected

and the path saved. The executable can be located manually using the Browse button, or

AntennaCAT can search for the executable. It is recommended to use the Autodetect button as

some EM software suites have multiple executables in their directories. Here, the value of the

maximum number of licenses that AntennaCAT can use can be set, which will take precedence

over other settings for Batch or Optimizer functions. The maximum number of licenses set must

be less than or equal to the maximum number of licenses available to the local machine running

AntennaCAT and the EM simulation software. AntennaCAT

Project settings for default simulation behavior, save options, and options to clean a project are

available on the lower right of the window. On this page it is possible to give AntennaCAT fully

automated control over all simulations, or to wait for a manual closing of the simulation window.

If ‘Wait on First Simulation’ is selected, AntennaCAT will wait until a user has closed the

simulation window before continuing with automated simulation control. This allows the user to

inspect the design and simulation results. When ‘Wait on Every Simulation’ is selected,

AntennaCAT will expect the user (or a separate process) to close the simulation software before

the next simulation is started. It is not possible to edit this preference while a simulation process

44

is running. The Clean Project tab has options to remove scripts, projects, or other data from

memory if there are recurring errors.

2.4 Modular Scripting and Automation Process

AntennaCAT dynamically generates scripts, creates CAD files, and simulates antenna topologies

or user-uploaded models. The presented software comprises three main components: the GUI, the

program kernel controlling optimization and data management, and the Simulation Object (SO)

which interfaces with commercial EM software. The modular, template-based SO increases the

accessibility for custom antenna creation, automating the optimization process from feature

selection and calculation to CAD generation, simulation, and parameter tuning. In addition to

creating antennas based on user-set parameters, within the program operation is the batch project

simulation for data collection and automated design tuning via optimizers popular in literature and

machine learning techniques. Genetic algorithm implementation has been discussed in previous

AntennaCAT publications [50, 51] and is available in the derivative GeneticCAT [56], which has

limited features and is not part of the core AntennaCAT software suite.

 AntennaCAT and all derivatives work on the same modular, template based SO approach to create

a unified system where one SO class is used to interface directly with each EM software. The SO

for Ansys HFSS generates scripts written in IronPython, the Altair Feko SO uses Lua, the

COMSOL Multiphysics SO uses Java, and finally the SO for Dassault Systemes CST Studio Suite

generates and implements VBA Macros. AntennaCAT executes these scripts to first create the

initial CAD model, and then run simulations to collect baseline data on the topology. When

utilizing the tuning, batch scripting, or data collection features, AntennaCAT generates new scripts

to edit the CAD models and rerun the simulation.

Simulation Object and Simulation Integrator Instances
AntennaCAT's modular design allows for easy adaptation to new EM simulation software,

replication studies, and updates to existing integrated EM suites. This adaptability is achieved

through a series of Simulation Objects and Simulation Integrator instances. Similarly, the

45

Optimizer Objects and Optimizer Integrators follow a comparable structure but are not necessary

for the base functionality of AntennaCAT.

AntennaCAT utilizes template-based Simulation Object (SO) classes to create a unified interface

for well recognized commercially available EM simulation software. To facilitate feature

expansion, all SOs follow a design template that allows for modular class implementation. This

structure enables consistent function calls for each object, but creating the Python object at run

time based on user input. That is, all SO objects are interchangeable as far as the AntennaCAT

front end is concerned, and if an EM software can be controlled via script, a SO for that EM

software can be added without major modifications, no matter the interface language. Figure19

shows the clear division between individual SOs and their respective EM simulation software.

Figure 19 A high-level visualization of the modularity of the Simulation Object instances and the relation to several compatible

EM simulation software suites. The respective scripting languages for each software are listed on the right.

Figure 20 shows the process as the AntennaCAT kernel is aware of it, while Figure 21 shows the

process with the ‘invisible’ Simulation Integrator and template generator. This distinction is

important because the modular, interchangeable Simulation Integrator layers are the basis for

adding or adapting the compatible EM simulation software suites. The Simulation Integrator is the

first layer of integration, and the primary point of interfacing with the EM simulation software.

46

The Simulation Object as the AntennaCAT kernel sees it, is the EM simulation software. However,

AntennaCAT has no way of differentiating EM simulation software at this point in the simulation

process flow, nor does it have a reason to. As far as the AntennaCAT kernel is concerned, there is

only one type of EM simulation software.

The Simulation Object is dynamically selected on the Settings page at the .ANCAT project

creation. The Simulation Integrator uses the Simulation Object to control which template

generation script classes are passed back as objects. This gives the Simulation Integrator control

over the process. The template generation script classes are unique to their specific EM simulation

software suite, and much like the template library are organized based on the action they complete.

That is, from the point of view of the AntennaCAT kernel, calling a create_rectangular_patch()

function will look the same for every EM simulation software suite. However, from the template

generation side, it will trigger a series of commands and script templates unique to the specific EM

simulation software suite and scripting language.

Figure 20 The high-level simulation control process as seen by the AntennaCAT kernel. The kernel controls the SO, which

controls the script execution in the EM simulation software suite.

47

Figure 21 The high-level simulation control process with the invisible simulation integrator and EM software suite specific

template generator. The UI and kernel have been condensed visually, but the process remains the same.

Figure 20 shows the split in the kernel between the operating system level settings, and the

optimization selection. Running basic simulations or the Batch process uses only system

commands to execute scripts with the respective EM simulation software suite. Optimization

introduces an additional layer with Optimization Integrators and Optimization Objects, analogous

to Simulation Integrators and Simulation Objects. The difference between the two sets is that the

optimizer runs, returns values to the kernel, and then the kernel passes those values to the

Simulation Object, which will command the Simulation Integrator to edit or create templates based

on those new values.

Choosing which SO is utilized during tuning depends on the EM software selected by the user.

While the Design page does not utilize the SO, the functionality is required beginning when

simulation inputs are configured to generate antenna CAD and simulation scripts. In addition to

the SO being designed based on a template, the SO contains text file templates for creating, editing,

operating, and closing the EM software via script. All templates in the SO have been designed to

operate independently, modularly, and without conflict against previous script commands.

Template Creation
The modularity of templates in the SO is driven by designing for how an antenna is created

geometrically and procedurally, rather than how a human user might organically design, edit, and

repeat commands. The advantage with this approach is that it naturally reduces potential conflict

in script commands by ensuring that templated CAD elements have been reduced to a collection

of the most minimal steps possible, and that all scripts for a feature are complete (i.e., do not rely

on previous scripts to create a feature). Figure 22 shows an example block diagram for this process

for creating a microstrip patch antenna on the first tuning iteration. When an antenna design is

48

simulated, three scripts have been created and stored in the project folder. The first script is the

antenna CAD creation script. The second script configures the simulation properties, report

creation, and export. Finally, the third script combines the two scripts aforementioned scripts, and

is the script that AntennaCAT uses with the EM software. The CAD and basic simulation scripts

can be executed by a human user outside of AntennaCAT to recreate designs and rerun simulations,

but the scripts used by AntennaCAT in the tuning process contain paths to local data storage that

should not be edited.

Figure 22 A block diagram of the patch antenna creation process for the first iteration of tuning. The Simulation Object contains

a collection of templates used to create a script file that can be used by the selected EM software.

The templates in each SO are written in the language used by the EM software (i.e., IronPython

for HFSS, and Lua for FEKO), but are managed by Python subprocess library when being

manipulated by AntennaCAT. Figure 22 shows an example of how the SO would combine a series

of templates to generate a script for simulation. Files in the template library have been reduced to

the smallest possible instruction set to preserve the modular independence of each element. In

cases such as the batch data generation and optimization, rather than creating a new project, after

49

the first simulation run, the template block for ‘New Project’ would be replaced with an ‘Open

Project’ template, and the CAD Edit grouping replaced with parameter manipulation. This reduces

the time processing needed for complex designs.

Antenna Tuning
The Tuning process is the catch-all term for AntennaCAT’s iterative parameter adjustment and

automated simulation control capabilities. This process incorporates functionality from design,

data collection, and optimization. Figure 23 shows an example of the simulation, analysis, and

report export used in the iterative process.

Figure 23 Features of the Tuning process, including the Simulation Object and core features of the analysis and GUI report

functions.

Tuning uses a looping CAD-simulate-analysis process to automate the antenna design process.

Whenever this process is initiated, such as when beginning a new optimization process, a new SO

is created based on the set EM software choice. The first iteration of the SO creates a new project

with the selected EM simulation software, executes the script to model the antenna using the CAD

process, and runs the first simulation. Simulation results in the EM software project are exported

to a local directory, and then the project is saved and closed. Closing the EM software does not

50

terminate the AntennaCAT tuning process and is used to save the results between running scripts

to enable recovery from simulation errors. The exported simulation results are read into

AntennaCAT to analyze several factors, such as the simulated resonant frequency, and closeness

to target gain, and simulated S11. If a simulation is completed without issue, and data recorded,

then functions within the Analysis Functions block will pass sampled data to the Report block,

which updates the GUI display. Parameter adjustment varies based on the specified optimization

method and the known features of the antenna topology. The Optimization chapter goes into further

details of example strategies and considerations. Decisions from the optimization method are then

integrated into a new script designed to open the previously created project, then edit existing

parameters, and finally rerun simulation. If a solution has been found that meets the user-set

minimum constraints, then the results are returned, and tuning is ended.

2.5 Batch Data Collection
The primary purpose of the batch processing functionality is to create a dataset for a selected

antenna design from a defined set of controllable parameters. Using the ranges of changeable

values, all combinations of parameter manipulation are simulated, similar to a parameter sweep

common in most EM simulation software.

During simulation iterations, AntennaCAT exports results to a .csv compatible format containing

data from the automated batch simulation. Users can select which values (S11, gain, BW, etc.)

should be recorded in the dataset when generating customized sets. All identified physical

parameters that can be adjusted in the design will have their values recorded at every iteration to

complete the dataset. Other topologies with specific design features, such as dual-band antennas,

will have the option to include multiple detected resonances, but will need to be specified by the

user. The Batch functionality does not use any intelligent parameter value adjustment. Batch and

Optimization processes operate independently of each other and cannot be run simultaneously

within a single application instance. User-uploaded scripts must have CAD dimensions controlled

by parameter variables and follow predictable naming conventions. This allows configuration,

optimization, and tuning of non-analytical, or semi-analytical topologies, not created by the

designer.

51

2.6 Open-Source and Availability
The AntennaCAT suite, its optimizers, and other utilities aside from the proprietary

electromagnetics software used for simulations, are open-source online from their various authors.

The complete collection of repositories, tutorials, and related publications are listed in Chapter 9.

The AntennaCAT software and peripherals are written in Python, though versions in other

languages may be available from their respective authors.

52

CHAPTER 3
Replication Studies

Figure 24 A selection of reference images for the replication studies available in AntennaCAT. a) a simple loop antenna, b.)
a microstrip fed rectangular patch antenna, c) a half-wave dipole, d) a slotted patch antenna [57], e) a coplanar keyhole
antenna [58], f) a microstrip E patch antenna [59], and g) a dual band serpentine patch [60].

The AntennaCAT software includes over a dozen built-in replication studies, with plans for

continuous expansion. These include versions of the antennas created using the integrated

AntennaCalculator (i.e., the rectangular patch antenna, the half-wave dipole, and quarter-wave

monopole), and other designs popular in literature. Figure 24 shows 7 examples included in

AntennaCAT either from literature [57, 58, 59, 60], the internal calculator (24.b-c), or designs from

request by early users (24.a). These options are selectable from the Antenna Generator on the

Design page, as shown in Figure 25.

Replication designs were selected to be incorporated either due to their prevalence in antenna

design and benchmarking (e.g., rectangular patches, slotted patches, and the E patch), or due to

their complexity [60, 61, 62]. The full list of current replication study designs is included in Table

1 below.

53

Table 1 A summary of current designs included in the replication study set, the number of controllable parameters
related to the study, and the source(s) of their designs.

Design Num.

Parameters

Source Design Num.

Parameters

Source

Coplanar

Keyhole

4 [58, 63] Coplanar Monopole 16 [68]

Square Loop

(FSS)

4 [64] Double-Sided Bowtie 16 [69]

Square Spiral

(FSS)

4 [33] Serpentine Patch 18 [60, 61]

E 6 [59,65] Hexagonal, Ring-Shaped Fractal 21 [62]

Slotted Patch 10 [57, 66] substrate integrated waveguide

cavity-backed L-shaped slot

antenna

23 [32]

Double-Sided

Vivaldi

11 [67] Others 4+ [70,71,72]

All replication studies include settings for the substrate height, the conductor material, the substrate

material, and any parameters included in the literature for the specific topology. In Figure 26, a

dual band serpentine antenna [60] with 20 controllable physical parameters has been selected to

show the labeled controllable parameters from literature, the diagram showing the physical

characteristic associated with each parameter, and the 3D preview showing how the parameterized

design varies from the reference image.

54

Figure 25 The AntennaCAT Design page showing a selection of calculation and replication options for antenna design.

Figure 26 The dual band serpentine replication study from [60] on the Design page. Left, the default parameters. Right, the
3D preview including the probe location.

The 3D preview is generated with the ‘Replicate’ button at the bottom of the Antenna Generator

tab and will accurately reflect the CAD model generated in the EM simulation software suite in

terms of scale. This is exceedingly important for cases such as Figure 26, where the edge of the

55

substrate (represented by the outer box around the serpentine) is close to the edge of the antenna.

To encourage experimentation, AntennaCAT does not place limits on parameter values, or add

constraints to the parameter relations to each other in the replication studies. As an effect of this,

it is possible to create antennas with invalid configurations, intersecting lines, probe feeds not

located within the substrate, etc.. The generated CAD files are carefully parameterized to handle

these inputs, but that does not mean such designs are valid for simulation or solution setup.

All the included replication study designs are compatible with the internal optimizer set, and some

have been used to collect hyperparameter performance data for the neural network trained on the

data collected from the objective function suite in Chapter 5

56

CHAPTER 4
AntennaCAT Optimization Suite

Figure 27 An overview of the optimization process. The Optimizer Integrator is used with a dynamically declared optimizer
class object so that new optimizers can be easily integrated with AntennaCAT.

There are eleven core optimizers integrated into the AntennaCAT optimization suite. Figure 27

shows a high-level diagram of AntennaCAT’s optimization process, including the Optimizer

Integrator, which allows the optimizers to be used interchangeably. Figures 28 and 29 show the

configuration screens for two types of optimizers: a traditional particle swarm optimizer, and the

MultiGLODS optimizer. These screens provide the optimizer configuration data needed in the

‘User Interface’ block in Figure 27. This data is parsed by AntennaCAT and provided to the

Optimization Object (similar to the Simulation Object described in Chapter 2) that manages the

optimization process. This object is created at runtime with the selected optimizer information, the

detected controllable parameters in Figure 15 (Chapter 2), and the target values for the antenna

design. The Optimizer Integrator manages the dynamically at runtime selected optimizer

interfaces, so that no distinction is made between selected optimizers by the AntennaCAT kernel.

57

The eleven optimizers in AntennaCAT include a Particle Swarm optimizer, a Cat Swarm optimizer,

a Chicken Swarm optimizer, a Bayesian optimizer with a Gaussian Process kernel, and a

MultiGLODS optimizer. Several variations of the swarm optimizers, and a sweep optimizer, are

included in the optimizer suite. Each optimizer, and its variations, are discussed in the subsections

below. Also discussed as part of the Bayesian optimizer is the surrogate model library. It is possible

to use all optimizers except for the sweep optimizer with all surrogate models, though not all

combinations will converge. In total, there are 90 optimizer-surrogate model combinations, and

additional configurations such as boundary condition handling which may cause unique optimizer

behavior.

 The selection of optimizers has been integrated based largely on their popularity in literature. The

swarm-based optimizers use the version of the optimizer as they were introduced into the field of

electromagnetics. Likewise, the ‘quantum inspired’ set are based on the versions of the optimizers

as they were initially introduced. The quantum inspired optimizers use random numbers to

introduce uncertainty into the particle movement. This process is further explained in the

Quantum-Inspired Optimizers section in this chapter. When possible, optimizers have been

grouped together under single tabs to make GUI navigation easier. For instance, the optimizers in

the ‘Swarm Based’ tab grouping are related to traditional PSO, but are modeled after other natural

occurrences to utilize specific behavioral problem solutions. Any quantum inspired counterparts

are listed under their own ‘Quantum Inspired’ tab. The MultiGLODS [73] optimizer is a

comparatively newer (2018) algorithm, a multi-objective direct search algorithm with a merge

function in the search step. MultiGLODS and the Bayesian optimizers [74, 75, 76] have their own

tabs as they are unique in the optimizer set.

Gradient-based optimizers rely heavily on initial solution guesses and their efficiency for finding

local optima. This brings up two issues: first, simulations are time and computationally expensive,

thus having multiple initial solution guesses is not efficient; secondly, electromagnetics problems

tend to have multiple local minima in addition to the global minima. Given this, it was decided to

implement primarily derivative free optimizers in the AntennaCAT software suite. This decision

had the additional benefit of finding solutions that are not influenced by the initialization or initial

state of the optimizer.

58

Figure 28 shows the initial screen for Swarm Based optimization selection. It includes a traditional

particle swarm optimizer [77, 78], a time modulated step particle swarm optimizer [79], a simple

cat swarm optimizer [80, 81], a sand cat swarm optimizer [82, 83], and a chicken swarm optimizer

[84, 85, 86]. Multiple boundary types (Random, Reflection, Absorb, Invisible) are available [87,

88, 89], though random boundary is the default. Implementation of each optimizer is explained

later in this chapter.

Figure 28 The initial Swarm Based optimizer group customization tab on the Optimizer page.

Figure 29 shows the MultiGLODS optimizer tab populated with the number of controllable input

parameters, the number of selected parameters, and the lower and upper bounds. This field is

populated when the ‘Apply Configuration’ on the detected controllable parameters box is clicked

(see Figure 15).

Figure 29 The MultiGLODS optimizer tab on the Optimizer page. It shows the dynamically detected input parameters, the
number of selected parameters, and the lower and upper bounds for the selected parameters.

59

Unlike the MultiGLODS optimizer collection in Figure 29, the Swarm Based optimizer tab in

Figure 28 includes the ‘Help Me Choose’ tab. On the ‘Help Me Choose' tab are suggestions for

hyperparameters based on three factors: the selected optimizer, the number of selected controllable

parameters, and the number of selected optimizer targets. AntennaCAT user can choose to use the

suggested hyperparameters or not.

Optimizers demonstrating high parameter sensitivity during the data collection process described

in Chapter 5 were excluded from the final dataset used to train the neural networks used to predict

the hyperparameters. In the current optimizer set, the Bayesian Optimizer, the MultiGLODS

optimizer, Sand Cat Swarm, and the sweep optimizer are excluded. Details on this are included in

the chapter subsections relating to the respective optimizer. In Chapter 5, the data collection

process and machine learning approaches used on the dataset are discussed.

There are five Optimizer Targets options available for the optimizer suite: S11 (dB), gain (dB), BW

(bandwidth, Hz), directivity (dB), and efficiency. All five are available for all optimizers, though

in experimentation it has not been efficient to use all five targets at once. Typically, S11 and gain

have performed well enough for practical purposes. S11 is set to -10 dB by default. It is up to the

user to set target values consistent with the output of the selected EM simulation software suite

configurations. BW, directivity, and efficiency are set to 0 as defaults, and need to be changed

before they can be used as target metrics. All target metrics are considered with the same priority,

though they are evaluated in the same order they are listed, so if there are errors higher in the listed

order, the later values will not be evaluated separately. In practice, using the variance of the

simulation from the target resonant frequency, reflected power (S11), and the overall gain of the

antenna, is enough to utilize optimizers for topologies with few parameters and semi- analytical

solutions, but the optimization performance drops as more features are added.

