1981

Collisional depolarization of state selected \((J,M_J)\) BaO \(A\ 1\Sigma^+\) measured by optical–optical double resonance

Stuart J. Silvers
Virginia Commonwealth University

Richard A. Gottscho
Massachusetts Institute of Technology

Robert W. Field
Massachusetts Institute of Technology

Follow this and additional works at: http://scholarscompass.vcu.edu/chem_pubs

Downloaded from http://scholarscompass.vcu.edu/chem_pubs/53

This Article is brought to you for free and open access by the Dept. of Chemistry at VCU Scholars Compass. It has been accepted for inclusion in Chemistry Publications by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
Collisional depolarization of state selected \((J,M_J)\) BaO \(A \ 1\Sigma^+\) measured by optical–optical double resonance

Stuart J. Silvers

Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284

Richard A. Gottscho and Robert W. Field

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Rceived 16 September 1980; accepted 21 November 1980)

The optical–optical double resonance (OODR) technique is used to investigate the change in magnetic quantum number \(M\) of a selected state of BaO upon collision with other molecules. A first linearly polarized dye laser prepares \(A \ 1\Sigma^+\) BaO with \(J=1\) and \(M=0\) sublevels. The extent of collisional transfer to other \(M\) sublevels of both \(J=1\) and \(J=2\) is then probed by a second linearly polarized dye laser which induces fluorescence from the \(C \ 1\Sigma^+\) state. Elastic collisions \(\Delta M=0\) between BaO \((A \ 1\Sigma^+)\) and \(CO_2\) are observed to change \(M\) from 0 to \(\pm 1\) leaving \(J\) unchanged. The total elastic \(M\)-changing cross section is \(\sigma_{\text{el}}^{(0)} = 8.4 \pm 2.4 \mu\text{b}\). Inelastic \(\Delta M=\pm 1\) which transfers molecules to \(J=2\) also cause \(M\) changes, with both Ar and \(CO_2\) as collision partners. \(M\), the space-fixed projection of \(J\), is found to be neither conserved nor randomized.

Quantum atom–diatom collision models with quantization axis along the relative velocity vector are considered. Transition amplitudes in this system are evaluated using the \(I\)-dominant and CS approximations.

I. INTRODUCTION

The manner in which collisions change \(M\) quantum numbers and reorient molecules can be investigated in simple, well-defined systems when high resolution, tunable lasers are used. The optical–optical double resonance technique (OODR) is used here for such investigations. A first (pump) laser prepares as few as one \(M\) sublevel of a particular rovibrational state. Other sublevels are then populated by elastic \((\Delta M=0)\) and inelastic \((\Delta M \neq 0)\) collisions. The altered populations are sampled by a second (probe) laser which induces transitions to a higher electronic state from which fluorescence is detected. For elastic collisions, \(M\) sublevel populations are directly obtained. For inelastic collisions, OODR intensity as a function of probe polarization is compared to the predictions from various models of \(M\)-changing collisions to determine which, if any, is applicable.

Five other techniques have been utilized to measure collision induced molecular depolarization: (i) resonance fluorescence; (ii) microwave and infrared double resonance; (iii) Hanle effect experiments; (iv) laser induced line narrowing; and (v) molecular beam electric resonance experiments. The results of these experiments differ widely, depending upon the particular molecular system chosen for investigation.

For homonuclear atom–diatom collisions, the results have been somewhat inconsistent primarily because of experimental difficulties. Kurzel and Steinfeld reported final \(J\) averaged, inelastic depolarization cross sections of 5 to 20 \(\mu\text{b}\) for \(1\Sigma\) colliding with \(H_2\), \(He\), or \(Ne\). These cross sections correspond to average \(J\) reorientation angles, referred to a laboratory reference frame, of 43° to 50°. Lack of final state selection, excitation of more than one initial level, and multiple collision effects obscure the meaning of these measurements. McCaffery et al. concluded from higher resolution experiments that in fact the space fixed magnetic quantum number \(M\) is conserved in collisions between \(I\) and \(O_2\), \(I\), or \(Ar\). Unfortunately, McCaffery et al.'s measurements were also flawed by preparation of more than one initial \(J\) level and by the effects of multiple collisions.

In another series of resonance fluorescence experiments, McCaffery et al. concluded that there are restricted channels by which rotational energy is transferred in \(Li^+_n\)–\(He\) collisions; they found that the propensity rule \(\Delta M = \Delta J\) is valid. These measurements were not subject to the problems encountered in the \(I\) experiments, but it now remains to determine the generality of this conclusion. For elastic collisions, for example, little depolarization would be expected; but only inelastic events were examined. Is this propensity rule valid for polar diatoms or affected by collision partner polarizability?

Borkenhagen et al. have measured both elastic and inelastic \(M\) changes in CsF, induced by collisions with the rare gases \(He\) through \(Ar\), using the molecular beam–electric resonance method. Their results are most interesting in light of the similarity between their experimental system and ours, although we utilize no molecular beams. Their experiments involve only the lowest rotational levels of CsF \((X \ 1\Sigma^+)\), \(J\) = 1 to 3 and \(M\) changes of 0 or 1. We examine the \(J=1\) and 2 levels of BaO \((A \ 1\Sigma^+)\) and \(M\) changes of 0, ±1, and ±2. Although the molecules are isoelectronic, the BaO \((A \ 1\Sigma^+)\) dipole moment, 2.20 D, 15 is 3.6 times smaller than the CsF dipole moment, 7.89 D. For \((J,M)=(1,1)-(1,0)\) collision, Borkenhagen et al. measured cross sections of 5 \(\mu\text{b}\) for \(Ne\), \(Ar\), and \(Kr\). For \(\Delta J=1\) (e.g., 1–2), comparable cross sections were determined for both \(\Delta M = 0\) and 1. No systematic variation with rare gas was evident. Our results on BaO–Ar provide a unique op-
portunity to assess the importance of the diatomic dipole and quadrupole moments on M changing collisions.

