2015

Efluent Treatment and Recovery of Polyether Using Nanoporous Technology

Suhaib Alramamneh
Virginia Commonwealth University

Zachary Turner
Virginia Commonwealth University

Allison Warth
Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/capstone

Part of the Chemical Engineering Commons

© The Author(s)

Downloaded from http://scholarscompass.vcu.edu/capstone/21

This Poster is brought to you for free and open access by the School of Engineering at VCU Scholars Compass. It has been accepted for inclusion in Capstone Design Expo Posters by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
Effluent Treatment and Recovery of Polyether Using Nanoporous Technology

Background

Our Mission:
- Recover lost polyether from effluent
- Use a combined recycle stream/nanoporous technology
- Steady state process
- Save Evonik money in the areas of product recovery and water treatment

Hypothesis & Specific Aims

Our group devised a method that recycles the first wash of the filtration vessel, 1310, back into the post treatment vessel, 1310. The first wash from 1310 will be concentrated using an expanded Polytetrafluoroethylene (ePTFE) and recycled back into 1310 as well, eventually reaching a steady state process.

- Recovery of 50 kg polyether from 1350 (280 gal)
- Concentration of 1310 from 2.5% to 24%
- Recovery of 49 kg polyether from 1310 (~66 gal)

Results

- Right: Detailed phase separator used for bench scale experimentation
- Left: Scanning Electron Microscopy (SEM) of both ePTFE membranes used for experimentation
 - A: ePTFE membrane with pore size of 0.2-0.5 µm and 80% porosity (used)
 - B: ePTFE membrane membrane with pore size 0.1-1 µm and thickness of 100 µm (unused)
 - C: ePTFE membrane membrane with pore size 0.1-1 µm and thickness of 100 µm (used)

Figure 1. Experimental Results of EVPE 2 and EVPE 3 from Phase Separator Performed in Laboratory 347 Engineering West Hall.

Table 1. Cost Analysis Including Capital Investment and Monthly Income of 80% Recovered Polyether from 1310 and 1350.

<table>
<thead>
<tr>
<th>Time</th>
<th>Month 0</th>
<th>Month 1</th>
<th>Month 2</th>
<th>Month 3</th>
<th>Month 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROI (%)</td>
<td>-100</td>
<td>-37</td>
<td>27</td>
<td>90</td>
<td>154</td>
</tr>
<tr>
<td>Investment Payback ($)</td>
<td>15000</td>
<td>15408</td>
<td>15020</td>
<td>13290</td>
<td>23553</td>
</tr>
<tr>
<td>Money Saved Recycling</td>
<td>365</td>
<td>118,260</td>
<td>4,103</td>
<td>114,158</td>
<td>9,513</td>
</tr>
<tr>
<td>Estimated ePTFE needed</td>
<td>5.47</td>
<td>$/ft²</td>
<td>750</td>
<td>$/ft²</td>
<td>4,103</td>
</tr>
<tr>
<td>Costs of ePTFE</td>
<td>4,103</td>
<td>$/year</td>
<td>5,000</td>
<td>$</td>
<td>15,000</td>
</tr>
</tbody>
</table>

Table 2. Return of Investment Calculations.

Conclusion

- Further experimentation needed for EVPE 1
- Nanoporous ePTFE filtration is an effective method for concentrating 1310
- Membrane thickness plays an important role in filtration

Future Plans

- Several types of membranes
 - varying porosity, mean pore size, and membrane thickness
- Adjusting independent variables such as pressure & temperature
- More efficient phase separator
- Running several systems in series to simulate scale up

Acknowledgments

A Special Thanks To:
The School of Engineering, Evonik Industries, Dr. Frank Gupton, Prof. Frank Gulla, Dr. Frank Schmidtmann, Dr. Benjamin Ward, Prof. Rudy Krack

Prof. Rudy Krack, Dr. Frank Gupton, Dr. Frank Schmidtmann