When multiple frequencies have been selected on the Simulation Setup tab, the target values will

be applied to both frequencies. This allows for multiple frequencies to be evaluated simultaneously

and applies to dual-band or tri-band designs in experimentation. Higher numbers of bands are

possible but have not been evaluated for practicality reasons. It is suggested to optimize for features

such as antenna footprint by controlling the physical parameters in the controllable parameters

panel on the Optimizer page. Multi-band designs do not affect the problem bounds, but footprint

minimization does as the lower and upper bounds for parameters are constrained.

60

The implementation of the presented optimizers does not require knowledge of specific topology.

The only information provided to the optimizers are the selected target metrics (return loss,

bandwidth, gain, directivity, efficiency), the target values, the controllable parameters extracted

from the generated or imported scripts, and their upper and lower bounds. A mix of deterministic

and stochastic optimizers are included to address a range of user needs, and to incorporate popular

optimization methods for replication studies. Model-based optimizers have been explored, but due

to their limited adaptability to unknown topologies, they are not the focus of the optimizer

selection. By default, optimizers have pre-set tuning parameter values based on experimental

usage. These values are not optimal for all topologies, nor are they expected to be [47], and Chapter

5 details how collected data has been used to train machine learning models on a range of objective

functions to suggest initial hyperparameters based on the number of controllable parameters and

targets. These hyperparameter suggestions are accessible through the ‘Help Me Choose’ tabs, and

update dynamically based on user input.

Hyperparameters, more specifically model hyperparameters, are used in both the optimizers and

the design of the pre-trained neural networks used to estimate initial optimizer hyperparameters.

These hyperparameters are used by the optimizers to control the learning and navigation process

through the state space. Manually tuning hyperparameters requires experimentation, is time-

consuming, and is not easily reproducible across optimizers. To address this, many researchers are

turning to automated hyperparameter tuning. In AntennaCAT, each optimizer selection has its own

hyperparameters unique to that optimizer. For instance, PSO uses the number of particles, and

several weight minimums and velocity limits, while the MultiGLODS optimizer utilizes a

coefficient for step size contraction (beta), a coefficient for step size expansion (gamma), and a

search frequency. All optimizers have tolerance and maximum iteration values, though what the

tolerance controls may differ between optimizer groupings. For instance, in MultiGLODS, the

tolerance controls the step size tolerance, and the radius is reduced in size as you approach the

solution. However, in many other optimizers, the convergence criteria are based on distance from

target, or the L2 norm of the standard metric on the function space output with respect to the target.

Default values for the hyperparameters in the Optimizer GUI are based on experimental examples,

and are place holders, not optimized or globally well performing values. Respecting the no free

lunch theorem [47], while an optimizer may perform well on one problem, it will not perform as

61

well on the set of all possible problems as no optimizers intrinsically have an advantage of being

faster or more accurate on all problems. Likewise, no set of hyperparameters will perform well on

every problem or for every optimizer. Optimizers must be selected based on compatible problem

types, and then their hyperparameters must be tuned to the problem.

The next sections cover boundary and constraint handling mechanics for AntennaCAT compatible

optimizers, and how optimization is automated in AntennaCAT. Following that, the individual

optimizer implementations, including the surrogate model library, are discussed.

4.1 Boundary Condition Handling
All optimizers that generate or randomly sample the feasible decision space on an EM problem

directly utilize boundary condition handling. For those that do not, including the Sweep grid

search, hard boundaries may be used to restrict movement or to indicate the end of a search. These

boundaries are statically set prior to starting an optimizer process. Boundary handling is conducted

inside of the optimizer class, and not handled by AntennaCAT directly.

Optimizers using boundary condition handling are programmed with four types of bounds by

default. In terms of the current optimizer suite, this includes all of the swarm-based optimizers and

their quantum inspired counterparts. The Random bounds option will randomly respawn any

particles or agents that leave the feasible decision space back into valid bounds. Reflection bounds

will ‘bounce’ particles back into the valid space. Selecting Absorb for the boundary handling will

cause the velocity of any particles to be ‘absorbed’, or set to zero, in that direction. Finally, the

Invisible boundary conditions will cause any particles that have done out of bounds to no longer

be evaluated. Depending on the optimizer implementation, these particles can either be set to

inactive and their positions are no longer updated, or the particles can be set to inactive and their

positions updated out of bounds but not considered for any calculations.

AntennaCAT optimizers use Random bounds by default, as it has experimentally proven to be the

most stable. In cases where problem constraints are violated, but the problem bounds are not, the

optimizer defaults to using random bounds logic.

62

4.2 Problem Constraint Handling
The optimizers used in the AntennaCAT require a constraints file to manage objective function

constraints. If a file is not provided, then a default file with no constraints is used. This file is

loaded into the optimizer constructor and cannot be changed during runtime. Examples can be

found in the individual optimizer repositories on GitHub [79, 90-100]. When controlled by

AntennaCAT, the default file is typically used. However, it is possible to add a custom constraints

file. It is recommended to reference the README.md file for the GitHub repositories (including

the AntennaCAT repository) for the creation of these files as they are highly problem specific and

not included in AntennaCAT’s error checking process. In the AntennaCAT Tuning process cycle,

the objective function is replaced by an array containing the difference between the target values

and the values exported from the simulation report values.

4.3 Single and Multi-Objective Optimization
All optimizers included in this section are compatible with both single and multi-objective

functions. Not all optimizers will work equally well on both types of problems, but it is possible

attempt problems regardless of input dimensions, or with any combination of the five target values

that can be optimized with AntennaCAT (S11, gain, etc.). AntennaCAT takes a ‘no preference’

method of multi-objective optimization but does not calculate a Pareto front. Instead, the ‘best

choice’ is the smallest norm of output vectors (the L2 norm).

4.4 Objective Function Handling for Repository Examples
The stand-alone optimizer repositories [90-100] have a standardized structure to encourage

experimentation. Every optimizer repository has three test objective functions included in the

repository:

1. Himmelblau's function, which takes 2 inputs and has 1 output

2. A multi-objective function with 3 inputs and 2 outputs (see lundquist_3_var)

3. A single-objective function with 1 input and 1 output (see one_dim_x_test)

Each function has at least the following five files in a directory:

63

• configs_F.py - contains imports for the objective function and constraints, constant (static)

assignments for functions and labeling, boundary ranges, the number of input variables,

the number of output values, and the target values for the output.

• constr_F.py - contains a function with the problem constraints, both for the function and

for error handling in the case of under/overflow.

• func_F.py - contains a function with the objective function.

• main_test.py – contains a script to run the optimizer and print out results to the terminal.

• main_test_graph.py - contains a script to graph the function for visualization.

These files follow the AntennaCAT compatible format, and the constr_F.py function can be

imported into AntennaCAT to add constraints to project definitions. It is highly suggested that

custom constraint function files be tested on an optimizer before being tested in AntennaCAT.

4.5 AntennaCAT Optimizer Compatibility
AntennaCAT compatible optimizers are functional as standalone programs for testing and

publication transparency [90-100]. Specific details for each optimizer are included on their

specific README.md pages, however AntennaCAT compatibility sets the following

requirements:

1) Compatible optimizers (and integrated surrogate models) follow state machine logic to

incorporate simulation as the objective function evaluation. With this process, the optimizer is

initialized, and then a while loop is run until stop conditions are met. The stop condition can

include a maximum number of iterations, or an evaluation within a specific error tolerance.

2) Boundaries are problem specific and enforced with lower and upper bounds set either by a

configuration file (configs_F.py) or the AntennaCAT GUI. These are static and cannot be

changed during the runtime of the optimizer.

3) Constraint files are used to enforce problem constraints (outside of those handled by the

problem bounds enforcement). If a user does not specify a file, then a default file is used that

always returns two Boolean true values.

64

4) The objective function, which can either be an objective function from a file (func_F.py) or a

simulation, has two outputs. The first output is an array containing the function evaluation (or

processed simulation export reports) corresponding to specific target values. When operating

as a stand-alone program, the targets are included in the configuration file (configs_F.py). For

single objective functions in the objective function suite, every target is 0. For multi-objective

functions, target values were chosen to be values on the Pareto front. The second output of the

objective function is a Boolean that represents if the objective function was successfully

evaluated. This second Boolean is represented with a ‘NoError’ value in code, indicating that

there has been no error in the evaluation of the constraints.

5) Optimizers use the standard format for function calls to step through the state machine, call the

objective function, check if the optimizer has converged or otherwise met completion criteria

and to return convergence data for logging. All optimizers use the format

myOptimizer.complete(), where ‘myOptimizer’ is an arbitrary optimizer class object, to return

a bool if completion criteria have been met. These criteria include at least a maximum number

of iterations, and an L2 norm distance to the target. Only one of the criteria must be met.

myOptimizer.step(suppress_output) is used to advance the state machine one step forward.

suppress_output is a Boolean value controlling if detailed messages are displayed or not, a

value of ‘True’ will suppress all messages from the optimizer class.

myOptimizer.call_objective(allow_update) will attempt an objective function call if the

optimizer is in a valid state for an objective function call. For most optimizers, this will trigger

a call to the objective function. In some, such as MultiGLODS, an objective function call will

not be made. The allow_update Boolean allows for the optimizer to be run through steps

without calling the objective function. Finally, myOptimizer.get_convergence_data() is used

to return a counter for the number of times the objective function has been called, and a best

evaluation float value for the current best evaluation of the optimizer. These function calls can

be seen in the main_test.py files for all optimizers.

In the following sections, the optimizer descriptions will cover the initialization and the

call_objective() function, which allows the optimizer to call the objective function if the state

machine is in a valid state for the call to be executed. The step() function call that causes the state

machine to take one step forward is not discussed except in terms of state machine behavior.

Images of optimizer functions are provided from their respective stand-alone repositories.

65

AntennaCAT does not currently graphically display optimizer details, particle position, surrogate

model surface meshes, or other similar information.

4.6 Particle Swarm Optimizers

Particle Swarm Optimization (PSO) is a popular nature-inspired optimization algorithm introduced

in "Particle Swarm Optimization" [101] in 1995. This algorithm was inspired by the social

behavior of collaborative animal groups and is often compared to birds flocking or fish schooling.

PSO is used to find approximate solutions to complex optimization problems and is often

implemented on problems that have local minimum solutions in addition to a global solution, or

multiple global solutions. Particle Swarm-based optimizers, in addition to the original Particle

Swarm Optimization, are popular optimization techniques for multi-parameter, and multi-

objective, problems, and are popular in studies using several of the featured replication study

topologies. PSO consists of a population, or swarm, of candidate solutions called particles. Each

particle moves through the search space influenced by its own best-evaluated position and the

swarm global best.

Figure 30 Particles making up a 50-agent swarm in a traditional PSO algorithm converging on the single-objective
Himmelblau’s function global minima at 2, 216, 394, and 687 steps.

66

Figure 30 shows the convergence of a traditional PSO algorithm on the single-objective function

at steps 2, 216, 394, and 687. The 50 particles used in this example begin to converge visibly on

a target by step 216 and have found a global minimum within an error tolerance of 10e-6 by

iteration 687. The traditional particle swarm optimizer, as it was initially presented in literature,

was used to find the global minima for Himmelblau’s function, one of the objective functions

included in Chapter 5 and the objective function library used for optimizer testing in AntennaCAT.

Traditional PSO was used as the visual behavior of the swarm does not differ much from the other

swarm-based algorithms in this section to the casual observer. However, there is a notable visual

difference between Figure 30 and 31, using the same swarm configurations. Figure 31 uses a multi-

objective test function from the test function suite that was designed to be fast to converge. To

prevent convergence for demonstration purposes, the error tolerance for the solution was set to

10e-15.

Figure 31 Particles making up a 50-agent swarm in a traditional PSO algorithm converging on the multi-objective function
target on the Pareto front 2, 216, 394, and 687 steps.

In Figure 31, the swarm at step 2 is still randomly dispersed. By step 216, the swarm has begun to

find the front of the feasible objective function space. In this example, a single point is Pareto

Optimal (the target solution), which the swarm is converging on by iteration 687.

67

 The AntennaCAT swarm-based optimizers track the global best position, the global best fitness

(objective function evaluation), personal best position, personal best fitness, and the active/inactive

status of the particles. The following subsections describe the initialization, optimizer step, and

objective function call handling.

Traditional Particle Swarm
The traditional particle swarm optimizer included in AntennaCAT is based on the one proposed by

[101] in 1995. It has no time-step modulation, no scalable search, no mutation, and other

modifications made in the three decades since the algorithm was introduced. This optimizer is

included in AntennaCAT to include a baseline for improvement on swarm-based optimizers, which

is arguably the most populous optimizer type in electromagnetics.

It is available at: https://github.com/jonathan46000/pso_Python/tree/pso_basic

Initialization:

The optimizer is initialized and controlled fully from an outside class. It is initialized with the

following variables:

• The number of particles

• The lower bounds of the problem (numeric constraints)

• The upper bounds of the problem (numeric constraints)

• Weights:

o Inertia weight: previous movement impact

o Cognitive Coefficient: individual exploration

o Social Coefficient: group exploitation

• Velocity limit

• The number of output (target) values

• Numerical target values

• Error tolerance, or acceptable deviation from target

• Maximum number of iterations

• Boundary type selection

https://github.com/jonathan46000/pso_python/tree/pso_basic

68

During initialization, the objective function reference (pass by object) and the constraint function

(pass by object) are also included.

The state machine is simple, and steps forward every time the step function is called. The objective

function is called once per iteration of the controlling class, and the objective function is executed

every time it is called.

Optimizer Step:

When the optimizer step() function is called, the traditional PSO optimizer executes the

following process:

• Print a summary of the iteration values if suppress_output is False.

• For any active particles:

1. Check if the current location is a global local

2. Update the velocity vector

3. Update the particle location

4. Handle bounds

Particle Swarm with Time-Step Modulation
This particle swarm optimizer adds a time step modulation to the traditional PSO algorithm. It uses

the mean absolute deviation of particle position as an adjustment to the time step to prevent the

particle overshoot problem. This particle distribution is initialized to one when the swarm starts,

so that the impact is boundary independent.

It is available at: https://github.com/jonathan46000/pso_python/tree/main

Initialization:

The optimizer is initialized and controlled fully from an outside class. It is initialized with the

following variables:

• The number of particles

• The lower bounds of the problem (numeric constraints)

• The upper bounds of the problem (numeric constraints)

https://github.com/jonathan46000/pso_python/tree/main

69

• Weights:

1. Inertia weight: previous movement impact

2. Cognitive Coefficient: individual exploration

3. Social Coefficient: group exploitation

• Velocity limit

• The number of output (target) values

• Numerical target values

• The time modulation parameter

• Error tolerance, or acceptable deviation from target

• Maximum number of iterations

• Boundary type selection

During initialization, the objective function reference (pass by object) and the constraint function

(pass by object) are also included.

The state machine is simple, and steps forward every time the step function is called. The objective

function is called once per iteration of the controlling class, and the objective function is executed

every time it is called.

Optimizer Step:

When the optimizer step() function is called, the traditional PSO optimizer executes the following

process:

• Print a summary of the iteration values if suppress_output is False.

• For any active particles:

1. Check if the current location is a global local

2. Update the velocity vector

3. Update the particle location, which uses the time modulation

4. Handle bounds

• After all particles have been stepped through (1 per step()), update the delta t, which is the

adaptive time step modulation value

70

4.7 Cat Swarm Optimizers

Cat Swarm Optimization is a nature-inspired algorithm based on the behaviors of cats. Introduced

in the 2006 paper "Cat Swarm Optimization" [80, 81], this algorithm shares similarities with the

traditional Particle Swarm Optimization algorithm, incorporating both location and velocity

components. However, unlike PSO, the particles in Cat Swarm Optimization have two movement

options during the update step, modeled after the behaviors of cats. In the traditional Cat Swarm

Optimization, these are seeking and tracing. Sand Cat Swarm Optimization [82, 83] uses an

attacking (exploitation) and a search (exploration) mode.

Traditional Cat Swarm
This optimizer uses the original algorithm proposed in [80, 81] with no modifications. Cat Swarm

Optimization divides the population of candidate solutions (cats) into two groups: those in seeking

mode, and those in tracing mode. Each cat can switch between these modes according to a specified

probability.

1. Seeking Mode:

The seeking mode is responsible for exploring the search space to uncover new and potentially

superior solutions. In this mode, cats simulate a behavior where they observe their environment

and decide on new positions based on various potential moves. This process aids the algorithm in

avoiding being trapped in local optima.

2. Tracing Mode:

The tracing mode is dedicated to exploiting the search space by pursuing the best solutions

discovered by the cat swarm so far. In this mode, cats imitate a behavior where they move toward

a promising position, similar to a cat chasing prey. This approach not only helps refine solutions

and converge towards the global optimum but also ensures that the most promising regions of the

search space are thoroughly explored and optimized.

It is available at: https://github.com/LC-Linkous/cat_swarm_python

https://github.com/LC-Linkous/cat_swarm_python

71

Initialization:

The optimizer is initialized and controlled fully from an outside class. It is initialized with the

following variables:

• The number of particles

• The lower bounds of the problem (numeric constraints)

• The upper bounds of the problem (numeric constraints)

• Weights, used for the velocity in tracing mode only

• Velocity limit

• The number of output (target) values

• Numerical target values

• Error tolerance, or acceptable deviation from target

• Maximum number of iterations

• Boundary type selection

• Mixture ratio (MR). Small value for tracing population size

• Seeking memory pool (SMP). The number of copies of cats made in seeking mode

• Seeking range of a selected dimension (SRD)

• Counts of dimensions to change (CDC), a mutation variable

• Self-position consideration (SPC), a Boolean for if the cat being copied in the seeking mode

step should be considered in the copy count

During initialization, the objective function reference (pass by object) and the constraint function

(pass by object) are also included.

The state machine is simple, and steps forward every time the step function is called. The objective

function is called once per iteration of the controlling class, and the objective function is executed

every time it is called.

Optimizer Step:

When the optimizer step() function is called, the Cat Swarm Optimizer executes the following

process:

72

• Print a summary of the iteration values if suppress_output is False.

• For any active particles:

1. Check if the current location is a global local

2. Use the current particle’s mode (seeking, tracing) to update location:

2.1 Call tracing_mode()

2.2 Call seeking_mode()

• Handle bounds

Sand Cat Swarm

In 2022, Sand Cat Swarm Optimization [82, 83] was proposed as an algorithm able to escape

local minima while retaining a balance between the exploitation and exploration phases of the

Cat Swarm Optimization algorithm. It has far fewer parameters and operators than other

metaheuristic algorithms, including those in the AntennaCAT optimizer suite, making it easier to

implement than some swarm algorithms. A trade off, however, is that this algorithm may be

more computationally expensive in the short term due to the exploration phase of the algorithm

in the step function call evaluating the objective function for all copies of the cats.

There are two stages for this optimizer:

1. Exploitation:

This stage is the 'attacking prey' phase where the particle is moved in the feasible decision space

to introduce new possible solutions to the swarm. During this phase, when a particle’s position is

updated, both random numbers and random angles (from 0 to 360 degrees) are utilized to promote

movement away from the current location. The new position and subsequent step are weighted

according to the global best solution, ensuring that exploitation remains focused around high-

performing regions.

2. Exploration:

The second stage is the ‘search mode’ stage of the algorithm. This stage selects a random particle

from the swarm as a ‘candidate’. This candidate is used to create several copies with similar

characteristics that are then evaluated with the objective function to find the next potential best

73

position. The best evaluating copy is then used to move the cat. This mode encourages the herd

behavior.

It is available at: https://github.com/LC-Linkous/cat_swarm_Python/tree/sand_cat_python

Initialization:

The optimizer is initialized and controlled fully from an outside class. It is initialized with the

following variables:

• The number of particles

• The lower bounds of the problem (numeric constraints)

• The upper bounds of the problem (numeric constraints)

• Weights, used for the velocity in tracing mode only

• The number of output (target) values

• Numerical target values

• Error tolerance, or acceptable deviation from target

• Maximum number of iterations

• Boundary type selection

During initialization, the objective function reference (pass by object) and the constraint function

(pass by object) are also included.

The state machine is simple, and steps forward every time the step function is called. The objective

function is called once per iteration of the controlling class, and the objective function is executed

every time it is called. The step function will also call the objective function for any candidate cats

in the search mode phase of the algorithm.