Additional experiments on polyatomic polar systems have suggested that low J, K levels are easily depolarized whereas high J, K levels are not. Shoemaker et al. reported a cross section of 100 Å² for ΔJ = 0, ΔM = ± 1 CH₃F–CHF collisions, but this value is only an estimate as it represents an average over the upper (J, K) = (5, 3) and lower (J, K) = (4, 3) rovibrational levels. For higher J, K values, no depolarization was detected, indicating that the cross sections were at least 100 times smaller. In addition to the upper/lower level ambiguity, these measurements were also imprecise owing to spectral overlap.

The experiments described here simplify interpretation by preparing BaO (A 'Σ⁺) (v = 1) in the single J = 1, M = 0 sublevel. The sub-Doppler resolution of the OODR technique eliminates the problem of overlapping transitions near the band origin, permitting preparation of this unique level.

The M sublevel populations of J = 1 are probed by tuning the second laser to the P(1) line of the C–A 3–1 band. With the probe polarization perpendicular to that of the pump laser, the upper C state (J* = 0) cannot be excited from the initially prepared M = 0 sublevel. An OODR signal does not appear unless collisions change M. In this on-off type experiment, any fluorescence signal is direct evidence for elastic transfer to M = ± 1 from M = 0. Such transfer is detected in collisions with CO₂ but not with Ar, in contrast with CsF–Ar results mentioned above. The CO₂ elastic transfer cross section is comparable in size to that for level to level (J – J') transfer.¹⁴

When the probe laser is tuned to the P(2) line, information is obtained on the manner in which collisions transfer molecules from J = 1, M = 0 into M sublevels of J = 2. The extent of J = 2 polarization is characterized and significant population in M ≠ 0 sublevels is detected. Different models for inelastic depolarization are then considered in an attempt to distinguish the one(s) best able to account for observations. In this inelastic case, we find that Ar and CO₂ produce comparable effects.

II. EXPERIMENTAL

The oven for generating BaO has been described elsewhere.¹⁷ Ba metal (Alfa 99.999% purity) is heated to melting and the Ba atoms are entrained by Ar (Aireco, 99.98% purity) and mixed with CO₂ (Aireco, 99.9% purity) to form BaO according to the reaction

Ar + Ba + CO₂ → BaO + CO + Ar

The operating pressures of the reactants are in the range 0.24–4.4 Torr Ar, 0.01–0.30 Torr CO₂, and 1 × 10⁻⁴ Torr Ba. CO₂ and Ar pressures are measured by Wallace and Tiernan Model FA160 and MKS Baratron Model 220–2A8–1 gauges.

The dye lasers (Coherent CR 599-21) operate in single mode at typically 50 mW output power. They are frequency stabilized with 1 MHz linewidths. The optics, frequency calibration, and fluorescence detection are

ELASTIC DEPOLARIZATION

\[J = 0, M = 0 \rightarrow A 'Σ⁺ \]

\[J = 1, M = 0 \rightarrow A 'Σ⁺ \]

\[J = 0, M = 0 \rightarrow X 'Σ⁺ \]

\[J = 1, M = 0 \rightarrow X 'Σ⁺ \]

FIG. 1. Elastic depolarization experiment.

B. The inelastic depolarization experiment

The pump laser again prepares \(|J = 1, M = 0 \rangle \). The probe laser is now tuned to the \(P(2) \) line so that \(M \) sub-
level populations of $J = 2$ can be probed. These populations are the result of inelastic transfer from $J = 1$. When the laser polarizations are parallel (\hat{z}), the intensity of fluorescence from the $C^1\Sigma^+$ state depends on the sublevel populations in a way that differs from its dependence in the perpendicular configuration. The ratio of intensities in the two configurations is expressed in terms of the sublevel populations [Eq. (6) below] and is a measure of the extent of angular momentum realignment accompanying collisional transfer from $J = 1$ to $J = 2$. Figure 2 depicts this experiment.

III. RESULTS AND DISCUSSION

A. Elastic depolarization

The $J = 1$ state prepared by the pump laser is characterized by a density matrix ρ_M whose only nonvanishing matrix element is ρ_{00}. The density matrix may be decomposed into state multipoles (T_{KQ}). If any moment with $K > 0$ exists, the state is said to be polarized. If a dipole component (T_{1Q}) is present, the state is oriented. If a quadrupole component (T_{2Q}) exists, the state is aligned. Here the density matrix of the optically excited state has no dipole component but does have a nonvanishing quadrupole one, (T_{2Q}), and the prepared state is aligned; the detection of fluorescence with the beam polarizations perpendicular is then an indication that the prepared alignment has been changed by collisions.

