Non-Causal Autonomous Parking System for Driverless Vehicles

Ngoc Hue Vo
Virginia Commonwealth University

Swarna Chowdhuri
Virginia Commonwealth University

Ivo Yotov
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/capstone
Part of the Electrical and Computer Engineering Commons

© The Author(s)

Downloaded from
https://scholarscompass.vcu.edu/capstone/47
Vehicle parking is an urban problem that is only getting worse. Recent studies suggest that not only does the average person spend 106 days over their life-time searching for parking spaces, but also that nearly 23% of all vehicle accidents occur in parking lots [1] [2]. With the advent of autonomous cars there is an opportunity to integrate technology into the loop that coordinates this process to improve efficiency and safety. While modern cars are increasingly fitted with sophisticated sensory suites, a central monitoring system would enable improved decision-making based on a priori information – effectively giving a driverless vehicle awareness beyond its present state.

The project strives to streamline the process of finding a vacant parking space while ensuring client safety through the direction of localized traffic. The solution places great importance on affordability and scalability while maintaining relevance in a dynamic technological ecosystem.

The elements of the design are:
• Parking Space Proximity Sensor
• Central Host Microcontroller Unit (HMCU)
• Vehicle Microcontroller Unit (VMCU)
• Communications & Networking
• Data Fusion & Processing

Challenges
• Cost vs. Benefit
• System Awareness
• Deployment Requirements
• Universal Standards
• EM Spectrum Management
• Cyber Vandalism
• Future Upgradability

References


Arduino Mega 2560 R3
• 54 Digital I/O Pins
• 16 MHz Clock Speed
• Widely Used

Xbee Series 1 Module
• Point-to-Point or Mesh
• 100m Range (1mW)
• 250 Kbps Data Rate

Sharp Distance Sensor
• Small & Low Power
• 0.2” to 6” Range
• Digital Detection

Model Parking Lot
The trial board utilizes COTS products (seen above) to demonstrate the process on a small scale using a model electric car. The digital sensors are embedded throughout the board to provide reliable state information to aid in vehicle marshalling procedures. The HMCU acts as the hub of the entire network and performs data fusion and processing functions.

Model Electric Car
The car itself is driven with four DC motors that are monitored with encoders to measure the radial motion of the wheels. The VMCU is an Arduino Uno R3 and a DC motor shield with another Xbee Wireless Module to interface with the HMCU.