Optimizer Step:

When the optimizer step() function is called, the Sand Cat Swarm optimizer executes the following

process:

• Print a summary of the iteration values if suppress_output is False.

• For any active particles:

https://github.com/LC-Linkous/cat_swarm_Python/tree/sand_cat_python

74

1. Check if the current location is a global local

2. Use the current particle’s mode (exploitation, exploration) to update location:

2.1 Call exploitation_mode()

2.2 Call exploration_mode()

3. Handle bounds

4.8 Chicken Swarm Optimizer

The Chicken Swarm Optimization algorithm was introduced in 2014 by [84]. It is inspired by the

hierarchy and behaviors observed in a swarm of chickens. Each type of bird (i.e., roosters, hens,

and chicks), has its own unique movement rules and interactions based on two main types of

hierarchy; flock and relational (maternal). There can be multiple swarms of chickens within a

single particle swarm instance. Within each of the chicken swarms, the hens are also split into two

types: hen and mother hen. Mother hens have at least one chick that follows their movement.

Unlike the other swarm-based optimizers, there is an absence of an explicit random velocity

component for each particle.

The general movement rules for each type of bird are as follows:

1. Roosters:

Roosters have the best positions (fitness values) in the swarm. There is one rooster per chicken

swarm, though there can be multiple roosters in the particle swarm implementation. The

roosters move based on their current position and a random perturbation, which is used to

reduce the chances of remaining in a local minimum. If a rooster gets stuck in a minimum, or

another chicken in the swarm finds a new ‘best’ position, the rooster will be demoted in the

hierarchy to a chicken, and a new rooster chosen.

2. Hens:

Hens follow roosters. Hens in a chicken swarm update their positions based on the current

position of their rooster and a randomly selected chicken. Following the rooster encourages

75

the swarm behavior of the algorithm, while using a randomly selected chicken’s position

encourages some variation to the movement, preventing the chicken swarm from converging

on the rooster and not exploring an area.

3. Chicks:

Chicks follow their mother hens. Not all hens have to be mother hens, but all mother hens have

at least one chick. These particles update their position based on their mother’s position and a

random factor (float value) to simulate ‘dependence’. Unlike the hens, which follow a rooster

and another chicken, this dependence is used to make the chick’s movement anchored on the

mother hen, but not completely restricted.

Initialization:

The optimizer is initialized and controlled fully from an outside class. It is initialized with the

following variables:

• The number of particles

• The lower bounds of the problem (numeric constraints)

• The upper bounds of the problem (numeric constraints)

• The number of output (target) values

• Numerical target values

• Error tolerance, or acceptable deviation from target

• Maximum number of iterations

• Boundary type selection

• Number of roosters (RN)

• Number of non-mother hens (HN)

• Number of mother hens (MN)

• Number of total chicks (CN)

• G, the generation value for how many iterations before the chicken designations in a swarm

are shuffled.

76

During initialization, the objective function reference (pass by object) and the constraint function

(pass by object) are also included.

The state machine is simple, and steps forward every time the step function is called. The objective

function is called once per iteration of the controlling class, and the objective function is executed

every time it is called.

Optimizer Step:

When the optimizer step() function is called, the Chicken Swarm Optimizer executes the following

process:

• Print a summary of the iteration values if suppress_output is False.

• For any active particles:

1. Check if the current location is a global local

2. If the current generation counter has reached a maximum, then reorganize the

swarm

3. Use the current particle’s type (rooster, hen, chick) to update location:

3.1 Call move_rooster()

3.2 Call move_hen()

3.3 Call move_chick()

4. Handle bounds

4.9 Quantum-Inspired Optimizers

Quantum Particle Swarm Optimization (QPSO) was introduced in 2004 as an advancement on the

traditional Particle Swarm Optimization algorithm [102, 103, 104, 105]. In [102], the authors

describe traditional particle swarm as using Newtonian mechanics because a particle moves along

a determined trajectory via a known position and a velocity vector. However, in quantum

mechanics, the location and velocity vectors cannot be known simultaneously due to the

uncertainty principle. By applying that principle to PSO by pulling inspiration from superposition

and entanglement, these optimizes may have an advantage on some problem types.

77

Superposition, as it exists as a concept for the optimizers in this section, can be interpreted as a

probability distribution over multiple states. In quantum mechanics, a particle can exist in a

superposition of multiple states simultaneously. That is, if there are three possible states a particle

can exist in, then there is a probability that it is in each one, but it is not possible to know with

absolute certainty which state it is in. In QPSO, a particle’s position is often updated using a

probability distribution derived from the particle’s personal best and the swarm’s global best, to

retain the swarming behavior. This uses the particle’s personal best (which is not always the current

location), as an anchor for this movement pattern. Using this method, rather than a deterministic

position update, allows particles to explore the feasible decision space more effectively.

Entanglement in quantum physics is the phenomenon where particles become interconnected such

that the state of one particle directly affects the state of another particle despite any amount of

distance between the two. In QPSO, this relates to how particle position updates in a swarm

influence others in the swarm due to each particle’s location relying on the particle’s personal best

and the global best of the swarm.

The three quantum inspired swarm optimizers in this section (QPSO, Quantum Cat Swarm

Optimization, and Quantum Chicken Swarm Optimization) are briefly discussed as they are of

interest based on current literature, but for longevity of code they are not executed in the same way

as current literature. Rather than using Qiskit, QuTIP, Pyquil, or other libraries that are either

constantly adapting, new, or in early stages of documentation, the AntennaCAT versions of these

optimizers use random numbers to introduce uncertainty into the movement model (superposition).

These optimizers are based on a specific snapshot of literature, which the original QPSO algorithm

introduced, and are meant for educational purposes.

Quantum Inspired Particle Swarm Optimizer

In contrast to conventional Particle Swarm Optimization, Quantum Particle Swarm Optimization

(QPSO) does not employ a velocity vector. Instead, it updates particle positions directly using a

probability distribution informed by the mean best position and a logarithmic factor, principles

derived from quantum mechanics. The QPSO update mechanism utilizes quantum-inspired

probabilistic movements to achieve a balanced exploration and exploitation strategy. By

78

integrating the strengths of both personal and global experiences with a stochastic element, QPSO

effectively navigates complex optimization landscapes.

Updating the position vector of a particle is done in two steps. First, the mean best position is

calculated from the swarm positions:

𝑚𝑏 = β ⋅ 𝑝 + (1 − β) ⋅ 𝑔 (𝑒𝑞. 17)

Where β is a parameter controlling the influence between the personal best and global best

positions.

The second step is the actual position update:

xi(t + 1) = mb ± β ⋅ |p − g| ⋅   log(1/u) (𝑒𝑞. 18)

In eq. 18, mb is the mean best position from eq. 17, and β is the same user-defined parameter that

controls the balance between personal best and global best. Some implementation may use

different values for β, but the default for the AntennaCAT optimizer suite is to use the same value

for both instances. 𝑝 is the personal best of the particle, 𝑔 is the global best of the swarm, 𝑢 is a

uniformly distributed random number between 0 and 1, bounds inclusive. The logarithmic term,

𝑙𝑜𝑔(1/𝑢), introduces a random factor in addition to the scaling β factor, which will be naturally

biased towards smaller numbers because the random vector 𝑢 is bounded [0,1]. That is, the

logarithmic function naturally has a heavy-tailed distribution in this problem, so the particle

movement will stay relatively controlled despite the random aspects to movement.

It is available at: https://github.com/LC-Linkous/pso_python/tree/pso_quantum

Unlike the other branches of the pso_python repository, the pso_quantum branch is not merged

upstream. It is an experimental variation meant for educational purposes.

Initialization:

The optimizer is initialized and controlled fully from an outside class. It is initialized with the

following variables:

https://github.com/LC-Linkous/pso_python/tree/pso_quantum

79

• The number of particles

• The lower bounds of the problem (numeric constraints)

• The upper bounds of the problem (numeric constraints)

• Weights, used for the velocity in tracing mode only

• The number of output (target) values

• Numerical target values

• Error tolerance, or acceptable deviation from target

• Maximum number of iterations

• Boundary type selection

• The beta value for the position update (usually between 0 and 1)

• The number of input variables

During initialization, the objective function reference (pass by object) and the constraint function

(pass by object) are also included.

The state machine is simple, and steps forward every time the step function is called. The objective

function is called once per iteration of the controlling class, and the objective function is executed

every time it is called.

Optimizer Step:

When the optimizer step() function is called, the QPSO optimizer executes the following

process:

• Print a summary of the iteration values if suppress_output is False.

• For any active particles:

1. Check if the current location is a global local

2. Update the particle location using the mean best method

3. Handle bounds

80

Quantum Inspired Cat Swarm Optimizer
The Quantum Inspired Cat Swarm Optimizer included in the AntennaCAT optimizer suite blends

the traditional Cat Swarm Optimization algorithm with the mean best position update introduced

in QPSO in the previous section. It does not use a quantum-based or quantum inspired library. In

future work, other variations may be added to include other libraries designed for quantum inspired

machine learning. The seeking and tracing modes of the cat swarm are implemented in this

optimizer through the following.

In the quantum inspired seeking mode, the seeking algorithm is retained as much as possible. When

a candidate particle is selected, copies are created with new positions using the mean best position

update method described in the QPSO section previously. As with the original Cat Swarm

algorithm, the fitness of the copies is evaluated, and the best preforming particle (the one with the

lowest L2 norm fitness from the target) is selected.

The quantum inspired tracing mode uses a random vector 𝑢 to update the particle movement

towards the global best. This random vector is bounded [0,1].

It available at: https://github.com/LC-Linkous/cat_swarm_python/tree/cat_swarm_quantum

Unlike the other branches of the cat_swarm_python repository, the cat_swarm_quantum branch

is not merged upstream. It is an experimental variation meant for educational purposes.

Initialization:

The optimizer is initialized and controlled fully from an outside class. It is initialized with the

following variables:

• The number of particles

• The lower bounds of the problem (numeric constraints)

• The upper bounds of the problem (numeric constraints)

• Weights, used for the velocity in tracing mode only

• The number of output (target) values

• Numerical target values

https://github.com/LC-Linkous/cat_swarm_python/tree/cat_swarm_quantum

81

• Error tolerance, or acceptable deviation from target

• Maximum number of iterations

• Boundary type selection

• Mixture ratio (MR). Small value for tracing population size

• Seeking memory pool (SMP). The number of copies of cats made in seeking mode

• Seeking range of a selected dimension (SRD)

• Counts of dimensions to change (CDC), a mutation variable

• Self-position consideration (SPC), a Boolean for if the cat being copied in the seeking mode

step should be considered in the copy count

• The beta value for the position update (usually between 0 and 1)

• The number of input variables

During initialization, the objective function reference (pass by object) and the constraint function

(pass by object) are also included.

The state machine is simple, and steps forward every time the step function is called. The objective

function is called once per iteration of the controlling class, and the objective function is executed

every time it is called.

Optimizer Step:

When the optimizer step() function is called, the quantum inspired cat swarm optimizer executes

the following process:

• Print a summary of the iteration values if suppress_output is False.

• For any active particles:

1. Check if the current location is a global local

2. Use the current particle’s mode (seeking, tracing) to update location:

2.1 Call tracing_mode()Call seeking_mode()

3. Handle bounds

82

Quantum Inspired Chicken Swarm Optimizer
The Quantum Inspired Chicken Swarm Optimizer included in the AntennaCAT optimizer suite

blends the mean best position update method with the movement models of the chicken swarm

algorithm. The movement rules (in terms of hierarchy and relation) are preserved, the position

changes are implemented as described in the following. This algorithm is a simplified blend of

the two methods and is intended for experimentation purposes.

1. Rooster Movement:

Roosters are always the particles with the best evaluated fitness value in the swarm. These

particles move based on their current position and a random vector in order to prevent stalling in

a local minimum. The roosters in this algorithm can be toggled to move either with the original

movement model as described in [84], or by using the mean best position update method as

described in the QPSO section.

2. Hen Movement:

The hens in a chicken swarm follow their respective roosters. These particles update their

positions in the quantum inspired algorithm using the mean best position update method.

However, instead of using the global (for that flock) best position, the position of the flock’s

rooster is used.

3. Chick Movement:

Chicks in a traditional chicken swarm algorithm follow their assigned mother hen, and have a

random vector added for modeling dependence. In the quantum inspired algorithm, like the hens,

the chicks use the mean best position update. Instead of using a flock or rooster best, they use

their mother hen as the anchor.

It available at:

https://github.com/LC-Linkous/chicken_swarm_python/tree/chicken_swarm_quantum

https://github.com/LC-Linkous/chicken_swarm_python/tree/chicken_swarm_quantum

83

Initialization:

The optimizer is initialized and controlled fully from an outside class. It is initialized with the

following variables:

• The number of particles

• The lower bounds of the problem (numeric constraints)

• The upper bounds of the problem (numeric constraints)

• The number of output (target) values

• Numerical target values

• Error tolerance, or acceptable deviation from target

• Maximum number of iterations

• Boundary type selection

• Number of roosters (RN)

• Number of non-mother hens (HN)

• Number of mother hens (MN)

• Number of total chicks (CN)

• G, the generation value for how many iterations before the chicken designations in a swarm

are shuffled.

• The beta value for the position update (usually between 0 and 1)

• The number of input variables

• A Boolean to use the classical or quantum inspired roster movement model

During initialization, the objective function reference (pass by object) and the constraint function

(pass by object) are also included.

The state machine is simple, and steps forward every time the step function is called. The objective

function is called once per iteration of the controlling class, and the objective function is executed

every time it is called.

84

Optimizer Step:

When the optimizer step() function is called, the quantum inspired chicken swarm optimizer

executes the following process:

• Print a summary of the iteration values if suppress_output is False.

• For any active particles:

1. Check if the current location is a global local

2. If the current generation counter has reached a maximum, then reorganize the

swarm

3. Use the current particle’s type (rooster, hen, chick) to update location:

3.1 Call move_rooster()

3.2 Call move_hen()

3.3 Call move_chick()

4. Handle bounds

4.10 Sweep Optimizer
The Sweep optimizer in the AntennaCAT optimization suite currently has two options for sweeping

over an n-dimensional feasible decision space: random search, and grid search. Both options are

compatible with single- and multi-particle search.

It is available at: https://github.com/LC-Linkous/sweep_python

https://github.com/LC-Linkous/sweep_python

85

Grid-Based Search

Figure 32 The grid-based search option in the Sweep optimizer. On the right, the current and previous search locations.
On the left, the red star is the global minima target. The black circle on the far right of the Global Best Fitness plot is the
original evaluation, while the circle around the red star is the best evaluation.

A grid-based sweep optimizer, often referred to as grid search, is a simple yet effective

optimization technique commonly used for hyperparameter tuning in machine learning models.

This method systematically explores a specified subset of the feasible decision space (and solution

space). When using this method, an n-dimensional array is provided for the resolution in the n-

directions that the particle will move in. If a single value is provided, it will be applied to all

dimensions of the search space. The error tolerance for the example above in Figure 32 was

reduced to 10e-15 to demonstrate the grid pattern. The plot on the left shows the current particle

locations and the past grid search. These are updated in real time. The objective function surface

is not shown with the example test class in the repository to avoid cluttering the plot. The global

best fitness record is shown using the black circles on the plot on the right side of Figure 32. The

red star represents the target value of the global minimum.

86

Random Search

Figure 33 The random search option in the Sweep optimizer. On the right, the current and previous search locations. On
the left, the red star is the global minima target. The black circle on the far right of the Global Best Fitness plot is the
original evaluation, while the circle around the red star is the best evaluation.

The random search method employed in the Sweep optimizer is a fully random sample. This

method is not iterative, or intelligent. It is meant to pull sampled from an n-dimensional space for

evaluation. However, in small problem spaces it is not unusual for it to find a valid solution. The

error tolerance for the example above in Figure 33 was reduced to 10e-15 to demonstrate the search

pattern. The plot on the left shows the current particle locations and the past search locations

search. These are updated in real time. The objective function surface is not shown with the

example test class in the repository to avoid cluttering the plot. The global best fitness record is

shown using the black circles on the plot on the right side of Figure 33. The red star represents the

target value of the global minimum.

87

4.11 MultiGLODS

Figure 34 The current search locations of six particles generated by MultiGLODS and the global best fitness record. On the
right, the current and previous search locations. On the left, the red star is the global minima target. The black circle on
the far right of the Global Best Fitness plot is the original evaluation, while the circle around the red star is the best
evaluation.

The Multiobjective Optimization Global and Local Optimization using Direct Search

(MultiGLODS) algorithm is a derivative-free optimizer generalized for calculating the Pareto front

of multi-objective, multimodal optimization problems [73]. MultiGLODS builds from the original

GLODs algorithm proposed by the same authors in [106]. The multi-objective algorithm alternates

between initializing new searches in the feasible objective space, using a ‘multistart’ strategy for

selecting candidates likely to perform well, and balancing exploration with direct search. To reduce

computation needs across valid, active points, it only compares points close to each other, rather

than comparing one point with all other points active in the search.

The original MultiGLODS search was written in MATLAB by Dr. Ana Luise Custódio and J. F.

A. Madeira at the Nova School of Science and Technology and at ISEL and IDMEC-IST, Lisbon

respectively. The Python version used in the AntennaCAT optimizer suite was translated by

Jonathan Lundquist at VCU [100]. The Python translation de-embeds the objective function using

a state machine-based design. Several changes were made to counters to record how many times

the objective function was called for AntennaCAT’s standard log format, and the returns for the

88

objective function call were updated to match the compatibility requirements described in section

4.4. The core algorithm remains true to the original.

The Python version, and licensing information, are available on GitHub at:

https://github.com/Jonathan4600/multi_glods_python

Initialization:

The optimizer is initialized and controlled fully from an outside class. It is initialized with the

following variables:

• The number of input variables

• The lower bounds of the problem (numeric constraints)

• The upper bounds of the problem (numeric constraints)

• Numerical target values

• A radius-based convergence tolerance

• Maximum number of iterations

• Boundary type selection

• A beta parameter (BP) for step size tuning

• A gamma parameter (GP) for step size tuning

• A search frequency parameter (SF)

During initialization, the objective function reference (pass by object) and the constraint function

(pass by object) are also included.

Optimizer Step and State Machine

The state machine is simple, and steps forward every time the step function is called. The objective

function is called once per iteration of the controlling class, but the state machine will not evaluate

the objective function every iteration. MultiGLODS alternates between several modes of operation

and may require several ‘steps’ before it is in a position to evaluate the objective function.

https://github.com/Jonathan4600/multi_glods_python

89

4.12 Bayesian Optimizer with Surrogate Model Kernel

The Bayesian Optimizer included in the AntennaCAT optimizer suite is compatible with a series

of surrogate model kernels. Bayesian search, or Bayesian optimization, uses probabilistic models

to optimize functions that may be computationally intensive or time expensive to evaluate. This

optimizer iteratively updates a Bayesian model of the objective function based on sampled

evaluations of the objective function. As part of the AntennaCAT suite it is compatible with single

and multiple objective functions with a variety of inputs. Only a limited number of input/output

dimension combinations have graphical outputs, such as the ones in Figure 35 and 36 due to

dimensionality restrictions.

Figure 35 The evolution of the surrogate model at 1, 2, 3, 4, 9, and 19 samples taken during the Bayesian optimization
process on a single-input single-output objective function. On the left of each pair is the objective function ground truth
represented by a dotted red line. The surrogate model (using a Gaussian Process Mean) prediction is drawn in blue.
Sampled points are red dots. On the right, in green, is the plotted expected improvement of the acquisition function.

90

In Figure 35 a single-input single-output equation has been used as an example. Each pair of graphs

shows the progress of the optimizer as more samples are taken of the objective function. On the

right-side plots, the objective function ground truth is shown with a dotted red line. The

approximated surrogate model, in these examples using the Gaussian Process kernel, are shown in

blue. Sampled points are shown as red dots. On the left-hand side plots, the Acquisition Function

with the green Expected Improvement measure estimates which areas have the most potential for

improvement based on the optimizer’s current knowledge of the space. This isolation of areas of

interest is more apparent in Figure 36, where the center image of each set of three plots is the

expected improvement compared to the current samples shown in 2D.