The corrected I_1/I_0 ratio is related to sublevel populations by starting with the general expression for fluorescence intensity in the absence of external fields when sublevels are degenerate:

$$I \propto \sum_{m,n} F_{nm}^{1} G_{nm}^{\star}.$$

(1)

The excitation matrix is given by

$$F_{nm'}^{1} = \sum_{M,M'} \left(\langle m' | \hat{\epsilon}_I | M \rangle \langle M' | \epsilon | m \rangle \right) \rho_{MM'},$$

(2)

where m and m' designate upper state (J^+) magnetic sublevels and M and M' lower state (J^-) ones. The polarization vector for excitation is $\hat{\epsilon}_I$ and the elements of the lower state density matrix ρ are given by

$$\rho_{MM'} = \sum_{n=1}^{N} \alpha_{nMM'} \alpha_{nMM'}^\star,$$

where $\alpha_{nMM'}^\star$ is the amplitude for finding the nth molecule in the sublevel M and N is the total number of molecules. The diagonal elements are sublevel populations; the off-diagonal ones vanish unless definite phase relations, or coherences, exist between sublevel amplitudes. The emission matrix is given by

$$G_{nm}^{\star} = \sum_{m''} \left(\langle m' | \hat{\epsilon}_I | \mu \rangle \langle \mu | \epsilon | m'' \rangle \right) \rho_{MM''},$$

(3)

where $\hat{\epsilon}_I$ is the polarization vector for detection and μ designates ground state sublevels to which emission occurs.

In the elastic experiment, probe excitation and subsequent emission are both $P(1)$ transitions and Eq. (1) reduces to

$$I_1 \propto F_{00}^{\star} G_{00}^{\star} = F_{00}^{\star} (G_{00}^{\star} + G_{02}^{\star}) ,$$

$$I_0 \propto F_{02}^{\star} G_{02}^{\star} .$$

Coherence is not optically prepared here and cannot be generated by the axially symmetric (about \hat{z}) collisional perturbations, thus only diagonal elements of ρ need be included in Eq. (2). By symmetry, collisions will populate the $M = \pm 1$ sublevels equally ($\rho_{11} = \rho_{-11} = \rho_{00}$). The necessary F and G elements are calculated using appropriate direction cosine matrix elements and are listed in Table I. I_1 and I_0 are then evaluated to obtain

$$I_1/I_0 = n_{11}/n_0,$$

The intensities are directly proportional to the sublevel population densities, n_i.

The intensity ratio (I_1/I_0) has been measured at different Ar and CO$_2$ pressures. At low CO$_2$ pressure, the ratio is less than 0.03 and does not vary noticeably with Ar pressure. Thus, an upper bound for elastic depolarization by Ar is $\sigma_{Ar} < 1 \times 10^{-3}$. The finite value of I_1 at low CO$_2$ pressure (0.03 Torr) is due either to higher than indicated residual CO$_2$ pressure or incomplete correction for laser beam depolarization.

When the CO$_2$ pressure is varied, significant change in the population ratio is observed; this pressure dependence is shown in Fig. 3. Measurements at fixed Ar pressure of 0.3 Torr are shown by open circles. Averages of measurements at different Ar pressures but

<table>
<thead>
<tr>
<th>TABLE 1. Excitation and emission matrices.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F^{(\pm)}$</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>F_{00}</td>
</tr>
<tr>
<td>$F_{11} = F_{-11}$</td>
</tr>
<tr>
<td>$F_{-11} = F_{11}$</td>
</tr>
<tr>
<td>$G^{(\pm)}$</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>G_{00}</td>
</tr>
<tr>
<td>$G_{11} = G_{-11}$</td>
</tr>
<tr>
<td>$G_{-11} = G_{11}$</td>
</tr>
</tbody>
</table>

J. Chem. Phys., Vol. 74, No. 11, 1 June 1981

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 128.172.48.59 On: Wed, 14 Oct 2015 17:42:08
constant CO₂ pressure are shown by crosses. The points are fit to a straight line whose slope is related as follows to the cross section \(\sigma_{\text{CO}_2} \) for elastic \(M \)-changing collisions.

If an excited BaO molecule is assumed to undergo at most one collision, the rate at which the \(M = +1 \) sub-level is populated is given by

\[
\frac{dn_1}{dt} = k_{\text{CO}_2} n_0 n_{\text{CO}_2} + k_{\text{Ar}} n_0 n_{\text{Ar}} - k_{\text{rad}} n_1 ,
\]

where \(k_{\text{CO}_2} \) and \(k_{\text{Ar}} \) are the rate constants for transfer from \(M = 0 \) to \(+1 \) through collisions with \(\text{CO}_2 \) and \(\text{Ar} \), respectively. The rate at which the probe laser removes molecules is small compared to the radiative rate \(k_{\text{rad}} \) and is not included in Eq. (4). Since \(I_1/I_0 \) is shown by experiment not to depend on \(P_{\text{Ar}} \), \(k_{\text{Ar}} \) is neglected and a steady state solution obtained:

\[
n_1/n_0 = I_1/I_0 = k_{\text{CO}_2} n_0 n_{\text{CO}_2}/k_{\text{rad}} .
\]

Using \(2.75 \times 10^8 \) sec\(^{-1} \) for \(k_{\text{rad}} \) and the slope from Fig. 3, the rate constant for changing \(M \) from 0 to +1 is \(k_{\text{CO}_2} \).

