Mathematical models of HIV and HPV coinfection

Samantha Erwin
Virginia Polytechnic Institute and State University, sherwin@vt.edu

Meghna Verma
Virginia Polytechnic Institute and State University

Vida Abedi
Virginia Polytechnic Institute and State University

See next page for additional authors

Follow this and additional works at: http://scholarscompass.vcu.edu/bamm
Part of the [Immunology of Infectious Disease Commons](http://scholarscompass.vcu.edu/bamm), [Medical Biomathematics and Biometrics Commons](http://scholarscompass.vcu.edu/bamm), [Ordinary Differential Equations and Applied Dynamics Commons](http://scholarscompass.vcu.edu/bamm), and the [Virus Diseases Commons](http://scholarscompass.vcu.edu/bamm)

http://scholarscompass.vcu.edu/bamm/2016/May21/56

This Event is brought to you for free and open access by the Dept. of Mathematics and Applied Mathematics at VCU Scholars Compass. It has been accepted for inclusion in Biology and Medicine Through Mathematics Conference by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
Mathematical models of HIV and HPV coinfection.

HIV infected patients have an increased incidence of chronic HPV infection, leading to precancerous cells. To address the effect of HIV on HPV pathogenesis, we develop a mathematical model of HIV-HPV coinfection that captures known interactions such as decreased HPV-specific cytotoxic T cells and increased HPV viral production. From our mathematical analysis, we predict biological conditions under which coinfected individuals can clear HPV. We address the clinical implications of anti-retroviral therapy used to treat HIV in HPV-coinfected patients and compare it to previous clinical observations.