Figure 36 The evolution of the Gaussian Process surrogate model at 5, 6, 19, 44, 74, and 204 samples taken during the
Bayesian optimization process on a two-input single-output objective function. In each set of plots, the left plot is the
objective function ground truth. The middle plot is the acquisition function, with the plotted expected improvement in 2D
space. The right plot is the current surrogate model prediction of the objective function. In all three plots, the red dots
indicate the samples taken from the original model.

91

Figure 36 shows the development of the Bayesian Optimization process using the Gaussian

Process surrogate model on the two-input single-output Himmelblau’s function. This function was

chosen to demonstrate the evolution of the surrogate model prediction against the image of the

ground truth on the left of each set of plots. The error tolerance was lowered to 10e-20 to prolong

the search for this example.

Surrogate models are often used in optimization as a proxy for the true objective function, which

may be costly or impractical to evaluate directly. This model approximates the objective function's

behavior through a simpler and computationally efficient framework, such as the Gaussian Process

kernel used in this example. The surrogate model is refined iteratively based on the evaluations of

the actual objective function, thereby enhancing its accuracy over time, which is demonstrated in

both Figure 35 and Figure 36. This approach enables optimization algorithms to make informed

decisions about subsequent exploration in the search space, effectively balancing the exploitation

of known favorable regions with the exploration of potentially superior ones.

This optimization approach utilizes the surrogate modeling library discussed in the following

subsections.

It is available at: https://github.com/LC-Linkous/bayesian_optimization_Python

Initialization:

The optimizer is initialized and controlled fully from an outside class. It is initialized with the

following variables:

• The lower bounds of the problem (numeric constraints)

• The upper bounds of the problem (numeric constraints)

• The number of output (target) values

• Numerical target values

• Error tolerance, or acceptable deviation from target

• Maximum number of iterations

• Initial number of sample points

• xi, which controls the exploration of the optimizer

• the number of restarts when generating new points

During initialization, the objective function reference (pass by object) and the constraint function

(pass by object) are also included. The class controlling the Bayesian optimizer also initializes the

surrogate model object.

https://github.com/LC-Linkous/bayesian_optimization_python

92

The state machine is simple, and steps forward every time the step function is called. The objective

function is called once per iteration of the controlling class, and the objective function is executed

every time it is called. When the Bayesian Optimizer is predicting the next point using the

surrogate model, it calls a function in the parent control class, which then calls the surrogate model

object. This separation is necessary to preserve the modularity of the optimizer and surrogate

model libraries.

Optimizer Step:

When the optimizer step() function is called, the Bayesian optimizer executes the following

process:

• Print a summary of the iteration values if suppress_output is False.

• For any active particles:

1. Check if the current location is a global local

2. Propose a new location through the surrogate model

2.1 Generate a list of positions, for n number of restarts

2.1.1 Calculate the expected improvement

2.2 Use L2 norm to select the position with the best fitness

The following subsections describe the potential surrogate models included in the Bayesian

Optimizer.

Radial Basis Function Network
A Radial Basis Function Network (RBFN) is a type of artificial neural network that employs radial

basis functions as activation functions. It comprises three distinct layer types: an input layer, a

hidden layer utilizing a non-linear RBF activation function (typically Gaussian), and a linear

output layer. The implementation in the AntennaCAT surrogate model library adopts a

straightforward approach, utilizing the numpy library and basic matrix mathematics rather than a

machine learning-specific library. RBFNs are widely used for function approximation, time-series

prediction, and classification tasks. They are highly regarded for their simplicity, ease of training,

and capability to model complex, non-linear relationships with a smaller number of neurons

compared to other neural network architectures, resulting in reduced matrix dimensions.

93

Gaussian Process
A Gaussian Process (GP) [107, 108] is a sophisticated probabilistic model widely employed in

machine learning and optimization. It defines a distribution over functions, assigning a Gaussian

distribution to each point in the function's domain. GPs are characterized by their mean function

(often assumed to be zero) and covariance function (kernel), which dictates the relationships

between different points. They serve as flexible and powerful tools for regression and uncertainty

quantification, enabling predictions of both function values and the associated uncertainty. Due to

their non-parametric nature, GPs can adapt to data of varying complexity, making them

particularly useful for tasks that require a high degree of accuracy and reliability in predictive

modeling.

Kriging
Kriging, similar to Gaussian Processes, is a technique for data interpolation and approximation. It

leverages spatial correlation among data points to predict values at unsampled locations. By using

a linear combination of data points with weights derived from spatial covariance functions (kriging

models), Kriging estimates values and quantifies prediction uncertainty. This technique is

particularly advantageous in fields such as spatial statistics, where it provides precise predictions

and reliable uncertainty estimates based on the spatial relationships of known data points. Kriging

is a specialized form of regression tailored for spatial datasets, emphasizing the spatial

autocorrelation structure to enhance prediction accuracy in geospatial applications and beyond.

Polynomial Regression
Polynomial regression is a form of regression analysis that models the relationship between the

independent variable x and the dependent variable y as an n-th degree polynomial function. Unlike

linear regression, which assumes a linear relationship, polynomial regression can capture complex,

non-linear relationships between variables. This approach enhances the model’s ability to fit data

with varying degrees of curvature, making it particularly useful for analyzing data with intricate

patterns and trends that are not well-represented by linear models.

Polynomial Chaos Expansion
Polynomial Chaos Expansion (PCE) [109] is a sophisticated method employed in uncertainty

quantification and sensitivity analysis. It represents the output of a stochastic model as a series

expansion involving orthogonal polynomials, such as Hermite, Legendre, or other families,

94

depending on the underlying probability distribution. Each polynomial term corresponds to a

different order of stochastic variables, capturing the variability and uncertainty inherent in the

model's parameters or inputs. PCE facilitates the efficient computation of statistical moments,

including mean and variance, and enables the quantification of how uncertainties in input

parameters propagate through the model, thereby influencing output variability.

K-Nearest Neighbors Regression

Within an optimizer, the K-Nearest Neighbors (KNN) model predicts the objective function's

value at a new point by leveraging the values of its k nearest neighbors in the sampled data. It

estimates the function value using the distances and weights of these neighbors, thereby directing

the optimizer to explore promising regions of the search space. KNN is valued for its simplicity

and non-parametric nature, which provides flexibility across diverse optimization problems.

However, its performance may be limited with high-dimensional data, or data with many local

minima where the neighboring points can cluster.

Decision Tree Regression
Decision Tree Regression is a predictive modeling technique designed for continuous target

variables. It operates by recursively partitioning the data into subsets according to the feature that

minimizes the mean squared error (MSE) at each split. Each internal node corresponds to a feature,

while each leaf node represents a predicted value, typically the mathematical mean of the target

values within that region. This method effectively captures non-linear relationships and offers

straightforward interpretability. However, it is prone to overfitting the sample data. To improve

performance and enhance generalization, techniques such as pruning or the use of ensemble

methods (e.g., Random Forests) are commonly employed.

95

CHAPTER 5
Machine Learning Assisted Optimization Data Collection

and Training

Optimizers play a crucial role in machine learning by iteratively adjusting model parameters to

minimize a specified objective function, thereby enabling models to discern patterns and make

precise predictions. They are integral to achieving efficient convergence toward optimal solutions,

which enhances model performance, generalization, and computational efficiency. The

optimization of the hyperparameters of these optimizers is particularly significant, as different

optimization algorithms exhibit varying efficacy in identifying the optimal set of hyperparameters

for specific machine learning models and datasets. The optimizer objective function suite is

designed for use with AntennaCAT’s internal optimizer suite to offer a comprehensive

benchmarking framework for assessing the performance of various optimizers in hyperparameter

tuning tasks [110, 111]. Additionally, it assists in collecting data on optimizer performance to

suggest hyperparameter values for the AntennaCAT optimizers based on knowledge about the

number of controllable parameters, and the target metrics of which to optimize. The full objective

function suite has over 120 function variations, with over 60 unique functions, provided for the

automated data collection process. These objective functions have largely been pulled from

literature so that optimizer performance can be compared across publications [73, 112-118]. In

cases where existing, popular objective functions with desired dimensionality, such as with 10

inputs and 3 outputs, functions were created and included in the objective function suite. Which

functions come from existing literature, and which were created for this work are noted extensively

in the README.md on GitHub.

The objective function suite is available at:

https://github.com/LC-Linkous/objective_function_suite

This chapter contains a summary of the data collection process, the objective functions used to

collect data and the criteria for their selection. The Sweep, Bayesian, Sand Cat Swarm, and

MultiGLODS optimizers were ultimately excluded from the parameter sweep data collection.

https://github.com/LC-Linkous/objective_function_suite

96

These three optimizers were sensitive to parameter variation and problem space during

experimentation, and so convergence data on them was sparse due to the automation process. A

brief analysis is provided in Chapter 6 with the results of the training.

In the following objective function sections, the subsets chosen for data collection are grouped

based on the dimensionality of their input and output. The groups are based on the organization of

AntennaCAT’s Hyperparameter Prediction Network library, which is described in the next section.

5.1. AntennaCAT MLAO Design Structure
The AntennaCAT software suite is designed to be modular and expandable. This is especially true

for the integrated optimization suite and the hyperparameter tuning suggestions trained using the

objective function library. The ‘Help Me Choose’ menu that accompanies most of the optimizers

on the Optimizer page is a straightforward interface designed to provide hyperparameters predicted

by a neural network library nested in a controller program. This approach has several notable

benefits. Firstly, as optimizers are added to AntennaCAT, new machine learning models can be

trained and added to the library without affecting existing models. Likewise, as AntennaCAT

features are expanded, such as adding more target metrics to the optimizer GUI, the machine

learning model library can be expanded to match. This is important because while there are a set,

relatively finite, number of target metrics that can be optimized while designing an antenna, there

are no such restrictions on the number of parameters in a design that users can load themselves.

Figure 37 shows a high-level relation between the known values provided from the GUI, the

Hyperparameter Prediction Network (the ‘Help Me Choose’ network), and the predicted

hyperparameter values. The known numerical values, the number of controllable parameters and

the number of target values, are not explicitly user input to reduce the margin of error during

operation. Instead, the number of controllable parameters is set when a user selects which

controllable, detected parameters on the Optimizer page are allowed to be changed by

AntennaCAT, and the number of targets are set when the optimizer is selected via the ‘Select

Optimizer’ button. Navigating tabs will not trigger this process.

97

Figure 37 A high level overview of how the ‘Help me Choose’ Optimization Page option where known values from the GUI
are used to select which machine learning model will be used to predict the hyperparameters.

Figure 38 The generalized process where the specific optimizer has been selected. The number of controllable
parameters and number of target values are first used as inputs to the model selector to decide which machine learning
model will be used to predict hyperparameters, and then as inputs to predict the hyperparameters.

Related to Figure 37, Figure 38 shows a generalized process for using the known parameters to

predict the optimizer hyper parameters. The selected optimizer when a ‘Help Me Choose’ option

is selected will be used to select which optimizer on the Hyperparameter Prediction Network

library will be used. When an optimizer is narrowed down, then the number of controllable

parameters and number of target values are passed through as inputs to the model selector to decide

98

which machine learning models should be utilized with the known configuration. After the model

has been selected, the number of controllable parameters and the number of target values are used

as inputs to predict the hyperparameters, which are returned in an array back to the optimizer to

be parsed into text. Neural networks were used due to their versatility, but a variety of machine

learning models could be adapted to this problem. Due to how the library is organized, machine

learning models for each optimizer, or even for each grouping of functions, do not need to be the

same type.

The following sections discuss the data collection methodology, the objective functions used to

collect the data, and training methodology for the machine learning models.

5.2 Data Collection Methodology
Of the eleven optimizers included in AntennaCAT’s internal optimizer library, seven were used for

data collection. Table 2 lists the total number of parameter combinations generated for each of the

seven optimizers used. The parameter value ranges chosen were based on several criteria: are they

practical for optimization using simulation instead of an objective function; are weight parameters

practical for the size of the feasible decision space; and are any parameters known either in

literature or experimentally to cause drastic variation in the optimizer performance.

Table 2 The total number of parameter combinations for the seven optimizers used with the objective function data
collection.

Optimizer # Parameter
Combinations

Optimizer # Parameter
Combinations

Traditional PSO 6174 Quantum Insp. Cat Swarm 2560
Time modulated PSO 12348 Chicken Swarm 1334
Quantum Insp. PSO 2880 Quantum. Insp. Chicken Swarm 5376
Cat Swarm 2560

For all swarm-based optimizers, weight values under 0.2 were not used, nor were increments

smaller than 0.05. In the case of criteria 1, this led to the Chicken Swarm optimizer having a

maximum of 3 flocks within a single swarm instance and limiting the total size of the swarm while

attempting to balance the particles between the four categories. Likewise, the number of copies

created by Cat Swarm Optimization were limited due to the cost of simulation needed to evaluate

potential new location values on top of the total size of the swarm.

99

The Sweep, Bayesian, Sand Cat Swarm, and MultiGLODS optimizers were excluded due to their

high sensitivity to the parameter selection and problem space, and how this was handled in the

automated data collection process. The Sweep optimizer would converge on the first data sample

on many objective functions due to the lower bounds of the problem being a target on the pareto

front. This caused data collection for this optimizer to be sporadic, and due to the small feasible

decision space, low resolution search grids always found an acceptable solution if the resolution

value was set low enough. Convergence was sporadic for the Bayesian optimizer and Cat Swarm

Optimizer on the selected objective function sets during the parameter sweep. Due to their limited

input parameters, it was decided to recommend experimentally found values. The MultiGLODS

algorithm was noted by the authors to be sensitive to parameter changes, and this was confirmed

via experimentation. The authors’ suggested parameters are used as a default.

Table three shows the default values used for the automated data collection scripts. In cases where

other error tolerance variables were used, this was noted in Chapter 4 with the respective optimizer.

Table 3 Constant values used in the automation process for the optimizer parameter sweep.

Iterations Per
Combination

Error Tolerance Maximum
Iterations

Boundary
Selection

100 10e-25 10000 Random (1)

For all parameter configurations run on an objective function, 100 iterations were performed.

When boundary conditions were enforced, a Random boundary was used as this was

experimentally found to be the most stable options across optimizers and objective functions. The

error tolerance was set to 10e-25, which ensured that in most cases the optimizer ran until the

maximum iteration completion condition was triggered. On rare occasions, large enough swarms

spawned particles close to global minima and the optimum solution was returned.

During the 100 iterations of each parameter combination, a log file recorded the following:

parameter configuration index, trial number, objective function ID, number of input variables,

number of output variables, the best fitness evaluation when the completion condition was

triggered, the iteration that the best fitness was found, the optimized solution, the optimized

outputs, the targe values, the objective function lower bounds, and the objective function upper

bounds. Also logged were the optimizer specific parameters.

100

5.3 Objective Functions: Single Input, Single Output

Figure 39 The nine functions used in the single-input, single-output objective function subset for data collection. Top: eq.
19, eq. 20, eq. 21. Middle: eq. 22, eq. 23, eq. 24. Bottom: eq. 25, eq. 26, eq.27.

There are nine functions used in the single-input, single-output objective function subset. Figure

39 shows the bounded evaluation of these functions where 𝑥1 is evaluated on the interval [0,1].

Below are the equations for these objective functions.

Ackley Function:

𝑓(𝑥) = −20.0 ⋅ 𝑒𝑥𝑝 (−0.2 √|𝑥|) − 𝑒𝑥𝑝(𝑐𝑜𝑠(2𝜋𝑥)) + 20 + 𝑒 (𝑒𝑞. 19)

Rosenbrock Function:

𝑓(𝑥) = (1 − 𝑥)2 + 100(𝑥 − 1)2 (𝑒𝑞. 20)

Griewank Function:

𝑓(𝑥) =
𝑥2

4000
− cos (

𝑥

√1
) + 1 (𝑒𝑞. 21)

AntennaCAT Function 1:

𝑓(𝑥) = sin(5𝑥3) + cos(5𝑥) (1 − tanh(𝑥2)) (𝑒𝑞. 22)

101

Rastrigin Function:

𝑓(𝑥) = 𝑥2 − 10 cos(2π𝑥) + 10 (𝑒𝑞. 23)

Schwefel Function:

𝑓(𝑥) = 𝑥 sin (√|𝑥|) (𝑒𝑞. 24)

AntennaCAT Function 2:

𝑓(𝑥) = sin(10𝑥5) + cos(5𝑥) (1 − tanh(𝑥3)) (𝑒𝑞. 25)

AntennaCAT Step, 1-Dimensional Function:

𝑓(𝑥) =

{

1, 𝑥 < 0
0, 𝑥 = 0

0.5, 0 < 𝑥 ≤ 0.25
1, 0.25 < 𝑥 ≤ 0.3

1.25, 0.3 < 𝑥 ≤ 0.4
1.5, 0.4 < 𝑥 ≤ 0.5
2, 0.5 < 𝑥 ≤ 0.75
3, 𝑥 > 0.75

(𝑒𝑞. 26)

Sphere Function:

𝑓(𝑥) = 𝑥2 (𝑒𝑞. 27)

102

5.4 Objective Functions: Two Input, One Output

Figure 40 The nine functions used in the two-input, single-output objective function subset for data collection. Top: eq.
28, eq. 29, eq. 30. Middle: eq. 31, eq. 32, eq. 33. Bottom: eq. 34, eq. 35, eq. 36. For each function, the left plot shows a 3D
projection of the solution space, and the plot on the right shows a top view of the solution space, with the global minima
marked in red.

There are nine functions used in the two-input, single-output objective function subset. For each

equation, Figure 40 shows the 3D projection of the solution space on the left and the top-view

contour plot with the global minimum (or a global minimum candidate) marked in red. These

equations are bound based on the descriptions provided by their respective authors. For more

information, view the README.md on the objective function library repository on GitHub [49].

Below are the equations for these objective functions.

Booth Function:

𝑓(𝑥1, 𝑥2) = (𝑥1 + 2𝑥2 − 7)
2 + (2𝑥1 + 𝑥2 − 5)

2 (𝑒𝑞. 28)

Sphere 2-Dimensional Function:

𝑓(𝑥1, 𝑥2) = 𝑥1
2 + 𝑥2

2 (𝑒𝑞. 29)

103

Ackley 2-Dimensional Function:

𝑓(𝑥1, 𝑥2) = −𝑎 exp(−𝑏√
𝑥1
2 + 𝑥2

2

2
)− exp(

cos(𝑐𝑥1) + cos(𝑐𝑥2)

2
) + 𝑎 + exp(1) (𝑒𝑞. 30)

Rosenbrock Function:

𝑓(𝑥1, 𝑥2) = (𝑎 − 𝑥1)
2 + 𝑏(𝑥2 − 𝑥1

2)2 (𝑒𝑞. 31)

Himmelblau’s Function:

𝑓(𝑥1, 𝑥2) = (𝑥1
2 + 𝑥2 − 11)

2 + (𝑥1 + 𝑥2
2 − 7)2 (𝑒𝑞. 32)

Rastrigin Function:

𝑓(𝑥1, 𝑥2) = 20 + (𝑥1
2 − 10cos(2π𝑥1)) + (𝑥2

2 − 10 cos(2π𝑥2)) (𝑒𝑞. 33)

Bukin N. 6 Function:

𝑓(𝑥1, 𝑥2) = 100√|𝑥2 − 0.01𝑥1
2| + 0.01|𝑥1 + 10| (𝑒𝑞. 34)

Styblinski-Tang Function:

𝑓(𝑥1, 𝑥2) = 0.5[(𝑥1
4 − 16𝑥1

2 + 5𝑥1) + (𝑥2
4 − 16𝑥2

2 + 5𝑥2)] (𝑒𝑞. 35)

Eggholder Function:

𝑓(𝑥1, 𝑥2) = −(𝑥2 + 47) sin (√|𝑥2 +
𝑥

2
+ 47|) − 𝑥1 sin (√|𝑥1 − (𝑥2 + 47)|) (𝑒𝑞. 36)

104

5.5 Objective Functions: Other Multiple Input, One Output

Figure 41 The three functions, with multiple variations, used for the multi-input one-output objective function subset for
data collection. Top row: DTLZ N1 (eqs. 37-39). Middle Row: AntennaCAT Function 10 (eqs. 40-41) Bottom Row:
AntennaCAT Function 10 (eqs. 40-41) and AntennaCAT Function 11 (eq .42). For each function, the left plot shows a 3D
representation of the feasible decision space, some of which have been reduced to 3D space. The right plot shows the
feasible objective space for the function.