Using 2.75 \(\times 10^8 \) sec\(^{-1} \) for \(k_{\text{rad}} \) and the slope from Fig. 3, the rate constant for changing \(M \) from 0 to +1 is \(k_{\text{CO}_2} \).

\[
I_1/I_0 = 2F_{01}G_{01}^+ + 2F_{11}G_{11}^+ + 2F_{11}G_{11}^+ .
\]

Collisions cannot generate orientation or coherences in \(J = 2 \) and

\[
p_{M'\neq M'} = 0 , \quad M \neq M' , \quad p_{11} = p_{-11} = n_1 , \quad p_{32} = p_{-32} = n_2 .
\]

The \(F \) and \(G \) matrices are then calculated (and given in Table I) to obtain

\[
I_1/I_0 = (n_2 + 6n_1 + 9n_0)/(8n_2 + 9n_1) .
\]

The intensity ratio is measured in a series of eleven experiments at different pressures. The argon pressure is varied between 0.3 and 2.7 Torr and the \(\text{CO}_2 \) pressure between 0.01 and 0.32 Torr. The variation of the intensity ratio with total pressure is shown in Fig. 4. The ratio apparently does not depend on whether \(\text{CO}_2 \)
or Ar is the primary collision partner \(^{35}\) and does not vary with total pressure. The average value of the intensity ratio is \(I_1/I_0 = 0.58 \pm 0.05\) (1σ error).

At first thought, it is surprising that multiple collisions do not increase the intensity ratio as pressure is increased. However, a simple kinetic model predicts only a small change in the intensity ratio over the pressure range used. This model restricts transitions to levels with \(J = 3\) and specifies \(\Delta M = \Delta J\). The rate constants for allowed transitions are all taken equal \((2 \times 10^5\) sec\(^{-1}\) Torr\(^{-1}\))\(^{31}\). The pump rate into \((10)\) is at least 10 times greater than the rate of collisional repopulation of this level. When this is done and steady state populations are calculated at different pressures, it is seen that the intensity ratio increases only by 0.08 over the experimental pressure range. An increase of this size is hidden by experimental error; we thus conclude that this experiment is insensitive to the effects of multiple collisions.

The observed intensity ratio immediately implies that levels other than \(M = 0\) of \(J = 2\) are significantly populated by collisions and that a \(\Delta M = 0\) selection rule in the laboratory frame does not apply to this inelastic transfer. If such a selection rule did apply, the intensity ratio would be 0.125. Also ruled out is complete depolarization \((M\text{ randomization})\), since this would result in a ratio of 0.94. We can conclude that the depolarization is significant but not complete.

Instead of the intensity ratio \((I_1/I_0)\), a degree of polarization \((P)\) can be defined and used to characterize the population distribution among \(M\) sublevels of \(J = 2\):

\[
P = \frac{I_n - I_0}{I_n + I_0}.
\]

(7)

\(P\) has the advantage of increasing as the state's polarization increases. The observed value for \(P\) is 0.27. In the \(\Delta M = 0\) and \(M\) randomization limiting cases, \(P\) values would be 0.78 and 0.03, respectively. In the following sections the phrase "intensity ratio" refers to \(I_1/I_0\), while "degree of polarization" refers to \(P\).

Another means of visualizing inelastic \(M\) changing collisions is to lengthen and then rotate \(J\) out of the laboratory-fixed plane \((xy)\), in which it is initially prepared. \(M\) sublevels are populated to an extent determined by the rotation angle. The angle which matches the observed intensity ratio of 0.58 is \(\beta = 36°\). \(^{27}\)

C. Models for \(M\) transfer

1. Long-range intermolecular forces

Several long range interactions may be important in causing BaO \(A\) \(1\Sigma^+\) \(M\) changes. Limiting ourselves to permanent BaO \(A\) \(1\Sigma^+\) dipole and quadrupole moments \((\mu\) and \(Q\), respectively), induced dipoles in Ar or CO\(_2\) and the permanent quadrupole of CO\(_2\), these interactions and corresponding BaO \(A\) \(1\Sigma^+\) selection rules are:

- (i) dipole (BaO) \(\cdots\) induced dipole \((\text{Ar or CO}_2)\), \(\Delta M = 0, \pm 2\);
- (ii) dipole (BaO) \(\cdots\) quadrupole \((\text{CO}_2)\), \(\Delta J = \pm 1, \Delta M = 0, \pm 1, \pm 2\);
- (iii) quadrupole (BaO) \(\cdots\) induced dipole \((\text{Ar or CO}_2)\), \(\Delta J = \pm 1, \Delta M = 0, \pm 1, \pm 2, \pm 3\);
- (iv) quadrupole (BaO) \(\cdots\) quadrupole \((\text{CO}_2)\), \(\Delta J = 0, \pm 2, \pm 3, \pm 4\).

Even assuming that these interactions were solely responsible for effecting \(J, M\) changes, more extensive changes in \(J, M\) occur via higher order terms involving the above operators; and, the selection rules above would not be rigorous. It seems reasonable that the interactions cited above would dominate small \(J, M\) changes. If so, dipole \(\cdots\) induced dipole and quadrupole \(\cdots\) quadrupole interactions could be expected to dominate elastic \((\Delta J = 0)\) \(M\) changes; dipole \(\cdots\) quadrupole and quadrupole \(\cdots\) induced dipole interactions would dominate inelastic, odd \(\Delta J/M\) changes.

