Combined manipulation of leaf litter and microbial larvicide enhances local control of Culex mosquitoes

Katie Bellile
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/uresposters

© The Author(s)

Downloaded from
https://scholarscompass.vcu.edu/uresposters/73

This Article is brought to you for free and open access by the Undergraduate Research Opportunities Program at VCU Scholars Compass. It has been accepted for inclusion in Undergraduate Research Posters by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
Combined manipulation of leaf litter and microbial larvicide enhances local control of *Culex* mosquitoes

Katie G. Bellile, Environmental Studies and Dr. James Vonesh, Department of Biology

Introduction

Bacillus thuringiensis israelensis (Bti) is a naturally occurring insect pathogen widely used as a microbial larvicide for mosquito control. Bti both produces proteins which kill mosquito larvae and can deter oviposition by female mosquitoes.

While deterring oviposition can reduce local mosquito production, these eggs may be redirected to other suitable habitats and contribute to adult recruitment at the landscape scale. In contrast, larval mortality reduces both local and regional recruitment. To maximize mosquito control across spatial scales, we should attract rather than deter oviposition to Bti treated habitats, creating mosquito “sinks”.

Study Design

Culex Lifecycle

We conducted a 2 x 2 factorial field mesocosm experiment in which we manipulated litter abundance and Bti presence and quantified *Culex* spp. mosquito oviposition, larval abundance, and adult emergence. Each treatment was replicated 7 times in 300 L aquatic mesocosms arrayed at the VCU Rice Center.

Hypothesis

As mosquitoes often preferentially deposit eggs in aquatic habitats rich in organic matter, we hypothesize that increasing leaf litter to attract oviposition will increase the efficacy of Bti treatment.

Results/Discussion

Bti had no effect on mosquito oviposition or larval abundance. In contrast, increasing leaf litter 50% resulted in a fivefold increase in egg rafts and mosquito larvae.

Conclusion

High litter combined with Bti application increased mosquito colonization fivefold but produced no more adults than low litter treatments.

Thus, even though we found no evidence that Bti deterred oviposition, attraction to litter resulted in increased efficacy of Bti application.

Our results suggest a potential cost effective, chemical insecticide free approach to enhanced mosquito control.

Acknowledgements

This research was supported with a VCU Rice Center Student Research Grant to K.G. Bellile. Assistant: J.L. Payne