There are three functions used in the multi-input, single-output objective function subset. Each

function has several variations for input dimensionality. This is an unusual configuration that is

possible using AntennaCAT, but is likely to overdefine the design problem. For each function,

Figure 41 shows the feasible decision space on the left, and the feasible objective space on the

right. These equations are bound based on the descriptions provided by their respective authors.

For more information, view the README.md on the objective function library repository on

GitHub [49]. Below are the equations for these objective functions.

105

DTLZ N1:

𝑓𝑖 = (1 + 𝑔)∏cos(
𝜋𝑥𝑗

2
)

𝑀−𝑖

𝑗=1

 for 𝑖 = 1,… ,𝑀 − 1 (𝑒𝑞. 37)

𝑓𝑀 = (1 + 𝑔)∏cos (
𝜋𝑥𝑗

2
)

𝑀−1

𝑗=1

(𝑒𝑞. 38)

𝑔 = ∑ (𝑥𝑗 − 0.5)
2

𝑁−1

𝑗=𝑀−1

(𝑒𝑞. 39)

AntennaCAT Function 10:

𝑓𝑖 = sin(∏𝑥𝑗

𝑀−𝑖

𝑗=0

) + 𝑐𝑜 s(𝑥0
3) for 𝑖 = 0,1, … ,𝑀 − 1 (𝑒𝑞. 40)

𝑓𝑀 = 1 − 𝑥0 (𝑒𝑞. 41)

AntennaCAT Function 11:

𝑓𝑖 = 0.5 ⋅ sin(∏𝑋𝑗

𝑀

𝑗=0

+ 𝑋0
3) + sin(𝑋0

2) for 𝑖 = 0,1,… ,𝑀 (𝑒𝑞. 42)

106

5.6 Objective Functions: One Input, Two Output

Figure 42 The six functions used in the single-input, two-output objective function subset for data collection. Top: ZDT N.6
(eqs. 43-45), Kursawe (eqs. 46-47). Middle: ZDT N.2. (eqs. 48-50), ZDT N.3 (eqs. 51-53), Bottom: ZDT N.1 (eqs. 54 -56),
Fonseca Fleming (eqs. 57-58). For each function, the left plot shows a 2D projection of the Feasible Decision Space where
the Y-axis is comprised of filler values for graphical purposes, and the plot on the right shows the Feasible Objective
Space with the Pareto front marked in black.

There are six functions used in the two-input, single-output objective function subset. For each

equation, Figure 42 has a set of two plots per equation where the plot on the left is the Feasible

Decision Space with the1-dimesional input plotted on the x-axis, and filler values on the y-axis for

visualization purposes. The plot on the right of each set is the Feasible Objective Space with the

Pareto front marked in black. These equations are bound based on the descriptions provided by

their respective authors. For more information, view the README.md on the objective function

library repository on GitHub [49]. Below are the equations for these objective functions.

107

ZDT N.6:

𝑓0 = 1 − exp (−4
𝑥0

(1 + 𝑔)2
) (𝑒𝑞. 43)

𝑓1 = 1 −
𝑓1
2

1 + 𝑔
(𝑒𝑞. 44)

𝑔 = 1 + 9(
∑ 𝑥𝑖
𝑛
𝑖=2

𝑛 − 1
)

0.25

(𝑒𝑞. 45)

Kursawe:

𝑓0 = ∑ [−10exp(−0.2√𝑋𝑖
2 + 𝑋𝑖+1

2)]

𝑁−2

𝑖=0

(𝑒𝑞. 46)

𝑓1 = ∑[|𝑋𝑖|
0.8 + 5 sin(𝑋𝑖

3)]

𝑁−1

𝑖=0

(𝑒𝑞. 47)

ZDT N.2:

𝑓0 = 𝑥0 (𝑒𝑞. 48)

𝑓1 = 𝑔(1 − √
𝑓0
𝑔
)(1 + si n(10π𝑓0)) (𝑒𝑞. 49)

𝑔 = 1 + 9
∑ 𝑥𝑖
𝑛
𝑖=2

𝑛 − 1
(𝑒𝑞. 50)

ZDT N.3:

f0 = x0 (𝑒𝑞. 51)

𝑓1 = 𝑔(1 − √
𝑓0
𝑔
)(1 + sin(10𝜋𝑓0)) (𝑒𝑞. 52)

 𝑔 = 1 + 9
∑ 𝑥𝑖
𝑛
𝑖=2

𝑛 − 1
(𝑒𝑞. 53)

ZDT N.1:

𝑓0 = 𝑥0 (𝑒𝑞. 54)

𝑓1 = 𝑔(1 −√
𝑓0
𝑔
) (𝑒𝑞. 55)

𝑔 = 1 + 9
∑ 𝑥𝑖
𝑛
𝑖=2

𝑛 − 1
(𝑒𝑞. 56)

108

Fonseca Fleming:

𝑓0 = 1 − exp(−∑(𝑋𝑖 −
1

√𝑛
)
2𝑛

𝑖=1

) (𝑒𝑞. 57)

𝑓1 = 1 − exp(−∑(𝑋𝑖 +
1

√𝑛
)
2𝑛

𝑖=1

) (𝑒𝑞. 58)

109

5.7 Objective Functions: Two Input, Two Output

Figure 43 The eight functions used in the two-input, two-output objective function subset for data collection. First Row:
CTP1 (eqs. 59-60), Constr Ex (eqs. 61-62). Second Row: Chankong and Haimes (eqs. 63-64), Fonseca Fleming (eqs. 65-
66), Third Row: Poloni 2-Objective (eqs.67-72), Kursawe (eqs.73-74). Forth Row: Binh and Korn (eqs.75-76), Binh and Korn
Test Function 4 (eqs.77-78) For each function, the left plot shows a 2D projection of the Feasible Decision Space, and the
plot on the right shows the Feasible Objective Space with the Pareto front marked in black.

There are six functions used in the two-input, single-output objective function subset. For each

equation, Figure 43 has a set of two plots where the plot on the left is the Feasible Decision Space.

110

The plot on the right of each set is the Feasible Objective Space with the Pareto front marked in

black. These equations are bound based on the descriptions provided by their respective authors.

For more information, view the README.md on the objective function library repository on

GitHub [49]. Below are the equations for these objective functions.

CTP1:

𝑓0 = 𝑥0 (𝑒𝑞. 59)

𝑓1 = (1 + 𝑥1) exp (−
𝑥0

1 + 𝑥1
) (𝑒𝑞. 60)

Constr Ex:

𝑓0 = 𝑥0 (𝑒𝑞. 61)

𝑓1 =
1 + 𝑥2
𝑥1

(𝑒𝑞. 62)

Chankong and Haimes:

𝑓0 = 2 + (𝑥0 − 2)
2 + (𝑥1 − 1)

2 (𝑒𝑞. 63)

𝑓1 = 9𝑥0 − (𝑥1 − 1)
2 (𝑒𝑞. 64)

Fonseca Fleming:

𝑓0 = 1 − exp(−∑(𝑋𝑖 −
1

√𝑛
)
2𝑛

𝑖=1

) (𝑒𝑞. 65)

𝑓1 = 1 − exp(−∑(𝑋𝑖 +
1

√𝑛
)
2𝑛

𝑖=1

) (𝑒𝑞. 66)

Poloni Two-Objective Function:

𝐴1 = 0.5 sin(1) − 2 cos(1) + sin(2) − 1.5 cos(2) (𝑒𝑞. 67)

𝐴2 = 1.5 sin(1) − cos(1) + 2 sin(2) − 0.5 cos(2) (𝑒𝑞. 68)

𝐵1 = 0.5 sin(𝑥1) − 2 cos(𝑥1) + sin(𝑥2) − 1.5 cos(𝑥2) (𝑒𝑞. 69)

𝐵2 = 1.5 sin(𝑥1) − cos(𝑥1) + 2 sin(𝑥2) − 0.5 cos(𝑥2) (𝑒𝑞. 70)

111

𝑓0 = 1 + (𝐴1 − 𝐵1)
2 + (𝐴2 − 𝐵2)

2 (𝑒𝑞. 71)

𝑓1 = (𝑥1 + 3)
2 + (𝑥2 + 1)

2 (𝑒𝑞. 72)

Kursawe Function:

𝑓0 = ∑ [−10exp(−0.2√𝑋𝑖
2 + 𝑋𝑖+1

2)]

𝑁−2

𝑖=0

(𝑒𝑞. 73)

𝑓1 = ∑[|𝑋𝑖|
0.8 + 5 sin(𝑋𝑖

3)]

𝑁−1

𝑖=0

(𝑒𝑞. 74)

Binh and Korn Function:

𝑓0 = 4𝑥0
2 + 4𝑥1

2 (𝑒𝑞. 75)

𝑓1 = (𝑥0 − 5)
2 + (𝑥1 − 5)

2 (𝑒𝑞. 76)

Binh and Korn Test Function 4:

f0 = x0
2 − x1 (eq. 77)

f1 = −0.5x0 − x1 − 1 (eq. 78)

5.8 Objective Functions: Multiple Input, Two Output
The following equations are used in the data set for multiple-input, two-output objective functions.

This section was used to create a dataset for training one Hyperparameter Prediction Network

model designed to take more than 3 inputs. It was trained with inputs of 3, 4, 5, 6, 10, and 20

dimensional inputs. All the functions except for the Viennet, and Osyczka and Kundu functions

were used to collect data on all the input dimension variations. The Viennet function was used only

for 3 input dimensions, while the Osyczka and Kundu function was used for 6 input dimensions.

Kursawe Function:

𝑓0 = ∑ [−10exp(−0.2√𝑋𝑖
2 + 𝑋𝑖+1

2)]

𝑁−2

𝑖=0

(𝑒𝑞. 79)

𝑓1 = ∑[|𝑋𝑖|
0.8 + 5 sin(𝑋𝑖

3)]

𝑁−1

𝑖=0

(𝑒𝑞. 80)

112

Fonseca Fleming:

𝑓0 = 1 − exp(−∑(𝑋𝑖 −
1

√𝑛
)
2𝑛

𝑖=1

) (𝑒𝑞. 81)

𝑓1 = 1 − exp(−∑(𝑋𝑖 +
1

√𝑛
)
2𝑛

𝑖=1

) (𝑒𝑞. 82)

Osyczka and Kundu:

𝑓0 = −25(𝑥0 − 2)
2 − (𝑥1 − 2)

2 − (𝑥2 − 1)
2 − (𝑥3 − 4)

2 − (𝑥4 − 1)
2 (𝑒𝑞. 83)

𝑓1 =∑𝑥𝑖
2

𝑛

𝑖=1

(𝑒𝑞. 84)

Viennet:

𝑓0 = 0.5(𝑥0
2 + 𝑥1

2) + sin(𝑥0
2 + 𝑥1

2) (𝑒𝑞. 85)

𝑓1 =
(3𝑥0 − 2𝑥1 + 4)

2

8
+
(𝑥0 − 𝑥1 + 1)

2

27
+ 15 (𝑒𝑞. 86)

𝑓2 =
1

𝑥0
2 + 𝑥1

2 + 1
− 1.1 exp (−(𝑥0

2 + 𝑥1
2)) (𝑒𝑞. 87)

ZDT N.1:

𝑓0 = 𝑥0 (𝑒𝑞. 88)

𝑓1 = 𝑔(1 −√
𝑓0
𝑔
) (𝑒𝑞. 89)

𝑔 = 1 + 9
∑ 𝑥𝑖
𝑛
𝑖=2

𝑛 − 1
(𝑒𝑞. 90)

ZDT N.2:

𝑓0 = 𝑥0 (𝑒𝑞. 91)

𝑓1 = 𝑔(1 − √
𝑓0
𝑔
)(1 + si n(10π𝑓0)) (𝑒𝑞. 92)

𝑔 = 1 + 9
∑ 𝑥𝑖
𝑛
𝑖=2

𝑛 − 1
(𝑒𝑞. 93)

ZDT N.3:

f0 = x0 (𝑒𝑞. 94)

113

𝑓1 = 𝑔(1 − √
𝑓0
𝑔
)(1 + sin(10𝜋𝑓0)) (𝑒𝑞. 95)

 𝑔 = 1 + 9
∑ 𝑥𝑖
𝑛
𝑖=2

𝑛 − 1
(𝑒𝑞. 96)

ZDT N.4:

𝑓0 = 𝑥0 (𝑒𝑞. 97)

𝑓1 = 𝑔(1 − √
𝑓1
𝑔
)(1 − (

𝑓1
𝑔
)
2

) (𝑒𝑞. 98)

𝑔 = 1 + 10(𝑛 − 2) +∑(𝑥𝑖
2 − 10 cos(4𝜋𝑥𝑖))

𝑛

𝑖=2

(𝑒𝑞. 99)

ZDT N.6:

𝑓0 = 1 − exp (−4
𝑥0

(1 + 𝑔)2
) (𝑒𝑞. 100)

𝑓1 = 1 −
𝑓1
2

1 + 𝑔
(𝑒𝑞. 101)

𝑔 = 1 + 9(
∑ 𝑥𝑖
𝑛
𝑖=2

𝑛 − 1
)

0.25

(𝑒𝑞. 102)

5.9 Objective Functions: Multiple Input, Multiple Output
The following equations are used in the data set for multiple-input, multiple-output objective

functions. This section was used to create a dataset for training one Hyperparameter Prediction

Network model designed to take more than 3 inputs and have more than 2 outputs. The DTLZ

function set is designed to take broad number of input output dimensionality. The set, however,

performs better for optimization benchmarking when there is a minimum of four more inputs than

outputs. Several custom functions were created to supplement this set. These functions are

included below, and in the objective function library.

114

There are 5 target outputs available for AntennaCAT automated optimization, which naturally

limits data collection requirements. In Table 4, the input and output dimensionality combinations

used for the objective functions in this section, are sorted by their output dimensionality. Emphasis

was placed on lower dimensionality inputs, as those have been more commonly used in

experimentation with AntennaCAT.

Table 4 The input and output dimensionality combinations for the multiple-input, multiple-output objective function
dataset

Inputs # Outputs # Inputs # Outputs # Inputs # Outputs

3 3 4 4 5 5

4 3 5 4 6 5

5 3 6 4 10 5

6 3 10 4 12 5

12 3 12 4 15 5

15 3 15 4 20 5

20 3 20 4 25 5

DTLZ N.1:

𝑓𝑖 = 0.5 ⋅ 𝑥0 ⋅ (1 − 𝑥1) ⋅ (1 + 𝑔(𝒙𝑴)), for 𝑖 = 0,1,… ,𝑀 (𝑒𝑞. 103)

𝒇𝑀 = 0.5 ⋅ (1 − 𝑥0) ⋅ (1 + 𝑔(𝒙𝑴)) (𝑒𝑞. 104)

𝑔(𝒙𝑴) = 100(|𝐱| +∑(𝑥𝑖 − 0.5)
2

𝑀

𝑖=0

− 𝑐𝑜𝑠(20𝜋(𝑥𝑖 − 0.5))) (𝑒𝑞. 105)

DTLZ N.2:

𝑓𝑖 = (1 + 𝑔(𝒙𝑴))∏cos2 (
𝜋𝑥𝑗

2
)

𝑀−𝑖

𝑗

∏ sin2 (
𝜋𝑥𝑗

2
)

𝑀−1

𝑗=𝑀−𝑖+1

 , for 𝑖 = 0,1,… ,𝑀 − 1 (𝑒𝑞. 106)

𝒇𝑀 = (1 + 𝑔(𝒙𝑴)) ⋅ 𝑠𝑖𝑛(𝑥0𝜋/2) (𝑒𝑞. 107)

𝑔(𝒙𝑴) = ∑ (𝑥𝑖 − 0.5)
2

𝑥𝑖∈𝒙𝑴

(𝑒𝑞. 108)

DTLZ N.3:

115

𝑓𝑖 = (1 + 𝑔(𝒙𝑴)) cos (
𝜋𝑥0
2
)∏ sin (

𝜋𝑥𝑗

2
)

𝑀−2

𝑗=1

, for 𝑖 = 0,1,… ,𝑀 − 1 (𝑒𝑞. 109)

𝒇𝑀 = (1 + 𝑔(𝒙𝑴)) ⋅ 𝑠𝑖𝑛(𝑥0𝜋/2) (𝑒𝑞. 110)

𝑔(𝒙𝑴) = 100(|𝐱| +∑(𝑥𝑖 − 0.5)
2

𝑀

𝑖=0

− 𝑐𝑜𝑠(20𝜋(𝑥𝑖 − 0.5))) (𝑒𝑞. 111)

AntennaCAT Function 12:

𝑓𝑖 = ∑ cos (
𝜋𝑥𝑗

2
)

𝑀−1

𝑗=1

+ sin (
𝜋𝑥𝑖
2
) , for 𝑖 = 0,1, … ,𝑀 − 1 (𝑒𝑞. 112)

𝑓𝑀 = sin (
𝜋𝑥𝑀−1
2

) (𝑒𝑞. 113)

 AntennaCAT Function 13:

𝑓𝑖 =
1

𝑀
[∑(cos (

𝑖𝜋𝑥𝑗

𝑀
)+ sin (

𝑖𝜋𝑥𝑗

𝑀
))

𝑀

𝑗=0

] , for 𝑖 = 0,1, , … ,𝑀 (𝑒𝑞. 114)

5.10 Summarized Model Design, Training, and Results
A total of 49 neural networks were trained for seven optimizers. For brevity, this section covers

the general methodology for designing the Hyperparameter Prediction Network models, the

training, and acceptable result thresholds. Selected examples are shown here, but details on the

most current version of each machine learning model will be available in the AntennaCAT software

documentation included on GitHub. Here, these models are referred to as neural networks as that

was the topology used during development of this process. The currently implemented neural

networks may be replaced by other topologies or mixed with other topologies in the model library.

Data was separated first by optimizer, and then by the objective function grouping. Logged data is

.csv compatible and can be read directly into a Python program using the pandas library. Data was

read in as a DataFrame and evaluated. In instances where NaN, nulls, or other error values were

recorded, that instance was removed from the set. These instances were rare and are suspected to

occur when the automated data collection process was interrupted. The remaining valid data was

116

then separated so that the input and output dimensionality were the inputs to the neural network,

and the optimizer hyperparameters were the outputs. The L2 norm difference of the optimal

solution from the target was used in the Mean Squared Error (MSE) error calculation to incorporate

the convergence performance. The sklearn (scikit-learn) library was used to separate data into 85%

train, and 15% test. Training occurred with the torch (PyTorch) library, using the nn package with

multiple hidden layers. ReLu activation functions were used on every layer of the forward pass.

At least two hidden layers were used for all networks. In instances where the input and output

dimensionality were high (e.g., multiple input, multiple output), more hidden layers were used.

Hidden layers with more nodes performed better on these sets, using 64-96 nodes.

Network performance was first evaluated by the accuracy, MSE, and rate of false classifications.

The final validation for if a network was well trained was entering the predicted hyperparameter

values into the AntennaCAT GUI and testing on a low-dimensionality replication study (typically

the rectangular patch). If the optimizer failed to converge with an error tolerance of less than 10e-

3, with a maximum iteration limit of 600, on more than three attempts, the training process was

restarted and the network potentially redesigned. Ultimately, networks that had an accuracy over

95%, even if they indicated some bias towards specific objective functions were considered as the

predictions were close enough for practical purposes. For instance, when predicting the bird

categories for chicken swarm, there is no practical distinction between having one swarm with a

rooster, three hens, five mother hens, and four chicks, versus a swarm that has five chicks in terms

of short-term objective cost. However, when applied to traditional PSO, it was observed that the

balance between the predicted weights had a higher impact on the performance than the exact

weight values. That is, for traditional PSO, with closely predicted velocity limits and within the

typically predicted 10-13 particle swarm size, it was not atypical for predicted weights to range

from 0.7-0.85, with at least two of the three weights being within 3% of each other.