In this section, it is most interesting to compare our results to those of Borkenhagen \textit{et al.} on CsF \(\cdots\) rare gas \(M\)-changing collisions. \(^{13}\) As mentioned above (Sec. I), cross sections of \(-5 \times 10^{-5}\) esucm\(^2\) were determined for elastic \((J, M) = (1, 0) \to (1, 1)\) transfer for CsF. By contrast, the BaO \(A\) \(1\Sigma^+\) \(\cdots\) Ar elastic cross section is no greater than \(1 \times 10^{-5}\) esucm\(^2\). The quadrupole moment for CsF \(X\) \(1\Sigma^+\) is \(-2.0 \times 10^{-26}\) esucm\(^2\). Although quadrupole moments have been determined for neither BaO \(A\) \(1\Sigma^+\) nor Ar \(1\Sigma^+\), it is plausible that the \(A\) \(1\Sigma^+\) moment is significantly smaller than the \(X\) \(1\Sigma^+\) or CsF \(X\) \(1\Sigma^+\) moments, since this state is more covalent (less polar) than either BaO \(X\) \(1\Sigma^+\) or CsF \(X\) \(1\Sigma^+\). \(^{15,16}\) The charge distributions in the BaO and CsF ground states are probably similar in light of their nearly identical dipole moments and iso-electronic configurations. \(^{16,23}\) However, the \(A\) \(1\Sigma^+\) \(\to\) \(X\) \(1\Sigma^+\) transition entails a partial charge transfer from \(O(2p)\) to Ba(6s) which not only reduces the dipole moment but also the quadrupole moment in \(A\) \(1\Sigma^+\) relative to \(X\) \(1\Sigma^+\). Thus, both first-order quadrupole and dipole \(\cdots\) induced dipole interactions between BaO \(A\) \(1\Sigma^+\) and Ar should be substantially weaker than the corresponding interactions between CsF \(X\) \(1\Sigma^+\) and Ar, consistent with the elastic \(M\)-changing cross sections measured here and in Ref. 13.

It is interesting to note the important role which the CO\(_2\) quadrupole moment \(-4.3 \times 10^{-26}\) esucm\(^2\) plays in effecting \(\Delta J = 0, \Delta M = 1\) transfer. \(^{16}\) This moment may compensate for the small BaO \(A\) \(1\Sigma^+\) dipole and quadrupole moments in causing \(\Delta J = 0, \Delta M = 1\) transfer: the cross section for CO\(_2\) collisions, into \(M = \pm 1\), is \(4.2 \pm 1.2 \times 10^{-5}\) as mentioned above (Sec. IIIA), which is comparable to the CsF \(\cdots\) rare gas values. \(^{15}\)

Comparisons between CsF \(X\) \(1\Sigma^+\) and BaO \(A\) \(1\Sigma^+\) for inelastic transfer are more difficult since we have not determined individual \((J = 1, M) \to (J' = 2, M')\) cross sections and Borkenhagen \textit{et al.} \(^{13}\) have determined only some of these cross sections. For rare gas collisions, Borkenhagen \textit{et al.} observe equal branching into \(M = 0\) or \(\pm 1\) for \(J = 1 \to J' = 2\), with cross sections of \(4 \times 10^{-5}\) esucm\(^2\). \(^{16}\) If we assume the same branching ratio here and neglect population of \(M = \pm 2\), the ratio of \(I_1\) to \(I_0\) \((\text{Eq. (6)})\) would be 0.41, compared to an experimental value of 0.58 \pm 0.05. The cross section into any particular \(M\) sublevel, \(0 \pm 1\), would be \(6.7 \times 10^{-5}\) assuming a total \(\Delta J = 1\) cross section of \(20 \times 10^{-5}\). \(^{14}\) The value of \(I_1/I_0 = 0.41\), calculated assuming identical branching to that found for CsF, \(^{13}\) is qualitatively in accord with our experimental value (0.58).
TABLE II. Inelastic transition amplitudes \(f_{m_1 m_2} \) for \(J = 1 \rightarrow 2 \) transfer in the c. m. system, quantized along the relative velocity vector. Amplitudes are calculated for atom-diatom collisions in the \(l \)-dominant approximation.\(^a\) Relative values are given.\(^b\)

| \(|m_1| \) | \(|m_2| \) | 1 | 0 |
|---|---|---|---|
| 1 | 1.25 | 2.50 | 3.06 |
| 0 | 1.77 | 3.50 | 4.30 |

\(^a\)References 31 and 34.
\(^b\)Absolute values depend on the total \(J = 1 \rightarrow J_f = 2 \) transition amplitude. \(j = 90. \)

2. Transformation to a center of mass system

We have been considering collision induced changes in the orientation of \(J \) with respect to a laboratory-fixed \(\hat{z} \) axis specified by the direction of pump laser polarization. There are compelling reasons to transform to a center of mass (c. m.) system whose orientation is specified by the individual collision. All theoretical calculations do this and if useful \(M \)-changing generalizations are to emerge, they are likely to refer to such systems. We thus choose a quantization axis in the direction of the initial relative velocity vector, \(\mathbf{v}_{\text{rel}} \).\(^3\) Both initial \((m_1) \) and final \((m_2) \) projection quantum numbers are referred to this axis.

