The effect of combined sewer overflow (CSO) on the abundance of antibiotic resistant bacteria in the James River

Enjolie Levengood
Virginia Commonwealth University, levengoodes@vcu.edu

Sunauz Moezzi
Virginia Commonwealth University

Rima B. Franklin
Virginia Commonwealth University, rbfranklin@vcu.edu

Follow this and additional works at: http://scholarscompass.vcu.edu/rice_symp

Part of the Other Life Sciences Commons, and the Terrestrial and Aquatic Ecology Commons

© The Author
The effect of combined sewer overflow (CSO) on the abundance of antibiotic resistant bacteria in the James River

Enjolie Leveggood, Sunauz Moezzi, and Rima Franklin - Virginia Commonwealth University, Department of Biology

Contact author: leveroodes@vcu.edu

Introduction

- Antibiotics have been used to treat bacterial infections worldwide since their discovery in the early 20th century and are vital to human health. Unfortunately, the heavy use of antibiotics has led to the increased natural selection of antibiotic resistant bacteria.
- In urban rivers, the spread of resistance is through the direct acquisition of resistance genes by either cell-to-cell contact or DNA uptake via a process called horizontal gene transfer (HGT). HGT, resistance genes, and resistant bacteria are in greater abundance in wastewater systems, and are released into the environment in wastewater plant effluent.
- One problem method of wastewater treatment, used in over 750 cities in the US, is the Combined Sewer System (CSS). This collects the water from both rainfall and sewage for treatment at a single facility. Occasionally when it rains, the treatment plant exceeds capacity and the combined untreated effluent enters the river in what is called a CSO (Combined Sewer Overflow) event.
- Some studies have found that antibiotic resistance genes can be more abundant in river water affected by wastewater treatment effluent and correlated with CSO events.

Objectives

1. Determine if CSO events are correlated with an increased abundance of antibiotic resistance genes compared to base flow conditions.
2. Isolate and identify specific species of bacteria that are antibiotic resistant and determine their level of multi-drug resistance.
3. Quantify the abundance of genes associated with antibiotic resistance in the river microbial community and determine the spatial constraints on their abundance.

Study Site

In Richmond, the James River is the major source of drinking water and widely used for recreation. Upstream, the watershed is primarily forested and agricultural land, but is also impacted by two major cities, over 150 industrial sites, and over 90 additional discharge sources. The first sampling site is upstream of the city, near the Huguenot Bridge. The second site is at the largest CSO outfall point in Richmond, CSO-08 (Shockoe).

Multi-Drug Resistance (MDR)

- Isolates were then screened for multi-drug resistance (MDR) using ampicillin (A), streptomycin (S), and tetracycline (T).
- MDR was greatest at the CSO site during an event: 70% of isolates showed MDR and 49% were resistant to all three antibiotics.
- Additional MDR tests are being conducted with susceptibility disk tests using more clinically relevant antibiotics: piperacillin, ciprofloxacin, cefepime, cefotaxime, Bacitracin, and Augmentin.
- Sanger sequencing of the 16S rRNA gene will be used to identify these isolates.

Acknowledgements

We would like to especially thank the Bukaveckas lab for water sample collections; Dr. David Hooper, Dr. Michael Strickland, and Dr. Brian Badgley for sharing their qPCR standards; Ella Balasa, Taylor Jones, and Imaan Muhammad for water sample processing; and the rest of the Franklin lab for their guidance. Without their help, much of this work would not have been completed. This research was funded by the VCU Rice Center Students Research Grant and the Honor’s College Summer Undergraduate Research Program (HSURP).

Work Cited