Valid predictions also tended to be within a specific range, rather than specific values. For instance,

when training the neural network for the two-input, two-output objective function group with the

traditional particle swarm optimizer, mathematically the MSE varied by as much as 3 on

predictions where if all variables except for the number of particles (qty. 10-13) were within 2%.

For PSO, unless the time and computational cost of the simulation are high, there is limited

practical difference between 10 and 11, or even 10 and 13 particles. This suggests that there may

117

be some benefit to timing the simulation run time during AntennaCAT’s tuning process and

adjusting hyperparameters based on the length of the simulation time. This utility is further

discussed in the next section as a near-future expansion.

5.11 Hyperparameter Prediction Network Model Expansion
The objective function and optimizer combinations used to collect data for these models have been

heavily covered in this chapter. During the design and testing of these models, consideration was

given to addressing two design necessities. Firstly, between the prediction of the hyperparameter

values and the output of the ‘Help Me Choose’ tab on the GUI, processing must be done to ensure

that predicted values are valid inputs into the optimizer. While a properly trained ML model should

not output values that are drastically outside of the expected, due to the modular nature of the

library, the potential for unforeseen update factors as the library expands, and that the optimizers

expect specific value formats, this layer of error checking is necessary. For instance, the swarm-

based optimizers expect integers for the size of the swarm. While it is trivial to convert a float to

an integer at the optimizer, as the Hyperparameter Prediction Network becomes more intelligent,

it will be highly relevant for the controller to have access to the values that are run in the optimizer

instances.

Secondly, while basic validation could be evaluated with accuracy predicting a test subset of data,

the MSE for the predictions while training and testing, and analyzing the rate of false

classifications, the final validation of a network could only be done with simulation. During testing

and validation, with 49 neural networks in the model library, it was not reasonable to test every

potential model candidate with multiple antenna topologies and multiple trials of optimization with

simulation. The parameters were tested on the optimizers, but this remains a partial validation of

the problem.

With these in mind, the trends discussed in section 5.10 regarding prediction ranges suggest that

the next step for the Hyperparameter Prediction Network models, controller, and the ‘Help Me

Choose’ GUI element is to integrate live tuning based on simulation results, runtime, and if

possible, knowledge of computational resources. Previously, AntennaCAT has not tracked the time

for simulations to run to completion, but by tracking the simulation time and using it as a proxy

118

for the objective function cost, the Hyperparameter Prediction Network could make adaptive

predictions to further streamline the optimization process.

Figure 44 The generalized process where the specific optimizer has been selected. The Known Values have been
expanded from Figure 37 to include information that supports an expansion of the Hyperparameter Prediction Network.

Figure 44 includes the expansion to the ‘Known Variables’ in the MLAO design structure shown

in Figure 37. Rather than relying only on knowledge of the selected optimizer, the number of

controllable parameters, and the number of target values, it would be beneficial to include the last

simulation time, a live tuning option for users to select static or adaptive hyperparameters, and

other variables that set optimizer-specific limits. For example, for optimizers such as the swarm-

based optimizers, limiting the size of the swarm could be an additional input to the neural network

library, which would act as another reference point for predicting hyperparameters, and set a

maximum limit for prediction values, which would in turn set a limit on the maximum cost per

generation of a swarm.

119

CHAPTER 6
Applications for Antenna Design

Presented thus far has been the motivation, design, and implementation of the AntennaCAT

software suite. This chapter presents two examples of the utilization of AntennaCAT’s automated

tuning capabilities. Antenna measurements in this section were conducted in two ways. The S11

measurements were taken on a Keysight FieldFox Series N9912A Network Analyzer. 3D gain

measurements were taken in isolation using an ETS Lindgren anechoic chamber and automated

control system.

The first design presented in this section, a Wi-Fi 6E probe-fed planar antenna, was created using

the imported .DXF from Figure 6, and then manually edited to include extra parameters. This

design was then imported back into AntennaCAT. The second design, a dual-band 5 GHz and 6

GHz Wi-Fi antenna was imported as an existing planar antenna. To simplify the experimentation

process, both designs were limited to the following controllable parameters: the scale of the

imported .DXF design in the X and Y directions, and the X and Y locations of the probe feed.

These designs had been previously optimized manually, so it was known that these were the

minimum parameters needed to reach the set target values. The target S11 values were -10 dB or

lower, and the minimum acceptable gain was set to 2 dB. The target values were chosen to increase

the likelihood of the PSO algorithm converging to a solution. Each design was optimized five

times, starting with the original configuration, and the best result was selected for discussion. All

trials converged within 25 generations (with 5 particles), and results between trials were negligible

given the easily met target metrics.

6.1 Wi-Fi 6E Automated Tuning
To create this design, the AntennaCAT logo was imported as a .DXF and used to create a simple

planar antenna with a copper ground plane. Some manual editing was done to remove stray lines

in HFSS due to the conversion between .TIFF and .DXF leaving relics. Additional

parameterization was added to the .DXF import for the X and Y axis directions to add a scaling

factor. Addressing polygon simplification is beyond the scope of the AntennaCAT software as it

currently exists, but may be possible in the future. The planar antenna was simulated as is shown

in Figure 45 c), where the orange represents the copper conductor, and the blue area was milled

120

out in construction. Double-sided copper FR4 with a permittivity of 4.4 and a thickness of 1.6 mm

was used in simulation.

Figure 45 The 6E Wi-Fi antenna created with the AntennaCAT logo. a.) The optimized resonant frequency of -12 dB at 6
GHz, b.) The gain of the AntennaCAT logo patch antenna, c.) a front view of the Ansys HFSS simulated patch antenna.

The antenna in Figure 45 was simulated with a probe fed through the copper ground plane on the

back. This antenna had a simulated resonance of -12 dB at 6 GHz, and a gain of 5.96 GHz. To

verify the simulated design, the patch antenna was milled using double-sided FR4.

Figure 46 Six versions of epoxy-treated AntennaCAT logo cat-shaped antennas used for validating optimizer results.

121

Figure 46 shows 6 variations where the milled antennas were treated with dyed epoxy. Five of the

antennas, aside from the dark pink (3rd from the right) were treated with glow-in-the-dark UV-

cured epoxy. The dark pink antenna was treated with an acrylic-based epoxy and left to air-dry.

The probe feed location is visible in the center with the silver solder. In experimentation, the epoxy

added to the milled areas did not shift the frequency in the measured bands. Figure 47 shows the

five antennas treated with glow-in-the-dark epoxy excited by UV light.

Figure 47 The five AntennaCAT logo antennas treated with glow-in-the-dark epoxy being excited by UV light in a dark room.

Figure 48 The measured S11 of three of the glow-in-the-dark epoxy-treated milled AntennaCAT logos antennas.

The return loss (S11) of the AntennaCAT logo patch antennas is plotted in Figure 48. Three

examples, the green, orange, and pink glow-in-the-dark epoxy treated antennas, are included in

122

this plot. These three antennas are in good agreement with each other, and all three show the slight

shift upwards in frequency that occurred in the manufacturing process with this set, though the

return loss for all three is at or below -10 dB at 6 GHz. The epoxy did not affect the S11 in the 6

GHz band. The epoxy treatment was experimentally noted to shift frequencies lower at 10 GHz

and above with this design. However, the antenna was not designed for bands above 6 GHz, and

further experimentation would need to be conducted to determine if that shift is reliable. Figure

49, below, shows the measured gain of the orange epoxy treated AntennaCAT logo antenna. The

maximum gain occurred at 6085 MHz, at 1.8 dB. This was typical across this set, and it is strongly

suspected to be caused by a slight shift in the probe location caused while drilling through the FR4.

This design is extremely sensitive to shifts in the probe location due to the complex geometry.

However, this design still demonstrates the ability of AntennaCAT to import and optimize designs.

Figure 49 The measured gain of the milled AntennaCAT logo antenna treated with orange epoxy. The maximum gain
occurred with the azimuthal measurement at 6085 MHz, at 1.8 dB.

123

6.2 Dual-Band 5 GHz, 6 GHz Wi-Fi Antennas
This planar design was created and parameterized manually. It uses the same probe-fed planar

antenna base (1.6 mm FR4 substrate with copper ground plane) that AntennaCAT uses as a default

planar setup to retain some consistency between the presented examples. The .DXF was imported

and intersected with a copper sheet to create the conductor, and parameterization was added for

the X and Y axis scaling. The probe was placed towards the left ear to encourage placement for

cosmetic reasons. The planar antenna as it was simulated is shown in Figure 50 c), where the

orange represents the copper conductor, and the yellow is the visible FR4 substrate. Double-sided

copper FR4 with a permittivity of 4.4 and a thickness of 1.6 mm was used in simulation and

construction of the antenna.

Figure 50 The dual-band 5 GHz and 6 GHz Wi-Fi antenna created with the simplified cat patch planar antenna. a.) the gain
plot for the 5 GHz frequency, b.) the gain plot for the 6 GHz frequency, c.) a front view of the Ansys HFSS simulated patch
antenna, and d.) the simulated S11.

Figure 51 shows the milled cat patch antenna on 1.6 mm double-sided copper clad FR4, on the

right with the rectangular ground plane. The design on the left of Figure 51 is the tuned version of

124

the rectangular patch placed on to a circular ground plane. Both designs are probe-fed from the

back. The results of measurements with the FieldFox and anechoic chamber are shown in Figures

52 and 53, where the measured and simulated results are compared for the resonant frequency and

gain, respectively.

Figure 51 Two milled variations of the dual-band 5 GHz and 6 GHz cat-shaped patch antenna used for verifying optimizer
results. The rectangular ground plane version was simulated and tuned using the AntennaCAT software. The round version
on the left differs only in ground plane construction.

In Figure 52, both the rectangular and circular ground planes are measured to demonstrate the

higher tolerance of this design to manufacturing changes. Unlike the complex AntennaCAT logo

design, this design is tolerant of probe location and milling resolution. The resonant frequencies

in Figure 52 are in good agreement, though the 5 GHz return loss of the rectangular patch

performed better. The gain of the rectangular patch taken as the azimuth and elevation angles

shows the performance at 5 and 6 GHz. The results are in good agreement, though there is some

variation due to the variation caused by hand drilling the FR4.

125

Figure 52 The measured S11 of the milled cat-shaped patch antennas for 5 GHz and 6 GHz. Two variations were simulated:
the cat-shape design implemented with a rectangular ground plane, and the cat-shape design with a round ground plane.

Figure 53 The measured gain of the milled cat-shaped patch antennas. Left, the azimuthal value measuring the 5 GHz
frequency polarized from cheek-to-cheek. Right, the elevation measuring the top-to-chin polarized 6 GHz band.

126

CHAPTER 7
Conclusion

The Antenna Calculation and Autotuning Tool (AntennaCAT) software suite represents a

significant advancement in the field of antenna design by automating the entire design, CAD,

simulation, and optimization process compatible with several EM simulation software suites. It is

the first comprehensive implementation of machine learning in this context. In particular, this work

includes the capability to create and export structured datasets from the aforementioned EM

software for iterative improvement and includes an expandable selection of optimizers.

AntennaCAT promotes research replication with its antenna calculator for three topologies

(rectangular patch antenna, half-wave monopole, and quarter-wave dipole) and an expandable

internal library of parameterized replication study designs. The software supports importing

existing scripts and loading in project references for file modification. All calculated, replicated,

imported, and loaded projects are compatible with the eleven optimizers included in the internal

optimizer suite, which include eight swarm-based optimizers, a Sweep optimizer with random and

grid search options, a Bayesian optimizer, and optional surrogate model kernels to reduce

computational needs. In total, there are 90 optimizer-surrogate model combinations, and additional

configurations such as boundary condition handling which may cause unique optimizer behavior.

With the internal design options, this creates more than 1,500 combination options for users to

choose from, and then customize.

The AntennaCAT software suite addresses the broad range of design optimization options by

leveraging data collected from single-objective and multi-objective benchmark functions to train

neural networks in the Hyperparameter Prediction Network models. These networks suggest

optimizer hyperparameters based on the number of controllable problem variables and the number

of target values being optimized. The near-future expansion of this feature to include tracking

simulation times and adjusting parameters such as maximum swarm size, or weights, as a proxy

variable for assessing computational cost was discussed in Chapter 5.

While AntennaCAT is designed to be a constantly evolving project that will continue to incorporate

more replication studies, optimizers, compatible EM simulation software suites, and other features,

this document has detailed the methodology behind AntennaCAT from conception to execution.

127

It has also described the process of the generation, customization, scripting, CAD creation,

simulation, and optimization that can be used to replicate existing research or create unique custom

designs. In Chapter 6, two examples of probe-fed planar antennas were created using the

AntennaCAT software suite, simulated, manufactured, and then evaluated in an anechoic chamber.

The manufactured antennas were in good agreement with the simulated designs. Variations

between simulation and measurement can be largely attributed to variations in permittivity

between the simulated 4.4 and the actual material, hand drilling probe locations for the small patch

antennas, and manufacturing tolerance with the milling process.

128

CHAPTER 8
References

[1] C. A. Balanis, Antenna Theory: Analysis and Design. Hoboken, NJ: Wiley, 2016.

[2] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design. Hoboken, NJ: Wiley, 2013.

[3] J. L. Volakis, Antenna Engineering Handbook, 4th ed. New York, NY: McGraw-Hill

Education, 2007.

[4] J. Lilja, P. Salonen, T. Kaija and P. de Maagt, "Design and Manufacturing of Robust Textile

Antennas for Harsh Environments," in IEEE Transactions on Antennas and Propagation, vol. 60,

no. 9, pp. 4130-4140, Sept. 2012, doi: 10.1109/TAP.2012.2207035.

[5] J. Lundquist et al., "Textile-Based Inkjet-Printed RFIDs: Exploring wearable antennas in the

real world [Bioelectromagnetics]," in IEEE Antennas and Propagation Magazine, vol. 66, no. 1,

pp. 50-62, Feb. 2024, doi: 10.1109/MAP.2023.3334671

[6] J. D. Lundquist, L. Linkous, U. Hasni and E. Topsakal, "Indirect Applications of Additive

Manufacturing for Antennas," in IEEE Open Journal of Antennas and Propagation, vol. 4, pp.

434-445, 2023, doi: 10.1109/OJAP.2023.3265691.

[7] T. Rylander, P. Ingelström, and A. Bondeson, Computational Electromagnetics. New York,

NY: Springer New York, 2013.

[8] K. Sankaran, “Are you using the right tools in computational electromagnetics?,” Engineering

Reports, vol. 1, no. 3, Oct. 2019. doi:10.1002/eng2.12041

[9] U. Jakobus and G. Smith, "State of the art of electromagnetic modelling in FEKO," 2012 6th

European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 2012,

pp. 853-854, doi: 10.1109/EuCAP.2012.6206582.

[10] Q. Wu, Y. Cao, H. Wang and W. Hong, "Machine-learning-assisted optimization and its

application to antenna designs: Opportunities and challenges," in China Communications, vol. 17,

no. 4, pp. 152-164, April 2020, doi: 10.23919/JCC.2020.04.014.

[11] “A Novel Optimization Approach Using optiSLang and HFSS Analytical Derivatives,”

Ansys, https://www.ansys.com/resource-center/webinar/novel-optimization-approach-using-

optislang-and-hfss-analytical-derivatives (accessed Mar. 23, 2024).

[12] Ansoft Corp., “Parametrics and Optimization Using Ansoft HFSS,” Microwave Journal,

Ansoft Corp., Nov. 1999

129

[13] “Antenna magus: Antenna Design Software - Simulia by Dassault Systèmes®,” Antenna

Magus | Antenna design software - SIMULIA by Dassault Systèmes®. [Online]. Available:

https://www.3ds.com/products-services/simulia/products/antenna-magus/. [Accessed: 14-Mar-

2024].

[14] “Optimisation in Feko,” 2022.help.altair.com,

https://2022.help.altair.com/2022/feko/topics/feko/user_guide/optimisation/optimisation_intro_fe

ko_c.htm (accessed Mar. 22, 2024).

[15] C. Piersall, “Scripting HFSS inside MATLAB,” Scripting HFSS Inside MATLAB - HFSS

Lib 0.0.0 documentation, 2015. [Online]. Available:

https://arrc.ou.edu/~cody/hfsslib/matlab_examples/. [Accessed: 21-Mar-2024].

[16] Yuip, “Yuip/hfss-API: A HFSS API to control HFSS from MATLAB,” GitHub. [Online].

Available: https://github.com/yuip/hfss-api. [Accessed: 21-Mar-2024].

[17] S. Tariq, "Automation of reflectarrays in HFSS using visual basic scripting," 2018 Texas

Symposium on Wireless and Microwave Circuits and Systems (WMCS), Waco, TX, USA, 2018,

pp. 1-4, doi: 10.1109/WMCaS.2018.8400640.

[18] P. Monk, Finite element methods for Maxwell’s equations. Oxford ; New York: Clarendon

Press, 2003.

[19] T. Rylander and A. Bondeson, “Stable FEM-FDTD hybrid method for Maxwell’s equations,”

Computer Physics Communications, vol. 125, no. 1–3, pp. 75–82, Mar. 2000, doi:

https://doi.org/10.1016/s0010-4655(99)00463-4

[20] Microstrip Patch Antenna Calculator. [Online]. Available: https://www.pasternack.com/t-

calculator-microstrip-ant.aspx. [Accessed: 17-Mar-2024].

[21] Ł. Zaborowska, “Dipole calculator,” Antenna Length Calculator, 14-Nov-2022. [Online].

Available: https://www.omnicalculator.com/physics/dipole. [Accessed: 14-Mar-2023].

[22] “Antenna Wavelength Calculator,” Antenna Wavelength Calculator | Southwest Antennas -

High Performance RF and Microwave Antennas & Custom Antenna Manufacturing. [Online].

Available: https://www.southwestantennas.com/calculator/antenna-wavelength. [Accessed: 14-

Mar-2023].

[23] “Dipole Antenna Length Calculator,” Dipole Antenna Length Calculator - Everything RF.

[Online]. Available: https://www.everythingrf.com/rf-calculators/dipole-antenna-length-

calculator. [Accessed: 14-Mar-2023].

130

[24] Ansys (pyansys), “PyAEDT,” GitHub. [Online]. Available:

https://github.com/pyansys/pyaedt. [Accessed: 14-Mar-2023].

[25] “Cadfeko API,” 2021.help.altair.com. [Online]. Available:

https://2021.help.altair.com/2021.1/feko/topics/feko/user_guide/appendix/api_cadfeko_feko_c.ht

m. [Accessed: 27-Mar-2023].

[26] “Example Postfeko API Script,” 2021.help.altair.com. [Online]. Available:

https://2021.help.altair.com/2021/feko/topics/feko/user_guide/scripting/example_postfeko_api_s

cript_feko_c.htm. [Accessed: 27-Mar-2023].

[27] “Introduction to scripting and the API,” 2021.help.altair.com. [Online]. Available:

https://2021.help.altair.com/2021.1/feko/topics/feko/user_guide/scripting/intro_script_api_feko_

c.htm. [Accessed: 27-Mar-2023].

[28] “List of environment variables,” 2021.help.altair.com. [Online]. Available:

https://2021.help.altair.com/2021/feko/topics/feko/user_guide/appendix/environment_variables_f

eko_r.htm. [Accessed: 27-Mar-2023].

[29] C. Piersall, “Scripting HFSS inside MATLAB,” Scripting HFSS Inside MATLAB - HFSS

Lib 0.0.0 documentation, 2015. [Online]. Available:

https://arrc.ou.edu/~cody/hfsslib/matlab_examples/. [Accessed: 14-Mar-2023].