Let \(\mathbf{R} \) be the required transformation operator and \(f \) an operator whose matrix elements give the amplitudes for sublevel to sublevel transitions in the c. m. system. The overall result of an inelastic \((\Delta J = \pm 1) \) collision of \(\text{BaO} \) can then be represented by

\[
\mathbf{R}^\dagger \mathbf{f} (\mathbf{R} | \text{10})_{\text{lab}} = \sum_{J_f} a_{J_f} |2M_f\rangle_{\text{lab}},
\]

where \(M_f \) is the final projection quantum number along the laboratory-fixed \(\hat{z} \) axis and the \(a_{J_f} \) are final \(J = 2 \) sublevel amplitudes. These amplitudes depend on the orientation \((\theta, \phi) \) of \(\mathbf{v}_{\text{rel}} \) with respect to the laboratory-fixed \(\hat{z} \) axis; velocity averaging is required. The transformation procedure and velocity averaging is outlined elsewhere\(^35,31\) and is treated in the Appendix here.

A model for the \(f \) matrix is needed to compute final sublevel amplitudes and populations. A full quantum treatment of atom-diatom \((1\Sigma^-)\) collisions\(^32\) yields complicated expressions for \(f \) elements. Only in simple cases and with great computational effort can these expressions be evaluated. Therefore a number of approximations in limiting cases have recently been developed. We turn to some of these in order to calculate final sublevel populations for comparison with the polarization observed to be transferred to \(J_f = 2 \) from \(J = 1 \) by Ar collisions. (We observe the same polarization whether the collision partner is Ar or CO\(_2\), but the quantum approximations we use are not expected to hold for the BaO - CO\(_2\) case.)

3. The \(l \)-dominant approximation

This approximation, developed by DePristo and Alexander\(^35,34\) applies best when the dominant contributions to the scattering amplitude are from channels with large total angular momentum \(j \).\(^35\) This is so when the transition is principally the result of long-range encounters. Then, for a given \(j \), channels with smallest orbital angular momentum \(l \) dominate because these channels have the lowest centrifugal barriers and smallest classical turning points. The \(l \)-dominant approximation in its simplest form neglects all channels (for a given \(j \)) except those with the smallest initial and final values of \(l \).

The scattering amplitudes \(f(x)_{J, m_1 J, m_2} \) depend on scattering angle, \(x \) (see Appendix). When they are evaluated in the \(l \)-dominant limit and \(l >> J_f \), these amplitudes factor into a product of a \(j \), \(l \) independent term, \(f' \), and a summation over the \(j \) and \(l \) dependent terms. In this limit, the \(f' \) solely determine the branching, or relative amplitudes, into different \(M \) sublevels for a given \(J \rightarrow J_f \) rotational change in collision. For \(j = 1 \rightarrow J_f = 2 \), the different \(f' \) amplitudes are given in Table II. Additional details are given in the Appendix.

From Table II it is seen that the amplitudes are greatest when \(J \) is initially perpendicular to \(\mathbf{v}_{\text{rel}} \), that is when \(m_1 = 0 \). In addition, the collision tends to align \(J \) perpendicular to \(\mathbf{v}_{\text{rel}} \) for arbitrary initial orientation, that is \(m_2 = 0 \) transition amplitudes are largest.

Once c. m. \(f \) elements are known, final laboratory-fixed transition amplitudes, \(d_{J_f} \), are obtained from Eq. (8). These \(d_{J_f} \) are differential scattering amplitudes, which still depend upon the orientation of \(\mathbf{v}_{\text{rel}} \), with respect to space-fixed coordinates. To obtain integral transition probabilities in the laboratory system, \(|d_{J_f}|^2 \) are first averaged over all scattering angles and then averaged over all orientations of \(\mathbf{v}_{\text{rel}} \). Details are given in the Appendix. The results are given in Table III.

The \(l \)-dominant approximation predicts high polarization transfer in the c. m. system, but the transfer is diminished in the laboratory-fixed system due to the coordinate transformations and velocity averaging. In fact, the calculated degree of polarization is slightly less than what is observed (Table III). This is expected from neglect of velocity selection by the pump laser (see Appendix).\(^35,37\) We now turn to other prescriptions for the \(f \) elements to see how the agreement with observation is affected.

4. \(m \) conservation and the CS approximation

Greater polarization in the c. m. system is expected to lead, after velocity averaging, to greater polarization transfer in the laboratory-fixed system. Thus it is natural to next consider \(m \) conservation in the c. m. system. It should be noted that this selection rule is not physically meaningful in that it could lead to production of alignment when none initially existed in a system with no unique collision axis.\(^38\) However, this model is useful in assessing the effect of such \(\Delta m = 0 \) collisions apart from \(\Delta m \neq 0 \) collisions.

\(m \) conservation with respect to \(\mathbf{v}_{\text{rel}} \) also arises when the centrifugal sudden (CS) or coupled states approximation is made to solve the close coupled equations.\(^39\) This approximation decouples the orbital angular mo-

Silvers, Gottschau, and Field: Depolarization of BaO A \(1\Sigma^- \)

6005

J. Chem. Phys., Vol. 74, No. 11, 1 June 1981
momentum of the collision complex (l) from the diatom angular momentum, replacing it by a constant. If this constant is chosen to be the final value of the orbital angular momentum (l_f), scattering amplitudes vanish unless they conserve m. 10

This m-conserving rule has been applied by others to interpret the results of rotational energy transfer experiments. 41 When it is used in Eqs. (8) and (A4) and averaging over scattering angle and initial relative velocities performed as above, we obtain an intensity ratio of 0.37 (P = 0.53 and \(\beta = 28^\circ \)). The predicted J = 2 polarization is now, as expected, greater than in the l-dominant approximation and also greater than is experimentally observed; the angle of rotation \(\beta \) is smaller.

