2015

Improved Lower-Arm Prosthesis

Trent Ernst
Virginia Commonwealth University

Eric Henderson
Virginia Commonwealth University

Patrick Borges
Virginia Commonwealth University

Taylor Powell
Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/capstone

Part of the [Engineering Commons](http://scholarscompass.vcu.edu/capstone)

© The Author(s)

Downloaded from
http://scholarscompass.vcu.edu/capstone/39

This Poster is brought to you for free and open access by the School of Engineering at VCU Scholars Compass. It has been accepted for inclusion in Capstone Design Expo Posters by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
IMPROVED LOWER-ARM PROSTHESIS

PURPOSE

Upper limb amputees face a challenging decision when choosing a prosthesis option. Approximately 35% of these amputees choose not to use a prosthesis due to complaints of difficult operation, comfort, and cost. In order to bridge the gap between functionality and usability in such solutions, we have developed a user-friendly low-cost lower arm prosthesis. This prosthesis is intended to encourage patient adoption and retention by emphasizing ease-of-access and cohesion over technical precision.

DESIGN APPROACH

The improved lower arm prosthesis is a robotic prosthetic solution designed to provide the user with:

- Simplified Usage
- Minimized Cost
- Consistent comfort

Electrical Hardware

Power for the prosthesis is provided by a 2200 mAh lithium polymer battery and distributed to the various system components through a specially designed power distribution circuit. The prosthesis controller is implemented on a Zynq-7000 development board. Figure 4 shows an overview of the prosthesis’ electrical system.

Figure 1: Prosthetic hand and forearm

As shown in Figure 2, this device has the capability to emulate three common hand grips: a pinch, a full fist, and an index point. This prosthesis is designed to be operated in combination with a signal processor unit. This signal processor should take in myoelectric signals from the user’s muscles, and use them to issue commands to the prosthesis controller.

Figure 2: Three prosthetic hand grips

Figure 3: Intra-digital linkage system

Software

The software design for the prosthesis controller is depicted through the state diagram shown below. The hand starts at a rest state and, depending on the grip desired, will transition to a new state to begin performing one of the requested grip. The following states then utilize function calls and analog-to-digital conversion to continuously monitor force sensors on the surface of the hand. These states are then used to automatically manipulate the motors based on sensor inputs, allowing the prosthesis to “sense” physical objects in the real-world.

Figure 5: State Machine executed in prosthesis controller

Overall the primary principles of our design were preserved throughout the completion of the project. However, a number of adjustments and alternatives were considered to address a few unexpected issues. After our initial design phase, we determined that a linkage-based movement scheme may be preferable to a string/spring-based concept. This strategy provides increased structural integrity, which should result in less maintenance and cost. While evaluating the structure of our software, we chose to include hardware interrupt signals to manage the parallelization of the sensor interfacing and motor control. This strategy was chosen due to the more precise timing capabilities available, as well as the advantage of not being required to implement a full operating system on the computing platform.

Figure 4: Overview of system interface

Acknowledgements: We would like to thank Dr. Peter Pidcoe and Dr. Dianne Pawluk for their help in acquiring EMG sensing data. We would also like to thank our advisors for their assistance during the completion of the project.