
S. Ramanathan
Virginia Commonwealth University

Supriyo Bandyopadhyay
Virginia Commonwealth University, sbandy@vcu.edu

L. K. Hussey
University of South Florida

Follow this and additional works at: http://scholarscompass.vcu.edu/egre_pubs

Part of the Electrical and Computer Engineering Commons

University of South Florida

Downloaded from
http://scholarscompass.vcu.edu/egre_pubs/86

This Article is brought to you for free and open access by the Dept. of Electrical and Computer Engineering at VCU Scholars Compass. It has been accepted for inclusion in Electrical and Computer Engineering Publications by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
Retraction: “Observation of numerous E_2 mode phonon replicas in the room temperature photoluminescence spectra of ZnO nanowires: Evidence of strong deformation potential electron-phonon coupling” [Appl. Phys. Lett. 89, 143121 (2006)]

S. Ramanathan,¹ S. Bandyopadhyay,¹,a) L. K. Hussey,² and M. Muñoz²
¹Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, USA
²Department of Physics, University of South Florida Tampa, Florida 33620, USA

(Received 8 March 2009; accepted 13 March 2009; published online 27 March 2009)

DOI: 10.1063/1.3112563

In the above mentioned Letter, we reported observing ~20 phonon replicas in the photoluminescence (PL) spectra of ZnO nanowires, which were perfectly reproducible. They were reproducible in different samples and in different runs. We observed ~20 oscillations in the PL spectra of ZnO nanowires and the period of these oscillations agreed (within 5%) with the E_2 phonon energy in ZnO. This led us to believe that these indeed are phonon replicas associated with the E_2 phonon mode in ZnO.

However, a colleague who recently used the same micro-Raman equipment that we had used to extract these data reported observing the exact same oscillations (with the same period) in a completely different material. There is no possible scientific explanation for this except that these oscillations must then not be related to the sample at all, but are spurious features produced by a systematic error in the equipment, probably due to a faulty detector.

Neither our colleague, nor we have any inkling of what might be causing these oscillations. They are completely unexpected and inexplicable. This erratic behavior is intermittent, which made it difficult to catch. Nonetheless, we can no longer stand behind the data in the paper and therefore retract the paper in its entirety.

We are sorry for any confusion that this may have caused for the readers of Applied Physics Letters.

⁠a)Electronic mail: sbandy@vcu.edu.