5. \(\Delta m = \pm 1 \) selection rules

Another simple prescription is \(\Delta m = \pm 1 \); that is all elements with \(|m_2 - m_1| = 1 \) are equal and all others vanish. \(J \), if initially perpendicular to \(v_{rel} \), is tipped by the collision toward \(v_{rel} \). This contrasts with the l-dominant atom–diatom limit where the collision aligns \(J \) perpendicular to \(v_{rel} \). When this prescription for \(f \) is used in Eq. (8) and the transformations carried out, the \(M_f \) populations and corresponding intensity ratio are surprisingly similar to the \(\Delta m = 0 \) case (Table III).

The \(m \)-conserving and \(\Delta m = \pm 1 \) models both predict greater J = 2 polarization than is observed; the difference from our experimental result may in part be accounted for by molecules that enter the state after more than one collision. High conservation of polarization in the c.m. system is compatible with observation, but the l-dominant amplitudes lead to slightly better agreement with observation than do these simple prescriptions. We observe the same J = 2 polarization whether Ar or CO_2 is the collision partner. The calculations show, however, that the same laboratory-fixed polarization can be consistent with different c.m. selection rules; thus the \(f \) elements for collisions with CO_2 may differ from those for Ar collisions yet yield the same observed polarization.

IV. CONCLUSIONS

Optical–optical double resonance spectroscopy, with its high resolution and selectivity, is well-suited for the investigation of elastic and inelastic M-changing collisions. At low J, with proper choice of laser and detection polarizations, direct measurement of M sublevel populations is possible. The extent of polarization transfer by collisions can be characterized and rules governing M changes determined.

Here, simplified experiments with \(A^1 \Sigma^+ \) BaO, excited to \(J = 1 \), \(M = 0 \), show the power of the technique. Elastic M-changing collision cross sections are found to scale, at least qualitatively, with the diatom multipole moments, indicating the importance of long-range interactions in effecting molecular depolarization.

In modeling inelastic M-changing collisions, we have found the l-dominant theory of DePristo and Alexander35,34 to be in accord with experiment. This again illustrates the dominance of long-range, large-impact parameter collisions in causing changes in magnetic sublevels and destruction of alignment.

These are first results demonstrating the potential of the method. Insight is gained into the way collisions change M quantum numbers and reorient molecules. Further work at low J under single-collision conditions and with other polarization configurations can provide more complete information on collisionally created M sublevel populations and M-changing rules.

ACKNOWLEDGMENTS

We are grateful to M. Alexander, J. Kinsey, and D. Pritchard for helpful discussions. This work was supported, in part, by grants from the Research Corporation (to SJS) and the National Science Foundation (CHE 75–05959, 75–19410, and 78–18427).

APPENDIX: CALCULATION OF SPACE-FIXED INELASTIC TRANSITION PROBABILITIES USING CENTER OF MASS TRANSITION AMPLITUDES

The pump laser prepares \(|1, 0 \rangle \), quantized along space-fixed \(\hat{z} \). Transformation to a center of mass (c.m.) system with quantization in the initial velocity, \(v_{rel} \), direction is effected by the \(D^l \) rotation matrix42:

\[
R |10 \rangle = \sum_m D^l_{m|0}(\theta, \phi) |1m \rangle , \tag{A1}
\]

where \(m \) is the c.m. projection quantum number, \(\theta \) and \(\phi \) specify the orientation of \(v_{rel} \) with respect to \(\hat{z} \), and
* denotes complex conjugate. If \(f_{1m_1-2m_2}(j, l, R) \) is the amplitude for the \((11, m_1) \rightarrow (12, m_2)\) transition, the result of inelastic transfer to \(J = 2\) is

\[
f_R(10) = \sum_{m_1, m_2} D^*_{m_1, m_2} f_{1m_1-2m_2}(\chi)|2m_2\rangle = \sum_{m_2} C_{m_2}|2m_2\rangle , \tag{A2}
\]

where \(C_{m_2} = \sum_{m_1} D^*_{m_1, m_2} f_{1m_1-2m_2}(\chi)\) is the amplitude for transfer to the c.m. quantized level \(|2m_2\rangle\). To obtain space-fixed amplitudes, axis rotation back to the \(\tilde{z}\) direction is required:

In the fully quantum treatment the c.m. transition amplitudes are given by

\[
f_{1l_1-2l_2}(\chi) = \sum_{j=0}^{\infty} \sum_{l_1,l_2} \sum_{j=1}^{\infty} \sum_{l_1,l_2} i^{j-j_1+j_2} (-1)^{l_1+l_2} (2j+1)(2l_1+1)(2j_1+1)^{l_2} \times \begin{pmatrix} j_1 & l_1 & j \\ m_1 & 0 & m_1 \end{pmatrix} \begin{pmatrix} j_2 & l_2 & j \\ m_2 & m_1-m_2 & m_1 \end{pmatrix} T_{j_1,l_1,j_2,l_2}(\chi) \langle j_f \mid j_l \rangle , \tag{A4}
\]

where \(l_1\) and \(l_2\) are the initial and final angular momenta, respectively, \(Y_{\ell m}\) is a spherical harmonic, \(T_{j_1,l_1,j_2,l_2}\) is a transition matrix element independent of \(m_1\) or \(m_2\), \(\vec{R}\) denotes orientation of the vector joining the atom with the diatom c.m. and \(\chi\) is the c.m. scattering angle.\(^{31,32}\)

