Effects of hatching timing on red-eyed treefrog tadpoles: relative vulnerability varies among predators but not with hatchling age-structure, growth varies with the presence of more vulnerable tadpoles [poster]

B. Willink
Universidad de Costa Rica

T. Landberg
Boston University

James R. Vonesh
Virginia Commonwealth University, jrvonesh@vcu.edu

K. M. Warkentin
Boston University

Follow this and additional works at: http://scholarscompass.vcu.edu/biol_present

Part of the [Biology Commons](http://scholarscompass.vcu.edu/biol_present)

Downloaded from http://scholarscompass.vcu.edu/biol_present/9
effects of hatching timing on red-eyed treefrog tadpoles: relative vulnerability varies among predators but not with hatching age-structure; growth varies with the presence of more vulnerable tadpoles

B. Willink¹, T. Landberg², J. R. Vonesh³, K. M. Warkentin² — ¹Universidad de Costa Rica, San José; ²Boston University, MA; ³Virginia Commonwealth University, Richmond (email: bwillink@gmail.com)

In Gamboa, Panama, undisturbed red-eyed treefrog (Agalychnis callidryas) embryos typically hatch at 6 days of age, but they become capable of hatching at 4 days. When egg masses are attacked by predatory snakes or wasps embryos hatch prematurely to escape. In previous studies, embryos induced to hatch 2 days early were more vulnerable to predatory shrimp and fish, revealing a cost of early hatching in the new aquatic environment. However, red-eyed treefrog tadpoles are exposed to many other predators, including several aquatic insects. Also, in previous studies early- and late-hatched tadpoles were exposed to predators separately, ignoring the possibility that interactions between hatching age classes or predator selectivity could affect survival with predators.

Objectives
1) To assess the effect of hatching timing on vulnerability to three common insect predators.
2) To examine whether predation on early and late hatchlings is affected by the presence of the other age class.

Methods
We induced hatching at 4 and 6 days and exposed groups of hatchlings to individual insect predators for 24 h, recording behavior, survival, and growth. We used substitutive designs:

<table>
<thead>
<tr>
<th>Time</th>
<th>Treatment</th>
<th>Survival</th>
<th>Growth (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 days</td>
<td>Single</td>
<td>GLM: Hatch = 0.001, Treat = 0.89</td>
<td>ANOVA: Treat = P>0.05, Hatch = P>0.05</td>
</tr>
<tr>
<td>6 days</td>
<td>Single</td>
<td>GLM: Hatch = 0.77, Treat = P>0.68</td>
<td>ANOVA: Treat = P>0.05, Hatch = P>0.05</td>
</tr>
</tbody>
</table>

Results: Survivorship and Growth
Predation by libellulid larvae was not affected by hatching age, early tadpoles were more vulnerable to belostomatids, and late tadpoles suffered more predation from aeshnids. In no case did the presence of the other age class affect mortality. However, in the experiments with belostomatids and aeshnids the age class with lower mortality experienced an increase in growth rate when the other, more vulnerable, age class was present.

Results: Activity
Late hatchlings were more active than early hatchlings (belostomatid: GLM, P>0.001, libellulid: GLM, P>0.05), except in the aeshnid experiment, where both age classes had very low and similar movement rates (ANOVA, P>0.17).

Conclusions
Combining this and previous studies, early hatchings are more vulnerable than late hatchings to most (3/5) predators. The relative inactivity of early hatchings may reduce their predation risk with aeshnids, which cue strongly on movement. Non-feeding early and barely-feeding late hatchlings with substantial yolk reserves grew faster in the presence of more vulnerable tadpoles. Future work should address how relative vulnerability to predators influences growth and how tadpoles assess their relative risk.

Acknowledgements: We thank Z. Costa, R. Greene, R. Komosinski, C. Nos, M. Palmer, S. Shleier, and J. Touchon for assistance. This work was conducted under permits from the Autoridad Nacional del Ambiente, Panama at the Smithsonian Tropical Research Institute, Gamboa, Panama and funded by the National Science Foundation, Boston University, Virginia Commonwealth University and the Smithsonian Tropical Research Institute.