[30] Yuip, “Yuip/hfss-API: A HFSS API to control HFSS from MATLAB,” GitHub. [Online].

Available: https://github.com/yuip/hfss-api. [Accessed: 14-Mar-2023].

[31] A. Z. Hood and E. Topsakal, "Particle swarm optimization for dual-band implantable

antennas," 2007 IEEE Antennas and Propagation Society International Symposium, Honolulu, HI,

USA, 2007, pp. 3209-3212, doi: 10.1109/APS.2007.4396219.

[32] E. K. Dahbi, T. Elhamadi, and N. Amar Touhami, “Optimization of the SIW cavity-backed

slots antenna for X-band applications using the particle swarm optimization algorithm,” Journal

of Electromagnetic Waves and Applications, vol. 36, no. 7, pp. 928–939, 2021.

doi:10.1080/09205071.2021.1996278

[33] J. B. Romdhane Hajri et al., "Fast and Automatic RF Design Based on MATLAB-HFSS

Control Applied on Magnetic Absorber with Metasurface," 2019 Photonics & Electromagnetics

Research Symposium - Fall (PIERS - Fall), Xiamen, China, 2019, pp. 1339-1342, doi:

10.1109/PIERS-Fall48861.2019.9021573.

[34] S. Montoya Villada, E. Reyes Vera, and M. Arias-Correa, “Animage: A MATLAB-based tool

131

for generating microstrip antennas with complex shapes,” SoftwareX, vol. 23, 2023.

doi:10.2139/ssrn.4455828

[35] R. Banks, Q. Nguyen, R. Fenner and A. Zaghloul, "Pixelated Metamaterial Determination

Using Genetic Algorithm and HFSS/Matlab Integration," 2023 IEEE International Symposium on

Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI), Portland, OR,

USA, 2023, pp. 1595-1596, doi: 10.1109/USNC-URSI52151.2023.10237688.

[36] MPh-py, “MPh: Pythonic scripting interface for Comsol Multiphysics,” GitHub. [Online].

Available: https://github.com/MPh-py/MPh. [Accessed: 14-Mar-2023].

[37] Fellobos, “cmphy,” GitHub. [Online]. Available: https://fellobos.github.io/cmphy/.

[Accessed: 14-Mar-2023].

[38] “Run COMSOL MULTIPHYSICS® simulations with MATLAB®,” COMSOL. [Online].

Available: https://www.comsol.com/livelink-for-matlab. [Accessed: 27-Mar-2023].

[39] “Automate your modeling tasks with the COMSOL API for use with Java®,” COMSOL.

[Online]. Available: https://www.comsol.com/blogs/automate-modeling-tasks-comsol-api-use-

java/. [Accessed: 27-Mar-2023].

[40] M. O. Akinsolu, K. K. Mistry, B. Liu, P. I. Lazaridis and P. Excell, "Machine Learning-

assisted Antenna Design optimization: A Review and the State-of-the-art," 2020 14th European

Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 2020, pp. 1-5, doi:

10.23919/EuCAP48036.2020.9135936.

[41] N. Sarker, P. Podder, M. R. H. Mondal, S. S. Shafin and J. Kamruzzaman, "Applications of

Machine Learning and Deep Learning in Antenna Design, Optimization, and Selection: A

Review," in IEEE Access, vol. 11, pp. 103890-103915, 2023, doi:

10.1109/ACCESS.2023.3317371.

[42] Q. Wu, W. Chen, C. Yu, H. Wang and W. Hong, "Machine-Learning-Assisted Optimization

for Antenna Geometry Design," in IEEE Transactions on Antennas and Propagation, vol. 72, no.

3, pp. 2083-2095, March 2024, doi: 10.1109/TAP.2023.3346493

[43] Y. Sharma, H. H. Zhang, and H. Xin, "Machine Learning Techniques for Optimizing Design

of Double T-Shaped Monopole Antenna," in IEEE Transactions on Antennas and Propagation,

vol. 68, no. 7, pp. 5658-5663, July 2020, doi: 10.1109/TAP.2020.2966051.

[44] A. Srivastava, H. Gupta, A. Kumar Dwivedi, K. Kanth Varma Penmatsa, P. Ranjan, and A.

Sharma, “Aperture coupled dielectric resonator antenna optimization using Machine Learning

https://github.com/MPh-py/MPh
https://fellobos.github.io/cmphy/

132

Techniques,” AEU - International Journal of Electronics and Communications, vol. 154, p.

154302, Sep. 2022.

[45] H. M. E. Misilmani and T. Naous, "Machine Learning in Antenna Design: An Overview on

Machine Learning Concept and Algorithms," 2019 International Conference on High Performance

Computing & Simulation (HPCS), Dublin, Ireland, 2019, pp. 600-607, doi:

10.1109/HPCS48598.2019.9188224.

[46] W. Chen, Q. Wu, C. Yu, H. Wang, and W. Hong, "Multibranch Machine Learning-Assisted

Optimization and Its Application to Antenna Design," in IEEE Transactions on Antennas and

Propagation, vol. 70, no. 7, pp. 4985-4996, July 2022, doi: 10.1109/TAP.2022.3179597.

[47] D. H. Wolpert and W. G. Macready, "No free lunch theorems for optimization," in IEEE

Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67-82, April 1997, doi:

10.1109/4235.585893.

[48] M. Baker, “1,500 scientists lift the lid on reproducibility,” Nature, vol. 533, no. 7604, pp.

452–454, May 2016. doi:10.1038/533452a

[49] L. Linkous, objective_function_suite (Version 1.0), GitHub, [source code]. Available:

https://github.com/LC-Linkous/objective_function_suite

[50] L. Linkous, E. Karincic, J. Lundquist and E. Topsakal, "Automated Antenna Calculation,

Design and Tuning Tool for HFSS," 2023 United States National Committee of URSI National

Radio Science Meeting (USNC-URSI NRSM), Boulder, CO, USA, 2023, pp. 229-230, doi:

10.23919/USNC-URSINRSM57470.2023.10043119.

[51] L. Linkous, J. Lundquist and E. Topsakal, "AntennaCAT: Automated Antenna Design and

Tuning Tool," 2023 IEEE USNC-URSI Radio Science Meeting (Joint with AP-S Symposium),

Portland, OR, USA, 2023, pp. 89-90, doi: 10.23919/USNC-URSI54200.2023.10289238.

[52] L. Linkous, (LC-Linkous) (2022) AntennaCAT (Version 2024) [source code]

https://github.com/LC-Linkous/AntennaCalculationAutotuningTool

[53] E. Karincic, E. Topsakal, and L. Linkous, "Patch Antenna Calculations and Fabrication Made

Simple for Cyber Security Research," in 2023 ASEE Annual Conference & Exposition, 2023.

[54] E. Karincic, (Dollarhyde) (2022) Antenna Calculator (Version 2.0) [source code].

https://github.com/Dollarhyde/AntennaCalculator

[55] Highway Surveying Manual, M22-97, Washington State Department of Transportation, WA,

USA, 2005, pp. 135-142. [online] https://www.wsdot.wa.gov/publications/manuals/fulltext/M22-

https://github.com/LC-Linkous/objective_function_suite
https://github.com/LC-Linkous/AntennaCalculationAutotuningTool
https://github.com/Dollarhyde/AntennaCalculator
https://www.wsdot.wa.gov/publications/manuals/fulltext/M22-97/highwaysurvey.pdf

133

97/highwaysurvey.pdf

[56] L. Linkous, GeneticCAT (Version 1.0), GitHub, [source code]. Available:

https://github.com/LC-Linkous/GeneticCAT

[57] A. Papathanasopoulos, P. A. Apostolopoulos and Y. Rahmat-Samii, "Optimization Assisted

by Neural Network-Based Machine Learning in Electromagnetic Applications," in IEEE

Transactions on Antennas and Propagation, doi: 10.1109/TAP.2023.3269883.

[58] U. Hasni and E. Topsakal, "Wearable Antennas for On-Body Motion Detection," 2020 IEEE

USNC-CNC-URSI North American Radio Science Meeting (Joint with AP-S Symposium),

Montreal, QC, Canada, 2020, pp. 1-2, doi: 10.23919/USNC/URSI49741.2020.9321663.

[59] A. Z. Hood and E. Topsakal, "Particle swarm optimization for dual-band implantable

antennas," 2007 IEEE Antennas and Propagation Society International Symposium, Honolulu, HI,

USA, 2007, pp. 3209-3212, doi: 10.1109/APS.2007.4396219.

[60] T. Karacolak, A. Z. Hood and E. Topsakal, "Design of a Dual-Band Implantable Antenna and

Development of Skin Mimicking Gels for Continuous Glucose Monitoring," in IEEE Transactions

on Microwave Theory and Techniques, vol. 56, no. 4, pp. 1001-1008, April 2008, doi:

10.1109/TMTT.2008.919373.

[61]S. Sukhija, R. K. Sarin, and N. Kashyap, “Design of compact wideband serpentine patch

antenna for ingestible endoscopic applications,” Progress In Electromagnetics Research M, vol.

66, pp. 53–63, 2018. doi:10.2528/pierm17120101

[62] N. Sharma and S. S. Bhatia, “Design of antenna by amalgamating staircase and hexagonal

ring-shaped structures with the modified ground plane for multi-standard wireless applications,”

Journal of Electromagnetic Waves and Applications, vol. 36, no. 7, pp. 893–911, 2021.

doi:10.1080/09205071.2021.1995898

[63] U. Hasni, M. E. Piper, J. Lundquist and E. Topsakal, "Screen-Printed Fabric Antennas for

Wearable Applications," in IEEE Open Journal of Antennas and Propagation, vol. 2, pp. 591-598,

2021, doi: 10.1109/OJAP.2021.3070919.

[64] A. Nunnally and E. Topsakal, "Dual-Band FSS for WMTS and CBRS for Wearable Wireless

Medical Telemetry," 2023 IEEE USNC-URSI Radio Science Meeting (Joint with AP-S

Symposium), Portland, OR, USA, 2023, pp. 113-114, doi: 10.23919/USNC-

URSI54200.2023.10289424.

[65] N. Jin and Y. Rahmat-Samii, "Parallel particle swarm optimization and finite- difference time-

https://www.wsdot.wa.gov/publications/manuals/fulltext/M22-97/highwaysurvey.pdf
https://github.com/LC-Linkous/GeneticCAT

134

domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs," in IEEE

Transactions on Antennas and Propagation, vol. 53, no. 11, pp. 3459-3468, Nov. 2005, doi:

10.1109/TAP.2005.858842.

[66] A. Aldhafeeri and Y. Rahmat-Samii, "Brain Storm Optimization for Electromagnetic

Applications: Continuous and Discrete," in IEEE Transactions on Antennas and Propagation, vol.

67, no. 4, pp. 2710-2722, April 2019, doi: 10.1109/TAP.2019.2894318.

[67] A. Z. Hood, T. Karacolak and E. Topsakal, "A Small Antipodal Vivaldi Antenna for

Ultrawide-Band Applications," in IEEE Antennas and Wireless Propagation Letters, vol. 7, pp.

656-660, 2008, doi: 10.1109/LAWP.2008.921352.

[68] R. B. Green and E. Topsakal, "Biocompatible Antennas for Implantable Biosensor Systems,"

2019 International Workshop on Antenna Technology (iWAT), Miami, FL, USA, 2019, pp. 70-

72, doi: 10.1109/IWAT.2019.8730633.

[69] T. Karacolak and E. Topsakal, "A Double-Sided Rounded Bow-Tie Antenna (DSRBA) for

UWB Communication," in IEEE Antennas and Wireless Propagation Letters, vol. 5, pp. 446-449,

2006, doi: 10.1109/LAWP.2006.885013.

[70] M. Asili, R. Green, S. Seran and E. Topsakal, "A Small Implantable Antenna for MedRadio

and ISM Bands," in IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 1683-1685,

2012, doi: 10.1109/LAWP.2013.2241723.

[71] A. Deb, J. S. Roy and B. Gupta, "Performance Comparison of Differential Evolution, Particle

Swarm Optimization and Genetic Algorithm in the Design of Circularly Polarized Microstrip

Antennas," in IEEE Transactions on Antennas and Propagation, vol. 62, no. 8, pp. 3920-3928,

Aug. 2014, doi: 10.1109/TAP.2014.2322880.

[72] Z. Wu, Y. Yang and Z. Yao, "Multi-Parameter Modeling with ANN for Antenna Design,"

2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National

Radio Science Meeting, Boston, MA, USA, 2018, pp. 2381-2382, doi:

10.1109/APUSNCURSINRSM.2018.8608587.

[73] A. L. Custódio and J. F. A. Madeira, “MultiGLODS: global and local multiobjective

optimization using direct search,” Journal of Global Optimization, vol. 72, no. 2, pp. 323–345,

Feb. 2018, doi: https://doi.org/10.1007/s10898-018-0618-1.

[74] B. Bischl et al., “Hyperparameter optimization: Foundations, Algorithms, best practices, and

open challenges,” WIREs Data Mining and Knowledge Discovery, vol. 13, no. 2, 2023.

https://doi.org/10.1007/s10898-018-0618-1

135

doi:10.1002/widm.1484

[75] J. Wu, X.-Y. Chen, H. Zhang, L.-D. Xiong, H. Lei, and S.-H. Deng, “Hyperparameter

Optimization for Machine Learning Models Based on Bayesian Optimization,” Journal of

Electronic Science and Technology, vol. 17, no. 1, pp. 26–40, Mar. 2019, doi:

https://doi.org/10.11989/JEST.1674-862X.80904120.

[76] J. Luo, W. Xu and J. Chen, "A Novel Radial Basis Function (RBF) Network for Bayesian

Optimization," 2021 IEEE 7th International Conference on Cloud Computing and Intelligent

Systems (CCIS), Xi'an, China, 2021, pp. 250-254, doi: 10.1109/CCIS53392.2021.9754629.

[77] J. Robinson and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," in

IEEE Transactions on Antennas and Propagation, vol. 52, no. 2, pp. 397-407, Feb. 2004, doi:

10.1109/TAP.2004.823969.

[78] Z. -H. Zhan, J. Zhang, Y. Li and H. S. -H. Chung, "Adaptive Particle Swarm Optimization,"

in IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 6, pp.

1362-1381, Dec. 2009, doi: 10.1109/TSMCB.2009.2015956.

[79] J. Lundquist, L. Linkous, pso_Python (Version 1.0), GitHub, [source code]. Available:

https://github.com/jonathan46000/pso_Python

[80] S.-C. Chu, P. Tsai, and J.-S. Pan, “Cat swarm optimization,” Lecture Notes in Computer

Science, pp. 854–858, 2006. doi:10.1007/978-3-540-36668-3_94

[81] A. M. Ahmed, T. A. Rashid, and S. Ab. Saeed, “Cat Swarm Optimization Algorithm: A survey

and performance evaluation,” Computational Intelligence and Neuroscience, vol. 2020, pp. 1–20,

2020. doi:10.1155/2020/4854895

[82] A. Seyyedabbasi and F. Kiani, “Sand Cat swarm optimization: a nature-inspired algorithm to

solve global optimization problems,” Engineering with Computers, Apr. 2022, doi:

https://doi.org/10.1007/s00366-022-01604-x.

[83] “Sand Cat swarm optimization,” www.mathworks.com.

https://www.mathworks.com/matlabcentral/fileexchange/110185-sand-cat-swarm-optimization

(accessed Jun. 19, 2024).

[84] X. B. Meng, Y. Liu, X. Gao, and H. Zhang, "A new bio-inspired algorithm: Chicken swarm

optimization," in Proc. Int. Conf. Swarm Intell. Cham, Switzerland, Springer, 2014, pp. 86–94.

[85] S. Liang, Z. Fang, G. Sun, Y. Liu, G. Qu and Y. Zhang, "Sidelobe Reductions of Antenna

Arrays via an Improved Chicken Swarm Optimization Approach," in IEEE Access, vol. 8, pp.

https://github.com/jonathan46000/pso_python
https://doi.org/10.1007/s00366-022-01604-x
http://www.mathworks.com/
https://www.mathworks.com/matlabcentral/fileexchange/110185-sand-cat-swarm-optimization

136

37664-37683, 2020, doi: 10.1109/ACCESS.2020.2976127.

[86] Z. Qiuqiao, B. Wang, L. Wei and W. Haishan, "Chicken swarm optimization algorithm based

on quantum behavior and its convergence analysis," 2020 39th Chinese Control Conference

(CCC), Shenyang, China, 2020, pp. 2107-2112, doi: 10.23919/CCC50068.2020.9189572.

[87] W. Chu, X. Gao, and S. Sorooshian, “Handling boundary constraints for particle swarm

optimization in high-dimensional search space,” Information Sciences, vol. 181, no. 20, pp. 4569–

4581, 2011. doi:10.1016/j.ins.2010.11.030

[88] T. Huang and A. S. Mohan, "A hybrid boundary condition for robust particle swarm

optimization," in IEEE Antennas and Wireless Propagation Letters, vol. 4, pp. 112-117, 2005, doi:

10.1109/LAWP.2005.846166.

[89] S. Xu and Y. Rahmat-Samii, "Boundary Conditions in Particle Swarm Optimization

Revisited," in IEEE Transactions on Antennas and Propagation, vol. 55, no. 3, pp. 760-765, March

2007, doi: 10.1109/TAP.2007.891562.

[90] L. Linkous, J. Lundquist, pso_basic (Version 1.0), GitHub, [source code]. Available:

https://github.com/LC-Linkous/pso_Python/tree/pso_basic

[91] L. Linkous, pso_quantum (Version 1.0), GitHub, [source code]. Available:

https://github.com/LC-Linkous/pso_Python/tree/pso_quantum

[92] L. Linkous, J. Lundquist, cat_swarm_Python (Version 1.0), GitHub, [source code]. Available:

https://github.com/LC-Linkous/cat_swarm_Python

[93] L. Linkous, J. Lundquist, sand_cat_Python (Version 1.0), GitHub, [source code]. Available:

https://github.com/LC-Linkous/cat_swarm_Python/tree/sand_cat_Python

[94] L. Linkous, cat_swarm_quantum (Version 1.0), GitHub, [source code]. Available:

https://github.com/LC-Linkous/cat_swarm_Python/tree/cat_swarm_quantum

[95] L. Linkous, J. Lundquist, chicken_swarm_Python (Version 1.0), GitHub, [source code].

Available: https://github.com/LC-Linkous/chicken_swarm_Python

[96] L. Linkous, chicken_swarm_quantum (Version 1.0), GitHub, [source code]. Available:

https://github.com/LC-Linkous/chicken_swarm_Python/tree/chicken_swarm_quantum

[97] L. Linkous, sweep_Python (Version 1.0), GitHub, [source code]. Available:

https://github.com/LC-Linkous/sweep_Python

[98] L. Linkous, bayesian_optimization_Python (Version 1.0), GitHub, [source code]. Available:

https://github.com/LC-Linkous/bayesian_optimization_Python

https://github.com/LC-Linkous/pso_python/tree/pso_basic
https://github.com/LC-Linkous/pso_python/tree/pso_quantum
https://github.com/LC-Linkous/cat_swarm_python
https://github.com/LC-Linkous/cat_swarm_python/tree/sand_cat_python
https://github.com/LC-Linkous/cat_swarm_python/tree/cat_swarm_quantum
https://github.com/LC-Linkous/chicken_swarm_python
https://github.com/LC-Linkous/sweep_python
https://github.com/LC-Linkous/bayesian_optimization_python

137

[99] L. Linkous, surrogate_modeling_optimization (Version 1.0), GitHub, [source code].

Available: https://github.com/LC-Linkous/surrogate_modeling_optimization

[100] J. Lundquist, L. Linkous, multi_glods_Python (Version 1.0), GitHub, [source code].

Available: https://github.com/jonathan46000/multi_glods_Python

[101] J. Kennedy and R. Eberhart, "Particle swarm optimization," Proceedings of ICNN'95 -

International Conference on Neural Networks, Perth, WA, Australia, 1995, pp. 1942-1948 vol.4,

doi: 10.1109/ICNN.1995.488968.

