2015

Grid Game: Developing a Java/Android version for increased accessibility and usability

Sean Amos
Virginia Commonwealth University

Patrick Sivils
Virginia Commonwealth University

Aidan Collins
Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/capstone

Part of the [Computer Engineering Commons](http://scholarscompass.vcu.edu/capstone)

© The Author(s)

Downloaded from
http://scholarscompass.vcu.edu/capstone/5

This Poster is brought to you for free and open access by the School of Engineering at VCU Scholars Compass. It has been accepted for inclusion in Capstone Design Expo Posters by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
Grid Game
Developing a Java/Android version for increased accessibility and usability

Abstract
• Recreate the LabView based Grid Game in a Java based web-browser / mobile format.
• Implement a Android mobile version.
• Browser/mobile format allows universities, companies, and individuals to use the game without overhead.
• Java is a more popular format than LabView, increasing opportunities for future developers to expand and improve upon our design.
• Thanks to Michael Guryan and IRON (Idaho Regional Optical Networks) for the supporting infrastructure and repositories making the multiplayer functionality possible.

Gameplay
• Main objective of the Grid Game is to keep the frequency of the grid, governed by the Swing Equation, near 60 Hz for the entire duration of the game.
• The player can buy more generators, which generates more power for your grid.
• The player can buy more customers, which increases the load upon the system.
• The battery allows the user to keep their grid balanced even if the power generation and load are not.
• Players can draw power from the battery or add excess power to it.
• Automatic controls will draw and add power to the battery as needed to keep the grid at 60 Hz.
• Time based events that can occur that may either help or harm the player.
• Events include generators breaking down, a large influx of customers to your area, the loss of automatic controls, and more. All of these serve to make the game more challenging and different every round.
• Scoreboard functionality to allow players to see how they rank against others.

Future Possibilities
• Multiplayer functionality with energy trading and cyber attacks
• Clean energy generators
• Dynamic weather based changes to the grid
 • Wind generators produce more on windy days
 • Solar panels are less effective on cloudy days

User Experience
• User interface / user experience for the Grid Game needed to be intuitive
• UI designed to promote an environment for learning and constant player feedback
• Required separate layouts for both desktop (and web) application and the Android app
• Limited screen size on Android devices prevents displaying as much information to the player
• Delegated certain elements of the desktop application UI to a tabular setup in the Android app
• Player still has available all information available to them via the desktop application in a more compact environment