2015

Photocell Optimization through Thermoelectric Generation

Dante Johnson
Virginia Commonwealth University

Brian Nguyen
Virginia Commonwealth University

General Roberts
Virginia Commonwealth University

Taylor Powell
Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/capstone

Part of the Engineering Commons

© The Author(s)

Downloaded from
http://scholarscompass.vcu.edu/capstone/38

This Poster is brought to you for free and open access by the School of Engineering at VCU Scholars Compass. It has been accepted for inclusion in Capstone Design Expo Posters by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
Photocell Optimization through Thermoelectric Generation

Problem

Solar cells have an ideal operating temperature of about 25 °C or 77 °F. For each degree Celsius above the optimal operating temperature, we can expect the efficiency of the unit to drop 0.5%. On any given summer day, it is not uncommon for solar cell temperatures to reach upwards of 70 °C which is about 158 °F, this results in a drop of 25% off the overall power conversion efficiency.

During a sunny day in Virginia, the power provided from the sun is equal to 800 W/m². Given the area of the solar panel, we can determine that the expected efficiency (E_{ff}) is 19.5% when the panel is operating at its ideal temperature of 25°C.

$$E_{ff} = \frac{\text{power produced}}{\text{Sun energy} \times \text{surface area of solar panel}} = \frac{6}{800 \times 0.0385} = 19.5\%$$

However, the actual temperature of the panel on a sunny day with an ambient temperature of 25°C is 47°C resulting in a 2.1% efficiency decrease to 17.4%.

With a 2.1% efficiency drop the power production would drop from 6 Watts to 5.4 Watts.

Objective

To recuperate a tangible portion of the power loss energy through thermoelectric generation (TEG): using the wasted heat from the solar cells to create a current that we can add back into the total power produced.

Design process

A TEG is a semiconducting device used to create a current through a process known as the Seebeck effect. Heat is absorbed through the cold side, and is dissipated through the hot side, the difference in temperature creates the voltage between the two semiconductors. Using TEG’s required consideration on how to cool the hot side.

Geographical location would not only effect potential cooling method but also how much energy we can get from the sun.

Assuming optimal sunlight we can cool the hot side using a form of geo thermal cooling, deep water cooling, or using standard heat fins forced and non forced.

Our approach

We chose to use fins with natural convection as our cooling method.

Model the power output

Compare experimented results with the theoretical results

Our goal will be to create the largest possible difference in temperature between the plates of the thermoelectric devices.

Acknowledgements

We would like to specially acknowledge those who have contributed to the success of this project:

- Bill Sneddon, P.E., Paraclete
- Dr. McLeskey, Associate Professor, VCU school of Engineering
- Dr. Wang, Associate Professor, VCU school of Engineering
- Charles Bush, Off Grid By Design
- VCU School of Engineering

Advantages

Geo thermal: renewable and efficient

Deep water: renewable and efficient

Fins (forced): reasonable application

Disadvantages

Initial cost and need to dig deep

Large and deep water quantity and cost

Would require energy to cool

Relying on ambient temperature and wind to cool it

Objective

To recuperate a tangible portion of the power loss energy through thermoelectric generation (TEG): using the wasted heat from the solar cells to create a current that we can add back into the total power produced.