[102] Jun Sun, Bin Feng and Wenbo Xu, "Particle swarm optimization with particles having

quantum behavior," Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat.

No.04TH8753), Portland, OR, USA, 2004, pp. 325-331 Vol.1, doi: 10.1109/CEC.2004.1330875.

[103] Jun Sun, Wenbo Xu and Bin Feng, "A global search strategy of quantum-behaved particle

swarm optimization," IEEE Conference on Cybernetics and Intelligent Systems, 2004., Singapore,

2004, pp. 111-116 vol.1, doi: 10.1109/ICCIS.2004.1460396.

[104] L. dos Santos Coelho and P. Alotto, "Global Optimization of Electromagnetic Devices Using

an Exponential Quantum-Behaved Particle Swarm Optimizer," in IEEE Transactions on

Magnetics, vol. 44, no. 6, pp. 1074-1077, June 2008, doi: 10.1109/TMAG.2007.916032.

[105] Shuyuan Yang, Min Wang and Licheng jiao, "A quantum particle swarm optimization,"

Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753),

Portland, OR, USA, 2004, pp. 320-324 Vol.1, doi: 10.1109/CEC.2004.1330874.

[106] A. L. Custódio and J. F. A. Madeira, “GLODS: Global and Local Optimization using Direct

Search,” Journal of Global Optimization, vol. 62, no. 1, pp. 1–28, Aug. 2014, doi:

https://doi.org/10.1007/s10898-014-0224-9.

[107] Carl Edward Rasmussen; Christopher K. I. Williams, "Relationships between GPs and Other

Models," in Gaussian Processes for Machine Learning , MIT Press, 2005, pp.129-150.

[108] Carl Edward Rasmussen; Christopher K. I. Williams, "Model Selection and Adaptation of

Hyperparameters," in Gaussian Processes for Machine Learning , MIT Press, 2005, pp.105-128.

[109] D. Xiu and G. Karniadakis, “The Wiener-Askey Polynomial Chaos for Stochastic

Differential Equations,” SIAM J. Sci. Comput., 2002, doi:

https://doi.org/10.1137/S1064827501387826.

[110] L. Linkous and E. Topsakal, "Machine Learning Assisted Optimization Methods for

Automated Antenna Design," 2024 United States National Committee of URSI National Radio

https://github.com/LC-Linkous/surrogate_modeling_optimization
https://github.com/jonathan46000/multi_glods_python
https://doi.org/10.1007/s10898-014-0224-9
https://doi.org/10.1137/S1064827501387826

138

Science Meeting (USNC-URSI NRSM), Boulder, CO, USA, 2024, pp. 377-378, doi:

10.23919/USNC-URSINRSM60317.2024.10464597.

[111] L. Linkous, J. Lundquist, M. Suche, and E. Topsakal, "Machine Learning Assisted

Hyperparameter Tuning for Optimization," 2024 IEEE International Symposium on Antennas and

Propagation and ITNC-USNC-URSI Radio Science Meeting, Florence, Italy, 2024

[112] J. D. Lundquist, L. Linkous, K. Dyson, R. Ayala, and E. Topsakal, “MultiGLODS in

Electromagnetics”, in IEEE Transactions on Antennas and Propagation

[113] B. Y. Qu, J. J. Liang, Z. Y. Wang, Q. Chen, and P. N. Suganthan, “Novel benchmark

functions for continuous multimodal optimization with comparative results,” Swarm and

Evolutionary Computation, vol. 26, pp. 23–34, 2016. doi:10.1016/j.swevo.2015.07.003

[114] K. Deb, L. Thiele, M. Laumanns, and Eckart Zitzler, “Scalable Test Problems for

Evolutionary Multiobjective Optimization,” Springer eBooks, pp. 105–145, Jan. 2005, doi:

https://doi.org/10.1007/1-84628-137-7_6.

[115] D. Bingham, “Virtual Library of Simulation Experiments,” Optimization Test Functions and

Datasets, https://www.sfu.ca/~ssurjano/optimization.html (accessed Mar. 31, 2024).

[116] T. T. Binh and U. Korn, “Scalar optimization with linear and Nonlinear Constraints using

Evolution Strategies,” Lecture notes in computer science, pp. 381–392, Jan. 1997, doi:

https://doi.org/10.1007/3-540-62868-1_130.

[117] E. Zitzler, K. Deb, and L. Thiele, “Comparison of Multiobjective Evolutionary Algorithms:

Empirical Results,” Evolutionary Computation, vol. 8, no. 2, pp. 173–195, Jun. 2000, doi:

https://doi.org/10.1162/106365600568202.

[118] C. M. Fonseca and P. J. Fleming, “An overview of evolutionary algorithms in multiobjective

optimization,” Evolutionary Computation, vol. 3, no. 1, pp. 1–16, Mar. 1995.

doi:10.1162/evco.1995.3.1.1

https://doi.org/10.1007/3-540-62868-1_130

139

CHAPTER 9
Related Publications and Open-Source

9.1 Journals and Magazines
Related Publications

L. Linkous, J. Lundquist, M. Suche, and E. Topsakal, " AntennaCAT: Automated Antenna Design

with Machine Learning Assisted Optimization," in IEEE Antennas and Propagation Magazine

[under review]

Other Publications

Laura Ellwein Fix, J. D. Khoury, R. R. Moores, L. Linkous, M. C. Brandes, and H. J. Rozycki,

“Theoretical open-loop model of respiratory mechanics in the extremely preterm infant,” vol. 13,

no. 6, pp. e0198425–e0198425, Jun. 2018, doi: https://doi.org/10.1371/journal.pone.0198425.

R. Eini, L. Linkous, N. Zohrabi, and S. Abdelwahed, “Smart building management system:

Performance specifications and design requirements,” Journal of Building Engineering, vol. 39,

p. 102222, Jul. 2021, doi: https://doi.org/10.1016/j.jobe.2021.102222.

J. D. Lundquist, L. Linkous, U. Hasni and E. Topsakal, "Indirect Applications of Additive

Manufacturing for Antennas," in IEEE Open Journal of Antennas and Propagation, vol. 4, pp.

434-445, 2023, doi: 10.1109/OJAP.2023.3265691.

J. Jones, L. Linkous, L. Mathews-Ailsworth, R. Vazquez-Miller, E. Chance, J. Carter, I. Saneda,

“Smart Little Campus Food Pantries: Addressing food insecurity at Virginia Commonwealth

University,” Journal of agriculture, food systems, and community development, pp. 1–17, Apr.

2024, doi: https://doi.org/10.5304/jafscd.2024.133.016.

J. Lundquist, L. Linkous, MKE. Piper, Z. Sickey, K. Zimmet, I. Mendoza, S. Suresh, and E.

Topsakal, "Textile-Based Inkjet-Printed RFIDs: Exploring wearable antennas in the real world

[Bioelectromagnetics]," in IEEE Antennas and Propagation Magazine, vol. 66, no. 1, pp. 50-62,

Feb. 2024, doi: 10.1109/MAP.2023.3334671.

140

J. Lundquist, L. Linkous and E. Topsakal, "Programmable Liquid Microwave GRIN Lens," 2023

United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM),

Boulder, CO, USA, 2023, pp. 66-67, doi: 10.23919/USNC-URSINRSM57470.2023.10043112.

9.2 Conference Papers
Related Publications

L. Linkous, E. Karincic, J. Lundquist and E. Topsakal, "Automated Antenna Calculation, Design

and Tuning Tool for HFSS," 2023 United States National Committee of URSI National Radio

Science Meeting (USNC-URSI NRSM), Boulder, CO, USA, 2023, pp. 229-230, doi:

10.23919/USNC-URSINRSM57470.2023.10043119.

E. Karincic, E. Topsakal, and L. Linkous, "Patch Antenna Calculations and Fabrication Made

Simple for Cyber Security Research," in 2023 ASEE Annual Conference & Exposition, 2023.

L. Linkous, J. Lundquist and E. Topsakal, "AntennaCAT: Automated Antenna Design and Tuning

Tool," 2023 IEEE USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), Portland,

OR, USA, 2023, pp. 89-90, doi: 10.23919/USNC-URSI54200.2023.10289238.

L. Linkous and E. Topsakal, "Machine Learning Assisted Optimization Methods for Automated

Antenna Design," 2024 United States National Committee of URSI National Radio Science

Meeting (USNC-URSI NRSM), Boulder, CO, USA, 2024, pp. 377-378, doi: 10.23919/USNC-

URSINRSM60317.2024.10464597.

L. Linkous, J. Lundquist, M. Suche, and E. Topsakal, "Machine Learning Assisted Hyperparameter

Tuning for Optimization," 2024 IEEE International Symposium on Antennas and Propagation and

ITNC-USNC-URSI Radio Science Meeting, Florence, Italy, 2024

Other Publications

R. Eini, L. Linkous, N. Zohrabi, and S. Abdelwahed, “A testbed for a smart building,” Proceedings

of the Fourth Workshop on International Science of Smart City Operations and Platforms

Engineering - SCOPE ’19, 2019, doi: https://doi.org/10.1145/3313237.3313296.

L. Linkous, N. Zohrabi and S. Abdelwahed, "Health Monitoring in Smart Homes Utilizing Internet

of Things," 2019 IEEE/ACM International Conference on Connected Health: Applications,

141

Systems and Engineering Technologies (CHASE), Arlington, VA, USA, 2019, pp. 29-34, doi:

10.1109/CHASE48038.2019.00020.

N. Zohrabi, P. Martin, M. Kuzlu, L. Linkous, et. al, "OpenCity: An Open Architecture Testbed for

Smart Cities," 2021 IEEE International Smart Cities Conference (ISC2), Manchester, United

Kingdom, 2021, pp. 1-7, doi: 10.1109/ISC253183.2021.9562813.

N. Zohrabi, L. Linkous, et al., "Towards Sustainable Food Security: An Interdisciplinary

Approach," 2021 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted

Computing, Scalable Computing & Communications, Internet of People and Smart City

Innovation (SmartWorld/SCALCOM/UIC/ATC/IOP/SCI), Atlanta, GA, USA, 2021, pp. 463-470,

doi: 10.1109/SWC50871.2021.00069.

J. Lundquist, L. Linkous and E. Topsakal, "Mechanically Configurable, Capacitively Coupled,

Disk Loaded Monopole Driven Corner Reflector," 2022 United States National Committee of

URSI National Radio Science Meeting (USNC-URSI NRSM), Boulder, CO, USA, 2022, pp. 12-13,

doi: 10.23919/USNC-URSINRSM57467.2022.9881449.

E. Karincic, E. Topsakal, L. Linkous, “Patch Antenna Calculations and Fabrication Made Simple

for Cyber Security Research”, 2023 ASEE Annual Conference & Exposition, 2023

J. Lundquist, L. Linkous and E. Topsakal, "Active Dual Band Frequency Selective Surface for 2.4

GHz Wi-Fi and Wi-Fi 6E," 2023 7th International Electromagnetic Compatibility Conference

(EMC Turkiye), İstanbul, Turkiye, 2023, pp. 1-4, doi:

10.1109/EMCTurkiye59424.2023.10287499.

E. Karincic, L. Linkous, E. Topsakal “From Classroom to Career with Practical Network

Training”, 2024 ASEE Annual Conference & Exposition, Portland, OR, 2024.

M. Suche, L. Linkous and E. Topsakal, "Textile RFIDs for Healthcare Applications," 2024 United

States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM),

Boulder, CO, USA, 2024, pp. 143-144, doi: 10.23919/USNC-URSINRSM60317.2024.10464636.

J. Lundquist, L. Linkous and E. Topsakal, "Reconfigurable Diode-Based and Liquid Metal

Antenna for 5 GHz Wi-Fi," 2024 United States National Committee of URSI National Radio

142

Science Meeting (USNC-URSI NRSM), Boulder, CO, USA, 2024, pp. 287-288, doi:

10.23919/USNC-URSINRSM60317.2024.10464775.

9.3 Public Repositories
All software, aside from the proprietary electromagnetics software used for simulations, is

available open source online. The software repositories summarized here are written in Python,

though versions in other languages may be available from their respective authors.

AntennaCAT Software:

L. Linkous, AntennaCalculationAutotuningTool (Version 2024), GitHub, [source code]. Available:

https://github.com/LC-Linkous/AntennaCalculationAutotuningTool

The AntennaCalculator:

Command Line Version: E. Karincic, L. Linkous, AntennaCalculator (Version 1.0), GitHub, [source

code]. Available: https://github.com/Dollarhyde/AntennaCalculator

GUI Version: L. Linkous, E. Karincic, AntennaCalculator (Version 2.0), GitHub, [source code].

Available: https://github.com/LC-Linkous/AntennaCalculator

Particle Swarm Optimizers:

J. Lundquist, L. Linkous, pso_Python (Version 1.0), GitHub, [source code]. Available:

https://github.com/jonathan46000/pso_Python

L. Linkous, J. Lundquist, pso_basic (Version 1.0), GitHub, [source code]. Available:

https://github.com/LC-Linkous/pso_Python/tree/pso_basic

L. Linkous, pso_quantum (Version 1.0), GitHub, [source code]. Available: https://github.com/LC-

Linkous/pso_Python/tree/pso_quantum

Cat Swarm Optimizers:

L. Linkous, J. Lundquist, cat_swarm_Python (Version 1.0), GitHub, [source code]. Available:

https://github.com/LC-Linkous/cat_swarm_Python

L. Linkous, J. Lundquist, sand_cat_Python (Version 1.0), GitHub, [source code]. Available:

https://github.com/LC-Linkous/cat_swarm_Python/tree/sand_cat_Python

https://github.com/LC-Linkous/AntennaCalculationAutotuningTool
https://github.com/Dollarhyde/AntennaCalculator
https://github.com/LC-Linkous/AntennaCalculator
https://github.com/jonathan46000/pso_python
https://github.com/LC-Linkous/pso_python/tree/pso_basic
https://github.com/LC-Linkous/pso_python/tree/pso_quantum
https://github.com/LC-Linkous/pso_python/tree/pso_quantum
https://github.com/LC-Linkous/cat_swarm_python
https://github.com/LC-Linkous/cat_swarm_python/tree/sand_cat_python

143

L. Linkous, cat_swarm_quantum (Version 1.0), GitHub, [source code]. Available:

https://github.com/LC-Linkous/cat_swarm_Python/tree/cat_swarm_quantum

Chicken Swarm Optimizer:

L. Linkous, J. Lundquist, chicken_swarm_Python (Version 1.0), GitHub, [source code]. Available:

https://github.com/LC-Linkous/chicken_swarm_Python

L. Linkous, chicken_swarm_quantum (Version 1.0), GitHub, [source code]. Available:

https://github.com/LC-Linkous/chicken_swarm_Python/tree/chicken_swarm_quantum

Sweep/Grid Search:

L. Linkous, sweep_Python (Version 1.0), GitHub, [source code]. Available: https://github.com/LC-

Linkous/sweep_Python

Bayesian Optimizer with Surrogate Models:

L. Linkous, bayesian_optimization_Python (Version 1.0), GitHub, [source code]. Available:

https://github.com/LC-Linkous/bayesian_optimization_Python

L. Linkous, surrogate_modeling_optimization (Version 1.0), GitHub, [source code]. Available:

https://github.com/LC-Linkous/surrogate_modeling_optimization

MultiGLODS Optimizer:

J. Lundquist, L. Linkous, multi_glods_Python (Version 1.0), GitHub, [source code]. Available:

https://github.com/jonathan46000/multi_glods_Python

Optimization Function Library:

 L. Linkous, objective_function_suite (Version 1.0), GitHub, [source code]. Available:

https://github.com/LC-Linkous/objective_function_suite

Conference Paper Repositories:

L. Linkous, 2024_URSI_NRSM_1265 (Version 1.0), GitHub, [source code]. Available:

https://github.com/LC-Linkous/2024-URSI-NRSM-1265

L. Linkous, 2024_APS_URSI_3323 (Version 1.0), GitHub, [source code]. Available:

https://github.com/LC-Linkous/2024-APS-URSI-3323

GeneticCAT Repository:

L. Linkous, GeneticCAT (Version 1.0), GitHub, [source code]. Available: https://github.com/LC-

Linkous/GeneticCAT

https://github.com/LC-Linkous/cat_swarm_python/tree/cat_swarm_quantum
https://github.com/LC-Linkous/chicken_swarm_python
https://github.com/LC-Linkous/sweep_python
https://github.com/LC-Linkous/sweep_python
https://github.com/LC-Linkous/bayesian_optimization_python
https://github.com/LC-Linkous/surrogate_modeling_optimization
https://github.com/jonathan46000/multi_glods_python
https://github.com/LC-Linkous/objective_function_suite
https://github.com/LC-Linkous/2024-URSI-NRSM-1265
https://github.com/LC-Linkous/2024-APS-URSI-3323
https://github.com/LC-Linkous/GeneticCAT
https://github.com/LC-Linkous/GeneticCAT

	Machine Learning Assisted Optimization for Calculation and Automated Tuning of Antennas
	Downloaded from

	List of Abbreviations
	List of Figures
	List of Tables
	Abstract
	CHAPTER 1 Background: Computation, Automation, and Tuning
	1.1 Computational Electromagnetics and Simulation
	1.2 Existing Resources for EM Software Suite Integration
	1.3 Optimization, Machine Learning, and Surrogate Modeling

	CHAPTER 2 The AntennaCAT Software Suite
	2.1 Software Specifications
	2.2 Template-Based Multi-Software Integration
	2.3 User Interface
	Design Options
	Importing Existing EM Projects and Scripts
	Simulation Options
	Batch Options
	Optimizer Options
	Settings and ANCAT Files

	2.4 Modular Scripting and Automation Process
	Simulation Object and Simulation Integrator Instances
	Template Creation
	Antenna Tuning

	2.5 Batch Data Collection
	2.6 Open-Source and Availability

	CHAPTER 3 Replication Studies
	CHAPTER 4 AntennaCAT Optimization Suite
	4.1 Boundary Condition Handling
	4.2 Problem Constraint Handling
	4.3 Single and Multi-Objective Optimization
	4.4 Objective Function Handling for Repository Examples
	4.5 AntennaCAT Optimizer Compatibility
	4.6 Particle Swarm Optimizers
	Traditional Particle Swarm
	Particle Swarm with Time-Step Modulation

	4.7 Cat Swarm Optimizers
	Traditional Cat Swarm
	Sand Cat Swarm

	4.8 Chicken Swarm Optimizer
	4.9 Quantum-Inspired Optimizers
	Quantum Inspired Particle Swarm Optimizer
	Quantum Inspired Cat Swarm Optimizer
	Quantum Inspired Chicken Swarm Optimizer

	4.10 Sweep Optimizer
	Grid-Based Search
	Random Search

	4.11 MultiGLODS
	4.12 Bayesian Optimizer with Surrogate Model Kernel
	Radial Basis Function Network
	Gaussian Process
	Kriging
	Polynomial Regression
	Polynomial Chaos Expansion
	K-Nearest Neighbors Regression
	Decision Tree Regression

	CHAPTER 5 Machine Learning Assisted Optimization Data Collection and Training
	5.1. AntennaCAT MLAO Design Structure
	5.2 Data Collection Methodology
	5.3 Objective Functions: Single Input, Single Output
	5.4 Objective Functions: Two Input, One Output
	5.5 Objective Functions: Other Multiple Input, One Output
	5.6 Objective Functions: One Input, Two Output
	5.7 Objective Functions: Two Input, Two Output
	5.8 Objective Functions: Multiple Input, Two Output
	5.9 Objective Functions: Multiple Input, Multiple Output
	5.10 Summarized Model Design, Training, and Results
	5.11 Hyperparameter Prediction Network Model Expansion

	CHAPTER 6 Applications for Antenna Design
	6.1 Wi-Fi 6E Automated Tuning
	6.2 Dual-Band 5 GHz, 6 GHz Wi-Fi Antennas

	CHAPTER 7 Conclusion
	CHAPTER 8 References
	CHAPTER 9 Related Publications and Open-Source
	9.1 Journals and Magazines
	9.2 Conference Papers
	9.3 Public Repositories

