May 21st, 5:30 PM - 8:00 PM

Demonstration of Follicle Waves Using Delay Differential Equations

Andrew A. Wright
North Carolina State University at Raleigh, armean.wright@gmail.com

Follow this and additional works at: http://scholarscompass.vcu.edu/bamm

Part of the Dynamic Systems Commons, and the Reproductive and Urinary Physiology Commons

http://scholarscompass.vcu.edu/bamm/2016/May21/36

This Event is brought to you for free and open access by the Dept. of Mathematics and Applied Mathematics at VCU Scholars Compass. It has been accepted for inclusion in Biology and Medicine Through Mathematics Conference by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
Demonstration of Follicle Waves Using Delay Differential Equations

Abstract:

This study presents a mathematical model of hormonal control of the menstrual cycle. In addition to the normal cycle, modified equations can exhibit follicle waves leading to more than one follicle of ovulatory size. Follicles develop sequentially and present the possibility of two ovulations during the same menstrual cycle, and therefore possibility of dizygotic twins through a process called superfecundation. Concentrations of five key hormones are predicted using a nonlinear system of delay differential equations containing 13 state variables, 51 parameters, and 3 auxiliary equations. Sensitivities were calculated and parameters optimized to data for blood concentrations of five hormones. A unique stable periodic cycle exists representing normal hormone levels for both ovarian and pituitary hormones. Modifications to model equations result in follicle wave behavior from multiple rises in a pituitary hormone follicular stimulating hormone during a single menstrual cycle. Using the added mechanism for follicle waves, the existence of a period doubling bifurcation followed by a period doubling cascade, window of chaos, and window of a stable 6-cycle are also shown. Studying of this behavior may have implications in understanding of female fertility and female reproductive aging.