In the \(l\)-dominant limit, \(l_1\) and \(l_2\) are restricted to \(j-1\) and \(j-2\), respectively, and only the summation over \(j\) remains in Eq. (A4).\(^{34}\) If we consider only those cases where \(j > J_1\) and \(j > J_2\), since the major contribution to the integral cross sections results from large values of \(j\), the \(3-j\) symbols in Eq. (A4) approach their asymptotic limits and vary as \(j^{-1/2}\).\(^{34,35}\) Thus the \(J_1, m_1, J_2, m_2\) dependent factors in Eq. (A4) are approximately independent of \(j, l_1\), and \(l_2\) and can be factored out of the summation over \(j\):

\[
f_{1l_1-2l_2}(\chi) = \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} f(j, \chi) Y_{1l_1-2l_2}(\vec{R}) , \tag{A5}
\]

where \(f(j, \chi)\) includes the \(T\) matrix elements and other \(j, \chi\) dependent terms. The \(f\) factors for \(J_1 = 1, J_2 = 2\) are given in Table II; these were computed assuming \(j = 80\), which is sufficient large for Eq. (A5) to be valid.

When probabilities, \(|a_{\alpha}|^2\), are calculated and averaged over \(\vec{R}\) and \(\chi\), the following expressions are obtained in the \(l\)-dominant approximation:

\[
|a_{\alpha}|^2 = \left(8/3\right)(5x^4 + 3x^3 + 3x^2 + 5) ,
\]

\[
|a_{\alpha}|^2 = \left(1/2\right)(-5x^6 + 9x^4 + 5x^2 + 7) , \tag{A6}
\]

\[
|a_{\alpha}|^2 = \left(1/2\right)(5x^6 - 45x^4 + 35x^2 + 21) ,
\]

where \(x = \cos \theta\) and \(M\), independent terms have been suppressed. The relative probabilities for transfer from \((J, M) = (1, 0)\) to \((J', M')\) given in Eq. (A6) need only be averaged over \(\theta\), the orientation of \(v_{rel}\) relative to the space-fixed \(\tilde{z}\) axis.\(^{43}\)

Averaging over initial relative velocities can be simply done if the BaO velocity selection by the pump laser is ignored.\(^{34,37}\) In this case all directions are equally probable and the speed distribution is Maxwellian. In this case

\[
x^2 = \frac{\int \cos^2 \theta \sin \theta d\theta}{\int \sin \theta d\theta} = \frac{1}{2n + 1} . \tag{A7}
\]

The resultant velocity averaged relative probabilities \(|a_{\alpha}|^2\) are given in Table III.

When other prescriptions for the scattering amplitudes are used, Eq. (A4) still applies. If we impose \(\Delta m = 0 \pm 1\) selection rules, an equation analogous to Eq. (A5) results: the \(m\) dependence can be factored out and branching ratios into different \(m\) sublevels obtained. For \(m\) conservation,

\[
f_{1m_1-2m_2} = \delta_{m_1m_2} \tag{A8}
\]

and for \(\Delta m = \pm 1\) selection rules,

\[
f_{1m_1-2m_2} = \delta_{m_1 m_1} \tag{A9}
\]

where \(m_1 = m_2\). Similar equations to Eq. (A6) are obtained and velocity averaged using Eq. (A7) to give the results in Table III.

Throughout this paper, we use J'' and J^* to refer to $J \Sigma$ and $C \Sigma^*$ rotational levels, respectively. J and J' refer to $A \Sigma^*$ levels prepared initially by the pump laser and populated subsequently by collisions, respectively. Generally, magnetic quantum numbers are referred to space-fixed axes except where explicitly stated that a center of mass reference system is being employed.

Although the presentation of two rotational inelastic cross sections of 90 Å for BaO~Ar and BaO~CO collisions, respectively, an excited BaO molecule undergoes on the average 0.6 rotational transitions within its lifetime.

When the CO$_2$ and Ar pressures are similar, BaO molecules reach $J=2$ principally through collisions with CO$_2$, the $A\Sigma^*$ cross sections for CO$_2$ collisions are as much as ten times greater than those for Ar (Ref. 1). In some experiments, however, the Ar pressure is 10^4 times greater than the CO$_2$ pressure. Then it is likely that most molecules reach $J=2$ through Ar collisions. If depolarization with Ar differed significantly from that with CO$_2$, the I/I_0 ratio would not be the same in these two cases.

The rotation is taken about j and the rotated state expressed in terms of unrotated M sublevels using the rotation matrix $D_{J \Sigma}^j(0, \beta, 0)$. The squares of the sublevel amplitudes are used as population densities ρ_j, in Eq. 6 and I/I_0, obtained as a function of β. The observed intensity ratio then implies $\beta = 36^\circ$.

Other choices are possible, such as quantization along the final relative velocity vector. For a discussion of such choices see V. Khare, D. J. Kouri, and R. T Pack, J. Chem. Phys. 69, 4419 (1978).

To be corrected, the differential transition probabilities should be converted to rate constants and then number densities before averaging over scattering angles and initial velocities. We have neglected the dependence of transition probabilities on relative kinetic energy.